WorldWideScience

Sample records for brain association projection

  1. A whole brain volumetric approach in overweight/obese children: Examining the association with different physical fitness components and academic performance. The ActiveBrains project.

    Science.gov (United States)

    Esteban-Cornejo, Irene; Cadenas-Sanchez, Cristina; Contreras-Rodriguez, Oren; Verdejo-Roman, Juan; Mora-Gonzalez, Jose; Migueles, Jairo H; Henriksson, Pontus; Davis, Catherine L; Verdejo-Garcia, Antonio; Catena, Andrés; Ortega, Francisco B

    2017-10-01

    Obesity, as compared to normal weight, is associated with detectable structural differences in the brain. To the best of our knowledge, no previous study has examined the association of physical fitness with gray matter volume in overweight/obese children using whole brain analyses. Thus, the aim of this study was to examine the association between the key components of physical fitness (i.e. cardiorespiratory fitness, speed-agility and muscular fitness) and brain structural volume, and to assess whether fitness-related changes in brain volumes are related to academic performance in overweight/obese children. A total of 101 overweight/obese children aged 8-11 years were recruited from Granada, Spain. The physical fitness components were assessed following the ALPHA health-related fitness test battery. T1-weighted images were acquired with a 3.0 T S Magnetom Tim Trio system. Gray matter tissue was calculated using Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra (DARTEL). Academic performance was assessed by the Batería III Woodcock-Muñoz Tests of Achievement. All analyses were controlled for sex, peak high velocity offset, parent education, body mass index and total brain volume. The statistical threshold was calculated with AlphaSim and further Hayasaka adjusted to account for the non-isotropic smoothness of structural images. The main results showed that higher cardiorespiratory fitness was related to greater gray matter volumes (P academic performance (β ranging from 0.211 to 0.352; all P academic performance (β ranging from 0.217 to 0.296; both P academic performance. Importantly, the identified associations of fitness and gray matter volume were different for each fitness component. These findings suggest that increases in cardiorespiratory fitness and speed-agility may positively influence the development of distinctive brain regions and academic indicators, and thus counteract the harmful effect of overweight and obesity on

  2. Brain Injury Association of America

    Science.gov (United States)

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  3. Remote Associates Test and Alpha Brain Waves

    Science.gov (United States)

    Haarmann, Henk J.; George, Timothy; Smaliy, Alexei; Dien, Joseph

    2012-01-01

    Previous studies found that performance on the remote associates test (RAT) improves after a period of incubation and that increased alpha brain waves over the right posterior brain predict the emergence of RAT insight solutions. We report an experiment that tested whether increased alpha brain waves during incubation improve RAT performance.…

  4. The associative brain at work

    DEFF Research Database (Denmark)

    Suppa, A.; Quartarone, A.; Siebner, H.

    2017-01-01

    with movement disorders and other neuropsychiatric diseases. The present review covers the physiology, pharmacology, pathology and motor effects of PAS. Further sections of the review focus on new protocols of “modified PAS” and possible future application of PAS in neuromorphic circuits designed for brain-computer...... interface....

  5. The Human Brain Project: Creating a European Research Infrastructure to Decode the Human Brain.

    Science.gov (United States)

    Amunts, Katrin; Ebell, Christoph; Muller, Jeff; Telefont, Martin; Knoll, Alois; Lippert, Thomas

    2016-11-02

    Decoding the human brain is perhaps the most fascinating scientific challenge in the 21st century. The Human Brain Project (HBP), a 10-year European Flagship, targets the reconstruction of the brain's multi-scale organization. It uses productive loops of experiments, medical, data, data analytics, and simulation on all levels that will eventually bridge the scales. The HBP IT architecture is unique, utilizing cloud-based collaboration and development platforms with databases, workflow systems, petabyte storage, and supercomputers. The HBP is developing toward a European research infrastructure advancing brain research, medicine, and brain-inspired information technology. Copyright © 2016. Published by Elsevier Inc.

  6. Internal receptors in insect appendages project directly into a special brain neuropile.

    Science.gov (United States)

    Bräunig, Peter; Krumpholz, Katharina

    2013-09-10

    The great majority of afferent neurons of insect legs project into their segmental ganglion. Intersegmental projections are rare and are only formed by sense organs associated with the basal joints of the legs. Such intersegmental projections never ascend as far as the brain and they form extensive ramifications within thoracic ganglia. A few afferents of chordotonal organs of the subcoxal joints ascend as far as the suboesophageal ganglion. We describe novel afferent neurons in distal segments of locust legs that project directly into the brain without forming ramifications in other ganglia. In the brain, the fibres terminate with characteristic terminals in a small neuropile previously named the superficial ventral inferior protocerebrum. The somata of these neurons are located in the tibiae and tarsi of all legs and they are located within branches of peripheral nerves, or closely associated with such branches. They are not associated with any accessory structures such as tendons or connective tissue strands as typical for insect internal mechanoreceptors such as chordotonal organs or stretch receptors. Morphologically they show great similarity to certain insect infrared receptors.We could not observe projections into the superficial ventral inferior protocerebrum after staining mandibular or labial nerves, but we confirm previous studies that showed projections into the same brain neuropile after staining maxillary and antennal nerves, indicating that most likely similar neurons are present in these appendages also. Because of their location deep within the lumen of appendages the function of these neurons as infrared receptors is unlikely. Their projection pattern and other morphological features indicate that the neurons convey information about an internal physiological parameter directly into a special brain neuropile. We discuss their possible function as thermoreceptors.

  7. Research project: "Promotion of optimum brain ageing"

    CERN Multimedia

    IT Department

    2009-01-01

    The Rehabilitation and Geriatrics Department of the Geneva University Hospitals (HUG) has signed a research protocol with CERN with a view to promoting better understanding of the mechanisms that trigger Alzheimer’s disease. Alzheimer’s disease is a form of dementia associated with memory loss, inability to make plans and spatial disorientation. With 24 million sufferers worldwide at present, a figure that is predicted to rise to 29 million by 2020, it represents a major challenge for the coming decades. Prevention is a key factor in slowing the alarming spread of this disease. Delaying the onset of the disease could reduce the total number of cases by 50%. Why CERN? CERN is an international research organisation with a workforce that is predominantly male (a section of the population that has been little studied so far) and has a high level of education. Moreover, its pensioners are easy to reach since the majority live in the Geneva area. The aim of the study is to ev...

  8. Factors associated with morphometric brain changes in cognitively normal aging

    Directory of Open Access Journals (Sweden)

    Renata Eloah de Lucena Ferretti-Rebustini

    Full Text Available OBJECTIVE: Cognitive impairment is associated with reductions in brain weight and volume. The factors related to morphometric brain changes in cognitively normal aging remain unknown. We aimed to identify which clinical factors are associated with morphometric brain changes in cognitively normal aging. METHODS: A cross-sectional study of 414 subjects, ≥50 years old submitted to clinical assessment and brain autopsy, after informed consent, was carried out at the São Paulo Autopsy Service, Brazil. Data on cognitive and functional evaluations were collected through structured interview applied to the next-of-kin. Brain weight (g and volume (mL measurements were obtained and adjusted for head circumference (cm. Associations between brain weight/volume and related factors were obtained through univariate and multivariate analysis. RESULTS: Participants were predominantly male (60.4%, Caucasian (69%, with mean age of 67.1 ± 10.9 years. Mean brain weight was 1219.2 ± 140.9 g, and mean brain volume was 1217.1 ± 152.3 mL. Head circumference was independently associated with low brain weight (p<0.001 and volume (p<0.001. Total and adjusted brain weight and volume decreased in some conditions. Female gender (p<0.001, hypertension (p<0.009, coronary artery disease (p<0.013 and walking assistance (p<0.011 were associated with lower adjusted brain weight while schooling was associated with higher adjusted brain weight (p<0.003. Female gender (p<0.001, age (p<0.001 and hypertension (p<0.011 were associated with low adjusted brain volume. CONCLUSION: Morphometric brain changes occur despite the absence of cognitive impairment and were predominantly associated with age, female gender, mobility impairment and cardiovascular conditions. Schooling may be a protective factor.

  9. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    Science.gov (United States)

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  10. Visual problems associated with traumatic brain injury.

    Science.gov (United States)

    Armstrong, Richard A

    2018-02-28

    Traumatic brain injury (TBI) and its associated concussion are major causes of disability and death. All ages can be affected but children, young adults and the elderly are particularly susceptible. A decline in mortality has resulted in many more individuals living with a disability caused by TBI including those affecting vision. This review describes: (1) the major clinical and pathological features of TBI; (2) the visual signs and symptoms associated with the disorder; and (3) discusses the assessment of quality of life and visual rehabilitation of the patient. Defects in primary vision such as visual acuity and visual fields, eye movement including vergence, saccadic and smooth pursuit movements, and in more complex aspects of vision involving visual perception, motion vision ('akinopsia'), and visuo-spatial function have all been reported in TBI. Eye movement dysfunction may be an early sign of TBI. Hence, TBI can result in a variety of visual problems, many patients exhibiting multiple visual defects in combination with a decline in overall health. Patients with chronic dysfunction following TBI may require occupational, vestibular, cognitive and other forms of physical therapy. Such patients may also benefit from visual rehabilitation, including reading-related oculomotor training and the prescribing of spectacles with a variety of tints and prism combinations. © 2018 Optometry Australia.

  11. Genome-wide association study of sporadic brain arteriovenous malformations

    NARCIS (Netherlands)

    Weinsheimer, S.; Bendjilali, N.; Nelson, J.; Guo, D.E.; Zaroff, J.G.; Sidney, S.; McCulloch, C.E.; Salman, R. Al-Shahi; Berg, J.N.; Koeleman, B.P.C.; Simon, M.; Bostroem, A.; Fontanella, M.; Sturiale, C.L.; Pola, R.; Puca, A.; Lawton, M.T.; Young, W.L.; Pawlikowska, L.; Klijn, C.J.M.; Kim, H.

    2016-01-01

    BACKGROUND: The pathogenesis of sporadic brain arteriovenous malformations (BAVMs) remains unknown, but studies suggest a genetic component. We estimated the heritability of sporadic BAVM and performed a genome-wide association study (GWAS) to investigate association of common single nucleotide

  12. Pineal calcification is associated with pediatric primary brain tumor.

    Science.gov (United States)

    Tuntapakul, Supinya; Kitkhuandee, Amnat; Kanpittaya, Jaturat; Johns, Jeffrey; Johns, Nutjaree Pratheepawanit

    2016-12-01

    Melatonin has been associated with various tumors, including brain tumor, and shown to inhibit growth of neuroblastoma cells and gliomas in animal models. Likewise, patients with glioblastoma receiving melatonin reported better survival than controls. Pineal calcification may lead to a decreased production of melatonin by calcified glands. This study assessed association between pineal calcification and primary brain tumor in pediatric/adolescent patients. Medical chart review was conducted in 181 patients brain computed tomography (CT) during 2008-2012. Pineal calcification was identified using brain CT scan by an experienced neurosurgeon. Primary brain tumor was confirmed by CT scan and histology, and association with pineal calcification was estimated using multiple logistic regression, adjusted for age and gender. Primary brain tumor was detected in 51 patients (mean age 9.0, standard deviation 4.0 years), with medulloblastoma being the most common (11 patients). Pineal calcification was detected in 12 patients (23.5%) with primary brain tumor, while only 11 patients (8.5%) without tumor had pineal calcification. Adjusted for patients' ages and genders, pineal calcification was associated with an increase in primary brain tumor of 2.82-fold (odds ratio 2.82; 95% confidence interval 1.12-7.08, P = 0.027). Pineal calcification appears to be associated with primary brain tumor. Further studies to explore this link are discussed and warranted. © 2016 John Wiley & Sons Australia, Ltd.

  13. Genome-wide association study of sporadic brain arteriovenous malformations.

    Science.gov (United States)

    Weinsheimer, Shantel; Bendjilali, Nasrine; Nelson, Jeffrey; Guo, Diana E; Zaroff, Jonathan G; Sidney, Stephen; McCulloch, Charles E; Al-Shahi Salman, Rustam; Berg, Jonathan N; Koeleman, Bobby P C; Simon, Matthias; Bostroem, Azize; Fontanella, Marco; Sturiale, Carmelo L; Pola, Roberto; Puca, Alfredo; Lawton, Michael T; Young, William L; Pawlikowska, Ludmila; Klijn, Catharina J M; Kim, Helen

    2016-09-01

    The pathogenesis of sporadic brain arteriovenous malformations (BAVMs) remains unknown, but studies suggest a genetic component. We estimated the heritability of sporadic BAVM and performed a genome-wide association study (GWAS) to investigate association of common single nucleotide polymorphisms (SNPs) with risk of sporadic BAVM in the international, multicentre Genetics of Arteriovenous Malformation (GEN-AVM) consortium. The Caucasian discovery cohort included 515 BAVM cases and 1191 controls genotyped using Affymetrix genome-wide SNP arrays. Genotype data were imputed to 1000 Genomes Project data, and well-imputed SNPs (>0.01 minor allele frequency) were analysed for association with BAVM. 57 top BAVM-associated SNPs (51 SNPs with pJAG1 and BNC2. Of the 6 candidate SNPs, 2 in ACVRL1 and MMP3 had a nominal p<0.05 in the replication cohort. We performed the first GWAS of sporadic BAVM in the largest BAVM cohort assembled to date. No GWAS SNPs were replicated, suggesting that common SNPs do not contribute strongly to BAVM susceptibility. However, heritability estimates suggest a modest but significant genetic contribution. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Variations in the APOE allele or BDNF Val66Met polymorphism are not associated with changes in cognitive function following a tertiary education intervention in older adults: the Tasmanian Healthy Brain Project.

    Science.gov (United States)

    Thow, Megan E; Summers, Mathew J; Summers, Jeffery J; Saunders, Nichole L; Vickers, James C

    2017-07-01

    The apolipoprotein (APOE) ε4 allele and the Met variant of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism are associated with reduced cognitive function in older adults. The aim of this study was to examine the independent and interactional effect of the APOE ε4 allele and BDNF Val66Met polymorphism on cognitive function in a cohort of healthy older adults who had undertaken further university level education. Multiple group latent growth curve modeling revealed no change in cognitive function over time in APOE ε4-carriers or in BDNF Met-carriers, nor in carriers of both APOE-ε4 and BDNF-Met alleles. Further, the results indicate that allelic variation in either APOE or BDNF does not modify the beneficial effects of a university-based education intervention on cognitive function over a 4-year period following the intervention. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Visceral adipose tissue is associated with microstructural brain tissue damage.

    Science.gov (United States)

    Widya, Ralph L; Kroft, Lucia J M; Altmann-Schneider, Irmhild; van den Berg-Huysmans, Annette A; van der Bijl, Noortje; de Roos, Albert; Lamb, Hildo J; van Buchem, Mark A; Slagboom, P Eline; van Heemst, Diana; van der Grond, Jeroen

    2015-05-01

    Obesity has been associated with microstructural brain tissue damage. Different fat compartments demonstrate different metabolic and endocrine behaviors. The aim was to investigate the individual associations between abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) and microstructural integrity in the brain. This study comprised 243 subjects aged 65.4 ± 6.7 years. The associations between abdominal VAT and SAT, assessed by CT, and magnetization transfer imaging markers of brain microstructure for gray and white matter were analyzed and adjusted for confounding factors. VAT was associated with normalized MTR peak height in gray (β -0.216) and white matter (β -0.240) (both P  0.05). Stepwise linear regression analysis showed that only VAT was associated with normalized MTR peak height in gray and white matter (both P VAT rather than SAT is associated with microstructural brain tissue damage in elderly individuals. © 2015 The Obesity Society.

  16. Injured brain regions associated with anxiety in Vietnam veterans.

    Science.gov (United States)

    Knutson, Kristine M; Rakowsky, Shana T; Solomon, Jeffrey; Krueger, Frank; Raymont, Vanessa; Tierney, Michael C; Wassermann, Eric M; Grafman, Jordan

    2013-03-01

    Anxiety negatively affects quality of life and psychosocial functioning. Previous research has shown that anxiety symptoms in healthy individuals are associated with variations in the volume of brain regions, such as the amygdala, hippocampus, and the bed nucleus of the stria terminalis. Brain lesion data also suggests the hemisphere damaged may affect levels of anxiety. We studied a sample of 182 male Vietnam War veterans with penetrating brain injuries, using a semi-automated voxel-based lesion-symptom mapping (VLSM) approach. VLSM reveals significant associations between a symptom such as anxiety and the location of brain lesions, and does not require a broad, subjective assignment of patients into categories based on lesion location. We found that lesioned brain regions in cortical and limbic areas of the left hemisphere, including middle, inferior and superior temporal lobe, hippocampus, and fusiform regions, along with smaller areas in the inferior occipital lobe, parahippocampus, amygdala, and insula, were associated with increased anxiety symptoms as measured by the Neurobehavioral Rating Scale (NRS). These results were corroborated by similar findings using Neuropsychiatric Inventory (NPI) anxiety scores, which supports these regions' role in regulating anxiety. In summary, using a semi-automated analysis tool, we detected an effect of focal brain damage on the presentation of anxiety. We also separated the effects of brain injury and war experience by including a control group of combat veterans without brain injury. We compared this control group against veterans with brain lesions in areas associated with anxiety, and against veterans with lesions only in other brain areas. Published by Elsevier Ltd.

  17. A Brain-Computer Interface Project Applied in Computer Engineering

    Science.gov (United States)

    Katona, Jozsef; Kovari, Attila

    2016-01-01

    Keeping up with novel methods and keeping abreast of new applications are crucial issues in engineering education. In brain research, one of the most significant research areas in recent decades, many developments have application in both modern engineering technology and education. New measurement methods in the observation of brain activity open…

  18. Differentiation of Brain Damage Among Low IQ Subjects with Three Projective Techniques

    Science.gov (United States)

    Wagner, Edwin E.; And Others

    1978-01-01

    The Rorschach, Hand, and Bender-Gestalt tests discriminated slightly between low IQ subjects classified as brain damaged or not. Substantial discrimination was observed between the same subjects classified by intelligence level. Brain impairment may underlie most or all retardation. The efficacy of projective techniques for diagnosing organicity…

  19. Sleep variability in adolescence is associated with altered brain development.

    Science.gov (United States)

    Telzer, Eva H; Goldenberg, Diane; Fuligni, Andrew J; Lieberman, Matthew D; Gálvan, Adriana

    2015-08-01

    Despite the known importance of sleep for brain development, and the sharp increase in poor sleep during adolescence, we know relatively little about how sleep impacts the developing brain. We present the first longitudinal study to examine how sleep during adolescence is associated with white matter integrity. We find that greater variability in sleep duration one year prior to a DTI scan is associated with lower white matter integrity above and beyond the effects of sleep duration, and variability in bedtime, whereas sleep variability a few months prior to the scan is not associated with white matter integrity. Thus, variability in sleep duration during adolescence may have long-term impairments on the developing brain. White matter integrity should be increasing during adolescence, and so sleep variability is directly at odds with normative developmental trends. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Brain Machine Interfaces for Robotic Control in Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will study the application of a brain machine interface (BMI) to enable crew to remotely operate and monitor robots from inside a flight vehicle, habitat...

  1. Imaging cerebral tryptophan metabolism in brain tumor-associated depression.

    Science.gov (United States)

    Bosnyák, Edit; Kamson, David O; Behen, Michael E; Barger, Geoffrey R; Mittal, Sandeep; Juhász, Csaba

    2015-12-01

    Depression in patients with brain tumors is associated with impaired quality of life and shorter survival. Altered metabolism of tryptophan to serotonin and kynurenine metabolites may play a role in tumor-associated depression. Our recent studies with alpha[(11)C]methyl-L-tryptophan (AMT)-PET in brain tumor patients indicated abnormal tryptophan metabolism not only in the tumor mass but also in normal-appearing contralateral brain. In the present study, we explored if tryptophan metabolism in such brain regions is associated with depression. Twenty-one patients (mean age: 57 years) with a brain tumor (10 meningiomas, 8 gliomas, and 3 brain metastases) underwent AMT-PET scanning. MRI and AMT-PET images were co-registered, and AMT kinetic parameters, including volume of distribution (VD', an estimate of net tryptophan transport) and K (unidirectional uptake, related to tryptophan metabolism), were measured in the tumor mass and in unaffected cortical and subcortical regions contralateral to the tumor. Depression scores (based on the Beck Depression Inventory-II [BDI-II]) were correlated with tumor size, grade, type, and AMT-PET variables. The mean BDI-II score was 12 ± 10 (range: 2-33); clinical levels of depression were identified in seven patients (33 %). High BDI-II scores were most strongly associated with high thalamic AMT K values both in the whole group (Spearman's rho = 0.63, p = 0.004) and in the subgroup of 18 primary brain tumors (r = 0.68, p = 0.004). Frontal and striatal VD' values were higher in the depressed subgroup than in non-depressed patients (p Tumor size, grade, and tumor type were not related to depression scores. Abnormalities of tryptophan transport and metabolism in the thalamus, striatum, and frontal cortex, measured by PET, are associated with depression in patients with brain tumor. These changes may indicate an imbalance between the serotonin and kynurenine pathways and serve as a molecular imaging marker of

  2. Anorexia nervosa associated with right frontal brain lesion.

    Science.gov (United States)

    Houy, Emmanuelle; Debono, Bertrand; Dechelotte, Pierre; Thibaut, Florence

    2007-12-01

    A causal association of brain lesion to the physiopathology of anorexia nervosa will be discussed. The authors report the case of a female patient who developed anorexia nervosa. A cavernoma, located on the frontal side of the right sylvian, was discovered by chance after a seizure. Surgical treatment of the lesion resulted in complete remission of the eating disorder at two years follow-up. Evidence for organic brain contribution to anorexia nervosa is strong and can be illustrated by this case report of anorexia nervosa associated with cerebral tumour. (c) 2007 by Wiley Periodicals, Inc.

  3. Association Between Traumatic Brain Injury-Related Brain Lesions and Long-term Caregiver Burden.

    Science.gov (United States)

    Guevara, Andrea Brioschi; Demonet, Jean-Francois; Polejaeva, Elena; Knutson, Kristine M; Wassermann, Eric M; Grafman, Jordan; Krueger, Frank

    2016-01-01

    To investigate the association between traumatic brain injury (TBI)-related brain lesions and long-term caregiver burden in relation to dysexecutive syndrome. National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland. A total of 256 participants: 105 combat veterans with TBI, 23 healthy control combat veterans (HCv), and 128 caregivers. Caregiver burden assessed by the Zarit Burden Interview at 40 years postinjury. Participants with penetrating TBI were compared with HCv on perceived caregiver burden and neuropsychological assessment measures. Data of computed tomographic scans (overlay lesion maps of participants with a penetrating TBI whose caregivers have a significantly high burden) and behavioral statistical analyses were combined to identify brain lesions associated with caregiver burden. Burden was greater in caregivers of veterans with TBI than in caregivers of HCv. Caregivers of participants with lesions affecting cognitive and behavioral indicators of dysexecutive syndrome (ie, left dorsolateral prefrontal cortex and dorsal anterior cingulate cortex) showed greater long-term burden than caregivers of participants with lesions elsewhere in the brain. The TBI-related brain lesions have a lasting effect on long-term caregiver burden due to cognitive and behavioral factors associated with dysexecutive syndrome.

  4. Brain Connectivity Variation Topography Associated with Working Memory.

    Directory of Open Access Journals (Sweden)

    Xiaofei Ma

    Full Text Available Brain connectivity analysis plays an essential role in the research of working memory that involves complex coordination of various brain regions. In this research, we present a comprehensive view of trans-states brain connectivity variation based on continuous scalp EEG, extending beyond traditional stimuli-lock averaging or restriction to short time scales of hundreds of milliseconds after stimulus onset. The scalp EEG was collected under three conditions: quiet, memory, and control. The only difference between the memory and control conditions was that in the memory condition, subjects made an effort to retain information. We started our investigation with calibrations of Pearson correlation in EEG analysis and then derived two indices, link strength and node connectivity, to make comparisons between different states. Finally, we constructed and studied trans-state brain connectivity variation topography. Comparing memory and control states with quiet state, we found that the beta topography highlights links between T5/T6 and O1/O2, which represents the visual ventral stream, and the gamma topography conveys strengthening of inter-hemisphere links and weakening of intra-hemisphere frontal-posterior links, implying parallel inter-hemisphere coordination combined with sequential intra-hemisphere coordination when subjects are confronted with visual stimuli and a motor task. For comparison between memory and control states, we also found that the node connectivity of T6 stands out in gamma topography, which provides strong proof from scalp EEG for the information binding or relational processing function of the temporal lobe in memory formation. To our knowledge, this is the first time for any method to effectively capture brain connectivity variation associated with working memory from a relatively large scale both in time (from a second to a minute and in space (from the scalp. The method can track brain activity continuously with minimal

  5. Brain Connectivity Variation Topography Associated with Working Memory.

    Science.gov (United States)

    Ma, Xiaofei; Huang, Xiaolin; Ge, Yun; Hu, Yueming; Chen, Wei; Liu, Aili; Liu, Hongxing; Chen, Ying; Li, Bin; Ning, Xinbao

    2016-01-01

    Brain connectivity analysis plays an essential role in the research of working memory that involves complex coordination of various brain regions. In this research, we present a comprehensive view of trans-states brain connectivity variation based on continuous scalp EEG, extending beyond traditional stimuli-lock averaging or restriction to short time scales of hundreds of milliseconds after stimulus onset. The scalp EEG was collected under three conditions: quiet, memory, and control. The only difference between the memory and control conditions was that in the memory condition, subjects made an effort to retain information. We started our investigation with calibrations of Pearson correlation in EEG analysis and then derived two indices, link strength and node connectivity, to make comparisons between different states. Finally, we constructed and studied trans-state brain connectivity variation topography. Comparing memory and control states with quiet state, we found that the beta topography highlights links between T5/T6 and O1/O2, which represents the visual ventral stream, and the gamma topography conveys strengthening of inter-hemisphere links and weakening of intra-hemisphere frontal-posterior links, implying parallel inter-hemisphere coordination combined with sequential intra-hemisphere coordination when subjects are confronted with visual stimuli and a motor task. For comparison between memory and control states, we also found that the node connectivity of T6 stands out in gamma topography, which provides strong proof from scalp EEG for the information binding or relational processing function of the temporal lobe in memory formation. To our knowledge, this is the first time for any method to effectively capture brain connectivity variation associated with working memory from a relatively large scale both in time (from a second to a minute) and in space (from the scalp). The method can track brain activity continuously with minimal manual interruptions

  6. Whole brain and brain regional coexpression network interactions associated with predisposition to alcohol consumption.

    Directory of Open Access Journals (Sweden)

    Lauren A Vanderlinden

    Full Text Available To identify brain transcriptional networks that may predispose an animal to consume alcohol, we used weighted gene coexpression network analysis (WGCNA. Candidate coexpression modules are those with an eigengene expression level that correlates significantly with the level of alcohol consumption across a panel of BXD recombinant inbred mouse strains, and that share a genomic region that regulates the module transcript expression levels (mQTL with a genomic region that regulates alcohol consumption (bQTL. To address a controversy regarding utility of gene expression profiles from whole brain, vs specific brain regions, as indicators of the relationship of gene expression to phenotype, we compared candidate coexpression modules from whole brain gene expression data (gathered with Affymetrix 430 v2 arrays in the Colorado laboratories and from gene expression data from 6 brain regions (nucleus accumbens (NA; prefrontal cortex (PFC; ventral tegmental area (VTA; striatum (ST; hippocampus (HP; cerebellum (CB available from GeneNetwork. The candidate modules were used to construct candidate eigengene networks across brain regions, resulting in three "meta-modules", composed of candidate modules from two or more brain regions (NA, PFC, ST, VTA and whole brain. To mitigate the potential influence of chromosomal location of transcripts and cis-eQTLs in linkage disequilibrium, we calculated a semi-partial correlation of the transcripts in the meta-modules with alcohol consumption conditional on the transcripts' cis-eQTLs. The function of transcripts that retained the correlation with the phenotype after correction for the strong genetic influence, implicates processes of protein metabolism in the ER and Golgi as influencing susceptibility to variation in alcohol consumption. Integration of these data with human GWAS provides further information on the function of polymorphisms associated with alcohol-related traits.

  7. Endocarditis-associated Brain Lesions in Slaughter Pigs

    DEFF Research Database (Denmark)

    Karstrup, C.C.; Jensen, H.E.; Aalbæk, B.

    2011-01-01

    Left-sided valvular endocarditis (LSVE) is a common finding in slaughter pigs. The lesion is often associated with renal thromboembolism, but information on embolization to other organs is sparse. This study focuses on the presence and type of endocarditis-associated brain lesions (EABLs). The br......Left-sided valvular endocarditis (LSVE) is a common finding in slaughter pigs. The lesion is often associated with renal thromboembolism, but information on embolization to other organs is sparse. This study focuses on the presence and type of endocarditis-associated brain lesions (EABLs......). The brains of 20 slaughter pigs with spontaneously arising LSVE and 11 controls were examined by sectioning half of a formalin-fixed brain into 4mm slices for histological examination. The aetiology of the endocarditis was determined by bacteriological and, in some cases, by fluorescence in...... was found in eight cases. EABLs are therefore common in slaughter pigs with LSVE. The number of lesions per animal is small, which may explain the limited attention paid to this sequela of LSVE. EABLs have rarely been reported in domestic animals and mostly in patients with neurological signs. The frequent...

  8. Management of HIV-associated focal brain lesions in developing ...

    African Journals Online (AJOL)

    Background. HIV-associated focal brain lesions (FBLs) are caused by opportunistic infections, neoplasms, or cerebrovascular diseases. In developed countries toxoplasma encephalitis (TE) is the most frequent cause followed by primary CNS lymphoma (PCNSL). Guidelines based on these causes have been proposed ...

  9. Genome-wide association study of sporadic brain arteriovenous malformations

    OpenAIRE

    Weinsheimer, Shantel; Bendjilali, Nasrine; Nelson, Jeffrey; Guo, Diana E; Zaroff, Jonathan G.; Sidney, Stephen; McCulloch, Charles E.; Al-Shahi Salman, Rustam; Berg, Jonathan N; Bobby P. C. Koeleman; Simon, Matthias; Bostroem, Azize; Fontanella, Marco; Sturiale, Carmelo L; Pola, Roberto

    2016-01-01

    BACKGROUND: The pathogenesis of sporadic brain arteriovenous malformations (BAVMs) remains unknown, but studies suggest a genetic component. We estimated the heritability of sporadic BAVM and performed a genome-wide association study (GWAS) to investigate association of common single nucleotide polymorphisms (SNPs) with risk of sporadic BAVM in the international, multicentre Genetics of Arteriovenous Malformation (GEN-AVM) consortium.METHODS: The Caucasian discovery cohort included 515 BAVM c...

  10. Kocuria varians infection associated with brain abscess: A case report

    Directory of Open Access Journals (Sweden)

    Tsai Tai-Hsin

    2010-04-01

    Full Text Available Abstract Background Kocuria, established by Stackebrandt et al., previously was classified into Micrococcus. Only two species, K. rosea and K. kristinae are reported to be associated as pathogenic and found with catheter-related bacteremia and acute cholecystitis. Case presentation We herein report the first case of brain abscess caused by Kocuria varians, a gram-positive microorganism, in a 52-year-old man. Hematogenous spread is the probable pathogenesis. Conclusions This report presents a case of Kocuria varians brain abscess successfully treated with surgical excision combined with antimicrobial therapy. In addition, Vitek 2 system has been used to identify and differentiate between coagulase-negative staphylococcus.

  11. Association of brain network efficiency with aging, depression, and cognition.

    Science.gov (United States)

    Ajilore, Olusola; Lamar, Melissa; Kumar, Anand

    2014-02-01

    Newly developed techniques for understanding brain connectivity have emerged with the application of graph theory-based measures to neuroimaging modalities. However, the cognitive correlates of these measures, particularly in the context of clinical diagnoses like major depression, are still poorly understood. The purpose of this study was to compare four measures of network efficiency derived from novel techniques for understanding white matter connectivity on their associations with aging, depression, and cognition. In a cross-sectional neuroimaging study, we recruited from the general community 43 healthy comparison subjects and 40 subjects with major depressive disorder who volunteered in response to advertisements. Brain network efficiency measures were generated from diffusion tensor imaging-derived structural connectivity matrices using the Brain Connectivity Toolbox. Information processing speed and decision making were assessed with the Trail Making Test and the Object Alternation task, respectively. All four network efficiency measures correlated negatively with age. In the depressed group, normalized global efficiency was negatively correlated with depression severity, whereas increasing global efficiency was associated with poorer performance on Object Alternation. Brain network efficiency measures may represent different aspects of underlying network organization depending on the population and behaviors in question. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Association of Seafood Consumption, Brain Mercury Level, and APOE ��4 Status With Brain Neuropathology in Older Adults

    OpenAIRE

    Morris, Martha Clare; Brockman, John; Schneider, J.; Wang, Yamin; Bennett, D.; Tangney, Christy; Rest, van, J.

    2016-01-01

    Importance Seafood consumption is promoted for its many health benefits even though its contamination by mercury, a known neurotoxin, is a growing concern.Objective To determine whether seafood consumption is correlated with increased brain mercury levels and also whether seafood consumption or brain mercury levels are correlated with brain neuropathologies.Design, Setting, and Participants Cross-sectional analyses of deceased participants in the Memory and Aging Project clinical neuropatholo...

  13. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures.

    Science.gov (United States)

    Holmes, Avram J; Hollinshead, Marisa O; O'Keefe, Timothy M; Petrov, Victor I; Fariello, Gabriele R; Wald, Lawrence L; Fischl, Bruce; Rosen, Bruce R; Mair, Ross W; Roffman, Joshua L; Smoller, Jordan W; Buckner, Randy L

    2015-01-01

    The goal of the Brain Genomics Superstruct Project (GSP) is to enable large-scale exploration of the links between brain function, behavior, and ultimately genetic variation. To provide the broader scientific community data to probe these associations, a repository of structural and functional magnetic resonance imaging (MRI) scans linked to genetic information was constructed from a sample of healthy individuals. The initial release, detailed in the present manuscript, encompasses quality screened cross-sectional data from 1,570 participants ages 18 to 35 years who were scanned with MRI and completed demographic and health questionnaires. Personality and cognitive measures were obtained on a subset of participants. Each dataset contains a T1-weighted structural MRI scan and either one (n=1,570) or two (n=1,139) resting state functional MRI scans. Test-retest reliability datasets are included from 69 participants scanned within six months of their initial visit. For the majority of participants self-report behavioral and cognitive measures are included (n=926 and n=892 respectively). Analyses of data quality, structure, function, personality, and cognition are presented to demonstrate the dataset's utility.

  14. Brain anatomy alterations associated with Social Networking Site (SNS) addiction

    Science.gov (United States)

    He, Qinghua; Turel, Ofir; Bechara, Antoine

    2017-01-01

    This study relies on knowledge regarding the neuroplasticity of dual-system components that govern addiction and excessive behavior and suggests that alterations in the grey matter volumes, i.e., brain morphology, of specific regions of interest are associated with technology-related addictions. Using voxel based morphometry (VBM) applied to structural Magnetic Resonance Imaging (MRI) scans of twenty social network site (SNS) users with varying degrees of SNS addiction, we show that SNS addiction is associated with a presumably more efficient impulsive brain system, manifested through reduced grey matter volumes in the amygdala bilaterally (but not with structural differences in the Nucleus Accumbens). In this regard, SNS addiction is similar in terms of brain anatomy alterations to other (substance, gambling etc.) addictions. We also show that in contrast to other addictions in which the anterior-/ mid- cingulate cortex is impaired and fails to support the needed inhibition, which manifests through reduced grey matter volumes, this region is presumed to be healthy in our sample and its grey matter volume is positively correlated with one’s level of SNS addiction. These findings portray an anatomical morphology model of SNS addiction and point to brain morphology similarities and differences between technology addictions and substance and gambling addictions. PMID:28332625

  15. Brain anatomy alterations associated with Social Networking Site (SNS) addiction.

    Science.gov (United States)

    He, Qinghua; Turel, Ofir; Bechara, Antoine

    2017-03-23

    This study relies on knowledge regarding the neuroplasticity of dual-system components that govern addiction and excessive behavior and suggests that alterations in the grey matter volumes, i.e., brain morphology, of specific regions of interest are associated with technology-related addictions. Using voxel based morphometry (VBM) applied to structural Magnetic Resonance Imaging (MRI) scans of twenty social network site (SNS) users with varying degrees of SNS addiction, we show that SNS addiction is associated with a presumably more efficient impulsive brain system, manifested through reduced grey matter volumes in the amygdala bilaterally (but not with structural differences in the Nucleus Accumbens). In this regard, SNS addiction is similar in terms of brain anatomy alterations to other (substance, gambling etc.) addictions. We also show that in contrast to other addictions in which the anterior-/ mid- cingulate cortex is impaired and fails to support the needed inhibition, which manifests through reduced grey matter volumes, this region is presumed to be healthy in our sample and its grey matter volume is positively correlated with one's level of SNS addiction. These findings portray an anatomical morphology model of SNS addiction and point to brain morphology similarities and differences between technology addictions and substance and gambling addictions.

  16. Association between physical activity and brain health in older adults.

    Science.gov (United States)

    Benedict, Christian; Brooks, Samantha J; Kullberg, Joel; Nordenskjöld, Richard; Burgos, Jonathan; Le Grevès, Madeleine; Kilander, Lena; Larsson, Elna-Marie; Johansson, Lars; Ahlström, Håkan; Lind, Lars; Schiöth, Helgi B

    2013-01-01

    In the present cross-sectional study, we examined physical activity (PA) and its possible association with cognitive skills and brain structure in 331 cognitively healthy elderly. Based on the number of self-reported light and hard activities for at least 30 minutes per week, participants were assigned to 4 groups representing different levels of PA. The cognitive skills were assessed by the Mini Mental State Examination score, a verbal fluency task, and the Trail-making test as a measure of visuospatial orientation ability. Participants also underwent a magnetic resonance imaging of the brain. Multiple regression analysis revealed that greater PA was associated with a shorter time to complete the Trail-making test, and higher levels of verbal fluency. Further, the level of self-reported PA was positively correlated with brain volume, white matter, as well as a parietal lobe gray matter volume, situated bilaterally at the precuneus. These present cross-sectional results indicate that PA is a lifestyle factor that is linked to brain structure and function in late life. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Brain abscess associated with ethmoidal sinus osteoma: A case report

    Directory of Open Access Journals (Sweden)

    Hiroaki Nagashima

    2014-12-01

    Full Text Available Osteoma of the paranasal sinus is uncommon, and the occurrence of brain abscess associated with ethmoidal osteoma is particularly rare. We report here a case of a brain abscess complicating an ethmoidal osteoma in a 68-year-old man who presented with high-grade fever and disturbance in the level of consciousness. Computed tomography scanning and magnetic resonance imaging revealed a ring-enhancing mass in the left frontal lobe with surrounding edema and a bony mass in the ethmoidal sinus. We scheduled a two-stage operation. First, emergency aspiration and drainage of the abscess via the forehead were performed to reduce the abscess volume. These were followed by a left frontal craniotomy to totally remove both the brain abscess and the bony mass. The bony mass had breached the dura mater. After removing the bony mass, we repaired the anterior skull base using a pericranial flap. Pathological findings of the bony tumor were consistent with osteoma. The postoperative course was uneventful. In the case of a huge brain abscess associated with an ethmoidal osteoma, volume reduction by drainage followed by surgical removal of both lesions may help to control infection and achieve a cure. Use of a vascularized pericranial flap is important to prevent direct communication between the paranasal sinuses and the cranial cavity.

  18. Financial literacy is associated with medial brain region functional connectivity in old age.

    Science.gov (United States)

    Han, S Duke; Boyle, Patricia A; Yu, Lei; Fleischman, Debra A; Arfanakis, Konstantinos; Leurgans, Sue; Bennett, David A

    2014-01-01

    Financial literacy refers to the ability to access and utilize financial information in ways that promote better outcomes. In old age, financial literacy has been associated with a wide range of positive characteristics; however, the neural correlates remain unclear. Recent work has suggested greater co-activity between anterior-posterior medial brain regions is associated with better brain functioning. We hypothesized financial literacy would be associated with this pattern. We assessed whole-brain functional connectivity to a posterior cingulate cortex (PCC) seed region of interest (ROI) in 138 participants of the Rush Memory and Aging Project. Results revealed financial literacy was associated with greater functional connectivity between the PCC and three regions: the right ventromedial prefrontal cortex (vmPFC), the left postcentral gyrus, and the right precuneus. Results also revealed financial literacy was associated negatively with functional connectivity between the PCC and left caudate. Post hoc analyses showed the PCC-vmPFC relationship accounted for the most variance in a regression model adjusted for all four significant functional connectivity relationships, demographic factors, and global cognition. These findings provide information on the neural mechanisms associated with financial literacy in old age. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Neurosarcoidosis associated with hypersomnolence treated with corticosteroids and brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, I.; Gray, T.A.; Moldofsky, H.; Hoffstein, V.

    1988-07-01

    Narcoleptic features developed in a young man with CNS sarcoidosis. This was associated with a structural lesion in the hypothalamus as demonstrated on CT scans of the head. The diagnosis of narcolepsy was established by compatible clinical history and the Multiple Sleep Latency Test. Treatment with high-dose corticosteroids was ineffective, but when the low-dose, whole-brain irradiation was added, complete resolution of the narcoleptic features ensued.

  20. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2013-07-01

    Full Text Available Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  1. Brain activities associated with gaming urge of online gaming addiction.

    Science.gov (United States)

    Ko, Chih-Hung; Liu, Gin-Chung; Hsiao, Sigmund; Yen, Ju-Yu; Yang, Ming-Jen; Lin, Wei-Chen; Yen, Cheng-Fang; Chen, Cheng-Sheng

    2009-04-01

    The aim of this study was to identify the neural substrates of online gaming addiction through evaluation of the brain areas associated with the cue-induced gaming urge. Ten participants with online gaming addiction and 10 control subjects without online gaming addiction were tested. They were presented with gaming pictures and the paired mosaic pictures while undergoing functional magnetic resonance imaging (fMRI) scanning. The contrast in blood-oxygen-level dependent (BOLD) signals when viewing gaming pictures and when viewing mosaic pictures was calculated with the SPM2 software to evaluate the brain activations. Right orbitofrontal cortex, right nucleus accumbens, bilateral anterior cingulate and medial frontal cortex, right dorsolateral prefrontal cortex, and right caudate nucleus were activated in the addicted group in contrast to the control group. The activation of the region-of-interest (ROI) defined by the above brain areas was positively correlated with self-reported gaming urge and recalling of gaming experience provoked by the WOW pictures. The results demonstrate that the neural substrate of cue-induced gaming urge/craving in online gaming addiction is similar to that of the cue-induced craving in substance dependence. The above-mentioned brain regions have been reported to contribute to the craving in substance dependence, and here we show that the same areas were involved in online gaming urge/craving. Thus, the results suggest that the gaming urge/craving in online gaming addiction and craving in substance dependence might share the same neurobiological mechanism.

  2. Assessing brain structural associations with working memory related brain patterns in schizophrenia and healthy controls using linked independent component analysis

    Directory of Open Access Journals (Sweden)

    Christine Lycke Brandt

    2015-01-01

    Full Text Available Schizophrenia (SZ is a psychotic disorder with significant cognitive dysfunction. Abnormal brain activation during cognitive processing has been reported, both in task-positive and task-negative networks. Further, structural cortical and subcortical brain abnormalities have been documented, but little is known about how task-related brain activation is associated with brain anatomy in SZ compared to healthy controls (HC. Utilizing linked independent component analysis (LICA, a data-driven multimodal analysis approach, we investigated structure–function associations in a large sample of SZ (n = 96 and HC (n = 142. We tested for associations between task-positive (fronto-parietal and task-negative (default-mode brain networks derived from fMRI activation during an n-back working memory task, and brain structural measures of surface area, cortical thickness, and gray matter volume, and to what extent these associations differed in SZ compared to HC. A significant association (p < .05, corrected for multiple comparisons was found between a component reflecting the task-positive fronto-parietal network and another component reflecting cortical thickness in fronto-temporal brain regions in SZ, indicating increased activation with increased thickness. Other structure–function associations across, between and within groups were generally moderate and significant at a nominal p-level only, with more numerous and stronger associations in SZ compared to HC. These results indicate a complex pattern of moderate associations between brain activation during cognitive processing and brain morphometry, and extend previous findings of fronto-temporal brain abnormalities in SZ by suggesting a coupling between cortical thickness of these brain regions and working memory-related brain activation.

  3. Association of Child Poverty, Brain Development, and Academic Achievement.

    Science.gov (United States)

    Hair, Nicole L; Hanson, Jamie L; Wolfe, Barbara L; Pollak, Seth D

    2015-09-01

    Children living in poverty generally perform poorly in school, with markedly lower standardized test scores and lower educational attainment. The longer children live in poverty, the greater their academic deficits. These patterns persist to adulthood, contributing to lifetime-reduced occupational attainment. To determine whether atypical patterns of structural brain development mediate the relationship between household poverty and impaired academic performance. Longitudinal cohort study analyzing 823 magnetic resonance imaging scans of 389 typically developing children and adolescents aged 4 to 22 years from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development with complete sociodemographic and neuroimaging data. Data collection began in November 2001 and ended in August 2007. Participants were screened for a variety of factors suspected to adversely affect brain development, recruited at 6 data collection sites across the United States, assessed at baseline, and followed up at 24-month intervals for a total of 3 periods. Each study center used community-based sampling to reflect regional and overall US demographics of income, race, and ethnicity based on the US Department of Housing and Urban Development definitions of area income. One-quarter of sample households reported the total family income below 200% of the federal poverty level. Repeated observations were available for 301 participants. Household poverty measured by family income and adjusted for family size as a percentage of the federal poverty level. Children's scores on cognitive and academic achievement assessments and brain tissue, including gray matter of the total brain, frontal lobe, temporal lobe, and hippocampus. Poverty is tied to structural differences in several areas of the brain associated with school readiness skills, with the largest influence observed among children from the poorest households. Regional gray matter volumes of children below 1

  4. Association of Child Poverty, Brain Development, and Academic Achievement

    Science.gov (United States)

    Hair, Nicole L.; Hanson, Jamie L.; Wolfe, Barbara L.; Pollak, Seth D.

    2015-01-01

    IMPORTANCE Children living in poverty generally perform poorly in school, with markedly lower standardized test scores and lower educational attainment. The longer children live in poverty, the greater their academic deficits. These patterns persist to adulthood, contributing to lifetime-reduced occupational attainment. OBJECTIVE To determine whether atypical patterns of structural brain development mediate the relationship between household poverty and impaired academic performance. DESIGN, SETTING, AND PARTICIPANTS Longitudinal cohort study analyzing 823 magnetic resonance imaging scans of 389 typically developing children and adolescents aged 4 to 22 years from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development with complete sociodemographic and neuroimaging data. Data collection began in November 2001 and ended in August 2007. Participants were screened for a variety of factors suspected to adversely affect brain development, recruited at 6 data collection sites across the United States, assessed at baseline, and followed up at 24-month intervals for a total of 3 periods. Each study center used community-based sampling to reflect regional and overall US demographics of income, race, and ethnicity based on the US Department of Housing and Urban Development definitions of area income. One-quarter of sample households reported the total family income below 200% of the federal poverty level. Repeated observations were available for 301 participants. EXPOSURE Household poverty measured by family income and adjusted for family size as a percentage of the federal poverty level. MAIN OUTCOMES AND MEASURES Children’s scores on cognitive and academic achievement assessments and brain tissue, including gray matter of the total brain, frontal lobe, temporal lobe, and hippocampus. RESULTS Poverty is tied to structural differences in several areas of the brain associated with school readiness skills, with the largest influence

  5. Head First PMP A Brain-Friendly Guide to Passing the Project Management Professional Exam

    CERN Document Server

    Greene, Jennifer

    2009-01-01

    Learn the latest principles and certification objectives in The PMBOK Guide, Fourth Edition, in a unique and inspiring way with Head First PMP . The second edition of this book helps you prepare for the PMP certification exam using a visually rich format designed for the way your brain works. You'll find a full-length sample exam included inside the book. More than just proof of passing a test, a PMP certification means that you have the knowledge to solve most common project problems. But studying for a difficult four-hour exam on project management isn't easy, even for experienced project

  6. Socioeconomic status and functional brain development - associations in early infancy.

    Science.gov (United States)

    Tomalski, Przemyslaw; Moore, Derek G; Ribeiro, Helena; Axelsson, Emma L; Murphy, Elizabeth; Karmiloff-Smith, Annette; Johnson, Mark H; Kushnerenko, Elena

    2013-09-01

    Socioeconomic status (SES) impacts on both structural and functional brain development in childhood, but how early its effects can be demonstrated is unknown. In this study we measured resting baseline EEG activity in the gamma frequency range in awake 6-9-month-olds from areas of East London with high socioeconomic deprivation. Between-subject comparisons of infants from low- and high-income families revealed significantly lower frontal gamma power in infants from low-income homes. Similar power differences were found when comparing infants according to maternal occupation, with lower occupational status groups yielding lower power. Infant sleep, maternal education, length of gestation, and birth weight, as well as smoke exposure and bilingualism, did not explain these differences. Our results show that the effects of socioeconomic disparities on brain activity can already be detected in early infancy, potentially pointing to very early risk for language and attention difficulties. This is the first study to reveal region-selective differences in functional brain development associated with early infancy in low-income families. © 2013 John Wiley & Sons Ltd.

  7. Genome-wide association study of working memory brain activation.

    Science.gov (United States)

    Blokland, Gabriëlla A M; Wallace, Angus K; Hansell, Narelle K; Thompson, Paul M; Hickie, Ian B; Montgomery, Grant W; Martin, Nicholas G; McMahon, Katie L; de Zubicaray, Greig I; Wright, Margaret J

    2017-05-01

    In a population-based genome-wide association (GWA) study of n-back working memory task-related brain activation, we extracted the average percent BOLD signal change (2-back minus 0-back) from 46 regions-of-interest (ROIs) in functional MRI scans from 863 healthy twins and siblings. ROIs were obtained by creating spheres around group random effects analysis local maxima, and by thresholding a voxel-based heritability map of working memory brain activation at 50%. Quality control for test-retest reliability and heritability of ROI measures yielded 20 reliable (r>0.7) and heritable (h(2)>20%) ROIs. For GWA analysis, the cohort was divided into a discovery (n=679) and replication (n=97) sample. No variants survived the stringent multiple-testing-corrected genome-wide significance threshold (pmemory. Variants identified here may be relevant to (the susceptibility to) common disorders affecting brain function. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Using network science to evaluate exercise-associated brain changes in older adults

    Directory of Open Access Journals (Sweden)

    Jonathan H Burdette

    2010-06-01

    Full Text Available Literature has shown that exercise is beneficial for cognitive function in older adults and that aerobic fitness is associated with increased hippocampal tissue and blood volumes. The current study used novel network science methods to shed light on the neurophysiological implications of exercise-induced changes in the hippocampus of older adults. Participants represented a volunteer subgroup of older adults that were part of either the exercise training (ET or healthy aging educational control (HAC treatment arms from the Seniors Health and Activity Research Program Pilot (SHARP-P trial. Following the four-month interventions, MRI measures of resting brain blood flow and connectivity were performed. The ET group’s hippocampal CBF exhibited statistically significant increases compared to the HAC group. Novel whole-brain network connectivity analyses showed greater connectivity in the hippocampi of the ET participants compared to HAC. Furthermore, the hippocampus was consistently shown to be within the same network neighborhood (module as the anterior cingulate cortex only within the ET group. Thus, within the ET group, the hippocampus and anterior cingulate were highly interconnected and localized to the same network neighborhood. This project shows the power of network science to investigate potential mechanisms for exercise-induced benefits to the brain in older adults. We show a link between neurological network features and cerebral blood flow, and it is possible that this alteration of functional brain networks may lead to the known improvement in cognitive function among older adults following exercise.

  9. Candesartan ameliorates brain inflammation associated with Alzheimer's disease.

    Science.gov (United States)

    Torika, Nofar; Asraf, Keren; Apte, Ron N; Fleisher-Berkovich, Sigal

    2018-01-24

    Alzheimer's disease (AD) pathology is associated with brain inflammation involving microglia and astrocytes. The renin-angiotensin system contributes to brain inflammation associated with AD pathology. This study aimed to investigate the role of candesartan, an angiotensin II type 1 receptor blocker, in modulation of glial functions associated with AD. Focusing on the role of candesartan in glial inflammation, we evaluated inflammatory mediators' levels, secreted by lipopolysaccharide-induced microglia following candesartan treatment. Also, short-term intranasal candesartan effects on amyloid burden and microglial activation were investigated in 5 familial AD mice. Candesartan showed anti-inflammatory effects and shifted microglial activation toward a more neuroprotective phenotype. Candesartan decreased the lipopolysaccharide-induced nitric oxide synthase and cyclooxygenase-2 expression levels, which was accompanied by an induction of arginase-1 expression levels and enhanced Aβ1-42 uptake by microglia. Moreover, intranasally administered candesartan to AD mice model significantly reduced the amyloid burden and microglia activation in the hippocampus. These results thus shed light on the neuroprotective role of candesartan in the early stage of AD, which might relate to modulation of microglial activation states. © 2018 John Wiley & Sons Ltd.

  10. Neuroscience Club in SKKK3 and SMSTMFP: The Brain Apprentice Project.

    Science.gov (United States)

    Mohd Ibrahim, Seri Dewi; Muda, Mazinah

    2015-01-01

    Sekolah Menengah Sains Tengku Muhammad Faris Petra (SMSTMFP) and Sekolah Kebangsaan Kubang Kerian (3) (SKKK3) were selected by the Department of Neurosciences, Universiti Sains Malaysia (USM), in 2011 to be a 'school-based Neuroscience Club' via the 'Knowledge Transfer Programme (KTP) - Community' project. This community project was known as "The Brain Apprentice Project". The objectives of this project were to promote science and the neurosciences beyond conventional classroom teachings whilst guiding creativity and innovation as well as to assist in the delivery of neuroscience knowledge through graduate interns as part of the cultivation of neuroscience as a fruitful future career option. All of the planned club activities moulded the students to be knowledgeable individuals with admirable leadership skills, which will help the schools produce more scientists, technocrats and professionals who can fulfil the requirements of our religion, race and nation in the future. Some of the activities carried out over the years include the "My Brain Invention Competition", "Mini Brain Bee Contest", "Recycled Melody" and "Brain Dissection". These activities educated the students well and improved their confidence levels in their communication and soft skills. The participation of the students in international-level competition, such as the "International Brain Bee", was one of the ways future professionals were created for the nation. The implementation of Neuroscience Club as one of the organisations in the school's cocurriculum was an appropriate step in transferring science and neuroscience knowledge and skills from a higher education institution, namely USM, to both of the schools, SMSTMFP and SKKK3. The club members showed great interest in all of the club's activities and their performance on the Ujian Pencapaian Sekolah Rendah (UPSR) or Primary School Achievement Test and Sijil Pelajaran Malaysia (SPM) or Malaysian Certificate of Education examinations improved

  11. Brain-wide map of efferent projections from rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Izabela M. Zakiewicz

    2014-02-01

    Full Text Available The somatotopically organized whisker barrel field of the rat primary somatosensory (S1 cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2 database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data.

  12. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

    Science.gov (United States)

    Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.

    2016-01-01

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  13. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    Science.gov (United States)

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  14. Fetal glucocorticoid exposure is associated with preadolescent brain development.

    Science.gov (United States)

    Davis, Elysia Poggi; Sandman, Curt A; Buss, Claudia; Wing, Deborah A; Head, Kevin

    2013-11-01

    Glucocorticoids play a critical role in normative regulation of fetal brain development. Exposure to excessive levels may have detrimental consequences and disrupt maturational processes. This may especially be true when synthetic glucocorticoids are administered during the fetal period, as they are to women in preterm labor. This study investigated the consequences for brain development and affective problems of fetal exposure to synthetic glucocorticoids. Brain development and affective problems were evaluated in 54 children (56% female), aged 6 to 10, who were full term at birth. Children were recruited into two groups: those with and without fetal exposure to synthetic glucocorticoids. Structural magnetic resonance imaging scans were acquired and cortical thickness was determined. Child affective problems were assessed using the Child Behavior Checklist. Children in the fetal glucocorticoid exposure group showed significant and bilateral cortical thinning. The largest group differences were in the rostral anterior cingulate cortex (rACC). More than 30% of the rACC was thinner among children with fetal glucocorticoid exposure. Furthermore, children with more affective problems had a thinner left rACC. Fetal exposure to synthetic glucocorticoids has neurologic consequences that persist for at least 6 to 10 years. Children with fetal glucocorticoid exposure had a thinner cortex primarily in the rACC. Our data indicating that the rACC is associated with affective problems in conjunction with evidence that this region is involved in affective disorders raise the possibility that glucocorticoid-associated neurologic changes increase vulnerability to mental health problems. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. The evolution of distributed association networks in the human brain.

    Science.gov (United States)

    Buckner, Randy L; Krienen, Fenna M

    2013-12-01

    The human cerebral cortex is vastly expanded relative to other primates and disproportionately occupied by distributed association regions. Here we offer a hypothesis about how association networks evolved their prominence and came to possess circuit properties vital to human cognition. The rapid expansion of the cortical mantle may have untethered large portions of the cortex from strong constraints of molecular gradients and early activity cascades that lead to sensory hierarchies. What fill the gaps between these hierarchies are densely interconnected networks that widely span the cortex and mature late into development. Limitations of the tethering hypothesis are discussed as well as its broad implications for understanding critical features of the human brain as a byproduct of size scaling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Brain expression genome-wide association study (eGWAS identifies human disease-associated variants.

    Directory of Open Access Journals (Sweden)

    Fanggeng Zou

    Full Text Available Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n=197, temporal cortex n=202 and with other brain pathologies (non-AD, cerebellar n=177, temporal cortex n=197. We conducted an expression genome-wide association study (eGWAS using 213,528 cisSNPs within ± 100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596 unique cisSNPs significant in both ADs and non-ADs (q<0.05, p=7.70 × 10(-5-1.67 × 10(-82. Of these, 2,089 were also significant in the temporal cortex (p=1.85 × 10(-5-1.70 × 10(-141. The top cerebellar cisSNPs had 2.4-fold enrichment for human disease-associated variants (p<10(-6. We identified novel cisSNP/transcript associations for human disease-associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson's disease (PD MMRN1/rs6532197, Paget's disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there was 2.9-3.3 fold enrichment (p<10(-6 of significant cisSNPs with suggestive AD-risk association (p<10(-3 in the Alzheimer's Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant enrichment of brain cisSNPs among disease-associated variants advocates gene expression changes as a mechanism for many central nervous system (CNS and non-CNS diseases. Combined assessment of expression and disease GWAS may provide complementary information in discovery of human disease variants with functional implications. Our findings

  17. Structural brain correlates associated with professional handball playing.

    Science.gov (United States)

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing

  18. Structural brain correlates associated with professional handball playing.

    Directory of Open Access Journals (Sweden)

    Jürgen Hänggi

    Full Text Available There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands.We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM of the primary/secondary motor (MI/supplementary motor area, SMA and somatosensory cortex (SI/SII, basal ganglia, thalamus, and cerebellum and in the white matter (WM of the corticospinal tract (CST and corpus callosum, stronger in brain regions controlling the non-dominant left hand.Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women.Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a

  19. Structural Brain Correlates Associated with Professional Handball Playing

    Science.gov (United States)

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    Background There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. Methodology/Hypotheses We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Results Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Discussion/Conclusion Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic

  20. Normal brain activation in schizophrenia patients during associative emotional learning.

    Science.gov (United States)

    Swart, Marte; Liemburg, Edith Jantine; Kortekaas, Rudie; Wiersma, Durk; Bruggeman, Richard; Aleman, André

    2013-12-30

    Emotional deficits are among the core features of schizophrenia and both associative emotional learning and the related ability to verbalize emotions can be reduced. We investigated whether schizophrenia patients demonstrated impaired function of limbic and prefrontal areas during associative emotional learning. Patients and controls filled out an alexithymia questionnaire and performed an associative emotional learning task with positive, negative and neutral picture-word pairs during fMRI scanning. After scanning, they indicated for each pair whether they remembered it. We conducted standard GLM analysis and Independent Component Analysis (ICA). Both the GLM results and task-related ICA components were compared between groups. The alexithymia questionnaire indicated more cognitive-emotional processing difficulties in patients than controls, but equal experienced intensity of affective states. Patients remembered less picture-word pairs, irrespective of valence. GLM analysis showed significant visual, temporal, amygdalar/hippocampal, and prefrontal activation in all subjects. ICA identified a network of brain areas similar to GLM, mainly in response to negative stimuli. Neither analysis showed differences between patients and controls during learning. Although in previous studies schizophrenia patients showed abnormalities in both memory and emotion processing, neural circuits involved in cross-modal associative emotional learning may remain intact to a certain degree, which may have potential consequences for treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Longevity is associated with relative brain size in birds

    National Research Council Canada - National Science Library

    Minias, Piotr; Podlaszczuk, Patrycja

    2017-01-01

    ... should reduce mortality and increase lifespan. While the occurrence of brain size–lifespan correlation has been well documented in mammals, much less evidence exists for a robust link between brain size and longevity in birds...

  2. Project Career: A qualitative examination of five college students with traumatic brain injuries.

    Science.gov (United States)

    Nardone, Amanda; Sampson, Elaine; Stauffer, Callista; Leopold, Anne; Jacobs, Karen; Hendricks, Deborah J; Elias, Eileen; Chen, Hui; Rumrill, Phillip

    2015-01-01

    Project Career is an interprofessional five-year development project designed to improve the employment success of undergraduate college and university students with traumatic brain injury (TBI). The case study information was collected and synthesized by the project's Technology and Employment Coordinators (TECs) at each of the project's three university sites. The project's evaluation is occurring independently through JBS International, Inc. Five case studies are presented to provide an understanding of student participants' experiences within Project Career. Each case study includes background on the student, engagement with technology, vocational supports, and interactions with his/her respective TEC. A qualitative analysis from the student's case notes is provided within each case study, along with a discussion of the overall qualitative analysis. Across all five students, the theme Positive Outcomes was mentioned most often in the case notes. Of all the different type of challenges, Cognitive Challenges were most often mentioned during meetings with the TECs, followed by Psychological Challenges, Physical Challenges, Other Challenges, and Academic Challenges, respectively. Project Career is providing academic enrichment and career enhancement that may substantially improve the unsatisfactory employment outcomes that presently await students with TBI following graduation.

  3. Association between structural brain network efficiency and intelligence increases during adolescence

    NARCIS (Netherlands)

    Koenis, Marinka M G; Brouwer, Rachel M; Swagerman, Suzanne C; van Soelen, Inge L C; Boomsma, Dorret I; Hulshoff Pol, Hilleke E

    2017-01-01

    Adolescence represents an important period during which considerable changes in the brain take place, including increases in integrity of white matter bundles, and increasing efficiency of the structural brain network. A more efficient structural brain network has been associated with higher

  4. Resilience Is Associated with Outcome from Mild Traumatic Brain Injury.

    Science.gov (United States)

    Losoi, Heidi; Silverberg, Noah D; Wäljas, Minna; Turunen, Senni; Rosti-Otajärvi, Eija; Helminen, Mika; Luoto, Teemu Miikka Artturi; Julkunen, Juhani; Öhman, Juha; Iverson, Grant L

    2015-07-01

    Resilient individuals manifest adaptive behavior and are better able to recover from adversity. The association between resilience and outcome from mild traumatic brain injury (mTBI) is examined, and the reliability and validity of the Resilience Scale and its short form in mTBI research is evaluated. Patients with mTBI (n=74) and orthopedic controls (n=39) completed the Resilience Scale at one, six, and 12 months after injury. Additionally, self-reported post-concussion symptoms, fatigue, insomnia, pain, post-traumatic stress, and depression, as well as quality of life, were evaluated. The internal consistency of the Resilience Scale and the short form ranged from 0.91 to 0.93 for the mTBI group and from 0.86 to 0.95 for controls. The test-retest reliability ranged from 0.70 to 0.82. Patients with mTBI and moderate-to-high resilience reported significantly fewer post-concussion symptoms, less fatigue, insomnia, traumatic stress, and depressive symptoms, and better quality of life, than the patients with low resilience. No association between resilience and time to return to work was found. Resilience was associated with self-reported outcome from mTBI, and based on this preliminary study, can be reliably evaluated with Resilience Scale and its short form in those with mTBIs.

  5. Transdiagnostic Associations Between Functional Brain Network Integrity and Cognition.

    Science.gov (United States)

    Sheffield, Julia M; Kandala, Sridhar; Tamminga, Carol A; Pearlson, Godfrey D; Keshavan, Matcheri S; Sweeney, John A; Clementz, Brett A; Lerman-Sinkoff, Dov B; Hill, S Kristian; Barch, Deanna M

    2017-06-01

    Cognitive impairment occurs across the psychosis spectrum and is associated with functional outcome. However, it is unknown whether these shared manifestations of cognitive dysfunction across diagnostic categories also reflect shared neurobiological mechanisms or whether the source of impairment differs. To examine whether the general cognitive deficit observed across psychotic disorders is similarly associated with functional integrity of 2 brain networks widely implicated in supporting many cognitive domains. A total of 201 healthy control participants and 375 patients with psychotic disorders from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium were studied from September 29, 2007, to May 31, 2011. The B-SNIP recruited healthy controls and stable outpatients from 6 sites: Baltimore, Maryland; Boston, Massachusetts; Chicago, Illinois; Dallas, Texas; Detroit, Michigan; and Hartford, Connecticut. All participants underwent cognitive testing and resting-state functional magnetic resonance imaging. Data analysis was performed from April 28, 2015, to February 21, 2017. The Brief Assessment of Cognition in Schizophrenia was used to measure cognitive ability. A principal axis factor analysis on the Brief Assessment of Cognition in Schizophrenia battery yielded a single factor (54% variance explained) that served as the measure of general cognitive ability. Functional network integrity measures included global and local efficiency of the whole brain, cingulo-opercular network (CON), frontoparietal network, and auditory network and exploratory analyses of all networks from the Power atlas. Group differences in network measures, associations between cognition and network measures, and mediation models were tested. The final sample for the current study included 201 healthy controls, 143 patients with schizophrenia, 103 patients with schizoaffective disorder, and 129 patients with psychotic bipolar disorder (mean [SD] age, 35.1 [12.0] years

  6. Brain structure and functional connectivity associated with pornography consumption: the brain on porn.

    Science.gov (United States)

    Kühn, Simone; Gallinat, Jürgen

    2014-07-01

    Since pornography appeared on the Internet, the accessibility, affordability, and anonymity of consuming visual sexual stimuli have increased and attracted millions of users. Based on the assumption that pornography consumption bears resemblance with reward-seeking behavior, novelty-seeking behavior, and addictive behavior, we hypothesized alterations of the frontostriatal network in frequent users. To determine whether frequent pornography consumption is associated with the frontostriatal network. In a study conducted at the Max Planck Institute for Human Development in Berlin, Germany, 64 healthy male adults covering a wide range of pornography consumption reported hours of pornography consumption per week. Pornography consumption was associated with neural structure, task-related activation, and functional resting-state connectivity. Gray matter volume of the brain was measured by voxel-based morphometry and resting state functional connectivity was measured on 3-T magnetic resonance imaging scans. We found a significant negative association between reported pornography hours per week and gray matter volume in the right caudate (P < .001, corrected for multiple comparisons) as well as with functional activity during a sexual cue-reactivity paradigm in the left putamen (P < .001). Functional connectivity of the right caudate to the left dorsolateral prefrontal cortex was negatively associated with hours of pornography consumption. The negative association of self-reported pornography consumption with the right striatum (caudate) volume, left striatum (putamen) activation during cue reactivity, and lower functional connectivity of the right caudate to the left dorsolateral prefrontal cortex could reflect change in neural plasticity as a consequence of an intense stimulation of the reward system, together with a lower top-down modulation of prefrontal cortical areas. Alternatively, it could be a precondition that makes pornography consumption more rewarding.

  7. Differential Cellular Tropism of Lentivirus and Adeno-Associated Virus in the Brain of Cynomolgus Monkey

    OpenAIRE

    An, Heeyoung; Cho, Doo-Wan; Lee, Seung Eun; Yang, Young-Su; Han, Su-Cheol; Lee, C. Justin

    2016-01-01

    Many researchers are using viruses to deliver genes of interest into the brains of laboratory animals. However, certain target brain cells are not easily infected by viruses. Moreover, the differential tropism of different viruses in monkey brain is not well established. We investigated the cellular tropism of lentivirus and adeno-associated virus (AAV) toward neuron and glia in the brain of cynomolgus monkeys (Macaca fascularis). Lentivirus and AAV were injected into putamen of the monkey br...

  8. Dynamic brain architectures in local brain activity and functional network efficiency associate with efficient reading in bilinguals.

    Science.gov (United States)

    Feng, Gangyi; Chen, Hsuan-Chih; Zhu, Zude; He, Yong; Wang, Suiping

    2015-10-01

    The human brain is organized as a dynamic network, in which both regional brain activity and inter-regional connectivity support high-level cognitive processes, such as reading. However, it is still largely unknown how the functional brain network organizes to enable fast and effortless reading processing in the native language (L1) but not in a non-proficient second language (L2), and whether the mechanisms underlying local activity are associated with connectivity dynamics in large-scale brain networks. In the present study, we combined activation-based and multivariate graph-theory analysis with functional magnetic resonance imaging data to address these questions. Chinese-English unbalanced bilinguals read narratives for comprehension in Chinese (L1) and in English (L2). Compared with L2, reading in L1 evoked greater brain activation and recruited a more globally efficient but less clustered network organization. Regions with both increased network efficiency and enhanced brain activation in L1 reading were mostly located in the fronto-temporal reading-related network (RN), whereas regions with decreased global network efficiency, increased clustering, and more deactivation in L2 reading were identified in the default mode network (DMN). Moreover, functional network efficiency was closely associated with local brain activation, and such associations were also modulated by reading efficiency in the two languages. Our results demonstrate that an economical and integrative brain network topology is associated with efficient reading, and further reveal a dynamic association between network efficiency and local activation for both RN and DMN. These findings underscore the importance of considering interregional connectivity when interpreting local BOLD signal changes in bilingual reading. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Projections ascending from the spinal cord to the brain in petromyzontid and myxinoid agnathans.

    Science.gov (United States)

    Ronan, M; Northcutt, R G

    1990-01-22

    The course of projections ascending through the rostral spinal cord to nuclei in the brains of petromyzontid and myxinoid agnathans was examined with silver staining of anterograde degeneration and horseradish peroxidase histochemistry. As in jawed vertebrates, the ascending spinal projections of lampreys and hagfishes appear to be organized into two major systems, the spinal lemniscal and dorsal column pathways. The spinal lemniscal pathway, extending rostrally along the ventrolateral margin of the spinal and medullary central gray, consists of a spinoreticular and possibly a spinovestibular projection in both aganthan groups. In Pacific hagfish, spinal lemniscal fibers reach the ipsilateral mesencephalic tectum, but no spinal projection to the thalamus was evident. The spinal lemniscus of lampreys ascends to the region of the isthmus and may extend into the mesencephalic tegmentum. Anterograde and retrograde tracing methods indicate that a very small population of cells in the far rostral cord of lampreys may project to the optic tectum and diencephalon; however, spinotectal and spinothalamic projections, if present, are limited in extent. The dorsal column pathway in agnathans, consisting in part of primary spinal afferents, ascends in the dorsal funiculus of the cord. The dorsal column fibers of agnathans, like those of some other anamniotes, continue beyond the spinomedullary junction through the length of the hindbrain, possibly conveying ascending somatosensory input to the sensory nuclei of the alar medulla.

  10. Examination of corticothalamic fiber projections in United States service members with mild traumatic brain injury

    Science.gov (United States)

    Rashid, Faisal M.; Dennis, Emily L.; Villalon-Reina, Julio E.; Jin, Yan; Lewis, Jeffrey D.; York, Gerald E.; Thompson, Paul M.; Tate, David F.

    2017-11-01

    Mild traumatic brain injury (mTBI) is characterized clinically by a closed head injury involving differential or rotational movement of the brain inside the skull. Over 3 million mTBIs occur annually in the United States alone. Many of the individuals who sustain an mTBI go on to recover fully, but around 20% experience persistent symptoms. These symptoms often last for many weeks to several months. The thalamus, a structure known to serve as a global networking or relay system for the rest of the brain, may play a critical role in neurorehabiliation and its integrity and connectivity after injury may also affect cognitive outcomes. To examine the thalamus, conventional tractography methods to map corticothalamic pathways with diffusion-weighted MRI (DWI) lead to sparse reconstructions that may contain false positive fibers that are anatomically inaccurate. Using a specialized method to zero in on corticothalamic pathways with greater robustness, we noninvasively examined corticothalamic fiber projections using DWI, in 68 service members. We found significantly lower fractional anisotropy (FA), a measure of white matter microstructural integrity, in pathways projecting to the left pre- and postcentral gyri - consistent with sensorimotor deficits often found post-mTBI. Mapping of neural circuitry in mTBI may help to further our understanding of mechanisms underlying recovery post-TBI.

  11. Cell phone radiation exposure on brain and associated biological systems.

    Science.gov (United States)

    Kesari, Kavindra Kumar; Siddiqui, Mohd Haris; Meena, Ramovatar; Verma, H N; Kumar, Shivendra

    2013-03-01

    Wireless technologies are ubiquitous today and the mobile phones are one of the prodigious output of this technology. Although the familiarization and dependency of mobile phones is growing at an alarming pace, the biological effects due to the exposure of radiations have become a subject of intense debate. The present evidence on mobile phone radiation exposure is based on scientific research and public policy initiative to give an overview of what is known of biological effects that occur at radiofrequency (RF)/ electromagnetic fields (EMFs) exposure. The conflict in conclusions is mainly because of difficulty in controlling the affecting parameters. Biological effects are dependent not only on the distance and size of the object (with respect to the object) but also on the environmental parameters. Health endpoints reported to be associated with RF include childhood leukemia, brain tumors, genotoxic effects, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, infertility and some cardiovascular effects. Most of the reports conclude a reasonable suspicion of mobile phone risk that exists based on clear evidence of bio-effects which with prolonged exposures may reasonably be presumed to result in health impacts. The present study summarizes the public issue based on mobile phone radiation exposure and their biological effects. This review concludes that the regular and long term use of microwave devices (mobile phone, microwave oven) at domestic level can have negative impact upon biological system especially on brain. It also suggests that increased reactive oxygen species (ROS) play an important role by enhancing the effect of microwave radiations which may cause neurodegenerative diseases.

  12. Reperfusion after ischemic stroke is associated with reduced brain edema.

    Science.gov (United States)

    Irvine, Hannah J; Ostwaldt, Ann-Christin; Bevers, Matthew B; Dixon, Simone; Battey, Thomas Wk; Campbell, Bruce Cv; Davis, Stephen M; Donnan, Geoffrey A; Sheth, Kevin N; Jahan, Reza; Saver, Jeffrey L; Kidwell, Chelsea S; Kimberly, W Taylor

    2017-01-01

    Rapid revascularization is highly effective for acute stroke, but animal studies suggest that reperfusion edema may attenuate its beneficial effects. We investigated the relationship between reperfusion and edema in patients from the Echoplanar Imaging Thrombolysis Evaluation Trial (EPITHET) and Mechanical Retrieval and Recanalization of Stroke Clots Using Embolectomy (MR RESCUE) cohorts. Reperfusion percentage was measured as the difference in perfusion-weighted imaging lesion volume between baseline and follow-up (day 3-5 for EPITHET; day 6-8 for MR RESCUE). Midline shift (MLS) and swelling volume were quantified on follow-up MRI. We found that reperfusion was associated with less MLS (EPITHET: Spearman ρ = -0.46; P EPITHET: Spearman ρ = -0.56; P EPITHET and MR RESCUE demonstrated that reperfusion independently predicted both less MLS (ß coefficient = -0.056; P = 0.025, and ß coefficient = -0.38; P = 0.028, respectively) and lower swelling volumes (ß coefficient = -4.7; P = 0.007, and ß coefficient = -10.7; P = 0.009, respectively), after adjusting for age, sex, NIHSS, admission glucose and follow-up lesion size. Taken together, our data suggest that even modest improvement in perfusion is associated with less brain edema in EPITHET and MR RESCUE.

  13. Resilience is associated with fatigue after mild traumatic brain injury.

    Science.gov (United States)

    Losoi, Heidi; Wäljas, Minna; Turunen, Senni; Brander, Antti; Helminen, Mika; Luoto, Teemu M; Rosti-Otajärvi, Eija; Julkunen, Juhani; Öhman, Juha

    2015-01-01

    To examine resilience as a predictor of change in self-reported fatigue after mild traumatic brain injury (MTBI). A consecutive series of 67 patients with MTBI and 34 orthopedic controls. Prospective longitudinal study. Resilience Scale, Beck Depression Inventory-Second Edition, and Pain subscale from Ruff Neurobehavioral Inventory 1 month after injury and Barrow Neurological Institute Fatigue Scale 1 and 6 months after injury. Insomnia, pain, and depressive symptoms were significantly correlated with fatigue, but even when these variables were controlled for, resilience significantly predicted the change in fatigue from 1 to 6 months after MTBI. In patients with MTBI, the correlation between resilience and fatigue strengthened during follow-up. In controls, significant associations between resilience and fatigue were not found. Resilience is a significant predictor of decrease in self-reported fatigue following MTBI. Resilience seems to be a relevant factor to consider in the management of fatigue after MTBI along with the previously established associated factors (insomnia, pain, and depressive symptoms).

  14. Brain activity associated with illusory correlations in animal phobia.

    Science.gov (United States)

    Wiemer, Julian; Schulz, Stefan M; Reicherts, Philipp; Glotzbach-Schoon, Evelyn; Andreatta, Marta; Pauli, Paul

    2015-07-01

    Anxiety disorder patients were repeatedly found to overestimate the association between disorder-relevant stimuli and aversive outcomes despite random contingencies. Such an illusory correlation (IC) might play an important role in the return of fear after extinction learning; yet, little is known about how this cognitive bias emerges in the brain. In a functional magnetic resonance imaging study, 18 female patients with spider phobia and 18 healthy controls were exposed to pictures of spiders, mushrooms and puppies followed randomly by either a painful electrical shock or nothing. In advance, both patients and healthy controls expected more shocks after spider pictures. Importantly, only patients with spider phobia continued to overestimate this association after the experiment. The strength of this IC was predicted by increased outcome aversiveness ratings and primary sensory motor cortex activity in response to the shock after spider pictures. Moreover, increased activation of the left dorsolateral prefrontal cortex (dlPFC) to spider pictures predicted the IC. These results support the theory that phobia-relevant stimuli amplify unpleasantness and sensory motor representations of aversive stimuli, which in turn may promote their overestimation. Hyper-activity in dlPFC possibly reflects a pre-occupation of executive resources with phobia-relevant stimuli, thus complicating the accurate monitoring of objective contingencies and the unlearning of fear. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Higher brain extracellular potassium is associated with brain metabolic distress and poor outcome after aneurysmal subarachnoid hemorrhage

    Science.gov (United States)

    2014-01-01

    Introduction Elevated brain potassium levels ([K+]) are associated with neuronal damage in experimental models. The role of brain extracellular [K+] in patients with poor-grade aneurysmal subarachnoid hemorrhage (aSAH) and its association with hemorrhage load, metabolic dysfunction and outcome has not been studied so far. Methods Cerebral microdialysis (CMD) samples from 28 poor grade aSAH patients were analyzed for CMD [K+] for 12 consecutive days after ictus, and time-matched to brain metabolic and hemodynamic parameters as well as corresponding plasma [K+]. Statistical analysis was performed using a generalized estimating equation with an autoregressive function to handle repeated observations of an individual patient. Results CMD [K+] did not correlate with plasma [K+] (Spearman’s ρ = 0.114, P = 0.109). Higher CMD [K+] was associated with the presence of intracerebral hematoma on admission head computed tomography, CMD lactate/pyruvate ratio >40 and CMD lactate >4 mmol/L (P < 0.05). In vitro retrodialysis data suggest that high CMD [K+] was of brain cellular origin. Higher CMD [K+] was significantly associated with poor 3-month outcome, even after adjusting for age and disease severity (P < 0.01). Conclusions The results of this pilot study suggest that brain extracellular [K+] may serve as a biomarker for brain tissue injury in poor-grade aSAH patients. Further studies are needed to elucidate the relevance of brain interstitial K+ levels in the pathophysiology of secondary brain injury after aSAH. PMID:24920041

  16. The National NeuroAIDS Tissue Consortium brain gene array: two types of HIV-associated neurocognitive impairment.

    Directory of Open Access Journals (Sweden)

    Benjamin B Gelman

    Full Text Available The National NeuroAIDS Tissue Consortium (NNTC performed a brain gene expression array to elucidate pathophysiologies of Human Immunodeficiency Virus type 1 (HIV-1-associated neurocognitive disorders.Twenty-four human subjects in four groups were examined A Uninfected controls; B HIV-1 infected subjects with no substantial neurocognitive impairment (NCI; C Infected with substantial NCI without HIV encephalitis (HIVE; D Infected with substantial NCI and HIVE. RNA from neocortex, white matter, and neostriatum was processed with the Affymetrix® array platform.With HIVE the HIV-1 RNA load in brain tissue was three log(10 units higher than other groups and over 1,900 gene probes were regulated. Interferon response genes (IFRGs, antigen presentation, complement components and CD163 antigen were strongly upregulated. In frontal neocortex downregulated neuronal pathways strongly dominated in HIVE, including GABA receptors, glutamate signaling, synaptic potentiation, axon guidance, clathrin-mediated endocytosis and 14-3-3 protein. Expression was completely different in neuropsychologically impaired subjects without HIVE. They had low brain HIV-1 loads, weak brain immune responses, lacked neuronally expressed changes in neocortex and exhibited upregulation of endothelial cell type transcripts. HIV-1-infected subjects with normal neuropsychological test results had upregulation of neuronal transcripts involved in synaptic transmission of neostriatal circuits.Two patterns of brain gene expression suggest that more than one pathophysiological process occurs in HIV-1-associated neurocognitive impairment. Expression in HIVE suggests that lowering brain HIV-1 replication might improve NCI, whereas NCI without HIVE may not respond in kind; array results suggest that modulation of transvascular signaling is a potentially promising approach. Striking brain regional differences highlighted the likely importance of circuit level disturbances in HIV/AIDS. In

  17. Association between brain lateralization and mixing ability of chewing side

    Directory of Open Access Journals (Sweden)

    Seung-Min Lee

    2017-06-01

    Conclusion: Brain laterality can be explained by the side of functional (preference of the hands, eyes, ears, and feet, and survey has a positive correlation with chewing preference side. MAI between the brain dominant and nondominant sides was not significant. This shows that mastication efficiency does not differ between dominant and nondominant sides. So, this study suggests that brain dominance is correlated with chewing preference, but it does not affect efficiency of mastication.

  18. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    Science.gov (United States)

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.

  19. The association between adverse childhood experiences and traumatic brain injury/concussion in adulthood: A scoping review protocol.

    Science.gov (United States)

    Ma, Zechen; Bayley, Mark T; Perrier, Laure; Dhir, Priya; Dépatie, Lana; Comper, Paul; Ruttan, Lesley; Munce, Sarah Ep

    2017-10-11

    Exposure to adverse childhood experiences (ACEs) is a significant risk factor for physical and mental illnesses later in life. Concussion or traumatic brain injury is a challenging condition where preinjury factors may interact to affect recovery. The association between ACEs and traumatic brain injury/concussion is not well mapped in any previous reviews of the literature. Using a scoping review methodology, the research question that will be addressed is: what is known from the existing literature about the association between ACEs and traumatic brain injury/concussion in adults? The methodological frameworks outlined by Arksey and O'Malley and Levac et al will be used. All original studies in English published since 2007 investigating ACEs and traumatic brain injury/concussion outcomes will be included with no limitations on study type. Literature search strategies will be developed using medical subject headings and text words related to ACEs and traumatic brain injury/concussions. Multiple electronic databases will be searched. Two independent reviewers will screen titles and abstracts for full-text review and full texts for final inclusion. Two independent reviewers will extract data on study characteristics for ACE exposure and traumatic brain injury/concussion outcomes. Extracted data will be summarised quantitatively using numerical counts and qualitatively using thematic analysis. This review will identify knowledge gaps on the associations between ACEs and traumatic brain injury/concussion and promote further research. Knowledge translation will occur throughout the review process with dissemination of project findings to stakeholders at the local, national and international levels. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Methods and management of the healthy brain study: a large multisite qualitative research project.

    Science.gov (United States)

    Laditka, Sarah B; Corwin, Sara J; Laditka, James N; Liu, Rui; Friedman, Daniela B; Mathews, Anna E; Wilcox, Sara

    2009-06-01

    To describe processes used in the Healthy Brain project to manage data collection, coding, and data distribution in a large qualitative project, conducted by researchers at 9 universities in 9 states. Project management protocols included: (a) managing audiotapes and surveys to ensure data confidentiality, data tracking and distribution; (b) managing qualitative data to ensure the accuracy and confidentiality of transcription; (c) training in qualitative methods and use of qualitative software; and (d) managing participant survey data and analysis. The project team coded and managed qualitative and survey data for 69 focus groups with more than 500 participants. Multiple interactive training sessions in qualitative data analysis and use of qualitative software (ATLAS.ti) were conducted. To develop a codebook, 2 teams used an open-coding process to identify codes and develop definitions; 2 team members integrated and conceptually organized these results into an initial codebook. For the audio-recordings from each research site, 2 or 3 team members hand coded 1 transcript and calculated interrater agreement (.80 or higher). Using clear protocols, participatory training sessions, team-based coding, and frequent communication among team members via e-mail and regular in-person meetings promotes effective management of large-scale qualitative research projects.

  1. How Many Brains Does It Take to Build a New Light: Knowledge Management Challenges of a Transdisciplinary Project

    Science.gov (United States)

    della Chiesa, Bruno; Christoph, Vanessa; Hinton, Christina

    2009-01-01

    The Organization for Economic Cooperation and Development's (OECD) Center for Educational Research and Innovation (CERI) carried out the "Learning Sciences and Brain Research" project (1999-2007) to investigate how neuroscience research can inform education policy and practice. This transdisciplinary project brought many challenges. Within the…

  2. Defining Optimal Brain Health in Adults: A Presidential Advisory From the American Heart Association/American Stroke Association.

    Science.gov (United States)

    Gorelick, Philip B; Furie, Karen L; Iadecola, Costantino; Smith, Eric E; Waddy, Salina P; Lloyd-Jones, Donald M; Bae, Hee-Joon; Bauman, Mary Ann; Dichgans, Martin; Duncan, Pamela W; Girgus, Meighan; Howard, Virginia J; Lazar, Ronald M; Seshadri, Sudha; Testai, Fernando D; van Gaal, Stephen; Yaffe, Kristine; Wasiak, Hank; Zerna, Charlotte

    2017-10-01

    Cognitive function is an important component of aging and predicts quality of life, functional independence, and risk of institutionalization. Advances in our understanding of the role of cardiovascular risks have shown them to be closely associated with cognitive impairment and dementia. Because many cardiovascular risks are modifiable, it may be possible to maintain brain health and to prevent dementia in later life. The purpose of this American Heart Association (AHA)/American Stroke Association presidential advisory is to provide an initial definition of optimal brain health in adults and guidance on how to maintain brain health. We identify metrics to define optimal brain health in adults based on inclusion of factors that could be measured, monitored, and modified. From these practical considerations, we identified 7 metrics to define optimal brain health in adults that originated from AHA's Life's Simple 7: 4 ideal health behaviors (nonsmoking, physical activity at goal levels, healthy diet consistent with current guideline levels, and body mass index brain health but recognize that the truly ideal circumstance may be uncommon because there is a continuum of brain health as demonstrated by AHA's Life's Simple 7. Therefore, there is opportunity to improve brain health through primordial prevention and other interventions. Furthermore, although cardiovascular risks align well with brain health, we acknowledge that other factors differing from those related to cardiovascular health may drive cognitive health. Defining optimal brain health in adults and its maintenance is consistent with the AHA's Strategic Impact Goal to improve cardiovascular health of all Americans by 20% and to reduce deaths resulting from cardiovascular disease and stroke by 20% by the year 2020. This work in defining optimal brain health in adults serves to provide the AHA/American Stroke Association with a foundation for a new strategic direction going forward in cardiovascular health

  3. Evolution of ASPM is associated with both increases and decreases in brain size in primates.

    Science.gov (United States)

    Montgomery, Stephen H; Mundy, Nicholas I

    2012-03-01

    A fundamental trend during primate evolution has been the expansion of brain size. However, this trend was reversed in the Callitrichidae (marmosets and tamarins), which have secondarily evolved smaller brains associated with a reduction in body size. The recent pursuit of the genetic basis of brain size evolution has largely focused on episodes of brain expansion, but new insights may be gained by investigating episodes of brain size reduction. Previous results suggest two genes (ASPM and CDK5RAP2) associated with microcephaly, a human neurodevelopmental disorder, may have an evolutionary function in primate brain expansion. Here we use new sequences encoding key functional domains from 12 species of callitrichids to show that positive selection has acted on ASPM across callitrichid evolution and the rate of ASPM evolution is significantly negatively correlated with callitrichid brain size, whereas the evolution of CDK5RAP2 shows no correlation with brain size. Our findings strongly suggest that ASPM has a previously unsuspected role in the evolution of small brains in primates. ASPM is therefore intimately linked to both evolutionary increases and decreases in brain size in anthropoids and is a key target for natural selection acting on brain size. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  4. Brain stem hypoplasia associated with Cri-du-Chat syndrome.

    Science.gov (United States)

    Hong, Jin Ho; Lee, Ha Young; Lim, Myung Kwan; Kim, Mi Young; Kang, Young Hye; Lee, Kyung Hee; Cho, Soon Gu

    2013-01-01

    Cri-du-Chat syndrome, also called the 5p-syndrome, is a rare genetic abnormality, and only few cases have been reported on its brain MRI findings. We describe the magnetic resonance imaging findings of a 1-year-old girl with Cri-du-Chat syndrome who showed brain stem hypoplasia, particularly in the pons, with normal cerebellum and diffuse hypoplasia of the cerebral hemispheres. We suggest that Cri-du-Chat syndrome chould be suspected in children with brain stem hypoplasia, particularly for those with high-pitched cries.

  5. Brain stem hypoplasia associated with Cri-du-Chat syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Ho; Lee, Ha Young; Lim, Myung Kwan; Kim, Mi Young; Kang, Young Hye; Lee, Kyung Hee; Cho, Soon Gu [Dept. of Radiology, Inha University Hospital, Inha University School of Medicine, Incheon (Korea, Republic of)

    2013-12-15

    Cri-du-Chat syndrome, also called the 5p-syndrome, is a rare genetic abnormality, and only few cases have been reported on its brain MRI findings. We describe the magnetic resonance imaging findings of a 1-year-old girl with Cri-du-Chat syndrome who showed brain stem hypoplasia, particularly in the pons, with normal cerebellum and diffuse hypoplasia of the cerebral hemispheres. We suggest that Cri-du-Chat syndrome chould be suspected in children with brain stem hypoplasia, particularly for those with high-pitched cries.

  6. Brain Stem Hypoplasia Associated with Cri-du-Chat Syndrome

    OpenAIRE

    Hong, Jin Ho; Lee, Ha Young; Lim, Myung Kwan; Kim, Mi Young; Kang, Young Hye; Lee, Kyung Hee; Cho, Soon Gu

    2013-01-01

    Cri-du-Chat syndrome, also called the 5p-syndrome, is a rare genetic abnormality, and only few cases have been reported on its brain MRI findings. We describe the magnetic resonance imaging findings of a 1-year-old girl with Cri-du-Chat syndrome who showed brain stem hypoplasia, particularly in the pons, with normal cerebellum and diffuse hypoplasia of the cerebral hemispheres. We suggest that Cri-du-Chat syndrome chould be suspected in children with brain stem hypoplasia, particularly for th...

  7. Association of Seafood Consumption, Brain Mercury Level, and APOE ε4 Status With Brain Neuropathology in Older Adults.

    Science.gov (United States)

    Morris, Martha Clare; Brockman, John; Schneider, Julie A; Wang, Yamin; Bennett, David A; Tangney, Christy C; van de Rest, Ondine

    2016-02-02

    Seafood consumption is promoted for its many health benefits even though its contamination by mercury, a known neurotoxin, is a growing concern. To determine whether seafood consumption is correlated with increased brain mercury levels and also whether seafood consumption or brain mercury levels are correlated with brain neuropathologies. Cross-sectional analyses of deceased participants in the Memory and Aging Project clinical neuropathological cohort study, 2004-2013. Participants resided in Chicago retirement communities and subsidized housing. The study included 286 autopsied brains of 554 deceased participants (51.6%). The mean (SD) age at death was 89.9 (6.1) years, 67% (193) were women, and the mean (SD) educational attainment was 14.6 (2.7) years. Seafood intake was first measured by a food frequency questionnaire at a mean of 4.5 years before death. Dementia-related pathologies assessed were Alzheimer disease, Lewy bodies, and the number of macroinfarcts and microinfarcts. Dietary consumption of seafood and n-3 fatty acids was annually assessed by a food frequency questionnaire in the years before death. Tissue concentrations of mercury and selenium were measured using instrumental neutron activation analyses. Among the 286 autopsied brains of 544 participants, brain mercury levels were positively correlated with the number of seafood meals consumed per week (ρ = 0.16; P = .02). In models adjusted for age, sex, education, and total energy intake, seafood consumption (≥ 1 meal[s]/week) was significantly correlated with less Alzheimer disease pathology including lower density of neuritic plaques (β = -0.69 score units [95% CI, -1.34 to -0.04]), less severe and widespread neurofibrillary tangles (β = -0.77 score units [95% CI, -1.52 to -0.02]), and lower neuropathologically defined Alzheimer disease (β = -0.53 score units [95% CI, -0.96 to -0.10]) but only among apolipoprotein E (APOE ε4) carriers. Higher intake levels of

  8. Brain-predicted age in Down syndrome is associated with beta amyloid deposition and cognitive decline.

    Science.gov (United States)

    Cole, James H; Annus, Tiina; Wilson, Liam R; Remtulla, Ridhaa; Hong, Young T; Fryer, Tim D; Acosta-Cabronero, Julio; Cardenas-Blanco, Arturo; Smith, Robert; Menon, David K; Zaman, Shahid H; Nestor, Peter J; Holland, Anthony J

    2017-08-01

    Individuals with Down syndrome (DS) are more likely to experience earlier onset of multiple facets of physiological aging. This includes brain atrophy, beta amyloid deposition, cognitive decline, and Alzheimer's disease-factors indicative of brain aging. Here, we employed a machine learning approach, using structural neuroimaging data to predict age (i.e., brain-predicted age) in people with DS (N = 46) and typically developing controls (N = 30). Chronological age was then subtracted from brain-predicted age to generate a brain-predicted age difference (brain-PAD) score. DS participants also underwent [ 11 C]-PiB positron emission tomography (PET) scans to index the levels of cerebral beta amyloid deposition, and cognitive assessment. Mean brain-PAD in DS participants' was +2.49 years, significantly greater than controls (p brain-PAD was associated with the presence and the magnitude of PiB-binding and levels of cognitive performance. Our study indicates that DS is associated with premature structural brain aging, and that age-related alterations in brain structure are associated with individual differences in the rate of beta amyloid deposition and cognitive impairment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Modulatory Effect of Association of Brain Stimulation by Light and Binaural Beats in Specific Brain Waves.

    Science.gov (United States)

    Calomeni, Mauricio Rocha; Furtado da Silva, Vernon; Velasques, Bruna Brandão; Feijó, Olavo Guimarães; Bittencourt, Juliana Marques; Ribeiro de Souza E Silva, Alair Pedro

    2017-01-01

    One of the positive effects of brain stimulation is interhemispheric modulation as shown in some scientific studies. This study examined if a type of noninvasive stimulation using binaural beats with led-lights and sound would show different modulatory effects upon Alfa and SMR brain waves of elderlies and children with some disease types. The sample included 75 individuals of both genders, being, randomly, divided in 6 groups. Groups were named elderly without dementia diagnosis (EWD), n=15, 76±8 years, elderly diagnosed with Parkinson's disease (EDP), n=15, 72±7 years, elderly diagnosed with Alzheimer's disease (EDA), n=15, 81±6 years. The other groups were named children with Autism (CA), n=10, 11±4 years, children with Intellectual Impairment (CII), n=10, 12 ±5 years and children with normal cognitive development (CND), n=10, 11±4 years. Instruments were the Mini Mental State Examination Test (MMSE), EEG-Neurocomputer instrument for brain waves registration, brain stimulator, Digit Span Test and a Protocol for working memory training. Data collection followed a pre and post-conjugated stimulation version. The results of the inferential statistics showed that the stimulation protocol had different effects on Alpha and SMR brain waves of the patients. Also, indicated gains in memory functions, for both, children and elderlies as related to gains in brain waves modulation. The results may receive and provide support to a range of studies examining brain modulation and synaptic plasticity. Also, it was emphasized in the results discussion that there was the possibility of the technique serving as an accessory instrument to alternative brain therapies.

  10. Integration of the antennal lobe glomeruli and three projection neurons in the standard brain atlas of the moth Heliothis virescens

    Directory of Open Access Journals (Sweden)

    Bjarte B Løfaldli

    2010-02-01

    Full Text Available Digital three dimensional standard brain atlases are valuable tools for integrating neuroimaging data of different preparations. In insects, standard brain atlases of five species are available, including the atlas of the female Heliothis virescens moth brain. Like for the other species, the antennal lobes of the moth brain atlas were integrated as one material identity without internal structures. Different from the others, the H. virescens standard brain atlas exclusively included the glomerular layer of the antennal lobe. This was an advantage in the present study for performing a direct registration of the glomerular layer of individual preparations into the standard brain. We here present the H. virescens female standard brain atlas with a new model of the antennal lobe glomeruli integrated into the atlas, i.e. with each of the 66 glomeruli identified and labelled with a specific number. The new model differs from the previous H. virescens antennal lobe model both in respect to the number of glomeruli and the numbering system; the latter according to the system used for the antennal lobe atlases of two other heliothine species. For identifying female specific glomeruli comparison with the male antennal lobe was necessary. This required a new male antennal lobe atlas, included in this paper. As demonstrated by the integration of three antennal lobe projection neurons of different preparations, the new standard brain atlas with the integrated glomruli is a helpful tool for determining the glomeruli innervated as well as the relative position of the axonal projections in the protocerebrum.

  11. A novel method of quantifying brain atrophy associated with age-related hearing loss

    Directory of Open Access Journals (Sweden)

    Z. Jason Qian

    2017-01-01

    Audiometric evaluations and mini-mental state exams were obtained in 34 subjects over the age of 80 who have had brain MRIs in the past 6 years. CSF and parenchymal brain volumes (whole brain and by lobe were obtained through a novel, fully automated algorithm. Atrophy was calculated by taking the ratio of CSF to parenchyma. High frequency hearing loss was associated with disproportional temporal lobe atrophy relative to whole brain atrophy independent of age (r = 0.471, p = 0.005. Mental state was associated with frontoparietal atrophy but not to temporal lobe atrophy, which is consistent with known results. Our method demonstrates that hearing loss is associated with temporal lobe atrophy and generalized whole brain atrophy. Our algorithm is efficient, fully automated, and able to detect significant associations in a small cohort.

  12. What makes your brain suggestible? Hypnotizability is associated with differential brain activity during attention outside hypnosis.

    Science.gov (United States)

    Cojan, Yann; Piguet, Camille; Vuilleumier, Patrik

    2015-08-15

    Theoretical models of hypnosis have emphasized the importance of attentional processes in accounting for hypnotic phenomena but their exact nature and brain substrates remain unresolved. Individuals vary in their susceptibility to hypnosis, a variability often attributed to differences in attentional functioning such as greater ability to filter irrelevant information and inhibit prepotent responses. However, behavioral studies of attentional performance outside the hypnotic state have provided conflicting results. We used fMRI to investigate the recruitment of attentional networks during a modified flanker task in High and Low hypnotizable participants. The task was performed in a normal (no hypnotized) state. While behavioral performance did not reliably differ between groups, components of the fronto-parietal executive network implicated in monitoring (anterior cingulate cortex; ACC), adjustment (lateral prefrontal cortex; latPFC), and implementation of attentional control (intraparietal sulcus; IPS) were differently activated depending on the hypnotizability of the subjects: the right inferior frontal gyrus (rIFG) was more recruited, whereas IPS and ACC were less recruited by High susceptible individuals compared to Low. Our results demonstrate that susceptibility to hypnosis is associated with particular executive control capabilities allowing efficient attentional focusing, and point to specific neural substrates in right prefrontal cortex. We demonstrated that outside hypnosis, low hypnotizable subjects recruited more parietal cortex and anterior cingulate regions during selective attention conditions suggesting a better detection and implementation of conflict. However, outside hypnosis the right inferior frontal gyrus (rIFG) was more recruited by highly hypnotizable subjects during selective attention conditions suggesting a better control of conflict. Furthermore, in highly hypnotizable subjects this region was more connected to the default mode network

  13. Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain.

    Science.gov (United States)

    Hartenstein, Volker; Younossi-Hartenstein, Amelia; Lovick, Jennifer K; Kong, Angel; Omoto, Jaison J; Ngo, Kathy T; Viktorin, Gudrun

    2015-10-01

    Fixed lineages derived from unique, genetically specified neuroblasts form the anatomical building blocks of the Drosophila brain. Neurons belonging to the same lineage project their axons in a common tract, which is labeled by neuronal markers. In this paper, we present a detailed atlas of the lineage-associated tracts forming the brain of the early Drosophila larva, based on the use of global markers (anti-Neuroglian, anti-Neurotactin, inscuteable-Gal4>UAS-chRFP-Tub) and lineage-specific reporters. We describe 68 discrete fiber bundles that contain axons of one lineage or pairs/small sets of adjacent lineages. Bundles enter the neuropil at invariant locations, the lineage tract entry portals. Within the neuropil, these fiber bundles form larger fascicles that can be classified, by their main orientation, into longitudinal, transverse, and vertical (ascending/descending) fascicles. We present 3D digital models of lineage tract entry portals and neuropil fascicles, set into relationship to commonly used, easily recognizable reference structures such as the mushroom body, the antennal lobe, the optic lobe, and the Fasciclin II-positive fiber bundles that connect the brain and ventral nerve cord. Correspondences and differences between early larval tract anatomy and the previously described late larval and adult lineage patterns are highlighted. Our L1 neuro-anatomical atlas of lineages constitutes an essential step towards following morphologically defined lineages to the neuroblasts of the early embryo, which will ultimately make it possible to link the structure and connectivity of a lineage to the expression of genes in the particular neuroblast that gives rise to that lineage. Furthermore, the L1 atlas will be important for a host of ongoing work that attempts to reconstruct neuronal connectivity at the level of resolution of single neurons and their synapses. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Associations between education and brain structure at age 73 years, adjusted for age 11 IQ.

    Science.gov (United States)

    Cox, Simon R; Dickie, David Alexander; Ritchie, Stuart J; Karama, Sherif; Pattie, Alison; Royle, Natalie A; Corley, Janie; Aribisala, Benjamin S; Valdés Hernández, Maria; Muñoz Maniega, Susana; Starr, John M; Bastin, Mark E; Evans, Alan C; Wardlaw, Joanna M; Deary, Ian J

    2016-10-25

    To investigate how associations between education and brain structure in older age were affected by adjusting for IQ measured at age 11. We analyzed years of full-time education and measures from an MRI brain scan at age 73 in 617 community-dwelling adults born in 1936. In addition to average and vertex-wise cortical thickness, we measured total brain atrophy and white matter tract fractional anisotropy. Associations between brain structure and education were tested, covarying for sex and vascular health; a second model also covaried for age 11 IQ. The significant relationship between education and average cortical thickness (β = 0.124, p = 0.004) was reduced by 23% when age 11 IQ was included (β = 0.096, p = 0.041). Initial associations between longer education and greater vertex-wise cortical thickness were significant in bilateral temporal, medial-frontal, parietal, sensory, and motor cortices. Accounting for childhood intelligence reduced the number of significant vertices by >90%; only bilateral anterior temporal associations remained. Neither education nor age 11 IQ was significantly associated with total brain atrophy or tract-averaged fractional anisotropy. The association between years of education and brain structure ≈60 years later was restricted to cortical thickness in this sample; however, the previously reported associations between longer education and a thicker cortex are likely to be overestimates in terms of both magnitude and distribution. This finding has implications for understanding, and possibly ameliorating, life-course brain health. © 2016 American Academy of Neurology.

  15. B3GALNT2 is a gene associated with congenital muscular dystrophy with brain malformations

    OpenAIRE

    Hedberg, Carola; Oldfors, Anders; Darin, Niklas

    2013-01-01

    Congenital muscular dystrophies associated with brain malformations are a group of disorders frequently associated with aberrant glycosylation of α-dystroglycan. They include disease entities such a Walker–Warburg syndrome, muscle–eye–brain disease and various other clinical phenotypes. Different genes involved in glycosylation of α-dystroglycan are associated with these dystroglycanopathies. We describe a 5-year-old girl with psychomotor retardation, ataxia, spasticity, muscle weakness and i...

  16. Associations between insulin action and integrity of brain microstructure differ with familial longevity and with age

    DEFF Research Database (Denmark)

    Akintola, Abimbola A; van den Berg, Annette; van Buchem, Mark A

    2015-01-01

    Impaired glucose metabolism and type 2 diabetes have been associated with cognitive decline, dementia, and with structural and functional brain features. However, it is unclear whether these associations differ in individuals that differ in familial longevity or age. Here, we investigated......) peak-height was used to quantify differences in microstructural brain parenchymal tissue homogeneity that remain invisible on conventional MRI. Analyses were performed in offspring and age-matched controls, with and without stratification for age. In the full offspring group only, reduced MTR peak...... significant. Thus, associations between impaired insulin action and reduced microstructural brain parenchymal tissue homogeneity were stronger in offspring compared to controls, and seemed to diminish with age....

  17. The associations of depression and hypertension with brain volumes : Independent or interactive?

    NARCIS (Netherlands)

    Meurs, Maaike; Groenewold, Nynke A.; Roest, Annelieke M.; van der Wee, Nic J. A.; Veltman, Dick J.; van Tol, Marie-Jose; de Jonge, Peter

    2015-01-01

    Independent studies on major depressive disorder (MDD) and hypertension, suggest overlapping abnormalities in brain regions associated with emotional and autonomic processing. However, the unique and interactive effects of MDD and hypertension have never been studied in a single sample. Brain volume

  18. Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export

    NARCIS (Netherlands)

    A. Legati (Andrea); D. Giovannini (Donatella); G. Nicolas (Gaël); U. López-Sánchez (Uriel); B. Quintáns (Beatriz); J.R. Oliveira (Joao); R.L. Sears (Renee L); E.M. Ramos (Eliana Marisa); E. Spiteri (Elizabeth); M.J. Sobrido (Maria); A. Carracedo (Angel); C. Castro-Fernández (Cristina); S. Cubizolle (Stéphanie); B.L. Fogel (Brent L); C. Goizet (Cyril); J.C. Jen (Joanna C); S. Kirdlarp (Suppachok); A.E. Lang (Anthony E); Z. Miedzybrodzka (Zosia); W. Mitarnun (Witoon); M. Paucar (Martin); H.L. Paulson (Henry); J. Pariente (Jérémie); A.-C. Richard (Anne-Claire); N.S. Salins (Naomi S); S.A. Simpson (Sheila A); P. Striano (Pasquale); P. Svenningsson (Per); F. Tison (François); V.K. Unni (Vivek K); O. Vanakker (Olivier); M.W. Wessels (Marja); S. Wetchaphanphesat (Suppachok); M. Yang (Michele); F. Boller (Francois); D. Campion (Dominique); D. Hannequin (Didier); M. Sitbon (Marc); H. Geschwind; J.-L. Battini (Jean-Luc); D. Coppola (Domenico)

    2015-01-01

    textabstractPrimary familial brain calcification (PFBC) is a neurological disease characterized by calcium phosphate deposits in the basal ganglia and other brain regions and has thus far been associated with SLC20A2, PDGFB or PDGFRB mutations. We identified in multiple families with PFBC mutations

  19. [On the question of the organization of brain function: cortical associations, «disconnection» syndrome and higher brain functions].

    Science.gov (United States)

    Damulin, I V

    2015-01-01

    The review considers the structural/functional brain organization, the disturbance of which is accompanied by the development of cognitive and behavioral disorders. The significance of the disruption of parallel circuits connecting frontal lobes with subcortical structures (the basal ganglia, thalamus, cerebellum) is highlighted. This disruption is clinically described as "disconnection" syndrome. The associations between the basal ganglia and the cortex of the large cerebral hemispheres responsible for motor, cognitive and emotional/behavioral functions do not restricted to these spheres and is characteristic not only of frontal brain areas. There are circuits connecting other brain compartments and the basal ganglia that provide perception, and are involved in decision making on the basis of input information of different modalities.The improvement of understanding of the pathophysiology and neurochemistry of these structures opens new possibilities for selective action on some or other circuit to achieve the best therapeutic result.

  20. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    Science.gov (United States)

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.

  1. Clinicopathological factors associated with survival in patients with breast cancer brain metastasis.

    Science.gov (United States)

    Li, Rong; Zhang, Kui; Siegal, Gene P; Wei, Shi

    2017-06-01

    Brain metastasis from breast cancer generally represents a catastrophic event yet demonstrates substantial biological heterogeneity. There have been limited studies solely focusing on the prognosis of patients with such metastasis. In this study, we carried out a comprehensive analysis in 108 consecutive patients with breast cancer brain metastases between 1997 and 2012 to further define clinicopathological factors associated with early onset of brain metastasis and survival outcomes after development of them. We found that lobular carcinoma, higher clinical stages at diagnosis, and lack of coexisting bone metastasis were significantly associated with a worse brain relapse-free survival when compared with brain-only metastasis. High histologic grade, triple-negative breast cancer, and absence of visceral involvement were unfavorable prognostic factors after brain metastasis. Furthermore, high histologic grade, advanced tumor stages, and lack of coexisting bone involvement indicated a worse overall survival. Thus, the previously established prognostic factors in early stage or advanced breast cancers may not entirely apply to patients with brain metastases. Furthermore, the prognostic significance of the clinicopathological factors differed before and after a patient develops brain metastasis. This knowledge might help in establishing an algorithm to further stratify patients with breast cancer into prognostically significant categories for optimal prevention, screening, and treatment of their brain metastasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Adult brain abscess associated with patent foramen ovale: a case report

    Directory of Open Access Journals (Sweden)

    Stathopoulos Georgios T

    2007-08-01

    Full Text Available Abstract Brain abscess results from local or metastatic septic spread to the brain. The primary infectious site is often undetected, more commonly so when it is distant. Unlike pediatric congenital heart disease, minor intracardiac right-to-left shunting due to patent foramen ovale has not been appreciated as a cause of brain abscess in adults. Here we present a case of brain abscess associated with a patent foramen ovale in a 53-year old man with dental-gingival sepsis treated in the intensive care unit. Based on this case and the relevant literature we suggest a link between a silent patent foramen ovale, paradoxic pathogen dissemination to the brain, and development of brain abscess.

  3. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qingguo, E-mail: renqg83@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Dewan, Sheilesh Kumar, E-mail: sheilesh_d1@hotmail.com [Department of Geriatrics, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Ming, E-mail: minli77@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Jianying, E-mail: Jianying.Li@med.ge.com [CT Imaging Research Center, GE Healthcare China, Beijing (China); Mao, Dingbiao, E-mail: maodingbiao74@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Wang, Zhenglei, E-mail: Williswang_doc@yahoo.com.cn [Department of Radiology, Shanghai Electricity Hospital, Shanghai 200050 (China); Hua, Yanqing, E-mail: cjr.huayanqing@vip.163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China)

    2012-10-15

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI{sub vol}) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique.

  4. High resolution whole brain diffusion imaging at 7 T for the Human Connectome Project

    Science.gov (United States)

    Vu, AT; Auerbach, E; Lenglet, C; Moeller, S; Sotiropoulos, SN; Jbabdi, S; Andersson, J; Yacoub, E; Ugurbil, K

    2015-01-01

    Mapping structural connectivity in healthy adults for the Human Connectome Project (HCP) benefits from high quality, high resolution, multiband (MB)-accelerated whole brain diffusion MRI (dMRI). Acquiring such data at ultrahigh fields (7 T and above) can improve intrinsic signal-to-noise ratio (SNR), but suffers from shorter T2 and T2* relaxation times, increased B1+ inhomogeneity (resulting in signal loss in cerebellar and temporal lobe regions), and increased power deposition (i.e. Specific Absorption Rate (SAR)), thereby limiting our ability to reduce the repetition time (TR). Here, we present recent developments and optimizations in 7 T image acquisitions for the HCP that allow us to efficiently obtain high-quality, high-resolution whole brain in-vivo dMRI data at 7 T. These data show spatial details typically seen only in ex-vivo studies and complement already very high quality 3 T HCP data in the same subjects. The advances are the result of intensive pilot studies aimed at mitigating the limitations of dMRI at 7 T. The data quality and methods described here are representative of the datasets that will be made freely available to the community in 2015. PMID:26260428

  5. Human brain arteriovenous malformations express lymphatic-associated genes

    OpenAIRE

    Shoemaker, Lorelei D.; Fuentes, Laurel F; Santiago, Shauna M; Allen, Breanna M; Cook, Douglas J.; Steinberg, Gary K.; Chang, Steven D.

    2014-01-01

    Objective Brain arteriovenous malformations (AVMs) are devastating, hemorrhage-prone, cerebrovascular lesions characterized by well-defined feeding arteries, draining vein(s) and the absence of a capillary bed. The endothelial cells (ECs) that comprise AVMs exhibit a loss of arterial and venous specification. Given the role of the transcription factor COUP-TFII in vascular development, EC specification, and pathological angiogenesis, we examined human AVM tissue to determine if COUP-FTII may ...

  6. An exercise-based randomized controlled trial on brain, cognition, physical health and mental health in overweight/obese children (ActiveBrains project): Rationale, design and methods.

    Science.gov (United States)

    Cadenas-Sánchez, Cristina; Mora-González, José; Migueles, Jairo H; Martín-Matillas, Miguel; Gómez-Vida, José; Escolano-Margarit, María Victoria; Maldonado, José; Enriquez, Gala María; Pastor-Villaescusa, Belén; de Teresa, Carlos; Navarrete, Socorro; Lozano, Rosa María; de Dios Beas-Jiménez, Juan; Estévez-López, Fernando; Mena-Molina, Alejandra; Heras, María José; Chillón, Palma; Campoy, Cristina; Muñoz-Hernández, Victoria; Martínez-Ávila, Wendy Daniela; Merchan, María Elisa; Perales, José C; Gil, Ángel; Verdejo-García, Antonio; Aguilera, Concepción M; Ruiz, Jonatan R; Labayen, Idoia; Catena, Andrés; Ortega, Francisco B

    2016-03-01

    The new and recent advances in neuroelectric and neuroimaging technologies provide a new era for further exploring and understanding how brain and cognition function can be stimulated by environmental factors, such as exercise, and particularly to study whether physical exercise influences brain development in early ages. The present study, namely the ActiveBrains project, aims to examine the effects of a physical exercise programme on brain and cognition, as well as on selected physical and mental health outcomes in overweight/obese children. A total of 100 participants aged 8 to 11 years are randomized into an exercise group (N=50) or a control group (N=50). The intervention lasts 20-weeks, with 3-5 sessions per week of 90 min each, and is mainly focused on high-intensity aerobic exercise yet also includes muscle-strengthening exercises. The extent to what the intervention effect remains 8-months after the exercise programme finishes is also studied in a subsample. Brain structure and function and cognitive performance are assessed using structural and functional magnetic resonance imaging and electroencephalographic recordings. Secondary outcomes include physical health outcomes (e.g. physical fitness, body fatness, bone mass and lipid-metabolic factors) and mental health outcomes (e.g. chronic stress indicators and overall behavioural and personality measurements such as anxiety or depression). This project will substantially contribute to the existing knowledge and will have an impact on societies, since early stimulation of brain development might have long lasting consequences on cognitive performance, academic achievement and in the prevention of behavioural problems and the promotion of psychological adjustment and mental health. Clinical trials. Gov identifier: NCT02295072. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The association between adverse childhood experiences and adult traumatic brain injury/concussion: a scoping review.

    Science.gov (United States)

    Ma, Zechen; Bayley, Mark T; Perrier, Laure; Dhir, Priya; Dépatie, Lana; Comper, Paul; Ruttan, Lesley; Lay, Christine; Munce, Sarah E P

    2018-01-12

    Adverse childhood experiences are significant risk factors for physical and mental illnesses in adulthood. Traumatic brain injury/concussion is a challenging condition where pre-injury factors may affect recovery. The association between childhood adversity and traumatic brain injury/concussion has not been previously reviewed. The research question addressed is: What is known from the existing literature about the association between adverse childhood experiences and traumatic brain injury/concussion in adults? All original studies of any type published in English since 2007 on adverse childhood experiences and traumatic brain injury/concussion outcomes were included. The literature search was conducted in multiple electronic databases. Arksey and O'Malley and Levac et al.'s scoping review frameworks were used. Two reviewers independently completed screening and data abstraction. The review yielded six observational studies. Included studies were limited to incarcerated or homeless samples, and individuals at high-risk of or with mental illnesses. Across studies, methods for childhood adversity and traumatic brain injury/concussion assessment were heterogeneous. A positive association between adverse childhood experiences and traumatic brain injury occurrence was identified. The review highlights the importance of screening and treatment of adverse childhood experiences. Future research should extend to the general population and implications on injury recovery. Implications for rehabilitation Exposure to adverse childhood experiences is associated with increased risk of traumatic brain injury. Specific types of adverse childhood experiences associated with risk of traumatic brain injury include childhood physical abuse, psychological abuse, household member incarceration, and household member drug abuse. Clinicians and researchers should inquire about adverse childhood experiences in all people with traumatic brain injury as pre-injury health conditions can

  8. HIV-1 nef protein structures associated with brain infection and dementia pathogenesis.

    Directory of Open Access Journals (Sweden)

    Susanna L Lamers

    2011-02-01

    Full Text Available The difference between regional rates of HIV-associated dementia (HAD in patients infected with different subtypes of HIV suggests that genetic determinants exist within HIV that influence the ability of the virus to replicate in the central nervous system (in Uganda, Africa, subtype D HAD rate is 89%, while subtype A HAD rate is 24%. HIV-1 nef is a multifunctional protein with known toxic effects in the brain compartment. The goal of the current study was to identify if specific three-dimensional nef structures may be linked to patients who developed HAD. HIV-1 nef structures were computationally derived for consensus brain and non-brain sequences from a panel of patients infected with subtype B who died due to varied disease pathologies and consensus subtype A and subtype D sequences from Uganda. Site directed mutation analysis identified signatures in brain structures that appear to change binding potentials and could affect folding conformations of brain-associated structures. Despite the large sequence variation between HIV subtypes, structural alignments confirmed that viral structures derived from patients with HAD were more similar to subtype D structures than to structures derived from patient sequences without HAD. Furthermore, structures derived from brain sequences of patients with HAD were more similar to subtype D structures than they were to their own non-brain structures. The potential finding of a brain-specific nef structure indicates that HAD may result from genetic alterations that alter the folding or binding potential of the protein.

  9. HIV-1 nef protein structures associated with brain infection and dementia pathogenesis.

    Science.gov (United States)

    Lamers, Susanna L; Poon, Art F Y; McGrath, Michael S

    2011-02-09

    The difference between regional rates of HIV-associated dementia (HAD) in patients infected with different subtypes of HIV suggests that genetic determinants exist within HIV that influence the ability of the virus to replicate in the central nervous system (in Uganda, Africa, subtype D HAD rate is 89%, while subtype A HAD rate is 24%). HIV-1 nef is a multifunctional protein with known toxic effects in the brain compartment. The goal of the current study was to identify if specific three-dimensional nef structures may be linked to patients who developed HAD. HIV-1 nef structures were computationally derived for consensus brain and non-brain sequences from a panel of patients infected with subtype B who died due to varied disease pathologies and consensus subtype A and subtype D sequences from Uganda. Site directed mutation analysis identified signatures in brain structures that appear to change binding potentials and could affect folding conformations of brain-associated structures. Despite the large sequence variation between HIV subtypes, structural alignments confirmed that viral structures derived from patients with HAD were more similar to subtype D structures than to structures derived from patient sequences without HAD. Furthermore, structures derived from brain sequences of patients with HAD were more similar to subtype D structures than they were to their own non-brain structures. The potential finding of a brain-specific nef structure indicates that HAD may result from genetic alterations that alter the folding or binding potential of the protein.

  10. Association of structural global brain network properties with intelligence in normal aging.

    Science.gov (United States)

    Fischer, Florian U; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas

    2014-01-01

    Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.

  11. Association of structural global brain network properties with intelligence in normal aging.

    Directory of Open Access Journals (Sweden)

    Florian U Fischer

    Full Text Available Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.

  12. Missouri Soybean Association Biodiesel Demonstration Project: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Dale [Missouri Soybean Association, Jefferson City, MO (United States); Hamilton, Jill [Sustainable Energy Strategies, Inc., Fairfax, VA (United States)

    2011-10-27

    The Missouri Soybean Association (MSA) and the National Biodiesel Board (NBB) partnered together to implement the MSA Biodiesel Demonstration project under a United States Department of Energy (DOE) grant. The goal of this project was to provide decision makers and fleet managers with information that could lead to the increased use of domestically produced renewable fuels and could reduce the harmful impacts of school bus diesel exhaust on children. This project was initiated in September 2004 and completed in April 2011. The project carried out a broad range of activities organized under four areas: 1. Petroleum and related industry education program for fuel suppliers; 2. Fleet evaluation program using B20 with a Missouri school district; 3. Outreach and awareness campaign for school district fleet managers; and 4. Support of ongoing B20 Fleet Evaluation Team (FET) data collection efforts with existing school districts. Technical support to the biodiesel industry was also provided through NBB’s Troubleshooting Hotline. The hotline program was established in 2008 to troubleshoot fuel quality issues and help facilitate smooth implementation of the RFS and is described in greater detail under Milestone A.1 - Promote Instruction and Guidance on Best Practices. As a result of this project’s efforts, MSA and NBB were able to successfully reach out to and support a broad spectrum of biodiesel users in Missouri and New England. The MSA Biodiesel Demonstration was funded through a FY2004 Renewable Energy Resources Congressional earmark. The initial focus of this project was to test and evaluate biodiesel blends coupled with diesel oxidation catalysts as an emissions reduction technology for school bus fleets in the United States. The project was designed to verify emissions reductions using Environmental Protection Agency (EPA) protocols, then document – with school bus fleet experience – the viability of utilizing B20 blends. The fleet experience was expected to

  13. Automatic ROI selection in structural brain MRI using SOM 3D projection.

    Directory of Open Access Journals (Sweden)

    Andrés Ortiz

    Full Text Available This paper presents a method for selecting Regions of Interest (ROI in brain Magnetic Resonance Imaging (MRI for diagnostic purposes, using statistical learning and vector quantization techniques. The proposed method models the distribution of GM and WM tissues grouping the voxels belonging to each tissue in ROIs associated to a specific neurological disorder. Tissue distribution of normal and abnormal images is modelled by a Self-Organizing map (SOM, generating a set of representative prototypes, and the receptive field (RF of each SOM prototype defines a ROI. Moreover, the proposed method computes the relative importance of each ROI by means of its discriminative power. The devised method has been assessed using 818 images from the Alzheimer's disease Neuroimaging Initiative (ADNI which were previously segmented through Statistical Parametric Mapping (SPM. The proposed algorithm was used over these images to parcel ROIs associated to the Alzheimer's Disease (AD. Additionally, this method can be used to extract a reduced set of discriminative features for classification, since it compresses discriminative information contained in the brain. Voxels marked by ROIs which were computed using the proposed method, yield classification results up to 90% of accuracy for controls (CN and Alzheimer's disease (AD patients, and 84% of accuracy for Mild Cognitive Impairment (MCI and AD patients.

  14. Is Traumatic and Non-Traumatic Neck Pain Associated with Brain Alterations? - A Systematic Review.

    Science.gov (United States)

    DePauw, Robby; Coppieters, Iris; Meeus, Mira; Caeyenberghs, Karen; Danneels, Lieven; Cagnie, Barbara

    2017-05-01

    Chronic neck pain affects 50% - 85% of people who have experienced an acute episode. This transition and the persistence of chronic complaints are believed to be mediated by brain alterations among different central mechanisms. This study aimed to systematically review and critically appraise the current existing evidence regarding structural and functional brain alterations in patients with whiplash associated disorders (WAD) and idiopathic neck pain (INP). Additionally, associations between brain alterations and clinical symptoms reported in neck pain patients were evaluated. Systematic review. The present systematic review was performed according to the PRISMA guidelines. PubMed, Web of Science, and Cochrane databases were searched. First, the obtained articles were screened based on title and abstract. Secondly, the screening was based on the full text. Risk of bias in included studies was investigated. Twelve studies met the inclusion criteria. Alterations in brain morphology and function, including perfusion, neurotransmission, and blood oxygenation level dependent-signal, were demonstrated in chronic neck pain patients. There is some to moderate evidence for both structural and functional brain alterations in patients with chronic neck pain. In contrast, no evidence for structural brain alterations in acute neck pain patients was found. Only 12 articles were included, which allows only cautious conclusions to be drawn. Brain alterations were observed in both patients with chronic WAD and chronic INP. Furthermore, more evidence exists for brain alterations in chronic WAD, and different underlying mechanisms might be present in both pathologies. In addition, pain and disability were correlated with the observed brain alterations. Accordingly, morphological and functional brain alterations should be further investigated in patients with chronic WAD and chronic INP with newer and more sensitive techniques, and associative clinical measurements seem indispensable

  15. Management of HIV-associated focal brain lesions in developing coun

    African Journals Online (AJOL)

    guidelines and approaches to the management of HIV-associated FBL have been effective in developed countries. In developing countries infections are the main cause of FBL associated. ORIGINAL ARTICLE. 5. SA JOURNAL OF RADIOLOGY • July 2005. Management of. HIV-associated focal brain lesions in developing ...

  16. Mining for associations between text and brain activation in a functional neuroimaging database

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai; Balslev, D.

    2004-01-01

    We describe a method for mining a neuroimaging database for associations between text and brain locations. The objective is to discover association rules between words indicative of cognitive function as described in abstracts of neuroscience papers and sets of reported stereotactic Talairach coo...... that the statistically motivated associations are well aligned with general neuroscientific knowledge....

  17. Brain activity associated with selective attention, divided attention and distraction.

    Science.gov (United States)

    Salo, Emma; Salmela, Viljami; Salmi, Juha; Numminen, Jussi; Alho, Kimmo

    2017-06-01

    Top-down controlled selective or divided attention to sounds and visual objects, as well as bottom-up triggered attention to auditory and visual distractors, has been widely investigated. However, no study has systematically compared brain activations related to all these types of attention. To this end, we used functional magnetic resonance imaging (fMRI) to measure brain activity in participants performing a tone pitch or a foveal grating orientation discrimination task, or both, distracted by novel sounds not sharing frequencies with the tones or by extrafoveal visual textures. To force focusing of attention to tones or gratings, or both, task difficulty was kept constantly high with an adaptive staircase method. A whole brain analysis of variance (ANOVA) revealed fronto-parietal attention networks for both selective auditory and visual attention. A subsequent conjunction analysis indicated partial overlaps of these networks. However, like some previous studies, the present results also suggest segregation of prefrontal areas involved in the control of auditory and visual attention. The ANOVA also suggested, and another conjunction analysis confirmed, an additional activity enhancement in the left middle frontal gyrus related to divided attention supporting the role of this area in top-down integration of dual task performance. Distractors expectedly disrupted task performance. However, contrary to our expectations, activations specifically related to the distractors were found only in the auditory and visual cortices. This suggests gating of the distractors from further processing perhaps due to strictly focused attention in the current demanding discrimination tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Poorer physical fitness is associated with reduced structural brain integrity in heart failure.

    Science.gov (United States)

    Alosco, Michael L; Brickman, Adam M; Spitznagel, Mary Beth; Griffith, Erica Y; Narkhede, Atul; Raz, Naftali; Cohen, Ronald; Sweet, Lawrence H; Colbert, Lisa H; Josephson, Richard; Hughes, Joel; Rosneck, Jim; Gunstad, John

    2013-05-15

    Physical fitness is an important correlate of structural and functional integrity of the brain in healthy adults. In heart failure (HF) patients, poor physical fitness may contribute to cognitive dysfunction and we examined the unique contribution of physical fitness to brain structural integrity among patients with HF. Sixty-nine HF patients performed the Modified Mini Mental State examination (3MS) and underwent brain magnetic resonance imaging. All participants completed the 2-minute step test (2MST), a brief measure of physical fitness. We examined the associations between cognitive performance, physical fitness, and three indices of global brain integrity: total cortical gray matter volume, total white matter volume, and whole brain cortical thickness. Regression analyses adjusting for demographic characteristics, medical variables (e.g., left ventricular ejection fraction), and intracranial volume revealed reduced performance on the 2MST were associated with decreased gray matter volume and thinner cortex (passociated with poorer 3MS scores (pphysical fitness is common in HF and associated with reduced structural brain integrity. Prospective studies are needed to elucidate underlying mechanisms for the influence of physical fitness on brain health in HF. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. An associative Brain-Computer-Interface for acute stroke patients

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Stevenson, Andrew James Thomas; Aliakbaryhosseinabadi, Susan

    2016-01-01

    An efficient innovative Brain-Computer-Interface system that empowers chronic stroke patients to control an artificial activation of their lower limb muscle through task specific motor intent has been tested in the past. In the current study it was applied to acute stroke patients. The system...... (tibialis anterior). This activation is precisely and individually timed such that the sensory signal arising from the stimulation reaches the motor cortex during its maximum activation due to the intention. The output of the motor cortical area representing the dorsiflexor muscles was significantly...

  20. Association football injuries to the brain. A preliminary report.

    OpenAIRE

    Tysvaer, A.; Storli, O.

    1981-01-01

    In 1975 the authors sent a questionnaire to all players in the Norwegian First Division League Clubs to record the incidence of head injuries due to heading. The conclusion of the questionnaire is that there seems to be a low percentage of serious head injuries. None of the players had been operated on for epi- or subdural hematoma or other brain damage and only a few have had concussion due to heading. In sixty per cent of the players a full neurological examination and EEG recording was und...

  1. Gene expression in the rodent brain is associated with its regional connectivity.

    Directory of Open Access Journals (Sweden)

    Lior Wolf

    2011-05-01

    Full Text Available The putative link between gene expression of brain regions and their neural connectivity patterns is a fundamental question in neuroscience. Here this question is addressed in the first large scale study of a prototypical mammalian rodent brain, using a combination of rat brain regional connectivity data with gene expression of the mouse brain. Remarkably, even though this study uses data from two different rodent species (due to the data limitations, we still find that the connectivity of the majority of brain regions is highly predictable from their gene expression levels-the outgoing (incoming connectivity is successfully predicted for 73% (56% of brain regions, with an overall fairly marked accuracy level of 0.79 (0.83. Many genes are found to play a part in predicting both the incoming and outgoing connectivity (241 out of the 500 top selected genes, p-value<1e-5. Reassuringly, the genes previously known from the literature to be involved in axon guidance do carry significant information about regional brain connectivity. Surveying the genes known to be associated with the pathogenesis of several brain disorders, we find that those associated with schizophrenia, autism and attention deficit disorder are the most highly enriched in the connectivity-related genes identified here. Finally, we find that the profile of functional annotation groups that are associated with regional connectivity in the rodent is significantly correlated with the annotation profile of genes previously found to determine neural connectivity in C. elegans (Pearson correlation of 0.24, p<1e-6 for the outgoing connections and 0.27, p<1e-5 for the incoming. Overall, the association between connectivity and gene expression in a specific extant rodent species' brain is likely to be even stronger than found here, given the limitations of current data.

  2. Involvement of the anterior cingulate cortex in time-based prospective memory task monitoring: An EEG analysis of brain sources using Independent Component and Measure Projection Analysis.

    Directory of Open Access Journals (Sweden)

    Gabriela Cruz

    Full Text Available Time-based prospective memory (PM, remembering to do something at a particular moment in the future, is considered to depend upon self-initiated strategic monitoring, involving a retrieval mode (sustained maintenance of the intention plus target checking (intermittent time checks. The present experiment was designed to explore what brain regions and brain activity are associated with these components of strategic monitoring in time-based PM tasks.24 participants were asked to reset a clock every four minutes, while performing a foreground ongoing word categorisation task. EEG activity was recorded and data were decomposed into source-resolved activity using Independent Component Analysis. Common brain regions across participants, associated with retrieval mode and target checking, were found using Measure Projection Analysis.Participants decreased their performance on the ongoing task when concurrently performed with the time-based PM task, reflecting an active retrieval mode that relied on withdrawal of limited resources from the ongoing task. Brain activity, with its source in or near the anterior cingulate cortex (ACC, showed changes associated with an active retrieval mode including greater negative ERP deflections, decreased theta synchronization, and increased alpha suppression for events locked to the ongoing task while maintaining a time-based intention. Activity in the ACC was also associated with time-checks and found consistently across participants; however, we did not find an association with time perception processing per se.The involvement of the ACC in both aspects of time-based PM monitoring may be related to different functions that have been attributed to it: strategic control of attention during the retrieval mode (distributing attentional resources between the ongoing task and the time-based task and anticipatory/decision making processing associated with clock-checks.

  3. Involvement of the anterior cingulate cortex in time-based prospective memory task monitoring: An EEG analysis of brain sources using Independent Component and Measure Projection Analysis.

    Science.gov (United States)

    Cruz, Gabriela; Burgos, Pablo; Kilborn, Kerry; Evans, Jonathan J

    2017-01-01

    Time-based prospective memory (PM), remembering to do something at a particular moment in the future, is considered to depend upon self-initiated strategic monitoring, involving a retrieval mode (sustained maintenance of the intention) plus target checking (intermittent time checks). The present experiment was designed to explore what brain regions and brain activity are associated with these components of strategic monitoring in time-based PM tasks. 24 participants were asked to reset a clock every four minutes, while performing a foreground ongoing word categorisation task. EEG activity was recorded and data were decomposed into source-resolved activity using Independent Component Analysis. Common brain regions across participants, associated with retrieval mode and target checking, were found using Measure Projection Analysis. Participants decreased their performance on the ongoing task when concurrently performed with the time-based PM task, reflecting an active retrieval mode that relied on withdrawal of limited resources from the ongoing task. Brain activity, with its source in or near the anterior cingulate cortex (ACC), showed changes associated with an active retrieval mode including greater negative ERP deflections, decreased theta synchronization, and increased alpha suppression for events locked to the ongoing task while maintaining a time-based intention. Activity in the ACC was also associated with time-checks and found consistently across participants; however, we did not find an association with time perception processing per se. The involvement of the ACC in both aspects of time-based PM monitoring may be related to different functions that have been attributed to it: strategic control of attention during the retrieval mode (distributing attentional resources between the ongoing task and the time-based task) and anticipatory/decision making processing associated with clock-checks.

  4. Dystrophins, Utrophins, and Associated Scaffolding Complexes: Role in Mammalian Brain and Implications for Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Caroline Perronnet

    2010-01-01

    Full Text Available Two decades of molecular, cellular, and functional studies considerably increased our understanding of dystrophins function and unveiled the complex etiology of the cognitive deficits in Duchenne muscular dystrophy (DMD, which involves altered expression of several dystrophin-gene products in brain. Dystrophins are normally part of critical cytoskeleton-associated membrane-bound molecular scaffolds involved in the clustering of receptors, ion channels, and signaling proteins that contribute to synapse physiology and blood-brain barrier function. The utrophin gene also drives brain expression of several paralogs proteins, which cellular expression and biological roles remain to be elucidated. Here we review the structural and functional properties of dystrophins and utrophins in brain, the consequences of dystrophins loss-of-function as revealed by numerous studies in mouse models of DMD, and we discuss future challenges and putative therapeutic strategies that may compensate for the cognitive impairment in DMD based on experimental manipulation of dystrophins and/or utrophins brain expression.

  5. Structural brain correlates of associative memory in older adults.

    Science.gov (United States)

    Becker, Nina; Laukka, Erika J; Kalpouzos, Grégoria; Naveh-Benjamin, Moshe; Bäckman, Lars; Brehmer, Yvonne

    2015-09-01

    Associative memory involves binding two or more items into a coherent memory episode. Relative to memory for single items, associative memory declines greatly in aging. However, older individuals vary substantially in their ability to memorize associative information. Although functional studies link associative memory to the medial temporal lobe (MTL) and prefrontal cortex (PFC), little is known about how volumetric differences in MTL and PFC might contribute to individual differences in associative memory. We investigated regional gray-matter volumes related to individual differences in associative memory in a sample of healthy older adults (n=54; age=60years). To differentiate item from associative memory, participants intentionally learned face-scene picture pairs before performing a recognition task that included single faces, scenes, and face-scene pairs. Gray-matter volumes were analyzed using voxel-based morphometry region-of-interest (ROI) analyses. To examine volumetric differences specifically for associative memory, item memory was controlled for in the analyses. Behavioral results revealed large variability in associative memory that mainly originated from differences in false-alarm rates. Moreover, associative memory was independent of individuals' ability to remember single items. Older adults with better associative memory showed larger gray-matter volumes primarily in regions of the left and right lateral PFC. These findings provide evidence for the importance of PFC in intentional learning of associations, likely because of its involvement in organizational and strategic processes that distinguish older adults with good from those with poor associative memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Disease association and inter-connectivity analysis of human brain specific co-expressed functional modules.

    Science.gov (United States)

    Oh, Kimin; Hwang, Taeho; Cha, Kihoon; Yi, Gwan-Su

    2015-12-16

    In the recent studies, it is suggested that the analysis of transcriptomic change of functional modules instead of individual genes would be more effective for system-wide identification of cellular functions. This could also provide a new possibility for the better understanding of difference between human and chimpanzee. In this study, we analyzed to find molecular characteristics of human brain functions from the difference of transcriptome between human and chimpanzee's brain using the functional module-centric co-expression analysis. We performed analysis of brain disease association and systems-level connectivity of species-specific co-expressed functional modules. Throughout the analyses, we found human-specific functional modules and significant overlap between their genes in known brain disease genes, suggesting that human brain disorder could be mediated by the perturbation of modular activities emerged in human brain specialization. In addition, the human-specific modules having neurobiological functions exhibited higher networking than other functional modules. This finding suggests that the expression of neural functions are more connected than other functions, and the resulting high-order brain functions could be identified as a result of consolidated inter-modular gene activities. Our result also showed that the functional module based transcriptome analysis has a potential to expand molecular understanding of high-order complex functions like cognitive abilities and brain disorders.

  7. Aggression is associated with aerobic glycolysis in the honey bee brain(1).

    Science.gov (United States)

    Chandrasekaran, S; Rittschof, C C; Djukovic, D; Gu, H; Raftery, D; Price, N D; Robinson, G E

    2015-02-01

    Aerobic glycolysis involves increased glycolysis and decreased oxidative catabolism of glucose even in the presence of an ample oxygen supply. Aerobic glycolysis, a common metabolic pattern in cancer cells, was recently discovered in both the healthy and diseased human brain, but its functional significance is not understood. This metabolic pattern in the brain is surprising because it results in decreased efficiency of adenosine triphosphate (ATP) production in a tissue with high energetic demands. We report that highly aggressive honey bees (Apis mellifera) show a brain transcriptomic and metabolic state consistent with aerobic glycolysis, i.e. increased glycolysis in combination with decreased oxidative phosphorylation. Furthermore, exposure to alarm pheromone, which provokes aggression, causes a metabolic shift to aerobic glycolysis in the bee brain. We hypothesize that this metabolic state, which is associated with altered neurotransmitter levels, increased glycolytically derived ATP and a reduced cellular redox state, may lead to increased neuronal excitability and oxidative stress in the brain. Our analysis provides evidence for a robust, distinct and persistent brain metabolic response to aggression-inducing social cues. This finding for the first time associates aerobic glycolysis with naturally occurring behavioral plasticity, which has important implications for understanding both healthy and diseased brain function. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  8. Human brain arteriovenous malformations express lymphatic-associated genes.

    Science.gov (United States)

    Shoemaker, Lorelei D; Fuentes, Laurel F; Santiago, Shauna M; Allen, Breanna M; Cook, Douglas J; Steinberg, Gary K; Chang, Steven D

    2014-12-01

    Brain arteriovenous malformations (AVMs) are devastating, hemorrhage-prone, cerebrovascular lesions characterized by well-defined feeding arteries, draining vein(s) and the absence of a capillary bed. The endothelial cells (ECs) that comprise AVMs exhibit a loss of arterial and venous specification. Given the role of the transcription factor COUP-TFII in vascular development, EC specification, and pathological angiogenesis, we examined human AVM tissue to determine if COUP-FTII may have a role in AVM disease biology. We examined 40 human brain AVMs by immunohistochemistry (IHC) and qRT-PCR for the expression of COUP-TFII as well as other genes involved in venous and lymphatic development, maintenance, and signaling. We also examined proliferation and EC tube formation with human umbilical ECs (HUVEC) following COUP-TFII overexpression. We report that AVMs expressed COUP-TFII, SOX18, PROX1, NFATC1, FOXC2, TBX1, LYVE1, Podoplanin, and vascular endothelial growth factor (VEGF)-C, contained Ki67-positive cells and heterogeneously expressed genes involved in Hedgehog, Notch, Wnt, and VEGF signaling pathways. Overexpression of COUP-TFII alone in vitro resulted in increased EC proliferation and dilated tubes in an EC tube formation assay in HUVEC. This suggests AVM ECs are further losing their arterial/venous specificity and acquiring a partial lymphatic molecular phenotype. There was significant correlation of gene expression with presence of clinical edema and acute hemorrhage. While the precise role of these genes in the formation, stabilization, growth and risk of hemorrhage of AVMs remains unclear, these findings have potentially important implications for patient management and treatment choice, and opens new avenues for future work on AVM disease mechanisms.

  9. Associating transcription factors and conserved RNA structures with gene regulation in the human brain

    DEFF Research Database (Denmark)

    Hecker, Nikolai; Seemann, Stefan E.; Silahtaroglu, Asli

    2017-01-01

    Anatomical subdivisions of the human brain can be associated with different neuronal functions. This functional diversification is reflected by differences in gene expression. By analyzing post-mortem gene expression data from the Allen Brain Atlas, we investigated the impact of transcription...... factors (TF) and RNA secondary structures on the regulation of gene expression in the human brain. First, we modeled the expression of a gene as a linear combination of the expression of TFs. We devised an approach to select robust TF-gene interactions and to determine localized contributions to gene...

  10. Reorganization and plastic changes of the human brain associated with skill learning and expertise

    Directory of Open Access Journals (Sweden)

    Yongmin eChang

    2014-02-01

    Full Text Available Novel experience and learning new skills are known as modulators of brain function. Advances in non-invasive brain imaging have provided new insight into structural and functional reorganization associated with skill learning and expertise. Especially, significant imaging evidences come from the domains of sports and music. Data from in vivo imaging studies in sports and music have provided vital information on plausible neural substrates contributing to brain reorganization underlying skill acquisition in humans. This mini review will attempt to take a narrow snapshot of imaging findings demonstrating functional and structural plasticity that mediate skill learning and expertise while identifying converging areas of interest and possible avenues for future research.

  11. Projected Lifetime Healthcare Costs Associated with HIV Infection

    DEFF Research Database (Denmark)

    Nakagawa, Fumiyo; Miners, Alec; Smith, Colette J

    2015-01-01

    OBJECTIVE: Estimates of healthcare costs associated with HIV infection would provide valuable insight for evaluating the cost-effectiveness of possible prevention interventions. We evaluate the additional lifetime healthcare cost incurred due to living with HIV. METHODS: We used a stochastic...... computer simulation model to project the distribution of lifetime outcomes and costs of men-who-have-sex-with-men (MSM) infected with HIV in 2013 aged 30, over 10,000 simulations. We assumed a resource-rich setting with no loss to follow-up, and that standards and costs of healthcare management remain...... had been infected in 2013, then future lifetime costs relating to HIV care is likely to be in excess of £ 1 billion. It is imperative for investment into prevention programmes to be continued or scaled-up in settings with good access to HIV care services. Costs would be reduced considerably with use...

  12. Structural brain abnormalities in a single gene disorder associated with epilepsy, language impairment and intellectual disability

    Directory of Open Access Journals (Sweden)

    Joe Bathelt

    2016-01-01

    Full Text Available Childhood speech and language deficits are highly prevalent and are a common feature of neurodevelopmental disorders. However, it is difficult to investigate the underlying causal pathways because many diagnostic groups have a heterogeneous aetiology. Studying disorders with a shared genetic cause and shared cognitive deficits can provide crucial insight into the cellular mechanisms and neural systems that give rise to those impairments. The current study investigated structural brain differences of individuals with mutations in ZDHHC9, which is associated with a specific neurodevelopmental phenotype including prominent speech and language impairments and intellectual disability. We used multiple structural neuroimaging methods to characterise neuroanatomy in this group, and observed bilateral reductions in cortical thickness in areas surrounding the temporo-parietal junction, parietal lobule, and inferior frontal lobe, and decreased microstructural integrity of cortical, subcortical-cortical, and interhemispheric white matter projections. These findings are compared to reports for other genetic groups and genetically heterogeneous disorders with a similar presentation. Overlap in the neuroanatomical phenotype suggests a common pathway that particularly affects the development of temporo-parietal and inferior frontal areas, and their connections.

  13. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases

    Directory of Open Access Journals (Sweden)

    He Liu

    2016-01-01

    Full Text Available Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain tumors.

  14. Data for behavioral results and brain regions showing a time effect during pair-association retrieval

    Directory of Open Access Journals (Sweden)

    Koji Jimura

    2016-09-01

    Full Text Available The current data article provides behavioral and neuroimaging data for the research article "Relatedness-dependent rapid development of brain activity in anterior temporal cortex during pair-association retrieval” (Jimura et al., 2016 [1]. Behavioral performance is provided in a table. Fig. 2 of the article is based on this table. Brain regions showing time effect are provided in a table. A statistical activation map for the time effect is shown in Fig. 3C of the article.

  15. Genome-wide association study of sporadic brain arteriovenous malformations

    National Research Council Canada - National Science Library

    Weinsheimer, S; Bendjilali, N; Nelson, J; Guo, D.E; Zaroff, J.G; Sidney, S; McCulloch, C.E; Salman, R. Al-Shahi; Berg, J.N; Koeleman, B.P.C; Simon, M; Bostroem, A; Fontanella, M; Sturiale, C.L; Pola, R; Puca, A; Lawton, M.T; Young, W.L; Pawlikowska, L; Klijn, C.J.M; Kim, H

    2016-01-01

    ...) to investigate association of common single nucleotide polymorphisms (SNPs) with risk of sporadic BAVM in the international, multicentre Genetics of Arteriovenous Malformation (GEN-AVM) consortium. METHODS...

  16. Visceral fat is associated with brain structure independent of human immunodeficiency virus infection status.

    Science.gov (United States)

    Lake, Jordan E; Popov, Mikhail; Post, Wendy S; Palella, Frank J; Sacktor, Ned; Miller, Eric N; Brown, Todd T; Becker, James T

    2017-06-01

    The combined effects of human immunodeficiency virus (HIV), obesity, and elevated visceral adipose tissue (VAT) on brain structure are unknown. In a cross-sectional analysis of Multicenter AIDS Cohort Study (MACS) participants, we determined associations between HIV serostatus, adiposity, and brain structure. Men (133 HIV+, 84 HIV-) in the MACS Cardiovascular 2 and magnetic resonance imaging (MRI) sub-studies with CT-quantified VAT and whole brain MRI measured within 1 year were assessed. Voxel-based morphometry analyzed brain volumes. Men were stratified by elevated (eVAT, ≥100cm2) or "normal" (nVAT, VAT. Forward stepwise modeling determined associations between clinical and demographic variables and regional brain volumes. eVAT was present in 67% of men. Groups were similar in age and education, but eVAT men were more likely to be HIV+ and have hypertension, diabetes mellitus, body mass index >25 kg/m2, smaller gray and white matter volumes, and larger cerebrospinal fluid volume than nVAT men. In multivariate analysis, hypertension, higher adiponectin, higher interleukin-6, age, diabetes mellitus, higher body mass index, and eVAT were associated with brain atrophy (p VAT was associated with smaller bilateral posterior hippocampus and left mesial temporal lobe and temporal stem white matter volume. Traditional risk factors are more strongly associated with brain atrophy than HIV serostatus, with VAT having the strongest association. However, HIV+ MACS men had disproportionately greater VAT, suggesting the risk for central nervous system effects may be amplified in this population.

  17. Functional connectivity is associated with altered brain chemistry in women with endometriosis-associated chronic pelvic pain

    OpenAIRE

    As-Sanie, Sawsan; Kim, Jieun; Schmidt-Wilcke, Tobias; Sundgren, Pia C.; Clauw, Daniel J.; Napadow, Vitaly; Harris, Richard E.

    2015-01-01

    In contrast to women with relatively asymptomatic endometriosis, women with endometriosis-associated chronic pelvic pain (CPP) exhibit non-pelvic hyperalgesia and decreased gray matter volume in key neural pain processing regions. While these findings suggest central pain amplification in endometriosis-associated CPP, the underlying changes in brain chemistry and function associated with central pain amplification remain unknown. We performed proton spectroscopy and seed-based resting functio...

  18. Brain structure alterations associated with weight changes in young females with anorexia nervosa: a case series.

    Science.gov (United States)

    Fuglset, Tone Seim; Endestad, Tor; Landrø, Nils Inge; Rø, Øyvind

    2015-01-01

    Structural brain changes associated with starvation and clinical measurements were explored in four females with anorexia nervosa with different clinical course, at baseline and 1-year follow-up, after receiving intensive inpatient treatment at a specialized eating disorder unit. Global volume alterations were associated with weight changes. Regional volume alterations were also associated with weight changes, with the largest changes occurring in the nucleus accumbens, amygdala, pallidum, and putamen. Largest changes in cortical thickness occurred in the frontal and temporal lobes. The results are preliminary; however, they show that fluctuations in weight are associated with brain volume alterations, especially gray matter. We suggest that these parts of the brain are vulnerable to starvation and malnutrition, and could be a part of the pathophysiology of AN.

  19. Brain perfusion SPECT and FDG PET findings in a patient with ballism associated with hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sang Kyun; Kim, Sang Jin [Pusan Paik Hospital, Pusan (Korea, Republic of)

    2007-07-01

    Ballism is a very rare presentation in association with hyperthyroidism. We describe a 22-year-old lady with episodes of recurrent ballism and hyperthyroidism. A 22-year-old lady was admitted to Neurology department because of sudden development of vigorous involuntary movement and dysarthria. She was diagnosed as hyperthyroidism at the age 12 and treated irregularly. She arrived at the emergency room because of sudden onset of involuntary movement. Computed tomography (CT) scan and Magnetic Resonance Imaging (MRI) of brain was normal. Serum levels of thyroid hormone were increased (Free T4 3.15 ng/dl; normal range 0.93-1.71 ng/dl), whereas thyroid-stimulating hormone (TSH) was undetectable. The thyroid gland was diffusely enlarged and exophthalmos was found. She had been given antithyroid medication from local clinic but medicated irregularly. Technetium thyroid scan reveals diffusely enlarged thyroid with increased radioactivity. Radioiodine uptake in 24 hours was 71 %. Brain perfusion SPECT using Tc-99m ECD reveals asymmetrical perfusion pattern in basal ganglia. Brain PET using F-18 FDG reveals increased metabolism at both caudate nucleus and putamen. She was treated with radioiodine and involuntary movement was improved. There is only few report on ballism associated with hyperthyroidism and no report on functional brain imaging. Brain perfusion SPECT and FDG PET may give useful information about functional status of brain in patients with ballism associated with hyperthyroidism in case of normal anatomical finding on CT/MRI.

  20. Investigation of the Association between Genetic Polymorphism of Microsomal Epoxide Hydrolase and Primary Brain Tumor Incidence

    Directory of Open Access Journals (Sweden)

    Ali Aydin

    2013-01-01

    Full Text Available mEH is a critical biotransformation enzyme that catalyzes the conversion of xenobiotic epoxide substrates into more polar diol metabolites: it is also capable of inactivating a large number of structurally different molecules. Two polymorphisms affecting enzyme activity have been described in the exon 3 and 4 of the mEH gene. The hypothesis of this study is that inherent genetic susceptibility to a primary brain tumor is associated with mEH gene polymorphisms. The polymorphisms of the mEH gene were determined with PCR-RFLP techniques and 255 Turkish individuals. Our results indicate that the frequency of the mEH exon 4 polymorphism (in controls is significantly higher than that of primary brain tumor patients (OR = 1.8, 95% CI = 1.0–3.4. This report, however, failed to demonstrate a significant association between mEH exon 3 polymorphism and primary brain tumor susceptibility in this population. Analysis of patients by both histological types of primary brain tumor and gene variants showed no association, although analysis of family history of cancer between cases and controls showed a statistically significant association (χ2=7.0, P=0.01. Our results marginally support the hypothesis that genetic susceptibility to brain tumors may be associated with mEPHX gene polymorphisms.

  1. Cognitive Functioning in Children with Pantothenate-Kinase-Associated Neurodegeneration Undergoing Deep Brain Stimulation

    Science.gov (United States)

    Mahoney, Rachel; Selway, Richard; Lin, Jean-Pierre

    2011-01-01

    Aim: To examine the cognitive functioning of young people with pantothenate-kinase-associated neurodegeneration (PKAN) after pallidal deep brain stimulation (DBS). PKAN is characterized by progressive generalized dystonia and has historically been associated with cognitive decline. With growing evidence that DBS can improve motor function in…

  2. Mining for associations between text and brain activation in a functional neuroimaging database

    DEFF Research Database (Denmark)

    Nielsen, Finn Arup; Hansen, Lars Kai; Balslev, Daniela

    2004-01-01

    We describe a method for mining a neuroimaging database for associations between text and brain locations. The objective is to discover association rules between words indicative of cognitive function as described in abstracts of neuroscience papers and sets of reported stereotactic Talairach...

  3. Diagnosis of Alzheimer's disease using brain SPECT with three-dimensional stereotactic surface projections

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, Haruo; Asano, Tetsuichi; Kogure, Daiji; Abe, Shine; Iwamoto, Toshihiko; Takasaki, Masaru [Tokyo Medical Coll. (Japan)

    2001-09-01

    We compared the diagnostic usefulness of three-dimensional stereotactic surface projection (3D-SSP) with that of standard transaxial images in brain SPECT in patients with Alzheimer's disease (AD). The subjects consisted of 69 patients with AD and 60 patients with non-AD, including vascular dementia, Parkinson's disease with dementia, frontotemporal dementia, other dementing diseases and neuropsychiatric diseases. Standard transaxial section and 3D-SSP SPECT images with N-isopropyl-p-[{sup 123}I] iodoamphetamine were blindly interpreted by three examiners and were classified into the following three patterns: typical AD, atypical AD, and not indicative AD patterns. The 3D-SSP images demonstrated reductions of cerebral blood flow in the parieto-temporal association cortex and posterior cingulate gyrus more clearly and easily than the standard transaxial images. The diagnostic sensitivity and specificity were 93% and 85% with 3D-SSP and 83% and 82% with standard transaxial section respectively. 3D-SSP was especially useful for early or atypical AD which showed no characteristic perfusion abnormalities on standard transaxial images. These results suggest that SPECT with 3D-SSP provides an sensitive as well as accurate tool for the diagnosis of AD. (author)

  4. Brain connectivity associated with cascading levels of language.

    Science.gov (United States)

    Richards, Todd; Nagy, William; Abbott, Robert; Berninger, Virginia

    2016-01-01

    Typical oral and written language learners (controls) (5 girls, 4 boys) completed fMRI reading judgment tasks (sub-word grapheme-phoneme, word spelling, sentences with and without spelling foils, affixed words, sentences with and without affix foils, and multi-sentence). Analyses identified connectivity within and across adjacent levels (units) of language in reading: from subword to word to syntax in Set I and from word to syntax to multi-sentence in Set II). Typicals were compared to (a) students with dyslexia (6 girls, 10 boys) on the subword and word tasks in Set I related to levels of language impaired in dyslexia, and (b) students with oral and written language learning disability (OWL LD) (3 girls, 2 boys) on the morphology and syntax tasks in Set II, related to levels of language impaired in OWL LD. Results for typical language learners showed that adjacent levels of language in the reading brain share common and unique connectivity. The dyslexia group showed over-connectivity to a greater degree on the imaging tasks related to their levels of language impairments than the OWL LD group who showed under-connectivity to a greater degree than did the dyslexia group on the imaging tasks related to their levels of language impairment. Results for these students in grades 4 to 9 (ages 9 to 14) are discussed in reference to the contribution of patterns of connectivity across levels of language to understanding the nature of persisting dyslexia and dysgraphia despite early intervention.

  5. Neurobehavioral Abnormalities Associated with Executive Dysfunction after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Rodger Ll. Wood

    2017-10-01

    Full Text Available Objective: This article will address how anomalies of executive function after traumatic brain injury (TBI can translate into altered social behavior that has an impact on a person’s capacity to live safely and independently in the community.Method: Review of literature on executive and neurobehavioral function linked to cognitive ageing in neurologically healthy populations and late neurocognitive effects of serious TBI. Information was collated from internet searches involving MEDLINE, PubMed, PyscINFO and Google Scholar as well as the authors’ own catalogs.Conclusions: The conventional distinction between cognitive and emotional-behavioral sequelae of TBI is shown to be superficial in the light of increasing evidence that executive skills are critical for integrating and appraising environmental events in terms of cognitive, emotional and social significance. This is undertaken through multiple fronto-subcortical pathways within which it is possible to identify a predominantly dorsolateral network that subserves executive control of attention and cognition (so-called cold executive processes and orbito-frontal/ventro-medial pathways that underpin the hot executive skills that drive much of behavior in daily life. TBI frequently involves disruption to both sets of executive functions but research is increasingly demonstrating the role of hot executive deficits underpinning a wide range of neurobehavioral disorders that compromise relationships, functional independence and mental capacity in daily life.

  6. Epidermal Nevus Syndrome Associated with Brain Malformations and Medulloblastoma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-01-01

    Full Text Available Researchers at Juntendo University and Tokyo Women’s Medical University, Japan; and University of California, San Francisco, Ca, report a male infant with epidermal nevus syndrome associated with brainstem and cerebellar malformations and neonatal medulloblastoma.

  7. Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options.

    Science.gov (United States)

    Yousefi, Meysam; Bahrami, Tayyeb; Salmaninejad, Arash; Nosrati, Rahim; Ghaffari, Parisa; Ghaffari, Seyed H

    2017-10-01

    Lung cancer is the most common cause of cancer-related mortality in humans. There are several reasons for this high rate of mortality, including metastasis to several organs, especially the brain. In fact, lung cancer is responsible for approximately 50% of all brain metastases, which are very difficult to manage. Understanding the cellular and molecular mechanisms underlying lung cancer-associated brain metastasis brings up novel therapeutic promises with the hope to ameliorate the severity of the disease. Here, we provide an overview of the molecular mechanisms underlying the pathogenesis of lung cancer dissemination and metastasis to the brain, as well as promising horizons for impeding lung cancer brain metastasis, including the role of cancer stem cells, the blood-brain barrier, interactions of lung cancer cells with the brain microenvironment and lung cancer-driven systemic processes, as well as the role of growth factor/receptor tyrosine kinases, cell adhesion molecules and non-coding RNAs. In addition, we provide an overview of current and novel therapeutic approaches, including radiotherapy, surgery and stereotactic radiosurgery, chemotherapy, as also targeted cancer stem cell and epithelial-mesenchymal transition (EMT)-based therapies, micro-RNA-based therapies and other small molecule or antibody-based therapies. We will also discuss the daunting potential of some combined therapies. The identification of molecular mechanisms underlying lung cancer metastasis has opened up new avenues towards their eradication and provides interesting opportunities for future research aimed at the development of novel targeted therapies.

  8. Periodontal disease associates with higher brain amyloid load in normal elderly

    Science.gov (United States)

    Kamer, Angela R.; Pirraglia, Elizabeth; Tsui, Wai; Rusinek, Henry; Vallabhajosula, Shankar; Mosconi, Lisa; Yi, Li; McHugh, Pauline; Craig, Ronald G.; Svetcov, Spencer; Linker, Ross; Shi, Chen; Glodzik, Lidia; Williams, Schantel; Corby, Patricia; Saxena, Deepak; de Leon, Mony J.

    2015-01-01

    Background The accumulation of amyloid β plaques (Aβ) is a central feature of Alzheimer’s disease (AD). First reported in animal models, it remains uncertain if peripheral inflammatory/infectious conditions in humans can promote Aβ brain accumulation. Periodontal disease, a common chronic infection, has been previously reported to be associated with AD. Methods Thirty-eight cognitively normal, healthy, community residing elderly (mean age 61; 68% female) were examined in an Alzheimer’s Disease research center and a University-based Dental School. Linear regression models (adjusted for age, ApoE and smoking) were used to test the hypothesis that periodontal disease assessed by clinical attachment loss was associated with brain Aβ load using 11C-PIB PET imaging. Results After adjusting for confounders, clinical attachment loss (≥ 3mm), representing a history of periodontal inflammatory/infectious burden, was associated with increased 11C-PIB uptake in Aβ vulnerable brain regions (p=0.002). Conclusion We show for the first time in humans an association between periodontal disease and brain Aβ load. These data are consistent with prior animal studies showing that peripheral inflammation/infections are sufficient to produce brain Aβ accumulations. PMID:25491073

  9. Association rule mining based study for identification of clinical parameters akin to occurrence of brain tumor.

    Science.gov (United States)

    Sengupta, Dipankar; Sood, Meemansa; Vijayvargia, Poorvika; Hota, Sunil; Naik, Pradeep K

    2013-01-01

    Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of an individual. Mining knowledge and providing scientific decision-making for the diagnosis & treatment of disease from the clinical dataset is therefore increasingly becoming necessary. Aim of this study was to assess the applicability of knowledge discovery in brain tumor data warehouse, applying data mining techniques for investigation of clinical parameters that can be associated with occurrence of brain tumor. In this study, a brain tumor warehouse was developed comprising of clinical data for 550 patients. Apriori association rule algorithm was applied to discover associative rules among the clinical parameters. The rules discovered in the study suggests - high values of Creatinine, Blood Urea Nitrogen (BUN), SGOT & SGPT to be directly associated with tumor occurrence for patients in the primary stage with atleast 85% confidence and more than 50% support. A normalized regression model is proposed based on these parameters along with Haemoglobin content, Alkaline Phosphatase and Serum Bilirubin for prediction of occurrence of STATE (brain tumor) as 0 (absent) or 1 (present). The results indicate that the methodology followed will be of good value for the diagnostic procedure of brain tumor, especially when large data volumes are involved and screening based on discovered parameters would allow clinicians to detect tumors at an early stage of development.

  10. Periodontal disease associates with higher brain amyloid load in normal elderly.

    Science.gov (United States)

    Kamer, Angela R; Pirraglia, Elizabeth; Tsui, Wai; Rusinek, Henry; Vallabhajosula, Shankar; Mosconi, Lisa; Yi, Li; McHugh, Pauline; Craig, Ronald G; Svetcov, Spencer; Linker, Ross; Shi, Chen; Glodzik, Lidia; Williams, Schantel; Corby, Patricia; Saxena, Deepak; de Leon, Mony J

    2015-02-01

    The accumulation of amyloid-β (Aβ) plaques is a central feature of Alzheimer's disease (AD). First reported in animal models, it remains uncertain if peripheral inflammatory and/or infectious conditions in humans can promote Aβ brain accumulation. Periodontal disease, a common chronic infection, has been previously reported to be associated with AD. Thirty-eight cognitively normal, healthy, and community-residing elderly (mean age, 61 and 68% female) were examined in an Alzheimer's Disease Research Center and a University-Based Dental School. Linear regression models (adjusted for age, apolipoprotein E, and smoking) were used to test the hypothesis that periodontal disease assessed by clinical attachment loss was associated with brain Aβ load using (11)C-Pittsburgh compound B (PIB) positron emission tomography imaging. After adjusting for confounders, clinical attachment loss (≥3 mm), representing a history of periodontal inflammatory/infectious burden, was associated with increased PIB uptake in Aβ vulnerable brain regions (p = 0.002). We show for the first time in humans an association between periodontal disease and brain Aβ load. These data are consistent with the previous animal studies showing that peripheral inflammation/infections are sufficient to produce brain Aβ accumulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning.

    Science.gov (United States)

    Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N

    2016-01-04

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.

  12. Neuromagnetic brain activity associated with anticipatory postural adjustments for bimanual load lifting.

    Science.gov (United States)

    Ng, Tommy H B; Sowman, Paul F; Brock, Jon; Johnson, Blake W

    2013-02-01

    During bimanual load lifting, the brain must anticipate the effects of unloading upon the load-bearing arm. Little is currently known about the neural networks that coordinate these anticipatory postural adjustments. We measured neuromagnetic brain activity with whole-head magnetoencephalography while participants performed a bimanual load-lifting task. Anticipatory adjustments were associated with reduction in biceps brachii muscle activity of the load-bearing arm and pre-movement desynchronization of the cortical beta rhythm. Beamforming analyses localized anticipatory brain activity to the precentral gyrus, basal ganglia, supplementary motor area, and thalamus, contralateral to the load-bearing arm. To our knowledge this is the first human neuroimaging study to directly investigate anticipatory postural adjustments and to explicitly partition the anticipatory and volitional aspects of brain activity in bimanual load lifting. These data contribute to our understanding of the neural systems supporting anticipatory postural adjustments in healthy adults. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. The redox-associated adaptive response of brain to physical exercise.

    Science.gov (United States)

    Radak, Z; Ihasz, F; Koltai, E; Goto, S; Taylor, A W; Boldogh, I

    2014-01-01

    Reactive oxygen species (ROS) are continuously generated during metabolism. ROS are involved in redox signaling, but in significant concentrations they can greatly elevate oxidative damage leading to neurodegeneration. Because of the enhanced sensitivity of brain to ROS, it is especially important to maintain a normal redox state in brain and spinal cord cell types. The complex effects of exercise benefit brain function, including functional enhancement as well as its preventive and therapeutic roles. Exercise can induce neurogenesis via neurotrophic factors, increase capillarization, decrease oxidative damage, and enhance repair of oxidative damage. Exercise is also effective in attenuating age-associated loss in brain function, which suggests that physical activity-related complex metabolic and redox changes are important for a healthy neural system.

  14. Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xu [Chongqing Medical University, Department of Medical Imaging, Second Affiliated Hospital, Chongqing (China); Fifth People' s Hospital of Chongqing, Department of Medical Imaging, Chongqing (China); Cao, Ding [Chongqing Medical University, Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing (China); Liang, Xiumei [Fifth People' s Hospital of Chongqing, Department of Medical Imaging, Chongqing (China); Zhao, Jiannong [Chongqing Medical University, Department of Medical Imaging, Second Affiliated Hospital, Chongqing (China)

    2017-07-15

    Several studies have examined the relationships between diffusion tensor imaging (DTI)-measured fractional anisotropy (FA) and the symptoms of schizophrenia, but results vary across the studies. The aim of this study was to carry out a meta-analysis of correlation coefficients reported by relevant studies to evaluate the correlative relationships between FA of various parts of the brain and schizophrenia symptomatic assessments. Literature was searched in several electronic databases, and study selection was based on precised eligibility criteria. Correlation coefficients between FA of a part of the brain and schizophrenia symptom were first converted into Fisher's z-scores for meta-analyses, and then overall effect sizes were back transformed to correlation coefficients. Thirty-three studies (1121 schizophrenia patients; age 32.66 years [95% confidence interval (CI) 30.19, 35.13]; 65.95 % [57.63, 74.28] males) were included in this meta-analysis. Age was inversely associated with brain FA (z-scores [95% CI] -0.23 [-0.14, -0.32]; p %<0.00001). Brain FA of various areas was inversely associated with negative symptoms of schizophrenia (z-score -0.30 [-0.23, -0.36]; p %<0.00001) but was positively associated with positive symptoms of schizophrenia (z-score 0.16 [0.04, 0.27]; p = 0.007) and general psychopathology of schizophrenia (z-score 0.26 [0.15, 0.37]; p = 0.00001). Although, DTI-measured brain FA is found to be inversely associated with negative symptoms and positively associated with positive symptoms and general psychopathology of schizophrenia, the effect sizes of these correlations are low and may not be clinically significant. Moreover, brain FA was also negatively associated with age of patients. (orig.)

  15. Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis.

    Science.gov (United States)

    Yang, Xu; Cao, Ding; Liang, Xiumei; Zhao, Jiannong

    2017-07-01

    Several studies have examined the relationships between diffusion tensor imaging (DTI)-measured fractional anisotropy (FA) and the symptoms of schizophrenia, but results vary across the studies. The aim of this study was to carry out a meta-analysis of correlation coefficients reported by relevant studies to evaluate the correlative relationships between FA of various parts of the brain and schizophrenia symptomatic assessments. Literature was searched in several electronic databases, and study selection was based on précised eligibility criteria. Correlation coefficients between FA of a part of the brain and schizophrenia symptom were first converted into Fisher's z-scores for meta-analyses, and then overall effect sizes were back transformed to correlation coefficients. Thirty-three studies (1121 schizophrenia patients; age 32.66 years [95% confidence interval (CI) 30.19, 35.13]; 65.95 % [57.63, 74.28] males) were included in this meta-analysis. Age was inversely associated with brain FA (z-scores [95% CI] -0.23 [-0.14, -0.32]; p ˂ 0.00001). Brain FA of various areas was inversely associated with negative symptoms of schizophrenia (z-score -0.30 [-0.23, -0.36]; p ˂ 0.00001) but was positively associated with positive symptoms of schizophrenia (z-score 0.16 [0.04, 0.27]; p = 0.007) and general psychopathology of schizophrenia (z-score 0.26 [0.15, 0.37]; p = 0.00001). Although, DTI-measured brain FA is found to be inversely associated with negative symptoms and positively associated with positive symptoms and general psychopathology of schizophrenia, the effect sizes of these correlations are low and may not be clinically significant. Moreover, brain FA was also negatively associated with age of patients.

  16. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Ali [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Montefiore Medical Center, Department of Neurology, Bronx, NY (United States); Katz, Mindy J. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Lipton, Michael L. [Albert Einstein College of Medicine of Yeshiva University, The Gruss Magnetic Resonance Research Center and Departments of Radiology, Psychiatry and Behavioral Sciences and the Dominick P. Purpura Department of Neuroscience, Bronx, NY (United States); Montefiore Medical Center, The Department of Radiology, Bronx, NY (United States); Lipton, Richard B. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine of Yeshiva University, Department of Epidemiology and Population Health, Bronx, NY (United States); Verghese, Joe [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, Bronx, NY (United States)

    2015-08-15

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  17. MRI patterns of atrophy and hypoperfusion associations across brain regions in frontotemporal dementia.

    Science.gov (United States)

    Tosun, Duygu; Rosen, Howard; Miller, Bruce L; Weiner, Michael W; Schuff, Norbert

    2012-02-01

    Magnetic Resonance Imaging (MRI) provides various imaging modes to study the brain. We tested the benefits of a joint analysis of multimodality MRI data in combination with a large-scale analysis that involved simultaneously all image voxels using joint independent components analysis (jICA) and compared the outcome to results using conventional voxel-by-voxel unimodality tests. Specifically, we designed a jICA to decompose multimodality MRI data into independent components that explain joint variations between the image modalities as well as variations across brain regions. We tested the jICA design on structural and perfusion-weighted MRI data from 12 patients diagnosed with behavioral variant frontotemporal dementia (bvFTD) and 12 cognitively normal elderly individuals. While unimodality analyses showed widespread brain atrophy and hypoperfusion in the patients, jICA further revealed two significant joint components of variations between atrophy and hypoperfusion across brain regions. The 1st joint component revealed associated brain atrophy and hypoperfusion predominantly in the right brain hemisphere in behavioral variant frontotemporal dementia, and the 2nd joint component revealed greater atrophy relative to hypoperfusion affecting predominantly the left hemisphere in behavioral variant frontotemporal dementia. The patterns are consistent with the clinical symptoms of behavioral variant frontotemporal dementia that relate to asymmetric compromises of the left and right brain hemispheres. The joint components also revealed that that structural alterations can be associated with physiological alterations in spatially separated but potentially connected brain regions. Finally, jICA outperformed voxel-by-voxel unimodal tests significantly in terms of an effect size, separating the behavioral variant frontotemporal dementia patients from the controls. Taken together, the results demonstrate the benefit of multimodality MRI in conjunction with jICA for mapping

  18. Spontaneous functional network dynamics and associated structural substrates in the human brain

    Science.gov (United States)

    Liao, Xuhong; Yuan, Lin; Zhao, Tengda; Dai, Zhengjia; Shu, Ni; Xia, Mingrui; Yang, Yihong; Evans, Alan; He, Yong

    2015-01-01

    Recent imaging connectomics studies have demonstrated that the spontaneous human brain functional networks derived from resting-state functional MRI (R-fMRI) include many non-trivial topological properties, such as highly efficient small-world architecture and densely connected hub regions. However, very little is known about dynamic functional connectivity (D-FC) patterns of spontaneous human brain networks during rest and about how these spontaneous brain dynamics are constrained by the underlying structural connectivity. Here, we combined sub-second multiband R-fMRI data with graph-theoretical approaches to comprehensively investigate the dynamic characteristics of the topological organization of human whole-brain functional networks, and then employed diffusion imaging data in the same participants to further explore the associated structural substrates. At the connection level, we found that human whole-brain D-FC patterns spontaneously fluctuated over time, while homotopic D-FC exhibited high connectivity strength and low temporal variability. At the network level, dynamic functional networks exhibited time-varying but evident small-world and assortativity architecture, with several regions (e.g., insula, sensorimotor cortex and medial prefrontal cortex) emerging as functionally persistent hubs (i.e., highly connected regions) while possessing large temporal variability in their degree centrality. Finally, the temporal characteristics (i.e., strength and variability) of the connectional and nodal properties of the dynamic brain networks were significantly associated with their structural counterparts. Collectively, we demonstrate the economical, efficient, and flexible characteristics of dynamic functional coordination in large-scale human brain networks during rest, and highlight their relationship with underlying structural connectivity, which deepens our understandings of spontaneous brain network dynamics in humans. PMID:26388757

  19. Spontaneous Functional Network Dynamics and Associated Structural Substrates in the Human Brain

    Directory of Open Access Journals (Sweden)

    Xuhong eLiao

    2015-09-01

    Full Text Available Recent imaging connectomics studies have demonstrated that the spontaneous human brain functional networks derived from resting-state functional MRI (R-fMRI include many non-trivial topological properties, such as highly efficient small-world architecture and densely connected hub regions. However, very little is known about dynamic functional connectivity (D-FC patterns of spontaneous human brain networks during rest and about how these spontaneous brain dynamics are constrained by the underlying structural connectivity. Here, we combined sub-second multiband R-fMRI data with graph-theoretical approaches to comprehensively investigate the dynamic characteristics of the topological organization of human whole-brain functional networks, and then employed diffusion imaging data in the same participants to further explore the associated structural substrates. At the connection level, we found that human whole-brain D-FC patterns spontaneously fluctuated over time, while homotopic D-FC exhibited high connectivity strength and low temporal variability. At the network level, dynamic functional networks exhibited time-varying but evident small-world and assortativity architecture, with several regions (e.g., insula, sensorimotor cortex and medial prefrontal cortex emerging as functionally persistent hubs (i.e., highly connected regions while possessing large temporal variability in their degree centrality. Finally, the temporal characteristics (i.e., strength and variability of the connectional and nodal properties of the dynamic brain networks were significantly associated with their structural counterparts. Collectively, we demonstrate the economical, efficient and flexible characteristics of dynamic functional coordination in large-scale human brain networks during rest, and highlight their relationship with underlying structural connectivity, which deepens our understandings of spontaneous brain network dynamics in humans.

  20. Effects of non-invasive brain stimulation on associative memory.

    Science.gov (United States)

    Matzen, Laura E; Trumbo, Michael C; Leach, Ryan C; Leshikar, Eric D

    2015-10-22

    Associative memory refers to remembering the association between two items, such as a face and a name. It is a crucial part of daily life, but it is also one of the first aspects of memory performance that is impacted by aging and by Alzheimer's disease. Evidence suggests that transcranial direct current stimulation (tDCS) can improve memory performance, but few tDCS studies have investigated its impact on associative memory. In addition, no prior study of the effects of tDCS on memory performance has systematically evaluated the impact of tDCS on different types of memory assessments, such as recognition and recall tests. In this study, we measured the effects of tDCS on associative memory performance in healthy adults, using both recognition and recall tests. Participants studied face-name pairs while receiving either active (30 min, 2 mA) or sham (30 min, 0.1 mA) stimulation with the anode placed at F9 and the cathode placed on the contralateral upper arm. Participants in the active stimulation group performed significantly better on the recall test than participants in the sham group, recalling 50% more names, on average, and making fewer recall errors. However, the two groups did not differ significantly in terms of their performance on the recognition memory test. This investigation provides evidence that stimulation at the time of study improves associative memory encoding, but that this memory benefit is evident only under certain retrieval conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Structural brain alterations associated with dyslexia predate reading onset.

    Science.gov (United States)

    Raschle, Nora Maria; Chang, Maria; Gaab, Nadine

    2011-08-01

    Functional magnetic resonance imaging studies have reported reduced activation in parietotemporal and occipitotemporal areas in adults and children with developmental dyslexia compared to controls during reading and reading related tasks. These patterns of regionally reduced activation have been linked to behavioral impairments of reading-related processes (e.g., phonological skills and rapid automatized naming). The observed functional and behavioral differences in individuals with developmental dyslexia have been complemented by reports of reduced gray matter in left parietotemporal, occipitotemporal areas, fusiform and lingual gyrus and the cerebellum. An important question for education is whether these neural differences are present before reading is taught. Developmental dyslexia can only be diagnosed after formal reading education starts. However, here we investigate whether the previously detected gray matter alterations in adults and children with developmental dyslexia can already be observed in a small group of pre-reading children with a family-history of developmental dyslexia compared to age and IQ-matched children without a family-history (N = 20/mean age: 5:9 years; age range 5:1-6:5 years). Voxel-based morphometry revealed significantly reduced gray matter volume indices for pre-reading children with, compared to children without, a family-history of developmental dyslexia in left occipitotemporal, bilateral parietotemporal regions, left fusiform gyrus and right lingual gyrus. Gray matter volume indices in left hemispheric occipitotemporal and parietotemporal regions of interest also correlated positively with rapid automatized naming. No differences between the two groups were observed in frontal and cerebellar regions. This discovery in a small group of children suggests that previously described functional and structural alterations in developmental dyslexia may not be due to experience-dependent brain changes but may be present at birth or

  2. Deep Brain Stimulation for Pantothenate Kinase-Associated Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Pedro J. Garcia-Ruiz

    2015-01-01

    Full Text Available Pantothenate kinase-associated neurodegeneration (PKAN is usually associated with dystonia, which is typically severe and progressive over time. Pallidal stimulation (GPi DBS has been carried out in selected cases of PKAN with drug-resistant dystonia with variable results. We report a 30-month follow-up study of a 30-year-old woman with PKAN-related dystonia treated with GPi DBS. Postoperatively, the benefit quickly became evident, as the patient exhibited a marked improvement in her dystonia, including her writing difficulty. This result has been maintained up to the present. GPi DBS should be considered in dystonic PKAN patients provided fixed contractures and/or pyramidal symptoms are not present.

  3. Uremic encephalopathy and other brain disorders associated with renal failure.

    Science.gov (United States)

    Seifter, Julian Lawrence; Samuels, Martin A

    2011-04-01

    Kidney failure is one of the leading causes of disability and death and one of the most disabling features of kidney failure and dialysis is encephalopathy. This is probably caused by the accumulation of uremic toxins. Other important causes are related to the underlying disorders that cause kidney failure, particularly hypertension. The clinical manifestations of uremic encephalopathy include mild confusional states to deep coma, often with associated movement disorders, such as asterixis. Most nephrologists consider cognitive impairment to be a major indication for the initiation of renal replacement therapy with dialysis with or without subsequent transplantation. Sleep disorders, including Ekbom's syndrome (restless legs syndrome) are also common in patients with kidney failure. Renal replacement therapies are also associated with particular neurologic complications including acute dialysis encephalopathy and chronic dialysis encephalopathy, formerly known as dialysis dementia. The treatments and prevention of each are discussed. © Thieme Medical Publishers.

  4. Localizing brain regions associated with female mate preference behavior in a swordtail.

    Directory of Open Access Journals (Sweden)

    Ryan Y Wong

    Full Text Available Female mate choice behavior is a critical component of sexual selection, yet identifying the neural basis of this behavior is largely unresolved. Previous studies have implicated sensory processing and hypothalamic brain regions during female mate choice and there is a conserved network of brain regions (Social Behavior Network, SBN that underlies sexual behaviors. However, we are only beginning to understand the role this network has in pre-copulatory female mate choice. Using in situ hybridization, we identify brain regions associated with mate preference in female Xiphophorus nigrensis, a swordtail species with a female choice mating system. We measure gene expression in 10 brain regions (linked to sexual behavior, reward, sensory integration or other processes and find significant correlations between female preference behavior and gene expression in two telencephalic areas associated with reward, learning and multi-sensory processing (medial and lateral zones of the dorsal telencephalon as well as an SBN region traditionally associated with sexual response (preoptic area. Network analysis shows that these brain regions may also be important in mate preference and that correlated patterns of neuroserpin expression between regions co-vary with differential compositions of the mate choice environment. Our results expand the emerging network for female preference from one that focused on sensory processing and midbrain sexual response centers to a more complex coordination involving forebrain areas that integrate primary sensory processing and reward.

  5. Localizing Brain Regions Associated with Female Mate Preference Behavior in a Swordtail

    Science.gov (United States)

    Wong, Ryan Y.; Ramsey, Mary E.; Cummings, Molly E.

    2012-01-01

    Female mate choice behavior is a critical component of sexual selection, yet identifying the neural basis of this behavior is largely unresolved. Previous studies have implicated sensory processing and hypothalamic brain regions during female mate choice and there is a conserved network of brain regions (Social Behavior Network, SBN) that underlies sexual behaviors. However, we are only beginning to understand the role this network has in pre-copulatory female mate choice. Using in situ hybridization, we identify brain regions associated with mate preference in female Xiphophorus nigrensis, a swordtail species with a female choice mating system. We measure gene expression in 10 brain regions (linked to sexual behavior, reward, sensory integration or other processes) and find significant correlations between female preference behavior and gene expression in two telencephalic areas associated with reward, learning and multi-sensory processing (medial and lateral zones of the dorsal telencephalon) as well as an SBN region traditionally associated with sexual response (preoptic area). Network analysis shows that these brain regions may also be important in mate preference and that correlated patterns of neuroserpin expression between regions co-vary with differential compositions of the mate choice environment. Our results expand the emerging network for female preference from one that focused on sensory processing and midbrain sexual response centers to a more complex coordination involving forebrain areas that integrate primary sensory processing and reward. PMID:23209722

  6. Mecamylamine attenuates dexamethasone-induced anxiety-like behavior in association with brain derived neurotrophic factor upregulation in rat brains.

    Science.gov (United States)

    Park, Dong Ik; Kim, Hong Gi; Jung, Woo Ram; Shin, Min Kyoo; Kim, Kil Lyong

    2011-01-01

    Mecamylamine (MEC), which was initially developed as a ganglionic blocker for the treatment of hypertension has been investigated as a potent antagonist for most types of nicotinic acetylcholine receptors (nAChRs). Most studies of MEC have focused on its inhibitory effects for nAChRs; however its biological uses have recently been expanded to the treatment of psychological disorders accompanying anxiety-related symptoms. Although MEC shows obvious anxiolytic action, there is no clear evidence on its function. In this study, we investigated whether MEC affects brain derived neurotrophic factor (BDNF) expression in vitro and in vivo. MEC increased BDNF expression in differentiated SH-SY5Y cells and the cerebral cortex region of rat brains. To determine if the anxiolytic effect of MEC is associated with BDNF upregulation, the elevated plus maze (EPM) task was conducted in a dexamethasone (DEX)-induced anxiety model. MEC reduced DEX-induced anxiety-like behavior, and increased BDNF expression in the cerebral cortex of rats. These results suggest that the anxiolytic effect of MEC in EPM might be associated with BDNF upregulation in the cerebral cortex region of rats. The therapeutic efficacy of MEC for anxiety might be partly dependent on BDNF modulation. Copyright © 2011. Published by Elsevier Ltd.

  7. Brain Activation during Associative Short-Term Memory Maintenance is Not Predictive for Subsequent Retrieval

    Directory of Open Access Journals (Sweden)

    Heiko eBergmann

    2015-09-01

    Full Text Available Performance on working memory (WM tasks may partially be supported by long-term memory (LTM processing. Hence, brain activation recently being implicated in WM may actually have been driven by (incidental LTM formation. We examined which brain regions actually support successful WM processing, rather than being confounded by LTM processes, during the maintenance and probe phase of a WM task. We administered a four-pair (faces and houses associative delayed-match-to-sample (WM task using event-related fMRI and a subsequent associative recognition LTM task, using the same stimuli. This enabled us to analyze subsequent memory effects for both the WM and the LTM test by contrasting correctly recognized pairs with incorrect pairs for either task. Critically, with respect to the subsequent WM effect, we computed this analysis exclusively for trials that were forgotten in the subsequent LTM recognition task. Hence, brain activity associated with successful WM processing was less likely to be confounded by incidental LTM formation. The subsequent LTM effect, in contrast, was analyzed exclusively for pairs that previously had been correctly recognized in the WM task, disclosing brain regions involved in successful LTM formation after successful WM processing. Results for the subsequent WM effect showed no significantly activated brain areas for WM maintenance, possibly due to an insensitivity of fMRI to mechanisms underlying active WM maintenance. In contrast, a correct decision at WM probe was linked to activation in the retrieval success network (anterior and posterior midline brain structures. The subsequent LTM analyses revealed greater activation in left dorsolateral prefrontal cortex and posterior parietal cortex in the early phase of the maintenance stage. No supra-threshold activation was found during the WM probe. Together, we obtained clearer insights in which brain regions support successful WM and LTM without the potential confound of the

  8. Brain activation during associative short-term memory maintenance is not predictive for subsequent retrieval.

    Science.gov (United States)

    Bergmann, Heiko C; Daselaar, Sander M; Beul, Sarah F; Rijpkema, Mark; Fernández, Guillén; Kessels, Roy P C

    2015-01-01

    Performance on working memory (WM) tasks may partially be supported by long-term memory (LTM) processing. Hence, brain activation recently being implicated in WM may actually have been driven by (incidental) LTM formation. We examined which brain regions actually support successful WM processing, rather than being confounded by LTM processes, during the maintenance and probe phase of a WM task. We administered a four-pair (faces and houses) associative delayed-match-to-sample (WM) task using event-related functional MRI (fMRI) and a subsequent associative recognition LTM task, using the same stimuli. This enabled us to analyze subsequent memory effects for both the WM and the LTM test by contrasting correctly recognized pairs with incorrect pairs for either task. Critically, with respect to the subsequent WM effect, we computed this analysis exclusively for trials that were forgotten in the subsequent LTM recognition task. Hence, brain activity associated with successful WM processing was less likely to be confounded by incidental LTM formation. The subsequent LTM effect, in contrast, was analyzed exclusively for pairs that previously had been correctly recognized in the WM task, disclosing brain regions involved in successful LTM formation after successful WM processing. Results for the subsequent WM effect showed no significantly activated brain areas for WM maintenance, possibly due to an insensitivity of fMRI to mechanisms underlying active WM maintenance. In contrast, a correct decision at WM probe was linked to activation in the "retrieval success network" (anterior and posterior midline brain structures). The subsequent LTM analyses revealed greater activation in left dorsolateral prefrontal cortex and posterior parietal cortex in the early phase of the maintenance stage. No supra-threshold activation was found during the WM probe. Together, we obtained clearer insights in which brain regions support successful WM and LTM without the potential confound of

  9. Psychoacoustic Tinnitus Loudness and Tinnitus-Related Distress Show Different Associations with Oscillatory Brain Activity

    Science.gov (United States)

    Balkenhol, Tobias; Wallhäusser-Franke, Elisabeth; Delb, Wolfgang

    2013-01-01

    Background The phantom auditory perception of subjective tinnitus is associated with aberrant brain activity as evidenced by magneto- and electroencephalographic studies. We tested the hypotheses (1) that psychoacoustically measured tinnitus loudness is related to gamma oscillatory band power, and (2) that tinnitus loudness and tinnitus-related distress are related to distinct brain activity patterns as suggested by the distinction between loudness and distress experienced by tinnitus patients. Furthermore, we explored (3) how hearing impairment, minimum masking level, and (4) psychological comorbidities are related to spontaneous oscillatory brain activity in tinnitus patients. Methods and Findings Resting state oscillatory brain activity recorded electroencephalographically from 46 male tinnitus patients showed a positive correlation between gamma band oscillations and psychoacoustic tinnitus loudness determined with the reconstructed tinnitus sound, but not with the other psychoacoustic loudness measures that were used. Tinnitus-related distress did also correlate with delta band activity, but at electrode positions different from those associated with tinnitus loudness. Furthermore, highly distressed tinnitus patients exhibited a higher level of theta band activity. Moreover, mean hearing loss between 0.125 kHz and 16 kHz was associated with a decrease in gamma activity, whereas minimum masking levels correlated positively with delta band power. In contrast, psychological comorbidities did not express significant correlations with oscillatory brain activity. Conclusion Different clinically relevant tinnitus characteristics show distinctive associations with spontaneous brain oscillatory power. Results support hypothesis (1), but exclusively for the tinnitus loudness derived from matching to the reconstructed tinnitus sound. This suggests to preferably use the reconstructed tinnitus spectrum to determine psychoacoustic tinnitus loudness. Results also support

  10. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality.

    Science.gov (United States)

    Jansma, J M; Ramsey, N; Rutten, G J

    2015-12-01

    Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MRI can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on the ratio between left and right brain activity in a specific region associated with language. Nearly all fMRI language studies show language-related activity in both hemispheres, and as a result the LI shows a large range of values. The clinical significance of the variation in language laterality as measured with the LI is still under debate. In this study, we tested two hypotheses in relation to the LI, measured in Broca's region, and it's right hemisphere homologue: 1: the level of activity in Broca's and it's right hemisphere homologue is mirrored for subjects with an equal but opposite LI; 2: the whole brain language activation pattern differs between subjects with an equal but opposite LI. One hundred sixty-three glioma and meningioma patients performed a verb generation task as part of a standard clinical protocol. We calculated the LI in the pars orbitalis, pars triangularis and pars opercularis of the left inferior frontal gyrus, referred to as Broca's region from here on. In our database, 21 patients showed right lateralized activity, with a moderate average level (-0.32). A second group of 21 patients was selected from the remaining group, for equal but opposite LI (0.32). We compared the level and distribution of activity associated with language production in the left and right hemisphere in these two groups. Patients with left sided laterality showed a significantly higher level of activity in Broca's region than the patients with right sided laterality. However, both groups showed no difference in level of activity in Broca's homologue region in the right hemisphere. Also, we did not see any difference in the pattern of activity between patients with left

  11. Validation of new 3D post processing algorithm for improved maximum intensity projections of MR angiography acquisitions in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Bosmans, H.; Verbeeck, R.; Vandermeulen, D.; Suetens, P.; Wilms, G.; Maaly, M.; Marchal, G.; Baert, A.L. [Louvain Univ. (Belgium)

    1995-12-01

    The objective of this study was to validate a new post processing algorithm for improved maximum intensity projections (mip) of intracranial MR angiography acquisitions. The core of the post processing procedure is a new brain segmentation algorithm. Two seed areas, background and brain, are automatically detected. A 3D region grower then grows both regions towards each other and this preferentially towards white regions. In this way, the skin gets included into the final `background region` whereas cortical blood vessels and all brain tissues are included in the `brain region`. The latter region is then used for mip. The algorithm runs less than 30 minutes on a full dataset on a Unix workstation. Images from different acquisition strategies including multiple overlapping thin slab acquisition, magnetization transfer (MT) MRA, Gd-DTPA enhanced MRA, normal and high resolution acquisitions and acquisitions from mid field and high field systems were filtered. A series of contrast enhanced MRA acquisitions obtained with identical parameters was filtered to study the robustness of the filter parameters. In all cases, only a minimal manual interaction was necessary to segment the brain. The quality of the mip was significantly improved, especially in post Gd-DTPA acquisitions or using MT, due to the absence of high intensity signals of skin, sinuses and eyes that otherwise superimpose on the angiograms. It is concluded that the filter is a robust technique to improve the quality of MR angiograms.

  12. Association of Social Engagement with Brain Volumes Assessed by Structural MRI

    Directory of Open Access Journals (Sweden)

    Bryan D. James

    2012-01-01

    Full Text Available We tested the hypothesis that social engagement is associated with larger brain volumes in a cohort study of 348 older male former lead manufacturing workers (=305 and population-based controls (=43, age 48 to 82. Social engagement was measured using a summary scale derived from confirmatory factor analysis. The volumes of 20 regions of interest (ROIs, including total brain, total gray matter (GM, total white matter (WM, each of the four lobar GM and WM, and 9 smaller structures were derived from T1-weighted structural magnetic resonance images. Linear regression models adjusted for age, education, race/ethnicity, intracranial volume, hypertension, diabetes, and control (versus lead worker status. Higher social engagement was associated with larger total brain and GM volumes, specifically temporal and occipital GM, but was not associated with WM volumes except for corpus callosum. A voxel-wise analysis supported an association in temporal lobe GM. Using longitudinal data to discern temporal relations, change in ROI volumes over five years showed null associations with current social engagement. Findings are consistent with the hypothesis that social engagement preserves brain tissue, and not consistent with the alternate hypothesis that persons with smaller or shrinking volumes become less socially engaged, though this scenario cannot be ruled out.

  13. Association of Ideal Cardiovascular Health With Vascular Brain Injury and Incident Dementia.

    Science.gov (United States)

    Pase, Matthew P; Beiser, Alexa; Enserro, Danielle; Xanthakis, Vanessa; Aparicio, Hugo; Satizabal, Claudia L; Himali, Jayandra J; Kase, Carlos S; Vasan, Ramachandran S; DeCarli, Charles; Seshadri, Sudha

    2016-05-01

    The American Heart Association developed the ideal cardiovascular health (CVH) index as a simple tool to promote CVH; yet, its association with brain atrophy and dementia remains unexamined. Our aim was to investigate the prospective association of ideal CVH with vascular brain injury, including the 10-year risks of incident stroke and dementia, as well as cognitive decline and brain atrophy on magnetic resonance imaging, measured for ≈7 years. We studied 2750 stroke- and dementia-free Framingham Heart Study Offspring cohort participants (mean age, 62±9 years; 45% men). Ideal CVH was quantified on a 7-point scale with 1 point awarded for each of the following: nonsmoking status, ideal body mass index, regular physical activity, healthy diet, as well as optimum blood pressure, cholesterol, and fasting blood glucose. Both recent (baseline) and remote (6.9 years earlier) ideal CVH scores were examined. Recent ideal CVH was associated with stroke (hazard ratio, 0.80; 95% confidence interval, 0.67-0.95), vascular dementia (hazard ratio, 0.49; 95% confidence interval, 0.30-0.81), frontal brain atrophy (P=0.003), and cognitive decline on tasks measuring visual memory and reasoning (Pvascular dementia, whole-brain atrophy, and cognitive decline, remote ideal CVH was associated with the incidence of all-cause dementia (hazard ratio, 0.80; 95% confidence interval, 0.67-0.97) and Alzheimer disease (hazard ratio, 0.79; 95% confidence interval, 0.64-0.98). Adherence to the American Heart Association's ideal CVH factors and behaviors, particularly in midlife, may protect against cerebrovascular disease and dementia. © 2016 American Heart Association, Inc.

  14. Analyzing the association between functional connectivity of the brain and intellectual performance.

    Science.gov (United States)

    Pamplona, Gustavo S P; Santos Neto, Gérson S; Rosset, Sara R E; Rogers, Baxter P; Salmon, Carlos E G

    2015-01-01

    Measurements of functional connectivity support the hypothesis that the brain is composed of distinct networks with anatomically separated nodes but common functionality. A few studies have suggested that intellectual performance may be associated with greater functional connectivity in the fronto-parietal network and enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of the relationship between the brain's functional connectivity and intelligence scores derived from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III) in a sample of 29 people, born and raised in Brazil. We examined functional connectivity between 82 regions, including graph theoretic properties of the overall network. Some previous findings were extended to the Portuguese-speaking population, specifically the presence of small-world organization of the brain and relationships of intelligence with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal gyrus, and caudate nucleus. Verbal comprehension was associated with global network efficiency, a new finding.

  15. Success Rules of OSS Projects using Datamining 3-Itemset Association Rule

    OpenAIRE

    Andi Wahju Rahardjo Emanuel; Retantyo Wardoyo; Jazi Eko Istiyanto; Khabib Mustofa

    2010-01-01

    We present a research to find the success rules of 134,549 Open Source Software (OSS) Projects at Sourceforge portal using Datamining 3-Itemset Association Rule. Seventeen types of OSS Project's data are collected, classified, and then analyzed using Weka datamining tool. The Datamining 3-Itemset Association Rule is used to find the success rules of these projects by assuming that the success of these projects are reflected by the number of downloads. The result are formulated into 9 success ...

  16. The Role of Insula-Associated Brain Network in Touch

    Science.gov (United States)

    Bao, Ruixue

    2013-01-01

    The insula is believed to be associated with touch-evoked effects. In this work, functional MRI was applied to investigate the network model of insula function when 20 normal subjects received tactile stimulation over segregated areas. Data analysis was performed with SPM8 and Conn toolbox. Activations in the contralateral posterior insula were consistently revealed for all stimulation areas, with the overlap located in area Ig2. The area Ig2 was then used as the seed to estimate the insula-associated network. The right insula, left superior parietal lobule, left superior temporal gyrus, and left inferior parietal cortex showed significant functional connectivity with the seed region for all stimulation conditions. Connectivity maps of most stimulation conditions were mainly distributed in the bilateral insula, inferior parietal cortex, and secondary somatosensory cortex. Post hoc ROI-to-ROI analysis and graph theoretical analysis showed that there were higher correlations between the left insula and the right insula, left inferior parietal cortex and right OP1 for all networks and that the global efficiency was more sensitive than the local efficiency to detect differences between notes in a network. These results suggest that the posterior insula serves as a hub to functionally connect other regions in the detected network and may integrate information from these regions. PMID:23936840

  17. Association between the Brain Laterality, Gender and Birth Season

    Directory of Open Access Journals (Sweden)

    A Baghdasarians

    2008-08-01

    Full Text Available Objective: in recent years different hypotheses with respect to the formation of cerebral laterality were proposed. Some of the researchers claim that cerebral dominance and laterality are determined by genetic factors, just as the case with eye color and blood type. However, another group states that in addition to genetic factors, environmental factors, too, have a remarkable role in hemispheric dominance and lateral dominance. Hence, the present research was designed to study the relationship between 1- lateral dominance and birth season 2- lateral dominance and gender. "n "nMethod:1355(girls and boys fifth graders from the 19 educational regions of Tehran were selected using multi stage cluster sampling in the 2003-2004 school year. Coren lateral preference and personal information questionnaire were applied. "nResults:The following results were obtained at the level of ل=0.05 and probability of 95%. There were significant association between lateral dominance and birth season, between lateral dominance and gender, between ambidexterity and birth season, between non-genetic sinistrality and birth season, between dexterality and gender, between ambidexterity and gender, between genetic sinistrality and gender. There were no significant associations between dexterality and birth season, genetic sinistrality and birth season, between non-genetic sinistrality and gender. "nConclusion: The gestational environmental factors can have significant effect on the formation of lateral dominance and cerebral laterality.

  18. Automatic detection of the hippocampal region associated with Alzheimer's disease from microscopic images of mice brain

    Science.gov (United States)

    Albaidhani, Tahseen; Hawkes, Cheryl; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    The hippocampus is the region of the brain that is primarily associated with memory and spatial navigation. It is one of the first brain regions to be damaged when a person suffers from Alzheimer's disease. Recent research in this field has focussed on the assessment of damage to different blood vessels within the hippocampal region from a high throughput brain microscopic images. The ultimate aim of our research is the creation of an automatic system to count and classify different blood vessels such as capillaries, veins, and arteries in the hippocampus region. This work should provide biologists with efficient and accurate tools in their investigation of the causes of Alzheimer's disease. Locating the boundary of the Region of Interest in the hippocampus from microscopic images of mice brain is the first essential stage towards developing such a system. This task benefits from the variation in colour channels and texture between the two sides of the hippocampus and the boundary region. Accordingly, the developed initial step of our research to locating the hippocampus edge uses a colour-based segmentation of the brain image followed by Hough transforms on the colour channel that isolate the hippocampus region. The output is then used to split the brain image into two sides of the detected section of the boundary: the inside region and the outside region. Experimental results on a sufficiently number of microscopic images demonstrate the effectiveness of the developed solution.

  19. Differential association between chronic cannabis use and brain function deficits.

    Science.gov (United States)

    Soueif, M I

    1976-01-01

    To summarize, 12 objective tests that generated 16 test variables were administered to 850 male regular cannabis users and 839 nonusers. The tests were designed to assess various modalities, including speed of psychomotor performance, distance estimation, time estimation, immediate memory, and visuomotor coordination. Most of the test variables differentiated significantly between consumers and controls. At the same time, a significant second-order interaction emerged in most cases. This interaction meant that, under certain conditions that relate to the two dimensions "literacy-illiteracy" and/or "urbanism-ruralism," the superiority of controls over cannabis users became impressive, whereas under other conditions it almost disappeared. To account for this complex pattern of results, a working hypothesis was presented to the effect that "other conditions being equal, the lower the nondrug level of proficiency on tests of cognitive and psychomotor performance the smaller the size of function deficit associated with drug usage." For an empirical examination of the hypothesis, six predictions were formulated. Three predictions defined specific relationships between level of performance, on one hand, and each of three organismic variables, on the other: literacy, urbanism, and age. The remaining predictions delineated relationships to be expected between size of function deficit and the three organismic variables. All our predictions were confirmed, showing less function impairment to be contingent with cannabis usage among the illiterates, rurals, and older subjects. Level of cortical arousal was suggested as the central process associated with the three organismic variables. Because the version of our working hypothesis was formulated with reference to chronic material, the possibility of a transposition of the paradign to research on the acute effects of the drug was discussed. The suggestion was made that our working hypothesis, in either version, is capable of

  20. Gut-brain actions underlying comorbid anxiety and depression associated with inflammatory bowel disease.

    Science.gov (United States)

    Abautret-Daly, Áine; Dempsey, Elaine; Parra-Blanco, Adolfo; Medina, Carlos; Harkin, Andrew

    2017-03-08

    Introduction Inflammatory bowel disease (IBD) is a chronic relapsing and remitting disorder characterised by inflammation of the gastrointestinal tract. There is a growing consensus that IBD is associated with anxiety- and depression-related symptoms. Psychological symptoms appear to be more prevalent during active disease states with no difference in prevalence between Crohn's disease and ulcerative colitis. Behavioural disturbances including anxiety- and depression-like symptoms have also been observed in animal models of IBD. The likely mechanisms underlying the association are discussed with particular reference to communication between the gut and brain. The close bidirectional relationship known as the gut-brain axis includes neural, hormonal and immune communication links. Evidence is provided for a number of interacting factors including activation of the inflammatory response system in the brain, the hypothalamic-pituitary-adrenal axis, and brain areas implicated in altered behaviours, changes in blood brain barrier integrity, and an emerging role for gut microbiota and response to probiotics in IBD. Discussion The impact of psychological stress in models of IBD remains somewhat conflicted, however, it is weighted in favour of stress or early stressful life events as risk factors in the development of IBD, stress-induced exacerbation of inflammation and relapse. It is recommended that patients with IBD be screened for psychological disturbance and treated accordingly as intervention can improve quality of life and may reduce relapse rates.

  1. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus

    Science.gov (United States)

    Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 ...

  2. Association between eye position on brain scan and hospital mortality in acute intracerebral hemorrhage

    NARCIS (Netherlands)

    Frusch, K.J.; Houben, R.; Schreuder, F.H.B.M.; Postma, A.A.; Staals, J.

    2016-01-01

    BACKGROUND AND PURPOSE: Conjugate eye deviation (CED) and horizontal skew deviation are often seen in patients with intracerebral hemorrhage (ICH), but its prognostic significance is unclear. In this study, the association between brain scan assessed eye position and hospital mortality in patients

  3. Age differences in brain activation associated with verbal learning and fatigue

    NARCIS (Netherlands)

    Klaasen, Elissa; Evers, Lisbeth; De Groot, Renate; Veltman, Dick; Jolles, Jelle

    2012-01-01

    Klaassen, E., Evers, E., De Groot, R. H. M., Veltman, D., & Jolles, J. (2011, February). Age differences in brain activation associated with verbal learning and fatigue. Poster presented at the School for Mental Health and Neuroscience Research Day 2011, Maastricht, The Netherlands.

  4. [Hypoxic brain injuries notified to the Danish Patient Insurance Association during 1992-2004. Secondary publication

    DEFF Research Database (Denmark)

    Bock, J.; Christoffersen, J.K.; Hedegaard, M.

    2008-01-01

    We investigated the files of the Danish Patient Insurance Association for newborns suffering from hypoxic brain injuries. From 1992 to 2004, a total of 127 approved claims concerning peripartum hypoxic injury were registered. Thirty-eight newborns died and the majority of the 89 surviving children...

  5. Prevalence and association of oral candidiasis with dysphagia in individuals with acquired brain injury

    DEFF Research Database (Denmark)

    Odgaard, Lene; Kothari, Mohit

    2017-01-01

    Objective: To describe the prevalence of oral candidiasis (OC) in individuals with acquired brain injury (ABI) and to evaluate the association of OC with improvement in dysphagia. Design: Longitudinal observational study. Methods: Individuals with ABI admitted to rehabilitation were recruited over...

  6. Assessing brain activations associated with emotional regulation during virtual reality mood induction procedures

    NARCIS (Netherlands)

    Rodriguez, A.; Rey, B.; Clemente, M.; Wrzesien, M.; Alcañiz, M.

    2015-01-01

    Emotional regulation strategies are used by people to influence their emotional responses to external or internal emotional stimuli. The aim of this study is to evaluate the brain activations that are associated with the application of two different emotional regulation strategies (cognitive

  7. The association of functional oral intake and pneumonia in patients with severe traumatic brain injury

    DEFF Research Database (Denmark)

    Hansen, Trine Schow; Larsen, Klaus; Engberg, Aase Worså

    2008-01-01

    OBJECTIVES: To investigate the incidence and onset time of pneumonia for patients with severe traumatic brain injury (TBI) in the early phase of rehabilitation and to identify parameters associated with the risk of pneumonia. DESIGN: Observational retrospective cohort study. SETTING: Subacute reh...

  8. Dysarthria Associated with Traumatic Brain Injury: Speaking Rate and Emphatic Stress

    Science.gov (United States)

    Wang, Y.T.; Kent, R.D.; Duffy, J.R.; Thomas, J.E.

    2005-01-01

    Prosodic abnormality is common in the dysarthria associated with traumatic brain injury (TBI), and adjustments of speaking rate and emphatic stress are often used as steps in treating the speech disorder in patients with TBI-induced dysarthria. However, studies to date do not present a clear and detailed picture of how speaking rate and emphatic…

  9. Neuroanatomical Diversity of Corpus Callosum and Brain Volume in Autism: Meta-analysis, Analysis of the Autism Brain Imaging Data Exchange Project, and Simulation.

    Science.gov (United States)

    Lefebvre, Aline; Beggiato, Anita; Bourgeron, Thomas; Toro, Roberto

    2015-07-15

    Patients with autism have been often reported to have a smaller corpus callosum (CC) than control subjects. We conducted a meta-analysis of the literature, analyzed the CC in 694 subjects of the Autism Brain Imaging Data Exchange project, and performed computer simulations to study the effect of different analysis strategies. Our meta-analysis suggested a group difference in CC size; however, the studies were heavily underpowered (20% power to detect Cohen's d = .3). In contrast, we did not observe significant differences in the Autism Brain Imaging Data Exchange cohort, despite having achieved 99% power. However, we observed that CC scaled nonlinearly with brain volume (BV): large brains had a proportionally smaller CC. Our simulations showed that because of this nonlinearity, CC normalization could not control for eventual BV differences, but using BV as a covariate in a linear model would. We also observed a weaker correlation of IQ and BV in cases compared with control subjects. Our simulations showed that matching populations by IQ could then induce artifactual BV differences. The lack of statistical power in the previous literature prevents us from establishing the reality of the claims of a smaller CC in autism, and our own analyses did not find any. However, the nonlinear relationship between CC and BV and the different correlation between BV and IQ in cases and control subjects may induce artifactual differences. Overall, our results highlight the necessity for open data sharing to provide a more solid ground for the discovery of neuroimaging biomarkers within the context of the wide human neuroanatomical diversity. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. PET brain imaging in HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vera, Jaime H. [Brighton and Sussex Medical School, Department of Infection and Global Health, Brighton (United Kingdom); Brighton and Sussex University Hospitals NHS Trust, HIV Department, Brighton (United Kingdom); Ridha, Basil [Brighton and Sussex University Hospitals NHS Trust, Neurology Department, Brighton (United Kingdom); Gilleece, Yvonne; Amlani, Aliza [Brighton and Sussex University Hospitals NHS Trust, HIV Department, Brighton (United Kingdom); Thorburn, Patrick; Dizdarevic, Sabina [Brighton and Sussex University Hospitals NHS Trust, Imaging and Nuclear Medicine Department, Brighton (United Kingdom); Brighton and Sussex Medical School, Clinical Imaging Science Centre, Brighton (United Kingdom)

    2017-05-15

    Effective combination antiretroviral therapy (cART) has lead to a significant reduction in the prevalence and incidence of central nervous system (CNS) HIV-associated brain disease, particularly CNS opportunistic infections and HIV encephalitis. Despite this, cognitive deficits in people living with HIV, also known as HIV-associated neurocognitive disorders (HAND) have become more prevalent in recent years. The pathogenesis of HAND is likely to be multifactorial, however recent evidence suggests that brain microglial activation is the most likely pathogenic mechanism. Recent developments in positron emission tomography (PET) brain neuroimaging using novel brain radioligands targeting a variety of physiological changes in the brains of HIV-positive individuals have improved our understanding of the mechanisms associated with the development of HAND. This review will highlight recent PET brain neuroimaging studies in the cART era, focusing on physiological and neurochemical changes associated with HAND in people living with HIV. (orig.)

  11. P2X7 Receptor Signaling Contributes to Sepsis-Associated Brain Dysfunction.

    Science.gov (United States)

    Savio, Luiz Eduardo Baggio; Andrade, Mariana G Juste; de Andrade Mello, Paola; Santana, Patrícia Teixeira; Moreira-Souza, Aline Cristina Abreu; Kolling, Janaína; Longoni, Aline; Feldbrügge, Linda; Wu, Yan; Wyse, Angela T S; Robson, Simon C; Coutinho-Silva, Robson

    2017-10-01

    Sepsis results in unfettered inflammation, tissue damage, and multiple organ failure. Diffuse brain dysfunction and neurological manifestations secondary to sepsis are termed sepsis-associated encephalopathy (SAE). Extracellular nucleotides, proinflammatory cytokines, and oxidative stress reactions are associated with delirium and brain injury, and might be linked to the pathophysiology of SAE. P2X7 receptor activation by extracellular ATP leads to maturation and release of IL-1β by immune cells, which stimulates the production of oxygen reactive species. Hence, we sought to investigate the role of purinergic signaling by P2X7 in a model of sepsis. We also determined how this process is regulated by the ectonucleotidase CD39, a scavenger of extracellular nucleotides. Wild type (WT), P2X7 receptor (P2X7-/-), or CD39 (CD39-/-) deficient mice underwent sham laparotomy or CLP induced by ligation and puncture of the cecum. We noted that genetic deletion of P2X7 receptor decreased markers of oxidative stress in murine brains 24 h after sepsis induction. The pharmacological inhibition or genetic ablation of the P2X7 receptor attenuated the IL-1β and IL-6 production in the brain from septic mice. Furthermore, our results suggest a crucial role for the enzyme CD39 in limiting P2X7 receptor proinflammatory responses since CD39-/- septic mice exhibited higher levels of IL-1β in the brain. We have also demonstrated that P2X7 receptor blockade diminished STAT3 activation in cerebral cortex and hippocampus from septic mice, indicating association of ATP-P2X7-STAT3 signaling axis in SAE during sepsis. Our findings suggest that P2X7 receptor might serve as a suitable therapeutic target to ameliorate brain damage in sepsis.

  12. Adverse associations between visceral adiposity, brain structure and cognitive performance in healthy elderly

    Directory of Open Access Journals (Sweden)

    Vivian eIsaac

    2011-09-01

    Full Text Available The link between central adiposity and cognition has been established by indirect measures such as BMI or waist-hip ratio. Magnetic resonance imaging (MRI quantification of central abdominal fat has been linked to elevated risk of cardio-vascular and cerebro-vascular disease. However it is not known how quantification of visceral fat correlates with cognitive performance and measures of brain structure. We filled this gap by characterizing the relationships between MRI measures of abdominal adiposity, brain morphometry and cognition, in healthy elderly. Methods: A total of 184 healthy community dwelling elderly subjects without cognitive impairment participated in this study. Anthropometric and biochemical markers of cardio-vascular risk, neuropsychological measurements as well as MRI of the brain and abdomen fat were obtained. Abdominal images were segmented into subcutaneous (SAT and visceral (VAT adipose tissue compartments. Brain MRI measures were analyzed quantitatively to determine total brain volume, hippocampal volume, ventricular volume and cortical thickness. Results: VAT showed negative association with verbal memory (r=0.21, p=0.005 and attention (r=0.18, p=0.01. Higher VAT was associated with lower hippocampal volume (F=5.39, p=0.02 and larger ventricular volume (F=6.07, p=0.02. The participants in the upper quartile of VAT had the lowest hippocampal volume even after adjusting for age, gender, hypertension and BMI (b=-0.28, p=0.005. There was a significant age by VAT interaction for cortical thickness in the left prefrontal region. Conclusions: In healthy older adults, elevated VAT is associated with negative effects on cognition, and brain morphometry.

  13. Adverse Associations between Visceral Adiposity, Brain Structure, and Cognitive Performance in Healthy Elderly.

    Science.gov (United States)

    Isaac, Vivian; Sim, Sam; Zheng, Hui; Zagorodnov, Vitali; Tai, E Shyong; Chee, Michael

    2011-01-01

    The link between central adiposity and cognition has been established by indirect measures such as body mass index (BMI) or waist-hip ratio. Magnetic resonance imaging (MRI) quantification of central abdominal fat has been linked to elevated risk of cardiovascular and cerebro-vascular disease. However it is not known how quantification of visceral fat correlates with cognitive performance and measures of brain structure. We filled this gap by characterizing the relationships between MRI measures of abdominal adiposity, brain morphometry, and cognition, in healthy elderly. A total of 184 healthy community dwelling elderly subjects without cognitive impairment participated in this study. Anthropometric and biochemical markers of cardiovascular risk, neuropsychological measurements as well as MRI of the brain and abdomen fat were obtained. Abdominal images were segmented into subcutaneous adipose tissue and visceral adipose tissue (VAT) adipose tissue compartments. Brain MRI measures were analyzed quantitatively to determine total brain volume, hippocampal volume, ventricular volume, and cortical thickness. VAT showed negative association with verbal memory (r = 0.21, p = 0.005) and attention (r = 0.18, p = 0.01). Higher VAT was associated with lower hippocampal volume (F = 5.39, p = 0.02) and larger ventricular volume (F = 6.07, p = 0.02). The participants in the upper quartile of VAT had the lowest hippocampal volume even after adjusting for age, gender, hypertension, and BMI (b = -0.28, p = 0.005). There was a significant age by VAT interaction for cortical thickness in the left prefrontal region. In healthy older adults, elevated VAT is associated with negative effects on cognition, and brain morphometry.

  14. Functional connectivity is associated with altered brain chemistry in women with endometriosis-associated chronic pelvic pain

    Science.gov (United States)

    As-Sanie, Sawsan; Kim, Jieun; Schmidt-Wilcke, Tobias; Sundgren, Pia C.; Clauw, Daniel J.; Napadow, Vitaly; Harris, Richard E.

    2015-01-01

    In contrast to women with relatively asymptomatic endometriosis, women with endometriosis-associated chronic pelvic pain (CPP) exhibit non-pelvic hyperalgesia and decreased gray matter volume in key neural pain processing regions. While these findings suggest central pain amplification in endometriosis-associated CPP, the underlying changes in brain chemistry and function associated with central pain amplification remain unknown. We performed proton spectroscopy and seed-based resting functional connectivity MRI to determine whether women with endometriosis display differences in insula excitatory neurotransmitter concentrations or intrinsic brain connectivity to other pain-related brain regions. Relative to age-matched pain-free controls, women with endometriosis-associated CPP displayed elevated levels of combined glutamine-glutamate (Glx) within the anterior insula, and greater anterior insula connectivity to the medial prefrontal cortex (mPFC). Increased connectivity between these regions was positively correlated with anterior insula Glx concentrations (r=0.87), as well as clinical anxiety (r=0.61,p=0.02), depression (r=0.60,p=0.03), and pain intensity (r=0.55,p=0.05). There were no significant differences in insula metabolite levels or resting-state connectivity in endometriosis without CPP subjects versus controls. We conclude that enhanced anterior insula glutamatergic neurotransmission and connectivity with the mPFC, key regions of the salience and default mode networks, may play a role in the pathophysiology of CPP independent of the presence of endometriosis. PMID:26456676

  15. Early adverse life events are associated with altered brain network architecture in a sex- dependent manner

    Directory of Open Access Journals (Sweden)

    Arpana Gupta, PhD

    2017-12-01

    Full Text Available Introduction: Early adverse life events (EALs increase the risk for chronic medical and psychiatric disorders by altering early neurodevelopment. The aim of this study was to examine associations between EALs and network properties of core brain regions in the emotion regulation and salience networks, and to test the influence of sex on these associations. Methods: Resting-state functional and diffusion tensor magnetic resonance imaging were obtained in healthy individuals (61 men, 63 women. Functional and anatomical network properties of centrality and segregation were calculated for the core regions of the two networks using graph theory. Moderator analyses were applied to test hypotheses. Results: The type of adversity experienced influences brain wiring differently, as higher general EALs were associated with decreased functional and anatomical centrality in salience and emotion regulation regions, while physical and emotional EALs were associated with increased anatomical centrality and segregation in emotion regulation regions. Sex moderated the associations between EALs and measures of centrality; with decreased centrality of salience and emotion regulation regions with increased general EALs in females, and increased centrality in salience regions with higher physical and emotional EALs in males. Increased segregation of salience regions was associated with increased general EALs in males. Centrality of the amygdala was associated with physical symptoms, and segregation of salience regions was correlated with higher somatization in men only. Conclusions: Emotion regulation and salience regions are susceptible to topological brain restructuring associated with EALs. The male and female brains appear to be differently affected by specific types of EALs. Keywords: Early adverse traumatic life events, Centrality, Segregation, Network metrics, Moderating effects of sex, Emotion regulation network, Salience network

  16. The association of functional oral intake and pneumonia in patients with severe Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Schow, Trine; Larsen, Klaus; Engberg, Aase Worså

    identified patients at highest risk of pneumonia: Glasgow Coma score (GCS) ...Abstract Objective(s): This study investigates the incidence and onset time of pneumonia for patients with severe Traumatic Brain Injury (TBI) in the early phase of rehabilitation, and identifies parameters associated with the risk of pneumonia. Design: Observational retrospective cohort study....... Setting: A subacute rehabilitation department, university hospital, Denmark. Participants: One-hundred and seventy-three patients aged 16-65 years with severe TBI admitted over a 5-year period. Patients are transferred to the Brain Injury Unit (BIU) as soon as they ventilate spontaneously. Intervention...

  17. Presence of cerebral microbleeds is associated with worse executive function in pediatric brain tumor survivors.

    Science.gov (United States)

    Roddy, Erika; Sear, Katherine; Felton, Erin; Tamrazi, Benita; Gauvain, Karen; Torkildson, Joseph; Buono, Benedict Del; Samuel, David; Haas-Kogan, Daphne A; Chen, Josephine; Goldsby, Robert E; Banerjee, Anuradha; Lupo, Janine M; Molinaro, Annette M; Fullerton, Heather J; Mueller, Sabine

    2016-11-01

    A specific form of small-vessel vasculopathy-cerebral microbleeds (CMBs)-has been linked to various types of dementia in adults. We assessed the incidence of CMBs and their association with neurocognitive function in pediatric brain tumor survivors. In a multi-institutional cohort of 149 pediatric brain tumor patients who received cranial radiation therapy (CRT) between 1987 and 2014 at age tumor survivors treated with radiation. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Jiang, Ning; Stevenson, Andrew James Thomas

    2016-01-01

    Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here, we evaluate the effect and the underlying mechanisms of three BCI training sessions in a double-blind-sham-controlled design. The applied BCI......-associative group. Fugl-Meyer motor scores (0.8±0.46 point difference p=0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCIassociative group, indicating clinically relevant improvements. For the BCI as applied here, the precise coupling between the brain command...

  19. Association Between Anticholinergic Medication Use and Cognition, Brain Metabolism, and Brain Atrophy in Cognitively Normal Older Adults.

    Science.gov (United States)

    Risacher, Shannon L; McDonald, Brenna C; Tallman, Eileen F; West, John D; Farlow, Martin R; Unverzagt, Fredrick W; Gao, Sujuan; Boustani, Malaz; Crane, Paul K; Petersen, Ronald C; Jack, Clifford R; Jagust, William J; Aisen, Paul S; Weiner, Michael W; Saykin, Andrew J

    2016-06-01

    The use of anticholinergic (AC) medication is linked to cognitive impairment and an increased risk of dementia. To our knowledge, this is the first study to investigate the association between AC medication use and neuroimaging biomarkers of brain metabolism and atrophy as a proxy for understanding the underlying biology of the clinical effects of AC medications. To assess the association between AC medication use and cognition, glucose metabolism, and brain atrophy in cognitively normal older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Indiana Memory and Aging Study (IMAS). The ADNI and IMAS are longitudinal studies with cognitive, neuroimaging, and other data collected at regular intervals in clinical and academic research settings. For the participants in the ADNI, visits are repeated 3, 6, and 12 months after the baseline visit and then annually. For the participants in the IMAS, visits are repeated every 18 months after the baseline visit (402 cognitively normal older adults in the ADNI and 49 cognitively normal older adults in the IMAS were included in the present analysis). Participants were either taking (hereafter referred to as the AC+ participants [52 from the ADNI and 8 from the IMAS]) or not taking (hereafter referred to as the AC- participants [350 from the ADNI and 41 from the IMAS]) at least 1 medication with medium or high AC activity. Data analysis for this study was performed in November 2015. Cognitive scores, mean fludeoxyglucose F 18 standardized uptake value ratio (participants from the ADNI only), and brain atrophy measures from structural magnetic resonance imaging were compared between AC+ participants and AC- participants after adjusting for potential confounders. The total AC burden score was calculated and was related to target measures. The association of AC use and longitudinal clinical decline (mean [SD] follow-up period, 32.1 [24.7] months [range, 6-108 months]) was examined using Cox regression. The

  20. Association Between Anticholinergic Medication Use and Cognition, Brain Metabolism, and Brain Atrophy in Cognitively Normal Older Adults

    Science.gov (United States)

    Risacher, Shannon L.; McDonald, Brenna C.; Tallman, Eileen F.; West, John D.; Farlow, Martin R.; Unverzagt, Fredrick W.; Gao, Sujuan; Boustani, Malaz; Crane, Paul K.; Petersen, Ronald C.; Jack, Clifford R.; Jagust, William J.; Aisen, Paul S.; Weiner, Michael W.; Saykin, Andrew J.

    2016-01-01

    IMPORTANCE The use of anticholinergic (AC) medication is linked to cognitive impairment and an increased risk of dementia. To our knowledge, this is the first study to investigate the association between AC medication use and neuroimaging biomarkers of brain metabolism and atrophy as a proxy for understanding the underlying biology of the clinical effects of AC medications. OBJECTIVE To assess the association between AC medication use and cognition, glucose metabolism, and brain atrophy in cognitively normal older adults from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Indiana Memory and Aging Study (IMAS). DESIGN, SETTING, AND PARTICIPANTS The ADNI and IMAS are longitudinal studies with cognitive, neuroimaging, and other data collected at regular intervals in clinical and academic research settings. For the participants in the ADNI, visits are repeated 3, 6, and 12 months after the baseline visit and then annually. For the participants in the IMAS, visits are repeated every 18 months after the baseline visit (402 cognitively normal older adults in the ADNI and 49 cognitively normal older adults in the IMAS were included in the present analysis). Participants were either taking (hereafter referred to as the AC+ participants [52 from the ADNI and 8 from the IMAS]) or not taking (hereafter referred to as the AC− participants [350 from the ADNI and 41 from the IMAS]) at least 1 medication with medium or high AC activity. Data analysis for this study was performed in November 2015. MAIN OUTCOMES AND MEASURES Cognitive scores, mean fludeoxyglucose F 18 standardized uptake value ratio (participants from the ADNI only), and brain atrophy measures from structural magnetic resonance imaging were compared between AC+ participants and AC− participants after adjusting for potential confounders. The total AC burden score was calculated and was related to target measures. The association of AC use and longitudinal clinical decline (mean [SD] follow

  1. Enhanced inter-subject brain computer interface with associative sensorimotor oscillations.

    Science.gov (United States)

    Saha, Simanto; Ahmed, Khawza I; Mostafa, Raqibul; Khandoker, Ahsan H; Hadjileontiadis, Leontios

    2017-02-01

    Electroencephalography (EEG) captures electrophysiological signatures of cortical events from the scalp with high-dimensional electrode montages. Usually, excessive sources produce outliers and potentially affect the actual event related sources. Besides, EEG manifests inherent inter-subject variability of the brain dynamics, at the resting state and/or under the performance of task(s), caused probably due to the instantaneous fluctuation of psychophysiological states. A wavelet coherence (WC) analysis for optimally selecting associative inter-subject channels is proposed here and is being used to boost performances of motor imagery (MI)-based inter-subject brain computer interface (BCI). The underlying hypothesis is that optimally associative inter-subject channels can reduce the effects of outliers and, thus, eliminate dissimilar cortical patterns. The proposed approach has been tested on the dataset IVa from BCI competition III, including EEG data acquired from five healthy subjects who were given visual cues to perform 280 trials of MI for the right hand and right foot. Experimental results have shown increased classification accuracy (81.79%) using the WC-based selected 16 channels compared to the one (56.79%) achieved using all the available 118 channels. The associative channels lie mostly around the sensorimotor regions of the brain, reinforced by the previous literature, describing spatial brain dynamics during sensorimotor oscillations. Apparently, the proposed approach paves the way for optimised EEG channel selection that could boost further the efficiency and real-time performance of BCI systems.

  2. Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals.

    Science.gov (United States)

    Lancaster, Thomas M; Ihssen, Niklas; Brindley, Lisa M; Tansey, Katherine E; Mantripragada, Kiran; O'Donovan, Michael C; Owen, Michael J; Linden, David E J

    2016-02-01

    A substantial proportion of schizophrenia liability can be explained by additive genetic factors. Risk profile scores (RPS) directly index risk using a summated total of common risk variants weighted by their effect. Previous studies suggest that schizophrenia RPS predict alterations to neural networks that support working memory and verbal fluency. In this study, we apply schizophrenia RPS to fMRI data to elucidate the effects of polygenic risk on functional brain networks during a probabilistic-learning neuroimaging paradigm. The neural networks recruited during this paradigm have previously been shown to be altered to unmedicated schizophrenia patients and relatives of schizophrenia patients, which may reflect genetic susceptibility. We created schizophrenia RPS using summary data from the Psychiatric Genetic Consortium (Schizophrenia Working Group) for 83 healthy individuals and explore associations between schizophrenia RPS and blood oxygen level dependency (BOLD) during periods of choice behavior (switch-stay) and reflection upon choice outcome (reward-punishment). We show that schizophrenia RPS is associated with alterations in the frontal pole (PWHOLE-BRAIN-CORRECTED  = 0.048) and the ventral striatum (PROI-CORRECTED  = 0.036), during choice behavior, but not choice outcome. We suggest that the common risk variants that increase susceptibility to schizophrenia can be associated with alterations in the neural circuitry that support the processing of changing reward contingencies. Hum Brain Mapp 37:491-500, 2016. © 2015 Wiley Periodicals, Inc. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  3. Association between the increase in brain temperature and physical performance at different exercise intensities and protocols in a temperate environment.

    Science.gov (United States)

    Kunstetter, A C; Wanner, S P; Madeira, L G; Wilke, C F; Rodrigues, L O C; Lima, N R V

    2014-08-01

    There is evidence that brain temperature (T brain) provides a more sensitive index than other core body temperatures in determining physical performance. However, no study has addressed whether the association between performance and increases in T brain in a temperate environment is dependent upon exercise intensity, and this was the primary aim of the present study. Adult male Wistar rats were subjected to constant exercise at three different speeds (18, 21, and 24 m/min) until the onset of volitional fatigue. T brain was continuously measured by a thermistor inserted through a brain guide cannula. Exercise induced a speed-dependent increase in T brain, with the fastest speed associated with a higher rate of T brain increase. Rats subjected to constant exercise had similar T brain values at the time of fatigue, although a pronounced individual variability was observed (38.7-41.7°C). There were negative correlations between the rate of T brain increase and performance for all speeds that were studied. These results indicate that performance during constant exercise is negatively associated with the increase in T brain, particularly with its rate of increase. We then investigated how an incremental-speed protocol affected the association between the increase in T brain and performance. At volitional fatigue, T brain was lower during incremental exercise compared with the T brain resulting from constant exercise (39.3 ± 0.3 vs 40.3 ± 0.1°C; Pbrain increase and performance was observed. These findings suggest that the influence of T brain on performance under temperate conditions is dependent on exercise protocol.

  4. Differential Cellular Tropism of Lentivirus and Adeno-Associated Virus in the Brain of Cynomolgus Monkey.

    Science.gov (United States)

    An, Heeyoung; Cho, Doo-Wan; Lee, Seung Eun; Yang, Young-Su; Han, Su-Cheol; Lee, C Justin

    2016-02-01

    Many researchers are using viruses to deliver genes of interest into the brains of laboratory animals. However, certain target brain cells are not easily infected by viruses. Moreover, the differential tropism of different viruses in monkey brain is not well established. We investigated the cellular tropism of lentivirus and adeno-associated virus (AAV) toward neuron and glia in the brain of cynomolgus monkeys (Macaca fascularis). Lentivirus and AAV were injected into putamen of the monkey brain. One month after injection, monkeys were sacrificed, and then the presence of viral infection by expression of reporter fluorescence proteins was examined. Tissues were sectioned and stained with NeuN and GFAP antibodies for identifying neuronal cells or astrocytes, respectively, and viral reporter GFP-expressing cells were counted. We found that while lentivirus infected mostly astrocytes, AAV infected neurons at a higher rate than astrocytes. Moreover, astrocytes showed reactiveness when cells were infected by virus, likely due to virus-mediated neuroinflammation. The Sholl analysis was done to compare the hypertrophy of infected and uninfected astrocytes by virus. The lentivirus infected astrocytes showed negligible hypertrophy whereas AAV infected astrocytes showed significant changes in morphology, compared to uninfected astrocytes. In the brain of cynomolgus monkey, lentivirus shows tropism for astrocytes over neurons without much reactivity in astrocytes, whereas AAV shows tropism for neurons over glial cells with a significant reactivity in astrocytes. We conclude that AAV is best-suited for gene delivery to neurons, whereas lentivirus is the best choice for gene delivery to astrocytes in the brain of cynomolgus monkeys.

  5. The association between seizures and deposition of collagen in the brain in porcine Taenia solium neurocysticercosis

    DEFF Research Database (Denmark)

    Christensen, Nina Møller; Trevisan, Chiara; Leifsson, Páll Skúli

    2016-01-01

    tissue sections from seven pigs were examined histopathologically i.e. two pigs with epileptic seizures and T. solium cysts, four pigs without seizures but with cysts, and one non-infected control pig. Pigs with epileptic seizures had a larger amount of collagen in their brain tissue, showing as large......Neurocysticercosis caused by infection with Taenia solium is a significant cause of epilepsy and seizures in humans. The aim of this study was to assess the association between seizures and the deposition of collagen in brain tissue in pigs with T. solium neurocysticercosis. In total 78 brain...... fibrotic scars and moderate amount of collagen deposited around cysts, compared to pigs without seizures and the negative control pig. Our results indicate that collagen is likely to play a considerable part in the pathogenesis of seizures in T. solium neurocysticercosis....

  6. The association between seizures and deposition of collagen in the brain in porcine Taenia solium neurocysticercosis.

    Science.gov (United States)

    Christensen, Nina M; Trevisan, Chiara; Leifsson, Páll S; Johansen, Maria V

    2016-09-15

    Neurocysticercosis caused by infection with Taenia solium is a significant cause of epilepsy and seizures in humans. The aim of this study was to assess the association between seizures and the deposition of collagen in brain tissue in pigs with T. solium neurocysticercosis. In total 78 brain tissue sections from seven pigs were examined histopathologically i.e. two pigs with epileptic seizures and T. solium cysts, four pigs without seizures but with cysts, and one non-infected control pig. Pigs with epileptic seizures had a larger amount of collagen in their brain tissue, showing as large fibrotic scars and moderate amount of collagen deposited around cysts, compared to pigs without seizures and the negative control pig. Our results indicate that collagen is likely to play a considerable part in the pathogenesis of seizures in T. solium neurocysticercosis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Effect of lighting conditions on brain network complexity associated with response learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida M; González-Pardo, Héctor; Arias, Jorge L

    2013-10-25

    Several studies have reported the brain regions involved in response learning. However, there is discrepancy regarding the lighting conditions in the experimental setting (i.e. under dark or light conditions). In this regard, it would be relevant to know if the presence/absence of visual cues in the environment has any effect in the brain networks involved in a response learning task. Animals were trained in a water T-maze under two different lighting conditions (light versus dark). All subjects reached the learning criterion of 80% correct arm choices. Quantitative cytochrome oxidase (CO) histochemistry was used as a metabolic brain mapping technique. Our results show that the ventral hippocampus and the parietal cortex are associated with the acquisition of a response learning task regardless of lighting conditions. In addition, when the same task is run in the dark, widespread recruitment of structures involving cortical, limbic and striatal regions was found. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Identification of emotion associated brain functional network with phase locking value.

    Science.gov (United States)

    Gonuguntla, V; Mallipeddi, R; Veluvolu, K C

    2016-08-01

    Recognition of discriminative brain functional network pattern and regions corresponding to emotions are important in understanding the neuron functional network underlying the human emotion process. Emotion models mapping onto brain is possible with the help of emotion-specific network patterns and its corresponding brain regions. This paper presents a method to identify emotion related functional connectivity pattern and their distinctive associated regions using EEG phase synchrony (phase locking value (PLV)) connectivity analysis. The emotion-specific channel pairs, reactive band, and synchrony related locations are identified based on the network dissimilarities between emotion and rest tasks. With the most reactive pairs identified, the emotion-specific functional network is formed. The proposed method is validated on `database for emotion analysis using physiological signals (DEAP)' that confirms the distinct nature of identified functional connectivity pattern and the regions corresponding to the emotion.

  9. The association between poor sleep quality and global cortical atrophy is related to age. Results from the Atahualpa Project

    Directory of Open Access Journals (Sweden)

    Oscar H. Del Brutto

    2016-07-01

    Full Text Available Community-dwellers aged ≥60 years enrolled in the Atahualpa Project underwent brain MRI and were interviewed with the Pittsburgh Sleep Quality Index. Of 290 participants, 94 (32% had poor sleep quality and 143 (49% had global cortical atrophy (GCA. In a logistic regression model (adjusted for demographics, cardiovascular risk factor, severe edentulism, symptoms of depression, the MoCA score, and neuroimaging signatures of cerebrovascular damage, poor sleep quality was associated with GCA (p=0.004. A multivariate probability model showed that the probability of moderate-to-severe GCA significantly increased in individuals with poor sleep quality aged ≥67 years. This study provides evidence for an association between poor sleep quality and GCA in older adults and the important interaction of age in this association.

  10. The association between poor sleep quality and global cortical atrophy is related to age. Results from the Atahualpa Project.

    Science.gov (United States)

    Del Brutto, Oscar H; Mera, Robertino M; Zambrano, Mauricio; Castillo, Pablo R

    2016-01-01

    Community-dwellers aged ≥60 years enrolled in the Atahualpa Project underwent brain MRI and were interviewed with the Pittsburgh Sleep Quality Index. Of 290 participants, 94 (32%) had poor sleep quality and 143 (49%) had global cortical atrophy (GCA). In a logistic regression model (adjusted for demographics, cardiovascular risk factor, severe edentulism, symptoms of depression, the MoCA score, and neuroimaging signatures of cerebrovascular damage), poor sleep quality was associated with GCA (p=0.004). A multivariate probability model showed that the probability of moderate-to-severe GCA significantly increased in individuals with poor sleep quality aged ≥67 years. This study provides evidence for an association between poor sleep quality and GCA in older adults and the important interaction of age in this association.

  11. Associations between insulin action and integrity of brain microstructure differ with familial longevity and with age

    Directory of Open Access Journals (Sweden)

    Abimbola A. Akintola

    2015-05-01

    Full Text Available Impaired glucose metabolism and type 2 diabetes have been associated with cognitive decline, dementia, and with structural and functional brain features. However, it is unclear whether these associations differ in individuals that differ in familial longevity or age. Here, we investigated the association between parameters of glucose metabolism and microstructural brain integrity in offspring of long-lived families (offspring and controls; and age categories thereof. From the Leiden Longevity Study, 132 participants underwent oral glucose tolerance test to assess glycemia (fasted glucose and glucose area-under-the-curve (AUC, insulin resistance (fasted insulin, AUCinsulin, and homeostatic model assessment of insulin resistance (HOMA-IR, and pancreatic Beta cell secretory capacity (insulinogenic index. 3Tesla MRI and Magnetization Transfer (MT imaging MT-ratio peak-height was used to quantify differences in microstructural brain parenchymal tissue homogeneity that remain invisible on conventional MRI. Analyses were performed in offspring and age-matched controls, with and without stratification for age.In the full offspring group only, reduced peak-height in grey and white matter was inversely associated with AUCinsulin, fasted insulin, HOMA-IR and insulinogenic-index (all p65 years: in younger controls, significantly stronger inverse associations were observed between peak-height and fasted glucose, AUCglucose, fasted insulin, AUCinsulin and HOMA-IR in grey matter; and for AUCglucose, fasted insulin and HOMA-IR in white matter (all P-interaction<0.05. Although the strength of the associations tended to attenuate with age in the offspring group, the difference between age groups was not statistically significant. Thus, associations between impaired insulin action and reduced microstructural brain parenchymal tissue homogeneity were stronger in offspring compared to controls, and seemed to diminish with age.

  12. 77 FR 13578 - Disability and Rehabilitation Research Project; Traumatic Brain Injury Model Systems Centers

    Science.gov (United States)

    2012-03-07

    ... evidenced by loss of consciousness or post- traumatic amnesia due to brain trauma or by objective... examination. Both penetrating and non- penetrating wounds that fit this criteria are included, but, primary...

  13. 77 FR 34363 - Disability and Rehabilitation Research Projects and Centers Program; Traumatic Brain Injury Model...

    Science.gov (United States)

    2012-06-11

    ... to brain trauma or by objective neurological findings that can be reasonably attributed to TBI on physical examination or mental status examination. Both penetrating and non- penetrating wounds that fit...

  14. Regional brain activation associated with addiction of computer games in adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y. H.; Shin, O. J.; Ko, Y. W.; Kim, H. J.; Yun, M. J.; Lee, J. D. [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-07-01

    Excessive computer game (CG) playing may cause not only behavioral addiction, but also potential negative effects on developing brain. It is necessary to reveal how brain is affected by excessive use of CG playing and behavioral addiction of it. By using PET, we address the issue seeking to identifying patterns of regional brain activation associated with behavioral addiction and excessive use of CG playing by adolescents. 6 normal control and 8 adolescents who were met by the criteria of behavioral addiction on the survey as addiction groups with an addiction of CG playing were participated. Initial screening survey which is the adapted version of DSM-IV for pathologic gambling was done. PET were performed twice in each participants both during resting state and after 20 min playing of CG. Psychological test including Youth Self Report (YSR), memory and attention test and vocabulary item from KWAIS were performed. Scores of the vocabulary item from KWAIS and social competence from YSR were significantly lower in the addiction group. On PET, addiction group showed higher resting metabolism on inferior frontal, premotor, prefrontal and superior temporal area. Adolescents with addiction of CG revealed different patterns of regional brain activation comparing to control groups. These suggest behavioral addiction and excessive use of CG may result in functional alteration of developing brain in adolescents.

  15. Gender associations with cerebrospinal fluid glutamate and lactate/pyruvate levels after severe traumatic brain injury.

    Science.gov (United States)

    Wagner, Amy K; Fabio, Anthony; Puccio, Ava M; Hirschberg, Ronald; Li, Wei; Zafonte, Ross D; Marion, Donald W

    2005-02-01

    Female sex hormones appear to be neuroprotective after traumatic brain injury by attenuating multiple mechanisms of secondary insult, including excitotoxicity and ischemia. The purpose of this study was to evaluate associations between gender and cerebrospinal fluid glutamate and lactate/pyruvate production and the role of hypothermia with gender in attenuating these markers. Prospectively collected data were analyzed for adult patients with severe traumatic brain injury. Gender comparisons for cerebrospinal fluid glutamate and lactate/pyruvate production were determined using ventricular samples obtained over the first 48 hrs postinjury. University-based level I trauma center. There were 123 patients, male n = 93 and female n = 30 (n = 686 cerebrospinal fluid samples), with severe traumatic brain injury (Glasgow Coma Scale score fluid glutamate production for males compared with females (p = .0023) and a significant interaction between glutamate concentration, gender, and time (p = .0035) by 24 hrs postinjury. Females had lower lactate/pyruvate ratios than males (p = .0006), and there was a significant interaction between lactate/pyruvate, gender, and time (p = .0045) throughout the first 48 hrs postinjury. Hypothermia attenuated glutamate levels, particularly for males, over the time course studied. These data suggest significant gender differences with glutamate and lactate/pyruvate production after severe traumatic brain injury. Gender- and hormone-mediated differences in central nervous system pathophysiology should be considered with clinical trials in traumatic brain injury.

  16. Unique glycan signatures regulate adeno-associated virus tropism in the developing brain.

    Science.gov (United States)

    Murlidharan, Giridhar; Corriher, Travis; Ghashghaei, H Troy; Asokan, Aravind

    2015-04-01

    Adeno-associated viruses (AAV) are thought to spread through the central nervous system (CNS) by exploiting cerebrospinal fluid (CSF) flux and hijacking axonal transport pathways. The role of host receptors that mediate these processes is not well understood. In the current study, we utilized AAV serotype 4 (AAV4) as a model to evaluate whether ubiquitously expressed 2,3-linked sialic acid and the developmentally regulated marker 2,8-linked polysialic acid (PSA) regulate viral transport and tropism in the neonatal brain. Modulation of the levels of SA and PSA in cell culture studies using specific neuraminidases revealed possibly opposing roles of the two glycans in AAV4 transduction. Interestingly, upon intracranial injection into lateral ventricles of the neonatal mouse brain, a low-affinity AAV4 mutant (AAV4.18) displayed a striking shift in cellular tropism from 2,3-linked SA(+) ependymal lining to 2,8-linked PSA(+) migrating progenitors in the rostral migratory stream and olfactory bulb. In addition, this gain-of-function phenotype correlated with robust CNS spread of AAV4.18 through paravascular transport pathways. Consistent with these observations, altering glycan dynamics within the brain by coadministering SA- and PSA-specific neuraminidases resulted in striking changes to the cellular tropisms and transduction efficiencies of both parental and mutant vectors. We postulate that glycan signatures associated with host development can be exploited to redirect novel AAV vectors to specific cell types in the brain. Viruses invade the CNS through various mechanisms. In the current study, we utilized AAV as a model to study the dynamics of virus-carbohydrate interactions in the developing brain and their impact on viral tropism. Our findings suggest that carbohydrate content can be exploited to regulate viral transport and tropism in the brain. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype.

    Science.gov (United States)

    Salminen, Antero; Ojala, Johanna; Kaarniranta, Kai; Haapasalo, Annakaisa; Hiltunen, Mikko; Soininen, Hilkka

    2011-07-01

    Cellular stress increases progressively with aging in mammalian tissues. Chronic stress triggers several signaling cascades that can induce a condition called cellular senescence. Recent studies have demonstrated that senescent cells express a senescence-associated secretory phenotype (SASP). Emerging evidence indicates that the number of cells expressing biomarkers of cellular senescence increases in tissues with aging, which implies that cellular senescence is an important player in organismal aging. In the brain, the aging process is associated with degenerative changes, e.g. synaptic loss and white matter atrophy, which lead to progressive cognitive impairment. There is substantial evidence for the presence of oxidative, proteotoxic and metabolic stresses in aging brain. A low-level, chronic inflammatory process is also present in brain during aging. Astrocytes demonstrate age-related changes that resemble those of the SASP: (i) increased level of intermediate glial fibrillary acidic protein and vimentin filaments, (ii) increased expression of several cytokines and (iii) increased accumulation of proteotoxic aggregates. In addition, in vitro stress evokes a typical senescent phenotype in cultured astrocytes and, moreover, isolated astrocytes from aged brain display the proinflammatory phenotype. All of these observations indicate that astrocytes are capable of triggering the SASP and the astrocytes in aging brain display typical characteristics of cellular senescence. Bearing in mind the many functions of astrocytes, it is evident that the age-related senescence of astrocytes enhances the decline in functional capacity of the brain. We will review the astroglial changes occurring during aging and emphasize that senescent astrocytes can have an important role in age-related neuroinflammation and neuronal degeneration. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  19. Adeno-associated virus type 6 is retrogradely transported in the non-human primate brain.

    Science.gov (United States)

    San Sebastian, W; Samaranch, L; Heller, G; Kells, A P; Bringas, J; Pivirotto, P; Forsayeth, J; Bankiewicz, K S

    2013-12-01

    We recently demonstrated that axonal transport of adeno-associated virus (AAV) is serotype-dependent. Thus, AAV serotype 2 (AAV2) is anterogradely transported (e.g., from cell bodies to nerve terminals) in both rat and non-human primate (NHP) brain. In contrast, AAV serotype 6 (AAV6) is retrogradely transported from terminals to neuronal cell bodies in the rat brain. However, the directionality of axonal transport of AAV6 in the NHP brain has not been determined. In this study, two Cynomolgus macaques received an infusion of AAV6 harboring green fluorescent protein (GFP) into the striatum (caudate and putamen) by magnetic resonance (MR)-guided convection-enhanced delivery. One month after infusion, immunohistochemical staining of brain sections revealed a striatal GFP expression that corresponded well with MR signal observed during gene delivery. As shown previously in rats, GFP expression was detected throughout the prefrontal, frontal and parietal cortex, as well as the substantia nigra pars compacta and thalamus, indicating retrograde transport of the vector in NHP. AAV6-GFP preferentially transduced neurons, although a few astrocytes were also transduced. Transduction of non-neuronal cells in the brain was associated with the upregulation of the major histocompatibility complex-II and lymphocytic infiltration as previously observed with AAV1 and AAV9. This contrasts with highly specific neuronal transduction in the rat brain. Retrograde axonal transport of AAV6 from a single striatal infusion permits efficient transduction of cortical neurons in significant tissue volumes that otherwise would be difficult to achieve.

  20. Visceral fat is associated with lower brain volume in healthy middle-aged adults.

    Science.gov (United States)

    Debette, Stéphanie; Beiser, Alexa; Hoffmann, Udo; Decarli, Charles; O'Donnell, Christopher J; Massaro, Joseph M; Au, Rhoda; Himali, Jayandra J; Wolf, Philip A; Fox, Caroline S; Seshadri, Sudha

    2010-08-01

    Midlife obesity has been associated with an increased risk of dementia. The underlying mechanisms are poorly understood. Our aim was to examine the cross-sectional association of body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and computed tomography (CT)-based measurements of subcutaneous (SAT) and visceral (VAT) adipose tissue with various magnetic resonance imaging (MRI) markers of brain aging in middle-aged community adults. Participants from the Framingham Offspring cohort were eligible if in addition to having measurements of BMI, WC, WHR, SAT, and VAT, they had undergone a volumetric brain MRI scan with measurements of total brain volume (TCBV), temporal horn volume (THV), white matter hyperintensity volume (WMHV), and MRI-defined brain infarcts (BI). All analyses were adjusted for age, sex, and time interval between abdominal CT and brain MRI. In a sample of 733 community participants (mean age, 60 years; 53% women), we observed an inverse association of BMI (estimate by standard deviation unit +/- standard error = -0.27 +/- 0.12; p = 0.02), WC (-0.30 +/- 0.12; p = 0.01), WHR (-0.37 +/- 0.12; p = 0.02), SAT (-0.23 +/- 0.11; p = 0.04), and VAT (-0.36 +/- 0.12; p = 0.002) with TCBV, independent of vascular risk factors. The association between VAT and TCBV was the strongest and most robust, and was also independent of BMI (-0.35 +/- 0.15; p = 0.02) and insulin resistance (-0.32 +/- 0.13; p = 0.01). When adjusting for C-reactive protein levels, the associations were attenuated (-0.17 +/- 0.13; p = 0.17 for VAT). No consistently significant association was observed between the anthropometric or CT-based abdominal fat measurements and THV, WMHV, or BI. In middle-aged community participants, we observed a significant inverse association of anthropometric and CT-based measurements of abdominal, especially visceral, fat with total brain volume.

  1. Associations of neighborhood environment with brain imaging outcomes in the Australian Imaging, Biomarkers and Lifestyle cohort.

    Science.gov (United States)

    Cerin, Ester; Rainey-Smith, Stephanie R; Ames, David; Lautenschlager, Nicola T; Macaulay, S Lance; Fowler, Christopher; Robertson, Joanne S; Rowe, Christopher C; Maruff, Paul; Martins, Ralph N; Masters, Colin L; Ellis, Kathryn A

    2017-04-01

    "Walkable" neighborhoods offer older adults opportunities for activities that may benefit cognition-related biological mechanisms. These have not previously been examined in this context. We objectively assessed neighborhood walkability for participants (n = 146) from the Australian Imaging, Biomarkers and Lifestyle study with apolipoprotein E (APOE) genotype and two 18-month-apart brain volumetric and/or amyloid β burden assessments. Linear mixed models estimated associations of neighborhood walkability with levels and changes in brain imaging outcomes, the moderating effect of APOE ε4 status, and the extent to which associations were explained by physical activity. Cross-sectionally, neighborhood walkability was predictive of better neuroimaging outcomes except for left hippocampal volume. These associations were to a small extent explained by physical activity. APOE ε4 carriers showed slower worsening of outcomes if living in walkable neighborhoods. These findings indicate associations between neighborhood walkability and brain imaging measures (especially in APOE ε4 carriers) minimally attributable to physical activity. Copyright © 2016 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  2. Management of Brain Arteriovenous Malformations: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association.

    Science.gov (United States)

    Derdeyn, Colin P; Zipfel, Gregory J; Albuquerque, Felipe C; Cooke, Daniel L; Feldmann, Edward; Sheehan, Jason P; Torner, James C

    2017-08-01

    The aim of this statement is to review the current data and to make suggestions for the diagnosis and management of both ruptured and unruptured brain arteriovenous malformations. The writing group met in person and by teleconference to establish search terms and to discuss narrative text and suggestions. Authors performed their own literature searches of PubMed, Medline, or Embase, specific to their allocated section, through the end of January 2015. Prerelease review of the draft statement was performed by expert peer reviewers and by the members of the Stroke Council Scientific Oversight Committee and Stroke Council Leadership Committee. The focus of the scientific statement was subdivided into epidemiology; diagnosis; natural history; treatment, including the roles of surgery, stereotactic radiosurgery, and embolization; and management of ruptured and unruptured brain arteriovenous malformations. Areas requiring more evidence were identified. Brain arteriovenous malformations are a relatively uncommon but important cause of hemorrhagic stroke, especially in young adults. This statement describes the current knowledge of the natural history and treatment of patients with ruptured and unruptured brain arteriovenous malformations, suggestions for management, and implications for future research. © 2017 American Heart Association, Inc.

  3. Different patterns of longitudinal brain and spinal cord changes and their associations with disability progression in NMO and MS.

    Science.gov (United States)

    Liu, Yaou; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Liu, Zheng; Dong, Huiqing; Weiler, Florian; Hahn, Horst K; Shi, Fu-Dong; Butzkueven, Helmut; Barkhof, Frederik; Li, Kuncheng

    2018-01-01

    To investigate the longitudinal spinal cord and brain changes in neuromyelitis optica (NMO) and multiple sclerosis (MS) and their associations with disability progression. We recruited 28 NMO, 22 MS, and 20 healthy controls (HC), who underwent both spinal cord and brain MRI at baseline. Twenty-five NMO and 20 MS completed 1-year follow-up. Baseline spinal cord and brain lesion loads, mean upper cervical cord area (MUCCA), brain, and thalamus volume and their changes during a 1-year follow-up were measured and compared between groups. All the measurements were also compared between progressive and non-progressive groups in NMO and MS. MUCCA decreased significantly during the 1-year follow-up in NMO not in MS. Percentage brain volume changes (PBVC) and thalamus volume changes in MS were significantly higher than NMO. MUCCA changes were significantly different between progressive and non-progressive groups in NMO, while baseline brain lesion volume and PBVC were associated with disability progression in MS. MUCCA changes during 1-year follow-up showed association with clinical disability in NMO. Spinal cord atrophy changes were associated with disability progression in NMO, while baseline brain lesion load and whole brain atrophy changes were related to disability progression in MS. • Spinal cord atrophy progression was observed in NMO. • Spinal cord atrophy changes were associated with disability progression in NMO. • Brain lesion and atrophy were related to disability progression in MS.

  4. Associative memory cells and their working principle in the brain [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jin-Hui Wang

    2018-01-01

    Full Text Available The acquisition, integration and storage of exogenous associated signals are termed as associative learning and memory. The consequences and processes of associative thinking and logical reasoning based on these stored exogenous signals can be memorized as endogenous signals, which are essential for decision making, intention, and planning. Associative memory cells recruited in these primary and secondary associative memories are presumably the foundation for the brain to fulfill cognition events and emotional reactions in life, though the plasticity of synaptic connectivity and neuronal activity has been believed to be involved in learning and memory. Current reports indicate that associative memory cells are recruited by their mutual synapse innervations among co-activated brain regions to fulfill the integration, storage and retrieval of associated signals. The activation of these associative memory cells initiates information recall in the mind, and the successful activation of their downstream neurons endorses memory presentations through behaviors and emotion reactions. In this review, we aim to draw a comprehensive diagram for associative memory cells, working principle and modulation, as well as propose their roles in cognition, emotion and behaviors.

  5. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    Science.gov (United States)

    Takaya, Shigetoshi; Kuperberg, Gina R.; Liu, Hesheng; Greve, Douglas N.; Makris, Nikos; Stufflebeam, Steven M.

    2015-01-01

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that the left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. The unique feature of the left AF is discussed in the context of the human capacity for language. PMID:26441551

  6. Endophenotypes of Dementia Associated with Traumatic Brain Injury in Retired Military Personnel

    Science.gov (United States)

    2014-10-01

    chronic  traumatic  encephalopathy  (CTE), post‐traumatic  stress disorder (PTSD), aging  Overall Project Summary  Task 1: Screen retired military service...in individuals with TBI exists, which has relevance for future treatment. 15. SUBJECT TERMS Traumatic brain injury (TBI), dementia, chronic traumatic... encephalopathy (CTE), post-traumatic stress disorder (PTSD), aging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES

  7. Normobaric hyperoxia is associated with increased cerebral excitotoxicity after severe traumatic brain injury.

    Science.gov (United States)

    Quintard, Hervé; Patet, Camille; Suys, Tamarah; Marques-Vidal, Pedro; Oddo, Mauro

    2015-04-01

    Normobaric oxygen therapy is frequently applied in neurocritical care, however, whether supplemental FiO2 has beneficial cerebral effects is still controversial. We examined in patients with severe traumatic brain injury (TBI) the effect of incremental FiO2 on cerebral excitotoxicity, quantified by cerebral microdialysis (CMD) glutamate. This was a retrospective analysis of a database of severe TBI patients monitored with CMD and brain tissue oxygen (PbtO2). The relationship of FiO2--categorized into four separate ranges (80 %)--with CMD glutamate was examined using ANOVA with Tukey's post hoc test. A total of 1,130 CMD samples from 36 patients--monitored for a median of 4 days--were examined. After adjusting for brain (PbtO2, intracranial pressure, cerebral perfusion pressure, lactate/pyruvate ratio, Marshall CT score) and systemic (PaCO2, PaO2, hemoglobin, APACHE score) covariates, high FiO2 was associated with a progressive increase in CMD glutamate [8.8 (95 % confidence interval 7.4-10.2) µmol/L at FiO2 80 %; multivariate-adjusted p CMD glutamate was lower for samples with normal versus low PbtO2 40 % vs. FiO2 > 60 %). Hyperoxia (PaO2 > 150 mmHg) was also associated with increased CMD glutamate (adjusted p oxygen may aggravate secondary brain damage after severe TBI.

  8. Problematic internet use is associated with structural alterations in the brain reward system in females.

    Science.gov (United States)

    Altbäcker, Anna; Plózer, Enikő; Darnai, Gergely; Perlaki, Gábor; Horváth, Réka; Orsi, Gergely; Nagy, Szilvia Anett; Bogner, Péter; Schwarcz, Attila; Kovács, Norbert; Komoly, Sámuel; Clemens, Zsófia; Janszky, József

    2016-12-01

    Neuroimaging findings suggest that excessive Internet use shows functional and structural brain changes similar to substance addiction. Even though it is still under debate whether there are gender differences in case of problematic use, previous studies by-passed this question by focusing on males only or by using gender matched approach without controlling for potential gender effects. We designed our study to find out whether there are structural correlates in the brain reward system of problematic Internet use in habitual Internet user females. T1-weighted Magnetic Resonance (MR) images were collected in 82 healthy habitual Internet user females. Structural brain measures were investigated using both automated MR volumetry and voxel based morphometry (VBM). Self-reported measures of problematic Internet use and hours spent online were also assessed. According to MR volumetry, problematic Internet use was associated with increased grey matter volume of bilateral putamen and right nucleus accumbens while decreased grey matter volume of orbitofrontal cortex (OFC). Similarly, VBM analysis revealed a significant negative association between the absolute amount of grey matter OFC and problematic Internet use. Our findings suggest structural brain alterations in the reward system usually related to addictions are present in problematic Internet use.

  9. The associations of depression and hypertension with brain volumes: Independent or interactive?

    Directory of Open Access Journals (Sweden)

    Maaike Meurs

    2015-01-01

    Full Text Available Independent studies on major depressive disorder (MDD and hypertension, suggest overlapping abnormalities in brain regions associated with emotional and autonomic processing. However, the unique and interactive effects of MDD and hypertension have never been studied in a single sample. Brain volume in these areas may be an explanatory link in the comorbidity between MDD and hypertension. Voxel-based morphometry was used to test for main effects of MDD (N = 152 and hypertension (N = 82 and their interactions on gray and white matter volumes. Voxel-wise results are reported at p < .05 FWE corrected for the spatial extent of the whole brain and a-priori regions of interest (ROIs: hippocampus, anterior cingulate cortex (ACC and inferior frontal gyrus (IFG. In addition, analyses on the extracted total volumes of our ROIs were performed. Interactive effects in the mid-cingulate cortex (MCC (pFWE = .01, cerebellum (pFWE = .01 and in the ACC total ROI volume (p = .02 were found. MDD in the presence, but not in the absence of hypertension was associated with lower volumes in the ACC and MCC, and with a trend towards larger gray matter volume in the cerebellum. No associations with white matter volumes were observed. Results suggest that the combination of MDD and hypertension has a unique effect on brain volumes in areas implicated in the regulation of emotional and autonomic functions. Brain volume in these regulatory areas may be an explanatory link in the comorbidity between hypertension and MDD.

  10. Eye tracking detects disconjugate eye movements associated with structural traumatic brain injury and concussion.

    Science.gov (United States)

    Samadani, Uzma; Ritlop, Robert; Reyes, Marleen; Nehrbass, Elena; Li, Meng; Lamm, Elizabeth; Schneider, Julia; Shimunov, David; Sava, Maria; Kolecki, Radek; Burris, Paige; Altomare, Lindsey; Mehmood, Talha; Smith, Theodore; Huang, Jason H; McStay, Christopher; Todd, S Rob; Qian, Meng; Kondziolka, Douglas; Wall, Stephen; Huang, Paul

    2015-04-15

    Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. We prospectively eye tracked 64 normal healthy noninjured control subjects and compared findings to 75 trauma subjects with either a positive head computed tomography (CT) scan (n=13), negative head CT (n=39), or nonhead injury (n=23) to determine whether eye tracking would reveal the disconjugate gaze associated with both structural brain injury and concussion. Tracking metrics were then correlated to the clinical concussion measure Sport Concussion Assessment Tool 3 (SCAT3) in trauma patients. Five out of five measures of horizontal disconjugacy were increased in positive and negative head CT patients relative to noninjured control subjects. Only one of five vertical disconjugacy measures was significantly increased in brain-injured patients relative to controls. Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury.

  11. Brain activation patterns of motor imagery reflect plastic changes associated with intensive shooting training.

    Science.gov (United States)

    Baeck, Jong-Su; Kim, Yang-Tae; Seo, Jee-Hye; Ryeom, Hun-Kyu; Lee, Jongmin; Choi, Sung-Mook; Woo, Minjung; Kim, Woojong; Kim, Jin Gu; Chang, Yongmin

    2012-09-01

    Evidence from previous studies has suggested that motor imagery and motor action engage overlapping brain systems. As a result of this observation that motor imagery can activate brain regions associated with actual motor movement, motor imagery is expected to enhance motor skill performance and become an underlying principle for physical training in sports and physical rehabilitation. However, few studies have examined the effects of physical training on motor imagery in beginners. Also, differences in neural networks related to motor imagery before and after training have seldom been studied. In the current study, using functional magnetic resonance imaging (fMRI), we investigated the question of whether motor imagery can reflect plastic changes of neural correlates associated with intensive training. In fact, motor imagery was used in this study as a tool to assess the brain areas involved in shooting and involved in learning of shooting. We discovered that use of motor imagery resulted in recruitment of widely distributed common cortical areas, which were suggested to play a role in generation and maintenance of mental images before and after 90 h of shooting training. In addition to these common areas, brain activation before and after 90 h of shooting practice showed regionally distinct patterns of activity change in subcortical motor areas. That is, basal ganglia showed increased activity after 90 h of shooting practice, suggesting the occurrence of plastic change in association with gains in performance and reinforcement learning. Therefore, our results suggest that, in order to reach a level of expertise, the brain would change through initial reinforcement of preexistent connections during the training period and then use more focused neural correlates through formation of new connections. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Project Career: An individualized postsecondary approach to promoting independence, functioning, and employment success among students with traumatic brain injuries.

    Science.gov (United States)

    Minton, Deborah; Elias, Eileen; Rumrill, Phillip; Hendricks, Deborah J; Jacobs, Karen; Leopold, Anne; Nardone, Amanda; Sampson, Elaine; Scherer, Marcia; Gee Cormier, Aundrea; Taylor, Aiyana; DeLatte, Caitlin

    2017-09-14

    Project Career is a five-year interdisciplinary demonstration project funded by NIDILRR. It provides technology-driven supports, merging Cognitive Support Technology (CST) evidence-based practices and rehabilitation counseling, to improve postsecondary and employment outcomes for veteran and civilian undergraduate students with traumatic brain injury (TBI). Provide a technology-driven individualized support program to improve career and employment outcomes for students with TBI. Project staff provide assessments of students' needs relative to assistive technology, academic achievement, and career preparation; provide CST training to 150 students; match students with mentors; provide vocational case management; deliver job development and placement assistance; and maintain an electronic portal regarding accommodation and career resources. Participating students receive cognitive support technology training, academic enrichment, and career preparatory assistance from trained professionals at three implementation sites. Staff address cognitive challenges using the 'Matching Person with Technology' assessment to accommodate CST use (iPad and selected applications (apps)). JBS International (JBS) provides the project's evaluation. To date, 117 students participate with 63% report improved life quality and 75% report improved academic performance. Project Career provides a national model based on best practices for enabling postsecondary students with TBI to attain academic, employment, and career goals.

  13. Brain structure-function associations in multi-generational families genetically enriched for bipolar disorder.

    Science.gov (United States)

    Fears, Scott C; Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C; Aldana, Ileana; Teshiba, Terri M; Abaryan, Zvart; Al-Sharif, Noor B; Navarro, Linda; Tishler, Todd A; Altshuler, Lori; Bartzokis, George; Escobar, Javier I; Glahn, David C; Thompson, Paul M; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I; Sabatti, Chiara; Cantor, Rita M; Freimer, Nelson B; Bearden, Carrie E

    2015-07-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain-behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain-behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18-87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain-behaviour associations and test whether brain-behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain-behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family

  14. The transitional association between β-amyloid pathology and regional brain atrophy.

    Science.gov (United States)

    Insel, Philip S; Mattsson, Niklas; Donohue, Michael C; Mackin, R Scott; Aisen, Paul S; Jack, Clifford R; Shaw, Leslie M; Trojanowski, John Q; Weiner, Michael W

    2015-10-01

    Alzheimer's disease (AD) is characterized by the accumulation of β-amyloid (Aβ) associated with brain atrophy and cognitive decline. The functional form to model the association between Aβ and regional brain atrophy has not been well defined. To determine the relationship between Aβ and atrophy, we compared the performance of the usual dichotomization of cerebrospinal fluid (CSF) Aβ to identify subjects as Aβ+ and Aβ- with a trilinear spline model of CSF Aβ. One hundred and eighty-three subjects with mild cognitive impairment and 108 cognitively normal controls with baseline CSF Aβ and up to 4 years of longitudinal magnetic resonance imaging data from the Alzheimer's Disease Neuroimaging Initiative were analyzed using mixed-effects regression. Piecewise-linear splines were used to evaluate the nonlinear nature of the association between CSF Aβ and regional atrophy and to identify points of acceleration of atrophy with respect to Aβ. Several parameterizations of CSF Aβ were compared using likelihood ratio tests and the Akaike information criterion. Periods of acceleration of atrophy in which subjects transition from CSF Aβ negativity to CSF Aβ positivity were estimated from the spline models and tested for significance. Spline models resulted in better fits for many temporal and parietal regions compared with the dichotomous models. The trilinear model showed that periods of acceleration of atrophy varied greatly by region with early changes seen in the insula, amygdala, precuneus, hippocampus, and other temporal regions, occurring before the clinical threshold for CSF Aβ positivity. The use of piecewise-linear splines provides an improved model of the nonlinear association between CSF Aβ and regional atrophy in regions implicated in the progression of AD. The important biological finding of this work is that some brain regions show periods of accelerated volume loss well before the CSF Aβ42 threshold. This implies that signs of brain atrophy

  15. From "Where" to "What": Distributed Representations of Brand Associations in the Human Brain.

    Science.gov (United States)

    Chen, Yu-Ping; Nelson, Leif D; Hsu, Ming

    2015-08-01

    Considerable attention has been given to the notion that there exists a set of human-like characteristics associated with brands, referred to as brand personality. Here we combine newly available machine learning techniques with functional neuroimaging data to characterize the set of processes that give rise to these associations. We show that brand personality traits can be captured by the weighted activity across a widely distributed set of brain regions previously implicated in reasoning, imagery, and affective processing. That is, as opposed to being constructed via reflective processes, brand personality traits appear to exist a priori inside the minds of consumers, such that we were able to predict what brand a person is thinking about based solely on the relationship between brand personality associations and brain activity. These findings represent an important advance in the application of neuroscientific methods to consumer research, moving from work focused on cataloguing brain regions associated with marketing stimuli to testing and refining mental constructs central to theories of consumer behavior.

  16. 5-HTTLPR moderates the association between interdependence and brain responses to mortality threats.

    Science.gov (United States)

    Luo, Siyang; Yu, Dian; Han, Shihui

    2017-09-17

    While behavioral research suggests an association between cultural worldview and decreased anxiety of death, the underlying neurobiological mechanisms remain unclear. Using functional MRI, we investigated whether and how the serotonin transporter promoter polymorphism (5-HTTLPR), which has been associated with mental disorders such as anxiety and depression, moderates the associations between a cultural trait (i.e., interdependence) and self-report of death anxiety/depression and between interdependence and brain responses to mortality threats. Long/long and short/short allele carriers of the 5-HTTLPR were scanned using fMRI while they performed a one-back task on death-related, death-unrelated negative, and neutral words. Participants' interdependence and death anxiety/depression were assessed using questionnaires after scanning. We found that participants who assessed themselves with greater interdependence reported lower death anxiety/depression and showed decreased neural response to death-related words in emotion-related brain regions including the anterior cingulate, putamen, and thalamus. However, these results were evident in long/long allele carriers of the 5-HTTLPR but not in short/short allele carriers who even showed positive associations between interdependence and neural activities in the anterior cingulate, putamen and thalamus in response to death-related words. Our findings suggest candidate mechanisms for explaining the complex relationship between genotype, cultural traits, and mental/neural responses to mortality threats. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Association between Severe Upper Limb Spasticity and Brain Lesion Location in Stroke Patients

    Directory of Open Access Journals (Sweden)

    Alessandro Picelli

    2014-01-01

    Full Text Available Association between the site of brain injury and poststroke spasticity is poorly understood. The present study investigated whether lesion analysis could document brain regions associated with the development of severe upper limb poststroke spasticity. A retrospective analysis was conducted on 39 chronic stroke patients. Spasticity was assessed at the affected upper limb with the modified Ashworth scale (shoulder, elbow, wrist, and fingers. Brain lesions were traced from magnetic resonance imaging performed within the first 7 days after stroke and region of interest images were generated. The association between severe upper limb spasticity (modified Ashworth scale ≥2 and lesion location was determined with the voxel-based lesion-symptom mapping method implemented in MRIcro software. Colored maps representing the z statistics were generated and overlaid onto the automated anatomical labeling and the Johns Hopkins University white matter templates provided with MRIcron. Thalamic nuclei were identified with the Talairach Daemon software. Injuries to the insula, the thalamus, the basal ganglia, and white matter tracts (internal capsule, corona radiata, external capsule, and superior longitudinal fasciculus were significantly associated with severe upper limb poststroke spasticity. Further advances in our understanding of the neural correlates of spasticity may lead to early targeted rehabilitation when key regions are damaged.

  18. Glutathione Peroxidase 4 is associated with Neuromelanin in Substantia Nigra and Dystrophic Axons in Putamen of Parkinson's brain

    Directory of Open Access Journals (Sweden)

    Manning-Boğ Amy B

    2011-01-01

    Full Text Available Abstract Background Parkinson's disease is a neurodegenerative disorder characterized pathologically by the loss of nigrostriatal dopamine neurons that project from the substantia nigra in the midbrain to the putamen and caudate nuclei, leading to the clinical features of bradykinesia, rigidity, and rest tremor. Oxidative stress from oxidized dopamine and related compounds may contribute to the degeneration characteristic of this disease. Results To investigate a possible role of the phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4 in protection from oxidative stress, we investigated GPX4 expression in postmortem human brain tissue from individuals with and without Parkinson's disease. In both control and Parkinson's samples, GPX4 was found in dopaminergic nigral neurons colocalized with neuromelanin. Overall GPX4 was significantly reduced in substantia nigra in Parkinson's vs. control subjects, but was increased relative to the cell density of surviving nigral cells. In putamen, GPX4 was concentrated within dystrophic dopaminergic axons in Parkinson's subjects, although overall levels of GPX4 were not significantly different compared to control putamen. Conclusions This study demonstrates an up-regulation of GPX4 in neurons of substantia nigra and association of this protein with dystrophic axons in striatum of Parkinson's brain, indicating a possible neuroprotective role. Additionally, our findings suggest this enzyme may contribute to the production of neuromelanin.

  19. Association of Perivascular Localization of Aquaporin-4 With Cognition and Alzheimer Disease in Aging Brains.

    Science.gov (United States)

    Zeppenfeld, Douglas M; Simon, Matthew; Haswell, J Douglas; D'Abreo, Daryl; Murchison, Charles; Quinn, Joseph F; Grafe, Marjorie R; Woltjer, Randall L; Kaye, Jeffrey; Iliff, Jeffrey J

    2017-01-01

    Cognitive impairment and dementia, including Alzheimer disease (AD), are common within the aging population, yet the factors that render the aging brain vulnerable to these processes are unknown. Perivascular localization of aquaporin-4 (AQP4) facilitates the clearance of interstitial solutes, including amyloid-β, through the brainwide network of perivascular pathways termed the glymphatic system, which may be compromised in the aging brain. To determine whether alterations in AQP4 expression or loss of perivascular AQP4 localization are features of the aging human brain and to define their association with AD pathology. Expression of AQP4 was analyzed in postmortem frontal cortex of cognitively healthy and histopathologically confirmed individuals with AD by Western blot or immunofluorescence for AQP4, amyloid-β 1-42, and glial fibrillary acidic protein. Postmortem tissue and clinical data were provided by the Oregon Health and Science University Layton Aging and Alzheimer Disease Center and Oregon Brain Bank. Postmortem tissue from 79 individuals was evaluated, including cognitively intact "young" individuals aged younger than 60 years (range, 33-57 years), cognitively intact "aged" individuals aged older than 60 years (range, 61-96 years) with no known neurological disease, and individuals older than 60 years (range, 61-105 years) of age with a clinical history of AD confirmed by histopathological evaluation. Forty-eight patient samples (10 young, 20 aged, and 18 with AD) underwent histological analysis. Sixty patient samples underwent Western blot analysis (15 young, 24 aged, and 21 with AD). Expression of AQP4 protein, AQP4 immunoreactivity, and perivascular AQP4 localization in the frontal cortex were evaluated. Expression of AQP4 was associated with advancing age among all individuals (R2 = 0.17; P = .003). Perivascular AQP4 localization was significantly associated with AD status independent of age (OR, 11.7 per 10% increase in localization; z

  20. Correlation between brain damage, associated biomarkers, and medication in psychiatric inpatients: A cross-sectional study.

    Science.gov (United States)

    Yoshida, Madoka; Kanzaki, Tetsuto; Mizoi, Mutsumi; Nakamura, Mizuho; Uemura, Takeshi; Mimori, Seisuke; Uju, Yoriyasu; Sekine, Keisuke; Ishii, Yukihiro; Yoshimi, Taro; Yasui, Reiko; Yasukawa, Asuka; Sato, Mamoru; Okamoto, Seiko; Hisaoka, Tetsuya; Miura, Masafumi; Kusanishi, Shun; Murakami, Kanako; Nakano, Chieko; Mizuta, Yasuhiko; Mishima, Shunichi; Hayakawa, Tatsuro; Tsukada, Kazumi; Kashiwagi, Keiko; Igarashi, Kazuei

    2017-01-01

    We clarified the correlation between brain damage, associated biomarkers and medication in psychiatric patients, because patients with schizophrenia have an increased risk of stroke. The cross-sectional study was performed from January 2013 to December 2015. Study participants were 96 hospitalized patients (41 men and 55 women) in the Department of Psychiatry at Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan. Patients were classified into schizophrenia (n=70) and mood disorders (n=26) by psychiatric diagnoses with DSM-IV-TR criteria. The incidence of brain damage [symptomatic and silent brain infarctions (SBIs) and white matter hyperintensity (WMH)] was correlated more with mood disorders than with schizophrenia. It has been previously shown that the concentrations of protein-conjugated acrolein (PC-Acro) and interleukin-6 (IL-6) increased in plasma of brain infarction patients together with C-reactive protein (CRP). The concentration of PC-Acro was significantly higher in patients with mood disorders than in those with schizophrenia. The concentration of IL-6 in both groups was nearly equal to that in the control group, but that of CRP in both groups, especially in mood disorders, was higher than that in the control group. Accordingly, the relative risk value for brain infarction was higher in patients with mood disorders than with schizophrenia. Medication with atypical antipsychotics reduced PC-Acro significantly in all psychiatric patients and reduced IL-6 in mood disorder patients. Measurement of 3 biomarkers (CRP, PC-Acro and IL-6) are probably useful for judgement of severity of brain damage and effectiveness of medication in psychiatric patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Asynchronous BCI and local neural classifiers: an overview of the Adaptive Brain Interface project.

    Science.gov (United States)

    Millán, José del R; Mouriño, Josep

    2003-06-01

    In this communication, we give an overview of our work on an asynchronous brain-computer interface (where the subject makes self-paced decisions on when to switch from one mental task to the next) that responds every 0.5 s. A local neural classifier tries to recognize three different mental tasks; it may also respond "unknown" for uncertain samples as the classifier has incorporated statistical rejection criteria. We report our experience with 15 subjects. We also briefly describe two brain-actuated applications we have developed: a virtual keyboard and a mobile robot (emulating a motorized wheelchair).

  2. Human Brain Abnormalities Associated With Prenatal Alcohol Exposure and Fetal Alcohol Spectrum Disorder.

    Science.gov (United States)

    Jarmasz, Jessica S; Basalah, Duaa A; Chudley, Albert E; Del Bigio, Marc R

    2017-09-01

    Fetal alcohol spectrum disorder (FASD) is a common neurodevelopmental problem, but neuropathologic descriptions are rare and focused on the extreme abnormalities. We conducted a retrospective survey (1980-2016) of autopsies on 174 individuals with prenatal alcohol exposure or an FASD diagnosis. Epidemiologic details and neuropathologic findings were categorized into 5 age groups. Alcohol exposure was difficult to quantify. When documented, almost all mothers smoked tobacco, many abused other substances, and prenatal care was poor or nonexistent. Placental abnormalities were common (68%) in fetal cases. We identified micrencephaly (brain weight brain abnormalities associated with prenatal alcohol exposure are varied; cause-effect relationships cannot be determined. FASD is likely not a monotoxic disorder. The animal experimental literature, which emphasizes controlled exposure to ethanol alone, is therefore inadequate. Prevention must be the main societal goal, however, a clear understanding of the neuropathology is necessary for provision of care to individuals already affected. © 2017 American Association of Neuropathologists, Inc.

  3. Childhood brain tumour risk and its association with wireless phones: a commentary

    Directory of Open Access Journals (Sweden)

    Söderqvist Fredrik

    2011-12-01

    Full Text Available Abstract Case-control studies on adults point to an increased risk of brain tumours (glioma and acoustic neuroma associated with the long-term use of mobile phones. Recently, the first study on mobile phone use and the risk of brain tumours in children and adolescents, CEFALO, was published. It has been claimed that this relatively small study yielded reassuring results of no increased risk. We do not agree. We consider that the data contain several indications of increased risk, despite low exposure, short latency period, and limitations in the study design, analyses and interpretation. The information certainly cannot be used as reassuring evidence against an association, for reasons that we discuss in this commentary.

  4. Association Between Motor Symptoms and Brain Metabolism in Early Huntington Disease.

    Science.gov (United States)

    Gaura, Véronique; Lavisse, Sonia; Payoux, Pierre; Goldman, Serge; Verny, Christophe; Krystkowiak, Pierre; Damier, Philippe; Supiot, Frédéric; Bachoud-Levi, Anne-Catherine; Remy, Philippe

    2017-09-01

    Brain hypometabolism is associated with the clinical consequences of the degenerative process, but little is known about regional hypermetabolism, sometimes observed in the brain of patients with clinically manifest Huntington disease (HD). Studying the role of regional hypermetabolism is needed to better understand its interaction with the motor symptoms of the disease. To investigate the association between brain hypometabolism and hypermetabolism with motor scores of patients with early HD. This study started in 2001, and analysis was completed in 2016. Sixty symptomatic patients with HD and 15 healthy age-matched control individuals underwent positron emission tomography to measure cerebral metabolism in this cross-sectional study. They also underwent the Unified Huntington's Disease Rating Scale motor test, and 2 subscores were extracted: (1) a hyperkinetic score, combining dystonia and chorea, and (2) a hypokinetic score, combining bradykinesia and rigidity. Statistical parametric mapping software (SPM5) was used to identify all hypo- and hypermetabolic regions in patients with HD relative to control individuals. Correlation analyses (P < .001, uncorrected) between motor subscores and brain metabolic values were performed for regions with significant hypometabolism and hypermetabolism. Among 60 patients with HD, 22 were women (36.7%), and the mean (SD) age was 44.6 (7.6) years. Of the 15 control individuals, 7 were women (46.7%), and the mean (SD) age was 42.2 (7.3) years. In statistical parametric mapping, striatal hypometabolism was significantly correlated with the severity of all motor scores. Hypermetabolism was negatively correlated only with hypokinetic scores in the cuneus (z score = 3.95, P < .001), the lingual gyrus (z score = 4.31, P < .001), and the crus I/II of the cerebellum (z score = 3.77, P < .001), a region connected to associative cortical areas. More severe motor scores were associated with higher metabolic

  5. Medial temporal lobe contributions to intra-item associative recognition memory in the aging brain.

    Science.gov (United States)

    Dalton, Marshall Axel; Tu, Sicong; Hornberger, Michael; Hodges, John Russel; Piguet, Olivier

    2013-01-01

    Aging is associated with a decline in episodic memory function. This is accompanied by degradation of and functional changes in the medial temporal lobe (MTL) which subserves mnemonic processing. To date no study has investigated age-related functional change in MTL substructures during specific episodic memory processes such as intra-item associative memory. The aim of this study was to characterize age-related change in the neural correlates of intra-item associative memory processing. Sixteen young and 10 older subjects participated in a compound word intra-item associative memory task comprising a measure of associative recognition memory and a measure of recognition memory. There was no difference in performance between groups on the associative memory measure but each group recruited different MTL regions while performing the task. The young group recruited the left anterior hippocampus and posterior parahippocampal gyrus whereas the older participants recruited the hippocampus bilaterally. In contrast, recognition memory was significantly worse in the older subjects. The left anterior hippocampus was recruited in the young group during successful recognition memory whereas the older group recruited a more posterior region of the left hippocampus and showed a more bilateral activation of frontal brain regions than was observed in the young group. Our results suggest a reorganization of the neural correlates of intra-item associative memory in the aging brain.

  6. Medial temporal lobe contributions to intra-item associative recognition memory in the ageing brain

    Directory of Open Access Journals (Sweden)

    Marshall Axel Dalton

    2014-01-01

    Full Text Available Ageing is associated with a decline in episodic memory function. This is accompanied by degradation of and functional changes in the medial temporal lobe (MTL which subserves mnemonic processing. To date no study has investigated age related functional change in MTL substructures during specific episodic memory processes such as intra-item associative memory. The aim of this study was to characterise age related change in the neural correlates of intra-item associative memory processing. 16 young and 10 older subjects participated in a compound word intra-item associative memory task comprising a measure of associative recognition memory and a measure of recognition memory. There was no difference in performance between groups on the associative memory measure but each group recruited different MTL regions while performing the task. The young group recruited the left anterior hippocampus and posterior parahippocampal gyrus whereas the older participants recruited the hippocampus bilaterally. In contrast, recognition memory was significantly worse in the older subjects. The left anterior hippocampus was recruited in the young group during successful recognition memory whereas the older group recruited a more posterior region of the left hippocampus and showed a more bilateral activation of frontal brain regions than was observed in the young group. Our results suggest a reorganisation of the neural correlates of intra-item associative memory in the ageing brain.

  7. Effects of Prior-Knowledge on Brain Activation and Connectivity During Associative Memory Encoding.

    Science.gov (United States)

    Liu, Zhong-Xu; Grady, Cheryl; Moscovitch, Morris

    2017-03-01

    Forming new associations is a fundamental process of building our knowledge system. At the brain level, how prior-knowledge influences acquisition of novel associations has not been thoroughly investigated. Based on recent cognitive neuroscience literature on multiple-component memory processing, we hypothesize that prior-knowledge triggers additional evaluative, semantic, or episodic-binding processes, mainly supported by the ventromedial prefrontal cortex (vmPFC), anterior temporal pole (aTPL), and hippocampus (HPC), to facilitate new memory encoding. To test this hypothesis, we scanned 20 human participants with functional magnetic resonance imaging (fMRI) while they associated novel houses with famous or nonfamous faces. Behaviorally, we found beneficial effects of prior-knowledge on associative memory. At the brain level, we found that the vmPFC and HPC, as well as the parahippocampal place area (PPA) and fusiform face area, showed stronger activation when famous faces were involved. The vmPFC, aTPL, HPC, and PPA also exhibited stronger activation when famous faces elicited stronger emotions and memories, and when associations were later recollected. Connectivity analyses also suggested that HPC connectivity with the vmPFC plays a more important role in the famous than nonfamous condition. Taken together, our results suggest that prior-knowledge facilitates new associative encoding by recruiting additional perceptual, evaluative, or associative binding processes. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Family factors associated with academic achievement deficits in pediatric brain tumor survivors.

    Science.gov (United States)

    Ach, Emily; Gerhardt, Cynthia A; Barrera, Maru; Kupst, Mary Jo; Meyer, Eugene A; Patenaude, Andrea F; Vannatta, Kathryn

    2013-08-01

    The purpose of this study is to examine whether parental education, socioeconomic status, or family environment moderate the extent of academic achievement deficits in pediatric brain tumor survivors (PBTS) relative to classmate case-controls. PBTS are known to be at risk for cognitive and academic impairment; however, the degree of impairment varies. Prior research has focused on treatment risk, and efforts to examine the protective role of family resources and relationships have been lacking. Pediatric brain tumor survivors (N = 164), ages 8-15 and 1-5 years posttreatment, were recruited at five treatment centers in the United States and Canada. A case-control classmate, matched for age, gender, and race, was recruited for each survivor. The Wide Range Achievement Test, a demographic form, and the Family Environment Scale were administered in families' homes. Treatment data were abstracted from medical charts. Pediatric brain tumor survivors demonstrated lower achievement than classmate-controls in reading, spelling, and arithmetic. Parental education and socioeconomic status were associated with levels of achievement demonstrated by PBTS but did not account for discrepancies between PBTS and classmate-controls. Deficits in achievement relative to classmate-controls, across all academic domains, were greater for survivors in families lower in support and higher in conflict. These associations remained after controlling for age at diagnosis, time since treatment, and whether treatment had involved chemotherapy, focal, or whole brain radiation. These results support the development of interventions to enhance family functioning as well as educational resources as part of intervention and rehabilitation services to optimize academic progress in children who have been treated for brain tumors. Copyright © 2012 John Wiley & Sons, Ltd.

  9. The effect of criticism on functional brain connectivity and associations with neuroticism.

    Directory of Open Access Journals (Sweden)

    Michelle Nadine Servaas

    Full Text Available Neuroticism is a robust personality trait that constitutes a risk factor for psychopathology, especially anxiety disorders and depression. High neurotic individuals tend to be more self-critical and are overly sensitive to criticism by others. Hence, we used a novel resting-state paradigm to investigate the effect of criticism on functional brain connectivity and associations with neuroticism. Forty-eight participants completed the NEO Personality Inventory Revised (NEO-PI-R to assess neuroticism. Next, we recorded resting state functional magnetic resonance imaging (rsfMRI during two sessions. We manipulated the second session before scanning by presenting three standardized critical remarks through headphones, in which the subject was urged to please lie still in the scanner. A seed-based functional connectivity method and subsequent clustering were used to analyse the resting state data. Based on the reviewed literature related to criticism, we selected brain regions associated with self-reflective processing and stress-regulation as regions of interest. The findings showed enhanced functional connectivity between the clustered seed regions and brain areas involved in emotion processing and social cognition during the processing of criticism. Concurrently, functional connectivity was reduced between these clusters and brain structures related to the default mode network and higher-order cognitive control. Furthermore, individuals scoring higher on neuroticism showed altered functional connectivity between the clustered seed regions and brain areas involved in the appraisal, expression and regulation of negative emotions. These results may suggest that the criticized person is attempting to understand the beliefs, perceptions and feelings of the critic in order to facilitate flexible and adaptive social behavior. Furthermore, multiple aspects of emotion processing were found to be affected in individuals scoring higher on neuroticism during

  10. Levels of organochlorine pesticides are associated with amyloid aggregation in apex avian brains

    OpenAIRE

    Heys, Kelly A.; Shore, Richard F.; Pereira, M. Gloria; Martin, Francis L.

    2017-01-01

    Organochlorine (OC) pesticides pose a significant environmental risk to wildlife and humans and have been associated with Alzheimer’s disease (AD). This study aims to spectroscopically analyse brains from free-flying birds and link the results to OC exposure and consequent amyloid aggregation. As long-lived apex predators, predatory birds represent a sentinel species similar to humans. Therefore, the results have implications for both species and may also add to our understanding of the role ...

  11. Reconfiguration of the Brain Functional Network Associated with Visual Task Demands.

    Directory of Open Access Journals (Sweden)

    Xue Wen

    Full Text Available Neuroimaging studies have demonstrated that the topological properties of resting-state brain functional networks are modulated through task performances. However, the reconfiguration of functional networks associated with distinct degrees of task demands is not well understood. In the present study, we acquired fMRI data from 18 healthy adult volunteers during resting-state (RS and two visual tasks (i.e., visual stimulus watching, VSW; and visual stimulus decision, VSD. Subsequently, we constructed the functional brain networks associated with these three conditions and analyzed the changes in the topological properties (e.g., network efficiency, wiring-cost, modularity, and robustness among them. Although the small-world attributes were preserved qualitatively across the functional networks of the three conditions, changes in the topological properties were also observed. Compared with the resting-state, the functional networks associated with the visual tasks exhibited significantly increased network efficiency and wiring-cost, but decreased modularity and network robustness. The changes in the task-related topological properties were modulated according to the task complexity (i.e., from RS to VSW and VSD. Moreover, at the regional level, we observed that the increased nodal efficiencies in the visual and working memory regions were positively associated with the increase in task complexity. Together, these results suggest that the increased efficiency of the functional brain network and higher wiring-cost were observed to afford the demands of visual tasks. These observations provide further insights into the mechanisms underlying the reconfiguration of the brain network during task performance.

  12. Associations between self-assessed masticatory ability and higher brain function among the elderly.

    Science.gov (United States)

    Moriya, Shingo; Tei, K; Murata, A; Yamazaki, Y; Hata, H; Muramatsu, M; Kitagawa, Y; Inoue, N; Miura, H

    2011-10-01

    Among the elderly, the quality of higher brain function is a contributing factor in performing activities of daily living. The aim of the study is to elucidate, epidemiologically, associations between mastication and higher brain function. A total of 208 community-dwelling elderly persons, aged 70-74 years, were enrolled. Self-assessed masticatory ability (masticatory ability) was classified into one of three categories: ability to chew all kinds of food, ability to chew only slightly hard food, or ability to chew only soft or pureed food. Brain function was assessed by four neuropsychological tests: Raven's Colored Progressive Matrices (RCPM) test, the Verbal Paired Associates 1 (VerPA) task and the Visual Paired Associates 1 task (from the Wechsler Memory Scale Revised Edition), and the Block Design subtest (from the Wechsler Adult Intelligence Scales-Third Edition). Correlations between masticatory ability and each test were examined using Spearman rank correlation coefficients. Multinominal logistic regression models were conducted with the neuropsychological tests as the dependent variables and masticatory ability as the principal independent variable to adjust for age, gender, educational background, social activity, drinking/smoking habits, chronic medical conditions and dental status. Significant correlations were found between the RCPM test, the VerPA task, the Block Design test and masticatory ability. In multinominal logistic regression models, poor masticatory ability was significantly and independently related to the categories under the mean-s.d. points compared with those of the mean ± s.d. ranges for RCPM test and the VerPA task. Significant associations may exist between mastication and higher brain function among the elderly. © 2011 Blackwell Publishing Ltd.

  13. Gender and iron genes may modify associations between brain iron and memory in healthy aging.

    Science.gov (United States)

    Bartzokis, George; Lu, Po H; Tingus, Kathleen; Peters, Douglas G; Amar, Chetan P; Tishler, Todd A; Finn, J Paul; Villablanca, Pablo; Altshuler, Lori L; Mintz, Jim; Neely, Elizabeth; Connor, James R

    2011-06-01

    Brain iron increases with age and is abnormally elevated early in the disease process in several neurodegenerative disorders that impact memory including Alzheimer's disease (AD). Higher brain iron levels are associated with male gender and presence of highly prevalent allelic variants in genes encoding for iron metabolism proteins (hemochromatosis H63D (HFE H63D) and transferrin C2 (TfC2)). In this study, we examined whether in healthy older individuals memory performance is associated with increased brain iron, and whether gender and gene variant carrier (IRON+) vs noncarrier (IRON-) status (for HFE H63D/TfC2) modify the associations. Tissue iron deposited in ferritin molecules can be measured in vivo with magnetic resonance imaging utilizing the field-dependent relaxation rate increase (FDRI) method. FDRI was assessed in hippocampus, basal ganglia, and white matter, and IRON+ vs IRON- status was determined in a cohort of 63 healthy older individuals. Three cognitive domains were assessed: verbal memory (delayed recall), working memory/attention, and processing speed. Independent of gene status, worse verbal-memory performance was associated with higher hippocampal iron in men (r=-0.50, p=0.003) but not in women. Independent of gender, worse verbal working memory performance was associated with higher basal ganglia iron in IRON- group (r=-0.49, p=0.005) but not in the IRON+ group. Between-group interactions (p=0.006) were noted for both of these associations. No significant associations with white matter or processing speed were observed. The results suggest that in specific subgroups of healthy older individuals, higher accumulations of iron in vulnerable gray matter regions may adversely impact memory functions and could represent a risk factor for accelerated cognitive decline. Combining genetic and MRI biomarkers may provide opportunities to design primary prevention clinical trials that target high-risk groups.

  14. Obesity Associated Cerebral Gray and White Matter Alterations Are Interrelated in the Female Brain.

    Directory of Open Access Journals (Sweden)

    Karsten Mueller

    Full Text Available Obesity is known to affect the brain's gray matter (GM and white matter (WM structure but the interrelationship of such changes remains unclear. Here we used T1-weighted magnetic resonance imaging (MRI in combination with voxel-based morphometry (VBM and diffusion-tensor imaging (DTI with tract-based spatial statistics (TBSS to assess the relationship between obesity-associated alterations of gray matter density (GMD and anisotropic water diffusion in WM, respectively. In a small cohort of lean to obese women, we confirmed previous reports of obesity-associated alterations of GMD in brain regions involved in executive control (i.e., dorsolateral prefrontal cortex, DLPFC and habit learning (i.e., dorsal striatum. Gray matter density alterations of the DLPFC were negatively correlated with radial diffusivity in the entire corpus callosum. Within the genu of the corpus callosum we found a positive correlation with axial diffusivity. In posterior region and inferior areas of the body of the corpus callosum, axial diffusivity correlated negatively with altered GMD in the dorsal striatum. These findings suggest that, in women, obesity-related alterations of GMD in brain regions involved in executive control and habit learning might relate to alterations of associated WM fiber bundles within the corpus callosum.

  15. Known glioma risk loci are associated with glioma with a family history of brain tumours

    DEFF Research Database (Denmark)

    Melin, Beatrice; Dahlin, Anna M; Andersson, Ulrika

    2013-01-01

    family history of brain tumours, defined as having at least one first- or second-degree relative with a history of brain tumour, are associated with known glioma risk loci. One thousand four hundred and thirty-one glioma cases and 2,868 cancer-free controls were identified from four case-control studies...... and two prospective cohorts from USA, Sweden and Denmark and genotyped for seven SNPs previously reported to be associated with glioma risk in case-control designed studies. Odds ratios were calculated by unconditional logistic regression. In analyses including glioma cases with a family history of brain...... tumours (n = 104) and control subjects free of glioma at baseline, three of seven SNPs were associated with glioma risk: rs2736100 (5p15.33, TERT), rs4977756 (9p21.3, CDKN2A-CDKN2B) and rs6010620 (20q13.33, RTEL1). After Bonferroni correction for multiple comparisons, only one marker was statistically...

  16. Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results

    Science.gov (United States)

    Szymkowicz, Sarah M.; Persson, Jonas; Lin, Tian; Fischer, Håkan; Ebner, Natalie C.

    2016-01-01

    Quick correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging (MRI), this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analysis of covariances (ANCOVAs) models with response time (RT) as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume (ICV). Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging. PMID:27610082

  17. B3GALNT2 is a gene associated with congenital muscular dystrophy with brain malformations.

    Science.gov (United States)

    Hedberg, Carola; Oldfors, Anders; Darin, Niklas

    2014-05-01

    Congenital muscular dystrophies associated with brain malformations are a group of disorders frequently associated with aberrant glycosylation of α-dystroglycan. They include disease entities such a Walker-Warburg syndrome, muscle-eye-brain disease and various other clinical phenotypes. Different genes involved in glycosylation of α-dystroglycan are associated with these dystroglycanopathies. We describe a 5-year-old girl with psychomotor retardation, ataxia, spasticity, muscle weakness and increased serum creatine kinase levels. Immunhistochemistry of skeletal muscle revealed reduced glycosylated α-dystroglycan. Magnetic resonance imaging of the brain at 3.5 years of age showed increased T2 signal from supratentorial and infratentorial white matter, a hypoplastic pons and subcortical cerebellar cysts. By whole exome sequencing, the patient was identified to be compound heterozygous for a one-base duplication and a missense mutation in the gene B3GALNT2 (β-1,3-N-acetylgalactosaminyltransferase 2; B3GalNAc-T2). This patient showed a milder phenotype than previously described patients with mutations in the B3GALNT2 gene.

  18. Childhood obstructive sleep apnea associates with neuropsychological deficits and neuronal brain injury.

    Directory of Open Access Journals (Sweden)

    Ann C Halbower

    2006-08-01

    Full Text Available Childhood obstructive sleep apnea (OSA is associated with neuropsychological deficits of memory, learning, and executive function. There is no evidence of neuronal brain injury in children with OSA. We hypothesized that childhood OSA is associated with neuropsychological performance dysfunction, and with neuronal metabolite alterations in the brain, indicative of neuronal injury in areas corresponding to neuropsychological function.We conducted a cross-sectional study of 31 children (19 with OSA and 12 healthy controls, aged 6-16 y group-matched by age, ethnicity, gender, and socioeconomic status. Participants underwent polysomnography and neuropsychological assessments. Proton magnetic resonance spectroscopic imaging was performed on a subset of children with OSA and on matched controls. Neuropsychological test scores and mean neuronal metabolite ratios of target brain areas were compared. Relative to controls, children with severe OSA had significant deficits in IQ and executive functions (verbal working memory and verbal fluency. Children with OSA demonstrated decreases of the mean neuronal metabolite ratio N-acetyl aspartate/choline in the left hippocampus (controls: 1.29, standard deviation [SD] 0.21; OSA: 0.91, SD 0.05; p = 0.001 and right frontal cortex (controls: 2.2, SD 0.4; OSA: 1.6, SD 0.4; p = 0.03.Childhood OSA is associated with deficits of IQ and executive function and also with possible neuronal injury in the hippocampus and frontal cortex. We speculate that untreated childhood OSA could permanently alter a developing child's cognitive potential.

  19. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality

    NARCIS (Netherlands)

    Jansma, J. M.; Ramsey, N.; Rutten, G.J.M.

    2015-01-01

    Aim. Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MM can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on

  20. Significant effects of antiretroviral therapy on global gene expression in brain tissues of patients with HIV-1-associated neurocognitive disorders.

    Directory of Open Access Journals (Sweden)

    Alejandra Borjabad

    2011-09-01

    Full Text Available Antiretroviral therapy (ART has reduced morbidity and mortality in HIV-1 infection; however HIV-1-associated neurocognitive disorders (HAND persist despite treatment. The reasons for the limited efficacy of ART in the brain are unknown. Here we used functional genomics to determine ART effectiveness in the brain and to identify molecular signatures of HAND under ART. We performed genome-wide microarray analysis using Affymetrix U133 Plus 2.0 Arrays, real-time PCR, and immunohistochemistry in brain tissues from seven treated and eight untreated HAND patients and six uninfected controls. We also determined brain virus burdens by real-time PCR. Treated and untreated HAND brains had distinct gene expression profiles with ART transcriptomes clustering with HIV-1-negative controls. The molecular disease profile of untreated HAND showed dysregulated expression of 1470 genes at p<0.05, with activation of antiviral and immune responses and suppression of synaptic transmission and neurogenesis. The overall brain transcriptome changes in these patients were independent of histological manifestation of HIV-1 encephalitis and brain virus burdens. Depending on treatment compliance, brain transcriptomes from patients on ART had 83% to 93% fewer dysregulated genes and significantly lower dysregulation of biological pathways compared to untreated patients, with particular improvement indicated for nervous system functions. However a core of about 100 genes remained similarly dysregulated in both treated and untreated patient brain tissues. These genes participate in adaptive immune responses, and in interferon, cell cycle, and myelin pathways. Fluctuations of cellular gene expression in the brain correlated in Pearson's formula analysis with plasma but not brain virus burden. Our results define for the first time an aberrant genome-wide brain transcriptome of untreated HAND and they suggest that antiretroviral treatment can be broadly effective in reducing

  1. Demographic and angioarchitectural features associated with seizures presentation in patients with brain arteriovenous malformations in Durban, KwaZulu-Natal, South Africa

    Directory of Open Access Journals (Sweden)

    Mogwale Samson Motebejane, MBChB, Mmed Neurosurg (UKZN, FC Neurosurg (SA

    2018-03-01

    Conclusion: Improved knowledge of specific morphological factors associated with brain AVM epilepsy could aid in the formulation of appropriate therapeutic strategies for control and/or cure of these brain AVM-associated seizures.

  2. Association of brain immune genes with social behavior of inbred mouse strains.

    Science.gov (United States)

    Ma, Li; Piirainen, Sami; Kulesskaya, Natalia; Rauvala, Heikki; Tian, Li

    2015-04-18

    Social deficit is one of the core symptoms of neuropsychiatric diseases, in which immune genes play an important role. Although a few immune genes have been shown to regulate social and emotional behaviors, how immune gene network(s) may jointly regulate sociability has not been investigated so far. To decipher the potential immune-mediated mechanisms underlying social behavior, we first studied the brain microarray data of eight inbred mouse strains with known variations in social behavior and retrieved the differentially expressed immune genes. We then made a protein-protein interaction analysis of them to find the major networks and explored the potential association of these genes with the behavior and brain morphology in the mouse phenome database. To validate the expression and function of the candidate immune genes, we selected the C57BL/6 J and DBA/2 J strains among the eight inbred strains, compared their social behaviors in resident-intruder and 3-chambered social tests and the mRNA levels of these genes, and analyzed the correlations of these genes with the social behaviors. A group of immune genes were differentially expressed in the brains of these mouse strains. The representative C57BL/6 J and DBA/2 J strains displayed significant differences in social behaviors, DBA/2 J mice being less active in social dominance and social interaction than C57BL/6 J mice. The mRNA levels of H2-d1 in the prefrontal cortex, hippocampus, and hypothalamus and C1qb in the hippocampus of the DBA/2 J strain were significantly down-regulated as compared to those in the C57BL/6 J strain. In contrast, Polr3b in the hippocampus and Tnfsf13b in the prefrontal cortex of the DBA/2 J strain were up-regulated. Furthermore, C1qb, Cx3cl1, H2-d1, H2-k1, Polr3b, and Tnfsf13b were predicted to be associated with various behavioral and brain morphological features across the eight inbred strains. Importantly, the C1qb mRNA level was confirmed to be significantly correlated with the

  3. Concurrent low brain and high liver uptake on FDG PET are associated with cardiovascular risk factors

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Yeol [Dept. of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon (Korea, Republic of); Jun, Sung Min [Dept. of Nuclear Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan (Korea, Republic of); Pak, Kyoung June; Kim, In Joo [Dept. of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan (Korea, Republic of)

    2017-04-15

    Concurrent low brain and high liver uptake are sometimes observed on fluorine-18-labeled fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET). We investigated the potential clinical significance of this uptake pattern related to metabolic syndrome (MS). We retrospectively reviewed data from 264 consecutive males who had undergone general health check-ups, including FDG PET/CT scans. After an overnight fast, the men had their peripheral blood drawn and the levels of various laboratory parameters measured; an FDG PET/CT scan was performed on the same day. We measured the maximum standardized uptake values of the brain and liver from regions of interest manually placed over the frontal cortex at the level of the centrum semiovale and the right lobe of the liver parenchyma, respectively. Fasting blood glucose (FBG; odds ratio [OR] = 1.063, p < 0.001) and glycated hemoglobin (HbA1c; OR = 3.634, p = 0.010) were the strongest predictive factors for low brain FDG uptake, whereas waist circumference (OR = 1.200, p < 0.001) and γ-glutamyl transpeptidase (OR = 1.012, p = 0.001) were the strongest predictive factors for high liver uptake. Eleven subjects (4.2%) showed concurrent low brain and high liver FDG uptake, and all but one of these subjects (90.9%) had MS. Systolic blood pressure, waist circumference, FBG, triglyceride, alanine aminotransferase, insulin resistance (measured by homeostasis model assessment), insulin, HbA1c, and body mass index were higher in subjects with this FDG uptake pattern than in those without (all, p < 0.001). Concurrent low brain and high liver FDG uptake were closely associated with MS. Moreover, subjects with this pattern had higher values for various cardiovascular risk factors than did those without.

  4. Role of Positive Parenting in the Association Between Neighborhood Social Disadvantage and Brain Development Across Adolescence.

    Science.gov (United States)

    Whittle, Sarah; Vijayakumar, Nandita; Simmons, Julian G; Dennison, Meg; Schwartz, Orli; Pantelis, Christos; Sheeber, Lisa; Byrne, Michelle L; Allen, Nicholas B

    2017-08-01

    The negative effects of socioeconomic disadvantage on lifelong functioning are pronounced, with some evidence suggesting that these effects are mediated by changes in brain development. To our knowledge, no research has investigated whether parenting might buffer these negative effects. To establish whether positive parenting behaviors moderate the effects of socioeconomic disadvantage on brain development and adaptive functioning in adolescents. In this longitudinal study of adolescents from schools in Melbourne, Australia, data were collected at 3 assessments between 2004 and 2012. Data were analyzed between August 2016 and April 2017. Both family (parental income-to-needs, occupation, and education level) and neighborhood measures of socioeconomic disadvantage were assessed. Positive maternal parenting behaviors were observed during interactions in early adolescence. Structural magnetic resonance imaging scans at 3 times (early, middle, and late adolescence) from ages 11 to 20 years. Global and academic functioning was assessed during late adolescence. We used linear mixed models to examine the effect of family and neighborhood socioeconomic disadvantage as well as the moderating effect of positive parenting on adolescent brain development. We used mediation models to examine whether brain developmental trajectories predicted functional outcomes during late adolescence. Of the included 166 adolescents, 86 (51.8%) were male. We found that neighborhood, but not family, socioeconomic disadvantage was associated with altered brain development from early (mean [SD] age, 12.79 [0.425] years) to late (mean [SD] age, 19.08 [0.460] years) adolescence, predominantly in the temporal lobes (temporal cortex: random field theory corrected; left amygdala: B, -0.237; P adolescence. Results have relevance for designing interventions for children from socioeconomically disadvantaged backgrounds.

  5. [Recurrent brain abscess associated with congenital pulmonary arteriovenous fistula: a case report].

    Science.gov (United States)

    Shioya, Hitoshi; Kikuchi, Kenji; Suda, Yoshitaka; Shindo, Kenjiro; Hashimoto, Manabu

    2004-01-01

    We report a rare case of recurrent brain abscess associated with congenital pulmonary arteriovenous fistula. A 52-year-old man was admitted to our hospital in October, 1999 because of a sudden stroke-like onset of right hemiparesis, right hemiparesthesia, dysarthria and sensory aphasia. He had a history of previous brain abscess in the right cerebellar hemisphere. It had been removed in 1991. CT scan at the time of the current admission disclosed a low-density area in the left parietal region. The mass was ring-enhanced after injection of contrast medium. On MRI the mass lesion was depicted as low-intensity on T1-weighted image and high-intensity on T2-weighted image. The mass was ring-enhanced after administration of Gd-DTPA. In spite of conservative treatment the size of the abscess increased considerably with marked surrounding edema. The brain abscess was successfully treated with aspiration and drainage, and the residual mass was resected. The patient also had a history of arteriovenous fistula in the lower lobe of his right lung. This had been excised in 1965. However, he had no signs, symptoms or family histories of hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber disease). Contrast enhanced CT scan of the chest showed nodular lesions connected to vascular shadows in the right lower lung field. Pulmonary angiograms also revealed multiple arteriovenous fistulas in the lower lobe of the right lung. He was not dyspneic or cyanotic, but his hypoxia, polycythemia, and recurrent brain abscess were thought to be caused by pulmonary arteriovenous fistula. The fistulas were embolized with coils via a percutaneous catheter. Pulmonary arteriovenous fistula should be treated aggressively either by surgery and/or by coil embolization in order to prevent the complication of brain abscess.

  6. Cortical brain volume abnormalities associated with few or multiple neuropsychiatric symptoms in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Lyssandra Dos Santos Tascone

    Full Text Available New research on assessing neuropsychiatric manifestations of Alzheimer´s Disease (AD involves grouping neuropsychiatric symptoms into syndromes. Yet this approach is limited by high inter-subject variability in neuropsychiatric symptoms and a relatively low degree of concordance across studies attempting to cluster neuropsychiatric symptoms into syndromes. An alternative strategy that involves dichotomizing AD subjects into those with few versus multiple neuropsychiatric symptoms is both consonant with real-world clinical practice and can contribute to understanding neurobiological underpinnings of neuropsychiatric symptoms in AD patients. The aim of this study was to address whether the number of neuropsychiatric symptoms (i.e., presence of few [≤2] versus multiple [≥3] symptoms in AD would be associated with degree of significant gray matter (GM volume loss. Of particular interest was volume loss in brain regions involved in memory, emotional processing and salience brain networks, including the prefrontal, lateral temporal and parietal cortices, anterior cingulate gyrus, temporo-limbic structures and insula. We recruited 19 AD patients and 13 healthy controls, which underwent an MRI and neuropsychiatric assessment. Regional brain volumes were determined using voxel-based morphometry and other advanced imaging processing methods. Our results indicated the presence of different patterns of GM atrophy in the two AD subgroups relative to healthy controls. AD patients with multiple neuropsychiatric manifestations showed more evident GM atrophy in the left superior temporal gyrus and insula as compared with healthy controls. In contrast, AD subjects with few neuropsychiatric symptoms displayed more GM atrophy in prefrontal regions, as well as in the dorsal anterior cingulate ad post-central gyri, as compared with healthy controls. Our findings suggest that the presence of multiple neuropsychiatric symptoms is more related to the degree of

  7. Factors associated with providing social security benefits for traumatic brain injury resulting from occupational accidents

    Directory of Open Access Journals (Sweden)

    Denismar Borges de Miranda

    2014-03-01

    Full Text Available INTRODUCTION: The Occupational Accident (OA is considered to be an important public health problem in Brazil. Traumatic Brain Injury (TBI is the most common among them. The TBI is associated with high morbidity and mortality rates among workers. OBJECTIVE: To identify factors associated with providing social security benefits for TBI due to occupational accidents according to the specific type of economic activity in Brazil, in 2009. METHODS: This is a cross-sectional study that was conducted with all workers who were part of the General Regime of Social Security (RGPS of Brazil. Secondary data were obtained from the National Information System Benefit, from the Synchronized National Register of the Ministry of Finance and from the General Register of Employed and Unemployed Persons. Data were analyzed using the multiple logistic regression method. RESULTS: We analyzed 2,006 cases of social security benefits for traumatic brain injury due to Occupational Accident. Factors associated with the concession of the benefit according to the economic activity of the Company of the beneficiary were identified. Associations were found with sex, income and the region of the Company. CONCLUSION: Factors associated with the concession of social security benefits by TBI resulting from OA differ depending on the type of economic activity in the study. Understanding these factors may contribute to the planning of preventive policies.

  8. Factors associated with providing social security benefits for traumatic brain injury resulting from occupational accidents.

    Science.gov (United States)

    de Miranda, Denismar Borges; Rego, Rita Franco; Viola, Denise Nunes; Lima, Verônica Maria Cadena; Teixeira, Edriene Barros

    2014-01-01

    The Occupational Accident (OA) is considered to be an important public health problem in Brazil. Traumatic Brain Injury (TBI) is the most common among them. The TBI is associated with high morbidity and mortality rates among workers. To identify factors associated with providing social security benefits for TBI due to occupational accidents according to the specific type of economic activity in Brazil, in 2009. This is a cross-sectional study that was conducted with all workers who were part of the General Regime of Social Security (RGPS) of Brazil. Secondary data were obtained from the National Information System Benefit, from the Synchronized National Register of the Ministry of Finance and from the General Register of Employed and Unemployed Persons. Data were analyzed using the multiple logistic regression method. We analyzed 2,006 cases of social security benefits for traumatic brain injury due to Occupational Accident. Factors associated with the concession of the benefit according to the economic activity of the Company of the beneficiary were identified. Associations were found with sex, income and the region of the Company. Factors associated with the concession of social security benefits by TBI resulting from OA differ depending on the type of economic activity in the study. Understanding these factors may contribute to the planning of preventive policies.

  9. Uniform brain tumor distribution and tumor associated macrophage targeting of systemically administered dendrimers.

    Science.gov (United States)

    Zhang, Fan; Mastorakos, Panagiotis; Mishra, Manoj K; Mangraviti, Antonella; Hwang, Lee; Zhou, Jinyuan; Hanes, Justin; Brem, Henry; Olivi, Alessandro; Tyler, Betty; Kannan, Rangaramanujam M

    2015-06-01

    Effective blood-brain tumor barrier penetration and uniform solid tumor distribution can significantly enhance therapeutic delivery to brain tumors. Hydroxyl-functionalized, generation-4 poly(amidoamine) (PAMAM) dendrimers, with their small size, near-neutral surface charge, and the ability to selectively localize in cells associated with neuroinflammation may offer new opportunities to address these challenges. In this study we characterized the intracranial tumor biodistribution of systemically delivered PAMAM dendrimers in an intracranial rodent gliosarcoma model using fluorescence-based quantification methods and high resolution confocal microscopy. We observed selective and homogeneous distribution of dendrimer throughout the solid tumor (∼6 mm) and peritumoral area within fifteen minutes after systemic administration, with subsequent accumulation and retention in tumor associated microglia/macrophages (TAMs). Neuroinflammation and TAMs have important growth promoting and pro-invasive effects in brain tumors. The rapid clearance of systemically administered dendrimers from major organs promises minimal off-target adverse effects of conjugated drugs. Therefore, selective delivery of immunomodulatory molecules to TAM, using hydroxyl PAMAM dendrimers, may hold promise for therapy of glioblastoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Increased determinism in brain electrical activity occurs in association with multiple sclerosis.

    Science.gov (United States)

    Carrubba, Simona; Minagar, Alireza; Chesson, Andrew L; Frilot, Clifton; Marino, Andrew A

    2012-04-01

    Increased determinism (decreased complexity) of brain electrical activity has been associated with some brain diseases. Our objective was to determine whether a similar association occurred for multiple sclerosis (MS). Ten subjects with a relapsing-remitting course of MS who were in remission were studied; the controls were age- and gender-matched clinically normal subjects. Recurrence plots were calculated using representative electroencephalogram (EEG) epochs (1-7 seconds) from six derivations; the plots were quantified using the nonlinear variables percent recurrence (%R) and percent determinism (%D). The results were averaged over all derivations for each participant, and the means were compared between the groups. As a linear control procedure the groups were also compared using spectral analysis. The mean±SD of %R for the MS subjects was 6·6±1·3%, compared with 5·1±1·3% in the normal group (P = 0·017), indicating that brain activity in the subjects with MS was less complex, as hypothesized. The groups were not distinguishable using %D or spectral analysis. Taken together with our earlier report that %R could be used to discriminate between MS and normal subjects based on the ability to exhibit evoked potentials, the evidence suggests that complexity analysis of the EEG has potential for development as a diagnostic test for MS.

  11. Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array

    Directory of Open Access Journals (Sweden)

    Sukru Burc Eryilmaz

    2014-07-01

    Full Text Available Recent advances in neuroscience together with nanoscale electronic device technology have resulted in huge interests in realizing brain-like computing hardwares using emerging nanoscale memory devices as synaptic elements. Although there has been experimental work that demonstrated the operation of nanoscale synaptic element at the single device level, network level studies have been limited to simulations. In this work, we demonstrate, using experiments, array level associative learning using phase change synaptic devices connected in a grid like configuration similar to the organization of the biological brain. Implementing Hebbian learning with phase change memory cells, the synaptic grid was able to store presented patterns and recall missing patterns in an associative brain-like fashion. We found that the system is robust to device variations, and large variations in cell resistance states can be accommodated by increasing the number of training epochs. We illustrated the tradeoff between variation tolerance of the network and the overall energy consumption, and found that energy consumption is decreased significantly for lower variation tolerance.

  12. Analyzing the association between functional connectivity of the brain and intellectual performance

    Directory of Open Access Journals (Sweden)

    Gustavo Santo Pedro Pamplona

    2015-02-01

    Full Text Available Measurements of functional connectivity support the hypothesis that the brain is composed of distinct networks with anatomically separated nodes but common functionality. A few studies have suggested that intellectual performance may be associated with greater functional connectivity in the fronto-parietal network and enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of the relationship between the brain's functional connectivity and intelligence scores derived from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III in a sample of 29 people, born and raised in Brazil. We examined functional connectivity between 82 regions, including graph theoretic properties of the overall network. Some previous findings were extended to the Portuguese-speaking population, specifically the presence of small-world organization of the brain and relationships of intelligence with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal gyrus and caudate nucleus. Verbal comprehension was associated with global network efficiency, a new finding.

  13. No association of COMT (Val158Met genotype with brain structure differences between men and women.

    Directory of Open Access Journals (Sweden)

    Anna Barnes

    Full Text Available We examined the effect of the catechol-O-methyltransferase (COMT Val158Met polymorphism (rs4680, on brain structure in a subset (N = 82 of general population members of the Northern Finland 1966 Birth Cohort, selected through a randomization procedure, aged 33-35. Optimised voxel-based morphometry was used to produce grey matter maps from each subject's high resolution T1 weighted brain magnetic resonance images, which were subsequently entered into a general linear model with COMT genotype as defined by Met allele loading, gender and genotype by gender interaction as independent variables. Additional analyses were carried out on grey matter volumes within the dorsal lateral pre-frontal cortex (DLPFC to examine effects on overall DLPFC volume and also using the DLPFC as a mask for voxelwise analyses, as this is an area previously reported as associated with Met allele loading. We failed to find any statistically significant association with grey matter volume and Met allele loading in the COMT gene or interaction affects between COMT and gender in either the whole brain voxel-wise analysis or in the area of the DLPFC.

  14. Preservation of structural brain network hubs is associated with less severe post-stroke aphasia.

    Science.gov (United States)

    Gleichgerrcht, Ezequiel; Kocher, Madison; Nesland, Travis; Rorden, Chris; Fridriksson, Julius; Bonilha, Leonardo

    2015-01-01

    Post-stroke aphasia is typically associated with ischemic damage to cortical areas or with loss of connectivity among spared brain regions. It remains unclear whether the participation of spared brain regions as networks hubs affects the severity of aphasia. We evaluated language performance and magnetic resonance imaging from 44 participants with chronic aphasia post-stroke. The individual structural brain connectomes were constructed from diffusion tensor. Hub regions were defined in accordance with the rich club classification and studied in relation with language performance. Number of remaining left hemisphere rich club nodes was associated with aphasia, including comprehension, repetition and naming sub-scores. Importantly, among participants with relative preservation of regions of interest for language, aphasia severity was lessened if the region was not only spared, but also participated in the remaining network as a rich club node: Brodmann area (BA) 44/45 - repetition (p = 0.009), BA 39 - repetition (p = 0.045) and naming (p aphasia severity after stroke.

  15. Efficient gene transfer into neurons in monkey brain by adeno-associated virus 8.

    Science.gov (United States)

    Masamizu, Yoshito; Okada, Takashi; Ishibashi, Hidetoshi; Takeda, Shin'ichi; Yuasa, Shigeki; Nakahara, Kiyoshi

    2010-04-21

    Although the adeno-associated virus (AAV) vector is a promising tool for gene transfer into neurons, especially for therapeutic purposes, neurotropism in primate brains is not fully elucidated for specific AAV serotypes. Here, we injected AAV serotype 8 (AAV8) vector carrying the enhanced green fluorescent protein (EGFP) gene under a ubiquitous promoter into the cerebral cortex, striatum and substantia nigra of common marmosets. Robust neuronal EGFP expression was observed at all injected sites. Cell typing with immunohistochemistry confirmed efficient AAV8-mediated gene transfer into the pyramidal neurons in the cortex, calbindin-positive medium spiny neurons in the striatum and dopaminergic neurons in the substantia nigra. The results indicate a preferential tropism of AAV8 for subsets of neurons, but not for glia, in monkey brains.

  16. Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma

    DEFF Research Database (Denmark)

    Hartings, Jed A; Watanabe, Tomas; Bullock, M Ross

    2011-01-01

    current shift of electrocorticographic recordings. In the focal ischaemic penumbra, peri-infarct depolarizations have prolonged direct current shifts and cause progressive recruitment of the penumbra into the core infarct. In traumatic brain injury, the effects of spreading depolarizations are unknown...... by negative direct current shifts, were associated with (i) isoelectricity or periodic epileptiform discharges; (ii) prolonged depression of spontaneous activity and (iii) occurrence in temporal clusters. Depolarizations with these characteristics are likely to reflect a worse prognosis.......Cortical spreading depolarizations occur spontaneously after ischaemic, haemorrhagic and traumatic brain injury. Their effects vary spatially and temporally as graded phenomena, from infarction to complete recovery, and are reflected in the duration of depolarization measured by the negative direct...

  17. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration

    Science.gov (United States)

    Pearson, Brandon L.; Simon, Jeremy M.; McCoy, Eric S.; Salazar, Gabriela; Fragola, Giulia; Zylka, Mark J.

    2016-01-01

    Environmental factors, including pesticides, have been linked to autism and neurodegeneration risk using retrospective epidemiological studies. Here we sought to prospectively identify chemicals that share transcriptomic signatures with neurological disorders, by exposing mouse cortical neuron-enriched cultures to hundreds of chemicals commonly found in the environment and on food. We find that rotenone, a pesticide associated with Parkinson's disease risk, and certain fungicides, including pyraclostrobin, trifloxystrobin, famoxadone and fenamidone, produce transcriptional changes in vitro that are similar to those seen in brain samples from humans with autism, advanced age and neurodegeneration (Alzheimer's disease and Huntington's disease). These chemicals stimulate free radical production and disrupt microtubules in neurons, effects that can be reduced by pretreating with a microtubule stabilizer, an antioxidant, or with sulforaphane. Our study provides an approach to prospectively identify environmental chemicals that transcriptionally mimic autism and other brain disorders. PMID:27029645

  18. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration.

    Science.gov (United States)

    Pearson, Brandon L; Simon, Jeremy M; McCoy, Eric S; Salazar, Gabriela; Fragola, Giulia; Zylka, Mark J

    2016-03-31

    Environmental factors, including pesticides, have been linked to autism and neurodegeneration risk using retrospective epidemiological studies. Here we sought to prospectively identify chemicals that share transcriptomic signatures with neurological disorders, by exposing mouse cortical neuron-enriched cultures to hundreds of chemicals commonly found in the environment and on food. We find that rotenone, a pesticide associated with Parkinson's disease risk, and certain fungicides, including pyraclostrobin, trifloxystrobin, famoxadone and fenamidone, produce transcriptional changes in vitro that are similar to those seen in brain samples from humans with autism, advanced age and neurodegeneration (Alzheimer's disease and Huntington's disease). These chemicals stimulate free radical production and disrupt microtubules in neurons, effects that can be reduced by pretreating with a microtubule stabilizer, an antioxidant, or with sulforaphane. Our study provides an approach to prospectively identify environmental chemicals that transcriptionally mimic autism and other brain disorders.

  19. Association of IQ Changes and Progressive Brain Changes in Patients With Schizophrenia.

    Science.gov (United States)

    Kubota, Manabu; van Haren, Neeltje E M; Haijma, Sander V; Schnack, Hugo G; Cahn, Wiepke; Hulshoff Pol, Hilleke E; Kahn, René S

    2015-08-01

    Although schizophrenia is characterized by impairments in intelligence and the loss of brain volume, the relationship between changes in IQ and brain measures is not clear. To investigate the association between IQ and brain measures in patients with schizophrenia across time. Case-control longitudinal study at the Department of Psychiatry at the University Medical Center Utrecht, Utrecht, the Netherlands, comparing patients with schizophrenia and healthy control participants between September 22, 2004, and April 17, 2008. Magnetic resonance imaging of the brain and IQ scores were obtained at baseline and the 3-year follow-up. Participants included 84 patients with schizophrenia (mean illness duration, 4.35 years) and 116 age-matched healthy control participants. Associations between changes in IQ and the total brain, cerebral gray matter, cerebral white matter, lateral ventricular, third ventricles, cortical, and subcortical volumes; cortical thickness; and cortical surface area. Cerebral gray matter volume (P = .006) and cortical volume (P = .03) and thickness (P = .02) decreased more in patients with schizophrenia across time compared with control participants. Patients showed additional loss in cortical volume and thickness of the right supramarginal, posterior superior temporal, left supramarginal, left postcentral, and occipital regions (P values were between IQ increased similarly in patients with schizophrenia and control participants, changes in IQ were negatively correlated with changes in lateral ventricular volume (P = .05) and positively correlated with changes in cortical volume (P = .007) and thickness (P = .004) only in patients with schizophrenia. Positive correlations between changes in IQ and cortical volume and thickness were found globally and in widespread regions across frontal, temporal, and parietal cortices (P values were between <.001 and .03 after clusterwise correction). These findings were independent of symptom

  20. Toxoplasma gondii-A Gastrointestinal Pathogen Associated with Human Brain Diseases.

    Science.gov (United States)

    Severance, E G; Xiao, J; Jones-Brando, L; Sabunciyan, S; Li, Y; Pletnikov, M; Prandovszky, E; Yolken, R

    2016-01-01

    Serious psychiatric disorders such as schizophrenia, bipolar disorder, and major depression are important causes of mortality and morbidity worldwide. While these are primarily diseases involving altered brain functioning, numerous studies have documented increased rates of gastrointestinal inflammation and dysfunction in many individuals with these disorders. Toxoplasma gondii is an apicomplexan protozoan intracellular parasite with a widespread distribution in both developed and developing countries. Toxoplasma organisms enter the ecosystem through the shedding of oocysts by Toxoplasma-infected felines. In almost all cases of postnatal human infection, Toxoplasma enters its hosts through the intestinal tract either by the ingestion of oocysts or by the consumption of meat from food animals which themselves were infected by Toxoplasma oocysts. It had previously been thought that most cases of Toxoplasma infection in immune competent children and adults were inapparent and asymptomatic. However, recent studies cast doubt on this concept as exposure to Toxoplasma has been associated with a range of acute and chronic symptoms. Of particular note has been the finding of an increased rate of a range of neurological and psychiatric disorders associated with serological evidence of Toxoplasma exposure. A role of Toxoplasma infection in brain diseases is also supported by the consistent finding of altered cognition and behavior in animal models of infections. Much of the attention relating to the role of Toxoplasma infection in neuropsychiatric disorders has focused on the brain, where Toxoplasma tissue cysts can persist for extended periods of time. However, recent discoveries relating to the role of the gastrointestinal tract in cognition and behavior suggest that Toxoplasma may also increase susceptibility to human brain diseases through immune activation, particularly involving the gastrointestinal mucosa. The study of the pathways relating to the pathobiology and

  1. A high-capacity model for one shot association learning in the brain

    Directory of Open Access Journals (Sweden)

    Hafsteinn eEinarsson

    2014-11-01

    Full Text Available We present a high-capacity model for one-shot association learning(hetero-associative memory in sparse networks. We assume that basic patternsare pre-learned in networks and associations between two patterns are presentedonly once and have to be learned immediately. The model is a combination of anAmit-Fusi like network sparsely connected to a Willshaw type network. Thelearning procedure is palimpsest and comes from earlier work on one-shotpattern learning. However, in our setup we can enhance the capacity of thenetwork by iterative retrieval. This yields a model for sparse brain-likenetworks in which populations of a few thousand neurons are capable of learninghundreds of associations even if they are presented only once. The analysis ofthe model is based on a novel result by Janson et. al. on bootstrappercolation in random graphs.

  2. The Impact of Childhood Trauma on Brain Development: A Literature Review and Supporting Handouts

    Science.gov (United States)

    Kirouac, Samantha; McBride, Dawn Lorraine

    2009-01-01

    This project provides a comprehensive overview of the research literature on the brain and how trauma impacts brain development, structures, and functioning. A basic exploration of childhood trauma is outlined in this project, as it is essential in making associations and connections to brain development. Childhood trauma is processed in the…

  3. Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age.

    Science.gov (United States)

    Karama, S; Bastin, M E; Murray, C; Royle, N A; Penke, L; Muñoz Maniega, S; Gow, A J; Corley, J; Valdés Hernández, M del C; Lewis, J D; Rousseau, M-É; Lepage, C; Fonov, V; Collins, D L; Booth, T; Rioux, P; Sherif, T; Adalat, R; Starr, J M; Evans, A C; Wardlaw, J M; Deary, I J

    2014-05-01

    Associations between brain cortical tissue volume and cognitive function in old age are frequently interpreted as suggesting that preservation of cortical tissue is the foundation of successful cognitive aging. However, this association could also, in part, reflect a lifelong association between cognitive ability and cortical tissue. We analyzed data on 588 subjects from the Lothian Birth Cohort 1936 who had intelligence quotient (IQ) scores from the same cognitive test available at both 11 and 70 years of age as well as high-resolution brain magnetic resonance imaging data obtained at approximately 73 years of age. Cortical thickness was estimated at 81 924 sampling points across the cortex for each subject using an automated pipeline. Multiple regression was used to assess associations between cortical thickness and the IQ measures at 11 and 70 years. Childhood IQ accounted for more than two-third of the association between IQ at 70 years and cortical thickness measured at age 73 years. This warns against ascribing a causal interpretation to the association between cognitive ability and cortical tissue in old age based on assumptions about, and exclusive reference to, the aging process and any associated disease. Without early-life measures of cognitive ability, it would have been tempting to conclude that preservation of cortical thickness in old age is a foundation for successful cognitive aging when, instead, it is a lifelong association. This being said, results should not be construed as meaning that all studies on aging require direct measures of childhood IQ, but as suggesting that proxy measures of prior cognitive function can be useful to take into consideration.

  4. Age-related reduction of adaptive brain response during semantic integration is associated with gray matter reduction.

    Directory of Open Access Journals (Sweden)

    Zude Zhu

    Full Text Available While aging is associated with increased knowledge, it is also associated with decreased semantic integration. To investigate brain activation changes during semantic integration, a sample of forty-eight 25-75 year-old adults read sentences with high cloze (HC and low cloze (LC probability while functional magnetic resonance imaging was conducted. Significant age-related reduction of cloze effect (LC vs. HC was found in several regions, especially the left middle frontal gyrus (MFG and right inferior frontal gyrus (IFG, which play an important role in semantic integration. Moreover, when accounting for global gray matter volume reduction, the age-cloze correlation in the left MFG and right IFG was absent. The results suggest that brain structural atrophy may disrupt brain response in aging brains, which then show less brain engagement in semantic integration.

  5. Resilience of developing brain networks to interictal epileptiform discharges is associated with cognitive outcome.

    Science.gov (United States)

    Ibrahim, George M; Cassel, Daniel; Morgan, Benjamin R; Smith, Mary Lou; Otsubo, Hiroshi; Ochi, Ayako; Taylor, Margot; Rutka, James T; Snead, O Carter; Doesburg, Sam

    2014-10-01

    The effects of interictal epileptiform discharges on neurocognitive development in children with medically-intractable epilepsy are poorly understood. Such discharges may have a deleterious effect on the brain's intrinsic connectivity networks, which reflect the organization of functional networks at rest, and in turn on neurocognitive development. Using a combined functional magnetic resonance imaging-magnetoencephalography approach, we examine the effects of interictal epileptiform discharges on intrinsic connectivity networks and neurocognitive outcome. Functional magnetic resonance imaging was used to determine the location of regions comprising various intrinsic connectivity networks in 26 children (7-17 years), and magnetoencephalography data were reconstructed from these locations. Inter-regional phase synchronization was then calculated across interictal epileptiform discharges and graph theoretical analysis was applied to measure event-related changes in network topology in the peri-discharge period. The magnitude of change in network topology (network resilience/vulnerability) to interictal epileptiform discharges was associated with neurocognitive outcomes and functional magnetic resonance imaging networks using dual regression. Three main findings are reported: (i) large-scale network changes precede and follow interictal epileptiform discharges; (ii) the resilience of network topologies to interictal discharges is associated with stronger resting-state network connectivity; and (iii) vulnerability to interictal discharges is associated with worse neurocognitive outcomes. By combining the spatial resolution of functional magnetic resonance imaging with the temporal resolution of magnetoencephalography, we describe the effects of interictal epileptiform discharges on neurophysiological synchrony in intrinsic connectivity networks and establish the impact of interictal disruption of functional networks on cognitive outcome in children with epilepsy. The

  6. Association between cognitive impairments and obsessive-compulsive spectrum presentations following traumatic brain injury.

    Science.gov (United States)

    Rydon-Grange, Michelle; Coetzer, Rudi

    2017-01-02

    This study examined the association between self-reported obsessive-compulsive spectrum symptomatology and cognitive performance in a sample of patients with traumatic brain injury (TBI). Twenty-four adults with a moderate-severe TBI accessing a community brain injury rehabilitation service were recruited. Age ranged between 19 and 69 years. Participants completed a battery of neuropsychological tasks assessing memory, executive functioning, and speed of information processing. Self-report questionnaires assessing obsessive-compulsive (OC) symptoms and obsessive-compulsive personality disorder (OCPD) traits were also completed. Correlational analyses revealed that deficits in cognitive flexibility were associated with greater self-reported OC symptomatology and severity. Greater OC symptom severity was significantly related to poorer performance on a visual memory task. Verbal memory and speed of information processing impairments were unrelated to OC symptoms. Performance on tasks of memory, executive functioning, and speed of information processing were not associated with OCPD traits. Overall, results indicate that greater OC symptomatology and severity were associated with specific neuropsychological functions (i.e., cognitive flexibility, visual memory). OCPD personality traits were unrelated to cognitive performance. Further research is needed to examine the potential causal relationship and longer-term interactions between cognitive sequelae and obsessive-compulsive spectrum presentations post-TBI.

  7. Obesity and insulin resistance are associated with reduced activity in core memory regions of the brain.

    Science.gov (United States)

    Cheke, Lucy G; Bonnici, Heidi M; Clayton, Nicola S; Simons, Jon S

    2017-02-01

    Increasing research in animals and humans suggests that obesity may be associated with learning and memory deficits, and in particular with reductions in episodic memory. Rodent models have implicated the hippocampus in obesity-related memory impairments, but the neural mechanisms underlying episodic memory deficits in obese humans remain undetermined. In the present study, lean and obese human participants were scanned using fMRI while completing a What-Where-When episodic memory test (the "Treasure-Hunt Task") that assessed the ability to remember integrated item, spatial, and temporal details of previously encoded complex events. In lean participants, the Treasure-Hunt task elicited significant activity in regions of the brain known to be important for recollecting episodic memories, such as the hippocampus, angular gyrus, and dorsolateral prefrontal cortex. Both obesity and insulin resistance were associated with significantly reduced functional activity throughout the core recollection network. These findings indicate that obesity is associated with reduced functional activity in core brain areas supporting episodic memory and that insulin resistance may be a key player in this association. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Chronological age and its impact on associative learning proficiency and brain structure in middle adulthood.

    Science.gov (United States)

    Diwadkar, Vaibhav A; Bellani, Marcella; Ahmed, Rizwan; Dusi, Nicola; Rambaldelli, Gianluca; Perlini, Cinzia; Marinelli, Veronica; Ramaseshan, Karthik; Ruggeri, Mirella; Bambilla, Paolo

    2016-01-15

    The rate of biological change in middle-adulthood is relatively under-studied. Here, we used behavioral testing in conjunction with structural magnetic resonance imaging to examine the effects of chronological age on associative learning proficiency and on brain regions that previous functional MRI studies have closely related to the domain of associative learning. Participants (n=66) completed a previously established associative learning paradigm, and consented to be scanned using structural magnetic resonance imaging. Age-related effects were investigated both across sub-groups in the sample (younger vs. older) and across the entire sample (using regression approaches). Chronological age had substantial effects on learning proficiency (independent of IQ and Education Level), with older adults showing a decrement compared to younger adults. In addition, decreases in estimated gray matter volume were observed in multiple brain regions including the hippocampus and the dorsal prefrontal cortex, both of which are strongly implicated in associative learning. The results suggest that middle adulthood may be a more dynamic period of life-span change than previously believed. The conjunctive application of narrowly focused tasks, with conjointly acquired structural MRI data may allow us to enrich the search for, and the interpretation of, age-related changes in cross-sectional samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A World of Learning: Practical Manual. Enhancing the Multiplier Effect of the Associated Schools Project.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This manual presents the major lessons learned about how national authorities, individual institutions, and individual educators can work to increase the impact of the Associated Schools Project (ASP) schools and spread it to other parts of the educational system. ASP is a project of the United Nations Educational, Scientific and Cultural…

  10. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper.

    Science.gov (United States)

    Thut, Gregor; Bergmann, Til Ole; Fröhlich, Flavio; Soekadar, Surjo R; Brittain, John-Stuart; Valero-Cabré, Antoni; Sack, Alexander T; Miniussi, Carlo; Antal, Andrea; Siebner, Hartwig Roman; Ziemann, Ulf; Herrmann, Christoph S

    2017-05-01

    Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned to fluctuations in excitability states. Moreover, offline EEG/MEG recordings prior to interventions can inform researchers and clinicians how to stimulate: by frequency-tuning NTBS to the oscillation of interest, intrinsic brain oscillations can be up- or down-regulated. In this paper, we provide an overview of existing approaches and ideas of EEG/MEG-guided interventions, and their promises and caveats. We point out potential future lines of research to address challenges. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  11. Head First PMP A Brain-Friendly Guide to Passing the Project Management Professional Exam

    CERN Document Server

    Stellman, Andrew

    2008-01-01

    Media Reviews "I have been doing project management for over 30 years and am considered a subject matter expert in the PMBOK(r) Guide -Third Edition primarily because I am the Project Manager who led the team that developed this edition. As a consultant I was hired to review and evaluate eight of the top selling PMP Exam Preparation books for their accuracy in following the PMBOK® Guide - Third Edition. I have developed and taught a PMP Exam Prep course for a leading R.E.P., and taught PMP Exam preparation classes for PMI Chapters. I can honestly say that Head First PMP is by far the best P

  12. The association of the kynurenine pathway of tryptophan metabolism with acute brain dysfunction during critical illness*.

    Science.gov (United States)

    Adams Wilson, Jessica R; Morandi, Alessandro; Girard, Timothy D; Thompson, Jennifer L; Boomershine, Chad S; Shintani, Ayumi K; Ely, E Wesley; Pandharipande, Pratik P

    2012-03-01

    Plasma tryptophan levels are associated with delirium in critically ill patients. Although tryptophan has been linked to the pathogenesis of other neurocognitive diseases through metabolism to neurotoxins via the kynurenine pathway, a role for kynurenine pathway activity in intensive care unit brain dysfunction (delirium and coma) remains unknown. This study examined the association between kynurenine pathway activity as determined by plasma kynurenine concentrations and kynurenine/tryptophan ratios and presence or absence of acute brain dysfunction (defined as delirium/coma-free days) in intensive care unit patients. This was a prospective cohort study that utilized patient data and blood samples from the Maximizing Efficacy of Targeted Sedation and Reducing Neurologic Dysfunction trial, which compared sedation with dexmedetomidine vs. lorazepam in mechanically ventilated patients. Baseline plasma kynurenine and tryptophan concentrations were measured using high-performance liquid chromatography with or without tandem mass spectrometry. Delirium was assessed daily using the Confusion Assessment Method for the Intensive Care Unit. Linear regression examined associations between kynurenine pathway activity and delirium/coma-free days after adjusting for sedative exposure, age, and severity of illness. Among 84 patients studied, median age was 60 yrs and Acute Physiology and Chronic Health Evaluation II score was 28.5. Elevated plasma kynurenine and kynurenine/tryptophan ratio were both independently associated with significantly fewer delirium/coma-free days (i.e., fewer days without acute brain dysfunction). Specifically, patients with plasma kynurenine or kynurenine/tryptophan ratios at the 75th percentile of our population had an average of 1.8 (95% confidence interval 0.6-3.1) and 2.1 (95% confidence interval 1.0-3.2) fewer delirium/coma-free days than those patients with values at the 25th percentile (p = .006 and p < .001, respectively). Increased kynurenine

  13. Sport-related structural brain injury associated with arachnoid cysts: a systematic review and quantitative analysis.

    Science.gov (United States)

    Zuckerman, Scott L; Prather, Colin T; Yengo-Kahn, Aaron M; Solomon, Gary S; Sills, Allen K; Bonfield, Christopher M

    2016-04-01

    OBJECTIVE Arachnoid cysts (ACs) are congenital lesions bordered by an arachnoid membrane. Researchers have postulated that individuals with an AC demonstrate a higher rate of structural brain injury after trauma. Given the potential neurological consequences of a structural brain injury requiring neurosurgical intervention, the authors sought to perform a systematic review of sport-related structural-brain injury associated with ACs with a corresponding quantitative analysis. METHODS Titles and abstracts were searched systematically across the following databases: PubMed, Embase, CINAHL, and PsycINFO. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Peer-reviewed case reports, case series, or observational studies that reported a structural brain injury due to a sport or recreational activity (hereafter referred to as sport-related) with an associated AC were included. Patients were excluded if they did not have an AC, suffered a concussion without structural brain injury, or sustained the injury during a non-sport-related activity (e.g., fall, motor vehicle collision). Descriptive statistical analysis and time to presentation data were summarized. Univariate logistic regression models to assess predictors of neurological deficit, open craniotomy, and cystoperitoneal shunt were completed. RESULTS After an initial search of 994 original articles, 52 studies were found that reported 65 cases of sport-related structural brain injury associated with an AC. The median age at presentation was 16 years (range 4-75 years). Headache was the most common presenting symptom (98%), followed by nausea and vomiting in 49%. Thirteen patients (21%) presented with a neurological deficit, most commonly hemiparesis. Open craniotomy was the most common form of treatment (49%). Bur holes and cyst fenestration were performed in 29 (45%) and 31 (48%) patients, respectively. Seven patients (11%) received

  14. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury.

    Science.gov (United States)

    Kabu, Shushi; Jaffer, Hayder; Petro, Marianne; Dudzinski, Dave; Stewart, Desiree; Courtney, Amy; Courtney, Michael; Labhasetwar, Vinod

    2015-01-01

    Blast-associated shock wave-induced traumatic brain injury (bTBI) remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20-130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB) integrity following blast exposure. Reactive oxygen species (ROS) levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective therapeutic strategies

  15. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury.

    Directory of Open Access Journals (Sweden)

    Shushi Kabu

    Full Text Available Blast-associated shock wave-induced traumatic brain injury (bTBI remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20-130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB integrity following blast exposure. Reactive oxygen species (ROS levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective

  16. Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction.

    Science.gov (United States)

    El Rawas, Rana; Klement, Sabine; Kummer, Kai K; Fritz, Michael; Dechant, Georg; Saria, Alois; Zernig, Gerald

    2012-01-01

    Positive social interaction could play an essential role in switching the preference of the substance dependent individual away from drug related activities. We have previously shown that conditioned place preference (CPP) for cocaine at the dose of 15 mg/kg and CPP for four 15-min episodes of social interaction were equally strong when rats were concurrently conditioned for place preference by pairing cocaine with one compartment and social interaction with the other. The aim of the present study was to investigate the differential activation of brain regions related to the reward circuitry after acquisition/expression of cocaine CPP or social interaction CPP. Our findings indicate that cocaine CPP and social interaction CPP activated almost the same brain regions. However, the granular insular cortex and the dorsal part of the agranular insular cortex were more activated after cocaine CPP, whereas the prelimbic cortex and the core subregion of the nucleus accumbens were more activated after social interaction CPP. These results suggest that the insular cortex appears to be potently activated after drug conditioning learning while activation of the prelimbic cortex-nucleus accumbens core projection seems to be preferentially involved in the conditioning to non-drug stimuli such as social interaction.

  17. PINK1 and its familial Parkinson's disease-associated mutation regulate brain vascular endothelial inflammation.

    Science.gov (United States)

    Yunfu, Wang; Guangjian, Liu; Ping, Zhong; Yanpeng, Sun; Xiaoxia, Fang; Wei, Hu; Jiang, Yuan; Jingquan, Hu; Songlin, Wang; Hongyan, Zhang; Yong, Liu; Shi, Chen

    2014-05-01

    Parkinson's disease (PD) is a debilitating disorder that affects movement. Inflammation-mediated endothelial dysfunction has been found to be involved in neurodegenerative diseases, including PD. More than 40 PTEN-induced putative kinase 1 (PINK1) mutations have been found in PD patients. The effects of PINK1 in vascular inflammation are as yet unknown. In this study, our findings revealed that PINK1 can be increased by the inflammatory cytokine tumor necrosis factor-α in primary human brain microvascular endothelial cells (HBMECs). We found that wild-type PINK1 prevents expression of the adhesion molecule vascular cell adhesion molecule-1 (VCAM-1), thus inhibiting the attachment of monocytes to brain endothelial cells. However, PINK1G309D, the loss-of-function mutation associated with early-onset familial PD, promotes expression of VCAM-1 and exacerbates attachment of monocytes to brain endothelial cells. Mechanism studies revealed that overexpression of wild-type PINK1 inhibits the VCAM-1 promoter by inhibiting the transcriptional activity of interferon regulatory factor 1 (IRF-1). However, PINK1G309D promotes the VCAM-1 promoter by increasing the transcriptional activity of IRF-1.

  18. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation

    Directory of Open Access Journals (Sweden)

    Luissint Anny-Claude

    2012-11-01

    Full Text Available Abstract The Blood–brain barrier (BBB, present at the level of the endothelium of cerebral blood vessels, selectively restricts the blood-to-brain paracellular diffusion of compounds; it is mandatory for cerebral homeostasis and proper neuronal function. The barrier properties of these specialized endothelial cells notably depend on tight junctions (TJs between adjacent cells: TJs are dynamic structures consisting of a number of transmembrane and membrane-associated cytoplasmic proteins, which are assembled in a multimolecular complex and acting as a platform for intracellular signaling. Although the structural composition of these complexes has been well described in the recent years, our knowledge about their functional regulation still remains fragmentary. Importantly, pericytes, embedded in the vascular basement membrane, and perivascular microglial cells, astrocytes and neurons contribute to the regulation of endothelial TJs and BBB function, altogether constituting the so-called neurovascular unit. The present review summarizes our current understanding of the structure and functional regulation of endothelial TJs at the BBB. Accumulating evidence points to a correlation between BBB dysfunction, alteration of TJ complexes and progression of a variety of CNS diseases, such as stroke, multiple sclerosis and brain tumors, as well as neurodegenerative diseases like Parkinson’s and Alzheimer’s diseases. Understanding how TJ integrity is controlled may thus help improve drug delivery across the BBB and the design of therapeutic strategies for neurological disorders.

  19. Beneficial Roles of Emotion in Decision Making: Functional Association of Brain and Body

    Directory of Open Access Journals (Sweden)

    Hideki Ohira

    2011-12-01

    Full Text Available Though traditional microeconomics has supposed that human decisions are based on logical and exact computation of cost-benefit balances or efficacies, studies in behavioral economics have shown that humans sometimes make seemingly irrational decisions driven by emotions. In our everyday situations, factors related to decisions are complex and which alternative will be the most beneficial is uncertain. In such cases, emotions have been thought adaptive because they can quickly reduce negative alternatives and facilitate fast and effective decision making. Some theorists argued that one of important sources of such emotional drives affecting decision making is bodily responses that are represented in brain regions (Craig, 2009; Damasio, 1994. In this article, empirical evidence for the functional associations of the brain and body accompanying decision making will be shown as follows. (1 Heart rate responses and concentration of inflammatory cytokine (IL-6 can predict acceptance or rejection of an unfair offer in an economical negotiation game, the Ultimatum Game. Activation of the anterior insula mediates relationship between bodily states and decision making. (2 Sympathetic responses reflected by secretion of adrenaline are represented in brain regions such as the midbrain, anterior cingulate cortex, and anterior insula, and furthermore can determine exploration of decision making in a situation where an action-outcome contingency is stochastic and unstable. These findings suggest beneficial roles of emotion and bodily responses in decision making.

  20. Factors associated with discharge destination from acute care after acquired brain injury in Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Chen Amy Y

    2012-03-01

    Full Text Available Abstract Background The aim of this paper is to examine factors associated with discharge destination after acquired brain injury in a publicly insured population using the Anderson Behavioral Model as a framework. Methods We utilized a retrospective cohort design. Inpatient data from provincial acute care records from fiscal years 2003/4 to 2006/7 with a diagnostic code of traumatic brain injury (TBI and non-traumatic brain injury (nTBI in Ontario, Canada were obtained for the study. Using multinomial logistic regression models, we examined predisposing, need and enabling factors from inpatient records in relation to major discharge outcomes such as discharge to home, inpatient rehabilitation and other institutionalized care. Results Multinomial logistic regression revealed that need factors were strongly correlated with discharge destinations overall. Higher scores on the Charlson Comorbidity Index were associated with discharge to other institutionalized care in the nTBI population. Length of stay and special care days were identified as markers for severity and were both strongly positively correlated with discharge to other institutionalized care and inpatient rehabilitation, compared to discharge home, in both nTBI and TBI populations. Injury by motor vehicle collisions was found to be positively correlated with discharge to inpatient rehabilitation and other institutionalized care for patients with TBI. Controlling for need factors, rural location was associated with discharge to home versus inpatient rehabilitation. Conclusions These findings show that need factors (Charlson Comorbidity Index, length of stay, and number of special care days are most significant in terms of discharge destination. However, there is evidence that other factors such as rural location and access to supplemental insurance (e.g., through motor vehicle insurance may influence discharge destination outcomes as well. These findings should be considered in creating

  1. Association between psychological measures and brain natriuretic peptide in heart failure patients

    DEFF Research Database (Denmark)

    Brouwers, Corline; Spindler, Helle; Larsen, Mogens Lytken

    2012-01-01

    ABSTRACT Objective: Brain natriuretic peptide (BNP) is a promising marker for heart failure diagnosis and prognosis. Although psychological factors also influence heart failure (HF) prognosis, this might be attributed to confounding by BNP. Our aim was to examine the association between multiple...... psychological markers using a prospective study design with repeated NT-proBNP measurements. Design: The sample comprised 94 outpatients with systolic HF (80% men; mean age=62.2±9.32). The psychological markers (i.e., anxiety, depression and Type D personality), assessed with the Hospital Anxiety and Depression.......6% (BDI) and 21.3% (DS14), respectively. At baseline, none of the psychological risk markers were associated with NT-proBNP levels (all ps≥.05). In the subset of patients with scores on psychological risk markers both at baseline and at 9 months there were no association between anxiety (p=0...

  2. Expression of metastasis-associated protein 3 in human brain glioma related to tumor prognosis.

    Science.gov (United States)

    Shan, Shouqin; Hui, Guangyan; Hou, Fanggao; Shi, Hua; Zhou, Guoqing; Yan, Han; Wang, Lu; Liu, Jinfeng

    2015-10-01

    Glioma represents a disparate group of tumors characterized by high invasion ability, and therefore it is of clinical significance to identify molecular markers and therapeutic targets for better clinical management. Previously, metastasis-associated protein family (MTA) is considered to promote tumor cell invasion and metastasis of human malignancies. Recently, the newly identified MTA3 has been shown to play conflicting roles in human malignancies, while the expression pattern and potential clinical significance of MTA3 in human glioma have not been addressed yet. In the present study, we investigated the protein expression of MTA3 by immunohistochemistry assay and analyzed its association with glioma prognosis in 186 cases of patients. Results showed that MTA3 expression was decreased in glioma compared with that in normal brain (P human glioma and negatively associated with prognosis of patients, suggesting that MTA3 may play a tumor suppressor role in glioma.

  3. The time-course and spatial distribution of brain activity associated with sentence processing.

    Science.gov (United States)

    Brennan, Jonathan; Pylkkänen, Liina

    2012-04-02

    Sentence comprehension involves a host of highly interrelated processes, including syntactic parsing, semantic composition, and pragmatic inferencing. In neuroimaging, a primary paradigm for examining the brain bases of sentence processing has been to compare brain activity elicited by sentences versus unstructured lists of words. These studies commonly find an effect of increased activity for sentences in the anterior temporal lobes (aTL). Together with neuropsychological data, these findings have motivated the hypothesis that the aTL is engaged in sentence level combinatorics. Combinatoric processing during language comprehension, however, occurs within tens and hundreds of milliseconds, i.e., at a time-scale much faster than the temporal resolution of hemodynamic measures. Here, we examined the time-course of sentence-level processing using magnetoencephalography (MEG) to better understand the temporal profile of activation in this common paradigm and to test a key prediction of the combinatoric hypothesis: because sentences are interpreted incrementally, word-by-word, activity associated with basic linguistic combinatorics should be time-locked to word-presentation. Our results reveal increased anterior temporal activity for sentences compared to word lists beginning approximately 250 ms after word onset. We also observed increased activation in a network of other brain areas, extending across posterior temporal, inferior frontal, and ventral medial areas. These findings confirm a key prediction of the combinatoric hypothesis for the aTL and further elucidate the spatio-temporal characteristics of sentence-level computations in the brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. BDNF val66met modulates the association between childhood trauma, cognitive and brain abnormalities in psychoses.

    Science.gov (United States)

    Aas, Monica; Haukvik, Unn K; Djurovic, Srdjan; Bergmann, Ørjan; Athanasiu, Lavinia; Tesli, Martin S; Hellvin, Tone; Steen, Nils Eiel; Agartz, Ingrid; Lorentzen, Steinar; Sundet, Kjetil; Andreassen, Ole A; Melle, Ingrid

    2013-10-01

    Brain derived neurotrophic factor (BDNF) is important for brain development and plasticity, and here we tested if the functional BDNF val66met variant modulates the association between high levels of childhood abuse, cognitive function, and brain abnormalities in psychoses. 249 patients with a broad DSM-IV schizophrenia spectrum disorder or bipolar disorder were consecutively recruited to the TOP research study (mean±age: 30.7±10.9; gender: 49% males). History of childhood trauma was obtained using the Childhood Trauma Questionnaire. Cognitive function was assessed through a standardized neuropsychological test battery. BDNF val66met was genotyped using standardized procedures. A sub-sample of n=106 Caucasians with a broad DSM-IV schizophrenia spectrum disorder or bipolar disorder (mean±age: 32.67±10.85; 49% males) had data on sMRI. Carriers of the Methionine (met) allele exposed to high level of childhood abuse demonstrated significantly poorer cognitive functioning compared to homozygotic Valine (val/val) carriers. Taking in consideration multiple testing, using a more conservative p value, this was still shown for physical abuse and emotional abuse, as well as a trend level for sexual abuse. Further, met carriers exposed to high level of childhood sexual abuse showed reduced right hippocampal volume (r(2)=0.43; p=0.008), and larger right and left lateral ventricles (r(2)=0.37; p=0.002, and r(2)=0.27; p=0.009, respectively). Our findings were independent of age, gender, diagnosis and intracranial volume. Our data demonstrate that in patients with psychoses, met carriers of the BDNF val66met with high level of childhood abuse have more cognitive and brain abnormalities than all other groups. © 2013.

  5. Selective and rapid uptake of adeno-associated virus type 2 in brain.

    Science.gov (United States)

    Bartlett, J S; Samulski, R J; McCown, T J

    1998-05-20

    Recombinant adeno-associated virus (AAV) vectors effectively transfer and express foreign genes in the brain. The transferred genes, however, are selectively expressed in neurons, and the cause of this specificity is not understood. To address this question, wild-type AAV-2 capsids were covalently labeled with the fluorophore, Cy3, and infused into the inferior colliculus or the hippocampus. Using antibodies to identify neurons (NeuN), astrocytes (GFAP), or oligodendrocytes (OX-42), clear neuron-specific uptake of the virus was observed as early as 6 min after the start of the infusion. By 30 min postinfusion, AAV particles were present in the nucleus of neurons, yet in both the inferior colliculus and hippocampus, a subset of neurons did not take up the virus particles. No AAV particles were found in astrocytes 1.5 min or 24 hr after virus infusion. Interestingly, 1 hr postinfusion, no AAV particles were found in microglia, yet by 24 hr postinfusion, a punctate pattern of AAV particles was found in microglia. To test whether virus uptake correlated with vector-transduced cells, an rAAV-CMV-GFP virus was infused. By 3 days postinfusion, GFP was localized to neuronal populations with no expression in astrocytes or microglia, similar to that of fluorescent virus uptake. These findings demonstrate that in brain, AAV particles rapidly bind and enter primarily neurons with a pattern similar to that of in vivo vector transduction. In addition, these studies indicate that viral binding and uptake, independent of promoter tropism, can explain the specificity of AAV brain transduction. Thus, this first description of AAV kinetic disposition in vivo should facilitate targeted application of this vector for human brain gene therapy.

  6. Human Serum Metabolites Associate With Severity and Patient Outcomes in Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Matej Orešič

    2016-10-01

    Full Text Available Traumatic brain injury (TBI is a major cause of death and disability worldwide, especially in children and young adults. TBI is an example of a medical condition where there are still major lacks in diagnostics and outcome prediction. Here we apply comprehensive metabolic profiling of serum samples from TBI patients and controls in two independent cohorts. The discovery study included 144 TBI patients, with the samples taken at the time of hospitalization. The patients were diagnosed as severe (sTBI; n = 22, moderate (moTBI; n = 14 or mild TBI (mTBI; n = 108 according to Glasgow Coma Scale. The control group (n = 28 comprised of acute orthopedic non-brain injuries. The validation study included sTBI (n = 23, moTBI (n = 7, mTBI (n = 37 patients and controls (n = 27. We show that two medium-chain fatty acids (decanoic and octanoic acids and sugar derivatives including 2,3-bisphosphoglyceric acid are strongly associated with severity of TBI, and most of them are also detected at high concentrations in brain microdialysates of TBI patients. Based on metabolite concentrations from TBI patients at the time of hospitalization, an algorithm was developed that accurately predicted the patient outcomes (AUC = 0.84 in validation cohort. Addition of the metabolites to the established clinical model (CRASH, comprising clinical and computed tomography data, significantly improved prediction of patient outcomes. The identified ‘TBI metabotype’ in serum, that may be indicative of disrupted blood-brain barrier, of protective physiological response and altered metabolism due to head trauma, offers a new avenue for the development of diagnostic and prognostic markers of broad spectrum of TBIs.

  7. Confabulation: What is associated with its rise and fall? A study in brain injury.

    Science.gov (United States)

    Bajo, Ana; Fleminger, Simon; Metcalfe, Chris; Kopelman, Michael D

    2017-02-01

    The aim of this study was to investigate cognitive and emotional factors associated with the presence and clinical course of confabulation. 24 confabulating participants were compared with 11 brain injured and 6 healthy controls on measures of temporal context confusions (TCC), mood state (elation, depression) and lack of insight. Measures of autobiographical memory and executive function were also available. Changes in confabulation and these other measures were monitored over 9 months in the confabulating group. We found that TCC were more common in confabulating patients than in healthy controls, and that the decline in these errors paralleled the recovery from confabulation. However, TCC were not specific to the presence of confabulation in brain injury; and their decline was not correlated with change in confabulation scores over 9 months. We found that elated mood and lack of insight discriminated between confabulating and non-confabulating patients, but these measures did not correlate with either the severity of confabulation or change in confabulation scores through time. What seems to have been most strongly associated with the severity of confabulation scores at 'baseline' and changes through time (over 9 months) were the severity of memory impairment (especially on autobiographical memory) and errors on executive tests (particularly in making cognitive estimates). Greater autobiographical memory and executive impairment were associated with more severe confabulation. The findings were consistent with the view that confabulation results from executive dysfunction where autobiographical memory is also impaired; and that it resolves as these impairments subside. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of a cognitive training on spatial learning and associated functional brain activations.

    Science.gov (United States)

    Hötting, Kirsten; Holzschneider, Kathrin; Stenzel, Anna; Wolbers, Thomas; Röder, Brigitte

    2013-07-20

    Both cognitive and physical exercise have been discussed as promising interventions for healthy cognitive aging. The present study assessed the effects of cognitive training (spatial vs. perceptual training) and physical training (endurance training vs. non-endurance training) on spatial learning and associated brain activation in 33 adults (40-55 years). Spatial learning was assessed with a virtual maze task, and at the same time neural correlates were measured with functional magnetic resonance imaging (fMRI). Only the spatial training improved performance in the maze task. These behavioral gains were accompanied by a decrease in frontal and temporal lobe activity. At posttest, participants of the spatial training group showed lower activity than participants of the perceptual training group in a network of brain regions associated with spatial learning, including the hippocampus and parahippocampal gyrus. No significant differences were observed between the two physical intervention groups. Functional changes in neural systems associated with spatial navigation can be induced by cognitive interventions and seem to be stronger than effects of physical exercise in middle-aged adults.

  9. Associations between Mobility, Cognition, and Brain Structure in Healthy Older Adults

    Directory of Open Access Journals (Sweden)

    Naiara Demnitz

    2017-05-01

    Full Text Available Mobility limitations lead to a cascade of adverse events in old age, yet the neural and cognitive correlates of mobility performance in older adults remain poorly understood. In a sample of 387 adults (mean age 69.0 ± 5.1 years, we tested the relationship between mobility measures, cognitive assessments, and MRI markers of brain structure. Mobility was assessed in 2007–2009, using gait, balance and chair-stands tests. In 2012–2015, cognitive testing assessed executive function, memory and processing-speed; gray matter volumes (GMV were examined using voxel-based morphometry, and white matter microstructure was assessed using tract-based spatial statistics of fractional anisotropy, axial diffusivity (AD, and radial diffusivity (RD. All mobility measures were positively associated with processing-speed. Faster walking speed was also correlated with higher executive function, while memory was not associated with any mobility measure. Increased GMV within the cerebellum, basal ganglia, post-central gyrus, and superior parietal lobe was associated with better mobility. In addition, better performance on the chair-stands test was correlated with decreased RD and AD. Overall, our results indicate that, even in non-clinical populations, mobility measures can be sensitive to sub-clinical variance in cognition and brain structures.

  10. Different brain structures associated with artistic and scientific creativity: a voxel-based morphometry study.

    Science.gov (United States)

    Shi, Baoguo; Cao, Xiaoqing; Chen, Qunlin; Zhuang, Kaixiang; Qiu, Jiang

    2017-02-21

    Creativity is the ability to produce original and valuable ideas or behaviors. In real life, artistic and scientific creativity promoted the development of human civilization; however, to date, no studies have systematically investigated differences in the brain structures responsible for artistic and scientific creativity in a large sample. Using voxel-based morphometry (VBM), this study identified differences in regional gray matter volume (GMV) across the brain between artistic and scientific creativity (assessed by the Creative Achievement Questionnaire) in 356 young, healthy subjects. The results showed that artistic creativity was significantly negatively associated with the regional GMV of the supplementary motor area (SMA) and anterior cingulate cortex (ACC). In contrast, scientific creativity was significantly positively correlated with the regional GMV of the left middle frontal gyrus (MFG) and left inferior occipital gyrus (IOG). Overall, artistic creativity was associated with the salience network (SN), whereas scientific creativity was associated with the executive attention network and semantic processing. These results may provide an effective marker that can be used to predict and evaluate individuals' creative performance in the fields of science and art.

  11. Associations between subjective sleep quality and brain volume in Gulf War veterans.

    Science.gov (United States)

    Chao, Linda L; Mohlenhoff, Brian S; Weiner, Michael W; Neylan, Thomas C

    2014-03-01

    To investigate whether subjective sleep quality is associated with brain volume independent of comorbid psychiatric conditions. Cross-sectional. Department of Veterans Affairs (VA) Medical Center. One hundred forty-four Gulf War Veterans (mean age 45 years; range: 31-70 years; 14% female). None. Total cortical, lobar gray matter, and hippocampal volumes were quantified from 1.5 Tesla magnetic resonance images using Freesurfer version 4.5. Subjective sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI). Multiple linear regressions were used to determine the association of sleep quality with total and regional brain volumes. The global PSQI score was positively correlated with lifetime and current posttraumatic stress disorder (PTSD) and current depressive symptoms (P sleep quality. Poorer subjective sleep quality was associated with reduced total cortical and regional frontal lobe volumes independent of comorbid psychiatric conditions. Future work will be needed to examine if effective treatment of disturbed sleep leads to improved structural and functional integrity of the frontal lobes.

  12. Associations between Mobility, Cognition, and Brain Structure in Healthy Older Adults.

    Science.gov (United States)

    Demnitz, Naiara; Zsoldos, Enikő; Mahmood, Abda; Mackay, Clare E; Kivimäki, Mika; Singh-Manoux, Archana; Dawes, Helen; Johansen-Berg, Heidi; Ebmeier, Klaus P; Sexton, Claire E

    2017-01-01

    Mobility limitations lead to a cascade of adverse events in old age, yet the neural and cognitive correlates of mobility performance in older adults remain poorly understood. In a sample of 387 adults (mean age 69.0 ± 5.1 years), we tested the relationship between mobility measures, cognitive assessments, and MRI markers of brain structure. Mobility was assessed in 2007-2009, using gait, balance and chair-stands tests. In 2012-2015, cognitive testing assessed executive function, memory and processing-speed; gray matter volumes (GMV) were examined using voxel-based morphometry, and white matter microstructure was assessed using tract-based spatial statistics of fractional anisotropy, axial diffusivity (AD), and radial diffusivity (RD). All mobility measures were positively associated with processing-speed. Faster walking speed was also correlated with higher executive function, while memory was not associated with any mobility measure. Increased GMV within the cerebellum, basal ganglia, post-central gyrus, and superior parietal lobe was associated with better mobility. In addition, better performance on the chair-stands test was correlated with decreased RD and AD. Overall, our results indicate that, even in non-clinical populations, mobility measures can be sensitive to sub-clinical variance in cognition and brain structures.

  13. Witnessing hateful people in pain modulates brain activity in regions associated with physical pain and reward.

    Directory of Open Access Journals (Sweden)

    Glenn Ryan Fox

    2013-10-01

    Full Text Available How does witnessing a hateful person in pain compare to witnessing a likable person in pain? The current study compared the brain bases for how we perceive likable people in pain with those of viewing hateful people in pain. While social bonds are built through sharing the plight and pain of others in the name of empathy, viewing a hateful person in pain also has many potential ramifications. In this functional Magnetic Resonance Imaging (fMRI study, Caucasian Jewish male participants viewed videos of (1 disliked, hateful, anti-Semitic individuals, and (2 liked, non-hateful, tolerant individuals in pain. The results showed that, compared with viewing liked people, viewing hateful people in pain elicited increased responses in regions associated with observation of physical pain (the insular cortex, the anterior cingulate cortex, and the somatosensory cortex, reward processing (the striatum, and frontal regions associated with emotion regulation. Functional connectivity analyses revealed connections between seed regions in the left anterior cingulate cortex and right insular cortex with reward regions, the amygdala, and frontal regions associated with emotion regulation. These data indicate that regions of the brain active while viewing someone in pain may be more active in response to the danger or threat posed by witnessing the pain of a hateful individual more so than the desire to empathize with a likable person’s pain.

  14. Aging associated changes in the motor control of ankle movements in the brain.

    Science.gov (United States)

    Linortner, Patricia; Jehna, Margit; Johansen-Berg, Heidi; Matthews, Paul; Schmidt, Reinhold; Fazekas, Franz; Enzinger, Christian

    2014-10-01

    Although age-related gait changes have been well characterized, little is known regarding potential functional changes in central motor control of distal lower limb movements with age. We hypothesized that there are age-related changes in brain activity associated with the control of repetitive ankle movements, an element of gait feasible for study with functional magnetic resonance imaging. We analyzed standardized functional magnetic resonance imaging data from 102 right-foot dominant healthy participants aged 20-83 years for age-associated effects using FSL and a meta-analysis using coordinate-based activation likelihood estimation. For the first time, we have confirmed age-related changes in brain activity with this gait-related movement of the lower limb in a large population. Increasing age correlated strongly with increased movement-associated activity in the cerebellum and precuneus. Given that task performance did not vary with age, we interpret these changes as potentially compensatory for other age-related changes in the sensorimotor network responsible for control of limb function. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Improving brain computer interface research through user involvement - The transformative potential of integrating civil society organisations in research projects

    Science.gov (United States)

    Wakunuma, Kutoma; Rainey, Stephen; Hansen, Christian

    2017-01-01

    Research on Brain Computer Interfaces (BCI) often aims to provide solutions for vulnerable populations, such as individuals with diseases, conditions or disabilities that keep them from using traditional interfaces. Such research thereby contributes to the public good. This contribution to the public good corresponds to a broader drive of research and funding policy that focuses on promoting beneficial societal impact. One way of achieving this is to engage with the public. In practical terms this can be done by integrating civil society organisations (CSOs) in research. The open question at the heart of this paper is whether and how such CSO integration can transform the research and contribute to the public good. To answer this question the paper describes five detailed qualitative case studies of research projects including CSOs. The paper finds that transformative impact of CSO integration is possible but by no means assured. It provides recommendations on how transformative impact can be promoted. PMID:28207882

  16. The prefrontal cortex in the Göttingen minipig brain defined by neural projection criteria and cytoarchitecture

    DEFF Research Database (Denmark)

    Jelsing, J; Hay-Schmidt, Anders; Dyrby, Tim

    2006-01-01

    In an attempt to delineate the prefrontal cortex (PFC) in the Gottingen minipig brain the distribution of reciprocal thalamocortical projections was investigated using anterograde and retrograde tracing techniques and evaluated in relation to the specific cytoarchitectonic organization. Tracers...... were visualized using standard immunohistochemistry or evaluated in vivo using manganese (Mn2+) as an MRI paramagnetic tracer. The in vivo tract tracing turned out to be very sensitive with a high correspondence to the histological labelling. Tracers injected into the mediodorsal thalamus labelled...... connections to different parts of the MD nucleus. Although the granular layer IV, characteristic of primate PFC could not be identified, both cytoarchitectonic and connectional data suggests that the Gottingen minipig has a structurally divided prefrontal cortex. Stereological estimates of PFC volume showed...

  17. Improving brain computer interface research through user involvement - The transformative potential of integrating civil society organisations in research projects.

    Science.gov (United States)

    Stahl, Bernd Carsten; Wakunuma, Kutoma; Rainey, Stephen; Hansen, Christian

    2017-01-01

    Research on Brain Computer Interfaces (BCI) often aims to provide solutions for vulnerable populations, such as individuals with diseases, conditions or disabilities that keep them from using traditional interfaces. Such research thereby contributes to the public good. This contribution to the public good corresponds to a broader drive of research and funding policy that focuses on promoting beneficial societal impact. One way of achieving this is to engage with the public. In practical terms this can be done by integrating civil society organisations (CSOs) in research. The open question at the heart of this paper is whether and how such CSO integration can transform the research and contribute to the public good. To answer this question the paper describes five detailed qualitative case studies of research projects including CSOs. The paper finds that transformative impact of CSO integration is possible but by no means assured. It provides recommendations on how transformative impact can be promoted.

  18. Use of Stereotactic Radiosurgery in Elderly and Very Elderly Patients With Brain Metastases to Limit Toxicity Associated With Whole Brain Radiation Therapy.

    Science.gov (United States)

    Chen, Linda; Shen, Colette; Redmond, Kristin J; Page, Brandi R; Kummerlowe, Megan; Mcnutt, Todd; Bettegowda, Chetan; Rigamonti, Daniele; Lim, Michael; Kleinberg, Lawrence

    2017-07-15

    We evaluated the toxicity associated with stereotactic radiosurgery (SRS) and whole brain radiation therapy (WBRT) in elderly and very elderly patients with brain metastases, as the role of SRS in geriatric patients who would traditionally receive WBRT is unclear. We conducted a retrospective review of elderly patients (aged 70-79 years) and very elderly patients (aged ≥80 years) with brain metastases who underwent RT from 2010 to 2015 at Johns Hopkins Hospital. Patients received either upfront WBRT or SRS for metastatic solid malignancies, excluding small cell lung cancer. Acute central nervous system toxicity within 3 months of RT was graded using the Radiation Therapy Oncology Group acute radiation central nervous system morbidity scale. The toxicity data between age groups and treatment modalities were analyzed using Fisher's exact test and multivariate logistic regression analysis. Kaplan-Meier curves were used to estimate the median overall survival, and the Cox proportion hazard model was used for multivariate analysis. A total of 811 brain metastases received RT in 119 geriatric patients. The median overall survival from the diagnosis of brain metastases was 4.3 months for the patients undergoing WBRT and 14.4 months for the patients undergoing SRS. On multivariate analysis, WBRT was associated with worse overall survival in this cohort of geriatric patients (odds ratio [OR] 3.7, 95% confidence interval [CI] 1.9-7.0, PElderly and very elderly patients did not have significantly different statistically acute toxicity rates when stratified by age. WBRT was associated with increased toxicity compared with SRS in elderly and very elderly patients with brain metastases. SRS, rather than WBRT, should be prospectively evaluated in geriatric patients with the goal of minimizing treatment-related toxicity. Copyright © 2017. Published by Elsevier Inc.

  19. [Factors associated with investment in an office medicine project by general practice residents].

    Science.gov (United States)

    Munck, Stéphane; Massin, Sophie; Hofliger, Philippe; Darmon, David

    2015-01-01

    To identify thefactors associated with investment in an office medicine project by French general practice (GP) residents. We conducted a national survey using a web-based self-administered questionnaire and analyzed the data collected by multiple logistic regressions. The dependent variable was "an office medicine project" The explanatory variables were both individual (socio-demographic and linked to training trajectories) and contextual (related to the available training programmes and the regional medical demography). The response rate was 48.5%. Out of the 1,695 residents of the study sample, 315 (18.6%) already had a project to setup an office practice during their third cycle ofmedical studies. The main factors associated with this project were (p project to setup an office practice was influenced by both individual and contextualfactors. Special attention should be paid to the means and content of training to ensure better supportfor residents, which could make office general practice more attractive.

  20. Amygdaloid projections to the ventral striatum in mice: Direct and indirect chemosensory inputs to the brain reward system

    Directory of Open Access Journals (Sweden)

    Amparo eNovejarque

    2011-08-01

    Full Text Available Rodents constitute good models for studying the neural basis of socio-sexual behaviour. Recent findings in mice have revealed the molecular identity of the some pheromonal molecules triggering intersexual attraction. However, the neural pathways mediating this basic socio-sexual behaviour remain elusive. Since previous work indicates that the dopaminergic tegmento-striatal pathway is not involved in pheromone reward, the present report explores alternative pathways linking the vomeronasal system with the tegmento-striatal system (the limbic basal ganglia by means of tract-tracing experiments studying direct and indirect projections from the chemosensory amygdala to the ventral striato-pallidum. Amygdaloid projections to the nucleus accumbens, olfactory tubercle and adjoining structures are studied by analysing the retrograde transport in the amygdala from dextranamine and fluorogold injections in the ventral striatum, as well as the anterograde labelling found in the ventral striato-pallidum after dextranamine injections in the amgydala. This combination of anterograde and retrograde tracing experiments reveals direct projections from the vomeronasal cortex to the ventral striato-pallidum, as well as indirect projections through different nuclei of the basolateral amygdala. Direct projections innervate mainly the olfactory tubercle and the islands of Calleja, whereas indirect projections are more widespread and reach the same structures and the shell and core of nucleus accumbens. These pathways are likely to mediate innate responses to pheromones (direct projections and conditioned responses to associated chemosensory and non-chemosensory stimuli (indirect projections. Comparative studies indicate that similar connections are present in all the studied amniote vertebrates and might constitute the basic circuitry for emotional responses to conspecifics in most vertebrates, including humans.

  1. Valvular heart disease by transthoracic echocardiography is associated with focal brain injury and central neuropsychiatric systemic lupus erythematosus.

    Science.gov (United States)

    Roldan, Carlos A; Gelgand, Erika A; Qualls, Clifford R; Sibbitt, Wilmer L

    2007-01-01

    Previous studies using transesophageal echocardiography (TEE) report an association of valvular heart disease (VHD) with cerebral infarcts and central neuropsychiatric systemic lupus erythematosus (NPSLE). However, TEE cannot be routinely used. To determine if VHD detected by transthoracic echocardiography (TTE) is associated with focal brain injury on magnetic resonance imaging (MRI) and secondarily with central NPSLE. Sixty-nine patients with systemic lupus erythematosus underwent general clinical, neuropsychiatric and laboratory evaluations followed by MRI of the brain and TTE. Forty-one patients (59%) had NPSLE (stroke, transient ischemic attack, cognitive dysfunction, acute confusional state, seizures or psychosis); 46 (67%) had focal brain injury on MRI (cerebral infarcts, white matter lesions or small punctate lesions); 38 (55%) had VHD (vegetations, thickening or regurgitation). VHD was more common in patients with than in those without focal brain injury and NPSLE (all p < 0.05); focal brain lesions were more common in patients with than in those without NPSLE (all p < 0.04); and VHD was an independent predictor of focal brain lesions and NPSLE (both p < 0.04). In patients with systemic lupus erythematosus, VHD detected by TTE is associated with focal brain injury and NPSLE. (c) 2007 S. Karger AG, Basel.

  2. [Review and analysis of the review results of Taiwan nurses association nursing projects (2011~2013)].

    Science.gov (United States)

    Chang, Li-Yin; Chen, Yu-Chih; Huang, Kuang-Chi; Huang, Jui-Lan; Lee, Tso-Ying

    2015-04-01

    Nursing projects are a key part of N4 professional competency training for nursing personnel. Low passage rates for these projects have been shown to negatively affect the intent of nursing personnel to advance further in the nursing ladder system. This study analyzes the scores for nursing projects between 2011 and 2013, the passage rate for these projects, and the differences in passage rates between different types of projects. This retrospective and descriptive study collected data on nursing projects conducted under the auspices of the Taiwan Nurses Association between 2011 and 2013. Furthermore, the comments of reviewers on 100 nursing projects were randomly selected and subjected to content analysis. A total of 3,359 nursing projects were examined. Eliminating unqualified nursing projects left a total of 3,246 projects for the dataset. A total of 1,099 projects were scored with passing grades, giving a passing rate of 33.9%. The authors of these passing projects worked primarily in northern Taiwan, worked in medical centers, and worked in intensive care departments. The projects submitted by authors in central Taiwan had the highest average score and passing rate, while those living in offshore islands had the lowest average score and passing rate. Most of the project topics belonged to the category: "improvement of nursing service skills or quality" (77.3%). Items with the lowest scores were: validation of questions, analysis of the current situation, and evaluation of results. The topics of nursing projects did not relate significantly to passing rate. However, years of experience, geographic location of hospital, level of institution, and department each had a statistically significant impact on the passage rate. A content analysis of reviewer comments was used to extract common problems. Most of the positive comments were related to the category of "literature review and reference", while most of the negative comments were related to the categories of

  3. Age-associated changes of brain copper, iron, and zinc in Alzheimer's disease and dementia with Lewy bodies.

    Science.gov (United States)

    Graham, Stewart F; Nasaruddin, Muhammad Bin; Carey, Manus; Holscher, Christian; McGuinness, Bernadette; Kehoe, Patrick G; Love, Seth; Passmore, Peter; Elliott, Christopher T; Meharg, Andrew A; Green, Brian D

    2014-01-01

    Disease-, age-, and gender-associated changes in brain copper, iron, and zinc were assessed in postmortem neocortical tissue (Brodmann area 7) from patients with moderate Alzheimer's disease (AD) (n = 14), severe AD (n = 28), dementia with Lewy bodies (n = 15), and normal age-matched control subjects (n = 26). Copper was lower (20%; p copper and iron, suggesting gradual age-associated decline of these metals in healthy non-cognitively impaired individuals. Zinc was unaffected in any disease pathologies and no age-associated changes were apparent. Age-associated changes in brain elements warrant further investigation.

  4. Genotypic association of the DAOA gene with resting-state brain activity in major depression.

    Science.gov (United States)

    Chen, Jun; Xu, Yong; Zhang, Juan; Liu, Zhifen; Xu, Cheng; Zhang, Kerang; Shen, Yan; Xu, Qi

    2012-10-01

    Compelling evidence suggests that the glutamatergic system may contribute to the pathophysiology of major depression (MDD). While the D-amino acid oxidase activator (DAOA) gene can affect glutamatergic function, its genetic associations with MDD and abnormal resting-state brain activity have yet to be elucidated. A total of 488 patients with MDD and 480 controls were recruited to examine MDD association for the DAOA gene in a Chinese population, of whom 53 medication-free patients and 46 well-matched controls underwent resting-state functional magnetic resonance imaging for regional homogeneity (ReHo) analysis. The differences in ReHo between genotypes of interest were initially tested by the Student's t test, and the 2 × 2 (genotypes × disease status) ANOVA was then performed to identify the main effects of genotypes, disease status, and their interactions in MDD. Allelic association of the DAOA gene with MDD was observed for rs2391191, rs3918341, and rs778294 and haplotypic association for 2- and 3-SNP haplotypes. Six clusters in the cerebellum, right middle frontal gyrus and left middle temporal gyrus showed genotypic association between altered ReHo and rs2391191. The main effects of rs2391191 genotypes were found in the right culmen and right middle frontal gyrus. The left uvula and left middle temporal gyrus showed a genotypes × disease status interaction. Our results suggest that the DAOA gene may confer genetic risk of MDD. Genotypic effect of rs2391191 and its interaction with disease status may contribute to the altered ReHo in patients with MDD. Glutamatergic modulation may play an important role in alteration of the resting-state brain activities.

  5. Brain functional connectome abnormalities in amyotrophic lateral sclerosis are associated with disability and cortical hyperexcitability.

    Science.gov (United States)

    Geevasinga, N; Korgaonkar, M S; Menon, P; Van den Bos, M; Gomes, L; Foster, S; Kiernan, M C; Vucic, S

    2017-12-01

    The present study utilized a multimodal approach encompassing connectome networks combined with brain volume analysis, and assessment of cortical excitability to provide novel insights into amyotrophic lateral sclerosis (ALS) pathogenesis. Magnetic resonance images were acquired using a 3.0-Tesla Signa HDx scanner (GE Healthcare, Milwaukee, WI, USA), using an eight-channel head coil. Magnetic resonance images for the resting-state scan were acquired using an echo-planar imaging magnetic resonance sequence, acquiring 40 contiguous axial/oblique slices. Structural magnetic resonance imaging three-dimensional T1-weighted images were acquired in the sagittal plane using three-dimensional spoiled gradient echo sequences. For structural imaging, a T1-weighted high-resolution (3.0-Tesla) magnetic resonance imaging scan was used. Cortical excitability was assessed by using the threshold-tracking transcranial magnetic stimulation paradigm. Network-based statistics and whole-brain functional topology (using graph theoretical approaches) assessed functional connectivity. Using a global network-based statistical analysis approach, functional connectivity was increased in 12 network edges connecting 14 nodes (P < 0.05) within the frontal, temporal, parietal and subcortical regions. Analysis of local connectedness disclosed dichotomous effects with reduced connectivity in frontal regions and increased connectivity in occipital regions in ALS. Cortical hyperexcitability was evident in patients with ALS, negatively correlated with functional connectivity changes in the pre-central gyrus (P < 0.01). Connectivity changes in the frontal regions were negatively associated with functional disability (P < 0.05). Multimodal assessment of cortical function in patients with ALS identified deficits in functional connectivity associated with cortical hyperexcitability that correlated with patient disability. Novel integration of functional brain assessment further contributes to the

  6. Low-frequency connectivity is associated with mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    B.T. Dunkley

    2015-01-01

    Full Text Available Mild traumatic brain injury (mTBI occurs from a closed-head impact. Often referred to as concussion, about 20% of cases complain of secondary psychological sequelae, such as disorders of attention and memory. Known as post-concussive symptoms (PCS, these problems can severely disrupt the patient's quality of life. Changes in local spectral power, particularly low-frequency amplitude increases and/or peak alpha slowing have been reported in mTBI, but large-scale connectivity metrics based on inter-regional amplitude correlations relevant for integration and segregation in functional brain networks, and their association with disorders in cognition and behaviour, remain relatively unexplored. Here, we used non-invasive neuroimaging with magnetoencephalography to examine functional connectivity in a resting-state protocol in a group with mTBI (n = 20, and a control group (n = 21. We observed a trend for atypical slow-wave power changes in subcortical, temporal and parietal regions in mTBI, as well as significant long-range increases in amplitude envelope correlations among deep-source, temporal, and frontal regions in the delta, theta, and alpha bands. Subsequently, we conducted an exploratory analysis of patterns of connectivity most associated with variability in secondary symptoms of mTBI, including inattention, anxiety, and depression. Differential patterns of altered resting state neurophysiological network connectivity were found across frequency bands. This indicated that multiple network and frequency specific alterations in large scale brain connectivity may contribute to overlapping cognitive sequelae in mTBI. In conclusion, we show that local spectral power content can be supplemented with measures of correlations in amplitude to define general networks that are atypical in mTBI, and suggest that certain cognitive difficulties are mediated by disturbances in a variety of alterations in network interactions which are differentially

  7. Brain Activation During Emotional Memory Processing Associated with Subsequent Course of Depression.

    Science.gov (United States)

    Ai, Hui; Opmeer, Esther M; Veltman, Dick J; van der Wee, Nic J A; van Buchem, Mark A; Aleman, André; van Tol, Marie-José

    2015-09-01

    Major depressive disorder (MDD) is characterized by a heterogeneous course and identifying patients at risk for an unfavorable course is difficult. Neuroimaging studies may identify brain predictors of clinical course and may help to further unravel the neurobiological processes underlying an unfavorable course. We investigated whether brain activation during an emotional memory paradigm is associated with depressive course. To this end, we followed 74 MDD patients and 45 healthy controls (HCs) for 2 years. At baseline, participants performed an emotional word-encoding and -recognition task during functional magnetic resonance imaging. Activation patterns were compared between patients with fast remission (n=22), remission with recurrence (n=23), non-remission (n=29), and HCs. Additionally, linear relations of brain activation and time to remission during the follow-up period were investigated across patients. We observed that during encoding of negative words, non-remitters showed higher activation of the left insula than HCs. Groups also differed in activation of the right hippocampus and left amygdala during negative encoding, with a trend for higher activation in non-remitters compared with HCs. Furthermore, hippocampal activation during negative word encoding was significantly and positively correlated with time to remission, irrespective of illness severity. Our findings suggest that higher activation in the left insula could serve as a neural marker of a naturalistic non-remitting course, whereas higher hippocampal activation is associated with delayed remission. Longitudinal analyses should clarify whether abnormal activation progresses further as a function of time with depression or may serve as load-independent markers of MDD course.

  8. Effects of Ecballium elaterium on brain in a rat model of sepsis-associated encephalopathy

    Science.gov (United States)

    Arslan, Demet; Ekinci, Aysun; Arici, Akgul; Bozdemir, Eda; Akil, Esref; Ozdemir, Hasan Huseyin

    2017-01-01

    ABSTRACT Despite recent advances in antibiotic therapy, sepsis remains a major clinical challenge in intensive care units. Here we examined the anti-inflammatory and antioxidant effects of Ecballium elaterium (EE) on brain, and explored its therapeutic potential in an animal model of sepsis-associated encephalopathy (SAE) [induced by cecal ligation and puncture (CLP)]. Thirty rats were divided into three groups of 10 each: control, sepsis, and treatment. Rats were subjected to CLP except for the control group, which underwent laparatomy only. The treatment group received 2.5 mg/kg EE while the sepsis group was administered by saline. Twenty-four hours after laparotomy, animals were sacrificied and the brains were removed. Brain homogenates were prepared to assess interleukin 1beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), total antioxidant capacity (TAC), and total oxidant status (TOS). Brain tissue sections were stained by hematoxylin and eosin (H&E) to semi-quantitatively examine the histopathologic changes such as neuron degeneration, pericellular/perivascular edema and inflammatory cell infiltration in the cerebral cortex. We found a statistically significant reduction in brain tissue homogenate levels of TNF-α 59.5 ± 8.4/50.2 ± 6.2 (p = 0.007) and TOS 99.3 ± 16.9/82.3 ± 7.8 (p = 0.01) in rats treated with EE; although interleukin 6 levels were increased in the treatment group compared to the sepsis group, this was not statistically significant. Neuronal damage (p = 0.00), pericellular/perivascular edema and inflammatory cell infiltration (p = 0.001) were also significantly lower in the treatment group compared to those in the sepsis group. These data suggest that Ecballium elaterium contains some components that exert protective effects against SAE in part by attenuating accumulation of proinflammatory cytokines, which may be important contributors to its anti-inflammatory effects during sepsis. PMID:28859554

  9. Strategy for Semantic Association Memory (SESAME) training: Effects on brain functioning in schizophrenia.

    Science.gov (United States)

    Guimond, Synthia; Béland, Sophie; Lepage, Martin

    2018-01-30

    Self-initiation of semantic encoding strategies is impoverished in schizophrenia and contributes to memory impairments. Recently, we observed that following a brief training, schizophrenia patients had the potential to increase the self-initiation of these strategies. In this study, we investigated the neural correlates underlying such memory improvements. Fifteen schizophrenia patients with deficits in self-initiation of semantic encoding strategies were enrolled in a Strategy for Semantic Association Memory (SESAME) training. Patients underwent a memory task in an fMRI scanner. Memory performance and brain activity during the task were measured pre- and post- training, and changes following training were assessed. We also investigated if structural preservation measured by the cortical thickness of the left dorsolateral prefrontal cortex (DLPFC) predicted memory improvement post-training. Memory training led to significant improvements in memory performance that were associated with increased activity in the left DLPFC, during a task in which patients needed to self-initiate semantic encoding strategies. Furthermore, patients with more cortical reserve in their left DLPFC showed greater memory improvement. Our findings provide evidence of neural malleability in the left DLPFC in schizophrenia using cognitive strategies training. Moreover, the brain-behavioural changes observed in schizophrenia provide hope that memory performance can be improved with a brief intervention. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Social anxiety following traumatic brain injury: an exploration of associated factors.

    Science.gov (United States)

    Curvis, William; Simpson, Jane; Hampson, Natalie

    2016-05-17

    Social anxiety (SA) following traumatic brain injury (TBI) has the potential to affect an individual's general psychological well-being and social functioning, however little research has explored factors associated with its development. The present study used hierarchical multiple regression to investigate the demographic, clinical and psychological factors associated with SA following TBI. A sample of 85 people who experienced TBI were recruited through social media websites and brain injury services across the North-West of England. The overall combined biopsychosocial model was significant, explaining 52-54.3% of the variance in SA (across five imputations of missing data). The addition of psychological variables (self-esteem, locus of control, self-efficacy) made a significant contribution to the overall model, accounting for an additional 12.2-13% of variance in SA above that explained by demographic and clinical variables. Perceived stigma was the only significant independent predictor of SA (B = .274, p = .005). The findings suggest that psychological variables are important in the development of SA following TBI and must be considered alongside clinical factors. Furthermore, the significant role of stigma highlights the need for intervention at both an individualised and societal level.

  11. Failing to deactivate: the association between brain activity during a working memory task and creativity.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Nagase, Tomomi; Nouchi, Rui; Kawashima, Ryuta

    2011-03-15

    Working memory (WM) is an essential component for human higher order cognitive activities. Creativity has been essential to the development of human civilization. Previous studies from different fields have suggested creativity and capacity of WM have opposing characteristics possibly in terms of diffuse attention. However, despite a number of functional imaging studies on creativity, how creativity relates to brain activity during WM has never been investigated. In this functional magnetic resonance imaging (fMRI) study, we investigated this issue using an n-back WM paradigm and a psychometric measure of creativity (a divergent thinking test). A multiple regression analysis revealed that individual creativity was significantly and positively correlated with brain activity in the precuneus during the 2-back task (WM task), but not during the non-WM 0-back task. As the precuneus shows deactivation during cognitive tasks, our findings show that reduced task induced deactivation (TID) in the precuneus is associated with higher creativity measured by divergent thinking. The precuneus is included in the default mode network, which is deactivated during cognitive tasks. The magnitude of TID in the default mode network is considered to reflect the reallocation of cognitive resources from networks irrelevant to the performance of the task. Thus, our findings may indicate that individual creativity, as measured by the divergent thinking test, is related to the inefficient reallocation of attention, congruent with the idea that diffuse attention is associated with individual creativity. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Brain activations to emotional pictures are differentially associated with valence and arousal ratings

    Directory of Open Access Journals (Sweden)

    Antje B M Gerdes

    2010-10-01

    Full Text Available Several studies have investigated the neural responses triggered by emotional pictures, but the specificity of the involved structures such as the amygdala or the ventral striatum is still under debate. Furthermore, only few studies examined the association of stimuli’s valence and arousal and the underlying brain responses. Therefore, we investigated brain responses with functional magnetic resonance imaging of 17 healthy subjects to pleasant and unpleasant affective pictures with comparable arousal levels and afterwards assessed ratings of valence and arousal. As expected, unpleasant pictures strongly activated the right and left amygdala, the right hippocampus, and the medial occipital lobe, whereas pleasant pictures elicited significant activations in left occipital regions, and in parts of the medial temporal lobe. The direct comparison of unpleasant and pleasant pictures which were comparable in arousal clearly indicated stronger amygdala activation in response to the unpleasant pictures. Most important, correlational analyses revealed on the one hand that the arousal of unpleasant pictures was significantly associated with activations in the right amygdala and the left caudate body. On the other hand, valence of pleasant pictures was significantly correlated with activations in the right caudate head, extending to the nucleus accumbens (NAcc and the left dorso-lateral prefrontal cortex. These findings support the notion that the amygdala is primarily involved in processing of unpleasant stimuli, and the stronger the more arousing the stimuli are, whereas reward-related structures like the NAcc primarily responds to pleasant stimuli, the stronger the more positive the valence of these stimuli is.

  13. Factors Associated with a Family's Delay of Decision for Organ Donation After Brain Death.

    Science.gov (United States)

    Han, Sang Youb; Kim, Jae Il; Lee, Eun-Woo; Jang, Hye-Yeon; Han, Kum Hyun; Oh, Se Won; Roh, Young-Nam

    2017-01-17

    BACKGROUND This study aimed to explore the factors associated with a family's delay of decision for organ donation after brain death, and to investigate the effect of such a delay on organ donation. MATERIAL AND METHODS Medical records and data on counseling about organ donation with the families of 107 brain-dead potential donors between September 2012 and March 2016 at a single tertiary medical center were retrospectively reviewed. RESULTS The final consent rate was 58% (62/107), and successful donation was performed in 40% (43/107). Ninety-two families (86%) made a decision within 48 hours, whereas 15 (14%) required more than 48 hours for a final decision. In univariate and multivariate analyses, the independent factors associated with a decision delay were mean arterial pressure ≤60 mm Hg and coma therapy. In the early decision group (donation rates were 55% (51/92) and 39% (36/92), respectively, whereas in the delayed decision group (≥48 hours), these rates were 73% (11/15) and 47% (7/15), respectively. The consent and successful donation rates were not inferior in the delayed decision group. CONCLUSIONS These findings justify continuous efforts to maintain organ viability and to extend counseling to encourage donation even if the family cannot decide immediately.

  14. Duration of exclusive breastfeeding is associated with differences in infants’ brain responses to emotional body expressions

    Directory of Open Access Journals (Sweden)

    Kathleen Marie Krol

    2015-01-01

    Full Text Available Much research has recognized the general importance of maternal behavior in the early development and programming of the mammalian offspring’s brain. Exclusive breastfeeding duration, the amount of time in which breastfed meals are the only source of sustenance, plays a prominent role in promoting healthy brain and cognitive development in human children. However, surprisingly little is known about the influence of breastfeeding on social and emotional development in infancy. In the current study, we examined whether and how the duration of exclusive breastfeeding impacts the neural processing of emotional signals by measuring electro-cortical responses to body expressions in 8-month-old infants. Our analyses revealed that infants with high exclusive breastfeeding experience show a significantly greater neural sensitivity to happy body expressions than those with low exclusive breastfeeding experience. Moreover, regression analyses revealed that the neural bias toward happiness or fearfulness differs as a function of the duration of exclusive breastfeeding. Specifically, longer breastfeeding duration is associated with a happy bias, whereas shorter breastfeeding duration is associated with a fear bias. These findings suggest that breastfeeding experience can shape the way in which infants respond to emotional signals.

  15. The TimeStudio Project: An open source scientific workflow system for the behavioral and brain sciences.

    Science.gov (United States)

    Nyström, Pär; Falck-Ytter, Terje; Gredebäck, Gustaf

    2016-06-01

    This article describes a new open source scientific workflow system, the TimeStudio Project, dedicated to the behavioral and brain sciences. The program is written in MATLAB and features a graphical user interface for the dynamic pipelining of computer algorithms developed as TimeStudio plugins. TimeStudio includes both a set of general plugins (for reading data files, modifying data structures, visualizing data structures, etc.) and a set of plugins specifically developed for the analysis of event-related eyetracking data as a proof of concept. It is possible to create custom plugins to integrate new or existing MATLAB code anywhere in a workflow, making TimeStudio a flexible workbench for organizing and performing a wide range of analyses. The system also features an integrated sharing and archiving tool for TimeStudio workflows, which can be used to share workflows both during the data analysis phase and after scientific publication. TimeStudio thus facilitates the reproduction and replication of scientific studies, increases the transparency of analyses, and reduces individual researchers' analysis workload. The project website ( http://timestudioproject.com ) contains the latest releases of TimeStudio, together with documentation and user forums.

  16. Brain region-specific altered expression and association of mitochondria-related genes in autism

    Directory of Open Access Journals (Sweden)

    Anitha Ayyappan

    2012-11-01

    Full Text Available Abstract Background Mitochondrial dysfunction (MtD has been observed in approximately five percent of children with autism spectrum disorders (ASD. MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA. Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. Methods For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG, motor cortex (MC and thalamus (THL from autism patients (n=8 and controls (n=10 were obtained from the Autism Tissue Program (Princeton, NJ, USA. Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Results Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2, neurofilament, light polypeptide (NEFL and solute carrier family 25, member 27 (SLC25A27 showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066 and SLC25A27 (P = 0.046; Z-score 1.990 showed genetic association with autism in Caucasian and Japanese samples, respectively. The

  17. Projections of Pain: Neonatal pain, what remains in the brain after the wheels of time

    NARCIS (Netherlands)

    G.E. van den Bosch (Gerbrich)

    2014-01-01

    textabstract__Abstract__ The International Association for the Study of Pain (IASP) has defined ’pain’ as ‘An unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage’ with the note that ‘Pain is always subjective.

  18. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions

    DEFF Research Database (Denmark)

    Thut, Gregor; Bergmann, Til Ole; Fröhlich, Flavio

    2017-01-01

    Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension o...

  19. Association of Seafood Consumption, Brain Mercury Level, and APOEε4 Status With Brain Neuropathology in OlderAdults

    NARCIS (Netherlands)

    Morris, Martha Clare; Brockman, John; Schneider, J.; Wang, Yamin; Bennett, D.; Tangney, Christy; Rest, van de O.

    2016-01-01

    Importance Seafood consumption is promoted for its many health benefits even though its contamination by mercury, a known neurotoxin, is a growing concern.

    Objective To determine whether seafood consumption is correlated with increased brain mercury levels and also whether seafood

  20. Facial Emotion Recognition Impairments are Associated with Brain Volume Abnormalities in Individuals with HIV

    Science.gov (United States)

    Clark, Uraina S.; Walker, Keenan A.; Cohen, Ronald A.; Devlin, Kathryn N.; Folkers, Anna M.; Pina, Mathew M.; Tashima, Karen T.

    2015-01-01

    Impaired facial emotion recognition abilities in HIV+ patients are well documented, but little is known about the neural etiology of these difficulties. We examined the relation of facial emotion recognition abilities to regional brain volumes in 44 HIV-positive (HIV+) and 44 HIV-negative control (HC) adults. Volumes of structures implicated in HIV− associated neuropathology and emotion recognition were measured on MRI using an automated segmentation tool. Relative to HC, HIV+ patients demonstrated emotion recognition impairments for fearful expressions, reduced anterior cingulate cortex (ACC) volumes, and increased amygdala volumes. In the HIV+ group, fear recognition impairments correlated significantly with ACC, but not amygdala volumes. ACC reductions were also associated with lower nadir CD4 levels (i.e., greater HIV-disease severity). These findings extend our understanding of the neurobiological substrates underlying an essential social function, facial emotion recognition, in HIV+ individuals and implicate HIV-related ACC atrophy in the impairment of these abilities. PMID:25744868

  1. THE ROLE OF MULTIDRUG RESISTANCE ASSOCIATED PROTEIN (MRP) IN THE BLOOD-BRAIN BARRIER AND OPIOID ANALGESIA

    Science.gov (United States)

    Su, Wendy; Pasternak, Gavril W.

    2013-01-01

    The blood brain barrier protects the brain from circulating compounds and drugs. The ATP-binding cassette (ABC) transporter P-glycoprotein (Pgp) is involved with the barrier, both preventing the influx of agent from the blood into the brain and facilitating the efflux of compounds from the brain into the blood, raising the possibility of a similar role for other transporters. Multidrug resistance associated protein (MRP), a 190 kDa protein similar to Pgp is also ABC transport that has been implicated in the blood brain barrier. The current study explores its role in opioid action. Immunohistochemically, it is localized in the choroid plexus in ratsand can be selectively downregulated by antisense treatment at both the level of mRNA, as shown by RT-PCR, and protein, as demonstrated immunohistochemically. Behaviorally, downregulation of MRP significantly enhances the analgesic potency of systemic morphine in MRP knockout mice and in antisense-treated rats by lowering the blood brain barrier. Following intracerebroventricular administration, a number of compounds, including some opioids, are rapidly secreted from the brain into the blood where they contribute to the overall analgesic effects by activating peripheral systems. MRP plays a role in this efflux. Downregulating MRP expression leads to a corresponding decrease in the transport and a diminished analgesic response from opioids administered intracerebroventricularly. Thus, the transporter protein MRP plays a role in maintaining the blood-brain barrier and modulates the activity of opioids. PMID:23508590

  2. Decreased in vitro mitochondrial function is associated with enhanced brain metabolism, blood flow, and memory in Surf1-deficient mice.

    Science.gov (United States)

    Lin, Ai-Ling; Pulliam, Daniel A; Deepa, Sathyaseelan S; Halloran, Jonathan J; Hussong, Stacy A; Burbank, Raquel R; Bresnen, Andrew; Liu, Yuhong; Podlutskaya, Natalia; Soundararajan, Anuradha; Muir, Eric; Duong, Timothy Q; Bokov, Alex F; Viscomi, Carlo; Zeviani, Massimo; Richardson, Arlan G; Van Remmen, Holly; Fox, Peter T; Galvan, Veronica

    2013-10-01

    Recent studies have challenged the prevailing view that reduced mitochondrial function and increased oxidative stress are correlated with reduced longevity. Mice carrying a homozygous knockout (KO) of the Surf1 gene showed a significant decrease in mitochondrial electron transport chain Complex IV activity, yet displayed increased lifespan and reduced brain damage after excitotoxic insults. In the present study, we examined brain metabolism, brain hemodynamics, and memory of Surf1 KO mice using in vitro measures of mitochondrial function, in vivo neuroimaging, and behavioral testing. We show that decreased respiration and increased generation of hydrogen peroxide in isolated Surf1 KO brain mitochondria are associated with increased brain glucose metabolism, cerebral blood flow, and lactate levels, and with enhanced memory in Surf1 KO mice. These metabolic and functional changes in Surf1 KO brains were accompanied by higher levels of hypoxia-inducible factor 1 alpha, and by increases in the activated form of cyclic AMP response element-binding factor, which is integral to memory formation. These findings suggest that Surf1 deficiency-induced metabolic alterations may have positive effects on brain function. Exploring the relationship between mitochondrial activity, oxidative stress, and brain function will enhance our understanding of cognitive aging and of age-related neurologic disorders.

  3. Smaller Brain Volume is Associated with Poorer Instrumental ADL Performance in Heart Failure

    Science.gov (United States)

    Alosco, Michael L.; Brickman, Adam M.; Spitznagel, Mary Beth; Narkhede, Atul; Griffith, Erica Y; Cohen, Ronald; Sweet, Lawrence H.; Josephson, Richard; Hughes, Joel; Gunstad, John

    2014-01-01

    Background Heart failure patients require assistance with instrumental activities of daily living in part due to the high rates of cognitive impairment in this population. Structural brain insult (e.g., reduced gray matter volume) is theorized to underlie cognitive dysfunction in heart failure, although no study has examined the association among gray matter, cognition, and instrumental activities of daily living in heart failure. Objectives To investigate the associations among gray matter volume, cognitive function, and functional ability in heart failure. Methods 81 heart failure patients completed a cognitive test battery and the Lawton-Brody self-report questionnaire to assess instrumental activities of daily living. Participants underwent magnetic resonance imaging to quantify total gray matter and subcortical gray matter volume. Results Impairments in instrumental activities of daily living were common in this sample of HF patients. Regression analyses controlling for demographic and medical confounders showed smaller total gray matter volume predicted decreased scores on the instrumental activities of daily living composite, with specific associations noted for medication management and independence in driving. Interaction analyses showed that reduced total gray matter volume interacted with worse attention/executive function and memory to negatively impact instrumental activities of daily living. Conclusions Smaller gray matter volume is associated with greater impairment in instrumental activities of daily living in persons with heart failure, possibly via cognitive dysfunction. Prospective studies are needed to clarify the utility of clinical correlates of gray matter volume (e.g., cognitive dysfunction) in identifying heart failure patients at risk for functional decline and determine whether interventions that target improved brain and cognitive function can preserve functional independence in this high risk population. PMID:25419946

  4. Role of Sertraline in insomnia associated with post traumatic brain injury (TBI depression

    Directory of Open Access Journals (Sweden)

    Ansari Ahmed

    2016-09-01

    Full Text Available Traumatic brain injury (TBI is a major cause of disability (1, 2. Sleep disturbances, such as insomnia, are very common following traumatic brain injury and have been reported in frequencies from 40% (3 to as high as 84% (4. Sleep disruption can be related to the TBI itself but may also be secondary to neuropsychiatric (e.g., depression or neuromuscular (e.g., pain conditions associated with TBI or to the pharmacological management of the injury and its consequences. Post-TBI insomnia has been associated with numerous negative outcomes including daytime fatigue, tiredness, difficulty functioning: impaired performance at work, memory problems, mood problems, greater functional disability, reduced participation in activities of daily living, less social and recreational activity, less employment potential, increased caregiver burden, greater sexual dysfunction, and also lower ratings of health, poor subjective wellbeing. These negative consequences can hamper the person’s reintegration into the community, adjustment after injury, and overall QOL. (5 The connection between depression and insomnia has not been investigated within the post TBI population to a great extent. For the general population, clinically significant insomnia is often associated with the presence of an emotional disorder (6. Fichtenberg et al. (2002 (7, in his study established that the strongest relationship with the diagnosis of insomnia belonged to depression. Given the high prevalence of depression during the first 2 years following TBI (8, a link between depression and insomnia among TBI patients makes innate sense. The present study aims at assessing role of sertralline in post TBI insomnia associated with depression.

  5. Implementation of Neurocritical Care Is Associated With Improved Outcomes in Traumatic Brain Injury.

    Science.gov (United States)

    Sekhon, Mypinder S; Gooderham, Peter; Toyota, Brian; Kherzi, Navid; Hu, Vivien; Dhingra, Vinay K; Hameed, Morad S; Chittock, Dean R; Griesdale, Donald E

    2017-07-01

    Background Traditionally, the delivery of dedicated neurocritical care (NCC) occurs in distinct NCC units and is associated with improved outcomes. Institution-specific logistical challenges pose barriers to the development of distinct NCC units; therefore, we developed a consultancy NCC service coupled with the implementation of invasive multimodal neuromonitoring, within a medical-surgical intensive care unit. Our objective was to evaluate the effect of a consultancy NCC program on neurologic outcomes in severe traumatic brain injury patients. We conducted a single-center quasi-experimental uncontrolled pre- and post-NCC study in severe traumatic brain injury patients (Glasgow Coma Scale ≤8). The NCC program includes consultation with a neurointensivist and neurosurgeon and multimodal neuromonitoring. Demographic, injury severity metrics, neurophysiologic data, and therapeutic interventions were collected. Glasgow Outcome Scale (GOS) at 6 months was the primary outcome. Multivariable ordinal logistic regression was used to model the association between NCC implementation and GOS at 6 months. A total of 113 patients were identified: 76 pre-NCC and 37 post-NCC. Mean age was 39 years (standard deviation [SD], 2) and 87 of 113 (77%) patients were male. Median admission motor score was 3 (interquartile ratio, 1-4). Daily mean arterial pressure was higher (95 mmHg [SD, 10]) versus (88 mmHg [SD, 10], p<0.001) and daily mean core body temperature was lower (36.6°C [SD, 0.90]) versus (37.2°C [SD, 1.0], p=0.001) post-NCC compared with pre-NCC, respectively. Multivariable regression modelling revealed the NCC program was associated with a 2.5 increased odds (odds ratios, 2.5; 95% confidence interval, 1.1-5.3; p=0.022) of improved 6-month GOS. Implementation of a NCC program is associated with improved 6 month GOS in severe TBI patients.

  6. Dairy intake is associated with brain glutathione concentration in older adults123

    Science.gov (United States)

    Lee, Phil; Denney, Douglas R; Spaeth, Kendra; Nast, Olivia; Ptomey, Lauren; Roth, Alexandra K; Lierman, Jo Ann; Sullivan, Debra K

    2015-01-01

    Background: A reduction in key antioxidants such as glutathione has been noted in brain tissue undergoing oxidative stress in aging and neurodegeneration. To date, no dietary factor has been linked to a higher glutathione concentration. However, in an earlier pilot study, we showed evidence of a positive association between cerebral glutathione and dairy intake. Objective: We tested the hypothesis that dairy food consumption is associated with cerebral glutathione concentrations in older adults. Design: In this observational study, we measured cerebral glutathione concentrations in 60 healthy subjects (mean ± SD age: 68.7 ± 6.2 y) whose routine dairy intakes varied. Glutathione concentrations were measured by using a unique, noninvasive magnetic resonance chemical shift imaging technique at 3 T and compared with dairy intakes reported in 7-d food records. Results: Glutathione concentrations in the frontal [Spearman's rank-order correlation (rs) = 0.39, P = 0.013], parietal (rs = 0.50, P = 0.001), and frontoparietal regions (rs = 0.47, P = 0.003) were correlated with average daily dairy servings. In particular, glutathione concentrations in all 3 regions were positively correlated with milk servings (P ≤ 0.013), and those in the parietal region were also correlated with cheese servings (P = 0.015) and calcium intake (P = 0.039). Dairy intake was related to sex, fat-free mass, and daily intakes of energy, protein, and carbohydrates. However, when these factors were controlled through a partial correlation, correlations between glutathione concentrations and dairy and milk servings remained significant. Conclusions: Higher cerebral glutathione concentrations were associated with greater dairy consumption in older adults. One possible explanation for this association is that dairy foods may serve as a good source of substrates for glutathione synthesis in the human brain. PMID:25646325

  7. Longitudinal Brain Changes Associated with Prophylactic Cranial Irradiation in Lung Cancer.

    Science.gov (United States)

    Simó, Marta; Vaquero, Lucía; Ripollés, Pablo; Gurtubay-Antolin, Ane; Jové, Josep; Navarro, Arturo; Cardenal, Felipe; Bruna, Jordi; Rodríguez-Fornells, Antoni

    2016-04-01

    study documents moderate neuropsychological deficits together with notable brain-specific structural changes (in GM and WM) in patients with SCLC after chemotherapy and PCI, suggesting that chemotherapy and especially PCI are associated with the development of cognitive and structural brain toxic effects. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  8. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Annika [Turku University Hospital, Department of Pediatrics, Turku (Finland); Aabo Akademi University, Department of Psychology, Turku (Finland); Parkkola, Riitta [University of Turku and Turku University Hospital, Department of Radiology and Turku PET Center, PO Box 52, Turku (Finland); Lehtonen, Liisa; Maunu, Jonna; Lapinleimu, Helena [University of Turku and Turku University Hospital, Department of Pediatrics, Turku (Finland); Munck, Petriina [Turku University Hospital, Department of Pediatrics, Turku (Finland); University of Turku, Department of Psychology, Turku (Finland); Haataja, Leena [University of Turku and Turku University Hospital, Department of Pediatric Neurology, Turku (Finland)

    2011-08-15

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children. (orig.)

  9. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children.

    Science.gov (United States)

    Lind, Annika; Parkkola, Riitta; Lehtonen, Liisa; Munck, Petriina; Maunu, Jonna; Lapinleimu, Helena; Haataja, Leena

    2011-08-01

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children.

  10. Association between sensorimotor impairments and functional brain changes in patients with low back pain: a critical review.

    Science.gov (United States)

    Goossens, Nina; Rummens, Sofie; Janssens, Lotte; Caeyenberghs, Karen; Brumagne, Simon

    2017-11-06

    Low back pain (LBP) coincides with sensorimotor impairments, e.g., reduced lumbosacral tactile and proprioceptive acuity and postural control deficits. Recent functional magnetic resonance imaging (fMRI) studies suggest that sensorimotor impairments in LBP may be associated with brain changes. However, no consensus exists regarding the relationship between functional brain changes and sensorimotor behavior in LBP. Therefore, this review critically discusses the available fMRI studies on brain activation related to non-nociceptive somatosensory stimulation and motor performance in individuals with LBP. Four electronic databases were searched, yielding nine relevant studies. Patients with LBP showed reduced sensorimotor-related brain activation and a reorganized lumbar spine representation in higher-order (multi)sensory processing and motor regions, including primary and secondary somatosensory cortices, supplementary motor area and superior temporal gyrus. These results may support behavioral findings of sensorimotor impairments in LBP. Additionally, patients with LBP displayed widespread increased sensorimotor-evoked brain activation in regions often associated with abnormal pain processing. Over-activation in these regions could indicate an over-responsiveness to sensory inputs that signal potential harm to the spine, thereby inducing over-generalized protective responses. Hence, functional brain changes could contribute to the development and recurrence of LBP. However, future studies investigating the causality between sensorimotor-related brain function and LBP are imperative.

  11. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease.

    Science.gov (United States)

    Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W

    2017-03-01

    Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance

  12. Automatic ROI selection in structural brain MRI using SOM 3D projection

    National Research Council Canada - National Science Library

    Ortiz, Andrés; Górriz, Juan M; Ramírez, Javier; Martinez-Murcia, Francisco J

    2014-01-01

    ...) for diagnostic purposes, using statistical learning and vector quantization techniques. The proposed method models the distribution of GM and WM tissues grouping the voxels belonging to each tissue in ROIs associated to a specific neurological disorder...

  13. Tooth loss is associated with brain white matter change and silent infarction among adults without dementia and stroke.

    Science.gov (United States)

    Minn, Yang-Ki; Suk, Seung-Han; Park, Hyunyoung; Cheong, Jin-Sung; Yang, Hyunduk; Lee, Sungik; Do, Seung-Yeon; Kang, Ji-Sook

    2013-06-01

    Periodontal disease is a predictor of stroke and cognitive impairment. The association between the number of lost teeth (an indicator of periodontal disease) and silent infarcts and cerebral white matter changes on brain CT was investigated in community-dwelling adults without dementia or stroke. Dental examination and CT were performed in 438 stroke- and dementia-free subjects older than 50 yr (mean age, 63 ± 7.9 yr), who were recruited for an early health check-up program as part of the Prevention of Stroke and Dementia (PRESENT) project between 2009 and 2010. In unadjusted analyses, the odds ratio (OR) for silent cerebral infarcts and cerebral white matter changes for subjects with 6-10 and > 10 lost teeth was 2.3 (95% CI, 1.38-4.39; P = 0.006) and 4.2 (95% CI, 1.57-5.64; P < 0.001), respectively, as compared to subjects with 0-5 lost teeth. After adjustment for age, education, hypertension, diabetes mellitus, hyperlipidemia, and smoking, the ORs were 1.7 (95% CI, 1.08-3.69; P = 0.12) and 3.9 (95% CI, 1.27-5.02; P < 0.001), respectively. These findings suggest that severe tooth loss may be a predictor of silent cerebral infarcts and cerebral white matter changes in community-dwelling, stroke- and dementia-free adults.

  14. Rare coding variation in paraoxonase-1 is associated with ischemic stroke in the NHLBI Exome Sequencing Project[S

    Science.gov (United States)

    Kim, Daniel Seung; Crosslin, David R.; Auer, Paul L.; Suzuki, Stephanie M.; Marsillach, Judit; Burt, Amber A.; Gordon, Adam S.; Meschia, James F.; Nalls, Mike A.; Worrall, Bradford B.; Longstreth, W. T.; Gottesman, Rebecca F.; Furlong, Clement E.; Peters, Ulrike; Rich, Stephen S.; Nickerson, Deborah A.; Jarvik, Gail P.

    2014-01-01

    HDL-associated paraoxonase-1 (PON1) is an enzyme whose activity is associated with cerebrovascular disease. Common PON1 genetic variants have not been consistently associated with cerebrovascular disease. Rare coding variation that likely alters PON1 enzyme function may be more strongly associated with stroke. The National Heart, Lung, and Blood Institute Exome Sequencing Project sequenced the coding regions (exomes) of the genome for heart, lung, and blood-related phenotypes (including ischemic stroke). In this sample of 4,204 unrelated participants, 496 had verified, noncardioembolic ischemic stroke. After filtering, 28 nonsynonymous PON1 variants were identified. Analysis with the sequence kernel association test, adjusted for covariates, identified significant associations between PON1 variants and ischemic stroke (P = 3.01 × 10−3). Stratified analyses demonstrated a stronger association of PON1 variants with ischemic stroke in African ancestry (AA) participants (P = 5.03 × 10−3). Ethnic differences in the association between PON1 variants with stroke could be due to the effects of PON1Val109Ile (overall P = 7.88 × 10−3; AA P = 6.52 × 10−4), found at higher frequency in AA participants (1.16% vs. 0.02%) and whose protein is less stable than the common allele. In summary, rare genetic variation in PON1 was associated with ischemic stroke, with stronger associations identified in those of AA. Increased focus on PON1 enzyme function and its role in cerebrovascular disease is warranted. PMID:24711634

  15. Cumulative stress in childhood is associated with blunted reward-related brain activity in adulthood.

    Science.gov (United States)

    Hanson, Jamie L; Albert, Dustin; Iselin, Anne-Marie R; Carré, Justin M; Dodge, Kenneth A; Hariri, Ahmad R

    2016-03-01

    Early life stress (ELS) is strongly associated with negative outcomes in adulthood, including reduced motivation and increased negative mood. The mechanisms mediating these relations, however, are poorly understood. We examined the relation between exposure to ELS and reward-related brain activity, which is known to predict motivation and mood, at age 26, in a sample followed since kindergarten with annual assessments. Using functional neuroimaging, we assayed individual differences in the activity of the ventral striatum (VS) during the processing of monetary rewards associated with a simple card-guessing task, in a sample of 72 male participants. We examined associations between a cumulative measure of ELS exposure and VS activity in adulthood. We found that greater levels of cumulative stress during childhood and adolescence predicted lower reward-related VS activity in adulthood. Extending this general developmental pattern, we found that exposure to stress early in development (between kindergarten and grade 3) was significantly associated with variability in adult VS activity. Our results provide an important demonstration that cumulative life stress, especially during this childhood period, is associated with blunted reward-related VS activity in adulthood. These differences suggest neurobiological pathways through which a history of ELS may contribute to reduced motivation and increased negative mood. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Incidental paranasal sinusitis on routine brain magnetic resonance scans: association with atherosclerosis.

    Science.gov (United States)

    Rosenthal, Peter A; Lundy, Katherine C; Massoglia, Dino P; Payne, Elizabeth H; Gilbert, Gregory; Gebregziabher, Mulugeta

    2016-12-01

    Incidental paranasal sinusitis (IPS) is common on imaging for non-sinusitis disorders, usually without symptoms or obstructive features, and possibly arising from periodontitis (PD). PD associations with atherosclerosis have been widely reported. We test if IPS may also be associated with atherosclerosis. IPS was scored retrospectively in a random sample of 180 magnetic resonance (MR) brain scans and compared with chart review for atherosclerosis (all subtypes), rhinosinusitis, and related factors (smoking, asthma, and relevant surgery). IPS was scored out of 30, from all sinuses, with maxillary sinuses weighted double volumetrically. Significant IPS (Sig IPS) was designated as 6 or more out of 30. Bivariate logistic regression was used to test for associations of Sig IPS to the clinical data, with multivariate analysis then testing for potential confounders. A total of 173 subjects were analyzed (7 exclusions). MR indications included suspected acute/prior stroke (22.0%). Sig IPS found in 20 (11.6%). Positive histories for atherosclerosis were cerebral, 57 (32.9%); coronary, 48 (27.7%); and peripheral arterial disease, 14 (8.1%). IPS ≥6 was strongly associated with cerebrovascular disease (odds ratio [OR] 6.0, p Sig IPS to cerebrovascular disease persisted (modified OR 5.2, p = 0.002). Significant incidental sinusitis, which is mostly subclinical sinusitis, is associated with cerebrovascular disease but not other atheroscleroses. This suggests possible common causation of both by PD. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  17. The influence of age and mild cognitive impairment on associative memory performance and underlying brain networks.

    Science.gov (United States)

    Oedekoven, Christiane S H; Jansen, Andreas; Keidel, James L; Kircher, Tilo; Leube, Dirk

    2015-12-01

    Associative memory is essential to everyday activities, such as the binding of faces and corresponding names to form single bits of information. However, this ability often becomes impaired with increasing age. The most important neural substrate of associative memory is the hippocampus, a structure crucially implicated in the pathogenesis of Alzheimer's disease (AD). The main aim of this study was to compare neural correlates of associative memory in healthy aging and mild cognitive impairment (MCI), an at-risk state for AD. We used fMRI to investigate differences in brain activation and connectivity between young controls (n = 20), elderly controls (n = 32) and MCI patients (n = 21) during associative memory retrieval. We observed lower hippocampal activation in MCI patients than control groups during a face-name recognition task, and the magnitude of this decrement was correlated with lower associative memory performance. Further, increased activation in precentral regions in all older adults indicated a stronger involvement of the task positive network (TPN) with age. Finally, functional connectivity analysis revealed a stronger link of hippocampal and striatal components in older adults in comparison to young controls, regardless of memory impairment. In elderly controls, this went hand-in-hand with a stronger activation of striatal areas. Increased TPN activation may be linked to greater reliance on cognitive control in both older groups, while increased functional connectivity between the hippocampus and the striatum may suggest dedifferentiation, especially in elderly controls.

  18. Brain Structures Associated with Internet Addiction Tendency in Adolescent Online Game Players

    Directory of Open Access Journals (Sweden)

    Nannan Pan

    2018-03-01

    Full Text Available With the development of the Internet, an increasing number of adolescents play online game excessively, which leads to adverse effects on individuals and society. Previous studies have demonstrated altered gray-matter volume (GMV in individuals with Internet gaming disorder (IGD, but the relationship between the tendency to IGD and the GMV across whole brain is still unclear in adolescents. In the present study, anatomical imaging with high resolution was performed on 67 male adolescents who played online game; and Young’s Internet addiction test (IAT was conducted to test the tendency to IGD. FMRIB Software Library (FSL was used to calculate the voxel-based correlations between the GMV and the IAT score after controlling for the age and years of education. The GMVs of the bilateral postcentral gyri (postCG, the bilateral precentral gyri (preCG, the right precuneus, the left posterior midcingulate cortex (pMCC, the left inferior parietal lobe (IPL, and the right middle frontal gyrus (MFG were negatively correlated with the IAT score. The correlation still existed between the IAT score and the GMVs of the bilateral postCG, the left preCG, the left pMCC, and the right MFG after controlling for the total time of playing online game. When the participants were divided into two groups according to the IAT score, the GMVs of these IAT-related brain regions were lower in high IAT score subgroup (IAT score >50 than in low IAT score subgroup (IAT score ≤50. Our results suggested that the GMVs of brain regions involved in sensorimotor process and cognitive control were associated with the IGD tendency. These findings may lead to new targets for preventing and treating the IGD.

  19. Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity.

    Science.gov (United States)

    Jastreboff, Ania M; Lacadie, Cheryl; Seo, Dongju; Kubat, Jessica; Van Name, Michelle A; Giannini, Cosimo; Savoye, Mary; Constable, R Todd; Sherwin, Robert S; Caprio, Sonia; Sinha, Rajita

    2014-11-01

    In the U.S., an astonishing 12.5 million children and adolescents are now obese, predisposing 17% of our nation's youth to metabolic complications of obesity, such as type 2 diabetes (T2D). Adolescent obesity has tripled over the last three decades in the setting of food advertising directed at children. Obese adults exhibit increased brain responses to food images in motivation-reward pathways. These neural alterations may be attributed to obesity-related metabolic changes, which promote food craving and high-calorie food (HCF) consumption. It is not known whether these metabolic changes affect neural responses in the adolescent brain during a crucial period for establishing healthy eating behaviors. Twenty-five obese (BMI 34.4 kg/m2, age 15.7 years) and fifteen lean (BMI 20.96 kg/m2, age 15.5 years) adolescents underwent functional MRI during exposure to HCF, low-calorie food (LCF), and nonfood (NF) visual stimuli 2 h after isocaloric meal consumption. Brain responses to HCF relative to NF cues increased in obese versus lean adolescents in striatal-limbic regions (i.e., putamen/caudate, insula, amygdala) (P emotion processing. Higher endogenous leptin levels correlated with increased neural activation to HCF images in all subjects (P dysfunctional leptin signaling may contribute to the risk of overconsumption of these foods, thus further predisposing adolescents to the development of obesity and T2D. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Learning-Related Brain-Electrical Activity Dynamics Associated with the Subsequent Impact of Learnt Action-Outcome Associations

    Directory of Open Access Journals (Sweden)

    Fabian Baum

    2017-05-01

    Full Text Available Goal-directed behavior relies on the integration of anticipated outcomes into action planning based on acquired knowledge about the current contingencies between behavioral responses (R and desired outcomes (O under specific stimulus conditions (S. According to ideomotor theory, bidirectional R-O associations are an integral part of this knowledge structure. Previous EEG studies have identified neural activity markers linked to the involvement of such associations, but the initial acquisition process has not yet been characterized. The present study thus examined brain-electrical activity dynamics during the rapid acquisition of novel bidirectional R-O associations during instructed S-R learning. Within a trial, we inspected response-locked and stimulus-locked activity dynamics in order to identify markers linked to the forward and backward activation of bidirectional R-O associations as they were being increasingly strengthened under forced choice conditions. We found that a post-response anterior negativity following auditory outcomes was increasingly attenuated as a function of the acquired association strength. This suggests that previously reported action-induced sensory attenuation effects under extensively trained free choice conditions can be established within few repetitions of specific R-O pairings under forced choice conditions. Furthermore, we observed the even more rapid development of a post-response but pre-outcome fronto-central positivity which was reduced for high R-O learners which might indicate the rapid deployment of preparatory attention towards predictable outcomes. Finally, we identified a learning-related stimulus-locked activity modulation within the visual P1-N1 latency range which might reflect the multi-sensory integration of the perceived antecedent visual stimulus the anticipated auditory outcome.

  1. Increased recruitment of bone marrow-derived cells into the brain associated with altered brain cytokine profile in senescence-accelerated mice.

    Science.gov (United States)

    Hasegawa-Ishii, Sanae; Inaba, Muneo; Li, Ming; Shi, Ming; Umegaki, Hiroyuki; Ikehara, Susumu; Shimada, Atsuyoshi

    2016-04-01

    Bone marrow-derived cells enter the brain in a non-inflammatory condition through the attachments of choroid plexus and differentiate into ramified myeloid cells. Neurodegenerative conditions may be associated with altered immune-brain interaction. The senescence-accelerated mouse prone 10 (SAMP10) undergoes earlier onset neurodegeneration than C57BL/6 (B6) strain. We hypothesized that the dynamics of immune cells migrating from the bone marrow to the brain is perturbed in SAMP10 mice. We created 4 groups of radiation chimeras by intra-bone marrow-bone marrow transplantation using 2-month-old (2 mo) and 10 mo SAMP10 and B6 mice as recipients with GFP transgenic B6 mice as donors, and analyzed histologically 4 months later. In the [B6 → 10 mo SAMP10] chimeras, more ramified marrow-derived cells populated a larger number of discrete brain regions than the other chimeras, especially in the diencephalon. Multiplex cytokine assays of the diencephalon prepared from non-treated 3 mo and 12 mo SAMP10 and B6 mice revealed that 12 mo SAMP10 mice exhibited higher tissue concentrations of CXCL1, CCL11, G-CSF, CXCL10 and IL-6 than the other groups. Immunohistologically, choroid plexus epithelium and ependyma produced CXCL1, while astrocytic processes in the attachments of choroid plexus expressed CCL11 and G-CSF. The median eminence produced CXCL10, hypothalamic neurons G-CSF and tanycytes CCL11 and G-CSF. These brain cytokine profile changes in 12 mo SAMP10 mice were likely to contribute to acceleration of the dynamics of marrow-derived cells to the diencephalon. Further studies on the functions of ramified marrow-derived myeloid cells would enhance our understanding of the brain-bone marrow interaction.

  2. Aberrant brain-stem morphometry associated with sleep disturbance in drug-naïve subjects with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lee JH

    2016-08-01

    Full Text Available Ji Han Lee,1 Won Sang Jung,2 Woo Hee Choi,3 Hyun Kook Lim4 1Washington University in St Louis, St Louis, MO, USA; 2Department of Radiology, 3Department of Nuclear Medicine, 4Department of Psychiatry, Saint Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon, South Korea Objective: Among patients with Alzheimer’s disease (AD, sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD.Materials and methods: In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology.Results: Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group.Conclusion: This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings. Keywords: Alzheimer’s disease, sleep, brain stem, MRI, shape analysis

  3. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    Directory of Open Access Journals (Sweden)

    Chelsea N Wong

    2015-08-01

    Full Text Available Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59-80 years. Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA, thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function.

  4. Emotion-related brain structures associated with trait creativity in middle children.

    Science.gov (United States)

    Xia, Yunman; Zhuang, Kaixiang; Sun, Jiangzhou; Chen, Qunlin; Wei, Dongtao; Yang, Wenjing; Qiu, Jiang

    2017-09-29

    Middle childhood is an important period for individual trait shaping, during which children are likely to generate and own their distinct neuromechanism of creative-related traits. This study used voxel-based morphometry (VBM) to identify the brain structures that underlie trait creativity (as measured by the Williams Creativity Aptitude Test) in a sample of typical developing children (aged 9-12, n=64). The results indicated that several emotion-related regions may relate to trait creativity in middle children. Specifically, the regional gray matter volume (rGMV) in the amygdala and hippocampus was negatively related to creative traits of challenge and risk-taking, which indicates that children with increased trait creativity may be more impulsive when they engage in creative activities. An increased rGMV in the orbitofrontal cortex (OFC) was related to an increased trait of imagination, which may be associated with stronger sensation-seeking in children. These findings are the first to demonstrate the brain structures that underlie trait creativity in middle children, and indicated that, driven by a relatively stronger effect of sensation-seeking (via recruitment of the OFC), children with increased trait creativity may exhibit more risk-taking and challenging behaviors (via recruitment of the amygdala and hippocampus) when they practice their creativity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Focal Brain Injury Associated with a Model of Severe Hypoxic-Ischemic Encephalopathy in Nonhuman Primates.

    Science.gov (United States)

    McAdams, Ryan M; McPherson, Ronald J; Kapur, Raj P; Juul, Sandra E

    2017-01-01

    Worldwide, hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal mortality and morbidity. To better understand the mechanisms contributing to brain injury and improve outcomes in neonates with HIE, better preclinical animal models that mimic the clinical situation following birth asphyxia in term newborns are needed. In an effort to achieve this goal, we modified our nonhuman primate model of HIE induced by in utero umbilical cord occlusion (UCO) to include postnatal hypoxic episodes, in order to simulate apneic events in human neonates with HIE. We describe a cohort of 4 near-term fetal Macaca nemestrina that underwent 18 min of in utero UCO, followed by cesarean section delivery, resuscitation, and subsequent postnatal mechanical ventilation, with exposure to intermittent daily hypoxia (3 min, 8% O2 3-8 times daily for 3 days). After delivery, all animals demonstrated severe metabolic acidosis (pH 7 ± 0.12; mean ± SD) and low APGAR scores (neonates after severe, abrupt hypoxic-ischemic insults. The UCO model permits timely detection of biomarkers associated with specific patterns of neonatal brain injury, and it may ultimately be useful for validating therapeutic strategies to treat neonatal HIE. © 2017 S. Karger AG, Basel.

  6. Association Between Brain-Derived Neurotrophic Factor Genotype and Upper Extremity Motor Outcome After Stroke.

    Science.gov (United States)

    Chang, Won Hyuk; Park, Eunhee; Lee, Jungsoo; Lee, Ahee; Kim, Yun-Hee

    2017-06-01

    The identification of intrinsic factors for predicting upper extremity motor outcome could aid the design of individualized treatment plans in stroke rehabilitation. The aim of this study was to identify prognostic factors, including intrinsic genetic factors, for upper extremity motor outcome in patients with subacute stroke. A total of 97 patients with subacute stroke were enrolled. Upper limb motor impairment was scored according to the upper limb of Fugl-Meyer assessment score at 3 months after stroke. The prediction of upper extremity motor outcome at 3 months was modeled using various factors that could potentially influence this impairment, including patient characteristics, baseline upper extremity motor impairment, functional and structural integrity of the corticospinal tract, and brain-derived neurotrophic factor genotype. Multivariate ordinal logistic regression models were used to identify the significance of each factor. The independent predictors of motor outcome at 3 months were baseline upper extremity motor impairment, age, stroke type, and corticospinal tract functional integrity in all stroke patients. However, in the group with severe motor impairment at baseline (upper limb score of Fugl-Meyer assessment derived neurotrophic factor genotype was also an independent predictor of upper extremity motor outcome 3 months after stroke. Brain-derived neurotrophic factor genotype may be a potentially useful predictor of upper extremity motor outcome in patients with subacute stroke with severe baseline motor involvement. © 2017 American Heart Association, Inc.

  7. Deep brain stimulation or thalamotomy in fragile X-associated tremor/ataxia syndrome? Case report.

    Science.gov (United States)

    Tamás, Gertrúd; Kovács, Norbert; Varga, Noémi Ágnes; Barsi, Péter; Erőss, Loránd; Molnár, Mária Judit; Balás, István

    2016-01-01

    We present the case of a 66-year-old man who has been treated for essential tremor since the age of 58. He developed mild cerebellar gait ataxia seven years after tremor onset. Moderate, global brain atrophy was identified on MRI scans. At the age of 68, only temporary tremor relief could be achieved by bilateral deep brain stimulation of the ventral intermedius nucleus of the thalamus. Bilateral stimulation of the subthalamic nucleus also resulted only in transient improvement. In the meantime, progressive gait ataxia and tetraataxia developed accompanied by other cerebellar symptoms, such as nystagmus and scanning speech. These correlated with progressive development of bilateral symmetric hyperintensity of the middle cerebellar peduncles on T2 weighted MRI scans. Genetic testing revealed premutation of the FMR1 gene, establishing the diagnosis of fragile X-associated tremor/ataxia syndrome. Although this is a rare disorder, it should be taken into consideration during preoperative evaluation of essential tremor. Postural tremor ceased two years later after thalamotomy on the left side, while kinetic tremor of the right hand also improved. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Quantitative Susceptibility Mapping Reveals an Association between Brain Iron Load and Depression Severity

    Directory of Open Access Journals (Sweden)

    Shun Yao

    2017-08-01

    Full Text Available Previous studies have detected abnormal serum ferritin levels in patients with depression; however, the results have been inconsistent. This study used quantitative susceptibility mapping (QSM for the first time to examine brain iron concentration in depressed patients and evaluated whether it is related to severity. We included three groups of age- and gender-matched participants: 30 patients with mild-moderate depression (MD, 14 patients with major depression disorder (MDD and 20 control subjects. All participants underwent MR scans with a 3D gradient-echo sequence reconstructing for QSM and performed the 17-item Hamilton Depression Rating Scale (HDRS test. In MDD, the susceptibility value in the bilateral putamen was significantly increased compared with MD or control subjects. In addition, a significant difference was also observed in the left thalamus in MDD patients compared with controls. However, the susceptibility values did not differ between MD patients and controls. The susceptibility values positively correlated with the severity of depression as indicated by the HDRS scores. Our results provide evidence that brain iron deposition may be associated with depression and may even be a biomarker for investigating the pathophysiological mechanism of depression.

  9. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring.

    Science.gov (United States)

    Caicedo, Alexander; Varon, Carolina; Hunyadi, Borbala; Papademetriou, Maria; Tachtsidis, Ilias; Van Huffel, Sabine

    2016-01-01

    Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS) and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP), assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + ϵ. SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP) with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first 3 days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen saturation from the

  10. Distinct brain metabolic patterns separately associated with cognition, motor function, and aging in Parkinson's disease dementia.

    Science.gov (United States)

    Ko, Ji Hyun; Katako, Audrey; Aljuaid, Maram; Goertzen, Andrew L; Borys, Andrew; Hobson, Douglas E; Kim, Seok Min; Lee, Chong Sik

    2017-12-01

    We explored whether patients with Parkinson's disease dementia (PDD) show a distinct spatial metabolic pattern that characterizes cognitive deficits in addition to motor dysfunction. Eighteen patients with PDD underwent 3 separate positron emission tomography sessions with [ 18 F]fluorodeoxyglucose (for glucose metabolism), fluorinated N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane (for dopamine transporter density) and Pittsburgh compound-B (for beta-amyloid load). We confirmed in PDD versus normal controls, overall hypometabolism in the posterior and prefrontal brain regions accompanied with hypermetabolism in subcortical structures and the cerebellar vermis. A multivariate network analysis then revealed 3 metabolic patterns that are separately associated with cognitive performance (p = 0.042), age (p = 0.042), and motor symptom severity (p = 0.039). The age-related pattern's association with aging was replicated in healthy controls (p = 0.047) and patients with Alzheimer's disease (p = 0.002). The cognition-related pattern's association with cognitive performance was observed, with a trend-level of correlation, in patients with dementia with Lewy bodies (p = 0.084) but not in patients with Alzheimer's disease (p = 0.974). We found no association with fluorinated N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane and Pittsburgh compound-B positron emission tomography with patients' cognitive performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes.

    Science.gov (United States)

    Wade, Shari L; Cassedy, Amy E; Fulks, Lauren E; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O; Kurowski, Brad G

    2017-08-01

    To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Four children's hospitals and 1 general hospital, with level 1 trauma units. Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (Pproblem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (PProblem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Mesh Association by Projection along Smoothed-Normal-Vector Fields : Association of Closed Manifolds

    NARCIS (Netherlands)

    Van Brummelen, E.H.

    2006-01-01

    The necessity to associate two geometrically distinct meshes arises in many engineering applications. Current mesh-association algorithms are generally unsuitable for the high-order geometry representations associated with high-order finite-element discretizations. In the present work we therefore

  13. Hippocampal Sclerosis of Aging, a Common Alzheimer's Disease 'Mimic': Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe.

    Science.gov (United States)

    Nho, Kwangsik; Saykin, Andrew J; Nelson, Peter T

    2016-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer's disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (∼50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer's disease contribution to atrophy outside of the hippocampus in older adults.

  14. Final Report on LDRD project 130784 : functional brain imaging by tunable multi-spectral Event-Related Optical Signal (EROS).

    Energy Technology Data Exchange (ETDEWEB)

    Speed, Ann Elizabeth; Spahn, Olga Blum; Hsu, Alan Yuan-Chun

    2009-09-01

    Functional brain imaging is of great interest for understanding correlations between specific cognitive processes and underlying neural activity. This understanding can provide the foundation for developing enhanced human-machine interfaces, decision aides, and enhanced cognition at the physiological level. The functional near infrared spectroscopy (fNIRS) based event-related optical signal (EROS) technique can provide direct, high-fidelity measures of temporal and spatial characteristics of neural networks underlying cognitive behavior. However, current EROS systems are hampered by poor signal-to-noise-ratio (SNR) and depth of measure, limiting areas of the brain and associated cognitive processes that can be investigated. We propose to investigate a flexible, tunable, multi-spectral fNIRS EROS system which will provide up to 10x greater SNR as well as improved spatial and temporal resolution through significant improvements in electronics, optoelectronics and optics, as well as contribute to the physiological foundation of higher-order cognitive processes and provide the technical foundation for miniaturized portable neuroimaging systems.

  15. Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project

    Science.gov (United States)

    2011-10-01

    departed and has taken a new position at the Scott & White Clinic, VA Medical Center and Texas Tech University in Waco , Texas. The MRI physics post... Forensic Bioinformatics” as a result of work done by Keith Baggerly and associates at M.D. Anderson Cancer Center. (6, 7) We anticipate that one...JNCI Vol. 102, Issue 18, September 22, 2010, 1380-1. 6. Keith A. Baggerly and Kevin R. Coombes. Deriving chemosensitivity from cell lines: forensic

  16. Prevalence and association of oral candidiasis with dysphagia in individuals with acquired brain injury (ABI)

    DEFF Research Database (Denmark)

    Odgaard, Lene; Nielsen, Jørgen Feldbæk; Kothari, Mohit

    Objective: To describe the prevalence of oral candidiasis (OC) in individuals with acquired brain injury (ABI) and to evaluate the association of OC with improvement in dysphagia. Design: Longitudinal observational study. Methods: Individuals with ABI admitted to a rehabilitation centre were...... recruited over a one-year period. OC-data were collected by clinical examinations and verified by cultivation/microscopy in every 3 weeks during first 10 weeks of admission. Data on dysphagia were collected through medical record reviews. Dysphagia improvement was defined by: 1) First positive change.......7%, respectively. The OC prevalence was 24.8% after one week of admission and reduced to 10.1% after ten weeks of admission. Adjusted hazard ratios for improvement in dysphagia were 0.64-0.77 in OC compared to without OC, though not statistically significant. Conclusion: Prevalence of OC was high at admission...

  17. Health outcomes associated with military deployment: mild traumatic brain injury, blast, trauma, and combat associations in the Florida National Guard.

    Science.gov (United States)

    Vanderploeg, Rodney D; Belanger, Heather G; Horner, Ronnie D; Spehar, Andrea M; Powell-Cope, Gail; Luther, Stephen L; Scott, Steven G

    2012-11-01

    To determine the association between specific military deployment experiences and immediate and longer-term physical and mental health effects, as well as examine the effects of multiple deployment-related traumatic brain injuries (TBIs) on health outcomes. Online survey of cross-sectional cohort. Odds ratios were calculated to assess the association between deployment-related factors (ie, physical injuries, exposure to potentially traumatic deployment experiences, combat, blast exposure, and mild TBI) and current health status, controlling for potential confounders, demographics, and predeployment experiences. Nonclinical. Members (N=3098) of the Florida National Guard (1443 deployed, 1655 not deployed). Not applicable. Presence of current psychiatric diagnoses and health outcomes, including postconcussive and non-postconcussive symptoms. Surveys were completed an average of 31.8 months (SD=24.4, range=0-95) after deployment. Strong, statistically significant associations were found between self-reported military deployment-related factors and current adverse health status. Deployment-related mild TBI was associated with depression, anxiety, posttraumatic stress disorder (PTSD), and postconcussive symptoms collectively and individually. Statistically significant increases in the frequency of depression, anxiety, PTSD, and a postconcussive symptom complex were seen comparing single to multiple TBIs. However, a predeployment TBI did not increase the likelihood of sustaining another TBI in a blast exposure. Associations between blast exposure and abdominal pain, pain on deep breathing, shortness of breath, hearing loss, and tinnitus suggested residual barotrauma. Combat exposures with and without physical injury were each associated not only with PTSD but also with numerous postconcussive and non-postconcussive symptoms. The experience of seeing others wounded or killed or experiencing the death of a buddy or leader was associated with indigestion and headaches but

  18. Physical fitness and psychological health in overweight/obese children: A cross-sectional study from the ActiveBrains project.

    Science.gov (United States)

    Rodriguez-Ayllon, M; Cadenas-Sanchez, C; Esteban-Cornejo, I; Migueles, J H; Mora-Gonzalez, J; Henriksson, P; Martín-Matillas, M; Mena-Molina, A; Molina-García, P; Estévez-López, F; Enriquez, G M; Perales, J C; Ruiz, J R; Catena, A; Ortega, F B

    2018-02-01

    To examine the associations of physical fitness (i.e. cardiorespiratory fitness, muscular strength, and speed/agility) with psychological distress and psychological well-being in overweight/obese pre-adolescent children. 110 overweight/obese children (10.0±1.1years old, 61 boys) from the ActiveBrains project (http://profith.ugr.es/activebrains) participated in this cross-sectional study. Physical fitness was evaluated by the ALPHA battery test. Cardiorespiratory fitness was additionally evaluated by a maximal incremental treadmill. Stress was assessed by the Children's Daily Stress Inventory, anxiety by the State-Trait Anxiety Inventory, depression by the Children Depression Inventory, positive affect and negative affect by the Positive and Negative Affect Scale for Children, happiness by the Subjective Happiness Scale, optimism by the Life Orientation Test, and self-esteem by the Rosenberg Self-Esteem questionnaire. Linear regression adjusted for sex and peak height velocity was used to examine associations. Absolute upper-body muscular strength was negatively associated with stress and negative affect (β=-0.246, p=0.047; β=-0.329, p=0.010, respectively). Furthermore, absolute lower-body muscular strength was negatively associated with negative affect (β=-0.301, p=0.029). Cardiorespiratory fitness, expressed by the last completed lap, and relative upper-body muscular strength were positively associated with optimism (β=0.220, p=0.042; β=0.240, p=0.017, respectively). Finally, absolute upper-body muscular strength was positively associated with self-esteem (β=0.362, p=0.003) independently of sex and weight status (p for interactions >0.3), and absolute lower-body muscular strength was also positively associated with self-esteem (β=0.352, p=0.008). Muscular strength was associated with psychological distress (i.e. stress and negative affect) and psychological well-being (i.e. optimism and self-esteem) as well as cardiorespiratory fitness was associated with

  19. Blink-associated contralateral eccentric saccades as a rare sign of unilateral brain injury.

    Science.gov (United States)

    Zivi, Ilaria; Bertelli, Eugenio; Bilotti, Giacinta; Clemente, Ignazio Alessandro; Saltuari, Leopold; Frazzitta, Giuseppe

    2017-01-10

    To describe a rare sign of unilateral brain injury as a form of unwanted blink-associated contralateral eccentric saccades. A 62-year-old patient who underwent an ischemic stroke affecting the entire right middle cerebral artery territory came to our attention 1 year after stroke, manifesting with transient contralateral conjugate gaze deviations associated with spontaneous blinking. We complemented the regular neurologic evaluation with brain MRI, study of evoked potentials, electroneurography of the facial nerve, and infrared video-oculoscopy. The patient had left-sided hemiparesis, hypoesthesia, hemianopia, and hemispatial neglect. He also showed the occurrence of a rapid leftward conjugate deviation of the eyes, followed by a corrective movement to the primary ocular position. MRI showed a wide malacic area spanning the right frontal, temporal, and parietal cortical and subcortical regions, with signs of wallerian degeneration of the descending right corticospinal tract. Motor and somatosensory evoked potentials were centrally altered on the right side. Electroneurography of the facial nerves was normal. Infrared video-oculoscopy indicated persistence of the same blink-related saccades even in darkness. It is known that unilateral cerebral lesions may manifest with a contralateral conjugate gaze deviation evoked by closure of the lids. This sign, known as spasticity of conjugate gaze, may be due to the suppression of the fixation reflex. In our case, the persistence of this sign in the darkness allowed us to exclude this diagnosis. We hypothesized that the blink-related neural pathways may improperly activate the oculomotor circuitry at both the cortical and subcortical levels. © 2016 American Academy of Neurology.

  20. The Association Between Use of Brain CT for Atraumatic Headache and 30-Day Emergency Department Revisitation.

    Science.gov (United States)

    Patterson, Brian W; Pang, Peter S; AlKhawam, Lora; Hamedani, Azita G; Mendonca, Eneida A; Zhao, Ying-Qi; Venkatesh, Arjun K

    2016-12-01

    The purpose of this article is to describe the association between initial CT for atraumatic headache and repeat emergency department (ED) visitation within 30 days of ED discharge. A retrospective observational study was performed at an academic urban ED with more than 85,000 annual visits. All adult patients with a chief complaint of headache from January through December 2010 who were discharged after ED evaluation were included in the analysis. Patients were excluded if they were transferred, died in the ED, or had a diagnosis indicating a traumatic mechanism. A propensity score-matched logistic regression model was used to determine whether the use of brain CT was associated with the primary outcome of ED revisitation within 30 days, controlling for potential confounding variables. Of 80,619 total patient visits to the ED during the study period, 922 ED discharges with a chief complaint of headache were included. A total of 139 (15.1%) patients revisited within 30 days. The return rate was 11.2% among patients who underwent CT at their initial visit and 21.1% among those who did not. In the adjusted analysis, controlling for age, race, sex, insurance status, triage vital signs, laboratory values, and triage pain level, the odds ratio for revisitation given CT performance was 0.49 (95% CI, 0.27-0.86). After adjustment for clinical factors, we found that patients who underwent a brain CT examination for atraumatic headache at an initial ED visit were less likely to return to the ED within 30 days. Future appropriate use quality metrics regarding ED imaging use may need to incorporate downstream health care use.

  1. Epigenetic alterations in the brain associated with HIV-1 infection and methamphetamine dependence.

    Directory of Open Access Journals (Sweden)

    Paula Desplats

    Full Text Available HIV involvement of the CNS continues to be a significant problem despite successful use of combination antiretroviral therapy (cART. Drugs of abuse can act in concert with HIV proteins to damage glia and neurons, worsening the neurotoxicity caused by HIV alone. Methamphetamine (METH is a highly addictive psychostimulant drug, abuse of which has reached epidemic proportions and is associated with high-risk sexual behavior, increased HIV transmission, and development of drug resistance. HIV infection and METH dependence can have synergistic pathological effects, with preferential involvement of frontostriatal circuits. At the molecular level, epigenetic alterations have been reported for both HIV-1 infection and drug abuse, but the neuropathological pathways triggered by their combined effects are less known. We investigated epigenetic changes in the brain associated with HIV and METH. We analyzed postmortem frontal cortex tissue from 27 HIV seropositive individuals, 13 of which had a history of METH dependence, in comparison to 14 cases who never used METH. We detected changes in the expression of DNMT1, at mRNA and protein levels, that resulted in the increase of global DNA methylation. Genome-wide profiling of DNA methylation in a subset of cases, showed differential methylation on genes related to neurodegeneration; dopamine metabolism and transport; and oxidative phosphorylation. We provide evidence for the synergy of HIV and METH dependence on the patterns of DNA methylation on the host brain, which results in a distinctive landscape for the comorbid condition. Importantly, we identified new epigenetic targets that might aid in understanding the aggravated neurodegenerative, cognitive, motor and behavioral symptoms observed in persons living with HIV and addictions.

  2. Epigenetic alterations in the brain associated with HIV-1 infection and methamphetamine dependence.

    Science.gov (United States)

    Desplats, Paula; Dumaop, Wilmar; Cronin, Peter; Gianella, Sara; Woods, Steven; Letendre, Scott; Smith, David; Masliah, Eliezer; Grant, Igor

    2014-01-01

    HIV involvement of the CNS continues to be a significant problem despite successful use of combination antiretroviral therapy (cART). Drugs of abuse can act in concert with HIV proteins to damage glia and neurons, worsening the neurotoxicity caused by HIV alone. Methamphetamine (METH) is a highly addictive psychostimulant drug, abuse of which has reached epidemic proportions and is associated with high-risk sexual behavior, increased HIV transmission, and development of drug resistance. HIV infection and METH dependence can have synergistic pathological effects, with preferential involvement of frontostriatal circuits. At the molecular level, epigenetic alterations have been reported for both HIV-1 infection and drug abuse, but the neuropathological pathways triggered by their combined effects are less known. We investigated epigenetic changes in the brain associated with HIV and METH. We analyzed postmortem frontal cortex tissue from 27 HIV seropositive individuals, 13 of which had a history of METH dependence, in comparison to 14 cases who never used METH. We detected changes in the expression of DNMT1, at mRNA and protein levels, that resulted in the increase of global DNA methylation. Genome-wide profiling of DNA methylation in a subset of cases, showed differential methylation on genes related to neurodegeneration; dopamine metabolism and transport; and oxidative phosphorylation. We provide evidence for the synergy of HIV and METH dependence on the patterns of DNA methylation on the host brain, which results in a distinctive landscape for the comorbid condition. Importantly, we identified new epigenetic targets that might aid in understanding the aggravated neurodegenerative, cognitive, motor and behavioral symptoms observed in persons living with HIV and addictions.

  3. Localization and characterization of an essential associative memory trace in the mammalian brain.

    Science.gov (United States)

    Poulos, Andrew M; Thompson, Richard F

    2015-09-24

    We argue here that we have succeeded in localizing an essential memory trace for a basic form of associative learning and memory - classical conditioning of discrete responses learned with an aversive stimulus - to the anterior interpositus nucleus of the cerebellum. We first identified the entire essential circuit, using eyelid conditioning as the model system, and used reversible inactivation, during training, of critical structures and activation of pathways to localize definitively the essential memory trace. This discovery and the associated studies have: 1) shown that the essential cerebellar circuit applies equally to all mammals studied, including humans; 2) shown that this cerebellar circuit holds for the learning of any discrete behavioral response elicited by an aversive US, not just eyelid closure; 3) identified the essential circuit and process for reinforcement for this form of learning; 4) shown that this form of learning and its essential cerebellar circuitry is phylogenetically very old; 5) solved the long-standing puzzle of where memory traces are formed in the brain when the CS is electrical stimulation of the cerebral cortex in conditioning; 6) shown that this cerebellar circuitry forms the essential neural substrate for the behavioral phenomenon of "blocking", and hence, 7) provides the first clear neural instantiation of the Rescorla-Wagner learning algorithm; 8) shown that the fundamental neural process underlying this form of learning is a strengthening of preexisting pathways, and 9) shown that the basic mechanism underlying this strengthening is the formation of new excitatory synapses. This article is part of a Special Issue entitled SI: Brain and Memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Association between resting-state brain network topological organization and creative ability: Evidence from a multiple linear regression model.

    Science.gov (United States)

    Jiao, Bingqing; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Li, Junchao; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Huang, Ruiwang; Liu, Ming

    2017-10-01

    Previous studies have indicated a tight linkage between resting-state functional connectivity of the human brain and creative ability. This study aimed to further investigate the association between the topological organization of resting-state brain networks and creativity. Therefore, we acquired resting-state fMRI data from 22 high-creativity participants and 22 low-creativity participants (as determined by their Torrance Tests of Creative Thinking scores). We then constructed functional brain networks for each participant and assessed group differences in network topological properties before exploring the relationships between respective network topological properties and creative ability. We identified an optimized organization of intrinsic brain networks in both groups. However, compared with low-creativity participants, high-creativity participants exhibited increased global efficiency and substantially decreased path length, suggesting increased efficiency of information transmission across brain networks in creative individuals. Using a multiple linear regression model, we further demonstrated that regional functional integration properties (i.e., the betweenness centrality and global efficiency) of brain networks, particularly the default mode network (DMN) and sensorimotor network (SMN), significantly predicted the individual differences in creative ability. Furthermore, the associations between network regional properties and creative performance were creativity-level dependent, where the difference in the resource control component may be important in explaining individual difference in creative performance. These findings provide novel insights into the neural substrate of creativity and may facilitate objective identification of creative ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. HTLV-I associated myelopathy with multiple spotty areas in cerebral white matter and brain stem by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Yasuo; Takahashi, Mitsuo; Yoshikawa, Hiroo; Yorifuji, Shirou; Tarui, Seiichiro

    1988-01-01

    A 48-year-old woman was admitted with complaints of urinary incontinence and gait disturbance, both of which had progressed slowly without any sign of remission. Family history was not contributory. Neurologically, extreme spasticity was recoginized in the lower limbs. Babinski sign was positive bilaterally. Flower-like atypical lymphocytes were seen in blood. Positive anti-HTLV-I antibody was confirmed in serum and spinal fluid by western blot. She was diagnosed as having HTLV-I associated myelopathy (HAM). CT reveald calcification in bilateral globus pallidus, and MRI revealed multiple spotty areas in cerebral white matter and brain stem, but no spinal cord lesion was detectable. Electrophysiologically, brain stem auditory evoked potential (BAEP) suggested the presence of bilateral brain stem lesions. Neither median nor posterior tibial nerve somatosensory evoked potentials were evoked, a finding suggesting the existence of spinal cord lesion. In this case, the lesion was not confined to spinal cord, it was also observed in brain stem and cerebral white matter. Such distinct lesions in cerebral white matter and brain stem have not been reported in patients with HAM. It is suggested that HTLV-I is probably associated with cerebral white matter and brain stem.

  6. Cytokine-mediated blood brain barrier disruption as a conduit for cancer/chemotherapy-associated neurotoxicity and cognitive dysfunction.

    Science.gov (United States)

    Wardill, Hannah R; Mander, Kimberley A; Van Sebille, Ysabella Z A; Gibson, Rachel J; Logan, Richard M; Bowen, Joanne M; Sonis, Stephen T

    2016-12-15

    Neurotoxicity is a common side effect of chemotherapy treatment, with unclear molecular mechanisms. Clinical studies suggest that the most frequent neurotoxic adverse events affect memory and learning, attention, concentration, processing speeds and executive function. Emerging preclinical research points toward direct cellular toxicity and induction of neuroinflammation as key drivers of neurotoxicity and subsequent cognitive impairment. Emerging data now show detectable levels of some chemotherapeutic agents within the CNS, indicating potential disruption of blood brain barrier integrity or transport mechanisms. Blood brain barrier disruption is a key aspect of many neurocognitive disorders, particularly those characterized by a proinflammatory state. Importantly, many proinflammatory mediators able to modulate the blood brain barrier are generated by tissues and organs that are targets for chemotherapy-associated toxicities. This review therefore aims to explore the hypothesis that peripherally derived inflammatory cytokines disrupt blood brain barrier permeability, thereby increasing direct access of chemotherapeutic agents into the CNS to facilitate neuroinflammation and central neurotoxicity. © 2016 UICC.

  7. Human von Economo neurons express transcription factors associated with Layer V subcerebral projection neurons.

    Science.gov (United States)

    Cobos, Inma; Seeley, William W

    2015-01-01

    The von Economo neurons (VENs) are large bipolar Layer V projection neurons found chiefly in the anterior cingulate and frontoinsular cortices. Although VENs have been linked to prevalent illnesses such as frontotemporal dementia, autism, and schizophrenia, little is known about VEN identity, including their major projection targets. Here, we undertook a developmental transcription factor expression study, focusing on markers associated with specific classes of Layer V projection neurons. Using mRNA in situ hybridization, we found that VENs prominently express FEZF2 and CTIP2, transcription factors that regulate the fate and differentiation of subcerebral projection neurons, in humans aged 3 months to 65 years. In contrast, few VENs expressed markers associated with callosal or corticothalamic projections. These findings suggest that VENs may represent a specialized Layer V projection neuron for linking cortical autonomic control sites to brainstem or spinal cord regions. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Established liked versus disliked brands: Brain activity, implicit associations and explicit responses

    Directory of Open Access Journals (Sweden)

    Shannon S. Bosshard

    2016-12-01

    Full Text Available Consumers’ attitudes towards established brands were tested using implicit and explicit measures. In particular, late positive potential (LPP effects were assessed as an implicit neurophysiological measure of motivational significance. The Implicit Association Test (IAT was used as an implicit behavioural measure of valence-related aspects (affective content of brand attitude. We constructed individualised stimulus lists of liked and disliked brand types from participants’ subjective pre-assessment. Participants then re-rated these visually presented brands whilst brain potential changes were recorded via electroencephalography (EEG. First, self-report measures during the test confirmed pre-assessed attitudes underlining consistent explicit rating performance. Second, liked brands elicited significantly more positive going waveforms (LPPs than disliked brands over right parietal cortical areas starting at about 800 ms post stimulus onset (reaching statistical significance at around 1,000 ms and lasting until the end of the recording epoch (2,000 ms. In accordance to the literature, this finding is interpreted as reflecting positive affect-related motivational aspects of liked brands. Finally, the IAT revealed that both liked and disliked brands indeed are associated with affect-related valence. The increased levels of motivation associated with liked brands is interpreted as potentially reflecting increased purchasing intention, but this is of course only speculation at this stage.

  9. Neuropsychiatric disturbances associated with traumatic brain injury: a practical approach to evaluation and management.

    Science.gov (United States)

    Rao, Vani; Koliatsos, Vassilis; Ahmed, Faizi; Lyketsos, Constantine; Kortte, Kathleen

    2015-02-01

    Traumatic brain injury (TBI) causes a wide variety of neuropsychiatric disturbances associated with great functional impairments and low quality of life. These disturbances include disorders of mood, behavior, and cognition, and changes in personality. The diagnosis of specific neuropsychiatric disturbances can be difficult because there is significant symptom overlap. Systematic clinical evaluations are necessary to make the diagnosis and formulate a treatment plan that often requires a multipronged approach. Management of TBI-associated neuropsychiatric disorders should always include nonpharmacological interventions, including education, family involvement, supportive and behavioral psychotherapies, and cognitive rehabilitation. Pharmacological treatments include antidepressants, anticonvulsants, antipsychotics, dopaminergic agents, and cholinesterase inhibitors. However, evidence-based treatments are extremely limited, and management relies on clinical empiricism and resemblance of TBI neuropsychiatric symptom profiles with those of idiopathic psychiatric disorders. Although the understanding of TBI-associated neuropsychiatric disorders has improved in the last decade, further research is needed including prospective, longitudinal studies to explore biomarkers that will assist with management and prognosis as well as randomized-controlled studies to validate pharmacological and nonpharmacological treatments. The current review summarizes the available literature in support of a structured, systematic evaluation approach and treatment options as well as recommendations for further research directions. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Structural and functional connectivity changes in the brain associated with shyness but not with social anxiety.

    Science.gov (United States)

    Yang, Xun; Kendrick, Keith Maurice; Wu, Qizhu; Chen, Taolin; Lama, Sunima; Cheng, Bochao; Li, Shiguang; Huang, Xiaoqi; Gong, Qiyong

    2013-01-01

    Shyness and social anxiety are correlated to some extent and both are associated with hyper-responsivity to social stimuli in the frontal cortex and limbic system. However to date no studies have investigated whether common structural and functional connectivity differences in the brain may contribute to these traits. We addressed this issue in a cohort of 61 healthy adult subjects. Subjects were first assessed for their levels of shyness (Cheek and Buss Shyness scale) and social anxiety (Liebowitz Social Anxiety scale) and trait anxiety. They were then given MRI scans and voxel-based morphometry and seed-based, resting-state functional connectivity analysis investigated correlations with shyness and anxiety scores. Shyness scores were positively correlated with gray matter density in the cerebellum, bilateral superior temporal gyri and parahippocampal gyri and right insula. Functional connectivity correlations with shyness were found between the superior temporal gyrus, parahippocampal gyrus and the frontal gyri, between the insula and precentral gyrus and inferior parietal lobule, and between the cerebellum and precuneus. Additional correlations were found for amygdala connectivity with the medial frontal gyrus, superior frontal gyrus and inferior parietal lobule, despite the absence of any structural correlation. By contrast no structural or functional connectivity measures correlated with social or trait anxiety. Our findings show that shyness is specifically associated with structural and functional connectivity changes in cortical and limbic regions involved with processing social stimuli. These associations are not found with social or trait anxiety in healthy subjects despite some behavioral correlations with shyness.

  11. Structural and functional connectivity changes in the brain associated with shyness but not with social anxiety.

    Directory of Open Access Journals (Sweden)

    Xun Yang

    Full Text Available Shyness and social anxiety are correlated to some extent and both are associated with hyper-responsivity to social stimuli in the frontal cortex and limbic system. However to date no studies have investigated whether common structural and functional connectivity differences in the brain may contribute to these traits. We addressed this issue in a cohort of 61 healthy adult subjects. Subjects were first assessed for their levels of shyness (Cheek and Buss Shyness scale and social anxiety (Liebowitz Social Anxiety scale and trait anxiety. They were then given MRI scans and voxel-based morphometry and seed-based, resting-state functional connectivity analysis investigated correlations with shyness and anxiety scores. Shyness scores were positively correlated with gray matter density in the cerebellum, bilateral superior temporal gyri and parahippocampal gyri and right insula. Functional connectivity correlations with shyness were found between the superior temporal gyrus, parahippocampal gyrus and the frontal gyri, between the insula and precentral gyrus and inferior parietal lobule, and between the cerebellum and precuneus. Additional correlations were found for amygdala connectivity with the medial frontal gyrus, superior frontal gyrus and inferior parietal lobule, despite the absence of any structural correlation. By contrast no structural or functional connectivity measures correlated with social or trait anxiety. Our findings show that shyness is specifically associated with structural and functional connectivity changes in cortical and limbic regions involved with processing social stimuli. These associations are not found with social or trait anxiety in healthy subjects despite some behavioral correlations with shyness.

  12. Microemboli from Cardiopulmonary Bypass are Associated with a Serum Marker of Brain Injury

    Science.gov (United States)

    Groom, Robert C.; Quinn, Reed D.; Lennon, Paul; Welch, Janine; Kramer, Robert S.; Ross, Cathy S.; Beaulieu, Peter A.; Brown, Jeremiah R.; Malenka, David J.; O’Connor, Gerald T.; Likosky, Donald S.

    2010-01-01

    Abstract: An increasing number of reports surrounding neurologic injury in the setting of cardiac surgery has focused on utilizing biomarkers as intermediate outcomes. Previous research has associated cerebral microemboli and neurobehavioral deficits with biomarkers. A leading source of cerebral microemboli is the cardiopulmonary bypass (CPB) circuit. This present study seeks to identify a relationship between microemboli leaving the CPB circuit and a biomarker of neurologic injury. We enrolled 71 patients undergoing coronary artery bypass grafting at a single institution from October 14, 2004 through December 5, 2007. Microemboli were monitored using Power-M-Mode Doppler in the inflow and outflow of the CPB circuit. Blood was sampled before and within 48 hours after surgery. Neurologic injury was measured using S100β (microg/L). Significant differences in post-operative S100β relative to microemboli leaving the circuit were tested with analysis of variance and Kruskal-Wallis. Most patients had increased serum levels of S100β (mean .25 microg/L, median .15 microg/L) following surgery. Terciles of microemboli measured in the outflow (indexed to the duration of time spent on CPB) were associated with elevated levels of S100β (p = .03). Microemboli leaving the CPB circuit were associated with increases in postoperative S100β levels. Efforts aimed at reducing microembolic load leaving the CPB circuit should be adopted to reduce brain injury. PMID:20437790

  13. In vivo evidence of a functional association between immune cells in blood and brain in healthy human subjects.

    Science.gov (United States)

    Kanegawa, Naoki; Collste, Karin; Forsberg, Anton; Schain, Martin; Arakawa, Ryosuke; Jucaite, Aurelija; Lekander, Mats; Olgart Höglund, Caroline; Kosek, Eva; Lampa, Jon; Halldin, Christer; Farde, Lars; Varrone, Andrea; Cervenka, Simon

    2016-05-01

    Microglia, the resident macrophages in the central nervous system, are thought to be maintained by a local self-renewal mechanism. Although preclinical and in vitro studies have suggested that the brain may contain immune cells also from peripheral origin, the functional association between immune cells in the periphery and brain at physiological conditions is poorly understood. We examined 32 healthy individuals using positron emission tomography (PET) and [(11)C]PBR28, a radioligand for the 18-kDa translocator protein (TSPO) which is expressed both in brain microglia and blood immune cells. In 26 individuals, two measurements were performed with varying time intervals. In a subgroup of 19 individuals, of which 12 had repeat examinations, leukocyte numbers in blood was measured on each day of PET measurements. All individuals were genotyped for TSPO polymorphism and categorized as high, mixed, and low affinity binders. We assessed TSPO binding expressed as total distribution volume of [(11)C]PBR28 in brain and in blood cells. TSPO binding in brain was strongly and positively correlated to binding in blood cells both at baseline and when analyzing change between two PET examinations. Furthermore, there was a significant correlation between change of leukocyte numbers and change in TSPO binding in brain, and a trend-level correlation to change in TSPO binding in blood cells. These in vivo findings indicate an association between immunological cells in blood and brain via intact BBB, suggesting a functional interaction between these two compartments, such as interchange of peripherally derived cells or a common regulatory mechanism. Measurement of radioligand binding in blood cells may be a way to control for peripheral immune function in PET studies using TSPO as a marker of brain immune activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Brain structure–function associations in multi-generational families genetically enriched for bipolar disorder

    Science.gov (United States)

    Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K.; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C.; Aldana, Ileana; Teshiba, Terri M.; Abaryan, Zvart; Al-Sharif, Noor B.; Navarro, Linda; Tishler, Todd A.; Altshuler, Lori; Bartzokis, George; Escobar, Javier I.; Glahn, David C.; Thompson, Paul M.; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I.; Sabatti, Chiara; Cantor, Rita M.; Freimer, Nelson B.; Bearden, Carrie E.

    2015-01-01

    -bipolar disorder family members. Additionally, while age had a relatively strong impact on all neurocognitive traits, the effects of age on cognition did not differ between diagnostic groups. Most brain–behaviour associations were also similar across the age range, with the exception of cortical and ventricular volume and lingual gyrus thickness, which showed weak correlations with verbal fluency and inhibitory control at younger ages that increased in magnitude in older subjects, regardless of diagnosis. Findings indicate that neuroanatomical traits potentially impacted by bipolar disorder are significantly associated with multiple neurobehavioural domains. Structure–function relationships are generally preserved across diagnostic groups, with the notable exception of ventrolateral prefrontal and parietal association cortex, volumetric increases in which may be associated with cognitive resilience specifically in individuals with bipolar disorder. Although age impacted all neurobehavioural traits, we did not find any evidence of accelerated cognitive decline specific to bipolar disorder subjects. Regardless of diagnosis, greater global brain volume may represent a protective factor for the effects of ageing on executive functioning. PMID:25943422

  15. Delineating SPTAN1 associated phenotypes: from isolated epilepsy to encephalopathy with progressive brain atrophy.

    Science.gov (United States)

    Syrbe, Steffen; Harms, Frederike L; Parrini, Elena; Montomoli, Martino; Mütze, Ulrike; Helbig, Katherine L; Polster, Tilman; Albrecht, Beate; Bernbeck, Ulrich; van Binsbergen, Ellen; Biskup, Saskia; Burglen, Lydie; Denecke, Jonas; Heron, Bénédicte; Heyne, Henrike O; Hoffmann, Georg F; Hornemann, Frauke; Matsushige, Takeshi; Matsuura, Ryuki; Kato, Mitsuhiro; Korenke, G Christoph; Kuechler, Alma; Lämmer, Constanze; Merkenschlager, Andreas; Mignot, Cyril; Ruf, Susanne; Nakashima, Mitsuko; Saitsu, Hirotomo; Stamberger, Hannah; Pisano, Tiziana; Tohyama, Jun; Weckhuysen, Sarah; Werckx, Wendy; Wickert, Julia; Mari, Francesco; Verbeek, Nienke E; Møller, Rikke S; Koeleman, Bobby; Matsumoto, Naomichi; Dobyns, William B; Battaglia, Domenica; Lemke, Johannes R; Kutsche, Kerstin; Guerrini, Renzo

    2017-09-01

    De novo in-frame deletions and duplications in the SPTAN1 gene, encoding the non-erythrocyte αII spectrin, have been associated with severe West syndrome with hypomyelination and pontocerebellar atrophy. We aimed at comprehensively delineating the phenotypic spectrum associated with SPTAN1 mutations. Using different molecular genetic techniques, we identified 20 patients with a pathogenic or likely pathogenic SPTAN1 variant and reviewed their clinical, genetic and imaging data. SPTAN1 de novo alterations included seven unique missense variants and nine in-frame deletions/duplications of which 12 were novel. The recurrent three-amino acid duplication p.(Asp2303_Leu2305dup) occurred in five patients. Our patient cohort exhibited a broad spectrum of neurodevelopmental phenotypes, comprising six patients with mild to moderate intellectual disability, with or without epilepsy and behavioural disorders, and 14 patients with infantile epileptic encephalopathy, of which 13 had severe neurodevelopmental impairment and four died in early childhood. Imaging studies suggested that the severity of neurological impairment and epilepsy correlates with that of structural abnormalities as well as the mutation type and location. Out of seven patients harbouring mutations outside the α/β spectrin heterodimerization domain, four had normal brain imaging and three exhibited moderately progressive brain and/or cerebellar atrophy. Twelve of 13 patients with mutations located within the spectrin heterodimer contact site exhibited severe and progressive brain, brainstem and cerebellar atrophy, with hypomyelination in most. We used fibroblasts from five patients to study spectrin aggregate formation by Triton-X extraction and immunocytochemistry followed by fluorescence microscopy. αII/βII aggregates and αII spectrin in the insoluble protein fraction were observed in fibroblasts derived from patients with the mutations p.(Glu2207del), p.(Asp2303_Leu2305dup) and p.(Arg2308_Met2309dup

  16. Increasing BMI is associated with reduced expression of P-glycoprotein (ABCB1 gene) in the human brain with a stronger association in African-Americans than Caucasians

    DEFF Research Database (Denmark)

    Nielsen, Julie Vendelbo; Olesen, Rasmus Hansen; Lauridsen, Jesper Krogh

    2016-01-01

    The efflux pump, p-glycoprotein, controls bioavailability and excretion of pharmaceutical compounds. In the blood-brain barrier, p-glycoprotein regulates the delivery of pharmaceutical substances to the brain, influencing efficacy and side effects for some drugs notably antipsychotics. Common side....... Using microarray data analysis from 145 neurologically sound adults, this study investigated the association between body mass index (BMI) and ABCB1 expression in the frontal cortex. Increasing BMI values were associated with a statistically significantly reduced expression of ABCB1. Investigation...

  17. Simulasi Rekonstruksi Citra Pada Sensor Brain ECVT (Electrical Capacitance Volume Tomography dengan Metode ILBP (Iterative Linear Back Projection

    Directory of Open Access Journals (Sweden)

    Nita Handayani

    2017-02-01

    Full Text Available The purpose of this study is to simulate the sensor 32-channel Brain ECVT image reconstruction using ILBP (Iterative Linear Back Projection methods. ECVT is a dynamic volume imaging technique that utilizes non-linear difference of electric field distribution to determine the distribution of permittivity in the sensing area. ECVT has measured the capacitance of data as a result of changes in the permittivity distribution between the electrode pairs. ECVT device consists of three main parts: helmet-shaped sensors, DAS (Data Acquisition System, PC for display and image reconstruction process. Simulation of sensor design using COMSOL Multiphysics 3.5 software, while the process of image reconstruction and analysis of the results using Matlab software 2009a. The principle of ECVT includes two stages of data collection capacitance of electrodes (forward problem and image reconstruction from the measured capacitance (inverse problem. In the study, the simulation of image reconstruction was done by varying the object position, the number of objects and charge density of the object. From the simulation results showed that the reconstructed image with ILBP method is influenced by several parameters: the object's position in the sensor,charge density value of the object, an alpha value and the number of iterations was selected.

  18. Accurate classification of brain gliomas by discriminate dictionary learning based on projective dictionary pair learning of proton magnetic resonance spectra.

    Science.gov (United States)

    Adebileje, Sikiru Afolabi; Ghasemi, Keyvan; Aiyelabegan, Hammed Tanimowo; Saligheh Rad, Hamidreza

    2017-04-01

    Proton magnetic resonance spectroscopy is a powerful noninvasive technique that complements the structural images of cMRI, which aids biomedical and clinical researches, by identifying and visualizing the compositions of various metabolites within the tissues of interest. However, accurate classification of proton magnetic resonance spectroscopy is still a challenging issue in clinics due to low signal-to-noise ratio, overlapping peaks of metabolites, and the presence of background macromolecules. This paper evaluates the performance of a discriminate dictionary learning classifiers based on projective dictionary pair learning method for brain gliomas proton magnetic resonance spectroscopy spectra classification task, and the result were compared with the sub-dictionary learning methods. The proton magnetic resonance spectroscopy data contain a total of 150 spectra (74 healthy, 23 grade II, 23 grade III, and 30 grade IV) from two databases. The datasets from both databases were first coupled together, followed by column normalization. The Kennard-Stone algorithm was used to split the datasets into its training and test sets. Performance comparison based on the overall accuracy, sensitivity, specificity, and precision was conducted. Based on the overall accuracy of our classification scheme, the dictionary pair learning method was found to outperform the sub-dictionary learning methods 97.78% compared with 68.89%, respectively. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Assessing diffusion kurtosis tensor estimation methods using a digital brain phantom derived from human connectome project data.

    Science.gov (United States)

    Olson, Daniel V; Arpinar, Volkan E; Muftuler, L Tugan

    2018-01-03

    Diffusion kurtosis imaging (DKI) has gained popularity in recent years as an advanced diffusion-weighted MRI technique. This work aims to quantitatively compare the performance and accuracy of four DKI processing algorithms. For this purpose, a digital DKI brain phantom is developed. Data from the Human Connectome Project database were used to generate a DKI digital phantom. In a Monte Carlo Rician noise simulation, four DKI processing algorithms were compared based on their mean squared error, squared bias, and variance. Algorithm performance was region-dependent and differed for each diffusion metric and noise level. Crossover between variance and squared bias error occurred between signal-to-noise ratios of 30 and 40. Through the framework presented here, DKI algorithms can be quantitatively compared via a ground truth data set. Error maps are critical as algorithm performance varies spatially. Bias-plus-variance decomposition provides a more complete picture than MSE alone. In combination with refinements in acquisition in future studies, the accuracy and efficiency of DKI will continue to improve promoting clinical adoption. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Normalization of coagulopathy is associated with improved outcome after isolated traumatic brain injury.

    Science.gov (United States)

    Epstein, Daniel S; Mitra, Biswadev; Cameron, Peter A; Fitzgerald, Mark; Rosenfeld, Jeffrey V

    2016-07-01

    Acute traumatic coagulopathy (ATC) has been reported in the setting of isolated traumatic brain injury (iTBI) and is associated with poor outcomes. We aimed to evaluate the effectiveness of procoagulant agents administered to patients with ATC and iTBI during resuscitation, hypothesizing that timely normalization of coagulopathy may be associated with a decrease in mortality. A retrospective review of the Alfred Hospital trauma registry, Australia, was conducted and patients with iTBI (head Abbreviated Injury Score [AIS] ⩾3 and all other body AIS vitamin K) were extracted. Among patients who had achieved normalization of INR or survived beyond 24hours and were not taking oral anticoagulants, the association of normalization of INR and death at hospital discharge was analyzed using multivariable logistic regression analysis. There were 157 patients with ATC of whom 68 (43.3%) received procoagulant products within 24hours of presentation. The median time to delivery of first products was 182.5 (interquartile range [IQR] 115-375) minutes, and following administration of coagulants, time to normalization of INR was 605 (IQR 274-1146) minutes. Normalization of INR was independently associated with significantly lower mortality (adjusted odds ratio 0.10; 95% confidence interval 0.03-0.38). Normalization of INR was associated with improved mortality in patients with ATC in the setting of iTBI. As there was a substantial time lag between delivery of products and eventual normalization of coagulation, specific management of coagulopathy should be implemented as early as possible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A Polygenic Risk Score of glutamatergic SNPs associated with schizophrenia predicts attentional behavior and related brain activity in healthy humans.

    Science.gov (United States)

    Rampino, Antonio; Taurisano, Paolo; Fanelli, Giuseppe; Attrotto, Mariateresa; Torretta, Silvia; Antonucci, Linda Antonella; Miccolis, Grazia; Pergola, Giulio; Ursini, Gianluca; Maddalena, Giancarlo; Romano, Raffaella; Masellis, Rita; Di Carlo, Pasquale; Pignataro, Patrizia; Blasi, Giuseppe; Bertolino, Alessandro

    2017-09-01

    Multiple genetic variations impact on risk for schizophrenia. Recent analyses by the Psychiatric Genomics Consortium (PGC2) identified 128 SNPs genome-wide associated with the disorder. Furthermore, attention and working memory deficits are core features of schizophrenia, are heritable and have been associated with variation in glutamatergic neurotransmission. Based on this evidence, in a sample of healthy volunteers, we used SNPs associated with schizophrenia in PGC2 to construct a Polygenic-Risk-Score (PRS) reflecting the cumulative risk for schizophrenia, along with a Polygenic-Risk-Score including only SNPs related to genes implicated in glutamatergic signaling (Glu-PRS). We performed Factor Analysis for dimension reduction of indices of cognitive performance. Furthermore, both PRS and Glu-PRS were used as predictors of cognitive functioning in the domains of Attention, Speed of Processing and Working Memory. The association of the Glu-PRS on brain activity during the Variable Attention Control (VAC) task was also explored. Finally, in a second independent sample of healthy volunteers we sought to confirm the association between the Glu-PRS and both performance in the domain of Attention and brain activity during the VAC.We found that performance in Speed of Processing and Working Memory was not associated with any of the Polygenic-Risk-Scores. The Glu-PRS, but not the PRS was associated with Attention and brain activity during the VAC. The specific effects of Glu-PRS on Attention and brain activity during the VAC were also confirmed in the replication sample.Our results suggest a pathway specificity in the relationship between genetic risk for schizophrenia, the associated cognitive dysfunction and related brain processing. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  2. Extracellular Mitochondria and Mitochondrial Components Act as Damage-Associated Molecular Pattern Molecules in the Mouse Brain.

    Science.gov (United States)

    Wilkins, Heather M; Koppel, Scott J; Weidling, Ian W; Roy, Nairita; Ryan, Lauren N; Stanford, John A; Swerdlow, Russell H

    2016-12-01

    Mitochondria and mitochondrial debris are found in the brain's extracellular space, and extracellular mitochondrial components can act as damage associated molecular pattern (DAMP) molecules. To characterize the effects of potential mitochondrial DAMP molecules on neuroinflammation, we injected either isolated mitochondria or mitochondrial DNA (mtDNA) into hippocampi of C57BL/6 mice and seven days later measured markers of inflammation. Brains injected with whole mitochondria showed increased Tnfα and decreased Trem2 mRNA, increased GFAP protein, and increased NFκB phosphorylation. Some of these effects were also observed in brains injected with mtDNA (decreased Trem2 mRNA, increased GFAP protein, and increased NFκB phosphorylation), and mtDNA injection also caused several unique changes including increased CSF1R protein and AKT phosphorylation. To further establish the potential relevance of this response to Alzheimer's disease (AD), a brain disorder characterized by neurodegeneration, mitochondrial dysfunction, and neuroinflammation we also measured App mRNA, APP protein, and Aβ 1-42 levels. We found mitochondria (but not mtDNA) injections increased these parameters. Our data show that in the mouse brain extracellular mitochondria and its components can induce neuroinflammation, extracellular mtDNA or mtDNA-associated proteins can contribute to this effect, and mitochondria derived-DAMP molecules can influence AD-associated biomarkers.

  3. General, crystallized and fluid intelligence are not associated with functional global network efficiency: A replication study with the human connectome project 1200 data set.

    Science.gov (United States)

    Kruschwitz, J D; Waller, L; Daedelow, L S; Walter, H; Veer, I M

    2018-01-12

    One hallmark example of a link between global topological network properties of complex functional brain connectivity and cognitive performance is the finding that general intelligence may depend on the efficiency of the brain's intrinsic functional network architecture. However, although this association has been featured prominently over the course of the last decade, the empirical basis for this broad association of general intelligence and global functional network efficiency is quite limited. In the current study, we set out to replicate the previously reported association between general intelligence and global functional network efficiency using the large sample size and high quality data of the Human Connectome Project, and extended the original study by testing for separate association of crystallized and fluid intelligence with global efficiency, characteristic path length, and global clustering coefficient. We were unable to provide evidence for the proposed association between general intelligence and functional brain network efficiency, as was demonstrated by van den Heuvel et al. (2009), or for any other association with the global network measures employed. More specifically, across multiple network definition schemes, ranging from voxel-level networks to networks of only 100 nodes, no robust associations and only very weak non-significant effects with a maximal R2 of 0.01 could be observed. Notably, the strongest (non-significant) effects were observed in voxel-level networks. We discuss the possibility that the low power of previous studies and publication bias may have led to false positive results fostering the widely accepted notion of general intelligence being associated to functional global network efficiency. Copyright © 2018. Published by Elsevier Inc.

  4. 18F-FDG PET and MR Imaging Associations Across a Spectrum of Pediatric Brain Tumors: A Report from the Pediatric Brain Tumor Consortium

    Science.gov (United States)

    Zukotynski, Katherine; Fahey, Frederic; Kocak, Mehmet; Kun, Larry; Boyett, James; Fouladi, Maryam; Vajapeyam, Sridhar; Treves, Ted; Poussaint, Tina Y.

    2014-01-01

    The purpose of this study was to describe 18F-FDG uptake across a spectrum of pediatric brain tumors and correlate 18F-FDG PET with MR imaging variables, progression-free survival (PFS), and overall survival (OS). Methods A retrospective analysis was conducted of children enrolled in phase I/II clinical trials through the Pediatric Brain Tumor Consortium from August 2000 to June 2010. PET variables were summarized within diagnostic categories using descriptive statistics. Associations of PET with MR imaging variables and PFS and OS by tumor types were evaluated. Results Baseline 18F-FDG PET was available in 203 children; 66 had newly diagnosed brain tumors, and 137 had recurrent/refractory brain tumors before enrolling in a Pediatric Brain Tumor Consortium trial. MR imaging was performed within 2 wk of PET and before therapy in all cases. The 18F-FDG uptake pattern and MR imaging contrast enhancement (CE) varied by tumor type. On average, glioblastoma multiforme and medulloblastoma had uniform, intense uptake throughout the tumor, whereas brain stem gliomas (BSGs) had low uptake in less than 50% of the tumor and ependymoma had low uptake throughout the tumor. For newly diagnosed BSG, correlation of 18F-FDG uptake with CE portended reduced OS (P = 0.032); in refractory/recurrent BSG, lack of correlation between 18F-FDG uptake and CE suggested decreased PFS (P = 0.023). In newly diagnosed BSG for which more than 50% of the tumor had 18F-FDG uptake, there was a suggestion of lower apparent diffusion coefficient (P = 0.061) and decreased PFS (P = 0.065). Conclusion 18F-FDG PET and MR imaging showed a spectrum of patterns depending on tumor type. In newly diagnosed BSG, the correlation of 18F-FDG uptake and CE suggested decreased OS, likely related to more aggressive disease. When more than 50% of the tumor had 18F-FDG uptake, the apparent diffusion coefficient was lower, consistent with increased cellularity. In refractory/recurrent BSG, poor correlation between 18F

  5. A disease-specific metabolic brain network associated with corticobasal degeneration.

    Science.gov (United States)

    Niethammer, Martin; Tang, Chris C; Feigin, Andrew; Allen, Patricia J; Heinen, Lisette; Hellwig, Sabine; Amtage, Florian; Hanspal, Era; Vonsattel, Jean Paul; Poston, Kathleen L; Meyer, Philipp T; Leenders, Klaus L; Eidelberg, David

    2014-11-01

    achieved by computing hemispheric asymmetry scores for the corticobasal degeneration-related pattern on a prospective single scan basis. Indeed, a logistic algorithm based on the asymmetry scores combined with separately computed expression values for a previously validated progressive supranuclear palsy-related pattern provided excellent specificity (corticobasal degeneration: 92.7%; progressive supranuclear palsy: 94.1%) in classifying 58 testing subjects. In conclusion, corticobasal degeneration is associated with a reproducible disease-related metabolic covariance pattern that may help to distinguish this disorder from other atypical parkinsonian syndromes. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Functional neuroimaging of working memory in survivors of childhood brain tumors and healthy children: Associations with coping and psychosocial outcomes.

    Science.gov (United States)

    Robinson, Kristen E; Pearson, Matthew M; Cannistraci, Christopher J; Anderson, Adam W; Kuttesch, John F; Wymer, Kevin; Smith, Samantha E; Park, Sohee; Compas, Bruce E

    2015-01-01

    Pediatric brain tumors are the second most common cancer diagnosis in individuals under age 20 and research has documented significant neurocognitive, psychosocial, and emotional late effects. Associations among these deficits have not been adequately considered and the role of survivors' coping with stress in relation to deficits is unknown. Further, research has yet to examine neurobiological processes related to neurocognitive, psychosocial, and emotional difficulties in survivors through the use of functional neuroimaging. Questionnaire measures and functional neuroimaging were used to examine the neurocognitive, psychosocial, and emotional functioning and coping responses of survivors of pediatric brain tumors (N = 17; age 8-16) and healthy children (N = 15). Survivors experienced elevated levels of psychosocial and behavioral/emotional difficulties relative to healthy controls and normative data. Increases in brain activation in prefrontal and other anterior regions in response to a working memory task were associated with better psychosocial functioning, use of engagement coping strategies, and less use of disengagement coping strategies. Regression analyses suggest coping accounts for a significant portion of the association between brain activation and behavioral/emotional functioning. This study extends late-effects research by examining neurobiological processes associated with psychosocial and emotional difficulties. These findings contribute to our understanding of difficulties in survivors and provide a foundation for research exploring these associations and mediators of deficits in future longitudinal studies.

  7. Biodiversity Scenarios: Projections of 21st century change in biodiversity and associated ecosystem services

    CSIR Research Space (South Africa)

    Scholes, B

    2010-01-01

    Full Text Available Diversity Citation Leadley, P., Pereira, H.M., Alkemade, R., Fernandez-Manjarrés, J.F., Proença, V., Scharlemann, J.P.W., Walpole, M.J. (2010) Biodiversity Scenarios: Projections of 21st century change in biodiversity and associated ecosystem services...

  8. The Final Year Project (FYP) in Social Sciences: Establishment of Its Associated Competences and Evaluation Standards

    Science.gov (United States)

    Mateo, Joan; Escofet, Anna; Martinez, Francesc; Ventura, Javier; Vlachopoulos, Dimitrios

    2012-01-01

    This paper presents the fundamental characteristics of the Final Year Project (FYP), its associated competences and some evaluation standards that derived from a research conducted by the regional government of Catalonia (Spain) and the Catalan University Quality Assurance Agency. More analytically, the paper begins with the definition of the…

  9. Developmental Expression Patterns of KCC2 and Functionally Associated Molecules in the Human Brain.

    Science.gov (United States)

    Sedmak, Goran; Jovanov-Milošević, Nataša; Puskarjov, Martin; Ulamec, Monika; Krušlin, Božo; Kaila, Kai; Judaš, Miloš

    2016-12-01

    Work on rodents demonstrated that steep upregulation of KCC2, a neuron-specific Cl - extruder of cation-chloride cotransporter (CCC) family, commences in supraspinal structures at around birth, leading to establishment of hyperpolarizing GABAergic responses. We describe spatiotemporal expression profiles of the entire CCC family in human brain. KCC2 mRNA was observed already at 10th postconceptional week (PCW) in amygdala, cerebellum, and thalamus. KCC2-immunoreactive (KCC2-ir) neurons were abundant in subplate at 18 PCW. By 25 PCW, numerous subplate and cortical plate neurons became KCC2-ir. The mRNA expression profiles of α- and β-isoforms of Na-K ATPase, which fuels cation-chloride cotransport, as well of tropomyosin receptor kinase B (TrkB), which promotes developmental upregulation of KCC2, were consistent with data from studies on rodents about their interactions with KCC2. Thus, in human brain, expression of KCC2 and its functionally associated proteins begins in early fetal period. Our work facilitates translation of results on CCC functions from animal studies to human and refutes the view that poor efficacy of anticonvulsants in the term human neonate is attributable to the lack of KCC2. We propose that perinatally low threshold for activation of Ca 2+ -dependent protease calpain renders neonates susceptible to downregulation of KCC2 by traumatic events, such as perinatal hypoxia ischemia. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Prehospital plasma resuscitation associated with improved neurologic outcomes after traumatic brain injury.

    Science.gov (United States)

    Hernandez, Matthew C; Thiels, Cornelius A; Aho, Johnathon M; Habermann, Elizabeth B; Zielinski, Martin D; Stubbs, James A; Jenkins, Donald H; Zietlow, Scott P

    2017-09-01

    Trauma-related hypotension and coagulopathy worsen secondary brain injury in patients with traumatic brain injuries (TBIs). Early damage control resuscitation with blood products may mitigate hypotension and coagulopathy. Preliminary data suggest resuscitation with plasma in large animals improves neurologic function after TBI; however, data in humans are lacking. We retrospectively identified all patients with multiple injuries age >15 years with head injuries undergoing prehospital resuscitation with blood products at a single Level I trauma center from January 2002 to December 2013. Inclusion criteria were prehospital resuscitation with either packed red blood cells (pRBCs) or thawed plasma as sole colloid resuscitation. Patients who died in hospital and those using anticoagulants were excluded. Primary outcomes were Glasgow Outcomes Score Extended (GOSE) and Disability Rating Score (DRS) at dismissal and during follow-up. Of 76 patients meeting inclusion criteria, 53% (n = 40) received prehospital pRBCs and 47% (n = 36) received thawed plasma. Age, gender, injury severity or TBI severity, arrival laboratory values, and number of prehospital units were similar (all p > 0.05). Patients who received thawed plasma had an improved neurologic outcome compared to those receiving pRBCs (median GOSE 7 [7-8] vs. 5.5 [3-7], p plasma had improved functionality compared to pRBCs (median DRS 2 [1-3.5] vs. 9 [3-13], p plasma compared to pRBCs by both median GOSE (8 [7-8] vs. 6 [6-7], p plasma is associated with improved neurologic and functional outcomes at discharge and during follow-up compared to pRBCs alone. These preliminary data support the further investigation and use of plasma in the resuscitation of critically injured TBI patients. Therapeutic, level V.

  11. Bioenergetics failure and oxidative stress in brain stem mediates cardiovascular collapse associated with fatal methamphetamine intoxication.

    Directory of Open Access Journals (Sweden)

    Faith C H Li

    Full Text Available BACKGROUND: Whereas sudden death, most often associated with cardiovascular collapse, occurs in abusers of the psychostimulant methamphetamine (METH, the underlying mechanism is much less understood. The demonstration that successful resuscitation of an arrested heart depends on maintained functionality of the rostral ventrolateral medulla (RVLM, which is responsible for the maintenance of stable blood pressure, suggests that failure of brain stem cardiovascular regulation, rather than the heart, holds the key to cardiovascular collapse. We tested the hypothesis that cessation of brain stem cardiovascular regulation because of a loss of functionality in RVLM mediated by bioenergetics failure and oxidative stress underlies the cardiovascular collapse elicited by lethal doses of METH. METHODOLOGY/PRINCIPAL FINDINGS: Survival rate, cardiovascular responses and biochemical or morphological changes in RVLM induced by intravenous administration of METH in Sprague-Dawley rats were investigated. High doses of METH induced significant mortality within 20 min that paralleled concomitant the collapse of arterial pressure or heart rate and loss of functionality in RVLM. There were concurrent increases in the concentration of METH in serum and ventrolateral medulla, along with tissue anoxia, cessation of microvascular perfusion and necrotic cell death in RVLM. Furthermore, mitochondrial respiratory chain enzyme activity or electron transport capacity and ATP production in RVLM were reduced, and mitochondria-derived superoxide anion level was augmented. All those detrimental physiological and biochemical events were reversed on microinjection into RVLM of a mobile electron carrier in the mitochondrial respiratory chain, coenzyme Q10; a mitochondria-targeted antioxidant and superoxide anion scavenger, Mito-TEMPO; or an oxidative stress-induced necrotic cell death inhibitor, IM-54. CONCLUSION: We conclude that sustained anoxia and cessation of local blood flow

  12. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression

    Science.gov (United States)

    So, Nina; Franks, Becca; Lim, Sean; Curley, James P.

    2015-01-01

    Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David’s Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg’s Hub Centrality and Bonacich’s Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive

  13. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression.

    Science.gov (United States)

    So, Nina; Franks, Becca; Lim, Sean; Curley, James P

    2015-01-01

    Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David's Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg's Hub Centrality and Bonacich's Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive

  14. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression.

    Directory of Open Access Journals (Sweden)

    Nina So

    Full Text Available Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David's Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg's Hub Centrality and Bonacich's Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing

  15. Effects of reward and punishment on brain activations associated with inhibitory control in cigarette smokers.

    Science.gov (United States)

    Luijten, Maartje; O'Connor, David A; Rossiter, Sarah; Franken, Ingmar H A; Hester, Robert

    2013-11-01

    Susceptibility to use of addictive substances may result, in part, from a greater preference for an immediate small reward relative to a larger delayed reward or relative insensitivity to punishment. This functional magnetic resonance imaging (fMRI) study examined the neural basis of inhibiting an immediately rewarding stimulus to obtain a larger delayed reward in smokers. We also investigated whether punishment could modulate inhibitory control. The Monetary Incentive Go/NoGo (MI-Go/NoGo) task was administered that provided three types of reward outcomes contingent upon inhibitory control performance over rewarding stimuli: inhibition failure was either followed by no monetary reward (neutral condition), a small monetary reward with immediate feedback (reward condition) or immediate monetary punishment (punishment condition). In the reward and punishment conditions, successful inhibitory control resulted in larger delayed rewards. Community sample of smokers in the Melbourne (Australia) area. Nineteen smokers were compared with 17 demographically matched non-smoking controls. Accuracy, reaction times and brain activation associated with the MI-Go/NoGo task. Smokers showed hyperactivation in the right insula (P rewarding stimulus to obtain a larger delayed reward, and during inhibition of neutral stimuli. Group differences in brain activity were not significant in the punishment condition in the right insula and dorsolateral prefrontal cortex, most probably as a result of increased activation in non-smoking controls. Compared with non-smokers, smokers showed increased neural activation when resisting immediately rewarding stimuli and may be less sensitive to punishment as a strategy to increase control over rewarding stimuli. © 2013 Society for the Study of Addiction.

  16. Maternal Inflammation Contributes to Brain Overgrowth and Autism-Associated Behaviors through Altered Redox Signaling in Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Janel E. Le Belle

    2014-11-01

    Full Text Available A period of mild brain overgrowth with an unknown etiology has been identified as one of the most common phenotypes in autism. Here, we test the hypothesis that maternal inflammation during critical periods of embryonic development can cause brain overgrowth and autism-associated behaviors as a result of altered neural stem cell function. Pregnant mice treated with low-dose lipopolysaccharide at embryonic day 9 had offspring with brain overgrowth, with a more pronounced effect in PTEN heterozygotes. Exposure to maternal inflammation also enhanced NADPH oxidase (NOX-PI3K pathway signaling, stimulated the hyperproliferation of neural stem and progenitor cells, increased forebrain microglia, and produced abnormal autism-associated behaviors in affected pups. Our evidence supports the idea that a prenatal neuroinflammatory dysregulation in neural stem cell redox signaling can act in concert with underlying genetic susceptibilities to affect cellular responses to environmentally altered cellular levels of reactive oxygen species.

  17. Association of brain-derived neurotrophic factor gene Val66Met polymorphism with primary dysmenorrhea.

    Directory of Open Access Journals (Sweden)

    Lin-Chien Lee

    Full Text Available Primary dysmenorrhea (PDM, the most prevalent menstrual cycle-related problem in women of reproductive age, is associated with negative moods. Whether the menstrual pain and negative moods have a genetic basis remains unknown. Brain-derived neurotrophic factor (BDNF plays a key role in the production of central sensitization and contributes to chronic pain conditions. BDNF has also been implicated in stress-related mood disorders. We screened and genotyped the BDNF Val66Met polymorphism (rs6265 in 99 Taiwanese (Asian PDMs (20-30 years old and 101 age-matched healthy female controls. We found that there was a significantly higher frequency of the Met allele of the BDNF Val66Met polymorphism in the PDM group. Furthermore, BDNF Met/Met homozygosity had a significantly stronger association with PDM compared with Val carrier status. Subsequent behavioral/hormonal assessments of sub-groups (PDMs = 78, controls = 81; eligible for longitudinal multimodal neuroimaging battery studies revealed that the BDNF Met/Met homozygous PDMs exhibited a higher menstrual pain score (sensory dimension and a more anxious mood than the Val carrier PDMs during the menstrual phase. Although preliminary, our study suggests that the BDNF Val66Met polymorphism is associated with PDM in Taiwanese (Asian people, and BDNF Met/Met homozygosity may be associated with an increased risk of PDM. Our data also suggest the BDNF Val66Met polymorphism as a possible regulator of menstrual pain and pain-related emotions in PDM. Absence of thermal hypersensitivity may connote an ethnic attribution. The presentation of our findings calls for further genetic and neuroscientific investigations of PDM.

  18. Hypernatremia is associated with increased risk of mortality in pediatric severe traumatic brain injury.

    Science.gov (United States)

    Alharfi, Ibrahim M; Stewart, Tanya Charyk; Kelly, Shawn H; Morrison, Gavin C; Fraser, Douglas D

    2013-03-01

    Acquired hypernatremia in hospitalized patients is often associated with poorer outcomes. Our aim was to evaluate the relationship between acquired hypernatremia and outcome in children with severe traumatic brain injury (sTBI). We performed a retrospective cohort study of all severely injured trauma patients (Injury Severity Score ≥12) with sTBI (Glasgow Coma Scale [GCS] ≤8 and Maximum Abbreviated Injury Scale [MAIS] ≥4) admitted to a Pediatric Critical Care Unit ([PCCU]; 2000-2009). In a cohort of 165 patients, 76% had normonatremia (135-150 mmol/L), 18% had hypernatremia (151-160 mmol/L), and 6% had severe hypernatremia (>160 mmol/L). The groups were similar except for lower GCS (p=0.002) and increased incidence of fixed pupil(s) on admission in both hypernatremia groups (phypernatremia and severe hypernatremia, respectively (phypernatremia had greater PCCU (p=0.001) and hospital (p=0.031) lengths of stays and were less frequently discharged home (p=0.008). Logistic regression analyses of patient characteristics and sTBI interventions demonstrated that hypernatremia was independently associated with the presence of fixed pupil(s) on admission (odds ratio [OR] 5.38; p=0.003); administration of thiopental (OR 8.64; p=0.014), and development of central diabetes insipidus (OR 5.66; p=0.005). Additional logistic regression analyses demonstrated a significant association between hypernatremia and mortality (OR 6.660; p=0.034). In summary, acquired hypernatremia appears to signal higher risk of mortality in pediatric sTBI and is associated with a higher discharge level of care in sTBI survivors.

  19. Association of white-matter lesions with brain atrophy markers: the three-city Dijon MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Godin, O.; Alperovitch, A.; Tzourio, Ch.; Dufouil, C. [Inserm U708 ' Neuroepidemiology' , Paris (France); Godin, O.; Alperovitch, A.; Tzourio, Ch.; Dufouil, C. [UPMC University Paris 6 (France); Mazoyer, B. [Institut Universitaire de France, Paris (France); Maillard, P.; Crivello, F.; Mazoyer, B. [CNRS, CI-NAPS UMR6232 (France); Maillard, P.; Crivello, F.; Mazoyer, B. [CEA, DSV/I2BM/CI-NAPS (France); Maillard, P.; Crivello, F.; Mazoyer, B. [Universite de Caen Basse-Normande (France); Mazoyer, B. [Centre Hospitalier et Universitaire de Caen, Caen (France)

    2009-07-01

    Background: Brain atrophy and white-matter lesions (WML) are common features at cerebral MRI of both normal and demented elderly people. In a population-based study of 1, 792 elderly subjects aged 65-80 years, free of dementia, who had a cerebral MRI at entry, we investigated the relationship between WML volume and brain atrophy markers estimated by hippocampal, gray matter (GM) and cerebrospinal fluid (CSF) volumes. Methods: An automated algorithm of detection and quantification of WML was developed, and voxel-based morphometry methods were used to estimate GM, CSF and hippocampal volumes. To evaluate the relation between those volumes and WML load, we used analysis of covariance and multiple linear regression models adjusting for potential confounders and total intracranial volumes. Results: Age was highly correlated with WML load and all brain atrophy markers. Total WML volume was negatively associated with both GM ({beta} = -0.03, p {<=} 0.0001) and hippocampal volumes ({beta} = -0.75, p = 0.0009) and positively with CSF volumes (beta 0.008, p = 0.02) after controlling for sex, age, education level, hypertension and apolipoprotein E genotype. Evidence for a relationship between brain atrophy markers and WML was stronger for periventricular WML. We found that the relationship between WML and hippocampal volumes was independent of other brain tissue volumes. Conclusion: These results suggest that, in the brain of non demented elderly subjects, degenerative processes and vascular changes co-occur and are related independently of vascular risk factors. (authors)

  20. Ethical Considerations in Deep Brain Stimulation for the Treatment of Addiction and Overeating Associated With Obesity.

    Science.gov (United States)

    Pisapia, Jared M; Halpern, Casey H; Muller, Ulf J; Vinai, Piergiuseppe; Wolf, John A; Whiting, Donald M; Wadden, Thomas A; Baltuch, Gordon H; Caplan, Arthur L

    2013-05-01

    The success of deep brain stimulation (DBS) for movement disorders and the improved understanding of the neurobiologic and neuroanatomic bases of psychiatric diseases have led to proposals to expand current DBS applications. Recent preclinical and clinical work with Alzheimer's disease and obsessive-compulsive disorder, for example, supports the safety of stimulating regions in the hypothalamus and nucleus accumbens in humans. These regions are known to be involved in addiction and overeating associated with obesity. However, the use of DBS targeting these areas as a treatment modality raises common ethical considerations, which include informed consent, coercion, enhancement, threat to personhood, and manipulation of the reward center. Pilot studies for both of these conditions are currently investigational. If these studies show promise, then there is a need to address the ethical concerns related to the initiation of clinical trials including the reliability of preclinical evidence, patient selection, study design, compensation for participation and injury, cost-effectiveness, and the need for long-term follow-up. Multidisciplinary teams are necessary for the ethical execution of such studies. In addition to establishing safety and efficacy, the consideration of these ethical issues is vital to the adoption of DBS as a treatment for these conditions. We offer suggestions about the pursuit of future clinical trials of DBS for the treatment of addiction and overeating associated with obesity and provide a framework for addressing ethical concerns related to treatment.

  1. Stachys sieboldii (Labiatae, Chorogi) Protects against Learning and Memory Dysfunction Associated with Ischemic Brain Injury.

    Science.gov (United States)

    Harada, Shinichi; Tsujita, Tsukasa; Ono, Akiko; Miyagi, Kei; Mori, Takaharu; Tokuyama, Shogo

    2015-01-01

    Stachys sieboldii (Labiatae; Chinese artichoke, a tuber), "chorogi" in Japanese, has been extensively used in folk medicine, and has a number of pharmacological properties, including antioxidative activity. However, few studies have examined the neuroprotective effects of S. sieboldii tuber extract (chorogi extract), and it remains unknown whether the extract can alleviate learning and memory dysfunction associated with vascular dementia or Alzheimer's disease. Therefore, in this study, we investigated the neuroprotective effects of chorogi extract, and examined its protection against learning and memory dysfunction using Ginkgo biloba leaf extract (ginkgo extract) as a positive control. Mice were subjected to bilateral carotid artery occlusion (BCAO) for 30 min. Oral administration of chorogi extract or ginkgo extract significantly reduced post-ischemic glucose intolerance on day 1 and neuronal damage including memory impairment on day 3 after BCAO, compared with the vehicle-treated group. Neither herbal medicine affected locomotor activity. Furthermore, neither significantly alleviated scopolamine-induced learning and memory impairment. In primary neurons, neuronal survival rate was significantly reduced by hydrogen peroxide treatment. This hydrogen peroxide-induced neurotoxicity was significantly suppressed by chorogi extract and ginkgo extract. Taken together, our findings suggest that chorogi extract as well as ginkgo extract can protect against learning and memory dysfunction associated with ischemic brain injury through an antioxidative mechanism.

  2. Two critical brain networks for generation and combination of remote associations.

    Science.gov (United States)

    Bendetowicz, David; Urbanski, Marika; Garcin, Béatrice; Foulon, Chris; Levy, Richard; Bréchemier, Marie-Laure; Rosso, Charlotte; Thiebaut de Schotten, Michel; Volle, Emmanuelle

    2018-01-01

    Recent functional imaging findings in humans indicate that creativity relies on spontaneous and controlled processes, possibly supported by the default mode and the fronto-parietal control networks, respectively. Here, we examined the ability to generate and combine remote semantic associations, in relation to creative abilities, in patients with focal frontal lesions. Voxel-based lesion-deficit mapping, disconnection-deficit mapping and network-based lesion-deficit approaches revealed critical prefrontal nodes and connections for distinct mechanisms related to creative cognition. Damage to the right medial prefrontal region, or its potential disrupting effect on the default mode network, affected the ability to generate remote ideas, likely by altering the organization of semantic associations. Damage to the left rostrolateral prefrontal region and its connections, or its potential disrupting effect on the left fronto-parietal control network, spared the ability to generate remote ideas but impaired the ability to appropriately combine remote ideas. Hence, the current findings suggest that damage to specific nodes within the default mode and fronto-parietal control networks led to a critical loss of verbal creative abilities by altering distinct cognitive mechanisms. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Factors associated with depression and burden in Spanish speaking caregivers of individuals with traumatic brain injury.

    Science.gov (United States)

    Stevens, Lillian Flores; Arango-Lasprilla, Juan Carlos; Deng, Xiaoyan; Schaaf, Kathryn Wilder; De los Reyes Aragón, Carlos José; Quijano, María Cristina; Kreutzer, Jeffrey

    2012-01-01

    To determine which factors are highly associated with burden and depression in a group of caregivers of persons with Traumatic Brain Injury (TBI) in Colombia, South America. Prospective. Fifty-one pairs of individuals with TBI and their caregivers from two major cities in Colombia completed a comprehensive psychosocial evaluation that included information related to patient and caregiver sociodemographic factors, patient factors, and caregiver estimation of patient neurobehavioral functioning. Caregiver burden (Zarit Burden Interview) and caregiver depression (PHQ-9). Generalized linear models revealed that patient language problems and caregiver perception of patient functioning on six neurobehavioral domains were related to caregiver burden. Caregiver socioeconomic status and caregiver perception of patient functioning on six neurobehavioral domains were related to caregiver depression. These variables were then selected as candidates for the multiple regression models, which were fit separately for caregiver depression and burden, and revealed that caregivers' perception of patient depression was the only factor associated with both caregiver burden and depression. Caregivers' perception of patient depression was the single best predictor of both caregiver burden and depression. Implications for treatment based on these preliminary findings are discussed.

  4. Factors Associated with Word Memory Test Performance in Persons with Medically Documented Traumatic Brain Injury.

    Science.gov (United States)

    Sherer, Mark; Davis, Lynne C; Sander, Angelle M; Nick, Todd G; Luo, Chunqiao; Pastorek, Nicholas; Hanks, Robin

    2015-01-01

    (1) To examine the rate of poor performance validity in a large, multicenter, prospectively accrued cohort of community dwelling persons with medically documented traumatic brain injury (TBI), (2) to identify factors associated with Word Memory Test (WMT) performance in persons with TBI. This was a prospective cohort, observational study of 491 persons with medically documented TBI. Participants were administered a battery of cognitive tests, questionnaires on emotional distress and post-concussive symptoms, and a performance validity test (WMT). Additional data were collected by interview and review of medical records. One hundred and seventeen participants showed poor performance validity using the standard cutoff. Variable cluster analysis was conducted as a data reduction strategy. Findings revealed that the 10 cognitive tests and questionnaires could be summarized as 4 indices of emotional distress, speed of cognitive processing, verbal memory, and verbal fluency. Regression models revealed that verbal memory, emotional distress, age, and injury severity (time to follow commands) made unique contribution to prediction of poor performance validity. Poor performance validity was common in a research sample of persons with medically documented TBI who were not evaluated in conjunction with litigation, compensation claims, or current report of symptoms. Poor performance validity was associated with poor performance on cognitive tests, greater emotional distress, lower injury severity, and greater age. Many participants expected to have residual deficits based on initial injury severity showed poor performance validity.

  5. Association of Cognitive Abilities and Brain Lateralization among Primary School Children in Kuwait

    Directory of Open Access Journals (Sweden)

    Jasem Y. Al-Hashel

    2016-01-01

    Full Text Available Background. Many studies have explored the cognitive variation between left- and right-handed individuals; however, the differences remain poorly understood. Aim of the Work. To assess the association between brain lateralization indicated by handedness and cognitive abilities. Material and Methods. A total of 217 students aged between 7 and 10 years of both genders were identified for the study. Males and females were equally distributed. All left-handed students were chosen. An equal group with right-handed students was randomly selected. Handedness was assessed using traditional writing hand approach as well as the WatHand Cabient Test and the Grooved Pegboard Test. Cognition was measured using Cambridge University’s CANTAB eclipse cognitive battery. Pearson Correlation Coefficient Test “r” was calculated to measure the strength of association between quantitative data. Results. Right-handed children had superior visuospatial abilities (p=0.011, r=0.253, visual memory (p=0.034, r=0.205, and better scores in reaction time tests which incorporated elements of visual memory (p=0.004, r=-0.271. Left-handed children proved to have better simple reaction times (p=0.036, r=0.201. Conclusion. Right-handed children had superior visuospatial abilities and left-handed children have better simple reaction times.

  6. Human Obesity Associated with an Intronic SNP in the Brain-Derived Neurotrophic Factor Locus

    Directory of Open Access Journals (Sweden)

    Zongyang Mou

    2015-11-01

    Full Text Available Brain-derived neurotrophic factor (BDNF plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 BDNF SNPs. We observed that the minor C allele of rs12291063 is associated with lower human ventromedial hypothalamic BDNF expression (p < 0.001 and greater adiposity in both adult and pediatric cohorts (p values < 0.05. We further demonstrated that the major T allele for rs12291063 possesses a binding capacity for the transcriptional regulator, heterogeneous nuclear ribonucleoprotein D0B, knockdown of which disrupts transactivation by the T allele. Binding and transactivation functions are both disrupted by substituting C for T. These findings provide a rationale for BDNF augmentation as a targeted treatment for obesity in individuals who have the rs12291063 CC genotype.

  7. The envirome and the connectome: exploring the structural noise in the human brain associated with socioeconomic deprivation.

    Science.gov (United States)

    Krishnadas, Rajeev; Kim, Jongrae; McLean, John; Batty, G David; McLean, Jennifer S; Millar, Keith; Packard, Chris J; Cavanagh, Jonathan

    2013-01-01

    Complex cognitive functions are widely recognized to be the result of a number of brain regions working together as large-scale networks. Recently, complex network analysis has been used to characterize various structural properties of the large-scale network organization of the brain. For example, the human brain has been found to have a modular architecture i.e., regions within the network form communities (modules) with more connections between regions within the community compared to regions outside it. The aim of this study was to examine the modular and overlapping modular architecture of the brain networks using complex network analysis. We also examined the association between neighborhood level deprivation and brain network structure-modularity and gray nodes. We compared network structure derived from anatomical MRI scans of 42 middle-aged neurologically healthy men from the least (LD) and the most deprived (MD) neighborhoods of Glasgow with their corresponding random networks. Cortical morphological covariance networks were constructed from the cortical thickness derived from the MRI scans of the brain. For a given modularity threshold, networks derived from the MD group showed similar number of modules compared to their corresponding random networks, while networks derived from the LD group had more modules compared to their corresponding random networks. The MD group also had fewer gray nodes-a measure of overlapping modular structure. These results suggest that apparent structural difference in brain networks may be driven by differences in cortical thicknesses between groups. This demonstrates a structural organization that is consistent with a system that is less robust and less efficient in information processing. These findings provide some evidence of the relationship between socioeconomic deprivation and brain network topology.

  8. The envirome and the connectome: exploring the structural noise in the human brain associated with socioeconomic deprivation

    Directory of Open Access Journals (Sweden)

    Rajeev eKrishnadas

    2013-11-01

    Full Text Available Complex cognitive functions are widely recognized to be the result of a number of brain regions working together as large-scale networks. Recently, complex network analysis has been used to characterize various structural properties of the large scale network organization of the brain. For example, the human brain has been found to have a modular architecture i.e. regions within the network form communities (modules with more connections between regions within the community compared to regions outside it. The aim of this study was to examine the modular and overlapping modular architecture of the brain networks using complex network analysis. We also examined the association between neighborhood level deprivation and brain network structure – modularity and grey nodes. We compared network structure derived from anatomical MRI scans of 42 middle-aged neurologically healthy men from the least (LD and the most deprived (MD neighborhoods of Glasgow with their corresponding random networks. Cortical morphological covariance networks were constructed from the cortical thickness derived from the MRI scans of the brain. For a given modularity threshold, networks derived from the MD group showed similar number of modules compared to their corresponding random networks, while networks derived from the LD group had more modules compared to their corresponding random networks. The MD group also had fewer grey nodes – a measure of overlapping modular structure. These results suggest that apparent structural difference in brain networks groups may be driven by differences in cortical thicknesses between groups. This demonstrates a structural organization that is consistent with a system that is less robust and less efficient in information processing. These findings provide some of evidence of the relationship between socioeconomic deprivation and brain network topology.

  9. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression

    Science.gov (United States)

    Goyal, Manu S.; Hawrylycz, Michael; Miller, Jeremy A.; Snyder, Abraham Z.; Raichle, Marcus E.

    2015-01-01

    SUMMARY Aerobic glycolysis (AG), i.e., non-oxidative metabolism of glucose despite the presence of abundant oxygen, accounts for 10–12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the role of AG in the human brain. Meta-analysis of prior brain glucose and oxygen metabolism studies demonstrates that AG increases during childhood, precisely when synaptic growth rates are highest. In resting adult humans, AG correlates with persistence of gene expression typical of infancy (transcriptional neoteny). In brain regions with the highest AG, we find increased gene expression related to synapse formation and growth. In contrast, regions high in oxidative glucose metabolism express genes related to mitochondria and synaptic transmission. Our results suggest that brain AG supports developmental processes, particularly those required for synapse formation and growth. PMID:24411938

  10. White matter connections : developmental neuroimaging studies of the associations between genes, brain and behavior

    OpenAIRE

    Darki, Fahimeh

    2014-01-01

    Development of cognitive abilities across childhood and adulthood parallels brain maturation in typically developing samples. Cognitive abilities such as reading and working memory have been linked to neuroimaging measures in relevant brain regions. Though the correlations between inter-individual brain differences and their related cognitive abilities are well established, the cause of this inter-individual variability is still not fully known. This thesis aims to understand the neural bases...

  11. Training of verbal creativity modulates brain activity in regions associated with language‐ and memory‐related demands

    Science.gov (United States)

    Benedek, Mathias; Koschutnig, Karl; Pirker, Eva; Berger, Elisabeth; Meister, Sabrina; Neubauer, Aljoscha C.; Papousek, Ilona; Weiss, Elisabeth M.

    2015-01-01

    Abstract This functional magnetic resonance (fMRI) study was designed to investigate changes in functional patterns of brain activity during creative ideation as a result of a computerized, 3‐week verbal creativity training. The training was composed of various verbal divergent thinking exercises requiring participants to train approximately 20 min per day. Fifty‐three participants were tested three times (psychometric tests and fMRI assessment) with an intertest‐interval of 4 weeks each. Participants were randomly assigned to two different training groups, which received the training time‐delayed: The first training group was trained between the first and the second test, while the second group accomplished the training between the second and the third test session. At the behavioral level, only one training group showed improvements in different facets of verbal creativity right after the training. Yet, functional patterns of brain activity during creative ideation were strikingly similar across both training groups. Whole‐brain voxel‐wise analyses (along with supplementary region of interest analyses) revealed that the training was associated with activity changes in well‐known creativity‐related brain regions such as the left inferior parietal cortex and the left middle temporal gyrus, which have been shown as being particularly sensitive to the originality facet of creativity in previous research. Taken together, this study demonstrates that continuous engagement in a specific complex cognitive task like divergent thinking is associated with reliable changes of activity patterns in relevant brain areas, suggesting more effective search, retrieval, and integration from internal memory representations as a result of the training. Hum Brain Mapp 36:4104–4115, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26178653

  12. Cancer-associated fibroblast promote transmigration through endothelial brain cells in three-dimensional in vitro models.

    Science.gov (United States)

    Choi, Yoon Pyo; Lee, Joo Hyun; Gao, Ming-Qing; Kim, Baek Gil; Kang, Suki; Kim, Se Hoon; Cho, Nam Hoon

    2014-11-01

    Brain metastases are associated with high morbidity as well as with poor prognosis and survival in breast cancer patients. Despite its clinical importance, metastasis of breast cancer cells through the blood-brain barrier (BBB) is poorly understood. The objective of our study was to investigate whether cancer-associated fibroblasts (CAFs) play crucial roles in breast cancer brain metastasis. Using a cell adhesion assays, in vitro BBB permeability and transmigration assays and soft agar colony formation assays, we investigated the physical roles of CAFs in breast cancer brain metastasis. We also performed immunofluorescence, flow cytometric analysis, Droplet Digital PCR and Simon™ Simple Western System to confirm changes in expression levels. We established two novel three-dimensional (3D) culture systems using a perpendicular slide chamber and applying 3D embedded culture method to reflect brain metastasis conditions. With a newly developed device, CAFs was proven to promote cell adhesion to human brain microvascular endothelial cells, in vitro BBB permeability and transmigration and colony formation of breast cancer cells. Furthermore, CAFs enhanced the invasive migration of breast cancer cells in two kinds of 3D cultures. These 3D models also reliably recapitulate the initial steps of BBB transmigration, micro-metastasis and colonization. Expression of integrin α5β1 and αvβ3, c-MET and α2,6-siayltransferase was increased in breast cancer cells that migrated through the BBB. In conclusion, based on our in vitro BBB and co-culture models, our data suggest that CAFs may play a role in breast cancer brain metastasis. © 2014 UICC.

  13. Resilience of developing brain networks to interictal epileptiform discharges is associated with cognitive outcome

    National Research Council Canada - National Science Library

    Ibrahim, George M; Cassel, Daniel; Morgan, Benjamin R; Smith, Mary Lou; Otsubo, Hiroshi; Ochi, Ayako; Taylor, Margot; Rutka, James T; Snead, 3rd, O Carter; Doesburg, Sam

    2014-01-01

    .... Such discharges may have a deleterious effect on the brain's intrinsic connectivity networks, which reflect the organization of functional networks at rest, and in turn on neurocognitive development...

  14. Variation of the gene coding for DARPP-32 (PPP1R1B) and brain connectivity during associative emotional learning

    NARCIS (Netherlands)

    Curcic-Blake, Branislava; Swart, Marte; Ter Horst, Gert J.; Langers, Dave R. M.; Kema, Ido P.; Aleman, Andre

    2012-01-01

    Associative emotional learning, which is important for the social emotional functioning of individuals and is often impaired in psychiatric illnesses, is in part mediated by dopamine and glutamate pathways in the brain. The protein DARPP-32 is involved in the regulation of dopaminergic and

  15. Association between brain natriuretic peptide, markers of inflammation and the objective and subjective response to cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Brouwers, Corline; Versteeg, Henneke; Meine, Mathias

    2014-01-01

    Introduction: Studies suggest that cardiac resynchronization therapy (CRT) can induce a decrease in brain natriuretic peptide (BNP) and systemic inflammation, which may be associated with CRT-response. However, the evidence is inconclusive. We examined levels of BNP and inflammatory markers from...

  16. Angioarchitectural characteristics associated with initial hemorrhagic presentation in supratentorial brain arteriovenous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jianwei, E-mail: swordman_pan@yahoo.com.cn [Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310006 (China); Feng, Lei, E-mail: lei_feng66@yahoo.com [Department of Radiology, Kaiser Permanente Medical Center, Los Angeles, CA 90027 (United States); Vinuela, Fernando, E-mail: fvinuela@mednet.ucla.edu [Interventional Neuroradiology Division, Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, Los Angeles, CA 90095 (United States); He, Hongwei, E-mail: ttyyhhw@126.com [Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, Capital Medical University, 6 Tiantan Xili, Beijing 100050 (China); Wu, Zhongxue, E-mail: 252694812@qq.com [Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, Capital Medical University, 6 Tiantan Xili, Beijing 100050 (China); Zhan, Renya, E-mail: neurovasword@gmail.com [Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310006 (China)

    2013-11-01

    Objective: The difference in arterial supply, venous drainage, functional localization in supratentorial and infratentorial compartments may contribute to the conflicting results about risk factors for hemorrhage in published case series of brain arteriovenous malformation (bAVM). Further investigation focused on an individual brain compartment is thus necessary. This retrospective study aims to identify angioarchitectural characteristics associated with the initial hemorrhagic event of supratentorial bAVMs. Materials and methods: The clinical and angiographic features of 152 consecutive patients with supratentorial bAVMs who presented to our hospital from 2005 to 2008 were retrospectively reviewed. All these patients had new diagnosis of bAVM. Univariate (χ{sup 2} test) and multivariate analyses were conducted to assess the angiographic features in patients with and without initial hemorrhagic presentations. A probability value of less than 0.05 was considered statistically significant in each analysis. Results: In 152 patients with supratentorial AVMs, 70.6% of deep and 52.5% of superficial sbAVMs presented with hemorrhage. The deep location was correlated with initial hemorrhagic presentation in univariate analysis (χ{sup 2} = 3.499, p = 0.046) but not in the multivariate model (p = 0.144). There were 44 sbAVMs with perforating feeders, 39 (88.6%) of which bled at a significantly higher rate than those with terminal feeders (χ{sup 2} = 25.904, p = 0.000). 87.5% (21/24) of exclusive deep venous drainage presented with hemorrhage, a significantly higher rate than those of the other type of venous drainage (χ{sup 2} = 11.099, p = 0.004). All 10 patients with both perforating feeders and exclusive deep draining vein presented with initial hemorrhage. Hemorrhagic presentation was correlated with perforating feeders (p = 0.000) and exclusive deep draining vein (p = 0.007) in multivariate analysis as well. Conclusions: Supratentorial bAVMs with perforating feeders

  17. Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain.

    Science.gov (United States)

    D'Mello, Charlotte; Ronaghan, Natalie; Zaheer, Raza; Dicay, Michael; Le, Tai; MacNaughton, Wallace K; Surrette, Michael G; Swain, Mark G

    2015-07-29

    Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how

  18. Mouse Social Network Dynamics and Community Structure are Associated with Plasticity-Related Brain Gene Expression.

    Science.gov (United States)

    Williamson, Cait M; Franks, Becca; Curley, James P

    2016-01-01

    Laboratory studies of social behavior have typically focused on dyadic interactions occurring within a limited spatiotemporal context. However, this strategy prevents analyses of the dynamics of group social behavior and constrains identification of the biological pathways mediating individual differences in behavior. In the current study, we aimed to identify the spatiotemporal dynamics and hierarchical organization of a large social network of male mice. We also sought to determine if standard assays of social and exploratory behavior are predictive of social behavior in this social network and whether individual network position was associated with the mRNA expression of two plasticity-related genes, DNA methyltransferase 1 and 3a. Mice were observed to form a hierarchically organized social network and self-organized into two separate social network communities. Members of both communities exhibited distinct patterns of socio-spatial organization within the vivaria that was not limited to only agonistic interactions. We further established that exploratory and social behaviors in standard behavioral assays conducted prior to placing the mice into the large group was predictive of initial network position and behavior but were not associated with final social network position. Finally, we determined that social network position is associated with variation in mRNA levels of two neural plasticity genes, DNMT1 and DNMT3a, in the hippocampus but not the mPOA. This work demonstrates the importance of understanding the role of social context and complex social dynamics in determining the relationship between individual differences in social behavior and brain gene expression.

  19. Associations between executive functioning, coping, and psychosocial functioning after acquired brain injury.

    Science.gov (United States)

    Wolters Gregório, Gisela; Ponds, Rudolf W H M; Smeets, Sanne M J; Jonker, Frank; Pouwels, Climmy G J G; Verhey, Frans R; van Heugten, Caroline M

    2015-09-01

    To examine the relationships between executive functioning, coping, depressive symptoms, and quality of life in individuals with neuropsychiatric symptoms after acquired brain injury (ABI). Cross-sectional study. Individuals (n = 93) in the post-acute and chronic phase (>3 months) after ABI and their significant others (N = 58) were recruited from outpatient clinics of four mental health centres in the Netherlands. Outcome measures were the Trail Making Test, Stroop Colour Word Test, Frontal Systems Behavioural Scale, Utrecht Coping List, Patient Health Questionnaire, and Life Satisfaction Questionnaire. Data were analysed with multiple regression analyses. Self-reported executive dysfunction was associated with greater use of passive coping styles (β = .37, p executive functioning (β = -.94, p executive functioning tests were not associated with coping, depressive symptoms, or quality of life. For clinicians, these data indicate that individuals who report greater difficulties with executive functioning after ABI are inclined to use malada