WorldWideScience

Sample records for brain association projection

  1. Brain/MINDS: brain-mapping project in Japan

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  2. Brain/MINDS: brain-mapping project in Japan.

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-05-19

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas.

  3. Brain-mapping projects using the common marmoset.

    Science.gov (United States)

    Okano, Hideyuki; Mitra, Partha

    2015-04-01

    Globally, there is an increasing interest in brain-mapping projects, including the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative project in the USA, the Human Brain Project (HBP) in Europe, and the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) project in Japan. These projects aim to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain. Brain/MINDS is focused on structural and functional mapping of the common marmoset (Callithrix jacchus) brain. This non-human primate has numerous advantages for brain mapping, including a well-developed frontal cortex and a compact brain size, as well as the availability of transgenic technologies. In the present review article, we discuss strategies for structural and functional mapping of the marmoset brain and the relation of the common marmoset to other animals models. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Data integration through brain atlasing: Human Brain Project tools and strategies.

    Science.gov (United States)

    Bjerke, Ingvild E; Øvsthus, Martin; Papp, Eszter A; Yates, Sharon C; Silvestri, Ludovico; Fiorilli, Julien; Pennartz, Cyriel M A; Pavone, Francesco S; Puchades, Maja A; Leergaard, Trygve B; Bjaalie, Jan G

    2018-04-01

    The Human Brain Project (HBP), an EU Flagship Initiative, is currently building an infrastructure that will allow integration of large amounts of heterogeneous neuroscience data. The ultimate goal of the project is to develop a unified multi-level understanding of the brain and its diseases, and beyond this to emulate the computational capabilities of the brain. Reference atlases of the brain are one of the key components in this infrastructure. Based on a new generation of three-dimensional (3D) reference atlases, new solutions for analyzing and integrating brain data are being developed. HBP will build services for spatial query and analysis of brain data comparable to current online services for geospatial data. The services will provide interactive access to a wide range of data types that have information about anatomical location tied to them. The 3D volumetric nature of the brain, however, introduces a new level of complexity that requires a range of tools for making use of and interacting with the atlases. With such new tools, neuroscience research groups will be able to connect their data to atlas space, share their data through online data systems, and search and find other relevant data through the same systems. This new approach partly replaces earlier attempts to organize research data based only on a set of semantic terminologies describing the brain and its subdivisions. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  5. Self-projection and the brain.

    Science.gov (United States)

    Buckner, Randy L; Carroll, Daniel C

    2007-02-01

    When thinking about the future or the upcoming actions of another person, we mentally project ourselves into that alternative situation. Accumulating data suggest that envisioning the future (prospection), remembering the past, conceiving the viewpoint of others (theory of mind) and possibly some forms of navigation reflect the workings of the same core brain network. These abilities emerge at a similar age and share a common functional anatomy that includes frontal and medial temporal systems that are traditionally associated with planning, episodic memory and default (passive) cognitive states. We speculate that these abilities, most often studied as distinct, rely on a common set of processes by which past experiences are used adaptively to imagine perspectives and events beyond those that emerge from the immediate environment.

  6. Brain edema associated with unruptured brain arteriovenous malformations

    International Nuclear Information System (INIS)

    Kim, Bum-soo; Sarma, Dipanka; Lee, Seon-Kyu; ter Brugge, Karel G.

    2009-01-01

    Brain edema in unruptured brain arteriovenous malformations (AVMs) is rare; this study examines (1) its frequency and clinical presentation, (2) imaging findings with emphasis on venous drainage abnormalities, and (3) implications of these findings on natural history and management. Presentation and imaging features of all unruptured brain AVMs were prospectively collected in our brain AVM database. Neurological findings, size, location, venous drainage pattern, presence of venous thrombosis, ectasia, or stenosis, and brain edema were specifically recorded. Treatment details of all patients with brain edema and their clinical and imaging follow-up were reviewed. Finally, a comparison was made between patients with and without edema. Brain edema was found in 13/329 unruptured brain AVMs (3.9%). Neurological deficit (46.2%), venous thrombosis (38.5%), venous ectasia (84.6%), stenosis (38.5%), and contrast stagnation in the draining veins (84.6%) were more frequent in patients with brain edema than without edema. Eight patients with brain edema received specific treatment (embolization = 5, surgery = 2, radiosurgery = 1). Clinical features correlated well with change in degree of edema in six. Three of five embolized patients were stable or showed improvement after the procedure. On follow-up, however, intracranial hemorrhage developed in three. Brain edema in unruptured brain AVMs is rare, 3.9% in this series. Venous outflow abnormalities are frequently associated and appear to contribute to the development of edema. Progressive nonhemorrhagic symptoms are also associated, with a possible increased risk of hemorrhage. Palliative embolization arrests the nonhemorrhagic symptoms in selected patients, although it may not have an effect on hemorrhagic risk. (orig.)

  7. A whole brain volumetric approach in overweight/obese children: Examining the association with different physical fitness components and academic performance. The ActiveBrains project.

    Science.gov (United States)

    Esteban-Cornejo, Irene; Cadenas-Sanchez, Cristina; Contreras-Rodriguez, Oren; Verdejo-Roman, Juan; Mora-Gonzalez, Jose; Migueles, Jairo H; Henriksson, Pontus; Davis, Catherine L; Verdejo-Garcia, Antonio; Catena, Andrés; Ortega, Francisco B

    2017-10-01

    Obesity, as compared to normal weight, is associated with detectable structural differences in the brain. To the best of our knowledge, no previous study has examined the association of physical fitness with gray matter volume in overweight/obese children using whole brain analyses. Thus, the aim of this study was to examine the association between the key components of physical fitness (i.e. cardiorespiratory fitness, speed-agility and muscular fitness) and brain structural volume, and to assess whether fitness-related changes in brain volumes are related to academic performance in overweight/obese children. A total of 101 overweight/obese children aged 8-11 years were recruited from Granada, Spain. The physical fitness components were assessed following the ALPHA health-related fitness test battery. T1-weighted images were acquired with a 3.0 T S Magnetom Tim Trio system. Gray matter tissue was calculated using Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra (DARTEL). Academic performance was assessed by the Batería III Woodcock-Muñoz Tests of Achievement. All analyses were controlled for sex, peak high velocity offset, parent education, body mass index and total brain volume. The statistical threshold was calculated with AlphaSim and further Hayasaka adjusted to account for the non-isotropic smoothness of structural images. The main results showed that higher cardiorespiratory fitness was related to greater gray matter volumes (P structures; besides, some of these brain structures may be related to better academic performance. Importantly, the identified associations of fitness and gray matter volume were different for each fitness component. These findings suggest that increases in cardiorespiratory fitness and speed-agility may positively influence the development of distinctive brain regions and academic indicators, and thus counteract the harmful effect of overweight and obesity on brain structure during childhood. Copyright

  8. Brain Injury Association of America

    Science.gov (United States)

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  9. Association Between Brain Activation and Functional Connectivity.

    Science.gov (United States)

    Tomasi, Dardo; Volkow, Nora D

    2018-04-13

    The origin of the "resting-state" brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.

  10. Brain-wide map of efferent projections from rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Izabela M. Zakiewicz

    2014-02-01

    Full Text Available The somatotopically organized whisker barrel field of the rat primary somatosensory (S1 cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2 database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data.

  11. On brain activity mapping: insights and lessons from Brain Decoding Project to map memory patterns in the hippocampus.

    Science.gov (United States)

    Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longnian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-09-01

    The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the Brain Activity Mapping proposal has rightly emphasized on the need to develop new technologies for measuring every spike from every neuron, it might be helpful to consider both the theoretical and experimental aspects that would accelerate our search for the organizing principles of the brain code. Here we share several insights and lessons from the similar proposal, namely, Brain Decoding Project that we initiated since 2007. We provide a specific example in our initial mapping of real-time memory traces from one part of the memory circuit, namely, the CA1 region of the mouse hippocampus. We show how innovative behavioral tasks and appropriate mathematical analyses of large datasets can play equally, if not more, important roles in uncovering the specific-to-general feature-coding cell assembly mechanism by which episodic memory, semantic knowledge, and imagination are generated and organized. Our own experiences suggest that the bottleneck of the Brain Project is not only at merely developing additional new technologies, but also the lack of efficient avenues to disseminate cutting edge platforms and decoding expertise to neuroscience community. Therefore, we propose that in order to harness unique insights and extensive knowledge from various investigators working in diverse neuroscience subfields, ranging from perception and emotion to memory and social behaviors, the BRAIN project should create a set of International and National Brain Decoding Centers at which cutting-edge recording technologies and expertise on analyzing large datasets analyses can be made readily available to the entire community of neuroscientists who can apply and schedule to perform cutting-edge research.

  12. Financial literacy is associated with medial brain region functional connectivity in old age.

    Science.gov (United States)

    Han, S Duke; Boyle, Patricia A; Yu, Lei; Fleischman, Debra A; Arfanakis, Konstantinos; Leurgans, Sue; Bennett, David A

    2014-01-01

    Financial literacy refers to the ability to access and utilize financial information in ways that promote better outcomes. In old age, financial literacy has been associated with a wide range of positive characteristics; however, the neural correlates remain unclear. Recent work has suggested greater co-activity between anterior-posterior medial brain regions is associated with better brain functioning. We hypothesized financial literacy would be associated with this pattern. We assessed whole-brain functional connectivity to a posterior cingulate cortex (PCC) seed region of interest (ROI) in 138 participants of the Rush Memory and Aging Project. Results revealed financial literacy was associated with greater functional connectivity between the PCC and three regions: the right ventromedial prefrontal cortex (vmPFC), the left postcentral gyrus, and the right precuneus. Results also revealed financial literacy was associated negatively with functional connectivity between the PCC and left caudate. Post hoc analyses showed the PCC-vmPFC relationship accounted for the most variance in a regression model adjusted for all four significant functional connectivity relationships, demographic factors, and global cognition. These findings provide information on the neural mechanisms associated with financial literacy in old age. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Neuroscience Club in SKKK3 and SMSTMFP: The Brain Apprentice Project.

    Science.gov (United States)

    Mohd Ibrahim, Seri Dewi; Muda, Mazinah

    2015-01-01

    Sekolah Menengah Sains Tengku Muhammad Faris Petra (SMSTMFP) and Sekolah Kebangsaan Kubang Kerian (3) (SKKK3) were selected by the Department of Neurosciences, Universiti Sains Malaysia (USM), in 2011 to be a 'school-based Neuroscience Club' via the 'Knowledge Transfer Programme (KTP) - Community' project. This community project was known as "The Brain Apprentice Project". The objectives of this project were to promote science and the neurosciences beyond conventional classroom teachings whilst guiding creativity and innovation as well as to assist in the delivery of neuroscience knowledge through graduate interns as part of the cultivation of neuroscience as a fruitful future career option. All of the planned club activities moulded the students to be knowledgeable individuals with admirable leadership skills, which will help the schools produce more scientists, technocrats and professionals who can fulfil the requirements of our religion, race and nation in the future. Some of the activities carried out over the years include the "My Brain Invention Competition", "Mini Brain Bee Contest", "Recycled Melody" and "Brain Dissection". These activities educated the students well and improved their confidence levels in their communication and soft skills. The participation of the students in international-level competition, such as the "International Brain Bee", was one of the ways future professionals were created for the nation. The implementation of Neuroscience Club as one of the organisations in the school's cocurriculum was an appropriate step in transferring science and neuroscience knowledge and skills from a higher education institution, namely USM, to both of the schools, SMSTMFP and SKKK3. The club members showed great interest in all of the club's activities and their performance on the Ujian Pencapaian Sekolah Rendah (UPSR) or Primary School Achievement Test and Sijil Pelajaran Malaysia (SPM) or Malaysian Certificate of Education examinations improved

  14. Descending brain neurons in larval lamprey: Spinal projection patterns and initiation of locomotion

    Science.gov (United States)

    Shaw, Albert C.; Jackson, Adam W.; Holmes, Tamra; Thurman, Suzie; Davis, G.R.; McClellan, Andrew D.

    2010-01-01

    In larval lamprey, partial lesions were made in the rostral spinal cord to determine which spinal tracts are important for descending activation of locomotion and to identify descending brain neurons that project in these tracts. In whole animals and in vitro brain/spinal cord preparations, brain-initiated spinal locomotor activity was present when the lateral or intermediate spinal tracts were spared but usually was abolished when the medial tracts were spared. We previously showed that descending brain neurons are located in eleven cell groups, including reticulospinal (RS) neurons in the mesenecephalic reticular nucleus (MRN) as well as the anterior (ARRN), middle (MRRN), and posterior (PRRN) rhombencephalic reticular nuclei. Other descending brain neurons are located in the diencephalic (Di) as well as the anterolateral (ALV), dorsolateral (DLV), and posterolateral (PLV) vagal groups. In the present study, the Mauthner and auxillary Mauthner cells, most neurons in the Di, ALV, DLV, and PLV cell groups, and some neurons in the ARRN and PRRN had crossed descending axons. The majority of neurons projecting in medial spinal tracts included large identified Müller cells and neurons in the Di, MRN, ALV, and DLV. Axons of individual descending brain neurons usually did not switch spinal tracts, have branches in multiple tracts, or cross the midline within the rostral cord. Most neurons that projected in the lateral/intermediate spinal tracts were in the ARRN, MRRN, and PRRN. Thus, output neurons of the locomotor command system are distributed in several reticular nuclei, whose neurons project in relatively wide areas of the cord. PMID:20510243

  15. Significance of parietal projection in radiosotope scintigraphy of the brain

    International Nuclear Information System (INIS)

    Fomchenkov, E.P.

    1978-01-01

    The diagnostic value of the isotope scintigraphy of the brain in the parieal projection with the change of the dip angle of the gamma-chamber detector to the plane of the physiological horizontal was revealed. The observation was made on 100 patients with suspected presence of the volumetric process of the brain. Three variants of placing were studied: the parietal projection - standard (collimator plane parallel to the plane of physiological horizontal and strictly perpendicular to the sagittal plane); the placing with an angle of 30 deg between the detector plane and the physiological horizontal, opened at the front (posterio-parietal); placing with an angle of 30 deg between the detector plane and the physiological horizontal opened at the back (anterio-parietal). A comparative analysis of scintigrams with focal processes of the brain showed the largest informativeness of the proposed modification of the parietal projection in the form of a change of the dip angle of the gamma-chamber detector plane to the plane of the physiological horizontal opened at the back; this makes it possible to reveal more thoroughly the focus of the increased, pathological accumulation of the isotope in different parts of the skull, where the use of as standard placing is of small informativeness

  16. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with

  17. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury.

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Hellyer, Peter J; Jolly, Amy E; Patel, Maneesh C; Cole, James H; Leech, Robert; Sharp, David J

    2018-01-01

    Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of

  18. Human brain mass: similar body composition associations as observed across mammals.

    Science.gov (United States)

    Heymsfield, Steven B; Müller, Manfred J; Bosy-Westphal, Anja; Thomas, Diana; Shen, Wei

    2012-01-01

    A classic association is the link between brain mass and body mass across mammals that has now been shown to derive from fat-free mass (FFM) and not fat mass (FM). This study aimed to establish for the first time the associations between human brain mass and body composition and to compare these relations with those established for liver as a reference organ. Subjects were 112 men and 148 women who had brain and liver mass measured by magnetic resonance imaging with FM and FFM measured by dual-energy X-ray absorptiometry. Brain mass scaled to height (H) with powers of ≤0.6 in men and women; liver mass and FFM both scaled similarly as H(~2) . The fraction of FFM as brain thus scaled inversely to height (P FFM was independent of height. After controlling for age, brain, and liver mass were associated with FFM while liver was additionally associated with FM (all models P ≤ 0.01). After controlling for age and sex, FFM accounted for ~5% of the variance in brain mass while levels were substantially higher for liver mass (~60%). Brain mass was significantly larger (P FFM. As across mammals, human brain mass associates significantly, although weakly, with FFM and not FM; the fraction of FFM as brain relates inversely to height; brain differs in these relations from liver, another small high metabolic rate organ; and the sexual dimorphism in brain mass persists even after adjusting for age and FFM. Copyright © 2012 Wiley Periodicals, Inc.

  19. Improved superficial brain hemorrhage visualization in susceptibility weighted images by constrained minimum intensity projection

    Science.gov (United States)

    Castro, Marcelo A.; Pham, Dzung L.; Butman, John

    2016-03-01

    Minimum intensity projection is a technique commonly used to display magnetic resonance susceptibility weighted images, allowing the observer to better visualize hemorrhages and vasculature. The technique displays the minimum intensity in a given projection within a thick slab, allowing different connectivity patterns to be easily revealed. Unfortunately, the low signal intensity of the skull within the thick slab can mask superficial tissues near the skull base and other regions. Because superficial microhemorrhages are a common feature of traumatic brain injury, this effect limits the ability to proper diagnose and follow up patients. In order to overcome this limitation, we developed a method to allow minimum intensity projection to properly display superficial tissues adjacent to the skull. Our approach is based on two brain masks, the largest of which includes extracerebral voxels. The analysis of the rind within both masks containing the actual brain boundary allows reclassification of those voxels initially missed in the smaller mask. Morphological operations are applied to guarantee accuracy and topological correctness, and the mean intensity within the mask is assigned to all outer voxels. This prevents bone from dominating superficial regions in the projection, enabling superior visualization of cortical hemorrhages and vessels.

  20. Multimodal Characterization of the Late Effects of Traumatic Brain Injury: A Methodological Overview of the Late Effects of Traumatic Brain Injury Project.

    Science.gov (United States)

    Edlow, Brian L; Keene, C Dirk; Perl, Daniel P; Iacono, Diego; Folkerth, Rebecca D; Stewart, William; Mac Donald, Christine L; Augustinack, Jean; Diaz-Arrastia, Ramon; Estrada, Camilo; Flannery, Elissa; Gordon, Wayne A; Grabowski, Thomas J; Hansen, Kelly; Hoffman, Jeanne; Kroenke, Christopher; Larson, Eric B; Lee, Patricia; Mareyam, Azma; McNab, Jennifer A; McPhee, Jeanne; Moreau, Allison L; Renz, Anne; Richmire, KatieRose; Stevens, Allison; Tang, Cheuk Y; Tirrell, Lee S; Trittschuh, Emily H; van der Kouwe, Andre; Varjabedian, Ani; Wald, Lawrence L; Wu, Ona; Yendiki, Anastasia; Young, Liza; Zöllei, Lilla; Fischl, Bruce; Crane, Paul K; Dams-O'Connor, Kristen

    2018-05-03

    Epidemiological studies suggest that a single moderate-to-severe traumatic brain injury (TBI) is associated with an increased risk of neurodegenerative disease, including Alzheimer's disease (AD) and Parkinson's disease (PD). Histopathological studies describe complex neurodegenerative pathologies in individuals exposed to single moderate-to-severe TBI or repetitive mild TBI, including chronic traumatic encephalopathy (CTE). However, the clinicopathological links between TBI and post-traumatic neurodegenerative diseases such as AD, PD, and CTE remain poorly understood. Here, we describe the methodology of the Late Effects of TBI (LETBI) study, whose goals are to characterize chronic post-traumatic neuropathology and to identify in vivo biomarkers of post-traumatic neurodegeneration. LETBI participants undergo extensive clinical evaluation using National Institutes of Health TBI Common Data Elements, proteomic and genomic analysis, structural and functional magnetic resonance imaging (MRI), and prospective consent for brain donation. Selected brain specimens undergo ultra-high resolution ex vivo MRI and histopathological evaluation including whole-mount analysis. Co-registration of ex vivo and in vivo MRI data enables identification of ex vivo lesions that were present during life. In vivo signatures of postmortem pathology are then correlated with cognitive and behavioral data to characterize the clinical phenotype(s) associated with pathological brain lesions. We illustrate the study methods and demonstrate proof of concept for this approach by reporting results from the first LETBI participant, who despite the presence of multiple in vivo and ex vivo pathoanatomic lesions had normal cognition and was functionally independent until her mid-80s. The LETBI project represents a multidisciplinary effort to characterize post-traumatic neuropathology and identify in vivo signatures of postmortem pathology in a prospective study.

  1. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    Science.gov (United States)

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  2. Birth of projection neurons in adult avian brain may be related to perceptual or motor learning

    International Nuclear Information System (INIS)

    Alvarez-Buylla, A.; Kirn, J.R.; Nottebohm, F.

    1990-01-01

    Projection neurons that form part of the motor pathway for song control continue to be produced and to replace older projection neurons in adult canaries and zebra finches. This is shown by combining [3H]thymidine, a cell birth marker, and fluorogold, a retrogradely transported tracer of neuronal connectivity. Species and seasonal comparisons suggest that this process is related to the acquisition of perceptual or motor memories. The ability of an adult brain to produce and replace projection neurons should influence our thinking on brain repair

  3. Methods and Management of the Healthy Brain Study: A Large Multisite Qualitative Research Project

    Science.gov (United States)

    Laditka, Sarah B.; Corwin, Sara J.; Laditka, James N.; Liu, Rui; Friedman, Daniela B.; Mathews, Anna E.; Wilcox, Sara

    2009-01-01

    Purpose of the study: To describe processes used in the Healthy Brain project to manage data collection, coding, and data distribution in a large qualitative project, conducted by researchers at 9 universities in 9 states. Design and Methods: Project management protocols included: (a) managing audiotapes and surveys to ensure data confidentiality,…

  4. Clustering of Whole-Brain White Matter Short Association Bundles Using HARDI Data

    Directory of Open Access Journals (Sweden)

    Claudio Román

    2017-12-01

    Full Text Available Human brain connectivity is extremely complex and variable across subjects. While long association and projection bundles are stable and have been deeply studied, short association bundles present higher intersubject variability, and few studies have been carried out to adequately describe the structure, shape, and reproducibility of these bundles. However, their analysis is crucial to understand brain function and better characterize the human connectome. In this study, we propose an automatic method to identify reproducible short association bundles of the superficial white matter, based on intersubject hierarchical clustering. The method is applied to the whole brain and finds representative clusters of similar fibers belonging to a group of subjects, according to a distance metric between fibers. We experimented with both affine and non-linear registrations and, due to better reproducibility, chose the results obtained from non-linear registration. Once the clusters are calculated, our method performs automatic labeling of the most stable connections based on individual cortical parcellations. We compare results between two independent groups of subjects from a HARDI database to generate reproducible connections for the creation of an atlas. To perform a better validation of the results, we used a bagging strategy that uses pairs of groups of 27 subjects from a database of 74 subjects. The result is an atlas with 44 bundles in the left hemisphere and 49 in the right hemisphere, of which 33 bundles are found in both hemispheres. Finally, we use the atlas to automatically segment 78 new subjects from a different HARDI database and to analyze stability and lateralization results.

  5. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    Science.gov (United States)

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  6. From brain to neuro: the brain research association and the making of British neuroscience, 1965-1996.

    Science.gov (United States)

    Abi-Rached, Joelle M

    2012-01-01

    This article explores the short history of "neuroscience" as a discipline in its own right as opposed to the much longer past of the brain sciences. It focuses on one historical moment, the formation of the first British "neuroscience" society, the Brain Research Association (BRA), renamed in 1996 to the British Neuroscience Association (BNA). It outlines the new thinking brought about by this new science of brain, mind, and behavior, it sketches the beginnings of the BRA and the institutionalization of neuroscience in the British context, and it further explores the ambiguous relation the association had towards some of the ethical, social, and political implications of this new area of research.

  7. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures.

    Science.gov (United States)

    Holmes, Avram J; Hollinshead, Marisa O; O'Keefe, Timothy M; Petrov, Victor I; Fariello, Gabriele R; Wald, Lawrence L; Fischl, Bruce; Rosen, Bruce R; Mair, Ross W; Roffman, Joshua L; Smoller, Jordan W; Buckner, Randy L

    2015-01-01

    The goal of the Brain Genomics Superstruct Project (GSP) is to enable large-scale exploration of the links between brain function, behavior, and ultimately genetic variation. To provide the broader scientific community data to probe these associations, a repository of structural and functional magnetic resonance imaging (MRI) scans linked to genetic information was constructed from a sample of healthy individuals. The initial release, detailed in the present manuscript, encompasses quality screened cross-sectional data from 1,570 participants ages 18 to 35 years who were scanned with MRI and completed demographic and health questionnaires. Personality and cognitive measures were obtained on a subset of participants. Each dataset contains a T1-weighted structural MRI scan and either one (n=1,570) or two (n=1,139) resting state functional MRI scans. Test-retest reliability datasets are included from 69 participants scanned within six months of their initial visit. For the majority of participants self-report behavioral and cognitive measures are included (n=926 and n=892 respectively). Analyses of data quality, structure, function, personality, and cognition are presented to demonstrate the dataset's utility.

  8. Associations between Family Adversity and Brain Volume in Adolescence: Manual vs. Automated Brain Segmentation Yields Different Results

    OpenAIRE

    Lyden, Hannah; Gimbel, Sarah I.; Del Piero, Larissa; Tsai, A. Bryna; Sachs, Matthew E.; Kaplan, Jonas T.; Margolin, Gayla; Saxbe, Darby

    2016-01-01

    Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation appr...

  9. The circuitry of olfactory projection neurons in the brain of the honeybee, Apis mellifera

    Directory of Open Access Journals (Sweden)

    Hanna Zwaka

    2016-09-01

    Full Text Available In the honeybee brain, two prominent tracts - the medial and the lateral antennal lobe tract - project from the primary olfactory center, the antennal lobes, to the central brain, the mushroom bodies, and the protocerebral lobe. Intracellularly stained uniglomerular projection neurons (uPN were reconstructed, registered to the 3D honeybee standard brain atlas, and then used to derive the spatial properties and quantitative morphology of the neurons of both tracts. We evaluated putative synaptic contacts of projection neurons using confocal microscopy. Analysis of the patterns of axon terminals revealed a domain-like innervation within the mushroom body lip neuropil. Projection neurons of the lateral tract arborized more sparsely within the lips and exhibited fewer synaptic boutons, while medial tract neurons occupied broader regions in the mushroom body calyces and the protocerebral lobe. Our data show that uPNs from the medial and lateral tract innervate both the core and the cortex of the ipsilateral mushroom body lip but differ in their innervation patterns in these regions. In the mushroombody neuropil collar we found evidence for ALT boutons suggesting the collar as a multi modal input site including olfactory input similar to lip and basal ring. In addition, our data support the conclusion drawn in previous studies that reciprocal synapses exist between projection neurons, octopaminergic-, and GABAergic cells in the mushroom body calyces. For the first time, we found evidence for connections between both tracts within the antennal lobe.

  10. Defining Optimal Brain Health in Adults: A Presidential Advisory From the American Heart Association/American Stroke Association.

    Science.gov (United States)

    Gorelick, Philip B; Furie, Karen L; Iadecola, Costantino; Smith, Eric E; Waddy, Salina P; Lloyd-Jones, Donald M; Bae, Hee-Joon; Bauman, Mary Ann; Dichgans, Martin; Duncan, Pamela W; Girgus, Meighan; Howard, Virginia J; Lazar, Ronald M; Seshadri, Sudha; Testai, Fernando D; van Gaal, Stephen; Yaffe, Kristine; Wasiak, Hank; Zerna, Charlotte

    2017-10-01

    Cognitive function is an important component of aging and predicts quality of life, functional independence, and risk of institutionalization. Advances in our understanding of the role of cardiovascular risks have shown them to be closely associated with cognitive impairment and dementia. Because many cardiovascular risks are modifiable, it may be possible to maintain brain health and to prevent dementia in later life. The purpose of this American Heart Association (AHA)/American Stroke Association presidential advisory is to provide an initial definition of optimal brain health in adults and guidance on how to maintain brain health. We identify metrics to define optimal brain health in adults based on inclusion of factors that could be measured, monitored, and modified. From these practical considerations, we identified 7 metrics to define optimal brain health in adults that originated from AHA's Life's Simple 7: 4 ideal health behaviors (nonsmoking, physical activity at goal levels, healthy diet consistent with current guideline levels, and body mass index brain health but recognize that the truly ideal circumstance may be uncommon because there is a continuum of brain health as demonstrated by AHA's Life's Simple 7. Therefore, there is opportunity to improve brain health through primordial prevention and other interventions. Furthermore, although cardiovascular risks align well with brain health, we acknowledge that other factors differing from those related to cardiovascular health may drive cognitive health. Defining optimal brain health in adults and its maintenance is consistent with the AHA's Strategic Impact Goal to improve cardiovascular health of all Americans by 20% and to reduce deaths resulting from cardiovascular disease and stroke by 20% by the year 2020. This work in defining optimal brain health in adults serves to provide the AHA/American Stroke Association with a foundation for a new strategic direction going forward in cardiovascular health

  11. Association of brain cancer with dental x-rays and occupation in Missouri

    International Nuclear Information System (INIS)

    Neuberger, J.S.; Brownson, R.C.; Morantz, R.A.; Chin, T.D.

    1991-01-01

    This investigation of a brain cancer cluster in Missouri used two approaches to investigate associations with potential risk factors. In a case-control study in a rural town, we interviewed surrogates of cases and controls about potential risk factors. We found a statistically significant positive association of brain cancer with reported exposure to dental x-rays. Occupation was not associated with the cluster in the rural town. In a standardized proportional mortality study for the state of Missouri, we calculated the observed and expected proportion of brain cancers by occupation and industry in Missouri decedents. We found that motor vehicle manufacturers, beauty shop workers, managers and administrators, elementary school teachers, and hairdressers and cosmetologists had significantly elevated proportions of brain cancer. Brain tumors are inconsistently associated with occupation in the literature. Further study of brain cancer etiology with respect to dental x-ray exposures seems warranted

  12. Age-dependent association of thyroid function with brain morphology and microstructural organization: evidence from brain imaging.

    Science.gov (United States)

    Chaker, Layal; Cremers, Lotte G M; Korevaar, Tim I M; de Groot, Marius; Dehghan, Abbas; Franco, Oscar H; Niessen, Wiro J; Ikram, M Arfan; Peeters, Robin P; Vernooij, Meike W

    2018-01-01

    Thyroid hormone (TH) is crucial during neurodevelopment, but high levels of TH have been linked to neurodegenerative disorders. No data on the association of thyroid function with brain imaging in the general population are available. We therefore investigated the association of thyroid-stimulating hormone and free thyroxine (FT4) with magnetic resonance imaging (MRI)-derived total intracranial volume, brain tissue volumes, and diffusion tensor imaging measures of white matter microstructure in 4683 dementia- and stroke-free participants (mean age 60.2, range 45.6-89.9 years). Higher FT4 levels were associated with larger total intracranial volumes (β = 6.73 mL, 95% confidence interval = 2.94-9.80). Higher FT4 levels were also associated with larger total brain and white matter volumes in younger individuals, but with smaller total brain and white matter volume in older individuals (p-interaction 0.02). There was a similar interaction by age for the association of FT4 with mean diffusivity on diffusion tensor imaging (p-interaction 0.026). These results are in line with differential effects of TH during neurodevelopmental and neurodegenerative processes and can improve the understanding of the role of thyroid function in neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Brain abscesses associated with right-to-left shunts in adults.

    Science.gov (United States)

    Memon, Kashif A; Cleveland, Kerry O; Gelfand, Michael S

    2012-04-01

    Although brain abscesses are frequently cryptogenic in origin, bacteria must reach the brain either by direct or hematogenous spread. Right-to-left shunts, caused either by intrapulmonary vascular malformations or congenital heart defects, may allow microorganisms to evade the normal host defenses in the lungs and lead to development of brain abscesses. Two patients recently presented with brain abscesses and were found to have conditions associated with right-to-left shunts. The diagnosis of brain abscess should prompt the clinician to consider right-to-left shunts as a possible predisposing condition for brain abscess.

  14. Intelligence is associated with the modular structure of intrinsic brain networks.

    Science.gov (United States)

    Hilger, Kirsten; Ekman, Matthias; Fiebach, Christian J; Basten, Ulrike

    2017-11-22

    General intelligence is a psychological construct that captures in a single metric the overall level of behavioural and cognitive performance in an individual. While previous research has attempted to localise intelligence in circumscribed brain regions, more recent work focuses on functional interactions between regions. However, even though brain networks are characterised by substantial modularity, it is unclear whether and how the brain's modular organisation is associated with general intelligence. Modelling subject-specific brain network graphs from functional MRI resting-state data (N = 309), we found that intelligence was not associated with global modularity features (e.g., number or size of modules) or the whole-brain proportions of different node types (e.g., connector hubs or provincial hubs). In contrast, we observed characteristic associations between intelligence and node-specific measures of within- and between-module connectivity, particularly in frontal and parietal brain regions that have previously been linked to intelligence. We propose that the connectivity profile of these regions may shape intelligence-relevant aspects of information processing. Our data demonstrate that not only region-specific differences in brain structure and function, but also the network-topological embedding of fronto-parietal as well as other cortical and subcortical brain regions is related to individual differences in higher cognitive abilities, i.e., intelligence.

  15. Association of structural global brain network properties with intelligence in normal aging.

    Directory of Open Access Journals (Sweden)

    Florian U Fischer

    Full Text Available Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.

  16. Association of Structural Global Brain Network Properties with Intelligence in Normal Aging

    Science.gov (United States)

    Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas

    2014-01-01

    Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994

  17. The Impact of Childhood Trauma on Brain Development: A Literature Review and Supporting Handouts

    Science.gov (United States)

    Kirouac, Samantha; McBride, Dawn Lorraine

    2009-01-01

    This project provides a comprehensive overview of the research literature on the brain and how trauma impacts brain development, structures, and functioning. A basic exploration of childhood trauma is outlined in this project, as it is essential in making associations and connections to brain development. Childhood trauma is processed in the…

  18. Multiregional Age-Associated Reduction of Brain Neuronal Reserve Without Association With Neurofibrillary Degeneration or β-Amyloidosis.

    Science.gov (United States)

    Wegiel, Jerzy; Flory, Michael; Kuchna, Izabela; Nowicki, Krzysztof; Yong Ma, Shuang; Wegiel, Jarek; Badmaev, Eulalia; Silverman, Wayne P; de Leon, Mony; Reisberg, Barry; Wisniewski, Thomas

    2017-06-01

    Increase in human life expectancy has resulted in the rapid growth of the elderly population with minimal or no intellectual deterioration. The aim of this stereological study of 10 structures and 5 subdivisions with and without neurofibrillary degeneration in the brains of 28 individuals 25-102-years-old was to establish the pattern of age-associated neurodegeneration and neuronal loss in the brains of nondemented adults and elderly. The study revealed the absence of significant neuronal loss in 7 regions and topographically selective reduction of neuronal reserve over 77 years in 8 brain structures including the entorhinal cortex (EC) (-33.3%), the second layer of the EC (-54%), cornu Ammonis sector 1 (CA1) (-28.5%), amygdala, (-45.8%), thalamus (-40.5%), caudate nucleus (-35%), Purkinje cells (-48.3%), and neurons in the dentate nucleus (40.1%). A similar rate of neuronal loss in adults and elderly, without signs of accelerating neuronal loss in agers or super-agers, appears to indicate age-associated brain remodeling with significant reduction of neuronal reserve in 8 brain regions. Multivariate analysis demonstrates the absence of a significant association between neuronal loss and the severity of neurofibrillary degeneration and β-amyloidosis, and a similar rate of age-associated neuronal loss in structures with and without neurofibrillary degeneration. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  19. Association between structural brain network efficiency and intelligence increases during adolescence

    NARCIS (Netherlands)

    Koenis, Marinka M G; Brouwer, Rachel M; Swagerman, Suzanne C; van Soelen, Inge L C; Boomsma, Dorret I; Hulshoff Pol, Hilleke E

    2018-01-01

    Adolescence represents an important period during which considerable changes in the brain take place, including increases in integrity of white matter bundles, and increasing efficiency of the structural brain network. A more efficient structural brain network has been associated with higher

  20. Face-name association learning and brain structural substrates in alcoholism.

    Science.gov (United States)

    Pitel, Anne-Lise; Chanraud, Sandra; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V

    2012-07-01

    Associative learning is required for face-name association and is impaired in alcoholism, but the cognitive processes and brain structural components underlying this deficit remain unclear. It is also unknown whether prompting alcoholics to implement a deep level of processing during face-name encoding would enhance performance. Abstinent alcoholics and controls performed a levels-of-processing face-name learning task. Participants indicated whether the face was that of an honest person (deep encoding) or that of a man (shallow encoding). Retrieval was examined using an associative (face-name) recognition task and a single-item (face or name only) recognition task. Participants also underwent 3T structural MRI. Compared with controls, alcoholics had poorer associative and single-item learning and performed at similar levels. Level of processing at encoding had little effect on recognition performance but affected reaction time (RT). Correlations with brain volumes were generally modest and based primarily on RT in alcoholics, where the deeper the processing at encoding, the more restricted the correlations with brain volumes. In alcoholics, longer control task RTs correlated modestly with smaller tissue volumes across several anterior to posterior brain regions; shallow encoding correlated with calcarine and striatal volumes; deep encoding correlated with precuneus and parietal volumes; and associative recognition RT correlated with cerebellar volumes. In controls, poorer associative recognition with deep encoding correlated significantly with smaller volumes of frontal and striatal structures. Despite prompting, alcoholics did not take advantage of encoding memoranda at a deep level to enhance face-name recognition accuracy. Nonetheless, conditions of deeper encoding resulted in faster RTs and more specific relations with regional brain volumes than did shallow encoding. The normal relation between associative recognition and corticostriatal volumes was not

  1. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease.

    Science.gov (United States)

    Mullins, Roger J; Mustapic, Maja; Goetzl, Edward J; Kapogiannis, Dimitrios

    2017-04-01

    Brain insulin resistance (IR), which depends on insulin-receptor-substrate-1 (IRS-1) phosphorylation, is characteristic of Alzheimer's disease (AD). Previously, we demonstrated higher pSer312-IRS-1 (ineffective insulin signaling) and lower p-panTyr-IRS-1 (effective insulin signaling) in neural origin-enriched plasma exosomes of AD patients vs. Here, we hypothesized that these exosomal biomarkers associate with brain atrophy in AD. We studied 24 subjects with biomarker-supported probable AD (low CSF Aβ 42 ). Exosomes were isolated from plasma, enriched for neural origin using immunoprecipitation for L1CAM, and measured for pSer 312 - and p-panTyr-IRS-1 phosphotypes. MPRAGE images were segmented by brain tissue type and voxel-based morphometry (VBM) analysis for gray matter against pSer 312 - and p-panTyr-IRS-1 was conducted. Given the regionally variable brain expression of IRS-1, we used the Allen Brain Atlas to make spatial comparisons between VBM results and IRS-1 expression. Brain volume was positively associated with P-panTyr-IRS-1 and negatively associated with pSer 312 -IRS-1 in a strikingly similar regional pattern (bilateral parietal-occipital junction, R middle temporal gyrus). This volumetric association pattern was spatially correlated with Allen Human Brain atlas normal brain IRS-1 expression. Exosomal biomarkers of brain IR are thus associated with atrophy in AD as could be expected by their pathophysiological roles and do so in a pattern that reflects regional IRS-1 expression. Furthermore, neural-origin plasma exosomes may recover molecular signals from specific brain regions. Hum Brain Mapp 38:1933-1940, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Prevalence of incidental findings on magnetic resonance imaging: Cuban project to map the human brain

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, Gertrudis de los Angeles; Alvarez Sanchez, Marilet; Jordan Gonzalez, Jose

    2010-01-01

    To determine the prevalence of incidental findings in healthy subjects of the Cuban Human Brain Mapping Project sample, it was performed a retrospective descriptive study of the magnetic resonance imaging (MRI) obtained from 394 healthy subjects that make up the sample of the project, between 2006-2007, with an age range of 18 to 68 years (mean 33,12), of which 269 (68,27 %) are male and 125 (31,73 %) are women. It was shown that 40,36 % had one or more anomaly in the magnetic resonance imaging (MRI). In total, the number of incidental findings was 188, 23,6 % of which were brain findings and 24,11 % were non-brain findings, among the latter, were the sinusopathy with 20,81 % and maxillary polyps with 3,30 %. The most prevalent brain findings were: intrasellar arachnoidocele, 11,93 %, followed by the prominence of the pituitary gland, 5,84 %, ventricular asymmetry, 1,77 % and bone defects, 1,02 %. Other brain abnormalities found with very low prevalence had no pathological significance, except for two cases with brain tumor, which were immediately sent to a specialist. Incidental findings in MRI are common in the general population (40,36 %), being the sinusopathy, and intrasellar arachnoidocele the most common findings. Asymptomatic individuals who have any type of structural abnormality provide invaluable information on the prevalence of these abnormalities in a presumably healthy population, which may be used as references for epidemiological studies

  3. N-Terminal pro-Brain Natriuretic Peptide and Associations With Brain Magnetic Resonance Imaging (MRI Features in Middle Age: The CARDIA Brain MRI Study

    Directory of Open Access Journals (Sweden)

    Ian T. Ferguson

    2018-05-01

    Full Text Available ObjectiveAs part of research on the heart–brain axis, we investigated the association of N-terminal pro-brain natriuretic peptide (NT-proBNP with brain structure and function in a community-based cohort of middle-aged adults from the Brain Magnetic Resonance Imaging sub-study of the Coronary Artery Risk Development in Young Adults (CARDIA Study.Approach and resultsIn a cohort of 634 community-dwelling adults with a mean (range age of 50.4 (46–52 years, we examined the cross-sectional association of NT-proBNP to total, gray (GM and white matter (WM volumes, abnormal WM load and WM integrity, and to cognitive function tests [the Digit Symbol Substitution Test (DSST, the Stroop test, and the Rey Auditory–Verbal Learning Test]. These associations were examined using linear regression models adjusted for demographic and cardiovascular risk factors and cardiac output. Higher NT-proBNP concentration was significantly associated with smaller GM volume (β = −3.44; 95% CI = −5.32, −0.53; p = 0.003, even after additionally adjusting for cardiac output (β = −2.93; 95% CI = −5.32, −0.53; p = 0.017. Higher NT-proBNP levels were also associated with lower DSST scores. NT-proBNP was not related to WM volume, WM integrity, or abnormal WM load.ConclusionIn this middle-aged cohort, subclinical levels of NT-proBNP were related to brain function and specifically to GM and not WM measures, extending similar findings in older cohorts. Further research is warranted into biomarkers of cardiac dysfunction as a target for early markers of a brain at risk.

  4. Traffic pollution exposure is associated with altered brain connectivity in school children.

    Science.gov (United States)

    Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi

    2016-04-01

    Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The National NeuroAIDS Tissue Consortium brain gene array: two types of HIV-associated neurocognitive impairment.

    Directory of Open Access Journals (Sweden)

    Benjamin B Gelman

    Full Text Available The National NeuroAIDS Tissue Consortium (NNTC performed a brain gene expression array to elucidate pathophysiologies of Human Immunodeficiency Virus type 1 (HIV-1-associated neurocognitive disorders.Twenty-four human subjects in four groups were examined A Uninfected controls; B HIV-1 infected subjects with no substantial neurocognitive impairment (NCI; C Infected with substantial NCI without HIV encephalitis (HIVE; D Infected with substantial NCI and HIVE. RNA from neocortex, white matter, and neostriatum was processed with the Affymetrix® array platform.With HIVE the HIV-1 RNA load in brain tissue was three log(10 units higher than other groups and over 1,900 gene probes were regulated. Interferon response genes (IFRGs, antigen presentation, complement components and CD163 antigen were strongly upregulated. In frontal neocortex downregulated neuronal pathways strongly dominated in HIVE, including GABA receptors, glutamate signaling, synaptic potentiation, axon guidance, clathrin-mediated endocytosis and 14-3-3 protein. Expression was completely different in neuropsychologically impaired subjects without HIVE. They had low brain HIV-1 loads, weak brain immune responses, lacked neuronally expressed changes in neocortex and exhibited upregulation of endothelial cell type transcripts. HIV-1-infected subjects with normal neuropsychological test results had upregulation of neuronal transcripts involved in synaptic transmission of neostriatal circuits.Two patterns of brain gene expression suggest that more than one pathophysiological process occurs in HIV-1-associated neurocognitive impairment. Expression in HIVE suggests that lowering brain HIV-1 replication might improve NCI, whereas NCI without HIVE may not respond in kind; array results suggest that modulation of transvascular signaling is a potentially promising approach. Striking brain regional differences highlighted the likely importance of circuit level disturbances in HIV/AIDS. In

  6. A novel method of quantifying brain atrophy associated with age-related hearing loss

    Directory of Open Access Journals (Sweden)

    Z. Jason Qian

    2017-01-01

    Audiometric evaluations and mini-mental state exams were obtained in 34 subjects over the age of 80 who have had brain MRIs in the past 6 years. CSF and parenchymal brain volumes (whole brain and by lobe were obtained through a novel, fully automated algorithm. Atrophy was calculated by taking the ratio of CSF to parenchyma. High frequency hearing loss was associated with disproportional temporal lobe atrophy relative to whole brain atrophy independent of age (r = 0.471, p = 0.005. Mental state was associated with frontoparietal atrophy but not to temporal lobe atrophy, which is consistent with known results. Our method demonstrates that hearing loss is associated with temporal lobe atrophy and generalized whole brain atrophy. Our algorithm is efficient, fully automated, and able to detect significant associations in a small cohort.

  7. R2* mapping for brain iron: associations with cognition in normal aging.

    Science.gov (United States)

    Ghadery, Christine; Pirpamer, Lukas; Hofer, Edith; Langkammer, Christian; Petrovic, Katja; Loitfelder, Marisa; Schwingenschuh, Petra; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Schmidt, Helena; Fazekas, Franz; Mangin, Jean-Francois; Chabriat, Hugues; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2015-02-01

    Brain iron accumulates during aging and has been associated with neurodegenerative disorders including Alzheimer's disease. Magnetic resonance (MR)-based R2* mapping enables the in vivo detection of iron content in brain tissue. We investigated if during normal brain aging iron load relates to cognitive impairment in region-specific patterns in a community-dwelling cohort of 336 healthy, middle aged, and older adults from the Austrian Stroke Prevention Family Study. MR imaging and R2* mapping in the basal ganglia and neocortex were done at 3T. Comprehensive neuropsychological testing assessed memory, executive function, and psychomotor speed. We found the highest iron concentration in the globus pallidus, and pallidal and putaminal iron was significantly and inversely associated with cognitive performance in all cognitive domains, except memory. These associations were iron load dependent. Vascular brain lesions and brain volume did not mediate the relationship between iron and cognitive performance. We conclude that higher R2*-determined iron in the basal ganglia correlates with cognitive impairment during brain aging independent of concomitant brain abnormalities. The prognostic significance of this finding needs to be determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Brain Transcriptional and Epigenetic Associations with Autism

    Science.gov (United States)

    Ginsberg, Matthew R.; Rubin, Robert A.; Falcone, Tatiana; Ting, Angela H.; Natowicz, Marvin R.

    2012-01-01

    Background Autism is a common neurodevelopmental syndrome. Numerous rare genetic etiologies are reported; most cases are idiopathic. Methodology/Principal Findings To uncover important gene dysregulation in autism we analyzed carefully selected idiopathic autistic and control cerebellar and BA19 (occipital) brain tissues using high resolution whole genome gene expression and whole genome DNA methylation microarrays. No changes in DNA methylation were identified in autistic brain but gene expression abnormalities in two areas of metabolism were apparent: down-regulation of genes of mitochondrial oxidative phosphorylation and of protein translation. We also found associations between specific behavioral domains of autism and specific brain gene expression modules related to myelin/myelination, inflammation/immune response and purinergic signaling. Conclusions/Significance This work highlights two largely unrecognized molecular pathophysiological themes in autism and suggests differing molecular bases for autism behavioral endophenotypes. PMID:22984548

  9. Elevated Body Mass Index is Associated with Increased Integration and Reduced Cohesion of Sensory-Driven and Internally Guided Resting-State Functional Brain Networks.

    Science.gov (United States)

    Doucet, Gaelle E; Rasgon, Natalie; McEwen, Bruce S; Micali, Nadia; Frangou, Sophia

    2018-03-01

    Elevated body mass index (BMI) is associated with increased multi-morbidity and mortality. The investigation of the relationship between BMI and brain organization has the potential to provide new insights relevant to clinical and policy strategies for weight control. Here, we quantified the association between increasing BMI and the functional organization of resting-state brain networks in a sample of 496 healthy individuals that were studied as part of the Human Connectome Project. We demonstrated that higher BMI was associated with changes in the functional connectivity of the default-mode network (DMN), central executive network (CEN), sensorimotor network (SMN), visual network (VN), and their constituent modules. In siblings discordant for obesity, we showed that person-specific factors contributing to obesity are linked to reduced cohesiveness of the sensory networks (SMN and VN). We conclude that higher BMI is associated with widespread alterations in brain networks that balance sensory-driven (SMN, VN) and internally guided (DMN, CEN) states which may augment sensory-driven behavior leading to overeating and subsequent weight gain. Our results provide a neurobiological context for understanding the association between BMI and brain functional organization while accounting for familial and person-specific influences. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. The multiple brain abscesses associated with congenital pulmonary arteriovenous malformations: a case report.

    OpenAIRE

    Han, Seok; Lim, Dong-Jun; Chung, Yong-Gu; Cho, Tai-Hyoung; Lim, Seong-Jun; Kim, Woo-Jae; Park, Jung-Yul; Suh, Jung-Keun

    2002-01-01

    In this report, we describe a case of multiple brain abscesses associated with diffuse congenital pulmonary arteriovenous malformations (PAVM). Although the cases of brain abscesses associated with congenital PAVM are very rare, the brain abscess could be an initial clinical manifestation in asymptomatic PAVM as in the case presented in this report. PAVM may contribute to the development of a brain abscess by allowing easy bacterial access to systemic circulation through the right-to-left pul...

  11. Sleep variability in adolescence is associated with altered brain development.

    Science.gov (United States)

    Telzer, Eva H; Goldenberg, Diane; Fuligni, Andrew J; Lieberman, Matthew D; Gálvan, Adriana

    2015-08-01

    Despite the known importance of sleep for brain development, and the sharp increase in poor sleep during adolescence, we know relatively little about how sleep impacts the developing brain. We present the first longitudinal study to examine how sleep during adolescence is associated with white matter integrity. We find that greater variability in sleep duration one year prior to a DTI scan is associated with lower white matter integrity above and beyond the effects of sleep duration, and variability in bedtime, whereas sleep variability a few months prior to the scan is not associated with white matter integrity. Thus, variability in sleep duration during adolescence may have long-term impairments on the developing brain. White matter integrity should be increasing during adolescence, and so sleep variability is directly at odds with normative developmental trends. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Associations Between Family Adversity and Brain Volume in Adolescence: Manual vs. Automated Brain Segmentation Yields Different Results

    Directory of Open Access Journals (Sweden)

    Hannah Lyden

    2016-09-01

    Full Text Available Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation approaches. In the current study, 23 adolescents participated in two waves of a longitudinal study. Family aggression was measured when the youths were 12 years old, and structural scans were acquired an average of 4 years later. Bilateral amygdalae and hippocampi were segmented using three different methods (manual tracing, FSL, and NeuroQuant. The segmentation estimates were compared, and linear regressions were run to assess the relationship between early family aggression exposure and all three volume segmentation estimates. Manual tracing results showed a positive relationship between family aggression and right amygdala volume, whereas FSL segmentation showed negative relationships between family aggression and both the left and right hippocampi. However, results indicate poor overlap between methods, and different associations between early family aggression exposure and brain volume depending on the segmentation method used.

  13. Associations between Family Adversity and Brain Volume in Adolescence: Manual vs. Automated Brain Segmentation Yields Different Results.

    Science.gov (United States)

    Lyden, Hannah; Gimbel, Sarah I; Del Piero, Larissa; Tsai, A Bryna; Sachs, Matthew E; Kaplan, Jonas T; Margolin, Gayla; Saxbe, Darby

    2016-01-01

    Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation approaches. In the current study, 23 adolescents participated in two waves of a longitudinal study. Family aggression was measured when the youths were 12 years old, and structural scans were acquired an average of 4 years later. Bilateral amygdalae and hippocampi were segmented using three different methods (manual tracing, FSL, and NeuroQuant). The segmentation estimates were compared, and linear regressions were run to assess the relationship between early family aggression exposure and all three volume segmentation estimates. Manual tracing results showed a positive relationship between family aggression and right amygdala volume, whereas FSL segmentation showed negative relationships between family aggression and both the left and right hippocampi. However, results indicate poor overlap between methods, and different associations were found between early family aggression exposure and brain volume depending on the segmentation method used.

  14. Association of IQ Changes and Progressive Brain Changes in Patients With Schizophrenia

    NARCIS (Netherlands)

    Kubota, Manabu; van Haren, Neeltje E. M.; Haijma, Sander V.; Schnack, Hugo G.; Cahn, Wiepke; Pol, Hilleke E. Hulshoff; Kahn, Rene S.

    IMPORTANCE Although schizophrenia is characterized by impairments in intelligence and the loss of brain volume, the relationship between changes in IQ and brain measures is not clear. OBJECTIVE To investigate the association between IQ and brain measures in patients with schizophrenia across time.

  15. Tuberculous meningoencephalitis associated with brain tuberculomas during pregnancy: a case report

    OpenAIRE

    Namani, Sadie; Dreshaj, Shemsedin; Berisha, Arieta Zogaj

    2017-01-01

    Background Tuberculous meningitis is globally highly prevalent and is commoner in resource-limited countries and in patients with immunosuppression. Central nervous system tuberculosis is one of the severest forms of extrapulmonary tuberculosis during pregnancy and associated brain tuberculomas have been rarely reported. With the availability of neuroimaging at our hospital center, we present the first case of tuberculous meningoencephalitis associated with brain tuberculomas during pregnancy...

  16. Moral values are associated with individual differences in regional brain volume.

    Science.gov (United States)

    Lewis, Gary J; Kanai, Ryota; Bates, Timothy C; Rees, Geraint

    2012-08-01

    Moral sentiment has been hypothesized to reflect evolved adaptations to social living. If so, individual differences in moral values may relate to regional variation in brain structure. We tested this hypothesis in a sample of 70 young, healthy adults examining whether differences on two major dimensions of moral values were significantly associated with regional gray matter volume. The two clusters of moral values assessed were "individualizing" (values of harm/care and fairness) and "binding" (deference to authority, in-group loyalty, and purity/sanctity). Individualizing was positively associated with left dorsomedial pFC volume and negatively associated with bilateral precuneus volume. For binding, a significant positive association was found for bilateral subcallosal gyrus and a trend to significance for the left anterior insula volume. These findings demonstrate that variation in moral sentiment reflects individual differences in brain structure and suggest a biological basis for moral sentiment, distributed across multiple brain regions.

  17. Adult brain abscess associated with patent foramen ovale: a case report

    Directory of Open Access Journals (Sweden)

    Stathopoulos Georgios T

    2007-08-01

    Full Text Available Abstract Brain abscess results from local or metastatic septic spread to the brain. The primary infectious site is often undetected, more commonly so when it is distant. Unlike pediatric congenital heart disease, minor intracardiac right-to-left shunting due to patent foramen ovale has not been appreciated as a cause of brain abscess in adults. Here we present a case of brain abscess associated with a patent foramen ovale in a 53-year old man with dental-gingival sepsis treated in the intensive care unit. Based on this case and the relevant literature we suggest a link between a silent patent foramen ovale, paradoxic pathogen dissemination to the brain, and development of brain abscess.

  18. Head First PMP A Brain-Friendly Guide to Passing the Project Management Professional Exam

    CERN Document Server

    Greene, Jennifer

    2009-01-01

    Learn the latest principles and certification objectives in The PMBOK Guide, Fourth Edition, in a unique and inspiring way with Head First PMP . The second edition of this book helps you prepare for the PMP certification exam using a visually rich format designed for the way your brain works. You'll find a full-length sample exam included inside the book. More than just proof of passing a test, a PMP certification means that you have the knowledge to solve most common project problems. But studying for a difficult four-hour exam on project management isn't easy, even for experienced project

  19. Common genetic variations in cell cycle and DNA repair pathways associated with pediatric brain tumor susceptibility

    DEFF Research Database (Denmark)

    Fahmideh, Maral Adel; Lavebratt, Catharina; Schüz, Joachim

    2016-01-01

    Knowledge on the role of genetic polymorphisms in the etiology of pediatric brain tumors (PBTs) is limited. Therefore, we investigated the association between single nucleotide polymorphisms (SNPs), identified by candidate gene-association studies on adult brain tumors, and PBT risk. The study is...... cycle and DNA repair pathways variations associated with susceptibility to adult brain tumors also seem to be associated with PBT risk, suggesting pediatric and adult brain tumors might share similar etiological pathways....

  20. Age-dependent association of thyroid function with brain morphology and microstructural organization : Evidence from brain imaging

    NARCIS (Netherlands)

    Chaker, Layal; Cremers, Lotte G M; Korevaar, Tim I.M.; De Groot, Marius; Dehghan, Abbas; Franco, Oscar H.; Niessen, W.J.; Ikram, M. Arfan; Peeters, Robin P.; Vernooij, Meike W.

    2018-01-01

    Thyroid hormone (TH) is crucial during neurodevelopment, but high levels of TH have been linked to neurodegenerative disorders. No data on the association of thyroid function with brain imaging in the general population are available. We therefore investigated the association of

  1. Associative memory cells and their working principle in the brain

    Science.gov (United States)

    Wang, Jin-Hui; Cui, Shan

    2018-01-01

    The acquisition, integration and storage of exogenous associated signals are termed as associative learning and memory. The consequences and processes of associative thinking and logical reasoning based on these stored exogenous signals can be memorized as endogenous signals, which are essential for decision making, intention, and planning. Associative memory cells recruited in these primary and secondary associative memories are presumably the foundation for the brain to fulfill cognition events and emotional reactions in life, though the plasticity of synaptic connectivity and neuronal activity has been believed to be involved in learning and memory. Current reports indicate that associative memory cells are recruited by their mutual synapse innervations among co-activated brain regions to fulfill the integration, storage and retrieval of associated signals. The activation of these associative memory cells initiates information recall in the mind, and the successful activation of their downstream neurons endorses memory presentations through behaviors and emotion reactions. In this review, we aim to draw a comprehensive diagram for associative memory cells, working principle and modulation, as well as propose their roles in cognition, emotion and behaviors. PMID:29487741

  2. Clinicopathological factors associated with survival in patients with breast cancer brain metastasis.

    Science.gov (United States)

    Li, Rong; Zhang, Kui; Siegal, Gene P; Wei, Shi

    2017-06-01

    Brain metastasis from breast cancer generally represents a catastrophic event yet demonstrates substantial biological heterogeneity. There have been limited studies solely focusing on the prognosis of patients with such metastasis. In this study, we carried out a comprehensive analysis in 108 consecutive patients with breast cancer brain metastases between 1997 and 2012 to further define clinicopathological factors associated with early onset of brain metastasis and survival outcomes after development of them. We found that lobular carcinoma, higher clinical stages at diagnosis, and lack of coexisting bone metastasis were significantly associated with a worse brain relapse-free survival when compared with brain-only metastasis. High histologic grade, triple-negative breast cancer, and absence of visceral involvement were unfavorable prognostic factors after brain metastasis. Furthermore, high histologic grade, advanced tumor stages, and lack of coexisting bone involvement indicated a worse overall survival. Thus, the previously established prognostic factors in early stage or advanced breast cancers may not entirely apply to patients with brain metastases. Furthermore, the prognostic significance of the clinicopathological factors differed before and after a patient develops brain metastasis. This knowledge might help in establishing an algorithm to further stratify patients with breast cancer into prognostically significant categories for optimal prevention, screening, and treatment of their brain metastasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Identification of alterations associated with age in the clustering structure of functional brain networks.

    Science.gov (United States)

    Guzman, Grover E C; Sato, Joao R; Vidal, Maciel C; Fujita, Andre

    2018-01-01

    Initial studies using resting-state functional magnetic resonance imaging on the trajectories of the brain network from childhood to adulthood found evidence of functional integration and segregation over time. The comprehension of how healthy individuals' functional integration and segregation occur is crucial to enhance our understanding of possible deviations that may lead to brain disorders. Recent approaches have focused on the framework wherein the functional brain network is organized into spatially distributed modules that have been associated with specific cognitive functions. Here, we tested the hypothesis that the clustering structure of brain networks evolves during development. To address this hypothesis, we defined a measure of how well a brain region is clustered (network fitness index), and developed a method to evaluate its association with age. Then, we applied this method to a functional magnetic resonance imaging data set composed of 397 males under 31 years of age collected as part of the Autism Brain Imaging Data Exchange Consortium. As results, we identified two brain regions for which the clustering change over time, namely, the left middle temporal gyrus and the left putamen. Since the network fitness index is associated with both integration and segregation, our finding suggests that the identified brain region plays a role in the development of brain systems.

  4. Whole brain and brain regional coexpression network interactions associated with predisposition to alcohol consumption.

    Directory of Open Access Journals (Sweden)

    Lauren A Vanderlinden

    Full Text Available To identify brain transcriptional networks that may predispose an animal to consume alcohol, we used weighted gene coexpression network analysis (WGCNA. Candidate coexpression modules are those with an eigengene expression level that correlates significantly with the level of alcohol consumption across a panel of BXD recombinant inbred mouse strains, and that share a genomic region that regulates the module transcript expression levels (mQTL with a genomic region that regulates alcohol consumption (bQTL. To address a controversy regarding utility of gene expression profiles from whole brain, vs specific brain regions, as indicators of the relationship of gene expression to phenotype, we compared candidate coexpression modules from whole brain gene expression data (gathered with Affymetrix 430 v2 arrays in the Colorado laboratories and from gene expression data from 6 brain regions (nucleus accumbens (NA; prefrontal cortex (PFC; ventral tegmental area (VTA; striatum (ST; hippocampus (HP; cerebellum (CB available from GeneNetwork. The candidate modules were used to construct candidate eigengene networks across brain regions, resulting in three "meta-modules", composed of candidate modules from two or more brain regions (NA, PFC, ST, VTA and whole brain. To mitigate the potential influence of chromosomal location of transcripts and cis-eQTLs in linkage disequilibrium, we calculated a semi-partial correlation of the transcripts in the meta-modules with alcohol consumption conditional on the transcripts' cis-eQTLs. The function of transcripts that retained the correlation with the phenotype after correction for the strong genetic influence, implicates processes of protein metabolism in the ER and Golgi as influencing susceptibility to variation in alcohol consumption. Integration of these data with human GWAS provides further information on the function of polymorphisms associated with alcohol-related traits.

  5. Brain-predicted age in Down syndrome is associated with beta amyloid deposition and cognitive decline.

    Science.gov (United States)

    Cole, James H; Annus, Tiina; Wilson, Liam R; Remtulla, Ridhaa; Hong, Young T; Fryer, Tim D; Acosta-Cabronero, Julio; Cardenas-Blanco, Arturo; Smith, Robert; Menon, David K; Zaman, Shahid H; Nestor, Peter J; Holland, Anthony J

    2017-08-01

    Individuals with Down syndrome (DS) are more likely to experience earlier onset of multiple facets of physiological aging. This includes brain atrophy, beta amyloid deposition, cognitive decline, and Alzheimer's disease-factors indicative of brain aging. Here, we employed a machine learning approach, using structural neuroimaging data to predict age (i.e., brain-predicted age) in people with DS (N = 46) and typically developing controls (N = 30). Chronological age was then subtracted from brain-predicted age to generate a brain-predicted age difference (brain-PAD) score. DS participants also underwent [ 11 C]-PiB positron emission tomography (PET) scans to index the levels of cerebral beta amyloid deposition, and cognitive assessment. Mean brain-PAD in DS participants' was +2.49 years, significantly greater than controls (p brain-PAD was associated with the presence and the magnitude of PiB-binding and levels of cognitive performance. Our study indicates that DS is associated with premature structural brain aging, and that age-related alterations in brain structure are associated with individual differences in the rate of beta amyloid deposition and cognitive impairment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Brain structure mediates the association between height and cognitive ability.

    Science.gov (United States)

    Vuoksimaa, Eero; Panizzon, Matthew S; Franz, Carol E; Fennema-Notestine, Christine; Hagler, Donald J; Lyons, Michael J; Dale, Anders M; Kremen, William S

    2018-05-11

    Height and general cognitive ability are positively associated, but the underlying mechanisms of this relationship are not well understood. Both height and general cognitive ability are positively associated with brain size. Still, the neural substrate of the height-cognitive ability association is unclear. We used a sample of 515 middle-aged male twins with structural magnetic resonance imaging data to investigate whether the association between height and cognitive ability is mediated by cortical size. In addition to cortical volume, we used genetically, ontogenetically and phylogenetically distinct cortical metrics of total cortical surface area and mean cortical thickness. Height was positively associated with general cognitive ability and total cortical volume and cortical surface area, but not with mean cortical thickness. Mediation models indicated that the well-replicated height-general cognitive ability association is accounted for by individual differences in total cortical volume and cortical surface area (highly heritable metrics related to global brain size), and that the genetic association between cortical surface area and general cognitive ability underlies the phenotypic height-general cognitive ability relationship.

  7. Adeno-associated virus vector-mediated transduction in the cat brain.

    Science.gov (United States)

    Vite, Charles H; Passini, Marco A; Haskins, Mark E; Wolfe, John H

    2003-10-01

    Adeno-associated virus (AAV) vectors are capable of delivering a therapeutic gene to the mouse brain that can result in long-term and widespread protein production. However, the human infant brain is more than 1000 times larger than the mouse brain, which will make the treatment of global neurometabolic disorders in children more difficult. In this study, we evaluated the ability of three AAV serotypes (1,2, and 5) to transduce cells in the cat brain as a model of a large mammalian brain. The human lysosomal enzyme beta-glucuronidase (GUSB) was used as a reporter gene, because it can be distinguished from feline GUSB by heat stability. The vectors were injected into the cerebral cortex, caudate nucleus, thalamus, corona radiata, internal capsule, and centrum semiovale of 8-week-old cats. The brains were evaluated for gene expression using in situ hybridization and enzyme histochemistry 10 weeks after surgery. The AAV2 vector was capable of transducing cells in the gray matter, while the AAV1 vector resulted in greater transduction of the gray matter than AAV2 as well as transduction of the white matter. AAV5 did not result in detectable transduction in the cat brain.

  8. Brain edema associated with intracranial meningiomas

    International Nuclear Information System (INIS)

    Asahi, Minoru; Kikuchi, Haruhiko; Hirai, Osamu

    1992-01-01

    Brain edema associated with intracranial meningiomas was investigated on 80 patients, excluding recurrent cases. Statistically significant positive correlations with the degree of edema were found with large tumors, the convexity or parasagittal locations, the venous outflow disturbance, and the evidence of cortical disruption or peritumoral enhancement visualized on computed tomography or magnetic resonance imagings. Patients with a short clinical history and with angiographic evidence of hypervascularity tended to have edema, but there was no statistical significance. It is concluded that various factors are responsible for the edema associated with meningiomas and that it would be hard to determine the most important cause, since each factor plays a part edema production, spread, and resolution. (author)

  9. Enhanced inter-subject brain computer interface with associative sensorimotor oscillations.

    Science.gov (United States)

    Saha, Simanto; Ahmed, Khawza I; Mostafa, Raqibul; Khandoker, Ahsan H; Hadjileontiadis, Leontios

    2017-02-01

    Electroencephalography (EEG) captures electrophysiological signatures of cortical events from the scalp with high-dimensional electrode montages. Usually, excessive sources produce outliers and potentially affect the actual event related sources. Besides, EEG manifests inherent inter-subject variability of the brain dynamics, at the resting state and/or under the performance of task(s), caused probably due to the instantaneous fluctuation of psychophysiological states. A wavelet coherence (WC) analysis for optimally selecting associative inter-subject channels is proposed here and is being used to boost performances of motor imagery (MI)-based inter-subject brain computer interface (BCI). The underlying hypothesis is that optimally associative inter-subject channels can reduce the effects of outliers and, thus, eliminate dissimilar cortical patterns. The proposed approach has been tested on the dataset IVa from BCI competition III, including EEG data acquired from five healthy subjects who were given visual cues to perform 280 trials of MI for the right hand and right foot. Experimental results have shown increased classification accuracy (81.79%) using the WC-based selected 16 channels compared to the one (56.79%) achieved using all the available 118 channels. The associative channels lie mostly around the sensorimotor regions of the brain, reinforced by the previous literature, describing spatial brain dynamics during sensorimotor oscillations. Apparently, the proposed approach paves the way for optimised EEG channel selection that could boost further the efficiency and real-time performance of BCI systems.

  10. Project Career: A qualitative examination of five college students with traumatic brain injuries.

    Science.gov (United States)

    Nardone, Amanda; Sampson, Elaine; Stauffer, Callista; Leopold, Anne; Jacobs, Karen; Hendricks, Deborah J; Elias, Eileen; Chen, Hui; Rumrill, Phillip

    2015-01-01

    Project Career is an interprofessional five-year development project designed to improve the employment success of undergraduate college and university students with traumatic brain injury (TBI). The case study information was collected and synthesized by the project's Technology and Employment Coordinators (TECs) at each of the project's three university sites. The project's evaluation is occurring independently through JBS International, Inc. Five case studies are presented to provide an understanding of student participants' experiences within Project Career. Each case study includes background on the student, engagement with technology, vocational supports, and interactions with his/her respective TEC. A qualitative analysis from the student's case notes is provided within each case study, along with a discussion of the overall qualitative analysis. Across all five students, the theme Positive Outcomes was mentioned most often in the case notes. Of all the different type of challenges, Cognitive Challenges were most often mentioned during meetings with the TECs, followed by Psychological Challenges, Physical Challenges, Other Challenges, and Academic Challenges, respectively. Project Career is providing academic enrichment and career enhancement that may substantially improve the unsatisfactory employment outcomes that presently await students with TBI following graduation.

  11. Human Brain Proteome Project - 12th HUPO BPP Workshop. 26 September 2009, Toronto, Canada.

    Science.gov (United States)

    Gröttrup, Bernd; Eisenacher, Martin; Stephan, Christian; Marcus, Katrin; Lee, Bonghee; Meyer, Helmut E; Park, Young Mok

    2010-06-01

    The HUPO Brain Proteome Project (HUPO BPP) held its 12th workshop in Toronto on 26 September 2009 prior to the HUPO VIII World Congress. The principal aim of this project is to obtain a better understanding of neurodiseases and ageing, with the ultimate objective of discovering prognostic and diagnostic biomarkers, in addition to the development of novel diagnostic techniques and new medications. The attendees came together to discuss progress in the human clinical neuroproteomics and to define the needs and guidelines required for more advanced proteomic approaches.

  12. PET brain imaging in HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vera, Jaime H. [Brighton and Sussex Medical School, Department of Infection and Global Health, Brighton (United Kingdom); Brighton and Sussex University Hospitals NHS Trust, HIV Department, Brighton (United Kingdom); Ridha, Basil [Brighton and Sussex University Hospitals NHS Trust, Neurology Department, Brighton (United Kingdom); Gilleece, Yvonne; Amlani, Aliza [Brighton and Sussex University Hospitals NHS Trust, HIV Department, Brighton (United Kingdom); Thorburn, Patrick; Dizdarevic, Sabina [Brighton and Sussex University Hospitals NHS Trust, Imaging and Nuclear Medicine Department, Brighton (United Kingdom); Brighton and Sussex Medical School, Clinical Imaging Science Centre, Brighton (United Kingdom)

    2017-05-15

    Effective combination antiretroviral therapy (cART) has lead to a significant reduction in the prevalence and incidence of central nervous system (CNS) HIV-associated brain disease, particularly CNS opportunistic infections and HIV encephalitis. Despite this, cognitive deficits in people living with HIV, also known as HIV-associated neurocognitive disorders (HAND) have become more prevalent in recent years. The pathogenesis of HAND is likely to be multifactorial, however recent evidence suggests that brain microglial activation is the most likely pathogenic mechanism. Recent developments in positron emission tomography (PET) brain neuroimaging using novel brain radioligands targeting a variety of physiological changes in the brains of HIV-positive individuals have improved our understanding of the mechanisms associated with the development of HAND. This review will highlight recent PET brain neuroimaging studies in the cART era, focusing on physiological and neurochemical changes associated with HAND in people living with HIV. (orig.)

  13. PET brain imaging in HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy

    International Nuclear Information System (INIS)

    Vera, Jaime H.; Ridha, Basil; Gilleece, Yvonne; Amlani, Aliza; Thorburn, Patrick; Dizdarevic, Sabina

    2017-01-01

    Effective combination antiretroviral therapy (cART) has lead to a significant reduction in the prevalence and incidence of central nervous system (CNS) HIV-associated brain disease, particularly CNS opportunistic infections and HIV encephalitis. Despite this, cognitive deficits in people living with HIV, also known as HIV-associated neurocognitive disorders (HAND) have become more prevalent in recent years. The pathogenesis of HAND is likely to be multifactorial, however recent evidence suggests that brain microglial activation is the most likely pathogenic mechanism. Recent developments in positron emission tomography (PET) brain neuroimaging using novel brain radioligands targeting a variety of physiological changes in the brains of HIV-positive individuals have improved our understanding of the mechanisms associated with the development of HAND. This review will highlight recent PET brain neuroimaging studies in the cART era, focusing on physiological and neurochemical changes associated with HAND in people living with HIV. (orig.)

  14. Examination of corticothalamic fiber projections in United States service members with mild traumatic brain injury

    Science.gov (United States)

    Rashid, Faisal M.; Dennis, Emily L.; Villalon-Reina, Julio E.; Jin, Yan; Lewis, Jeffrey D.; York, Gerald E.; Thompson, Paul M.; Tate, David F.

    2017-11-01

    Mild traumatic brain injury (mTBI) is characterized clinically by a closed head injury involving differential or rotational movement of the brain inside the skull. Over 3 million mTBIs occur annually in the United States alone. Many of the individuals who sustain an mTBI go on to recover fully, but around 20% experience persistent symptoms. These symptoms often last for many weeks to several months. The thalamus, a structure known to serve as a global networking or relay system for the rest of the brain, may play a critical role in neurorehabiliation and its integrity and connectivity after injury may also affect cognitive outcomes. To examine the thalamus, conventional tractography methods to map corticothalamic pathways with diffusion-weighted MRI (DWI) lead to sparse reconstructions that may contain false positive fibers that are anatomically inaccurate. Using a specialized method to zero in on corticothalamic pathways with greater robustness, we noninvasively examined corticothalamic fiber projections using DWI, in 68 service members. We found significantly lower fractional anisotropy (FA), a measure of white matter microstructural integrity, in pathways projecting to the left pre- and postcentral gyri - consistent with sensorimotor deficits often found post-mTBI. Mapping of neural circuitry in mTBI may help to further our understanding of mechanisms underlying recovery post-TBI.

  15. The association between adverse childhood experiences and adult traumatic brain injury/concussion: a scoping review.

    Science.gov (United States)

    Ma, Zechen; Bayley, Mark T; Perrier, Laure; Dhir, Priya; Dépatie, Lana; Comper, Paul; Ruttan, Lesley; Lay, Christine; Munce, Sarah E P

    2018-01-12

    Adverse childhood experiences are significant risk factors for physical and mental illnesses in adulthood. Traumatic brain injury/concussion is a challenging condition where pre-injury factors may affect recovery. The association between childhood adversity and traumatic brain injury/concussion has not been previously reviewed. The research question addressed is: What is known from the existing literature about the association between adverse childhood experiences and traumatic brain injury/concussion in adults? All original studies of any type published in English since 2007 on adverse childhood experiences and traumatic brain injury/concussion outcomes were included. The literature search was conducted in multiple electronic databases. Arksey and O'Malley and Levac et al.'s scoping review frameworks were used. Two reviewers independently completed screening and data abstraction. The review yielded six observational studies. Included studies were limited to incarcerated or homeless samples, and individuals at high-risk of or with mental illnesses. Across studies, methods for childhood adversity and traumatic brain injury/concussion assessment were heterogeneous. A positive association between adverse childhood experiences and traumatic brain injury occurrence was identified. The review highlights the importance of screening and treatment of adverse childhood experiences. Future research should extend to the general population and implications on injury recovery. Implications for rehabilitation Exposure to adverse childhood experiences is associated with increased risk of traumatic brain injury. Specific types of adverse childhood experiences associated with risk of traumatic brain injury include childhood physical abuse, psychological abuse, household member incarceration, and household member drug abuse. Clinicians and researchers should inquire about adverse childhood experiences in all people with traumatic brain injury as pre-injury health conditions can

  16. Brain structure-function associations in multi-generational families genetically enriched for bipolar disorder.

    Science.gov (United States)

    Fears, Scott C; Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C; Aldana, Ileana; Teshiba, Terri M; Abaryan, Zvart; Al-Sharif, Noor B; Navarro, Linda; Tishler, Todd A; Altshuler, Lori; Bartzokis, George; Escobar, Javier I; Glahn, David C; Thompson, Paul M; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I; Sabatti, Chiara; Cantor, Rita M; Freimer, Nelson B; Bearden, Carrie E

    2015-07-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain-behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain-behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18-87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain-behaviour associations and test whether brain-behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain-behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family

  17. Hyper-attenuating brain lesions on CT after ischemic stroke and thrombectomy are associated with final brain infarction.

    Science.gov (United States)

    Cabral, F B; Castro-Afonso, L H; Nakiri, G S; Monsignore, L M; Fábio, Src; Dos Santos, A C; Pontes-Neto, O M; Abud, D G

    2017-12-01

    Purpose Hyper-attenuating lesions, or contrast staining, on a non-contrast brain computed tomography (NCCT) scan have been investigated as a predictor for hemorrhagic transformation after endovascular treatment of acute ischemic stroke (AIS). However, the association of hyper-attenuating lesions and final ischemic areas are poorly investigated in this setting. The aim of the present study was to assess correlations between hyper-attenuating lesions and final brain infarcted areas after thrombectomy for AIS. Methods Data from patients with AIS of the anterior circulation who underwent endovascular treatment were retrospectively assessed. Images of the brain NCCT scans were analyzed in the first hours and late after treatment. The hyper-attenuating areas were compared to the final ischemic areas using the Alberta Stroke Program Early CT Score (ASPECTS). Results Seventy-one of the 123 patients (65.13%) treated were included. The association between the hyper-attenuating region in the post-thrombectomy CT scan and final brain ischemic area were sensitivity (58.3% to 96.9%), specificity (42.9% to 95.6%), positive predictive values (71.4% to 97.7%), negative predictive values (53.8% to 79.5%), and accuracy values (68% to 91%). The highest sensitivity values were found for the lentiform (96.9%) and caudate nuclei (80.4%) and for the internal capsule (87.5%), and the lowest values were found for the M1 (58.3%) and M6 (66.7%) cortices. Conclusions Hyper-attenuating lesions on head NCCT scans performed after endovascular treatment of AIS may predict final brain infarcted areas. The prediction appears to be higher in the deep brain regions compared with the cortical regions.

  18. Known glioma risk loci are associated with glioma with a family history of brain tumours -- a case-control gene association study.

    Science.gov (United States)

    Melin, Beatrice; Dahlin, Anna M; Andersson, Ulrika; Wang, Zhaoming; Henriksson, Roger; Hallmans, Göran; Bondy, Melissa L; Johansen, Christoffer; Feychting, Maria; Ahlbom, Anders; Kitahara, Cari M; Wang, Sophia S; Ruder, Avima M; Carreón, Tania; Butler, Mary Ann; Inskip, Peter D; Purdue, Mark; Hsing, Ann W; Mechanic, Leah; Gillanders, Elizabeth; Yeager, Meredith; Linet, Martha; Chanock, Stephen J; Hartge, Patricia; Rajaraman, Preetha

    2013-05-15

    Familial cancer can be used to leverage genetic association studies. Recent genome-wide association studies have reported independent associations between seven single nucleotide polymorphisms (SNPs) and risk of glioma. The aim of this study was to investigate whether glioma cases with a positive family history of brain tumours, defined as having at least one first- or second-degree relative with a history of brain tumour, are associated with known glioma risk loci. One thousand four hundred and thirty-one glioma cases and 2,868 cancer-free controls were identified from four case-control studies and two prospective cohorts from USA, Sweden and Denmark and genotyped for seven SNPs previously reported to be associated with glioma risk in case-control designed studies. Odds ratios were calculated by unconditional logistic regression. In analyses including glioma cases with a family history of brain tumours (n = 104) and control subjects free of glioma at baseline, three of seven SNPs were associated with glioma risk: rs2736100 (5p15.33, TERT), rs4977756 (9p21.3, CDKN2A-CDKN2B) and rs6010620 (20q13.33, RTEL1). After Bonferroni correction for multiple comparisons, only one marker was statistically significantly associated with glioma risk, rs6010620 (ORtrend for the minor (A) allele, 0.39; 95% CI: 0.25-0.61; Bonferroni adjusted ptrend , 1.7 × 10(-4) ). In conclusion, as previously shown for glioma regardless of family history of brain tumours, rs6010620 (RTEL1) was associated with an increased risk of glioma when restricting to cases with family history of brain tumours. These findings require confirmation in further studies with a larger number of glioma cases with a family history of brain tumours. Copyright © 2012 UICC.

  19. Brain-to-brain coupling during handholding is associated with pain reduction.

    Science.gov (United States)

    Goldstein, Pavel; Weissman-Fogel, Irit; Dumas, Guillaume; Shamay-Tsoory, Simone G

    2018-03-13

    The mechanisms underlying analgesia related to social touch are not clear. While recent research highlights the role of the empathy of the observer to pain relief in the target, the contribution of social interaction to analgesia is unknown. The current study examines brain-to-brain coupling during pain with interpersonal touch and tests the involvement of interbrain synchrony in pain alleviation. Romantic partners were assigned the roles of target (pain receiver) and observer (pain observer) under pain-no-pain and touch-no-touch conditions concurrent with EEG recording. Brain-to-brain coupling in alpha-mu band (8-12 Hz) was estimated by a three-step multilevel analysis procedure based on running window circular correlation coefficient and post hoc power of the findings was calculated using simulations. Our findings indicate that hand-holding during pain administration increases brain-to-brain coupling in a network that mainly involves the central regions of the pain target and the right hemisphere of the pain observer. Moreover, brain-to-brain coupling in this network was found to correlate with analgesia magnitude and observer's empathic accuracy. These findings indicate that brain-to-brain coupling may be involved in touch-related analgesia.

  20. Association Between Brain Gene Expression, DNA Methylation, and Alteration of Ex Vivo Magnetic Resonance Imaging Transverse Relaxation in Late-Life Cognitive Decline.

    Science.gov (United States)

    Yu, Lei; Dawe, Robert J; Boyle, Patricia A; Gaiteri, Chris; Yang, Jingyun; Buchman, Aron S; Schneider, Julie A; Arfanakis, Konstantinos; De Jager, Philip L; Bennett, David A

    2017-12-01

    Alteration of ex vivo magnetic resonance imaging transverse relaxation is associated with late-life cognitive decline even after controlling for common neuropathologic conditions. However, the underlying neurobiology of this association is unknown. To investigate the association between brain gene expression, DNA methylation, and alteration of magnetic resonance imaging transverse relaxation in late-life cognitive decline. Data came from 2 community-based longitudinal cohort studies of aging and dementia, the Religious Orders Study, which began in 1993, and the Rush Memory and Aging Project, which began in 1997. All participants agreed to undergo annual clinical evaluations and to donate their brains after death. By October 24, 2016, a total of 1358 individuals had died and had brain autopsies that were approved by board-certified neuropathologists. Of those, 552 had undergone ex vivo imaging. The gene expression analysis was limited to 174 individuals with both imaging and brain RNA sequencing data. The DNA methylation analysis was limited to 225 individuals with both imaging and brain methylation data. Maps of ex vivo magnetic resonance imaging transverse relaxation were generated using fast spin echo imaging. The target was a composite measure of the transverse relaxation rate (R2) that was associated with cognitive decline after controlling for common neuropathologic conditions. Next-generation RNA sequencing and DNA methylation data were generated using frozen tissue from the dorsolateral prefrontal cortex. Genome-wide association analysis was used to investigate gene expression and, separately, DNA methylation for signals associated with the R2 measure. Of the 552 individuals with ex vivo imaging data, 394 were women and 158 were men, and the mean (SD) age at death was 90.4 (6.0) years. Four co-expressed genes (PADI2 [Ensembl ENSG00000117115], ZNF385A [Ensembl ENSG00000161642], PSD2 [Ensembl ENSG00000146005], and A2ML1 [Ensembl ENSG00000166535]) were

  1. Brain stem origins of spinal projections in the lizard Tupinambis nigropunctatus.

    Science.gov (United States)

    Cruce, W L; Newman, D B

    1981-05-10

    In order to study brainstem origins of spinal projections, ten Tegu lizards (Tupinambis nigropunctatus) received complete or partial hemisections of the spinal cord at the first or second cervical segment. Their brains were processed for conventional Nissl staining. The sections were surveyed for the presence or absence of retrograde chromatolysis. Based on analysis and comparison of results from lesions in the various spinal cord funiculi, the following conclusions were reached: The interstitial nucleus projects ipsilaterally to the spinal cord via the medial longitudinal fasciculus, as does the middle reticular field of the metencephalon. The red nucleus and dorsal vagal motor nucleus both project contralaterally to the spinal cord via the dorsal part of the lateral funiculus. The superior reticular field in the rostral metencephalon and the ventrolateral vestibular nucleus project ipsilaterally to the spinal cord via the ventral funiculus. The dorsolateral metencephalic nucleus and the ventral part of the inferior reticular nucleus of the myelencephalon both project ipsilaterally to the spinal cord via the dorsal part of the lateral funiculus. Several brainstem nuclei in Tupinambis project bilaterally to the spinal cord. The ventrolateral metencephalic nucleus, for example, projects ipsilaterally to the cord via the medial longitudinal fasciculus and contralaterally via the dorsal part of the lateral funiculus. The dorsal part of the inferior reticular nucleus projects bilaterally to the spinal cord via the dorsal part of the lateral funiculus. The nucleus solitarius complex projects contralaterally via the dorsal part of the lateral funiculus but ipsilaterally via the middle of the lateral funiculus. The inferior raphe nucleus projects bilaterally to the spinal cord via the middle part of the lateral funiculus. These data suggest that supraspinal projections in reptiles, especially reticulospinal systems, are more highly differentiated than previously thought

  2. Function of insulin in snail brain in associative learning.

    Science.gov (United States)

    Kojima, S; Sunada, H; Mita, K; Sakakibara, M; Lukowiak, K; Ito, E

    2015-10-01

    Insulin is well known as a hormone regulating glucose homeostasis across phyla. Although there are insulin-independent mechanisms for glucose uptake in the mammalian brain, which had contributed to a perception of the brain as an insulin-insensitive organ for decades, the finding of insulin and its receptors in the brain revolutionized the concept of insulin signaling in the brain. However, insulin's role in brain functions, such as cognition, attention, and memory, remains unknown. Studies using invertebrates with their open blood-vascular system have the promise of promoting a better understanding of the role played by insulin in mediating/modulating cognitive functions. In this review, the relationship between insulin and its impact on long-term memory (LTM) is discussed particularly in snails. The pond snail Lymnaea stagnalis has the ability to undergo conditioned taste aversion (CTA), that is, it associatively learns and forms LTM not to respond with a feeding response to a food that normally elicits a robust feeding response. We show that molluscan insulin-related peptides are up-regulated in snails exhibiting CTA-LTM and play a key role in the causal neural basis of CTA-LTM. We also survey the relevant literature of the roles played by insulin in learning and memory in other phyla.

  3. Human capital in European peripheral regions: brain - drain and brain - gain

    NARCIS (Netherlands)

    Coenen, Franciscus H.J.M.

    2004-01-01

    Project goal - The overall goal of the project is to build a legitimate transnational network to transfer ideas and experiences and implement measures to reduce brain drain and foster brain gain while reinforcing the economical and spatial development of peripheral regions in NWE. This means a

  4. Spread of edema with brain tumors

    International Nuclear Information System (INIS)

    Hosoya, Takaaki

    1987-01-01

    Cerebral edema associated with brain tumors is visualized on CT as a hypodensity lesion involving mainly the white matter. The detailed features of its evolution were investigated in a review of CT examinations performed on 56 patients with brain tumors, with the following results. 1. The susceptibility to edema varied according to the types of fibers. Association fibers were more sensitive to edema than projection and commissural fibers. 2. The edema had a characteristic of spreading along not only the association fibers but also the projection and commissural fibers. 3. The spread of edema along the association fibers was interupted in sites of convergence of the fibers such as the external capsule and just beneath the central sulcus in the certrum semiovale. 4. In some cases with intra-axial tumors, the edema extended mainly in the projection and commissural fibers considered to be more resistant to it. For example, in cases with parietal and temporal intra-axial tumors, the posterior limb of the internal capsule was often more edematous than the external capsule. 5. The edema associated with meningioma had a characteristic of spreading mainly along the association fibers. When situated close to the corpus callosum, however, the commissural fibers were also involved. Edema extending mainly in the internal capsule, thus, was rarely observed in meningioma. 6. There was unique pattern of spread of edema in frontal tumors, which differentiated their CT pattern. Therefore, the location of the tumor could be correctly diagnosed by the pattern of the edema extension, even near the central sulcus or in the operculum region. (author)

  5. Mapping remodeling of thalamocortical projections in the living reeler mouse brain by diffusion tractography

    Science.gov (United States)

    Harsan, Laura-Adela; Dávid, Csaba; Reisert, Marco; Schnell, Susanne; Hennig, Jürgen; von Elverfeldt, Dominik; Staiger, Jochen F.

    2013-01-01

    A major challenge in neuroscience is to accurately decipher in vivo the entire brain circuitry (connectome) at a microscopic level. Currently, the only methodology providing a global noninvasive window into structural brain connectivity is diffusion tractography. The extent to which the reconstructed pathways reflect realistic neuronal networks depends, however, on data acquisition and postprocessing factors. Through a unique combination of approaches, we designed and evaluated herein a framework for reliable fiber tracking and mapping of the living mouse brain connectome. One important wiring scheme, connecting gray matter regions and passing fiber-crossing areas, was closely examined: the lemniscal thalamocortical (TC) pathway. We quantitatively validated the TC projections inferred from in vivo tractography with correlative histological axonal tracing in the same wild-type and reeler mutant mice. We demonstrated noninvasively that changes in patterning of the cortical sheet, such as highly disorganized cortical lamination in reeler, led to spectacular compensatory remodeling of the TC pathway. PMID:23610438

  6. Brain abscess associated with ethmoidal sinus osteoma: A case report

    Directory of Open Access Journals (Sweden)

    Hiroaki Nagashima

    2014-12-01

    Full Text Available Osteoma of the paranasal sinus is uncommon, and the occurrence of brain abscess associated with ethmoidal osteoma is particularly rare. We report here a case of a brain abscess complicating an ethmoidal osteoma in a 68-year-old man who presented with high-grade fever and disturbance in the level of consciousness. Computed tomography scanning and magnetic resonance imaging revealed a ring-enhancing mass in the left frontal lobe with surrounding edema and a bony mass in the ethmoidal sinus. We scheduled a two-stage operation. First, emergency aspiration and drainage of the abscess via the forehead were performed to reduce the abscess volume. These were followed by a left frontal craniotomy to totally remove both the brain abscess and the bony mass. The bony mass had breached the dura mater. After removing the bony mass, we repaired the anterior skull base using a pericranial flap. Pathological findings of the bony tumor were consistent with osteoma. The postoperative course was uneventful. In the case of a huge brain abscess associated with an ethmoidal osteoma, volume reduction by drainage followed by surgical removal of both lesions may help to control infection and achieve a cure. Use of a vascularized pericranial flap is important to prevent direct communication between the paranasal sinuses and the cranial cavity.

  7. Management of HIV-associated focal brain lesions in developing ...

    African Journals Online (AJOL)

    Background. HIV-associated focal brain lesions (FBLs) are caused by opportunistic infections, neoplasms, or cerebrovascular diseases. In developed countries toxoplasma encephalitis (TE) is the most frequent cause followed by primary CNS lymphoma (PCNSL). Guidelines based on these causes have been proposed ...

  8. Is Traumatic and Non-Traumatic Neck Pain Associated with Brain Alterations? - A Systematic Review.

    Science.gov (United States)

    DePauw, Robby; Coppieters, Iris; Meeus, Mira; Caeyenberghs, Karen; Danneels, Lieven; Cagnie, Barbara

    2017-05-01

    Chronic neck pain affects 50% - 85% of people who have experienced an acute episode. This transition and the persistence of chronic complaints are believed to be mediated by brain alterations among different central mechanisms. This study aimed to systematically review and critically appraise the current existing evidence regarding structural and functional brain alterations in patients with whiplash associated disorders (WAD) and idiopathic neck pain (INP). Additionally, associations between brain alterations and clinical symptoms reported in neck pain patients were evaluated. Systematic review. The present systematic review was performed according to the PRISMA guidelines. PubMed, Web of Science, and Cochrane databases were searched. First, the obtained articles were screened based on title and abstract. Secondly, the screening was based on the full text. Risk of bias in included studies was investigated. Twelve studies met the inclusion criteria. Alterations in brain morphology and function, including perfusion, neurotransmission, and blood oxygenation level dependent-signal, were demonstrated in chronic neck pain patients. There is some to moderate evidence for both structural and functional brain alterations in patients with chronic neck pain. In contrast, no evidence for structural brain alterations in acute neck pain patients was found. Only 12 articles were included, which allows only cautious conclusions to be drawn. Brain alterations were observed in both patients with chronic WAD and chronic INP. Furthermore, more evidence exists for brain alterations in chronic WAD, and different underlying mechanisms might be present in both pathologies. In addition, pain and disability were correlated with the observed brain alterations. Accordingly, morphological and functional brain alterations should be further investigated in patients with chronic WAD and chronic INP with newer and more sensitive techniques, and associative clinical measurements seem indispensable

  9. Association Between Motor Symptoms and Brain Metabolism in Early Huntington Disease.

    Science.gov (United States)

    Gaura, Véronique; Lavisse, Sonia; Payoux, Pierre; Goldman, Serge; Verny, Christophe; Krystkowiak, Pierre; Damier, Philippe; Supiot, Frédéric; Bachoud-Levi, Anne-Catherine; Remy, Philippe

    2017-09-01

    Brain hypometabolism is associated with the clinical consequences of the degenerative process, but little is known about regional hypermetabolism, sometimes observed in the brain of patients with clinically manifest Huntington disease (HD). Studying the role of regional hypermetabolism is needed to better understand its interaction with the motor symptoms of the disease. To investigate the association between brain hypometabolism and hypermetabolism with motor scores of patients with early HD. This study started in 2001, and analysis was completed in 2016. Sixty symptomatic patients with HD and 15 healthy age-matched control individuals underwent positron emission tomography to measure cerebral metabolism in this cross-sectional study. They also underwent the Unified Huntington's Disease Rating Scale motor test, and 2 subscores were extracted: (1) a hyperkinetic score, combining dystonia and chorea, and (2) a hypokinetic score, combining bradykinesia and rigidity. Statistical parametric mapping software (SPM5) was used to identify all hypo- and hypermetabolic regions in patients with HD relative to control individuals. Correlation analyses (P motor subscores and brain metabolic values were performed for regions with significant hypometabolism and hypermetabolism. Among 60 patients with HD, 22 were women (36.7%), and the mean (SD) age was 44.6 (7.6) years. Of the 15 control individuals, 7 were women (46.7%), and the mean (SD) age was 42.2 (7.3) years. In statistical parametric mapping, striatal hypometabolism was significantly correlated with the severity of all motor scores. Hypermetabolism was negatively correlated only with hypokinetic scores in the cuneus (z score = 3.95, P motor scores were associated with higher metabolic values in the inferior parietal lobule, anterior cingulate, inferior temporal lobule, the dentate nucleus, and the cerebellar lobules IV/V, VI, and VIII bilaterally corresponding to the motor regions of the cerebellum (z score = 3

  10. From "Where" to "What": Distributed Representations of Brand Associations in the Human Brain.

    Science.gov (United States)

    Chen, Yu-Ping; Nelson, Leif D; Hsu, Ming

    2015-08-01

    Considerable attention has been given to the notion that there exists a set of human-like characteristics associated with brands, referred to as brand personality. Here we combine newly available machine learning techniques with functional neuroimaging data to characterize the set of processes that give rise to these associations. We show that brand personality traits can be captured by the weighted activity across a widely distributed set of brain regions previously implicated in reasoning, imagery, and affective processing. That is, as opposed to being constructed via reflective processes, brand personality traits appear to exist a priori inside the minds of consumers, such that we were able to predict what brand a person is thinking about based solely on the relationship between brand personality associations and brain activity. These findings represent an important advance in the application of neuroscientific methods to consumer research, moving from work focused on cataloguing brain regions associated with marketing stimuli to testing and refining mental constructs central to theories of consumer behavior.

  11. Known glioma risk loci are associated with glioma with a family history of brain tumours

    DEFF Research Database (Denmark)

    Melin, Beatrice; Dahlin, Anna M; Andersson, Ulrika

    2013-01-01

    significantly associated with glioma risk, rs6010620 (ORtrend for the minor (A) allele, 0.39; 95% CI: 0.25-0.61; Bonferroni adjusted ptrend , 1.7 × 10(-4) ). In conclusion, as previously shown for glioma regardless of family history of brain tumours, rs6010620 (RTEL1) was associated with an increased risk...... family history of brain tumours, defined as having at least one first- or second-degree relative with a history of brain tumour, are associated with known glioma risk loci. One thousand four hundred and thirty-one glioma cases and 2,868 cancer-free controls were identified from four case-control studies...... and two prospective cohorts from USA, Sweden and Denmark and genotyped for seven SNPs previously reported to be associated with glioma risk in case-control designed studies. Odds ratios were calculated by unconditional logistic regression. In analyses including glioma cases with a family history of brain...

  12. Involvement of the anterior cingulate cortex in time-based prospective memory task monitoring: An EEG analysis of brain sources using Independent Component and Measure Projection Analysis.

    Directory of Open Access Journals (Sweden)

    Gabriela Cruz

    Full Text Available Time-based prospective memory (PM, remembering to do something at a particular moment in the future, is considered to depend upon self-initiated strategic monitoring, involving a retrieval mode (sustained maintenance of the intention plus target checking (intermittent time checks. The present experiment was designed to explore what brain regions and brain activity are associated with these components of strategic monitoring in time-based PM tasks.24 participants were asked to reset a clock every four minutes, while performing a foreground ongoing word categorisation task. EEG activity was recorded and data were decomposed into source-resolved activity using Independent Component Analysis. Common brain regions across participants, associated with retrieval mode and target checking, were found using Measure Projection Analysis.Participants decreased their performance on the ongoing task when concurrently performed with the time-based PM task, reflecting an active retrieval mode that relied on withdrawal of limited resources from the ongoing task. Brain activity, with its source in or near the anterior cingulate cortex (ACC, showed changes associated with an active retrieval mode including greater negative ERP deflections, decreased theta synchronization, and increased alpha suppression for events locked to the ongoing task while maintaining a time-based intention. Activity in the ACC was also associated with time-checks and found consistently across participants; however, we did not find an association with time perception processing per se.The involvement of the ACC in both aspects of time-based PM monitoring may be related to different functions that have been attributed to it: strategic control of attention during the retrieval mode (distributing attentional resources between the ongoing task and the time-based task and anticipatory/decision making processing associated with clock-checks.

  13. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    Directory of Open Access Journals (Sweden)

    Chelsea N Wong

    2015-08-01

    Full Text Available Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59-80 years. Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA, thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function.

  14. Visceral fat is associated with brain structure independent of human immunodeficiency virus infection status.

    Science.gov (United States)

    Lake, Jordan E; Popov, Mikhail; Post, Wendy S; Palella, Frank J; Sacktor, Ned; Miller, Eric N; Brown, Todd T; Becker, James T

    2017-06-01

    The combined effects of human immunodeficiency virus (HIV), obesity, and elevated visceral adipose tissue (VAT) on brain structure are unknown. In a cross-sectional analysis of Multicenter AIDS Cohort Study (MACS) participants, we determined associations between HIV serostatus, adiposity, and brain structure. Men (133 HIV+, 84 HIV-) in the MACS Cardiovascular 2 and magnetic resonance imaging (MRI) sub-studies with CT-quantified VAT and whole brain MRI measured within 1 year were assessed. Voxel-based morphometry analyzed brain volumes. Men were stratified by elevated (eVAT, ≥100cm 2 ) or "normal" (nVAT, 25 kg/m 2 , smaller gray and white matter volumes, and larger cerebrospinal fluid volume than nVAT men. In multivariate analysis, hypertension, higher adiponectin, higher interleukin-6, age, diabetes mellitus, higher body mass index, and eVAT were associated with brain atrophy (p central nervous system effects may be amplified in this population.

  15. FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network

    Directory of Open Access Journals (Sweden)

    Zhao Baixiao

    2008-11-01

    Full Text Available Abstract Background Recently, increasing evidence has indicated that the primary acupuncture effects are mediated by the central nervous system. However, specific brain networks underpinning these effects remain unclear. Results In the present study using fMRI, we employed a within-condition interregional covariance analysis method to investigate functional connectivity of brain networks involved in acupuncture. The fMRI experiment was performed before, during and after acupuncture manipulations on healthy volunteers at an acupuncture point, which was previously implicated in a neural pathway for pain modulation. We first identified significant fMRI signal changes during acupuncture stimulation in the left amygdala, which was subsequently selected as a functional reference for connectivity analyses. Our results have demonstrated that there is a brain network associated with the amygdala during a resting condition. This network encompasses the brain structures that are implicated in both pain sensation and pain modulation. We also found that such a pain-related network could be modulated by both verum acupuncture and sham acupuncture. Furthermore, compared with a sham acupuncture, the verum acupuncture induced a higher level of correlations among the amygdala-associated network. Conclusion Our findings indicate that acupuncture may change this amygdala-specific brain network into a functional state that underlies pain perception and pain modulation.

  16. Brain Activity Associated with Emoticons: An fMRI Study

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  17. Dental deafferentation and brain damage: A review and a hypothesis

    Directory of Open Access Journals (Sweden)

    Yi-Tai Jou

    2018-04-01

    Full Text Available In the last few decades, neurobiological and human brain imaging research have greatly advanced our understanding of brain mechanisms that support perception and memory, as well as their function in daily activities. Knowledge of the neurobiological mechanisms behind the deafferentation of stomatognathic systems has also expanded greatly in recent decades. In particular, current studies reveal that the peripheral deafferentations of stomatognathic systems may be projected globally into the central nervous system (CNS and become an associated critical factor in triggering and aggravating neurodegenerative diseases.This review explores basic neurobiological mechanisms associated with the deafferentation of stomatognathic systems. Further included is a discussion on tooth loss and other dental deafferentation (DD mechanisms, with a focus on dental and masticatory apparatuses associated with brain functions and which may underlie the changes observed in the aging brain. A new hypothesis is presented where DD and changes in the functionality of teeth and the masticatory apparatus may cause brain damage as a result of altered cerebral circulation and dysfunctional homeostasis. Furthermore, multiple recurrent reorganizations of the brain may be a triggering or contributing risk factor in the onset and progression of neurodegenerative conditions such as Alzheimer's disease (AD. A growing understanding of the association between DD and brain aging may lead to solutions in treating and preventing cognitive decline and neurodegenerative diseases. Keywords: Dental deafferentation, Alzheimer's disease, Brain damage, Temporal-mandibular joint

  18. Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis

    International Nuclear Information System (INIS)

    Yang, Xu; Cao, Ding; Liang, Xiumei; Zhao, Jiannong

    2017-01-01

    Several studies have examined the relationships between diffusion tensor imaging (DTI)-measured fractional anisotropy (FA) and the symptoms of schizophrenia, but results vary across the studies. The aim of this study was to carry out a meta-analysis of correlation coefficients reported by relevant studies to evaluate the correlative relationships between FA of various parts of the brain and schizophrenia symptomatic assessments. Literature was searched in several electronic databases, and study selection was based on precised eligibility criteria. Correlation coefficients between FA of a part of the brain and schizophrenia symptom were first converted into Fisher's z-scores for meta-analyses, and then overall effect sizes were back transformed to correlation coefficients. Thirty-three studies (1121 schizophrenia patients; age 32.66 years [95% confidence interval (CI) 30.19, 35.13]; 65.95 % [57.63, 74.28] males) were included in this meta-analysis. Age was inversely associated with brain FA (z-scores [95% CI] -0.23 [-0.14, -0.32]; p %<0.00001). Brain FA of various areas was inversely associated with negative symptoms of schizophrenia (z-score -0.30 [-0.23, -0.36]; p %<0.00001) but was positively associated with positive symptoms of schizophrenia (z-score 0.16 [0.04, 0.27]; p = 0.007) and general psychopathology of schizophrenia (z-score 0.26 [0.15, 0.37]; p = 0.00001). Although, DTI-measured brain FA is found to be inversely associated with negative symptoms and positively associated with positive symptoms and general psychopathology of schizophrenia, the effect sizes of these correlations are low and may not be clinically significant. Moreover, brain FA was also negatively associated with age of patients. (orig.)

  19. Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xu [Chongqing Medical University, Department of Medical Imaging, Second Affiliated Hospital, Chongqing (China); Fifth People' s Hospital of Chongqing, Department of Medical Imaging, Chongqing (China); Cao, Ding [Chongqing Medical University, Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing (China); Liang, Xiumei [Fifth People' s Hospital of Chongqing, Department of Medical Imaging, Chongqing (China); Zhao, Jiannong [Chongqing Medical University, Department of Medical Imaging, Second Affiliated Hospital, Chongqing (China)

    2017-07-15

    Several studies have examined the relationships between diffusion tensor imaging (DTI)-measured fractional anisotropy (FA) and the symptoms of schizophrenia, but results vary across the studies. The aim of this study was to carry out a meta-analysis of correlation coefficients reported by relevant studies to evaluate the correlative relationships between FA of various parts of the brain and schizophrenia symptomatic assessments. Literature was searched in several electronic databases, and study selection was based on precised eligibility criteria. Correlation coefficients between FA of a part of the brain and schizophrenia symptom were first converted into Fisher's z-scores for meta-analyses, and then overall effect sizes were back transformed to correlation coefficients. Thirty-three studies (1121 schizophrenia patients; age 32.66 years [95% confidence interval (CI) 30.19, 35.13]; 65.95 % [57.63, 74.28] males) were included in this meta-analysis. Age was inversely associated with brain FA (z-scores [95% CI] -0.23 [-0.14, -0.32]; p %<0.00001). Brain FA of various areas was inversely associated with negative symptoms of schizophrenia (z-score -0.30 [-0.23, -0.36]; p %<0.00001) but was positively associated with positive symptoms of schizophrenia (z-score 0.16 [0.04, 0.27]; p = 0.007) and general psychopathology of schizophrenia (z-score 0.26 [0.15, 0.37]; p = 0.00001). Although, DTI-measured brain FA is found to be inversely associated with negative symptoms and positively associated with positive symptoms and general psychopathology of schizophrenia, the effect sizes of these correlations are low and may not be clinically significant. Moreover, brain FA was also negatively associated with age of patients. (orig.)

  20. Psychoacoustic Tinnitus Loudness and Tinnitus-Related Distress Show Different Associations with Oscillatory Brain Activity

    Science.gov (United States)

    Balkenhol, Tobias; Wallhäusser-Franke, Elisabeth; Delb, Wolfgang

    2013-01-01

    Background The phantom auditory perception of subjective tinnitus is associated with aberrant brain activity as evidenced by magneto- and electroencephalographic studies. We tested the hypotheses (1) that psychoacoustically measured tinnitus loudness is related to gamma oscillatory band power, and (2) that tinnitus loudness and tinnitus-related distress are related to distinct brain activity patterns as suggested by the distinction between loudness and distress experienced by tinnitus patients. Furthermore, we explored (3) how hearing impairment, minimum masking level, and (4) psychological comorbidities are related to spontaneous oscillatory brain activity in tinnitus patients. Methods and Findings Resting state oscillatory brain activity recorded electroencephalographically from 46 male tinnitus patients showed a positive correlation between gamma band oscillations and psychoacoustic tinnitus loudness determined with the reconstructed tinnitus sound, but not with the other psychoacoustic loudness measures that were used. Tinnitus-related distress did also correlate with delta band activity, but at electrode positions different from those associated with tinnitus loudness. Furthermore, highly distressed tinnitus patients exhibited a higher level of theta band activity. Moreover, mean hearing loss between 0.125 kHz and 16 kHz was associated with a decrease in gamma activity, whereas minimum masking levels correlated positively with delta band power. In contrast, psychological comorbidities did not express significant correlations with oscillatory brain activity. Conclusion Different clinically relevant tinnitus characteristics show distinctive associations with spontaneous brain oscillatory power. Results support hypothesis (1), but exclusively for the tinnitus loudness derived from matching to the reconstructed tinnitus sound. This suggests to preferably use the reconstructed tinnitus spectrum to determine psychoacoustic tinnitus loudness. Results also support

  1. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    Science.gov (United States)

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.

  2. Potential effect of skull thickening on the associations between cognition and brain atrophy in ageing.

    Science.gov (United States)

    Aribisala, Benjamin Segun; Royle, Natalie A; Valdés Hernández, Maria C; Murray, Catherine; Penke, Lars; Gow, Alan; Maniega, Susana Muñoz; Starr, John M; Bastin, Mark; Deary, Ian; Wardlaw, Joanna

    2014-09-01

    intracranial volume (ICV) is commonly used as a marker of premorbid brain size in neuroimaging studies as it is thought to remain fixed throughout adulthood. However, inner skull table thickening would encroach on ICV and could mask actual brain atrophy. we investigated the effect that thickening might have on the associations between brain atrophy and cognition. the sample comprised 57 non-demented older adults who underwent structural brain MRI at mean age 72.7 ± 0.7 years and were assessed on cognitive ability at mean age 11 and 73 years. Principal component analysis was used to derive factors of general cognitive ability (g), information processing speed and memory from the recorded cognitive ability data. The total brain tissue volume and ICV with (estimated original ICV) and without (current ICV) adjusting for the effects of inner table skull thickening were measured. General linear modelling was used to test for associations. all cognitive ability variables were significantly (P skull thickening (g: η(2) = 0.177, speed: η(2) = 0.264 and memory: η(2) = 0.132). After accounting for skull thickening, only speed was significantly associated with percentage total brain volume in ICV (η(2) = 0.085, P = 0.034), not g or memory. not accounting for skull thickening when computing ICV can distort the association between brain atrophy and cognitive ability in old age. Larger samples are required to determine the true effect. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    Science.gov (United States)

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.

  4. Intrinsic brain subsystem associated with dietary restraint, disinhibition and hunger: an fMRI study.

    Science.gov (United States)

    Zhao, Jizheng; Li, Mintong; Zhang, Yi; Song, Huaibo; von Deneen, Karen M; Shi, Yinggang; Liu, Yijun; He, Dongjian

    2017-02-01

    Eating behaviors are closely related to body weight, and eating traits are depicted in three dimensions: dietary restraint, disinhibition, and hunger. The current study aims to explore whether these aspects of eating behaviors are related to intrinsic brain activation, and to further investigate the relationship between the brain activation relating to these eating traits and body weight, as well as the link between function connectivity (FC) of the correlative brain regions and body weight. Our results demonstrated positive associations between dietary restraint and baseline activation of the frontal and the temporal regions (i.e., food reward encoding) and the limbic regions (i.e., homeostatic control, including the hypothalamus). Disinhibition was positively associated with the activation of the frontal motivational system (i.e., OFC) and the premotor cortex. Hunger was positively related to extensive activations in the prefrontal, temporal, and limbic, as well as in the cerebellum. Within the brain regions relating to dietary restraint, weight status was negatively correlated with FC of the left middle temporal gyrus and left inferior temporal gyrus, and was positively associated with the FC of regions in the anterior temporal gyrus and fusiform visual cortex. Weight status was positively associated with the FC within regions in the prefrontal motor cortex and the right ACC serving inhibition, and was negatively related with the FC of regions in the frontal cortical-basal ganglia-thalamic circuits responding to hunger control. Our data depicted an association between intrinsic brain activation and dietary restraint, disinhibition, and hunger, and presented the links of their activations and FCs with weight status.

  5. Quantitative estimation of brain atrophy and function with PET and MRI two-dimensional projection images

    International Nuclear Information System (INIS)

    Saito, Reiko; Uemura, Koji; Uchiyama, Akihiko; Toyama, Hinako; Ishii, Kenji; Senda, Michio

    2001-01-01

    The purpose of this paper is to estimate the extent of atrophy and the decline in brain function objectively and quantitatively. Two-dimensional (2D) projection images of three-dimensional (3D) transaxial images of positron emission tomography (PET) and magnetic resonance imaging (MRI) were made by means of the Mollweide method which keeps the area of the brain surface. A correlation image was generated between 2D projection images of MRI and cerebral blood flow (CBF) or 18 F-fluorodeoxyglucose (FDG) PET images and the sulcus was extracted from the correlation image clustered by K-means method. Furthermore, the extent of atrophy was evaluated from the extracted sulcus on 2D-projection MRI and the cerebral cortical function such as blood flow or glucose metabolic rate was assessed in the cortex excluding sulcus on 2D-projection PET image, and then the relationship between the cerebral atrophy and function was evaluated. This method was applied to the two groups, the young and the aged normal subjects, and the relationship between the age and the rate of atrophy or the cerebral blood flow was investigated. This method was also applied to FDG-PET and MRI studies in the normal controls and in patients with corticobasal degeneration. The mean rate of atrophy in the aged group was found to be higher than that in the young. The mean value and the variance of the cerebral blood flow for the young are greater than those of the aged. The sulci were similarly extracted using either CBF or FDG PET images. The purposed method using 2-D projection images of MRI and PET is clinically useful for quantitative assessment of atrophic change and functional disorder of cerebral cortex. (author)

  6. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction

    Science.gov (United States)

    Katzenberger, Rebeccah J; Chtarbanova, Stanislava; Rimkus, Stacey A; Fischer, Julie A; Kaur, Gulpreet; Seppala, Jocelyn M; Swanson, Laura C; Zajac, Jocelyn E; Ganetzky, Barry; Wassarman, David A

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis. We found that TBI causes intestinal and blood–brain barrier dysfunction and that intestinal barrier dysfunction is highly correlated with the probability of death. Furthermore, we found that ingestion of glucose after a primary injury increases the probability of death through a secondary injury mechanism that exacerbates intestinal barrier dysfunction. Our results indicate that natural variation in the probability of death following TBI is due in part to genetic differences that affect intestinal barrier dysfunction. DOI: http://dx.doi.org/10.7554/eLife.04790.001 PMID:25742603

  7. Paranormal experience and the COMT dopaminergic gene: a preliminary attempt to associate phenotype with genotype using an underlying brain theory.

    Science.gov (United States)

    Raz, Amir; Hines, Terence; Fossella, John; Castro, Daniella

    2008-01-01

    Paranormal belief and suggestibility seem related. Given our recent findings outlining a putative association between suggestibility and a specific dopaminergic genetic polymorphism, we hypothesized that similar exploratory genetic data may offer supplementary insights into a similar correlation with paranormal belief. With more affordable costs and better technology in the aftermath of the human genome project, genotyping is increasingly ubiquitous. Compelling brain theories guide specific research hypotheses as scientists begin to unravel tentative relationships between phenotype and genotype. In line with a dopaminergic brain theory, we tried to correlate a specific phenotype concerning paranormal belief with a dopaminergic gene (COMT) known for its involvement in prefrontal executive cognition and for a polymorphism that is positively correlated with suggestibility. Although our preliminary findings are inconclusive, the research approach we outline should pave the road to a more scientific account of elucidating paranormal belief.

  8. Association between dopamine D4 receptor polymorphism and age related changes in brain glucose metabolism.

    Directory of Open Access Journals (Sweden)

    Nora D Volkow

    Full Text Available Aging is associated with reductions in brain glucose metabolism in some cortical and subcortical regions, but the rate of decrease varies significantly between individuals, likely reflecting genetic and environmental factors and their interactions. Here we test the hypothesis that the variant of the dopamine receptor D4 (DRD4 gene (VNTR in exon 3, which has been associated with novelty seeking and sensitivity to environmental stimuli (negative and positive including the beneficial effects of physical activity on longevity, influence the effects of aging on the human brain. We used positron emission tomography (PET and [(18F]fluoro-D-glucose ((18FDG to measure brain glucose metabolism (marker of brain function under baseline conditions (no stimulation in 82 healthy individuals (age range 22-55 years. We determined their DRD4 genotype and found an interaction with age: individuals who did not carry the 7-repeat allele (7R-, n = 53 had a significant (p<0.0001 negative association between age and relative glucose metabolism (normalized to whole brain glucose metabolism in frontal (r = -0.52, temporal (r = -0.51 and striatal regions (r = -0.47, p<0.001; such that older individuals had lower metabolism than younger ones. In contrast, for carriers of the 7R allele (7R+ n = 29, these correlations with age were not significant and they only showed a positive association with cerebellar glucose metabolism (r = +0.55; p = 0.002. Regression slopes of regional brain glucose metabolism with age differed significantly between the 7R+ and 7R- groups in cerebellum, inferior temporal cortex and striatum. These results provide evidence that the DRD4 genotype might modulate the associations between regional brain glucose metabolism and age and that the carriers of the 7R allele appear to be less sensitive to the effects of age on brain glucose metabolism.

  9. Coping with Childbirth: Brain Structural Associations of Personal Growth Initiative

    Directory of Open Access Journals (Sweden)

    Judith Mangelsdorf

    2017-10-01

    Full Text Available Major life events require psychological adaptations and can be accompanied by brain structural and functional changes. The goal of the current study was to investigate the association of personal growth initiative (PGI as a form of proactive coping strategy before childbirth, with gray matter volume after delivery. Childbirth is one of the few predictable major life events, which, while being one of the most positive experiences for many, is also accompanied by multidimensional stress for the mother. Previous research has shown that high stress is associated with reductions in gray matter volume in limbic cortices as well as the prefrontal cortex (PFC. We hypothesized that PGI before childbirth is positively related to gray matter volume after delivery, especially in the ventromedial PFC (vmPFC. In a prospective study, 22 first-time mothers answered questionnaires about their PGI level 1 month before birth (T1 and 1 month after delivery (T2. Four months after giving birth, a follow-up assessment was applied with 16 of these mothers (T3. Structural brain data were acquired at both postpartal measurement occasions. Voxel-based morphometry was used to correlate prenatal PGI levels with postpartal gray matter volume. Higher PGI levels before delivery were positively associated with larger gray matter volume in the vmPFC directly after childbirth. Previous structural neuroimaging research in the context of major life events focused primarily on pathological reactions to stress (e.g., post-traumatic stress disorder; PTSD. The current study gives initial indications that proactive coping may be positively associated with gray matter volume in the vmPFC, a brain region which shows volumetric reductions in PTSD patients.

  10. Early Brain Injury Associated with Systemic Inflammation After Subarachnoid Hemorrhage.

    Science.gov (United States)

    Savarraj, Jude; Parsha, Kaushik; Hergenroeder, Georgene; Ahn, Sungho; Chang, Tiffany R; Kim, Dong H; Choi, H Alex

    2018-04-01

    Early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (aSAH) is defined as brain injury occurring within 72 h of aneurysmal rupture. Although EBI is the most significant predictor of outcomes after aSAH, its underlying pathophysiology is not well understood. We hypothesize that EBI after aSAH is associated with an increase in peripheral inflammation measured by cytokine expression levels and changes in associations between cytokines. aSAH patients were enrolled into a prospective observational study and were assessed for markers of EBI: global cerebral edema (GCE), subarachnoid hemorrhage early brain edema score (SEBES), and Hunt-Hess grade. Serum samples collected at ≤ 48 h of admission were analyzed using multiplex bead-based assays to determine levels of 13 pro- and anti-inflammatory cytokines. Pairwise correlation coefficients between cytokines were represented as networks. Cytokine levels and differences in correlation networks were compared between EBI groups. Of the 71 patients enrolled in the study, 17 (24%) subjects had GCE, 31 (44%) subjects had SEBES ≥ 3, and 21 (29%) had HH ≥ 4. IL-6 was elevated in groups with GCE, SEBES ≥ 3, and HH ≥ 4. MIP1β was independently associated with high-grade SEBES. Correlation network analysis suggests higher systematic inflammation in subjects with SEBES ≥ 3. EBI after SAH is associated with increased levels of specific cytokines. Peripheral levels of IL-10, IL-6, and MIP1β may be important markers of EBI. Investigating systematic correlations in addition to expression levels of individual cytokines may offer deeper insight into the underlying mechanisms related to EBI.

  11. MRI brain findings in ephedrone encephalopathy associated with manganese abuse: Single-center perspective

    International Nuclear Information System (INIS)

    Poniatowska, Renata; Lusawa, Małgorzata; Skierczyńska, Agnieszka; Makowicz, Grzegorz; Habrat, Bogusław; Sienkiewicz-Jarosz, Halina

    2014-01-01

    Manganese (Mn) is a well-known toxic agent causing symptoms of parkinsonism in employees of certain branches of industry. Home production of a psychostimulant ephedrone (methcathinone), involving the use of potassium permanganate, became a new cause of intoxications in Poland. This article presents clinical symptoms, initial brain MRI findings and characteristics of changes observed in follow-up examinations in 4 patients with manganese intoxication associated with intravenous administration of ephedrone. All patients in our case series presented symptoms of parkinsonism. T1-WI MRI revealed high intensity signal in globi pallidi in all patients; hyperintense lesions in midbrain were observed in three patients, while lesions located in cerebellar hemispheres and pituitary gland in just one patient. The reduction of signal intensity in the affected brain structures was observed in follow-up studies, with no significant improvement in clinical symptoms. Brain MRI is helpful in the assessment of distribution as well as dynamics of changes in ephedrone encephalopathy. Regression of signal intensity changes visible in brain MRI is not associated with clinical condition improvement. Although brain MRI findings are not characteristic for ephedrone encephalopathy, they may contribute to diagnosing this condition

  12. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ozelame, Rodrigo V.; Shroff, Manohar; Wood, Bradley; Bouffet, Eric; Bartels, Ute; Drake, James M.; Hawkins, Cynthia; Blaser, Susan [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, Ontario (Canada)

    2006-04-15

    Germinoma is the most common and least-malignant intracranial germ cell tumor, usually found in the midline. Germinoma that arises in the basal ganglia, called ectopic germinoma, is a rare and well-documented entity representing 5% to 10% of all intracranial germinomas. The association of cerebral and/or brain stem atrophy with basal ganglia germinoma on CT and MRI is found in 33% of the cases. To review the literature and describe the CT and MRI findings of basal ganglia germinoma in children, known as ectopic germinoma, with associated ipsilateral cerebral and brain stem hemiatrophy. Three brain CT and six brain MRI studies performed in four children at two institutions were retrospectively reviewed. All patients were male (case 1, 14 years; case 2, 13 years; case 3, 9 years; case 4, 13 years), with pathologically proved germinoma arising in the basal ganglia, and associated ipsilateral cerebral and/or brain stem hemiatrophy on the first imaging study. It is important to note that three of these children presented with cognitive decline, psychosis and slowly progressive hemiparesis as their indication for imaging. Imaging results on initial scans were varied. In all patients, the initial study showed ipsilateral cerebral and/or brain stem hemiatrophy, representing Wallerian degeneration. All patients who underwent CT imaging presented with a hyperdense or calcified lesion in the basal ganglia on unenhanced scans. Only one of these lesions had a mass effect on the surrounding structures. In one of these patients a large, complex, heterogeneous mass appeared 15 months later. Initial MR showed focal or diffusely increased T2 signal in two cases and heterogeneous signal in the other two. (orig.)

  13. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy

    International Nuclear Information System (INIS)

    Ozelame, Rodrigo V.; Shroff, Manohar; Wood, Bradley; Bouffet, Eric; Bartels, Ute; Drake, James M.; Hawkins, Cynthia; Blaser, Susan

    2006-01-01

    Germinoma is the most common and least-malignant intracranial germ cell tumor, usually found in the midline. Germinoma that arises in the basal ganglia, called ectopic germinoma, is a rare and well-documented entity representing 5% to 10% of all intracranial germinomas. The association of cerebral and/or brain stem atrophy with basal ganglia germinoma on CT and MRI is found in 33% of the cases. To review the literature and describe the CT and MRI findings of basal ganglia germinoma in children, known as ectopic germinoma, with associated ipsilateral cerebral and brain stem hemiatrophy. Three brain CT and six brain MRI studies performed in four children at two institutions were retrospectively reviewed. All patients were male (case 1, 14 years; case 2, 13 years; case 3, 9 years; case 4, 13 years), with pathologically proved germinoma arising in the basal ganglia, and associated ipsilateral cerebral and/or brain stem hemiatrophy on the first imaging study. It is important to note that three of these children presented with cognitive decline, psychosis and slowly progressive hemiparesis as their indication for imaging. Imaging results on initial scans were varied. In all patients, the initial study showed ipsilateral cerebral and/or brain stem hemiatrophy, representing Wallerian degeneration. All patients who underwent CT imaging presented with a hyperdense or calcified lesion in the basal ganglia on unenhanced scans. Only one of these lesions had a mass effect on the surrounding structures. In one of these patients a large, complex, heterogeneous mass appeared 15 months later. Initial MR showed focal or diffusely increased T2 signal in two cases and heterogeneous signal in the other two. (orig.)

  14. Preliminary results of BRAVO project: brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks.

    Science.gov (United States)

    Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo

    2011-01-01

    This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE

  15. Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis.

    Science.gov (United States)

    Yang, Xu; Cao, Ding; Liang, Xiumei; Zhao, Jiannong

    2017-07-01

    Several studies have examined the relationships between diffusion tensor imaging (DTI)-measured fractional anisotropy (FA) and the symptoms of schizophrenia, but results vary across the studies. The aim of this study was to carry out a meta-analysis of correlation coefficients reported by relevant studies to evaluate the correlative relationships between FA of various parts of the brain and schizophrenia symptomatic assessments. Literature was searched in several electronic databases, and study selection was based on précised eligibility criteria. Correlation coefficients between FA of a part of the brain and schizophrenia symptom were first converted into Fisher's z-scores for meta-analyses, and then overall effect sizes were back transformed to correlation coefficients. Thirty-three studies (1121 schizophrenia patients; age 32.66 years [95% confidence interval (CI) 30.19, 35.13]; 65.95 % [57.63, 74.28] males) were included in this meta-analysis. Age was inversely associated with brain FA (z-scores [95% CI] -0.23 [-0.14, -0.32]; p ˂ 0.00001). Brain FA of various areas was inversely associated with negative symptoms of schizophrenia (z-score -0.30 [-0.23, -0.36]; p ˂ 0.00001) but was positively associated with positive symptoms of schizophrenia (z-score 0.16 [0.04, 0.27]; p = 0.007) and general psychopathology of schizophrenia (z-score 0.26 [0.15, 0.37]; p = 0.00001). Although, DTI-measured brain FA is found to be inversely associated with negative symptoms and positively associated with positive symptoms and general psychopathology of schizophrenia, the effect sizes of these correlations are low and may not be clinically significant. Moreover, brain FA was also negatively associated with age of patients.

  16. Kocuria varians infection associated with brain abscess: a case report.

    Science.gov (United States)

    Tsai, Cheng-Yu; Su, Shou-hsin; Cheng, Yu-Hsin; Chou, Yu-lin; Tsai, Tai-Hsin; Lieu, Ann-Shung

    2010-04-27

    Kocuria, established by Stackebrandt et al., previously was classified into Micrococcus. Only two species, K. rosea and K. kristinae are reported to be associated as pathogenic and found with catheter-related bacteremia and acute cholecystitis. We herein report the first case of brain abscess caused by Kocuria varians, a gram-positive microorganism, in a 52-year-old man. Hematogenous spread is the probable pathogenesis. This report presents a case of Kocuria varians brain abscess successfully treated with surgical excision combined with antimicrobial therapy. In addition, Vitek 2 system has been used to identify and differentiate between coagulase-negative staphylococcus.

  17. Age-associated changes in rich-club organisation in autistic and neurotypical human brains.

    Science.gov (United States)

    Watanabe, Takamitsu; Rees, Geraint

    2015-11-05

    Macroscopic structural networks in the human brain have a rich-club architecture comprising both highly inter-connected central regions and sparsely connected peripheral regions. Recent studies show that disruption of this functionally efficient organisation is associated with several psychiatric disorders. However, despite increasing attention to this network property, whether age-associated changes in rich-club organisation occur during human adolescence remains unclear. Here, analysing a publicly shared diffusion tensor imaging dataset, we found that, during adolescence, brains of typically developing (TD) individuals showed increases in rich-club organisation and inferred network functionality, whereas individuals with autism spectrum disorders (ASD) did not. These differences between TD and ASD groups were statistically significant for both structural and functional properties. Moreover, this typical age-related changes in rich-club organisation were characterised by progressive involvement of the right anterior insula. In contrast, in ASD individuals, did not show typical increases in grey matter volume, and this relative anatomical immaturity was correlated with the severity of ASD social symptoms. These results provide evidence that rich-club architecture is one of the bases of functionally efficient brain networks underpinning complex cognitive functions in adult human brains. Furthermore, our findings suggest that immature rich-club organisation might be associated with some neurodevelopmental disorders.

  18. Diagnosis of Alzheimer's disease using brain SPECT with three-dimensional stereotactic surface projections

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Asano, Tetsuichi; Kogure, Daiji; Abe, Shine; Iwamoto, Toshihiko; Takasaki, Masaru

    2001-01-01

    We compared the diagnostic usefulness of three-dimensional stereotactic surface projection (3D-SSP) with that of standard transaxial images in brain SPECT in patients with Alzheimer's disease (AD). The subjects consisted of 69 patients with AD and 60 patients with non-AD, including vascular dementia, Parkinson's disease with dementia, frontotemporal dementia, other dementing diseases and neuropsychiatric diseases. Standard transaxial section and 3D-SSP SPECT images with N-isopropyl-p-[ 123 I] iodoamphetamine were blindly interpreted by three examiners and were classified into the following three patterns: typical AD, atypical AD, and not indicative AD patterns. The 3D-SSP images demonstrated reductions of cerebral blood flow in the parieto-temporal association cortex and posterior cingulate gyrus more clearly and easily than the standard transaxial images. The diagnostic sensitivity and specificity were 93% and 85% with 3D-SSP and 83% and 82% with standard transaxial section respectively. 3D-SSP was especially useful for early or atypical AD which showed no characteristic perfusion abnormalities on standard transaxial images. These results suggest that SPECT with 3D-SSP provides an sensitive as well as accurate tool for the diagnosis of AD. (author)

  19. Projections to early visual areas V1 and V2 in the calcarine fissure from parietal association areas in the macaque.

    Directory of Open Access Journals (Sweden)

    Elena eBorra

    2011-06-01

    Full Text Available Non-extrastriate projections to area V1 in monkeys, now demonstrated by several anatomical studies, are potential substrates of physiologically documented multisensory effects in primary sensory areas. The full network of projections among association and primary areas, however, is likely to be complex and is still only partially understood. In the present report, we used the anterograde tracer biotinylated dextran amine to investigate projections to areas V1 and V2 from subdivisions of the parietal association cortex in macaque. Parietal cortex was chosen to allow comparisons between projections from this higher association area and from other previously reported areas. In addition, we were interested in further elucidating pathways to areas V1 and V2 from parietal areas, as potentially contributing to attention and active vision. Of eight cases, three brains had projections only to area V2, and the five others projected to both areas V1 and V2. Terminations in area V1 were sparse. These were located in supragranular layers I, II, upper III; occasionally in IVB; and in layer VI. Terminations in V2 were denser, and slightly more prevalent in the supragranular layers. For both areas, terminations were in the calcarine region, corresponding to the representation of the peripheral visual field. By reconstructions of single axons, we demonstrated that four of nine axons had collaterals, either to V1 and V2 (n=1 or to area V1 and a ventral area likely to be TEO (n=3. In area V1, axons extended divergently in layer VI as well as layer I. Overall, these and previous results suggest a nested connectivity architecture, consisting of multiple direct and indirect recurrent projections from association areas to area V1. Terminations in area V1 are not abundant, but could be potentiated by the network of indirect connections.

  20. Analyzing the association between functional connectivity of the brain and intellectual performance

    Science.gov (United States)

    Pamplona, Gustavo S. P.; Santos Neto, Gérson S.; Rosset, Sara R. E.; Rogers, Baxter P.; Salmon, Carlos E. G.

    2015-01-01

    Measurements of functional connectivity support the hypothesis that the brain is composed of distinct networks with anatomically separated nodes but common functionality. A few studies have suggested that intellectual performance may be associated with greater functional connectivity in the fronto-parietal network and enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of the relationship between the brain's functional connectivity and intelligence scores derived from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III) in a sample of 29 people, born and raised in Brazil. We examined functional connectivity between 82 regions, including graph theoretic properties of the overall network. Some previous findings were extended to the Portuguese-speaking population, specifically the presence of small-world organization of the brain and relationships of intelligence with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal gyrus, and caudate nucleus. Verbal comprehension was associated with global network efficiency, a new finding. PMID:25713528

  1. Analyzing the association between functional connectivity of the brain and intellectual performance

    Directory of Open Access Journals (Sweden)

    Gustavo Santo Pedro Pamplona

    2015-02-01

    Full Text Available Measurements of functional connectivity support the hypothesis that the brain is composed of distinct networks with anatomically separated nodes but common functionality. A few studies have suggested that intellectual performance may be associated with greater functional connectivity in the fronto-parietal network and enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of the relationship between the brain's functional connectivity and intelligence scores derived from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III in a sample of 29 people, born and raised in Brazil. We examined functional connectivity between 82 regions, including graph theoretic properties of the overall network. Some previous findings were extended to the Portuguese-speaking population, specifically the presence of small-world organization of the brain and relationships of intelligence with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal gyrus and caudate nucleus. Verbal comprehension was associated with global network efficiency, a new finding.

  2. Environmental impacts associated with Project Rio Blanco

    International Nuclear Information System (INIS)

    Alldredge, A.W.; Whicker, F.W.; Hanson, W.C.

    Project Rio Blanco, an experiment involving deep underground detonation of three 30-kton nuclear explosives designed to stimulate natural gas flow in geologic formations of low permeability, was conducted in western Colorado on 17 May 1973. Environmental impacts associated with this experiment were divided into three categories: radiation, ground motion, and conventional physical activities. Radiation and ground motion are unique to this type experiment while conventional activities would be associated with any type of resource development. The objective of observations made at Rio Blanco was to qualitatively and, where possible, quantitatively ascertain environmental impacts associated with the project. Observations indicated that ground motion and conventional activities appeared to cause the greatest impacts. Ground motion impacts were most severe within 2.4 km of the emplacement well (EW) and were predominantly associated with steep ravine and stream banks and rocky cliffs. Following the detonation, flow and turbidity had increased in a small stream adjacent to the EW. Animals receiving deleterious impacts were those associated with stream banks, cliffs and burrows. No mortality or injury was observed in any large animals. (U.S.)

  3. 78 FR 28546 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Science.gov (United States)

    2013-05-15

    ... Diagnosable Illnesses Associated With Traumatic Brain Injury Correction In proposed rule document 2012-29709...: The factors considered are: Structural imaging of the brain. LOC--Loss of consciousness. AOC--Alteration of consciousness/mental state. PTA--Post-traumatic amnesia. GCS--Glasgow Coma Scale. (For purposes...

  4. Associating transcription factors and conserved RNA structures with gene regulation in the human brain

    DEFF Research Database (Denmark)

    Hecker, Nikolai; Seemann, Stefan E.; Silahtaroglu, Asli

    2017-01-01

    Anatomical subdivisions of the human brain can be associated with different neuronal functions. This functional diversification is reflected by differences in gene expression. By analyzing post-mortem gene expression data from the Allen Brain Atlas, we investigated the impact of transcription fac...

  5. The association between poor sleep quality and global cortical atrophy is related to age. Results from the Atahualpa Project

    Directory of Open Access Journals (Sweden)

    Oscar H. Del Brutto

    2016-07-01

    Full Text Available Community-dwellers aged ≥60 years enrolled in the Atahualpa Project underwent brain MRI and were interviewed with the Pittsburgh Sleep Quality Index. Of 290 participants, 94 (32% had poor sleep quality and 143 (49% had global cortical atrophy (GCA. In a logistic regression model (adjusted for demographics, cardiovascular risk factor, severe edentulism, symptoms of depression, the MoCA score, and neuroimaging signatures of cerebrovascular damage, poor sleep quality was associated with GCA (p=0.004. A multivariate probability model showed that the probability of moderate-to-severe GCA significantly increased in individuals with poor sleep quality aged ≥67 years. This study provides evidence for an association between poor sleep quality and GCA in older adults and the important interaction of age in this association.

  6. Association Between Nonparenting Adult’s Attachment Patterns and Brain Structure and Function

    Directory of Open Access Journals (Sweden)

    Nicole Lyn Letourneau RN, PhD, FCAHS

    2017-03-01

    Full Text Available Nursing has a long history of attending to the importance of early attachment experiences to later development. Attachment strategies formed in infancy and early childhood can have lifelong effects on an individual’s behavior and health. Advances in neuroimaging technology allow us to understand how these early experiences map onto the structure and function of the brain and ultimately behavior and health. Previous reviews have discussed the findings of studies observing correlations between attachment strategy and neural function and structure in romantic partners and parents, but far less has been said about nonparenting adults. This article reviews the relationship between attachment strategies developed in childhood and brain structure and function in nonparenting adults. A total of 14 studies met inclusion criteria. Results showed adult attachment patterns of nonparenting adults are pervasively correlated with brain structure and function, with most associations observed in executive regions, followed by affective and reward processing. Notably, no studies found associations between attachment pattern and stress response, in contrast with studies of mothers. These brain regions are linked to the many behavioral, mood and substance abuse disorders observed in adults with insecure attachment patterns. Nurses can use these findings to help prevent, assess and address these health risks in nonparenting adults, as well as provide the brain-based evidence to support the utility of nursing interventions designed to further promote healthy parent–child relationships and secure parent–child attachment.

  7. PET Imaging of Mild Traumatic Brain Injury and Whiplash Associated Disorder

    OpenAIRE

    Vállez García, David

    2015-01-01

    Traumatic brain injury is the leading cause of brain injury in our society with 235 per 100,000 inhabitants per year in the European Union and about 500 per 100,000 inhabitants per year in the United States. About 80% of all these events are accounted for as mild cases. At the same time, whiplash-associated disorder is one of the most frequent consequences of motor vehicle related accidents affecting about 300 per 100,000 inhabitants per year in the United States and Western European countrie...

  8. Age-related reduction of adaptive brain response during semantic integration is associated with gray matter reduction.

    Directory of Open Access Journals (Sweden)

    Zude Zhu

    Full Text Available While aging is associated with increased knowledge, it is also associated with decreased semantic integration. To investigate brain activation changes during semantic integration, a sample of forty-eight 25-75 year-old adults read sentences with high cloze (HC and low cloze (LC probability while functional magnetic resonance imaging was conducted. Significant age-related reduction of cloze effect (LC vs. HC was found in several regions, especially the left middle frontal gyrus (MFG and right inferior frontal gyrus (IFG, which play an important role in semantic integration. Moreover, when accounting for global gray matter volume reduction, the age-cloze correlation in the left MFG and right IFG was absent. The results suggest that brain structural atrophy may disrupt brain response in aging brains, which then show less brain engagement in semantic integration.

  9. Associative learning in humans--conditioning of sensory-evoked brain activity.

    Science.gov (United States)

    Skrandies, W; Jedynak, A

    2000-01-01

    A classical conditioning paradigm was employed in two experiments performed on 35 human volunteers. In nine subjects, the presentation of Landolt rings (conditioned stimuli, CS + ) was paired with an electric stimulus (unconditioned stimuli, UCS) applied to the left median nerve. Neutral visual control stimuli were full circles (CS -) that were not paired with the UCS. The skin conductance response (SCR) was determined in a time interval of 5 s after onset of the visual stimuli, and it was measured in the acquisition and test phase. Associative learning was reflected by a SCR occurring selectively with CS +. The same experiment was repeated with another group of 26 adults while electroencephalogram (EEG) was recorded from 30 electrodes. For each subject, mean evoked potentials were computed. In 13 of the subjects, a conditioning paradigm was followed while the other subjects served as the control group (non-contingent stimulation). There were somatosensory and visual brain activity evoked by the stimuli. Conditioned components were identified by computing cross-correlation between evoked somatosensory components and the averaged EEG. In the visual evoked brain activity, three components with mean latencies of 105.4, 183.2, and 360.3 ms were analyzed. Somatosensory stimuli were followed by major components that occurred at mean latencies of 48.8, 132.5, 219.7, 294.8, and 374.2 ms latency after the shock. All components were analyzed in terms of latency, field strength, and topographic characteristics, and were compared between groups and experimental conditions. Both visual and somatosensory brain activity was significantly affected by classical conditioning. Our data illustrate how associative learning affects the topography of brain electrical activity elicited by presentation of conditioned visual stimuli.

  10. Brain Activation during Associative Short-Term Memory Maintenance is Not Predictive for Subsequent Retrieval

    Directory of Open Access Journals (Sweden)

    Heiko eBergmann

    2015-09-01

    Full Text Available Performance on working memory (WM tasks may partially be supported by long-term memory (LTM processing. Hence, brain activation recently being implicated in WM may actually have been driven by (incidental LTM formation. We examined which brain regions actually support successful WM processing, rather than being confounded by LTM processes, during the maintenance and probe phase of a WM task. We administered a four-pair (faces and houses associative delayed-match-to-sample (WM task using event-related fMRI and a subsequent associative recognition LTM task, using the same stimuli. This enabled us to analyze subsequent memory effects for both the WM and the LTM test by contrasting correctly recognized pairs with incorrect pairs for either task. Critically, with respect to the subsequent WM effect, we computed this analysis exclusively for trials that were forgotten in the subsequent LTM recognition task. Hence, brain activity associated with successful WM processing was less likely to be confounded by incidental LTM formation. The subsequent LTM effect, in contrast, was analyzed exclusively for pairs that previously had been correctly recognized in the WM task, disclosing brain regions involved in successful LTM formation after successful WM processing. Results for the subsequent WM effect showed no significantly activated brain areas for WM maintenance, possibly due to an insensitivity of fMRI to mechanisms underlying active WM maintenance. In contrast, a correct decision at WM probe was linked to activation in the retrieval success network (anterior and posterior midline brain structures. The subsequent LTM analyses revealed greater activation in left dorsolateral prefrontal cortex and posterior parietal cortex in the early phase of the maintenance stage. No supra-threshold activation was found during the WM probe. Together, we obtained clearer insights in which brain regions support successful WM and LTM without the potential confound of the

  11. Brain activation during associative short-term memory maintenance is not predictive for subsequent retrieval.

    Science.gov (United States)

    Bergmann, Heiko C; Daselaar, Sander M; Beul, Sarah F; Rijpkema, Mark; Fernández, Guillén; Kessels, Roy P C

    2015-01-01

    Performance on working memory (WM) tasks may partially be supported by long-term memory (LTM) processing. Hence, brain activation recently being implicated in WM may actually have been driven by (incidental) LTM formation. We examined which brain regions actually support successful WM processing, rather than being confounded by LTM processes, during the maintenance and probe phase of a WM task. We administered a four-pair (faces and houses) associative delayed-match-to-sample (WM) task using event-related functional MRI (fMRI) and a subsequent associative recognition LTM task, using the same stimuli. This enabled us to analyze subsequent memory effects for both the WM and the LTM test by contrasting correctly recognized pairs with incorrect pairs for either task. Critically, with respect to the subsequent WM effect, we computed this analysis exclusively for trials that were forgotten in the subsequent LTM recognition task. Hence, brain activity associated with successful WM processing was less likely to be confounded by incidental LTM formation. The subsequent LTM effect, in contrast, was analyzed exclusively for pairs that previously had been correctly recognized in the WM task, disclosing brain regions involved in successful LTM formation after successful WM processing. Results for the subsequent WM effect showed no significantly activated brain areas for WM maintenance, possibly due to an insensitivity of fMRI to mechanisms underlying active WM maintenance. In contrast, a correct decision at WM probe was linked to activation in the "retrieval success network" (anterior and posterior midline brain structures). The subsequent LTM analyses revealed greater activation in left dorsolateral prefrontal cortex and posterior parietal cortex in the early phase of the maintenance stage. No supra-threshold activation was found during the WM probe. Together, we obtained clearer insights in which brain regions support successful WM and LTM without the potential confound of

  12. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging.

    Science.gov (United States)

    Voss, Michelle W; Weng, Timothy B; Burzynska, Agnieszka Z; Wong, Chelsea N; Cooke, Gillian E; Clark, Rachel; Fanning, Jason; Awick, Elizabeth; Gothe, Neha P; Olson, Erin A; McAuley, Edward; Kramer, Arthur F

    2016-05-01

    Greater physical activity and cardiorespiratory fitness are associated with reduced age-related cognitive decline and lower risk for dementia. However, significant gaps remain in the understanding of how physical activity and fitness protect the brain from adverse effects of brain aging. The primary goal of the current study was to empirically evaluate the independent relationships between physical activity and fitness with functional brain health among healthy older adults, as measured by the functional connectivity of cognitively and clinically relevant resting state networks. To build context for fitness and physical activity associations in older adults, we first demonstrate that young adults have greater within-network functional connectivity across a broad range of cortical association networks. Based on these results and previous research, we predicted that individual differences in fitness and physical activity would be most strongly associated with functional integrity of the networks most sensitive to aging. Consistent with this prediction, and extending on previous research, we showed that cardiorespiratory fitness has a positive relationship with functional connectivity of several cortical networks associated with age-related decline, and effects were strongest in the default mode network (DMN). Furthermore, our results suggest that the positive association of fitness with brain function can occur independent of habitual physical activity. Overall, our findings provide further support that cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on cognitively and clinically relevant functional brain networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging

    Science.gov (United States)

    Voss, Michelle W.; Weng, Timothy B.; Burzynska, Agnieszka Z.; Wong, Chelsea N.; Cooke, Gillian E.; Clark, Rachel; Fanning, Jason; Awick, Elizabeth; Gothe, Neha P.; Olson, Erin A.; McAuley, Edward; Kramer, Arthur F.

    2015-01-01

    Greater physical activity and cardiorespiratory fitness are associated with reduced age-related cognitive decline and lower risk for dementia. However, significant gaps remain in the understanding of how physical activity and fitness protect the brain from adverse effects of brain aging. The primary goal of the current study was to empirically evaluate the independent relationships between physical activity and fitness with functional brain health among healthy older adults, as measured by the functional connectivity of cognitively and clinically relevant resting state networks. To build context for fitness and physical activity associations in older adults, we first demonstrate that young adults have greater within-network functional connectivity across a broad range of cortical association networks. Based on these results and previous research, we predicted that individual differences in fitness and physical activity would be most strongly associated with functional integrity of the networks most sensitive to aging. Consistent with this prediction, and extending on previous research, we showed that cardiorespiratory fitness has a positive relationship with functional connectivity of several cortical networks associated with age-related decline, and effects were strongest in the Default Mode Network (DMN). Furthermore, our results suggest that the positive association of fitness with brain function can occur independent of habitual physical activity. Overall, our findings provide further support that cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on cognitively and clinically relevant functional brain networks. PMID:26493108

  14. A DTI-based tractography study of effects on brain structure associated with prenatal alcohol exposure in newborns

    Science.gov (United States)

    Taylor, Paul A.; Jacobson, Sandra W.; van der Kouwe, André; Molteno, Christopher D.; Chen, Gang; Wintermark, Pia; Alhamud, Alkathafi; Jacobson, Joseph L.; Meintjes, Ernesta M.

    2014-01-01

    Prenatal alcohol exposure is known to have severe, long-term consequences for brain and behavioral development already detectable in infancy and childhood. Resulting features of fetal alcohol spectrum disorders (FASD) include cognitive and behavioral effects, as well as facial anomalies and growth deficits. Diffusion tensor imaging (DTI) and tractography were used to analyze white matter development in 11 newborns (age since conception <45 weeks) whose mothers were recruited during pregnancy. Comparisons were made with 9 age-matched controls born to abstainers or light drinkers from the same Cape Coloured (mixed ancestry) community near Cape Town, South Africa. DTI parameters, T1 relaxation time, proton density and volumes were used to quantify and investigate group differences in white matter (WM) in the newborn brains. Probabilistic tractography was used to estimate and to delineate similar tract locations among the subjects for transcallosal pathways, cortico-spinal projection fibers and cortico-cortical association fibers. In each of these WM networks, the axial diffusivity AD was the parameter that showed the strongest association with maternal drinking. The strongest relations were observed in medial and inferior WM, regions in which the myelination process typically begins. In contrast to studies of older individuals with prenatal alcohol exposure, FA did not exhibit a consistent and significant relation with alcohol exposure. To our knowledge, this is the first DTI-tractography study of prenatally alcohol exposed newborns. PMID:25182535

  15. Kocuria varians infection associated with brain abscess: A case report

    Directory of Open Access Journals (Sweden)

    Tsai Tai-Hsin

    2010-04-01

    Full Text Available Abstract Background Kocuria, established by Stackebrandt et al., previously was classified into Micrococcus. Only two species, K. rosea and K. kristinae are reported to be associated as pathogenic and found with catheter-related bacteremia and acute cholecystitis. Case presentation We herein report the first case of brain abscess caused by Kocuria varians, a gram-positive microorganism, in a 52-year-old man. Hematogenous spread is the probable pathogenesis. Conclusions This report presents a case of Kocuria varians brain abscess successfully treated with surgical excision combined with antimicrobial therapy. In addition, Vitek 2 system has been used to identify and differentiate between coagulase-negative staphylococcus.

  16. Abstract representations of associated emotions in the human brain.

    Science.gov (United States)

    Kim, Junsuk; Schultz, Johannes; Rohe, Tim; Wallraven, Christian; Lee, Seong-Whan; Bülthoff, Heinrich H

    2015-04-08

    Emotions can be aroused by various kinds of stimulus modalities. Recent neuroimaging studies indicate that several brain regions represent emotions at an abstract level, i.e., independently from the sensory cues from which they are perceived (e.g., face, body, or voice stimuli). If emotions are indeed represented at such an abstract level, then these abstract representations should also be activated by the memory of an emotional event. We tested this hypothesis by asking human participants to learn associations between emotional stimuli (videos of faces or bodies) and non-emotional stimuli (fractals). After successful learning, fMRI signals were recorded during the presentations of emotional stimuli and emotion-associated fractals. We tested whether emotions could be decoded from fMRI signals evoked by the fractal stimuli using a classifier trained on the responses to the emotional stimuli (and vice versa). This was implemented as a whole-brain searchlight, multivoxel activation pattern analysis, which revealed successful emotion decoding in four brain regions: posterior cingulate cortex (PCC), precuneus, MPFC, and angular gyrus. The same analysis run only on responses to emotional stimuli revealed clusters in PCC, precuneus, and MPFC. Multidimensional scaling analysis of the activation patterns revealed clear clustering of responses by emotion across stimulus types. Our results suggest that PCC, precuneus, and MPFC contain representations of emotions that can be evoked by stimuli that carry emotional information themselves or by stimuli that evoke memories of emotional stimuli, while angular gyrus is more likely to take part in emotional memory retrieval. Copyright © 2015 the authors 0270-6474/15/355655-09$15.00/0.

  17. Reversal of functional changes in the brain associated with obstructive sleep apnoea following 6 months of CPAP.

    Science.gov (United States)

    Fatouleh, Rania H; Lundblad, Linda C; Macey, Paul M; McKenzie, David K; Henderson, Luke A; Macefield, Vaughan G

    2015-01-01

    Obstructive sleep apnoea (OSA) is associated with an increase in the number of bursts of muscle sympathetic nerve activity (MSNA), leading to neurogenic hypertension. Continuous positive airway pressure (CPAP) is the most effective and widely used treatment for preventing collapse of the upper airway in OSA. In addition to improving sleep, CPAP decreases daytime MSNA towards control levels. It remains unknown how this restoration of MSNA occurs, in particular whether CPAP treatment results in a simple readjustment in activity of those brain regions responsible for the initial increase in MSNA or whether other brain regions are recruited to over-ride aberrant brain activity. By recording MSNA concurrently with functional Magnetic Resonance Imaging (fMRI), we aimed to assess brain activity associated with each individual subject's patterns of MSNA prior to and following 6 months of CPAP treatment. Spontaneous fluctuations in MSNA were recorded via tungsten microelectrodes inserted into the common peroneal nerve in 13 newly diagnosed patients with OSA before and after 6 months of treatment with CPAP and in 15 healthy control subjects while lying in a 3 T MRI scanner. Blood Oxygen Level Dependent (BOLD) contrast gradient echo, echo-planar images were continuously collected in a 4 s ON, 4 s OFF (200 volumes) sampling protocol. MSNA was significantly elevated in newly diagnosed OSA patients compared to control subjects (55 ± 4 vs 26 ± 2 bursts/min). Fluctuations in BOLD signal intensity in multiple regions covaried with the intensity of the concurrently recorded bursts of MSNA. There was a significant fall in MSNA after 6 months of CPAP (39 ± 2 bursts/min). The reduction in resting MSNA was coupled with significant falls in signal intensity in precuneus bilaterally, the left and right insula, right medial prefrontal cortex, right anterior cingulate cortex, right parahippocampus and the left and right retrosplenial cortices. These data support our contention that

  18. Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export

    NARCIS (Netherlands)

    A. Legati (Andrea); D. Giovannini (Donatella); G. Nicolas (Gaël); U. López-Sánchez (Uriel); B. Quintáns (Beatriz); J.R. Oliveira (Joao); R.L. Sears (Renee L); E.M. Ramos (Eliana Marisa); E. Spiteri (Elizabeth); M.J. Sobrido (Maria); A. Carracedo (Angel); C. Castro-Fernández (Cristina); S. Cubizolle (Stéphanie); B.L. Fogel (Brent L); C. Goizet (Cyril); J.C. Jen (Joanna C); S. Kirdlarp (Suppachok); A.E. Lang (Anthony E); Z. Miedzybrodzka (Zosia); W. Mitarnun (Witoon); M. Paucar (Martin); H.L. Paulson (Henry); J. Pariente (Jérémie); A.-C. Richard (Anne-Claire); N.S. Salins (Naomi S); S.A. Simpson (Sheila A); P. Striano (Pasquale); P. Svenningsson (Per); F. Tison (François); V.K. Unni (Vivek K); O. Vanakker (Olivier); M.W. Wessels (Marja); S. Wetchaphanphesat (Suppachok); M. Yang (Michele); F. Boller (Francois); D. Campion (Dominique); D. Hannequin (Didier); M. Sitbon (Marc); H. Geschwind; J.-L. Battini (Jean-Luc); D. Coppola (Domenico)

    2015-01-01

    textabstractPrimary familial brain calcification (PFBC) is a neurological disease characterized by calcium phosphate deposits in the basal ganglia and other brain regions and has thus far been associated with SLC20A2, PDGFB or PDGFRB mutations. We identified in multiple families with PFBC mutations

  19. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases

    Directory of Open Access Journals (Sweden)

    He Liu

    2016-01-01

    Full Text Available Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain tumors.

  20. Different patterns of longitudinal brain and spinal cord changes and their associations with disability progression in NMO and MS.

    Science.gov (United States)

    Liu, Yaou; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Liu, Zheng; Dong, Huiqing; Weiler, Florian; Hahn, Horst K; Shi, Fu-Dong; Butzkueven, Helmut; Barkhof, Frederik; Li, Kuncheng

    2018-01-01

    To investigate the longitudinal spinal cord and brain changes in neuromyelitis optica (NMO) and multiple sclerosis (MS) and their associations with disability progression. We recruited 28 NMO, 22 MS, and 20 healthy controls (HC), who underwent both spinal cord and brain MRI at baseline. Twenty-five NMO and 20 MS completed 1-year follow-up. Baseline spinal cord and brain lesion loads, mean upper cervical cord area (MUCCA), brain, and thalamus volume and their changes during a 1-year follow-up were measured and compared between groups. All the measurements were also compared between progressive and non-progressive groups in NMO and MS. MUCCA decreased significantly during the 1-year follow-up in NMO not in MS. Percentage brain volume changes (PBVC) and thalamus volume changes in MS were significantly higher than NMO. MUCCA changes were significantly different between progressive and non-progressive groups in NMO, while baseline brain lesion volume and PBVC were associated with disability progression in MS. MUCCA changes during 1-year follow-up showed association with clinical disability in NMO. Spinal cord atrophy changes were associated with disability progression in NMO, while baseline brain lesion load and whole brain atrophy changes were related to disability progression in MS. • Spinal cord atrophy progression was observed in NMO. • Spinal cord atrophy changes were associated with disability progression in NMO. • Brain lesion and atrophy were related to disability progression in MS.

  1. Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain.

    Science.gov (United States)

    Nash, Kevin R; Gordon, Marcia N

    2016-01-01

    Recombinant adeno-associated virus (rAAV) has become an extremely useful tool for the study of gene over expression or knockdown in the central nervous system of experimental animals. One disadvantage of intracranial injections of rAAV vectors into the brain parenchyma has been restricted distribution to relatively small volumes of the brain. Convection enhanced delivery (CED) is a method for delivery of clinically relevant amounts of therapeutic agents to large areas of the brain in a direct intracranial injection procedure. CED uses bulk flow to increase the hydrostatic pressure and thus improve volume distribution. The CED method has shown robust gene transfer and increased distribution within the CNS and can be successfully used for different serotypes of rAAV for increased transduction of the mouse CNS. This chapter details the surgical injection of rAAV by CED into a mouse brain.

  2. Current self-reported symptoms of attention deficit/hyperactivity disorder are associated with total brain volume in healthy adults.

    Directory of Open Access Journals (Sweden)

    Martine Hoogman

    Full Text Available BACKGROUND: Reduced total brain volume is a consistent finding in children with Attention Deficit/Hyperactivity Disorder (ADHD. In order to get a better understanding of the neurobiology of ADHD, we take the first step in studying the dimensionality of current self-reported adult ADHD symptoms, by looking at its relation with total brain volume. METHODOLOGY/PRINCIPAL FINDINGS: In a sample of 652 highly educated adults, the association between total brain volume, assessed with magnetic resonance imaging, and current number of self-reported ADHD symptoms was studied. The results showed an association between these self-reported ADHD symptoms and total brain volume. Post-hoc analysis revealed that the symptom domain of inattention had the strongest association with total brain volume. In addition, the threshold for impairment coincides with the threshold for brain volume reduction. CONCLUSIONS/SIGNIFICANCE: This finding improves our understanding of the biological substrates of self-reported ADHD symptoms, and suggests total brain volume as a target intermediate phenotype for future gene-finding in ADHD.

  3. Divergent projections of catecholaminergic neurons in the nucleus of the solitary tract to limbic forebrain and medullary autonomic brain regions.

    Science.gov (United States)

    Reyes, Beverly A S; Van Bockstaele, Elisabeth J

    2006-10-30

    The nucleus of the solitary tract (NTS) is a critical structure involved in coordinating autonomic and visceral activities. Previous independent studies have demonstrated efferent projections from the NTS to the nucleus paragigantocellularis (PGi) and the central nucleus of the amygdala (CNA) in rat brain. To further characterize the neural circuitry originating from the NTS with postsynaptic targets in the amygdala and medullary autonomic targets, distinct green or red fluorescent latex microspheres were injected into the PGi and the CNA, respectively, of the same rat. Thirty-micron thick tissue sections through the lower brainstem and forebrain were collected. Every fourth section through the NTS region was processed for immunocytochemical detection of tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Retrogradely labeled neurons from the PGi or CNA were distributed throughout the rostro-caudal segments of the NTS. However, the majority of neurons containing both retrograde tracers were distributed within the caudal third of the NTS. Cell counts revealed that approximately 27% of neurons projecting to the CNA in the NTS sent collateralized projections to the PGi while approximately 16% of neurons projecting to the PGi sent collateralized projections to the CNA. Interestingly, more than half of the PGi and CNA-projecting neurons in the NTS expressed TH immunoreactivity. These data indicate that catecholaminergic neurons in the NTS are poised to simultaneously coordinate activities in limbic and medullary autonomic brain regions.

  4. Structural Brain Abnormalities in Successfully Treated HIV Infection: Associations With Disease and Cerebrospinal Fluid Biomarkers

    NARCIS (Netherlands)

    van Zoest, Rosan A.; Underwood, Jonathan; de Francesco, Davide; Sabin, Caroline A.; Cole, James H.; Wit, Ferdinand W.; Caan, Matthan W. A.; Kootstra, Neeltje A.; Fuchs, Dietmar; Zetterberg, Henrik; Majoie, Charles B. L. M.; Portegies, Peter; Winston, Alan; Sharp, David J.; Gisslén, Magnus; Reiss, Peter; Winston, A.; Prins, M.; Schim van der Loeff, M. F.; Schouten, J.; Schmand, B.; Geurtsen, G. J.; Sharp, D. J.; Villaudy, J.; Berkhout, B.; Gisslén, M.; Pasternak, A.; Sabin, C. A.; Guaraldi, G.; Bürkle, A.; Libert, C.; Franceschi, C.; Kalsbeek, A.; Fliers, E.; Hoeijmakers, J.; Pothof, J.; van der Valk, M.; Bisschop, P. H.; Zaheri, S.; Burger, D.; Cole, J. H.; Zikkenheiner, W.; Janssen, F. R.; Underwood, J.; Kooij, K. W.; Doyle, N.; Verbraak, F.; Demirkaya, N.; Weijer, K.; Boeser-Nunnink, B.

    2018-01-01

    Background. Brain structural abnormalities have been reported in persons living with human immunodeficiency virus (HIV; PLWH) who are receiving suppressive combination antiretroviral therapy (cART), but their pathophysiology remains unclear. Methods. We investigated factors associated with brain

  5. Deep brain stimulation, brain maps and personalized medicine: lessons from the human genome project.

    Science.gov (United States)

    Fins, Joseph J; Shapiro, Zachary E

    2014-01-01

    Although the appellation of personalized medicine is generally attributed to advanced therapeutics in molecular medicine, deep brain stimulation (DBS) can also be so categorized. Like its medical counterpart, DBS is a highly personalized intervention that needs to be tailored to a patient's individual anatomy. And because of this, DBS like more conventional personalized medicine, can be highly specific where the object of care is an N = 1. But that is where the similarities end. Besides their differing medical and surgical provenances, these two varieties of personalized medicine have had strikingly different impacts. The molecular variant, though of a more recent vintage has thrived and is experiencing explosive growth, while DBS still struggles to find a sustainable therapeutic niche. Despite its promise, and success as a vetted treatment for drug resistant Parkinson's Disease, DBS has lagged in broadening its development, often encountering regulatory hurdles and financial barriers necessary to mount an adequate number of quality trials. In this paper we will consider why DBS-or better yet neuromodulation-has encountered these challenges and contrast this experience with the more successful advance of personalized medicine. We will suggest that personalized medicine and DBS's differential performance can be explained as a matter of timing and complexity. We believe that DBS has struggled because it has been a journey of scientific exploration conducted without a map. In contrast to molecular personalized medicine which followed the mapping of the human genome and the Human Genome Project, DBS preceded plans for the mapping of the human brain. We believe that this sequence has given personalized medicine a distinct advantage and that the fullest potential of DBS will be realized both as a cartographical or electrophysiological probe and as a modality of personalized medicine.

  6. Structural covariance of brain region volumes is associated with both structural connectivity and transcriptomic similarity.

    Science.gov (United States)

    Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P

    2018-05-18

    An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the

  7. Association of Child Poverty, Brain Development, and Academic Achievement

    Science.gov (United States)

    Hair, Nicole L.; Hanson, Jamie L.; Wolfe, Barbara L.; Pollak, Seth D.

    2015-01-01

    IMPORTANCE Children living in poverty generally perform poorly in school, with markedly lower standardized test scores and lower educational attainment. The longer children live in poverty, the greater their academic deficits. These patterns persist to adulthood, contributing to lifetime-reduced occupational attainment. OBJECTIVE To determine whether atypical patterns of structural brain development mediate the relationship between household poverty and impaired academic performance. DESIGN, SETTING, AND PARTICIPANTS Longitudinal cohort study analyzing 823 magnetic resonance imaging scans of 389 typically developing children and adolescents aged 4 to 22 years from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development with complete sociodemographic and neuroimaging data. Data collection began in November 2001 and ended in August 2007. Participants were screened for a variety of factors suspected to adversely affect brain development, recruited at 6 data collection sites across the United States, assessed at baseline, and followed up at 24-month intervals for a total of 3 periods. Each study center used community-based sampling to reflect regional and overall US demographics of income, race, and ethnicity based on the US Department of Housing and Urban Development definitions of area income. One-quarter of sample households reported the total family income below 200% of the federal poverty level. Repeated observations were available for 301 participants. EXPOSURE Household poverty measured by family income and adjusted for family size as a percentage of the federal poverty level. MAIN OUTCOMES AND MEASURES Children’s scores on cognitive and academic achievement assessments and brain tissue, including gray matter of the total brain, frontal lobe, temporal lobe, and hippocampus. RESULTS Poverty is tied to structural differences in several areas of the brain associated with school readiness skills, with the largest influence

  8. Association of Child Poverty, Brain Development, and Academic Achievement.

    Science.gov (United States)

    Hair, Nicole L; Hanson, Jamie L; Wolfe, Barbara L; Pollak, Seth D

    2015-09-01

    Children living in poverty generally perform poorly in school, with markedly lower standardized test scores and lower educational attainment. The longer children live in poverty, the greater their academic deficits. These patterns persist to adulthood, contributing to lifetime-reduced occupational attainment. To determine whether atypical patterns of structural brain development mediate the relationship between household poverty and impaired academic performance. Longitudinal cohort study analyzing 823 magnetic resonance imaging scans of 389 typically developing children and adolescents aged 4 to 22 years from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development with complete sociodemographic and neuroimaging data. Data collection began in November 2001 and ended in August 2007. Participants were screened for a variety of factors suspected to adversely affect brain development, recruited at 6 data collection sites across the United States, assessed at baseline, and followed up at 24-month intervals for a total of 3 periods. Each study center used community-based sampling to reflect regional and overall US demographics of income, race, and ethnicity based on the US Department of Housing and Urban Development definitions of area income. One-quarter of sample households reported the total family income below 200% of the federal poverty level. Repeated observations were available for 301 participants. Household poverty measured by family income and adjusted for family size as a percentage of the federal poverty level. Children's scores on cognitive and academic achievement assessments and brain tissue, including gray matter of the total brain, frontal lobe, temporal lobe, and hippocampus. Poverty is tied to structural differences in several areas of the brain associated with school readiness skills, with the largest influence observed among children from the poorest households. Regional gray matter volumes of children below 1

  9. Brain perfusion SPECT and FDG PET findings in a patient with ballism associated with hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sang Kyun; Kim, Sang Jin [Pusan Paik Hospital, Pusan (Korea, Republic of)

    2007-07-01

    Ballism is a very rare presentation in association with hyperthyroidism. We describe a 22-year-old lady with episodes of recurrent ballism and hyperthyroidism. A 22-year-old lady was admitted to Neurology department because of sudden development of vigorous involuntary movement and dysarthria. She was diagnosed as hyperthyroidism at the age 12 and treated irregularly. She arrived at the emergency room because of sudden onset of involuntary movement. Computed tomography (CT) scan and Magnetic Resonance Imaging (MRI) of brain was normal. Serum levels of thyroid hormone were increased (Free T4 3.15 ng/dl; normal range 0.93-1.71 ng/dl), whereas thyroid-stimulating hormone (TSH) was undetectable. The thyroid gland was diffusely enlarged and exophthalmos was found. She had been given antithyroid medication from local clinic but medicated irregularly. Technetium thyroid scan reveals diffusely enlarged thyroid with increased radioactivity. Radioiodine uptake in 24 hours was 71 %. Brain perfusion SPECT using Tc-99m ECD reveals asymmetrical perfusion pattern in basal ganglia. Brain PET using F-18 FDG reveals increased metabolism at both caudate nucleus and putamen. She was treated with radioiodine and involuntary movement was improved. There is only few report on ballism associated with hyperthyroidism and no report on functional brain imaging. Brain perfusion SPECT and FDG PET may give useful information about functional status of brain in patients with ballism associated with hyperthyroidism in case of normal anatomical finding on CT/MRI.

  10. Brain perfusion SPECT and FDG PET findings in a patient with ballism associated with hyperthyroidism

    International Nuclear Information System (INIS)

    Bae, Sang Kyun; Kim, Sang Jin

    2007-01-01

    Ballism is a very rare presentation in association with hyperthyroidism. We describe a 22-year-old lady with episodes of recurrent ballism and hyperthyroidism. A 22-year-old lady was admitted to Neurology department because of sudden development of vigorous involuntary movement and dysarthria. She was diagnosed as hyperthyroidism at the age 12 and treated irregularly. She arrived at the emergency room because of sudden onset of involuntary movement. Computed tomography (CT) scan and Magnetic Resonance Imaging (MRI) of brain was normal. Serum levels of thyroid hormone were increased (Free T4 3.15 ng/dl; normal range 0.93-1.71 ng/dl), whereas thyroid-stimulating hormone (TSH) was undetectable. The thyroid gland was diffusely enlarged and exophthalmos was found. She had been given antithyroid medication from local clinic but medicated irregularly. Technetium thyroid scan reveals diffusely enlarged thyroid with increased radioactivity. Radioiodine uptake in 24 hours was 71 %. Brain perfusion SPECT using Tc-99m ECD reveals asymmetrical perfusion pattern in basal ganglia. Brain PET using F-18 FDG reveals increased metabolism at both caudate nucleus and putamen. She was treated with radioiodine and involuntary movement was improved. There is only few report on ballism associated with hyperthyroidism and no report on functional brain imaging. Brain perfusion SPECT and FDG PET may give useful information about functional status of brain in patients with ballism associated with hyperthyroidism in case of normal anatomical finding on CT/MRI

  11. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  12. Different patterns of longitudinal brain and spinal cord changes and their associations with disability progression in NMO and MS

    International Nuclear Information System (INIS)

    Liu, Yaou; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Liu, Zheng; Dong, Huiqing; Weiler, Florian; Hahn, Horst K.; Shi, Fu-Dong; Butzkueven, Helmut; Barkhof, Frederik; Li, Kuncheng

    2018-01-01

    To investigate the longitudinal spinal cord and brain changes in neuromyelitis optica (NMO) and multiple sclerosis (MS) and their associations with disability progression. We recruited 28 NMO, 22 MS, and 20 healthy controls (HC), who underwent both spinal cord and brain MRI at baseline. Twenty-five NMO and 20 MS completed 1-year follow-up. Baseline spinal cord and brain lesion loads, mean upper cervical cord area (MUCCA), brain, and thalamus volume and their changes during a 1-year follow-up were measured and compared between groups. All the measurements were also compared between progressive and non-progressive groups in NMO and MS. MUCCA decreased significantly during the 1-year follow-up in NMO not in MS. Percentage brain volume changes (PBVC) and thalamus volume changes in MS were significantly higher than NMO. MUCCA changes were significantly different between progressive and non-progressive groups in NMO, while baseline brain lesion volume and PBVC were associated with disability progression in MS. MUCCA changes during 1-year follow-up showed association with clinical disability in NMO. Spinal cord atrophy changes were associated with disability progression in NMO, while baseline brain lesion load and whole brain atrophy changes were related to disability progression in MS. (orig.)

  13. Different patterns of longitudinal brain and spinal cord changes and their associations with disability progression in NMO and MS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou [Xuanwu Hospital, Capital Medical University, Department of Radiology, Beijing (China); Beijing Key Lab of MRI and Brain Informatics, Beijing (China); VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); Tianjin Medical University General Hospital, Department of Neurology and Tianjin Neurological Institute, Tianjin (China); Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong [Xuanwu Hospital, Capital Medical University, Department of Radiology, Beijing (China); Liu, Zheng; Dong, Huiqing [Capital Medical University, Department of Neurology, Xuanwu Hospital, Beijing (China); Weiler, Florian; Hahn, Horst K. [Fraunhofer MEVIS, Institute for Medical Image Computing, Bremen (Germany); Shi, Fu-Dong [Tianjin Medical University General Hospital, Department of Neurology and Tianjin Neurological Institute, Tianjin (China); Butzkueven, Helmut [University of Melbourne, Department of Medicine, Parkville (Australia); Barkhof, Frederik [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); UCL, Institutes of Neurology and Healthcare Engineering, London (United Kingdom); Li, Kuncheng [Xuanwu Hospital, Capital Medical University, Department of Radiology, Beijing (China); Beijing Key Lab of MRI and Brain Informatics, Beijing (China)

    2018-01-15

    To investigate the longitudinal spinal cord and brain changes in neuromyelitis optica (NMO) and multiple sclerosis (MS) and their associations with disability progression. We recruited 28 NMO, 22 MS, and 20 healthy controls (HC), who underwent both spinal cord and brain MRI at baseline. Twenty-five NMO and 20 MS completed 1-year follow-up. Baseline spinal cord and brain lesion loads, mean upper cervical cord area (MUCCA), brain, and thalamus volume and their changes during a 1-year follow-up were measured and compared between groups. All the measurements were also compared between progressive and non-progressive groups in NMO and MS. MUCCA decreased significantly during the 1-year follow-up in NMO not in MS. Percentage brain volume changes (PBVC) and thalamus volume changes in MS were significantly higher than NMO. MUCCA changes were significantly different between progressive and non-progressive groups in NMO, while baseline brain lesion volume and PBVC were associated with disability progression in MS. MUCCA changes during 1-year follow-up showed association with clinical disability in NMO. Spinal cord atrophy changes were associated with disability progression in NMO, while baseline brain lesion load and whole brain atrophy changes were related to disability progression in MS. (orig.)

  14. Association of change in brain structure to objectively measured physical activity and sedentary behavior in older adults

    DEFF Research Database (Denmark)

    Arnardóttir, Nanna Ýr; Koster, A; Van Domelen, Dane R

    2016-01-01

    Many studies have examined the hypothesis that greater participation in physical activity (PA) is associated with less brain atrophy. Here we examine, in a sub-sample (n = 352, mean age 79.1 years) of the Age, Gene/Environment Susceptibility-Reykjavik Study cohort, the association of the baseline.......0007). These data suggest that objectively measured PA and SB late in life are associated with current and prior cross-sectional measures of brain atrophy, and that change over time is associated with PA and SB in expected directions. (C) 2015 Elsevier B.V. All rights reserved.......Many studies have examined the hypothesis that greater participation in physical activity (PA) is associated with less brain atrophy. Here we examine, in a sub-sample (n = 352, mean age 79.1 years) of the Age, Gene/Environment Susceptibility-Reykjavik Study cohort, the association of the baseline...

  15. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease.

    Science.gov (United States)

    Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W

    2017-03-01

    Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance

  16. Structural whole-brain covariance of the anterior and posterior hippocampus: Associations with age and memory.

    Science.gov (United States)

    Nordin, Kristin; Persson, Jonas; Stening, Eva; Herlitz, Agneta; Larsson, Elna-Marie; Söderlund, Hedvig

    2018-02-01

    The hippocampus (HC) interacts with distributed brain regions to support memory and shows significant volume reductions in aging, but little is known about age effects on hippocampal whole-brain structural covariance. It is also unclear whether the anterior and posterior HC show similar or distinct patterns of whole-brain covariance and to what extent these are related to memory functions organized along the hippocampal longitudinal axis. Using the multivariate approach partial least squares, we assessed structural whole-brain covariance of the HC in addition to regional volume, in young, middle-aged and older adults (n = 221), and assessed associations with episodic and spatial memory. Based on findings of sex differences in both memory and brain aging, we further considered sex as a potential modulating factor of age effects. There were two main covariance patterns: one capturing common anterior and posterior covariance, and one differentiating the two regions by capturing anterior-specific covariance only. These patterns were differentially related to associative memory while unrelated to measures of single-item memory and spatial memory. Although patterns were qualitatively comparable across age groups, participants' expression of both patterns decreased with age, independently of sex. The results suggest that the organization of hippocampal structural whole-brain covariance remains stable across age, but that the integrity of these networks decreases as the brain undergoes age-related alterations. © 2017 Wiley Periodicals, Inc.

  17. Left brain, right brain: facts and fantasies.

    Directory of Open Access Journals (Sweden)

    Michael C Corballis

    2014-01-01

    Full Text Available Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  18. Left brain, right brain: facts and fantasies.

    Science.gov (United States)

    Corballis, Michael C

    2014-01-01

    Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  19. Mining for associations between text and brain activation in a functional neuroimaging database

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai; Balslev, D.

    2004-01-01

    We describe a method for mining a neuroimaging database for associations between text and brain locations. The objective is to discover association rules between words indicative of cognitive function as described in abstracts of neuroscience papers and sets of reported stereotactic Talairach...

  20. General, crystallized and fluid intelligence are not associated with functional global network efficiency: A replication study with the human connectome project 1200 data set.

    Science.gov (United States)

    Kruschwitz, J D; Waller, L; Daedelow, L S; Walter, H; Veer, I M

    2018-05-01

    One hallmark example of a link between global topological network properties of complex functional brain connectivity and cognitive performance is the finding that general intelligence may depend on the efficiency of the brain's intrinsic functional network architecture. However, although this association has been featured prominently over the course of the last decade, the empirical basis for this broad association of general intelligence and global functional network efficiency is quite limited. In the current study, we set out to replicate the previously reported association between general intelligence and global functional network efficiency using the large sample size and high quality data of the Human Connectome Project, and extended the original study by testing for separate association of crystallized and fluid intelligence with global efficiency, characteristic path length, and global clustering coefficient. We were unable to provide evidence for the proposed association between general intelligence and functional brain network efficiency, as was demonstrated by van den Heuvel et al. (2009), or for any other association with the global network measures employed. More specifically, across multiple network definition schemes, ranging from voxel-level networks to networks of only 100 nodes, no robust associations and only very weak non-significant effects with a maximal R 2 of 0.01 could be observed. Notably, the strongest (non-significant) effects were observed in voxel-level networks. We discuss the possibility that the low power of previous studies and publication bias may have led to false positive results fostering the widely accepted notion of general intelligence being associated to functional global network efficiency. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Eye tracking detects disconjugate eye movements associated with structural traumatic brain injury and concussion.

    Science.gov (United States)

    Samadani, Uzma; Ritlop, Robert; Reyes, Marleen; Nehrbass, Elena; Li, Meng; Lamm, Elizabeth; Schneider, Julia; Shimunov, David; Sava, Maria; Kolecki, Radek; Burris, Paige; Altomare, Lindsey; Mehmood, Talha; Smith, Theodore; Huang, Jason H; McStay, Christopher; Todd, S Rob; Qian, Meng; Kondziolka, Douglas; Wall, Stephen; Huang, Paul

    2015-04-15

    Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. We prospectively eye tracked 64 normal healthy noninjured control subjects and compared findings to 75 trauma subjects with either a positive head computed tomography (CT) scan (n=13), negative head CT (n=39), or nonhead injury (n=23) to determine whether eye tracking would reveal the disconjugate gaze associated with both structural brain injury and concussion. Tracking metrics were then correlated to the clinical concussion measure Sport Concussion Assessment Tool 3 (SCAT3) in trauma patients. Five out of five measures of horizontal disconjugacy were increased in positive and negative head CT patients relative to noninjured control subjects. Only one of five vertical disconjugacy measures was significantly increased in brain-injured patients relative to controls. Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury.

  2. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  3. Alterations of Brain Functional Architecture Associated with Psychopathic Traits in Male Adolescents with Conduct Disorder.

    Science.gov (United States)

    Pu, Weidan; Luo, Qiang; Jiang, Yali; Gao, Yidian; Ming, Qingsen; Yao, Shuqiao

    2017-09-12

    Psychopathic traits of conduct disorder (CD) have a core callous-unemotional (CU) component and an impulsive-antisocial component. Previous task-driven fMRI studies have suggested that psychopathic traits are associated with dysfunction of several brain areas involved in different cognitive functions (e.g., empathy, reward, and response inhibition etc.), but the relationship between psychopathic traits and intrinsic brain functional architecture has not yet been explored in CD. Using a holistic brain-wide functional connectivity analysis, this study delineated the alterations in brain functional networks in patients with conduct disorder. Compared with matched healthy controls, we found decreased anti-synchronization between the fronto-parietal network (FPN) and default mode network (DMN), and increased intra-network synchronization within the frontothalamic-basal ganglia, right frontoparietal, and temporal/limbic/visual networks in CD patients. Correlation analysis showed that the weakened FPN-DMN interaction was associated with CU traits, while the heightened intra-network functional connectivity was related to impulsivity traits in CD patients. Our findings suggest that decoupling of cognitive control (FPN) with social understanding of others (DMN) is associated with the CU traits, and hyper-functions of the reward and motor inhibition systems elevate impulsiveness in CD.

  4. Associations between subjective sleep quality and brain volume in Gulf War veterans.

    Science.gov (United States)

    Chao, Linda L; Mohlenhoff, Brian S; Weiner, Michael W; Neylan, Thomas C

    2014-03-01

    To investigate whether subjective sleep quality is associated with brain volume independent of comorbid psychiatric conditions. Cross-sectional. Department of Veterans Affairs (VA) Medical Center. One hundred forty-four Gulf War Veterans (mean age 45 years; range: 31-70 years; 14% female). None. Total cortical, lobar gray matter, and hippocampal volumes were quantified from 1.5 Tesla magnetic resonance images using Freesurfer version 4.5. Subjective sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI). Multiple linear regressions were used to determine the association of sleep quality with total and regional brain volumes. The global PSQI score was positively correlated with lifetime and current posttraumatic stress disorder (PTSD) and current depressive symptoms (P sleep quality. Poorer subjective sleep quality was associated with reduced total cortical and regional frontal lobe volumes independent of comorbid psychiatric conditions. Future work will be needed to examine if effective treatment of disturbed sleep leads to improved structural and functional integrity of the frontal lobes.

  5. From “Where” to “What”: Distributed Representations of Brand Associations in the Human Brain

    Science.gov (United States)

    Chen, Yu-Ping; Nelson, Leif D.; Hsu, Ming

    2015-01-01

    Considerable attention has been given to the notion that there exists a set of human-like characteristics associated with brands, referred to as brand personality. Here we combine newly available machine learning techniques with functional neuroimaging data to characterize the set of processes that give rise to these associations. We show that brand personality traits can be captured by the weighted activity across a widely distributed set of brain regions previously implicated in reasoning, imagery, and affective processing. That is, as opposed to being constructed via reflective processes, brand personality traits appear to exist a priori inside the minds of consumers, such that we were able to predict what brand a person is thinking about based solely on the relationship between brand personality associations and brain activity. These findings represent an important advance in the application of neuroscientific methods to consumer research, moving from work focused on cataloguing brain regions associated with marketing stimuli to testing and refining mental constructs central to theories of consumer behavior. PMID:27065490

  6. Regional brain activation associated with addiction of computer games in adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y. H.; Shin, O. J.; Ko, Y. W.; Kim, H. J.; Yun, M. J.; Lee, J. D. [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-07-01

    Excessive computer game (CG) playing may cause not only behavioral addiction, but also potential negative effects on developing brain. It is necessary to reveal how brain is affected by excessive use of CG playing and behavioral addiction of it. By using PET, we address the issue seeking to identifying patterns of regional brain activation associated with behavioral addiction and excessive use of CG playing by adolescents. 6 normal control and 8 adolescents who were met by the criteria of behavioral addiction on the survey as addiction groups with an addiction of CG playing were participated. Initial screening survey which is the adapted version of DSM-IV for pathologic gambling was done. PET were performed twice in each participants both during resting state and after 20 min playing of CG. Psychological test including Youth Self Report (YSR), memory and attention test and vocabulary item from KWAIS were performed. Scores of the vocabulary item from KWAIS and social competence from YSR were significantly lower in the addiction group. On PET, addiction group showed higher resting metabolism on inferior frontal, premotor, prefrontal and superior temporal area. Adolescents with addiction of CG revealed different patterns of regional brain activation comparing to control groups. These suggest behavioral addiction and excessive use of CG may result in functional alteration of developing brain in adolescents.

  7. Regional brain activation associated with addiction of computer games in adolescents

    International Nuclear Information System (INIS)

    Yoo, Y. H.; Shin, O. J.; Ko, Y. W.; Kim, H. J.; Yun, M. J.; Lee, J. D.

    2001-01-01

    Excessive computer game (CG) playing may cause not only behavioral addiction, but also potential negative effects on developing brain. It is necessary to reveal how brain is affected by excessive use of CG playing and behavioral addiction of it. By using PET, we address the issue seeking to identifying patterns of regional brain activation associated with behavioral addiction and excessive use of CG playing by adolescents. 6 normal control and 8 adolescents who were met by the criteria of behavioral addiction on the survey as addiction groups with an addiction of CG playing were participated. Initial screening survey which is the adapted version of DSM-IV for pathologic gambling was done. PET were performed twice in each participants both during resting state and after 20 min playing of CG. Psychological test including Youth Self Report (YSR), memory and attention test and vocabulary item from KWAIS were performed. Scores of the vocabulary item from KWAIS and social competence from YSR were significantly lower in the addiction group. On PET, addiction group showed higher resting metabolism on inferior frontal, premotor, prefrontal and superior temporal area. Adolescents with addiction of CG revealed different patterns of regional brain activation comparing to control groups. These suggest behavioral addiction and excessive use of CG may result in functional alteration of developing brain in adolescents

  8. Combined glutamate and glutamine levels in pain-processing brain regions are associated with individual pain sensitivity.

    Science.gov (United States)

    Zunhammer, Matthias; Schweizer, Lauren M; Witte, Vanessa; Harris, Richard E; Bingel, Ulrike; Schmidt-Wilcke, Tobias

    2016-10-01

    The relationship between glutamate and γ-aminobutyric acid (GABA) levels in the living human brain and pain sensitivity is unknown. Combined glutamine/glutamate (Glx), as well as GABA levels can be measured in vivo with single-voxel proton magnetic resonance spectroscopy. In this cross-sectional study, we aimed at determining whether Glx and/or GABA levels in pain-related brain regions are associated with individual differences in pain sensitivity. Experimental heat, cold, and mechanical pain thresholds were obtained from 39 healthy, drug-free individuals (25 men) according to the quantitative sensory testing protocol and summarized into 1 composite measure of pain sensitivity. The Glx levels were measured using point-resolved spectroscopy at 3 T, within a network of pain-associated brain regions comprising the insula, the anterior cingulate cortex, the mid-cingulate cortex, the dorsolateral prefrontal cortex, and the thalamus. GABA levels were measured using GABA-edited spectroscopy (Mescher-Garwood point-resolved spectroscopy) within the insula, the anterior cingulate cortex, and the mid-cingulate cortex. Glx and/or GABA levels correlated positively across all brain regions. Gender, weekly alcohol consumption, and depressive symptoms were significantly associated with Glx and/or GABA levels. A linear regression analysis including all these factors indicated that Glx levels pooled across pain-related brain regions were positively associated with pain sensitivity, whereas no appreciable relationship with GABA was found. In sum, we show that the levels of the excitatory neurotransmitter glutamate and its precursor glutamine across pain-related brain regions are positively correlated with individual pain sensitivity. Future studies will have to determine whether our findings also apply to clinical populations.

  9. Brain structural changes associated with chronicity and antipsychotic treatment in schizophrenia.

    Science.gov (United States)

    Tomelleri, Luisa; Jogia, Jigar; Perlini, Cinzia; Bellani, Marcella; Ferro, Adele; Rambaldelli, Gianluca; Tansella, Michele; Frangou, Sophia; Brambilla, Paolo

    2009-12-01

    Accumulating evidence suggest a life-long impact of disease related mechanisms on brain structure in schizophrenia which may be modified by antipsychotic treatment. The aim of the present study was to investigate in a large sample of patients with schizophrenia the effect of illness duration and antipsychotic treatment on brain structure. Seventy-one schizophrenic patients and 79 age and gender matched healthy participants underwent brain magnetic resonance imaging (MRI). All images were processed with voxel based morphometry, using SPM5. Compared to healthy participants, patients showed decrements in gray matter volume in the left medial and left inferior frontal gyrus. In addition, duration of illness was negatively associated with gray matter volume in prefrontal regions bilaterally, in the temporal pole on the left and the caudal superior temporal gyrus on the right. Cumulative exposure to antipsychotics correlated positively with gray matter volumes in the cingulate gyrus for typical agents and in the thalamus for atypical drugs. These findings (a) indicate that structural abnormalities in prefrontal and temporal cortices in schizophrenia are progressive and, (b) suggest that antipsychotic medication has a significant impact on brain morphology.

  10. Optimal spatiotemporal representation of multichannel EEG for recognition of brain states associated with distinct visual stimulus

    Science.gov (United States)

    Hramov, Alexander; Musatov, Vyacheslav Yu.; Runnova, Anastasija E.; Efremova, Tatiana Yu.; Koronovskii, Alexey A.; Pisarchik, Alexander N.

    2018-04-01

    In the paper we propose an approach based on artificial neural networks for recognition of different human brain states associated with distinct visual stimulus. Based on the developed numerical technique and the analysis of obtained experimental multichannel EEG data, we optimize the spatiotemporal representation of multichannel EEG to provide close to 97% accuracy in recognition of the EEG brain states during visual perception. Different interpretations of an ambiguous image produce different oscillatory patterns in the human EEG with similar features for every interpretation. Since these features are inherent to all subjects, a single artificial network can classify with high quality the associated brain states of other subjects.

  11. Association of IQ Changes and Progressive Brain Changes in Patients With Schizophrenia.

    Science.gov (United States)

    Kubota, Manabu; van Haren, Neeltje E M; Haijma, Sander V; Schnack, Hugo G; Cahn, Wiepke; Hulshoff Pol, Hilleke E; Kahn, René S

    2015-08-01

    Although schizophrenia is characterized by impairments in intelligence and the loss of brain volume, the relationship between changes in IQ and brain measures is not clear. To investigate the association between IQ and brain measures in patients with schizophrenia across time. Case-control longitudinal study at the Department of Psychiatry at the University Medical Center Utrecht, Utrecht, the Netherlands, comparing patients with schizophrenia and healthy control participants between September 22, 2004, and April 17, 2008. Magnetic resonance imaging of the brain and IQ scores were obtained at baseline and the 3-year follow-up. Participants included 84 patients with schizophrenia (mean illness duration, 4.35 years) and 116 age-matched healthy control participants. Associations between changes in IQ and the total brain, cerebral gray matter, cerebral white matter, lateral ventricular, third ventricles, cortical, and subcortical volumes; cortical thickness; and cortical surface area. Cerebral gray matter volume (P = .006) and cortical volume (P = .03) and thickness (P = .02) decreased more in patients with schizophrenia across time compared with control participants. Patients showed additional loss in cortical volume and thickness of the right supramarginal, posterior superior temporal, left supramarginal, left postcentral, and occipital regions (P values were between IQ increased similarly in patients with schizophrenia and control participants, changes in IQ were negatively correlated with changes in lateral ventricular volume (P = .05) and positively correlated with changes in cortical volume (P = .007) and thickness (P = .004) only in patients with schizophrenia. Positive correlations between changes in IQ and cortical volume and thickness were found globally and in widespread regions across frontal, temporal, and parietal cortices (P values were between <.001 and .03 after clusterwise correction). These findings were independent of symptom

  12. Plasmalemmal Vesicle Associated Protein-1 (PV-1 is a marker of blood-brain barrier disruption in rodent models

    Directory of Open Access Journals (Sweden)

    Ali Zarina S

    2008-02-01

    Full Text Available Abstract Background Plasmalemmal vesicle associated protein-1 (PV-1 is selectively expressed in human brain microvascular endothelial cells derived from clinical specimens of primary and secondary malignant brain tumors, cerebral ischemia, and other central nervous system (CNS diseases associated with blood-brain barrier breakdown. In this study, we characterize the murine CNS expression pattern of PV-1 to determine whether localized PV-1 induction is conserved across species and disease state. Results We demonstrate that PV-1 is selectively upregulated in mouse blood vessels recruited by brain tumor xenografts at the RNA and protein levels, but is not detected in non-neoplastic brain. Additionally, PV-1 is induced in a mouse model of acute ischemia. Expression is confined to the cerebovasculature within the region of infarct and is temporally regulated. Conclusion Our results confirm that PV-1 is preferentially induced in the endothelium of mouse brain tumors and acute ischemic brain tissue and corresponds to blood-brain barrier disruption in a fashion analogous to human patients. Characterization of PV-1 expression in mouse brain is the first step towards development of rodent models for testing anti-edema and anti-angiogenesis therapeutic strategies based on this molecule.

  13. Optogenetic stimulation of cholinergic projection neurons as an alternative for deep brain stimulation for Alzheimer's treatment

    Science.gov (United States)

    Mancuso, James; Chen, Yuanxin; Zhao, Zhen; Li, Xuping; Xue, Zhong; Wong, Stephen T. C.

    2013-03-01

    Deep brain stimulation (DBS) of the cholinergic nuclei has emerged as a powerful potential treatment for neurodegenerative disease and is currently in a clinical trial for Alzheimer's therapy. While effective in treatment for a number of conditions from depression to epilepsy, DBS remains somewhat unpredictable due to the heterogeneity of the projection neurons that are activated, including glutamatergic, GABAergic, and cholinergic neurons, leading to unacceptable side effects ranging from apathy to depression or even suicidal behavior. It would be highly advantageous to confine stimulation to specific populations of neurons, particularly in brain diseases involving complex network interactions such as Alzheimer's. Optogenetics, now firmly established as an effective approach to render genetically-defined populations of cells sensitive to light activation including mice expressing Channelrhodopsin-2 specifically in cholinergic neurons, provides just this opportunity. Here we characterize the light activation properties and cell density of cholinergic neurons in healthy mice and mouse models of Alzheimer's disease in order to evaluate the feasibility of using optogenetic modulation of cholinergic synaptic activity to slow or reverse neurodegeneration. This paper is one of the very first reports to suggest that, despite the anatomical depth of their cell bodies, cholinergic projection neurons provide a better target for systems level optogenetic modulation than cholinergic interneurons found in various brain regions including striatum and the cerebral cortex. Additionally, basal forebrain channelrhodopsin-expressing cholinergic neurons are shown to exhibit normal distribution at 60 days and normal light activation at 40 days, the latest timepoints observed. The data collected form the basis of ongoing computational modeling of light stimulation of entire populations of cholinergic neurons.

  14. The effect of criticism on functional brain connectivity and associations with neuroticism.

    Directory of Open Access Journals (Sweden)

    Michelle Nadine Servaas

    Full Text Available Neuroticism is a robust personality trait that constitutes a risk factor for psychopathology, especially anxiety disorders and depression. High neurotic individuals tend to be more self-critical and are overly sensitive to criticism by others. Hence, we used a novel resting-state paradigm to investigate the effect of criticism on functional brain connectivity and associations with neuroticism. Forty-eight participants completed the NEO Personality Inventory Revised (NEO-PI-R to assess neuroticism. Next, we recorded resting state functional magnetic resonance imaging (rsfMRI during two sessions. We manipulated the second session before scanning by presenting three standardized critical remarks through headphones, in which the subject was urged to please lie still in the scanner. A seed-based functional connectivity method and subsequent clustering were used to analyse the resting state data. Based on the reviewed literature related to criticism, we selected brain regions associated with self-reflective processing and stress-regulation as regions of interest. The findings showed enhanced functional connectivity between the clustered seed regions and brain areas involved in emotion processing and social cognition during the processing of criticism. Concurrently, functional connectivity was reduced between these clusters and brain structures related to the default mode network and higher-order cognitive control. Furthermore, individuals scoring higher on neuroticism showed altered functional connectivity between the clustered seed regions and brain areas involved in the appraisal, expression and regulation of negative emotions. These results may suggest that the criticized person is attempting to understand the beliefs, perceptions and feelings of the critic in order to facilitate flexible and adaptive social behavior. Furthermore, multiple aspects of emotion processing were found to be affected in individuals scoring higher on neuroticism during

  15. Early adverse life events are associated with altered brain network architecture in a sex- dependent manner

    Directory of Open Access Journals (Sweden)

    Arpana Gupta, PhD

    2017-12-01

    Full Text Available Introduction: Early adverse life events (EALs increase the risk for chronic medical and psychiatric disorders by altering early neurodevelopment. The aim of this study was to examine associations between EALs and network properties of core brain regions in the emotion regulation and salience networks, and to test the influence of sex on these associations. Methods: Resting-state functional and diffusion tensor magnetic resonance imaging were obtained in healthy individuals (61 men, 63 women. Functional and anatomical network properties of centrality and segregation were calculated for the core regions of the two networks using graph theory. Moderator analyses were applied to test hypotheses. Results: The type of adversity experienced influences brain wiring differently, as higher general EALs were associated with decreased functional and anatomical centrality in salience and emotion regulation regions, while physical and emotional EALs were associated with increased anatomical centrality and segregation in emotion regulation regions. Sex moderated the associations between EALs and measures of centrality; with decreased centrality of salience and emotion regulation regions with increased general EALs in females, and increased centrality in salience regions with higher physical and emotional EALs in males. Increased segregation of salience regions was associated with increased general EALs in males. Centrality of the amygdala was associated with physical symptoms, and segregation of salience regions was correlated with higher somatization in men only. Conclusions: Emotion regulation and salience regions are susceptible to topological brain restructuring associated with EALs. The male and female brains appear to be differently affected by specific types of EALs. Keywords: Early adverse traumatic life events, Centrality, Segregation, Network metrics, Moderating effects of sex, Emotion regulation network, Salience network

  16. Childhood obstructive sleep apnea associates with neuropsychological deficits and neuronal brain injury.

    Directory of Open Access Journals (Sweden)

    Ann C Halbower

    2006-08-01

    Full Text Available Childhood obstructive sleep apnea (OSA is associated with neuropsychological deficits of memory, learning, and executive function. There is no evidence of neuronal brain injury in children with OSA. We hypothesized that childhood OSA is associated with neuropsychological performance dysfunction, and with neuronal metabolite alterations in the brain, indicative of neuronal injury in areas corresponding to neuropsychological function.We conducted a cross-sectional study of 31 children (19 with OSA and 12 healthy controls, aged 6-16 y group-matched by age, ethnicity, gender, and socioeconomic status. Participants underwent polysomnography and neuropsychological assessments. Proton magnetic resonance spectroscopic imaging was performed on a subset of children with OSA and on matched controls. Neuropsychological test scores and mean neuronal metabolite ratios of target brain areas were compared. Relative to controls, children with severe OSA had significant deficits in IQ and executive functions (verbal working memory and verbal fluency. Children with OSA demonstrated decreases of the mean neuronal metabolite ratio N-acetyl aspartate/choline in the left hippocampus (controls: 1.29, standard deviation [SD] 0.21; OSA: 0.91, SD 0.05; p = 0.001 and right frontal cortex (controls: 2.2, SD 0.4; OSA: 1.6, SD 0.4; p = 0.03.Childhood OSA is associated with deficits of IQ and executive function and also with possible neuronal injury in the hippocampus and frontal cortex. We speculate that untreated childhood OSA could permanently alter a developing child's cognitive potential.

  17. 5-HTTLPR moderates the association between interdependence and brain responses to mortality threats.

    Science.gov (United States)

    Luo, Siyang; Yu, Dian; Han, Shihui

    2017-12-01

    While behavioral research suggests an association between cultural worldview and decreased anxiety of death, the underlying neurobiological mechanisms remain unclear. Using functional MRI, we investigated whether and how the serotonin transporter promoter polymorphism (5-HTTLPR), which has been associated with mental disorders such as anxiety and depression, moderates the associations between a cultural trait (i.e., interdependence) and self-report of death anxiety/depression and between interdependence and brain responses to mortality threats. Long/long and short/short allele carriers of the 5-HTTLPR were scanned using fMRI while they performed a one-back task on death-related, death-unrelated negative, and neutral words. Participants' interdependence and death anxiety/depression were assessed using questionnaires after scanning. We found that participants who assessed themselves with greater interdependence reported lower death anxiety/depression and showed decreased neural response to death-related words in emotion-related brain regions including the anterior cingulate, putamen, and thalamus. However, these results were evident in long/long allele carriers of the 5-HTTLPR but not in short/short allele carriers who even showed positive associations between interdependence and neural activities in the anterior cingulate, putamen and thalamus in response to death-related words. Our findings suggest candidate mechanisms for explaining the complex relationship between genotype, cultural traits, and mental/neural responses to mortality threats. Hum Brain Mapp 38:6157-6171, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Tuberculous meningoencephalitis associated with brain tuberculomas during pregnancy: a case report.

    Science.gov (United States)

    Namani, Sadie; Dreshaj, Shemsedin; Berisha, Arieta Zogaj

    2017-06-29

    Tuberculous meningitis is globally highly prevalent and is commoner in resource-limited countries and in patients with immunosuppression. Central nervous system tuberculosis is one of the severest forms of extrapulmonary tuberculosis during pregnancy and associated brain tuberculomas have been rarely reported. With the availability of neuroimaging at our hospital center, we present the first case of tuberculous meningoencephalitis associated with brain tuberculomas during pregnancy. In this case report we present a 25-year-old, Albanian, pregnant woman living in an urban area in Kosovo, who at 24 weeks of twin pregnancy manifested signs and symptoms of meningoencephalitis with decreased level of consciousness, hemiparesis, and generalized recurrent seizures. Based on medical history, origin from a region of high prevalence of tuberculosis, clinical presentation, especially neurological examination, cytobiochemical changes in cerebrospinal fluid (mild mononuclear pleocytosis with decreased level of glucose and elevated proteins), and elevated level of interferon-gamma release assay in cerebrospinal fluid, antituberculous therapy was initiated on the fourth day of admission. After 3 weeks of treatment, at 27 weeks of pregnancy, she had a preterm delivery and both twins, with low birthweight, died after 24 and 72 hours. Although findings on chest radiography were normal, brain magnetic resonance imaging showed signs of meningoencephalitis and multiple intracerebral tuberculomas, while Koch's bacillus was isolated from urine cultures. On long-term follow-up after delivery, she was cured with no sequelae and became pregnant again without any additional complications. In countries with a high prevalence of tuberculosis, screening for central nervous system tuberculosis should be considered in the differential diagnosis of meningitis in pregnancy. Cerebral imaging is essential to establish the diagnosis of brain tuberculomas in such a case of suspected tuberculous

  19. Association between postgraduate year 2 residency program characteristics and primary project publication.

    Science.gov (United States)

    Swanson, Joseph M; Shafeeq, Hira; Hammond, Drayton A; Li, Chenghui; Devlin, John W

    2018-03-15

    The association among residency program and research mentor characteristics, program director perceptions, and the publication of the primary research project for postgraduate year 2 (PGY2) graduates was assessed. Using a validated electronic survey, residency program directors (RPDs) of critical care PGY2 graduates were asked about primary research project publication success, program and research project mentor characteristics, and RPDs' perceptions surrounding project completion. All 55 RPDs surveyed responded; 44 (79%) reported being a research project mentor. PGY2 research project publications in 2011 and 2012 totaled 26 (37%) and 27 (35%), respectively. A significant relationship existed between research project publication and the number of residents in the program ( p project publication is important to their employer ( p projects versus no publications included the number of graduates in the PGY2 program (odds ratio [OR], 5.6; p project publication (OR, 10.2; p project versus no research projects was also independently associated with the RPD's perception that the employer valued research project publication (OR, 5.1; p = 0.04). A survey of RPDs of critical care PGY2 residents found that the number of PGY2 residents, the number of publications by the least experienced research mentor, and the perception that publishing the residents' research projects is important to the employer were independently associated with publication rates of residency research projects. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  20. Brain activities associated with gaming urge of online gaming addiction.

    Science.gov (United States)

    Ko, Chih-Hung; Liu, Gin-Chung; Hsiao, Sigmund; Yen, Ju-Yu; Yang, Ming-Jen; Lin, Wei-Chen; Yen, Cheng-Fang; Chen, Cheng-Sheng

    2009-04-01

    The aim of this study was to identify the neural substrates of online gaming addiction through evaluation of the brain areas associated with the cue-induced gaming urge. Ten participants with online gaming addiction and 10 control subjects without online gaming addiction were tested. They were presented with gaming pictures and the paired mosaic pictures while undergoing functional magnetic resonance imaging (fMRI) scanning. The contrast in blood-oxygen-level dependent (BOLD) signals when viewing gaming pictures and when viewing mosaic pictures was calculated with the SPM2 software to evaluate the brain activations. Right orbitofrontal cortex, right nucleus accumbens, bilateral anterior cingulate and medial frontal cortex, right dorsolateral prefrontal cortex, and right caudate nucleus were activated in the addicted group in contrast to the control group. The activation of the region-of-interest (ROI) defined by the above brain areas was positively correlated with self-reported gaming urge and recalling of gaming experience provoked by the WOW pictures. The results demonstrate that the neural substrate of cue-induced gaming urge/craving in online gaming addiction is similar to that of the cue-induced craving in substance dependence. The above-mentioned brain regions have been reported to contribute to the craving in substance dependence, and here we show that the same areas were involved in online gaming urge/craving. Thus, the results suggest that the gaming urge/craving in online gaming addiction and craving in substance dependence might share the same neurobiological mechanism.

  1. Association between right-to-left shunts and brain lesions in sport divers.

    Science.gov (United States)

    Gerriets, Tibo; Tetzlaff, Kay; Hutzelmann, Alfred; Liceni, Thomas; Kopiske, Gerrit; Struck, Niklas; Reuter, Michael; Kaps, Manfred

    2003-10-01

    Recent studies suggest that healthy sport divers may develop clinically silent brain damage, based on the association between a finding of multiple brain lesions on MRI and the presence of right-to-left shunt, a pathway for venous gas bubbles to enter the arterial system. We performed echocontrast transcranial Doppler sonography in 42 sport divers to determine the presence of a right-to-left shunt. Cranial MRI was carried out using a 1.5 T magnet. A lesion was counted if it was hyperintense on both T2-weighted and T2-weighted fluid attenuated inversion recovery sequences. To test the hypothesis that the occurrence of postdive arterial gas emboli is related to brain lesions on MRI, we measured postdive intravascular bubbles in a subset of 15 divers 30 min after open water scuba dives. Echocontrast transcranial Doppler sonography revealed a right-to-left shunt in 16 of the divers (38%). Only one hyperintensive lesion of the central white matter was found and that was in a diver with no evidence of a right-to-left shunt. Postdive arterial gas emboli were detected in 3 out of 15 divers; they had a right-to-left shunt, but no pathologic findings on cranial magnetic resonance imaging. Our data support the theory that right-to-left shunts can serve as a pathway for venous gas bubbles into the arterial circulation. However, we could not confirm an association between brain lesions and the presence of a right-to-left shunt in sport divers.

  2. Congenital Retinal Macrovessel and the Association of Retinal Venous Malformations With Venous Malformations of the Brain.

    Science.gov (United States)

    Pichi, Francesco; Freund, K Bailey; Ciardella, Antonio; Morara, Mariachiara; Abboud, Emad B; Ghazi, Nicola; Dackiw, Christine; Choudhry, Netan; Souza, Eduardo Cunha; Cunha, Leonardo Provetti; Arevalo, J Fernando; Liu, T Y Alvin; Wenick, Adam; He, Lingmin; Villarreal, Guadalupe; Neri, Piergiorgio; Sarraf, David

    2018-04-01

    Congenital retinal macrovessel (CRM) is a rarely reported venous malformation of the retina that is associated with venous anomalies of the brain. To study the multimodal imaging findings of a series of eyes with congenital retinal macrovessel and describe the systemic associations. In this cross-sectional multicenter study, medical records were retrospectively reviewed from 7 different retina clinics worldwide over a 10-year period (2007-2017). Patients with CRM, defined as an abnormal, large, macular vessel with a vascular distribution above and below the horizontal raphe, were identified. Data were analyzed from December 2016 to August 2017. Clinical information and multimodal retinal imaging findings were collected and studied. Pertinent systemic information, including brain magnetic resonance imaging findings, was also noted if available. Of the 49 included patients, 32 (65%) were female, and the mean (SD) age at onset was 44.0 (20.9) years. A total of 49 eyes from 49 patients were studied. Macrovessel was unilateral in all patients. Color fundus photography illustrated a large aberrant dilated and tortuous retinal vein in all patients. Early-phase frames of fluorescein angiography further confirmed the venous nature of the macrovessel in 40 of 40 eyes. Optical coherence tomography angiography, available in 17 eyes (35%), displayed microvascular capillary abnormalities around the CRM, which were more evident in the deep capillary plexus. Of the 49 patients with CRM, 39 (80%) did not illustrate any evidence of ophthalmic complications. Ten patients (20%) presented with retinal complications, typically an incidental association with CRM. Twelve patients (24%) were noted to have venous malformations of the brain with associated magnetic resonance imaging. Of these, location of the venous anomaly in the brain was ipsilateral to the CRM in 10 patients (83%) and contralateral in 2 patients (17%), mainly located in the frontal lobe in 9 patients (75%). Our study has

  3. The CONNECT project

    DEFF Research Database (Denmark)

    Assaf, Yaniv; Alexander, Daniel C; Jones, Derek K

    2013-01-01

    Of Neuroimagers for the Non-invasive Exploration of brain Connectivity and Tracts) project aimed to combine tractography and micro-structural measures of the living human brain in order to obtain a better estimate of the connectome, while also striving to extend validation of these measurements. This paper...... summarizes the project and describes the perspective of using micro-structural measures to study the connectome.......In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using...

  4. Zebrafish brain mapping--standardized spaces, length scales, and the power of N and n.

    Science.gov (United States)

    Hunter, Paul R; Hendry, Aenea C; Lowe, Andrew S

    2015-06-01

    Mapping anatomical and functional parameters of the zebrafish brain is moving apace. Research communities undertaking such studies are becoming ever larger and more diverse. The unique features, tools, and technologies associated with zebrafish are propelling them as the 21st century model organism for brain mapping. Uniquely positioned as a vertebrate model system, the zebrafish enables imaging of anatomy and function at different length scales from intraneuronal compartments to sparsely distributed whole brain patterns. With a variety of diverse and established statistical modeling and analytic methods available from the wider brain mapping communities, the richness of zebrafish neuroimaging data is being realized. The statistical power of population observations (N) within and across many samples (n) projected onto a standardized space will provide vast databases for data-driven biological approaches. This article reviews key brain mapping initiatives at different levels of scale that highlight the potential of zebrafish brain mapping. By way of introduction to the next wave of brain mappers, an accessible introduction to the key concepts and caveats associated with neuroimaging are outlined and discussed. © 2014 Wiley Periodicals, Inc.

  5. Some environmental impacts associated with project Rio Blanco

    International Nuclear Information System (INIS)

    Alldredge, A.W.; Whicker, F.W.; Hanson, W.C.

    1976-01-01

    Project Rio Blanco, an experiment involving deep underground detonation of three 30-kiloton nuclear explosives designed to stimulate natural gas flow in geologic formations of low permeability, was conducted in western Colorado on 17 May 1973. Environmental impacts associated with this experiment were divided into three categories: radiation, ground motion, and conventional physical activities. The objective of observations made at Rio Blanco was to qualitatively and, where possible, quantitatively ascertain environmental impacts associated with the project. Observations indicated that ground motion and conventional activities appeared to cause the greatest impacts. Ground motion impacts were most severe within 2.4 km of the emplacement well (EW) and were predominantly associated with steep ravine and stream banks and rocky cliffs. Following the detonation, flow and turbidity had increased in a small stream adjacent to the EW. Animals receiving deleterious impacts were those associated with stream banks, cliffs and burrows. No mortality or injury was observed in any large animals. Based on overall results it appears important to give adequate attention to environmental effects resulting from nuclear fracturing experiments

  6. We Must Invest in Applied Knowledge of Computational Neurosciences and Neuroinformatics as an Important Future in Malaysia: The Malaysian Brain Mapping Project.

    Science.gov (United States)

    Sumari, Putra; Idris, Zamzuri; Abdullah, Jafri Malin

    2017-03-01

    The Academy of Sciences Malaysia and the Malaysian Industry-Government group for High Technology has been working hard to project the future of big data and neurotechnology usage up to the year 2050. On the 19 September 2016, the International Brain Initiative was announced by US Under Secretary of State Thomas Shannon at a meeting that accompanied the United Nations' General Assembly in New York City. This initiative was seen as an important effort but deemed costly for developing countries. At a concurrent meeting hosted by the US National Science Foundation at Rockefeller University, numerous countries discussed this massive project, which would require genuine collaboration between investigators in the realms of neuroethics. Malaysia's readiness to embark on using big data in the field of brain, mind and neurosciences is to prepare for the 4th Industrial Revolution which is an important investment for the country's future. The development of new strategies has also been encouraged by the involvement of the Society of Brain Mapping and Therapeutics, USA and the International Neuroinformatics Coordinating Facility.

  7. Bitlis Bibliophil Association and One-Book Project

    Directory of Open Access Journals (Sweden)

    Hakan Yücel

    2014-03-01

    Full Text Available The article deals with Bitlis Bibliophil Association and One-Book Project which was established in January of the current year by a group of volunteer including several professions such as students, librarians, sociologists, engineers, civil cervants, teachers, bankers, poets, jorunalists, accountants.

  8. Sex differences in associations of arginine vasopressin and oxytocin with resting-state functional brain connectivity.

    Science.gov (United States)

    Rubin, Leah H; Yao, Li; Keedy, Sarah K; Reilly, James L; Bishop, Jeffrey R; Carter, C Sue; Pournajafi-Nazarloo, Hossein; Drogos, Lauren L; Tamminga, Carol A; Pearlson, Godfrey D; Keshavan, Matcheri S; Clementz, Brett A; Hill, Scot K; Liao, Wei; Ji, Gong-Jun; Lui, Su; Sweeney, John A

    2017-01-02

    Oxytocin (OT) and arginine vasopressin (AVP) exert robust and sexually dimorphic influences on cognition and emotion. How these hormones regulate relevant functional brain systems is not well understood. OT and AVP serum concentrations were assayed in 60 healthy individuals (36 women). Brain functional networks assessed with resting-state functional magnetic resonance imaging (rs-fMRI) were constructed with graph theory-based approaches that characterize brain networks as connected nodes. Sex differences were demonstrated in rs-fMRI. Men showed higher nodal degree (connectedness) and efficiency (information propagation capacity) in left inferior frontal gyrus (IFG) and bilateral superior temporal gyrus (STG) and higher nodal degree in left rolandic operculum. Women showed higher nodal betweenness (being part of paths between nodes) in right putamen and left inferior parietal gyrus (IPG). Higher hormone levels were associated with less intrinsic connectivity. In men, higher AVP was associated with lower nodal degree and efficiency in left IFG (pars orbitalis) and left STG and less efficiency in left IFG (pars triangularis). In women, higher AVP was associated with lower betweenness in left IPG, and higher OT was associated with lower nodal degree in left IFG (pars orbitalis). Hormones differentially correlate with brain networks that are important for emotion processing and cognition in men and women. AVP in men and OT in women may regulate orbital frontal cortex connectivity, which is important in emotion processing. Hormone associations with STG and pars triangularis in men and parietal cortex in women may account for well-established sex differences in verbal and visuospatial abilities, respectively. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Associative memory cells and their working principle in the brain [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jin-Hui Wang

    2018-01-01

    Full Text Available The acquisition, integration and storage of exogenous associated signals are termed as associative learning and memory. The consequences and processes of associative thinking and logical reasoning based on these stored exogenous signals can be memorized as endogenous signals, which are essential for decision making, intention, and planning. Associative memory cells recruited in these primary and secondary associative memories are presumably the foundation for the brain to fulfill cognition events and emotional reactions in life, though the plasticity of synaptic connectivity and neuronal activity has been believed to be involved in learning and memory. Current reports indicate that associative memory cells are recruited by their mutual synapse innervations among co-activated brain regions to fulfill the integration, storage and retrieval of associated signals. The activation of these associative memory cells initiates information recall in the mind, and the successful activation of their downstream neurons endorses memory presentations through behaviors and emotion reactions. In this review, we aim to draw a comprehensive diagram for associative memory cells, working principle and modulation, as well as propose their roles in cognition, emotion and behaviors.

  10. Communication and quality of life outcomes in people with acquired brain injury following project-based treatment

    OpenAIRE

    Behn, N.

    2016-01-01

    Communication impairments are common following acquired brain injury (ABI) and have a significant impact on a person’s quality of life (QOL) post-injury. While some treatments have improved communication skills, few have measured QOL, and even fewer have shown improved QOL for people with ABI following communication-based treatments. Project-based treatment is an alternative treatment approach that could have an impact on communication skills and QOL for people with ABI who are long-term post...

  11. HTLV-I associated myelopathy with multiple spotty areas in cerebral white matter and brain stem by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Yasuo; Takahashi, Mitsuo; Yoshikawa, Hiroo; Yorifuji, Shirou; Tarui, Seiichiro

    1988-01-01

    A 48-year-old woman was admitted with complaints of urinary incontinence and gait disturbance, both of which had progressed slowly without any sign of remission. Family history was not contributory. Neurologically, extreme spasticity was recoginized in the lower limbs. Babinski sign was positive bilaterally. Flower-like atypical lymphocytes were seen in blood. Positive anti-HTLV-I antibody was confirmed in serum and spinal fluid by western blot. She was diagnosed as having HTLV-I associated myelopathy (HAM). CT reveald calcification in bilateral globus pallidus, and MRI revealed multiple spotty areas in cerebral white matter and brain stem, but no spinal cord lesion was detectable. Electrophysiologically, brain stem auditory evoked potential (BAEP) suggested the presence of bilateral brain stem lesions. Neither median nor posterior tibial nerve somatosensory evoked potentials were evoked, a finding suggesting the existence of spinal cord lesion. In this case, the lesion was not confined to spinal cord, it was also observed in brain stem and cerebral white matter. Such distinct lesions in cerebral white matter and brain stem have not been reported in patients with HAM. It is suggested that HTLV-I is probably associated with cerebral white matter and brain stem.

  12. Sincipital Encephaloceles: A Study of Associated Brain Malformations

    Directory of Open Access Journals (Sweden)

    Shashidhar Vedavyas Achar

    2016-01-01

    Full Text Available Objective: The aim of this study was to evaluate the associated intracranial malformations in patients with sincipital encephaloceles. Materials and Methods: A hospital-based cross-sectional study was conducted over 8 years from June 2007 to May 2015 on 28 patients. The patients were evaluated by either computed tomography or magnetic resonance imaging whichever was feasible. Encephaloceles were described with respect to their types, contents, and extensions. A note was made on the associated malformations with sincipital encephaloceles. Results: Fifty percent of the patients presented before the age of 3 years and both the sexes were affected equally. Nasofrontal encephalocele was the most common type seen in 13 patients (46.4%, and corpus callosal agenesis (12 patients was the most common associated malformation. Other malformations noted were arachnoid cyst (10 patients, hydrocephalus (7 patients, and agyria-pachygyria complex (2 patients. Conclusion: Capital Brain malformations are frequently encountered in children with sincipital encephaloceles. Detail radiological evaluation is necessary to plan treatment and also to prognosticate such rare malformations.

  13. The association between seizures and deposition of collagen in the brain in porcine Taenia solium neurocysticercosis

    DEFF Research Database (Denmark)

    Christensen, Nina Møller; Trevisan, Chiara; Leifsson, Páll Skúli

    2016-01-01

    Neurocysticercosis caused by infection with Taenia solium is a significant cause of epilepsy and seizures in humans. The aim of this study was to assess the association between seizures and the deposition of collagen in brain tissue in pigs with T. solium neurocysticercosis. In total 78 brain tis...

  14. Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean?

    Science.gov (United States)

    Pietschnig, Jakob; Penke, Lars; Wicherts, Jelte M; Zeiler, Michael; Voracek, Martin

    2015-10-01

    Positive associations between human intelligence and brain size have been suspected for more than 150 years. Nowadays, modern non-invasive measures of in vivo brain volume (Magnetic Resonance Imaging) make it possible to reliably assess associations with IQ. By means of a systematic review of published studies and unpublished results obtained by personal communications with researchers, we identified 88 studies examining effect sizes of 148 healthy and clinical mixed-sex samples (>8000 individuals). Our results showed significant positive associations of brain volume and IQ (r=.24, R(2)=.06) that generalize over age (children vs. adults), IQ domain (full-scale, performance, and verbal IQ), and sex. Application of a number of methods for detection of publication bias indicates that strong and positive correlation coefficients have been reported frequently in the literature whilst small and non-significant associations appear to have been often omitted from reports. We show that the strength of the positive association of brain volume and IQ has been overestimated in the literature, but remains robust even when accounting for different types of dissemination bias, although reported effects have been declining over time. While it is tempting to interpret this association in the context of human cognitive evolution and species differences in brain size and cognitive ability, we show that it is not warranted to interpret brain size as an isomorphic proxy of human intelligence differences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Perspectives on Treatment for Communication Deficits Associated with Right Hemisphere Brain Damage

    Science.gov (United States)

    Blake, Margaret Lehman

    2007-01-01

    Purpose: To describe the current treatment research for communication (prosodic, discourse, and pragmatic) deficits associated with right hemisphere brain damage and to provide suggestions for treatment selection given the paucity of evidence specifically for this population. Method: The discussion covers (a) clinical decision processes and…

  16. Neurosarcoidosis associated with hypersomnolence treated with corticosteroids and brain irradiation

    International Nuclear Information System (INIS)

    Rubinstein, I.; Gray, T.A.; Moldofsky, H.; Hoffstein, V.

    1988-01-01

    Narcoleptic features developed in a young man with CNS sarcoidosis. This was associated with a structural lesion in the hypothalamus as demonstrated on CT scans of the head. The diagnosis of narcolepsy was established by compatible clinical history and the Multiple Sleep Latency Test. Treatment with high-dose corticosteroids was ineffective, but when the low-dose, whole-brain irradiation was added, complete resolution of the narcoleptic features ensued

  17. Brain activity and functional coupling changes associated with self-reference effect during both encoding and retrieval.

    Directory of Open Access Journals (Sweden)

    Nastassja Morel

    Full Text Available Information that is processed with reference to oneself, i.e. Self-Referential Processing (SRP, is generally associated with better remembering compared to information processed in a condition not related to oneself. This positive effect of the self on subsequent memory performance is called as Self-Reference Effect (SRE. The neural basis of SRE is still poorly understood. The main goal of the present work was thus to highlight brain changes associated with SRE in terms of activity and functional coupling and during both encoding and retrieval so as to assess the relative contribution of both processes to SRE. For this purpose, we used an fMRI event-related self-referential paradigm in 30 healthy young subjects and measured brain activity during both encoding and retrieval of self-relevant information compared to a semantic control condition. We found that SRE was associated with brain changes during the encoding phase only, including both greater activity in the medial prefrontal cortex and hippocampus, and greater functional coupling between these brain regions and the posterior cingulate cortex. These findings highlight the contribution of brain regions involved in both SRP and episodic memory and the relevance of the communication between these regions during the encoding process as the neural substrates of SRE. This is consistent with the idea that SRE reflects a positive effect of the reactivation of self-related memories on the encoding of new information in episodic memory.

  18. Financial Exploitation Is Associated With Structural and Functional Brain Differences in Healthy Older Adults.

    Science.gov (United States)

    Spreng, R Nathan; Cassidy, Benjamin N; Darboh, Bri S; DuPre, Elizabeth; Lockrow, Amber W; Setton, Roni; Turner, Gary R

    2017-10-01

    Age-related brain changes leading to altered socioemotional functioning may increase vulnerability to financial exploitation. If confirmed, this would suggest a novel mechanism leading to heightened financial exploitation risk in older adults. Development of predictive neural markers could facilitate increased vigilance and prevention. In this preliminary study, we sought to identify structural and functional brain differences associated with financial exploitation in older adults. Financially exploited older adults (n = 13, 7 female) and a matched cohort of older adults who had been exposed to, but avoided, a potentially exploitative situation (n = 13, 7 female) were evaluated. Using magnetic resonance imaging, we examined cortical thickness and resting state functional connectivity. Behavioral data were collected using standardized cognitive assessments, self-report measures of mood and social functioning. The exploited group showed cortical thinning in anterior insula and posterior superior temporal cortices, regions associated with processing affective and social information, respectively. Functional connectivity encompassing these regions, within default and salience networks, was reduced, while between network connectivity was increased. Self-reported anger and hostility was higher for the exploited group. We observed financial exploitation associated with brain differences in regions involved in socioemotional functioning. These exploratory and preliminary findings suggest that alterations in brain regions implicated in socioemotional functioning may be a marker of financial exploitation risk. Large-scale, prospective studies are necessary to validate this neural mechanism, and develop predictive markers for use in clinical practice. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America.

  19. Toward discovery science of human brain function

    DEFF Research Database (Denmark)

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian

    2010-01-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints...... individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships...... in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/....

  20. Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain.

    Science.gov (United States)

    D'Mello, Charlotte; Ronaghan, Natalie; Zaheer, Raza; Dicay, Michael; Le, Tai; MacNaughton, Wallace K; Surrette, Michael G; Swain, Mark G

    2015-07-29

    Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how

  1. Project Career: Perceived benefits of iPad apps among college students with Traumatic Brain Injury (TBI).

    Science.gov (United States)

    Jacobs, K; Leopold, A; Hendricks, D J; Sampson, E; Nardone, A; Lopez, K B; Rumrill, P; Stauffer, C; Elias, E; Scherer, M; Dembe, J

    2017-09-14

    Project Career is an interprofessional five-year development project designed to improve academic and employment success of undergraduate students with a traumatic brain injury (TBI) at two- and four-year colleges and universities. Students receive technology in the form of iPad applications ("apps") to support them in and out of the classroom. To assess participants' perspectives on technology at baseline and perceived benefit of apps after 6 and 12 months of use. This article address a component of a larger study. Participants included 50 college-aged students with traumatic brain injuries. Statistical analysis included data from two Matching Person and Technology (MPT) assessment forms, including the Survey of Technology Use at baseline and the Assistive Technology Use Follow-Up Survey: Apps Currently Using, administered at 6- and 12-months re-evaluation. Analyses included frequencies and descriptives. Average scores at baseline indicated positive perspectives on technology. At 6 months, quality of life (67%) and academics (76%) improved moderately or more from the use of iPad apps. At 12 months, quality of life (65%) and academics (82%) improved moderately or more from the use of iPad apps. Students with a TBI have positive perspectives on technology use. The results on perceived benefit of apps indicated that students with a TBI (including civilians and veterans) report that the apps help them perform in daily life and academic settings.

  2. Reversal of functional changes in the brain associated with obstructive sleep apnoea following 6 months of CPAP

    Directory of Open Access Journals (Sweden)

    Rania H. Fatouleh

    2015-01-01

    Full Text Available Obstructive sleep apnoea (OSA is associated with an increase in the number of bursts of muscle sympathetic nerve activity (MSNA, leading to neurogenic hypertension. Continuous positive airway pressure (CPAP is the most effective and widely used treatment for preventing collapse of the upper airway in OSA. In addition to improving sleep, CPAP decreases daytime MSNA towards control levels. It remains unknown how this restoration of MSNA occurs, in particular whether CPAP treatment results in a simple readjustment in activity of those brain regions responsible for the initial increase in MSNA or whether other brain regions are recruited to over-ride aberrant brain activity. By recording MSNA concurrently with functional Magnetic Resonance Imaging (fMRI, we aimed to assess brain activity associated with each individual subject's patterns of MSNA prior to and following 6 months of CPAP treatment. Spontaneous fluctuations in MSNA were recorded via tungsten microelectrodes inserted into the common peroneal nerve in 13 newly diagnosed patients with OSA before and after 6 months of treatment with CPAP and in 15 healthy control subjects while lying in a 3 T MRI scanner. Blood Oxygen Level Dependent (BOLD contrast gradient echo, echo-planar images were continuously collected in a 4 s ON, 4 s OFF (200 volumes sampling protocol. MSNA was significantly elevated in newly diagnosed OSA patients compared to control subjects (55 ± 4 vs 26 ± 2 bursts/min. Fluctuations in BOLD signal intensity in multiple regions covaried with the intensity of the concurrently recorded bursts of MSNA. There was a significant fall in MSNA after 6 months of CPAP (39 ± 2 bursts/min. The reduction in resting MSNA was coupled with significant falls in signal intensity in precuneus bilaterally, the left and right insula, right medial prefrontal cortex, right anterior cingulate cortex, right parahippocampus and the left and right retrosplenial cortices. These data support

  3. Analysis of 127 peripartum hypoxic brain injuries from closed claims registered by the Danish Patient Insurance Association

    DEFF Research Database (Denmark)

    Bock, J.; Christoffersen, J.K.; Hedegaard, M.

    2008-01-01

    : The authors retrospectively investigated peripartum hypoxic brain injuries registered by the Danish Patient Insurance Association. RESULTS: From 1992 to 2004, 127 approved claims concerning peripartum hypoxic brain injuries were registered and subsequently analysed. Thirty-eight newborns died, and a majority...

  4. A Brain-Computer Interface Project Applied in Computer Engineering

    Science.gov (United States)

    Katona, Jozsef; Kovari, Attila

    2016-01-01

    Keeping up with novel methods and keeping abreast of new applications are crucial issues in engineering education. In brain research, one of the most significant research areas in recent decades, many developments have application in both modern engineering technology and education. New measurement methods in the observation of brain activity open…

  5. Obesity Associated Cerebral Gray and White Matter Alterations Are Interrelated in the Female Brain.

    Directory of Open Access Journals (Sweden)

    Karsten Mueller

    Full Text Available Obesity is known to affect the brain's gray matter (GM and white matter (WM structure but the interrelationship of such changes remains unclear. Here we used T1-weighted magnetic resonance imaging (MRI in combination with voxel-based morphometry (VBM and diffusion-tensor imaging (DTI with tract-based spatial statistics (TBSS to assess the relationship between obesity-associated alterations of gray matter density (GMD and anisotropic water diffusion in WM, respectively. In a small cohort of lean to obese women, we confirmed previous reports of obesity-associated alterations of GMD in brain regions involved in executive control (i.e., dorsolateral prefrontal cortex, DLPFC and habit learning (i.e., dorsal striatum. Gray matter density alterations of the DLPFC were negatively correlated with radial diffusivity in the entire corpus callosum. Within the genu of the corpus callosum we found a positive correlation with axial diffusivity. In posterior region and inferior areas of the body of the corpus callosum, axial diffusivity correlated negatively with altered GMD in the dorsal striatum. These findings suggest that, in women, obesity-related alterations of GMD in brain regions involved in executive control and habit learning might relate to alterations of associated WM fiber bundles within the corpus callosum.

  6. Getting to know the brain

    International Nuclear Information System (INIS)

    Creagh, C.

    1992-01-01

    While electrical systems, such as electroencephalography, measure events in milliseconds in 'real time', or the time frame in which brain function actually occurs, radio-isotope techniques such as PET and SPECT (which measure chemical activity) need several minutes in which to build up a portrait of events within the brain. In 1989, researchers from the CSIRO Division of Radiophysics, Mathematics and Statistics and Information Technology, and from the Australian Telescope National Facility and the Cognitive Neuroscience Unit at Westmead Hospital in western Sydney, began a demonstration project designed to address those limitations and to extend our knowledge of the brain. This project builds on a decade of work by the Westmead Neuroscience Unit in measuring and imaging complementary aspects of human brain function and structure. It brings together structural and functional measurements of the brain in a multi-modal display combining data from a variety of sources in a computer workstation. The major aims and potential applications of this 'information fusion' approach are summarized. 8 refs., ills

  7. Demographic and angioarchitectural features associated with seizures presentation in patients with brain arteriovenous malformations in Durban, KwaZulu-Natal, South Africa

    Directory of Open Access Journals (Sweden)

    Mogwale Samson Motebejane, MBChB, Mmed Neurosurg (UKZN, FC Neurosurg (SA

    2018-03-01

    Conclusion: Improved knowledge of specific morphological factors associated with brain AVM epilepsy could aid in the formulation of appropriate therapeutic strategies for control and/or cure of these brain AVM-associated seizures.

  8. The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas.

    Science.gov (United States)

    Ecker, Joseph R; Geschwind, Daniel H; Kriegstein, Arnold R; Ngai, John; Osten, Pavel; Polioudakis, Damon; Regev, Aviv; Sestan, Nenad; Wickersham, Ian R; Zeng, Hongkui

    2017-11-01

    A comprehensive characterization of neuronal cell types, their distributions, and patterns of connectivity is critical for understanding the properties of neural circuits and how they generate behaviors. Here we review the experiences of the BRAIN Initiative Cell Census Consortium, ten pilot projects funded by the U.S. BRAIN Initiative, in developing, validating, and scaling up emerging genomic and anatomical mapping technologies for creating a complete inventory of neuronal cell types and their connections in multiple species and during development. These projects lay the foundation for a larger and longer-term effort to generate whole-brain cell atlases in species including mice and humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Increased determinism in brain electrical activity occurs in association with multiple sclerosis.

    Science.gov (United States)

    Carrubba, Simona; Minagar, Alireza; Chesson, Andrew L; Frilot, Clifton; Marino, Andrew A

    2012-04-01

    Increased determinism (decreased complexity) of brain electrical activity has been associated with some brain diseases. Our objective was to determine whether a similar association occurred for multiple sclerosis (MS). Ten subjects with a relapsing-remitting course of MS who were in remission were studied; the controls were age- and gender-matched clinically normal subjects. Recurrence plots were calculated using representative electroencephalogram (EEG) epochs (1-7 seconds) from six derivations; the plots were quantified using the nonlinear variables percent recurrence (%R) and percent determinism (%D). The results were averaged over all derivations for each participant, and the means were compared between the groups. As a linear control procedure the groups were also compared using spectral analysis. The mean±SD of %R for the MS subjects was 6·6±1·3%, compared with 5·1±1·3% in the normal group (P = 0·017), indicating that brain activity in the subjects with MS was less complex, as hypothesized. The groups were not distinguishable using %D or spectral analysis. Taken together with our earlier report that %R could be used to discriminate between MS and normal subjects based on the ability to exhibit evoked potentials, the evidence suggests that complexity analysis of the EEG has potential for development as a diagnostic test for MS.

  10. Low-frequency connectivity is associated with mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    B.T. Dunkley

    2015-01-01

    Full Text Available Mild traumatic brain injury (mTBI occurs from a closed-head impact. Often referred to as concussion, about 20% of cases complain of secondary psychological sequelae, such as disorders of attention and memory. Known as post-concussive symptoms (PCS, these problems can severely disrupt the patient's quality of life. Changes in local spectral power, particularly low-frequency amplitude increases and/or peak alpha slowing have been reported in mTBI, but large-scale connectivity metrics based on inter-regional amplitude correlations relevant for integration and segregation in functional brain networks, and their association with disorders in cognition and behaviour, remain relatively unexplored. Here, we used non-invasive neuroimaging with magnetoencephalography to examine functional connectivity in a resting-state protocol in a group with mTBI (n = 20, and a control group (n = 21. We observed a trend for atypical slow-wave power changes in subcortical, temporal and parietal regions in mTBI, as well as significant long-range increases in amplitude envelope correlations among deep-source, temporal, and frontal regions in the delta, theta, and alpha bands. Subsequently, we conducted an exploratory analysis of patterns of connectivity most associated with variability in secondary symptoms of mTBI, including inattention, anxiety, and depression. Differential patterns of altered resting state neurophysiological network connectivity were found across frequency bands. This indicated that multiple network and frequency specific alterations in large scale brain connectivity may contribute to overlapping cognitive sequelae in mTBI. In conclusion, we show that local spectral power content can be supplemented with measures of correlations in amplitude to define general networks that are atypical in mTBI, and suggest that certain cognitive difficulties are mediated by disturbances in a variety of alterations in network interactions which are differentially

  11. Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array

    Directory of Open Access Journals (Sweden)

    Sukru Burc Eryilmaz

    2014-07-01

    Full Text Available Recent advances in neuroscience together with nanoscale electronic device technology have resulted in huge interests in realizing brain-like computing hardwares using emerging nanoscale memory devices as synaptic elements. Although there has been experimental work that demonstrated the operation of nanoscale synaptic element at the single device level, network level studies have been limited to simulations. In this work, we demonstrate, using experiments, array level associative learning using phase change synaptic devices connected in a grid like configuration similar to the organization of the biological brain. Implementing Hebbian learning with phase change memory cells, the synaptic grid was able to store presented patterns and recall missing patterns in an associative brain-like fashion. We found that the system is robust to device variations, and large variations in cell resistance states can be accommodated by increasing the number of training epochs. We illustrated the tradeoff between variation tolerance of the network and the overall energy consumption, and found that energy consumption is decreased significantly for lower variation tolerance.

  12. Brain anatomy alterations associated with Social Networking Site (SNS) addiction

    OpenAIRE

    He, Qinghua; Turel, Ofir; Bechara, Antoine

    2017-01-01

    This study relies on knowledge regarding the neuroplasticity of dual-system components that govern addiction and excessive behavior and suggests that alterations in the grey matter volumes, i.e., brain morphology, of specific regions of interest are associated with technology-related addictions. Using voxel based morphometry (VBM) applied to structural Magnetic Resonance Imaging (MRI) scans of twenty social network site (SNS) users with varying degrees of SNS addiction, we show that SNS addic...

  13. Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals.

    Science.gov (United States)

    Lancaster, Thomas M; Ihssen, Niklas; Brindley, Lisa M; Tansey, Katherine E; Mantripragada, Kiran; O'Donovan, Michael C; Owen, Michael J; Linden, David E J

    2016-02-01

    A substantial proportion of schizophrenia liability can be explained by additive genetic factors. Risk profile scores (RPS) directly index risk using a summated total of common risk variants weighted by their effect. Previous studies suggest that schizophrenia RPS predict alterations to neural networks that support working memory and verbal fluency. In this study, we apply schizophrenia RPS to fMRI data to elucidate the effects of polygenic risk on functional brain networks during a probabilistic-learning neuroimaging paradigm. The neural networks recruited during this paradigm have previously been shown to be altered to unmedicated schizophrenia patients and relatives of schizophrenia patients, which may reflect genetic susceptibility. We created schizophrenia RPS using summary data from the Psychiatric Genetic Consortium (Schizophrenia Working Group) for 83 healthy individuals and explore associations between schizophrenia RPS and blood oxygen level dependency (BOLD) during periods of choice behavior (switch-stay) and reflection upon choice outcome (reward-punishment). We show that schizophrenia RPS is associated with alterations in the frontal pole (PWHOLE-BRAIN-CORRECTED  = 0.048) and the ventral striatum (PROI-CORRECTED  = 0.036), during choice behavior, but not choice outcome. We suggest that the common risk variants that increase susceptibility to schizophrenia can be associated with alterations in the neural circuitry that support the processing of changing reward contingencies. Hum Brain Mapp 37:491-500, 2016. © 2015 Wiley Periodicals, Inc. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  14. Meta-analysis of associations between human brain volume and intelligence differences : How strong are they and what do they mean?

    NARCIS (Netherlands)

    Pietschnig, J.; Penke, L.; Wicherts, J.M.; Zeiler, M.; Voracek, M.

    2015-01-01

    Positive associations between human intelligence and brain size have been suspected for more than 150 years. Nowadays, modern non-invasive measures of in vivo brain volume (Magnetic Resonance Imaging) make it possible to reliably assess associations with IQ. By means of a systematic review of

  15. Structural brain correlates associated with professional handball playing.

    Science.gov (United States)

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing

  16. Structural brain correlates associated with professional handball playing.

    Directory of Open Access Journals (Sweden)

    Jürgen Hänggi

    Full Text Available There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands.We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM of the primary/secondary motor (MI/supplementary motor area, SMA and somatosensory cortex (SI/SII, basal ganglia, thalamus, and cerebellum and in the white matter (WM of the corticospinal tract (CST and corpus callosum, stronger in brain regions controlling the non-dominant left hand.Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women.Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a

  17. Structural Brain Correlates Associated with Professional Handball Playing

    Science.gov (United States)

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    Background There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. Methodology/Hypotheses We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Results Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Discussion/Conclusion Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic

  18. [Some implications of the "consciousness and brain" problem].

    Science.gov (United States)

    Ivanitskiĭ, A M; Ivanitskiĭ, G A

    2009-10-01

    Three issues are discussed: the possible mechanism of subjective events, the rhythmic coding of thinking operations and the possible brain basis of understanding. 1. Several approaches have been developed to explain how subjective experience emerges from brain activity. One of them is the return of the nervous impulses to the sites of their primary projections, providing a synthesis of sensory information with memory and motivation. Support for the existence of such a mechanism stems from studies upon the brain activity that underlies perception (visual and somatosensory) and thought (verbal and imaginative). The cortical centers for information synthesis have been found. For perception, these are located in projection areas: for thinking,--in frontal and temporal-parietal associative cortex. Closely related ideas were also developed by G. Edelman in his re-entry theory of consciousness. Both theories emphasize the key role of memory and motivation in the origin of conscious function. 2. Rearrangements of EEC rhythms underlie mental functions. Certain rhythmical patterns are related with definite types of mental activity. The dependence of one upon the other is rather pronounced and expressive, so it becomes possible to recognize the type of mental operation being performed in mind with few seconds of the ongoing EEG, provided that the analysis of rhythms is accomplished using an artificial neural network. 3. It is commonly recognized that the computer, in contrast to the living brain, can calculate, yet cannot understand. Comprehension implies the comparison of new and old information that requires the ability to search for associations, group similar objects together, and distinguish different objects one from another. However, these functions may also be implemented on a computer. Still, it is believed that computers perform these complicated operations without genuine understanding. Evidently, comprehension additionally has to be based upon some biologically

  19. Brain Connectivity Alterations Are Associated with the Development of Dementia in Parkinson's Disease.

    Science.gov (United States)

    Bertrand, Josie-Anne; McIntosh, Anthony R; Postuma, Ronald B; Kovacevic, Natasha; Latreille, Véronique; Panisset, Michel; Chouinard, Sylvain; Gagnon, Jean-François

    2016-04-01

    Dementia affects a high proportion of Parkinson's disease (PD) patients and poses a burden on caregivers and healthcare services. Electroencephalography (EEG) is a common nonevasive and nonexpensive technique that can easily be used in clinical settings to identify brain functional abnormalities. Only few studies had identified EEG abnormalities that can predict PD patients at higher risk for dementia. Brain connectivity EEG measures, such as multiscale entropy (MSE) and phase-locking value (PLV) analyses, may be more informative and sensitive to brain alterations leading to dementia than previously used methods. This study followed 62 dementia-free PD patients for a mean of 3.4 years to identify cerebral alterations that are associated with dementia. Baseline resting state EEG of patients who developed dementia (N = 18) was compared to those of patients who remained dementia-free (N = 44) and of 37 healthy subjects. MSE and PLV analyses were performed. Partial least squares statistical analysis revealed group differences associated with the development of dementia. Patients who developed dementia showed higher signal complexity and lower PLVs in low frequencies (mainly in delta frequency) than patients who remained dementia-free and controls. Conversely, both patient groups showed lower signal variability and higher PLVs in high frequencies (mainly in gamma frequency) compared to controls, with the strongest effect in patients who developed dementia. These findings suggest that specific disruptions of brain communication can be measured before PD patients develop dementia, providing a new potential marker to identify patients at highest risk of developing dementia and who are the best candidates for neuroprotective trials.

  20. Alterations of Brain Functional Architecture Associated with Psychopathic Traits in Male Adolescents with Conduct Disorder

    OpenAIRE

    Pu, Weidan; Luo, Qiang; Jiang, Yali; Gao, Yidian; Ming, Qingsen; Yao, Shuqiao

    2017-01-01

    Psychopathic traits of conduct disorder (CD) have a core callous-unemotional (CU) component and an impulsive-antisocial component. Previous task-driven fMRI studies have suggested that psychopathic traits are associated with dysfunction of several brain areas involved in different cognitive functions (e.g., empathy, reward, and response inhibition etc.), but the relationship between psychopathic traits and intrinsic brain functional architecture has not yet been explored in CD. Using a holist...

  1. Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project

    Science.gov (United States)

    2010-10-01

    organization of the human brain. These techniques are being applied to study brain changes through the lifespan, developmental disorders like autism , and...Individuals with a moderate TBI were over five times as likely. Animal studies suggest that TBI may disrupt brain dopamine pathways (these pathways

  2. Social anxiety following traumatic brain injury: an exploration of associated factors.

    Science.gov (United States)

    Curvis, William; Simpson, Jane; Hampson, Natalie

    2018-06-01

    Social anxiety (SA) following traumatic brain injury (TBI) has the potential to affect an individual's general psychological well-being and social functioning, however little research has explored factors associated with its development. The present study used hierarchical multiple regression to investigate the demographic, clinical and psychological factors associated with SA following TBI. A sample of 85 people who experienced TBI were recruited through social media websites and brain injury services across the North-West of England. The overall combined biopsychosocial model was significant, explaining 52-54.3% of the variance in SA (across five imputations of missing data). The addition of psychological variables (self-esteem, locus of control, self-efficacy) made a significant contribution to the overall model, accounting for an additional 12.2-13% of variance in SA above that explained by demographic and clinical variables. Perceived stigma was the only significant independent predictor of SA (B = .274, p = .005). The findings suggest that psychological variables are important in the development of SA following TBI and must be considered alongside clinical factors. Furthermore, the significant role of stigma highlights the need for intervention at both an individualised and societal level.

  3. Association of Perivascular Localization of Aquaporin-4 With Cognition and Alzheimer Disease in Aging Brains.

    Science.gov (United States)

    Zeppenfeld, Douglas M; Simon, Matthew; Haswell, J Douglas; D'Abreo, Daryl; Murchison, Charles; Quinn, Joseph F; Grafe, Marjorie R; Woltjer, Randall L; Kaye, Jeffrey; Iliff, Jeffrey J

    2017-01-01

    Cognitive impairment and dementia, including Alzheimer disease (AD), are common within the aging population, yet the factors that render the aging brain vulnerable to these processes are unknown. Perivascular localization of aquaporin-4 (AQP4) facilitates the clearance of interstitial solutes, including amyloid-β, through the brainwide network of perivascular pathways termed the glymphatic system, which may be compromised in the aging brain. To determine whether alterations in AQP4 expression or loss of perivascular AQP4 localization are features of the aging human brain and to define their association with AD pathology. Expression of AQP4 was analyzed in postmortem frontal cortex of cognitively healthy and histopathologically confirmed individuals with AD by Western blot or immunofluorescence for AQP4, amyloid-β 1-42, and glial fibrillary acidic protein. Postmortem tissue and clinical data were provided by the Oregon Health and Science University Layton Aging and Alzheimer Disease Center and Oregon Brain Bank. Postmortem tissue from 79 individuals was evaluated, including cognitively intact "young" individuals aged younger than 60 years (range, 33-57 years), cognitively intact "aged" individuals aged older than 60 years (range, 61-96 years) with no known neurological disease, and individuals older than 60 years (range, 61-105 years) of age with a clinical history of AD confirmed by histopathological evaluation. Forty-eight patient samples (10 young, 20 aged, and 18 with AD) underwent histological analysis. Sixty patient samples underwent Western blot analysis (15 young, 24 aged, and 21 with AD). Expression of AQP4 protein, AQP4 immunoreactivity, and perivascular AQP4 localization in the frontal cortex were evaluated. Expression of AQP4 was associated with advancing age among all individuals (R2 = 0.17; P = .003). Perivascular AQP4 localization was significantly associated with AD status independent of age (OR, 11.7 per 10% increase in localization; z

  4. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Jiang, Ning; Stevenson, Andrew James Thomas

    2016-01-01

    Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here, we evaluate the effect and the underlying mechanisms of three BCI training sessions in a double-blind-sham-controlled design. The applied BCI......-associative group. Fugl-Meyer motor scores (0.8±0.46 point difference p=0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCIassociative group, indicating clinically relevant improvements. For the BCI as applied here, the precise coupling between the brain command...

  5. Vasoparalysis associated with brain damage in asphyxiated term infants

    International Nuclear Information System (INIS)

    Pryds, O.; Greisen, G.; Lou, H.; Friis-Hansen, B.

    1990-01-01

    The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressure and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage

  6. Vasoparalysis associated with brain damage in asphyxiated term infants

    Energy Technology Data Exchange (ETDEWEB)

    Pryds, O.; Greisen, G.; Lou, H.; Friis-Hansen, B. (Rigshospitalet, Copenhagen (Denmark))

    1990-07-01

    The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressure and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage.

  7. Hypometabolism in Posterior and Temporal Areas of the Brain is Associated with Cognitive Decline in Parkinson's Disease.

    Science.gov (United States)

    Tard, Céline; Demailly, Franck; Delval, Arnaud; Semah, Franck; Defebvre, Luc; Dujardin, Kathy; Moreau, Caroline

    2015-01-01

    Brain metabolic profiles of patients with Parkinson's disease (PD) and cognitive impairment or dementia are now available. It would be useful if data on brain metabolism were also predictive of the risk of a pejorative cognitive evolution - especially in the multidisciplinary management of advanced PD patients. The primary objective was to determine whether a specific brain metabolic pattern is associated with cognitive decline in PD. Sixteen advanced PD patients were screened for the absence of cognitive impairment (according to the Mattis dementia rating scale, MDRS) and underwent [18F]-fluorodeoxyglucose positron emission tomography brain imaging in the "off drug" state. The MDRS was scored again about two years later, categorizing patients as having significant cognitive decline (decliners) or not (stables). The two groups were then compared in terms of their brain metabolism at inclusion. There were six decliners and ten stables. Significant hypometabolism in the two precunei (Brodmann area (BA) 31), the left middle temporal gyrus (BA21) and the left fusiform gyrus (BA37) was found in the decliner group compared withthe stables. In advanced PD, a particular metabolic pattern may be associated with the onset of significant cognitive decline.

  8. The association between brain volumes, delirium duration, and cognitive outcomes in intensive care unit survivors: the VISIONS cohort magnetic resonance imaging study*.

    Science.gov (United States)

    Gunther, Max L; Morandi, Alessandro; Krauskopf, Erin; Pandharipande, Pratik; Girard, Timothy D; Jackson, James C; Thompson, Jennifer; Shintani, Ayumi K; Geevarghese, Sunil; Miller, Russell R; Canonico, Angelo; Merkle, Kristen; Cannistraci, Christopher J; Rogers, Baxter P; Gatenby, J Chris; Heckers, Stephan; Gore, John C; Hopkins, Ramona O; Ely, E Wesley

    2012-07-01

    Delirium duration is predictive of long-term cognitive impairment in intensive care unit survivors. Hypothesizing that a neuroanatomical basis may exist for the relationship between delirium and long-term cognitive impairment, we conducted this exploratory investigation of the associations between delirium duration, brain volumes, and long-term cognitive impairment. A prospective cohort of medical and surgical intensive care unit survivors with respiratory failure or shock. Quantitative high resolution 3-Tesla brain magnetic resonance imaging was used to calculate brain volumes at discharge and 3-month follow-up. Delirium was evaluated using the confusion assessment method for the intensive care unit; cognitive outcomes were tested at 3- and 12-month follow-up. Linear regression was used to examine associations between delirium duration and brain volumes, and between brain volumes and cognitive outcomes. A total of 47 patients completed the magnetic resonance imaging protocol. Patients with longer duration of delirium displayed greater brain atrophy as measured by a larger ventricle-to-brain ratio at hospital discharge (0.76, 95% confidence intervals [0.10, 1.41]; p = .03) and at 3-month follow-up (0.62 [0.02, 1.21], p = .05). Longer duration of delirium was associated with smaller superior frontal lobe (-2.11 cm(3) [-3.89, -0.32]; p = .03) and hippocampal volumes at discharge (-0.58 cm(3) [-0.85, -0.31], p Battery for the Assessment of Neuropsychological Status score -11.17 [-21.12, -1.22], p = .04). Smaller superior frontal lobes, thalamus, and cerebellar volumes at 3 months were associated with worse executive functioning and visual attention at 12 months. These preliminary data show that longer duration of delirium is associated with smaller brain volumes up to 3 months after discharge, and that smaller brain volumes are associated with long-term cognitive impairment up to 12 months. We cannot, however, rule out that smaller preexisting brain volumes explain

  9. Ethnic Differences in Poststroke Quality of Life in the Brain Attack Surveillance in Corpus Christi (BASIC) Project.

    Science.gov (United States)

    Reeves, Sarah L; Brown, Devin L; Baek, Jonggyu; Wing, Jeffrey J; Morgenstern, Lewis B; Lisabeth, Lynda D

    2015-10-01

    Mexican Americans (MAs) have an increased risk of stroke and experience worse poststroke disability than non-Hispanic whites, which may translate into worse poststroke quality of life (QOL). We assessed ethnic differences in poststroke QOL, as well as potential modification of associations by age, sex, and initial stroke severity. Ischemic stroke survivors were identified through the biethnic, population-based Brain Attack Surveillance in Corpus Christi (BASIC) Project. Data were collected from medical records, baseline interviews, and 90-day poststroke interviews. Poststroke QOL was measured at ≈90 days by the validated short-form stroke-specific QOL in 3 domains: overall, physical, and psychosocial (range, 0-5; higher scores represent better QOL). Tobit regression was used to model associations between ethnicity and poststroke QOL scores, adjusted for demographics, clinical characteristics, and prestroke cognition and function. Among 290 eligible stroke survivors (66% MA, 34% non-Hispanic whites, median age=69 years), median scores for overall, physical, and psychosocial poststroke QOL were 3.3, 3.8, and 2.7, respectively. Poststroke QOL was lower for MAs than non-Hispanic whites both overall (mean difference, -0.30; 95% confidence interval, -0.59, -0.01) and in the physical domain (mean difference, -0.47; 95% confidence interval, -0.81, -0.14) after multivariable adjustment. No ethnic difference was found in the psychosocial domain. Age modified the associations between ethnicity and poststroke QOL such that differences were present in older but not in younger ages. Disparities exist in poststroke QOL for MAs and seem to be driven by differences in older stroke patients. Targeted interventions to improve outcomes among MA stroke survivors are urgently needed. © 2015 American Heart Association, Inc.

  10. Training of verbal creativity modulates brain activity in regions associated with language‐ and memory‐related demands

    Science.gov (United States)

    Benedek, Mathias; Koschutnig, Karl; Pirker, Eva; Berger, Elisabeth; Meister, Sabrina; Neubauer, Aljoscha C.; Papousek, Ilona; Weiss, Elisabeth M.

    2015-01-01

    Abstract This functional magnetic resonance (fMRI) study was designed to investigate changes in functional patterns of brain activity during creative ideation as a result of a computerized, 3‐week verbal creativity training. The training was composed of various verbal divergent thinking exercises requiring participants to train approximately 20 min per day. Fifty‐three participants were tested three times (psychometric tests and fMRI assessment) with an intertest‐interval of 4 weeks each. Participants were randomly assigned to two different training groups, which received the training time‐delayed: The first training group was trained between the first and the second test, while the second group accomplished the training between the second and the third test session. At the behavioral level, only one training group showed improvements in different facets of verbal creativity right after the training. Yet, functional patterns of brain activity during creative ideation were strikingly similar across both training groups. Whole‐brain voxel‐wise analyses (along with supplementary region of interest analyses) revealed that the training was associated with activity changes in well‐known creativity‐related brain regions such as the left inferior parietal cortex and the left middle temporal gyrus, which have been shown as being particularly sensitive to the originality facet of creativity in previous research. Taken together, this study demonstrates that continuous engagement in a specific complex cognitive task like divergent thinking is associated with reliable changes of activity patterns in relevant brain areas, suggesting more effective search, retrieval, and integration from internal memory representations as a result of the training. Hum Brain Mapp 36:4104–4115, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26178653

  11. Assessing brain activations associated with emotional regulation during virtual reality mood induction procedures

    NARCIS (Netherlands)

    Rodriguez, A.; Rey, B.; Clemente, M.; Wrzesien, M.; Alcañiz, M.

    2015-01-01

    Emotional regulation strategies are used by people to influence their emotional responses to external or internal emotional stimuli. The aim of this study is to evaluate the brain activations that are associated with the application of two different emotional regulation strategies (cognitive

  12. Brain injury and altered brain growth in preterm infants: predictors and prognosis.

    Science.gov (United States)

    Kidokoro, Hiroyuki; Anderson, Peter J; Doyle, Lex W; Woodward, Lianne J; Neil, Jeffrey J; Inder, Terrie E

    2014-08-01

    To define the nature and frequency of brain injury and brain growth impairment in very preterm (VPT) infants by using MRI at term-equivalent age and to relate these findings to perinatal risk factors and 2-year neurodevelopmental outcomes. MRI scans at term-equivalent age from 3 VPT cohorts (n = 325) were reviewed. The severity of brain injury, including periventricular leukomalacia and intraventricular and cerebellar hemorrhage, was graded. Brain growth was assessed by using measures of biparietal width (BPW) and interhemispheric distance. Neurodevelopmental outcome at age 2 years was assessed across all cohorts (n = 297) by using the Bayley Scales of Infant Development, Second Edition (BSID-II) or Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III), and evaluation for cerebral palsy. Of 325 infants, 107 (33%) had some grade of brain injury and 33 (10%) had severe injury. Severe brain injury was more common in infants with lower Apgar scores, necrotizing enterocolitis, inotropic support, and patent ductus arteriosus. Severe brain injury was associated with delayed cognitive and motor development and cerebral palsy. Decreased BPW was related to lower gestational age, inotropic support, patent ductus arteriosus, necrotizing enterocolitis, prolonged parenteral nutrition, and oxygen at 36 weeks and was associated with delayed cognitive development. In contrast, increased interhemispheric distance was related to male gender, dexamethasone use, and severe brain injury. It was also associated with reduced cognitive development, independent of BPW. At term-equivalent age, VPT infants showed both brain injury and impaired brain growth on MRI. Severe brain injury and impaired brain growth patterns were independently associated with perinatal risk factors and delayed cognitive development. Copyright © 2014 by the American Academy of Pediatrics.

  13. A novel syndrome of lethal familial hyperekplexia associated with brain malformation

    Directory of Open Access Journals (Sweden)

    Seidahmed Mohammed

    2012-10-01

    Full Text Available Abstract Background Hyperekplexia (HPX is a rare non-epileptic disorder manifesting immediately after birth with exaggerated persistent startle reaction to unexpected auditory, somatosensory and visual stimuli, and non-habituating generalized flexor spasm in response to tapping of the nasal bridge (glabellar tap which forms its clinical hallmark. The course of the disease is usually benign with spontaneous amelioration with age. The disorder results from aberrant glycinergic neurotransmission, and several mutations were reported in the genes encoding glycine receptor (GlyR α1 and β subunits, glycine transporter GlyT2 as well as two other proteins involved in glycinergic neurotransmission gephyrin and collybistin. Methods The phenotype of six newborns, belonging to Saudi Arabian kindred with close consanguineous marriages, who presented with hyperekplexia associated with severe brain malformation, is described. DNA samples were available from two patients, and homozygosity scan to determine overlap with known hyperkplexia genes was performed. Results The kindred consisted of two brothers married to their cousin sisters, each with three affected children who presented antenatally with excessive fetal movements. Postnatally, they were found to have microcephaly, severe hyperekplexia and gross brain malformation characterized by severe simplified gyral pattern and cerebellar underdevelopment. The EEG was normal and they responded to clonazepam. All of the six patients died within six weeks. Laboratory investigations, including metabolic screen, were unremarkable. None of the known hyperkplexia genes were present within the overlapping regions of homozygosity between the two patients for whom DNA samples were available. Conclusions We present these cases as a novel syndrome of lethal familial autosomal recessive hyperekplexia associated with microcephaly and severe brain malformation.

  14. Aberrant brain-stem morphometry associated with sleep disturbance in drug-naïve subjects with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lee JH

    2016-08-01

    Full Text Available Ji Han Lee,1 Won Sang Jung,2 Woo Hee Choi,3 Hyun Kook Lim4 1Washington University in St Louis, St Louis, MO, USA; 2Department of Radiology, 3Department of Nuclear Medicine, 4Department of Psychiatry, Saint Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon, South Korea Objective: Among patients with Alzheimer’s disease (AD, sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD.Materials and methods: In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology.Results: Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group.Conclusion: This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings. Keywords: Alzheimer’s disease, sleep, brain stem, MRI, shape analysis

  15. MR image-guided portal verification for brain treatment field

    International Nuclear Information System (INIS)

    Yin, F.-F.; Gao, Q.H.; Xie, H.; Nelson, D.F.; Yu, Y.; Kwok, W.E.; Totterman, S.; Schell, M.C.; Rubin, P.

    1996-01-01

    Purpose/Objective: Although MR images have been extensively used for the treatment planning of radiation therapy of cancers, especially for brain cancers, they are not effectively used for the portal verification due to lack of bone/air information in MR images and geometric distortions. Typically, MR images are utilized through correlation with CT images, and this procedure is usually very labor and time consuming. For many brain cancer patients to be treated using conventional external beam radiation, MR images with proper distortion correction provide sufficient information for treatment planning and dose calculation, and a projection images may be generated for each specific treatment port and to be used as a reference image for treatment verification. The question is how to transfer anatomical features in MR images to the projection image as landmarks which could be correlated automatically to those in the portal image. The goal of this study is to generate digitally reconstructed projection images from MR brain images with some important anatomical features (brain contour, skull and gross tumor) as well as their relative locations to be used as references for the development of computerized portal verification scheme. Materials/Methods: Compared to conventional digital reconstructed radiograph from CT images, generation of digitally reconstructed projection images from MR images is heavily involved with pixel manipulation of MR images to correlate information from two types of images (MR, portal x-ray images) which are produced based on totally different imaging principles. Initially a wavelet based multi-resolution adaptive thresholding method is used to segment the skull slice-by-slice in MR brain axial images, and identified skull pixels are re-assigned to relatively higher intensities so that projection images will have comparable grey-level information as that in typical brain portal images. Both T1- and T2-weighted images are utilized to eliminate fat

  16. Brain Activity Associated With Attention Deficits Following Chemotherapy for Childhood Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Fellah, Slim; Cheung, Yin T; Scoggins, Matthew A; Zou, Ping; Sabin, Noah D; Pui, Ching-Hon; Robison, Leslie L; Hudson, Melissa M; Ogg, Robert J; Krull, Kevin R

    2018-05-21

    The impact of contemporary chemotherapy treatment for childhood acute lymphoblastic leukemia on central nervous system activity is not fully appreciated. Neurocognitive testing and functional magnetic resonance imaging (fMRI) were obtained in 165 survivors five or more years postdiagnosis (average age = 14.4 years, 7.7 years from diagnosis, 51.5% males). Chemotherapy exposure was measured as serum concentration of methotrexate following high-dose intravenous injection. Neurocognitive testing included measures of attention and executive function. fMRI was obtained during completion of two tasks, the continuous performance task (CPT) and the attention network task (ANT). Image analysis was performed using Statistical Parametric Mapping software, with contrasts targeting sustained attention, alerting, orienting, and conflict. All statistical tests were two-sided. Compared with population norms, survivors demonstrated impairment on number-letter switching (P < .001, a measure of cognitive flexibility), which was associated with treatment intensity (P = .048). Task performance during fMRI was associated with neurocognitive dysfunction across multiple tasks. Regional brain activation was lower in survivors diagnosed at younger ages for the CPT (bilateral parietal and temporal lobes) and the ANT (left parietal and right hippocampus). With higher serum methotrexate exposure, CPT activation decreased in the right temporal and bilateral frontal and parietal lobes, but ANT alerting activation increased in the ventral frontal, insula, caudate, and anterior cingulate. Brain activation during attention and executive function tasks was associated with serum methotrexate exposure and age at diagnosis. These findings provide evidence for compromised and compensatory changes in regional brain function that may help clarify the neural substrates of cognitive deficits in acute lymphoblastic leukemia survivors.

  17. Hippocampal Sclerosis of Aging, a Common Alzheimer's Disease 'Mimic': Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe.

    Science.gov (United States)

    Nho, Kwangsik; Saykin, Andrew J; Nelson, Peter T

    2016-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer's disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (∼50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer's disease contribution to atrophy outside of the hippocampus in older adults.

  18. Structural Brain Abnormalities in Successfully Treated HIV Infection: Associations With Disease and Cerebrospinal Fluid Biomarkers.

    Science.gov (United States)

    van Zoest, Rosan A; Underwood, Jonathan; De Francesco, Davide; Sabin, Caroline A; Cole, James H; Wit, Ferdinand W; Caan, Matthan W A; Kootstra, Neeltje A; Fuchs, Dietmar; Zetterberg, Henrik; Majoie, Charles B L M; Portegies, Peter; Winston, Alan; Sharp, David J; Gisslén, Magnus; Reiss, Peter

    2017-12-27

    Brain structural abnormalities have been reported in persons living with human immunodeficiency virus (HIV; PLWH) who are receiving suppressive combination antiretroviral therapy (cART), but their pathophysiology remains unclear. We investigated factors associated with brain tissue volumes and white matter microstructure (fractional anisotropy) in 134 PLWH receiving suppressive cART and 79 comparable HIV-negative controls, aged ≥45 years, from the Comorbidity in Relation to AIDS cohort, using multimodal neuroimaging and cerebrospinal fluid biomarkers. Compared with controls, PLWH had lower gray matter volumes (-13.7 mL; 95% confidence interval, -25.1 to -2.2) and fractional anisotropy (-0.0073; 95% confidence interval, -.012 to -.0024), with the largest differences observed in those with prior clinical AIDS. Hypertension and the soluble CD14 concentration in cerebrospinal fluid were associated with lower fractional anisotropy. These associations were independent of HIV serostatus (Pinteraction = .32 and Pinteraction = .59, respectively) and did not explain the greater abnormalities in brain structure in relation to HIV infection. The presence of lower gray matter volumes and more white matter microstructural abnormalities in well-treated PLWH partly reflect a combination of historical effects of AIDS, as well as the more general influence of systemic factors, such as hypertension and ongoing neuroinflammation. Additional mechanisms explaining the accentuation of brain structure abnormalities in treated HIV infection remain to be identified. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  19. Emotion Regulation and Complex Brain Networks: Association Between Expressive Suppression and Efficiency in the Fronto-Parietal Network and Default-Mode Network

    Directory of Open Access Journals (Sweden)

    Junhao Pan

    2018-03-01

    Full Text Available Emotion regulation (ER refers to the “implementation of a conscious or non-conscious goal to start, stop or otherwise modulate the trajectory of an emotion” (Etkin et al., 2015. Whereas multiple brain areas have been found to be involved in ER, relatively little is known about whether and how ER is associated with the global functioning of brain networks. Recent advances in brain connectivity research using graph-theory based analysis have shown that the brain can be organized into complex networks composed of functionally or structurally connected brain areas. Global efficiency is one graphic metric indicating the efficiency of information exchange among brain areas and is utilized to measure global functioning of brain networks. The present study examined the relationship between trait measures of ER (expressive suppression (ES and cognitive reappraisal (CR and global efficiency in resting-state functional brain networks (the whole brain network and ten predefined networks using structural equation modeling (SEM. The results showed that ES was reliably associated with efficiency in the fronto-parietal network and default-mode network. The finding advances the understanding of neural substrates of ER, revealing the relationship between ES and efficient organization of brain networks.

  20. Theranostic quantum dots for crossing blood–brain barrier in vitro and providing therapy of HIV-associated encephalopathy

    Science.gov (United States)

    Xu, Gaixia; Mahajan, Supriya; Roy, Indrajit; Yong, Ken-Tye

    2013-01-01

    The blood–brain barrier (BBB) is a complex physiological checkpoint that restricts the free diffusion of circulating molecules from the blood into the central nervous system. Delivering of drugs and other active agents across the BBB is one of the major technical challenges faced by scientists and medical practitioners. Therefore, development of novel methodologies to address this challenge holds the key for both the diagnosis and treatment of brain diseases, such as HIV-associated encephalopathy. Bioconjugated quantum dots (QDs) are excellent fluorescent probes and nano-vectors, being designed to transverse across the BBB and visualize drug delivery inside the brain. This paper discusses the use of functionalized QDs for crossing the blood–brain barrier and treating brain disease. We highlight the guidelines for using in vitro BBB models for brain disease studies. The theranostic QDs offers a strategy to significantly improve the effective dosages of drugs to transverse across the BBB and orientate to the targets inside the brain. PMID:24298256

  1. Association of BDNF Val66Met Polymorphism and Brain BDNF levels with Major Depression and Suicide.

    Science.gov (United States)

    Youssef, Mariam M; Underwood, Mark D; Huang, Yung-Yu; Hsiung, Shu-Chi; Liu, Yan; Simpson, Norman R; Bakalian, Mihran J; Rosoklija, Gorazd B; Dwork, Andrew J; Arango, Victoria; Mann, J John

    2018-02-08

    Brain-derived neurotrophic factor (BDNF) is implicated in the pathophysiology of major depressive disorder (MDD) and suicide. Both are partly caused by early life adversity (ELA) and ELA reduces BDNF protein levels. This study examines the association of BDNF Val66Met polymorphism and brain BDNF levels with depression and suicide. We hypothesized that both MDD and ELA would be associated with the Met allele and lower brain BDNF levels. Such an association would be consistent with low BDNF mediating the effect of ELA on adulthood suicide and MDD. BDNF Val66Met polymorphism was genotyped in postmortem brains of 37 suicide decedents and 53 non-suicides. Additionally, BDNF protein levels were determined by Western blot in dorsolateral prefrontal cortex (Brodmann area 9; BA9), anterior cingulate cortex (ACC, BA24), caudal brainstem and rostral brainstem. The relationships between these measures and MDD, death by suicide and reported ELA were examined. Subjects with the Met allele had an increased risk for depression. Depressed patients also have lower BDNF levels in ACC and caudal brainstem compared with non-depressed subjects. No effect of history of suicide death or ELA was observed with genotype, but lower BDNF levels in ACC were found in subjects who had been exposed to ELA and/or died by suicide compared to non-suicide decedents and no reported ELA. This study provides further evidence implicating low brain BDNF and the BDNF Met allele in major depression risk. Future studies should seek to determine how altered BDNF expression contributes to depression and suicide. © The Author(s) 2018. Published by Oxford University Press on behalf of CINP.

  2. A Polygenic Risk Score of glutamatergic SNPs associated with schizophrenia predicts attentional behavior and related brain activity in healthy humans.

    Science.gov (United States)

    Rampino, Antonio; Taurisano, Paolo; Fanelli, Giuseppe; Attrotto, Mariateresa; Torretta, Silvia; Antonucci, Linda Antonella; Miccolis, Grazia; Pergola, Giulio; Ursini, Gianluca; Maddalena, Giancarlo; Romano, Raffaella; Masellis, Rita; Di Carlo, Pasquale; Pignataro, Patrizia; Blasi, Giuseppe; Bertolino, Alessandro

    2017-09-01

    Multiple genetic variations impact on risk for schizophrenia. Recent analyses by the Psychiatric Genomics Consortium (PGC2) identified 128 SNPs genome-wide associated with the disorder. Furthermore, attention and working memory deficits are core features of schizophrenia, are heritable and have been associated with variation in glutamatergic neurotransmission. Based on this evidence, in a sample of healthy volunteers, we used SNPs associated with schizophrenia in PGC2 to construct a Polygenic-Risk-Score (PRS) reflecting the cumulative risk for schizophrenia, along with a Polygenic-Risk-Score including only SNPs related to genes implicated in glutamatergic signaling (Glu-PRS). We performed Factor Analysis for dimension reduction of indices of cognitive performance. Furthermore, both PRS and Glu-PRS were used as predictors of cognitive functioning in the domains of Attention, Speed of Processing and Working Memory. The association of the Glu-PRS on brain activity during the Variable Attention Control (VAC) task was also explored. Finally, in a second independent sample of healthy volunteers we sought to confirm the association between the Glu-PRS and both performance in the domain of Attention and brain activity during the VAC.We found that performance in Speed of Processing and Working Memory was not associated with any of the Polygenic-Risk-Scores. The Glu-PRS, but not the PRS was associated with Attention and brain activity during the VAC. The specific effects of Glu-PRS on Attention and brain activity during the VAC were also confirmed in the replication sample.Our results suggest a pathway specificity in the relationship between genetic risk for schizophrenia, the associated cognitive dysfunction and related brain processing. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  3. Cerebral Taurine Levels are Associated with Brain Edema and Delayed Cerebral Infarction in Patients with Aneurysmal Subarachnoid Hemorrhage.

    Science.gov (United States)

    Kofler, Mario; Schiefecker, Alois; Ferger, Boris; Beer, Ronny; Sohm, Florian; Broessner, Gregor; Hackl, Werner; Rhomberg, Paul; Lackner, Peter; Pfausler, Bettina; Thomé, Claudius; Schmutzhard, Erich; Helbok, Raimund

    2015-12-01

    Cerebral edema and delayed cerebral infarction (DCI) are common complications after aneurysmal subarachnoid hemorrhage (aSAH) and associated with poor functional outcome. Experimental data suggest that the amino acid taurine is released into the brain extracellular space secondary to cytotoxic edema and brain tissue hypoxia, and therefore may serve as a biomarker for secondary brain injury after aSAH. On the other hand, neuroprotective mechanisms of taurine treatment have been described in the experimental setting. We analyzed cerebral taurine levels using high-performance liquid chromatography in the brain extracellular fluid of 25 consecutive aSAH patients with multimodal neuromonitoring including cerebral microdialysis (CMD). Patient characteristics and clinical course were prospectively recorded. Associations with CMD-taurine levels were analyzed using generalized estimating equations with an autoregressive process to handle repeated observations within subjects. CMD-taurine levels were highest in the first days after aSAH (11.2 ± 3.2 µM/l) and significantly decreased over time (p taurine levels compared to those without (Wald = 7.3, df = 1, p taurine supplementation and brain extracellular taurine (p = 0.6). Moreover, a significant correlation with brain extracellular glutamate (r = 0.82, p taurine levels were found in patients with brain edema or DCI after aneurysmal subarachnoid hemorrhage. Its value as a potential biomarker deserves further investigation.

  4. Association between cognitive impairments and obsessive-compulsive spectrum presentations following traumatic brain injury.

    Science.gov (United States)

    Rydon-Grange, Michelle; Coetzer, Rudi

    2017-01-02

    This study examined the association between self-reported obsessive-compulsive spectrum symptomatology and cognitive performance in a sample of patients with traumatic brain injury (TBI). Twenty-four adults with a moderate-severe TBI accessing a community brain injury rehabilitation service were recruited. Age ranged between 19 and 69 years. Participants completed a battery of neuropsychological tasks assessing memory, executive functioning, and speed of information processing. Self-report questionnaires assessing obsessive-compulsive (OC) symptoms and obsessive-compulsive personality disorder (OCPD) traits were also completed. Correlational analyses revealed that deficits in cognitive flexibility were associated with greater self-reported OC symptomatology and severity. Greater OC symptom severity was significantly related to poorer performance on a visual memory task. Verbal memory and speed of information processing impairments were unrelated to OC symptoms. Performance on tasks of memory, executive functioning, and speed of information processing were not associated with OCPD traits. Overall, results indicate that greater OC symptomatology and severity were associated with specific neuropsychological functions (i.e., cognitive flexibility, visual memory). OCPD personality traits were unrelated to cognitive performance. Further research is needed to examine the potential causal relationship and longer-term interactions between cognitive sequelae and obsessive-compulsive spectrum presentations post-TBI.

  5. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality.

    Science.gov (United States)

    Jansma, J M; Ramsey, N; Rutten, G J

    2015-12-01

    Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MRI can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on the ratio between left and right brain activity in a specific region associated with language. Nearly all fMRI language studies show language-related activity in both hemispheres, and as a result the LI shows a large range of values. The clinical significance of the variation in language laterality as measured with the LI is still under debate. In this study, we tested two hypotheses in relation to the LI, measured in Broca's region, and it's right hemisphere homologue: 1: the level of activity in Broca's and it's right hemisphere homologue is mirrored for subjects with an equal but opposite LI; 2: the whole brain language activation pattern differs between subjects with an equal but opposite LI. One hundred sixty-three glioma and meningioma patients performed a verb generation task as part of a standard clinical protocol. We calculated the LI in the pars orbitalis, pars triangularis and pars opercularis of the left inferior frontal gyrus, referred to as Broca's region from here on. In our database, 21 patients showed right lateralized activity, with a moderate average level (-0.32). A second group of 21 patients was selected from the remaining group, for equal but opposite LI (0.32). We compared the level and distribution of activity associated with language production in the left and right hemisphere in these two groups. Patients with left sided laterality showed a significantly higher level of activity in Broca's region than the patients with right sided laterality. However, both groups showed no difference in level of activity in Broca's homologue region in the right hemisphere. Also, we did not see any difference in the pattern of activity between patients with left

  6. Pax6 interacts with Iba1 and shows age-associated alterations in brain of aging mice.

    Science.gov (United States)

    Maurya, Shashank Kumar; Mishra, Rajnikant

    2017-07-01

    The Pax6, a transcriptional regulator and multifunctional protein, has been found critical for neurogenesis, neuro-degeneration, mental retardation, neuroendocrine tumors, glioblastoma and astrocytomas. The age-associated alteration in the expression of Pax6 in neuron and glia has also been observed in the immunologically privileged brain. Therefore, it is presumed that Pax6 may modulate brain immunity by activation of microglia either directly interacting with genes or proteins of microglia or indirectly though inflammation associated with neurodegeneration. This report describes evaluation of expression, co-localization and interactions of Pax6 with Ionized binding protein1 (Iba1) in brain of aging mice by Immunohistochemistry, Chromatin Immuno-precipitation (ChIP) and Co-immunoprecipitation (Co-IP), respectively. The co-localization of Pax6 with Iba1 was observed in the cerebellum, cerebral cortex, hippocampus, midbrain and olfactory lobe. The Pax6 and Iba1 also interact physically. The age-dependent alteration in their expression and co-localization were also observed in mice. Results indicate Pax6-dependent activities of Iba1 in the remodelling of microglia during immunological surveillance of the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Association of the interleukin 1 beta gene and brain spontaneous activity in amnestic mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Zhuang Liying

    2012-12-01

    Full Text Available Abstract Purpose The inflammatory response has been associated with the pathogenesis of Alzheimer’s disease (AD. The purpose of this study is to determine whether the rs1143627 polymorphism of the interleukin-1 beta (IL-1β gene moderates functional magnetic resonance imaging (fMRI-measured brain regional activity in amnestic mild cognitive impairment (aMCI. Methods Eighty older participants (47 with aMCI and 33 healthy controls were recruited for this study. All of the participants were genotyped for variant rs1143627 in the IL1B gene and were scanned using resting-state fMRI. Brain activity was assessed by amplitude of low-frequency fluctuation (ALFF. Results aMCI patients had abnormal ALFF in many brain regions, including decreases in the inferior frontal gyrus, the superior temporal lobe and the middle temporal lobe, and increases in the occipital cortex (calcarine, parietal cortex (Pcu and cerebellar cortex. The regions associated with an interaction of group X genotypes of rs1143627 C/T were the parietal cortex (left Pcu, frontal cortex (left superior, middle, and medial gyrus, right anterior cingulum, occipital cortex (left middle lobe, left cuneus and the bilateral posterior lobes of the cerebellum. Regarding the behavioral significance, there were significant correlations between ALFF in different regions of the brain and with the cognitive scores of each genotype group. Conclusions The present study provided evidence that aMCI patients had abnormal ALFF in many brain regions. Specifically, the rs1143627 C/T polymorphism of the IL1B gene may modulate regional spontaneous brain activity in aMCI patients.

  8. Morphology of subcortical brain nuclei is associated with autonomic function in healthy humans.

    Science.gov (United States)

    Ruffle, James K; Coen, Steven J; Giampietro, Vincent; Williams, Steven C R; Apkarian, A Vania; Farmer, Adam D; Aziz, Qasim

    2018-01-01

    The autonomic nervous system (ANS) is a brain body interface which serves to maintain homeostasis by influencing a plethora of physiological processes, including metabolism, cardiorespiratory regulation and nociception. Accumulating evidence suggests that ANS function is disturbed in numerous prevalent clinical disorders, including irritable bowel syndrome and fibromyalgia. While the brain is a central hub for regulating autonomic function, the association between resting autonomic activity and subcortical morphology has not been comprehensively studied and thus was our aim. In 27 healthy subjects [14 male and 13 female; mean age 30 years (range 22-53 years)], we quantified resting ANS function using validated indices of cardiac sympathetic index (CSI) and parasympathetic cardiac vagal tone (CVT). High resolution structural magnetic resonance imaging scans were acquired, and differences in subcortical nuclei shape, that is, 'deformation', contingent on resting ANS activity were investigated. CSI positively correlated with outward deformation of the brainstem, right nucleus accumbens, right amygdala and bilateral pallidum (all thresholded to corrected P right amygdala and pallidum (all thresholded to corrected P Left and right putamen volume positively correlated with CVT (r = 0.62, P = 0.0047 and r = 0.59, P = 0.008, respectively), as did the brainstem (r = 0.46, P = 0.049). These data provide novel evidence that resting autonomic state is associated with differences in the shape and volume of subcortical nuclei. Thus, subcortical morphological brain differences in various disorders may partly be attributable to perturbation in autonomic function. Further work is warranted to investigate these findings in clinical populations. Hum Brain Mapp 39:381-392, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. The associative brain at work

    DEFF Research Database (Denmark)

    Suppa, A.; Quartarone, A.; Siebner, H.

    2017-01-01

    with movement disorders and other neuropsychiatric diseases. The present review covers the physiology, pharmacology, pathology and motor effects of PAS. Further sections of the review focus on new protocols of “modified PAS” and possible future application of PAS in neuromorphic circuits designed for brain...

  10. Supporting the long-term residential care needs of older homeless people with severe alcohol-related brain injury in Australia: the Wicking Project.

    Science.gov (United States)

    Rota-Bartelink, Alice; Lipmann, Bryan

    2007-01-01

    For years, community service providers have been frustrated with the lack in availability of long-term, specialized supported accommodation for older people, particularly older homeless people, with severe acquired brain injury (ABI) and challenging behaviors. Although the incidence of ABI (particularly alcohol-related brain injury) is far wider than being confined to the homeless population, it is frequently misdiagnosed and very often misunderstood Wintringham is an independent welfare company in Melbourne, Australia, that provides secure, affordable, long-term accommodation and high quality services to older homeless people. The high incidence of alcohol abuse among the resident population has led us to adapt our model ofcare to accommodate a complexity of need. However, there are some individuals with severely affected behaviors that continue to challenge Wintringham's capacity to provide adequate support. The deficiency in highly specialized, long-term supported accommodation for older people with severe alcohol-related brain injury (ARBI) is the driving force behind this project. We aim to further develop and improve the current Wintringham model of residential care to better support people with these complex care needs. We will report on the synthesis of this project which aims to test a specialized model that can be reproduced or adapted by other service providers to improve the life circumstances of these frequently forgotten people.

  11. Brain structure and functional connectivity associated with pornography consumption: the brain on porn.

    Science.gov (United States)

    Kühn, Simone; Gallinat, Jürgen

    2014-07-01

    Since pornography appeared on the Internet, the accessibility, affordability, and anonymity of consuming visual sexual stimuli have increased and attracted millions of users. Based on the assumption that pornography consumption bears resemblance with reward-seeking behavior, novelty-seeking behavior, and addictive behavior, we hypothesized alterations of the frontostriatal network in frequent users. To determine whether frequent pornography consumption is associated with the frontostriatal network. In a study conducted at the Max Planck Institute for Human Development in Berlin, Germany, 64 healthy male adults covering a wide range of pornography consumption reported hours of pornography consumption per week. Pornography consumption was associated with neural structure, task-related activation, and functional resting-state connectivity. Gray matter volume of the brain was measured by voxel-based morphometry and resting state functional connectivity was measured on 3-T magnetic resonance imaging scans. We found a significant negative association between reported pornography hours per week and gray matter volume in the right caudate (P < .001, corrected for multiple comparisons) as well as with functional activity during a sexual cue-reactivity paradigm in the left putamen (P < .001). Functional connectivity of the right caudate to the left dorsolateral prefrontal cortex was negatively associated with hours of pornography consumption. The negative association of self-reported pornography consumption with the right striatum (caudate) volume, left striatum (putamen) activation during cue reactivity, and lower functional connectivity of the right caudate to the left dorsolateral prefrontal cortex could reflect change in neural plasticity as a consequence of an intense stimulation of the reward system, together with a lower top-down modulation of prefrontal cortical areas. Alternatively, it could be a precondition that makes pornography consumption more rewarding.

  12. The two-pore domain K+ channel TASK-1 is closely associated with brain barriers and meninges.

    Science.gov (United States)

    Kanjhan, Refik; Pow, David V; Noakes, Peter G; Bellingham, Mark C

    2010-12-01

    Impairment of the blood-brain barrier (BBB), the blood-cerebrospinal fluid (CSF) barrier and brain-CSF barrier has been implicated in neuropathology of several brain disorders, such as amyotrophic lateral sclerosis, cerebral edema, multiple sclerosis, neural inflammation, ischemia and stroke. Two-pore domain weakly inward rectifying K+ channel (TWIK)-related acid-sensitive potassium (TASK)-1 channels (K2p3.1; KCNK3) are among the targets that contribute to the development of these pathologies. For example TASK-1 activity is inhibited by acidification, ischemia, hypoxia and several signaling molecules released under pathologic conditions. We have used immuno-histochemistry to examine the distribution of the TASK-1 protein in structures associated with the BBB, blood-CSF barrier, brain-CSF barrier, and in the meninges of adult rat. Dense TASK-1 immuno-reactivity (TASK-1-IR) was observed in ependymal cells lining the fourth ventricle at the brain-CSF interface, in glial cells that ensheath the walls of blood vessels at the glio-vascular interface, and in the meninges. In these structures, TASK-1-IR often co-localized with glial fibrillary associated protein (GFAP) or vimentin. This study provides anatomical evidence for localization of TASK-1 K+ channels in cells that segregate distinct fluid compartments within and surrounding the brain. We suggest that TASK-1 channels, in coordination with other ion channels (e.g., aquaporins and chloride channels) and transporters (e.g., Na+-K+-ATPase and Na+-K+-2Cl⁻ and by virtue of its heterogeneous distribution, may differentially contribute to the varying levels of K+ vital for cellular function in these compartments. Our findings are likely to be relevant to recently reported roles of TASK-1 in cerebral ischemia, stroke and inflammatory brain disorders.

  13. Sport-related structural brain injury associated with arachnoid cysts: a systematic review and quantitative analysis.

    Science.gov (United States)

    Zuckerman, Scott L; Prather, Colin T; Yengo-Kahn, Aaron M; Solomon, Gary S; Sills, Allen K; Bonfield, Christopher M

    2016-04-01

    OBJECTIVE Arachnoid cysts (ACs) are congenital lesions bordered by an arachnoid membrane. Researchers have postulated that individuals with an AC demonstrate a higher rate of structural brain injury after trauma. Given the potential neurological consequences of a structural brain injury requiring neurosurgical intervention, the authors sought to perform a systematic review of sport-related structural-brain injury associated with ACs with a corresponding quantitative analysis. METHODS Titles and abstracts were searched systematically across the following databases: PubMed, Embase, CINAHL, and PsycINFO. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Peer-reviewed case reports, case series, or observational studies that reported a structural brain injury due to a sport or recreational activity (hereafter referred to as sport-related) with an associated AC were included. Patients were excluded if they did not have an AC, suffered a concussion without structural brain injury, or sustained the injury during a non-sport-related activity (e.g., fall, motor vehicle collision). Descriptive statistical analysis and time to presentation data were summarized. Univariate logistic regression models to assess predictors of neurological deficit, open craniotomy, and cystoperitoneal shunt were completed. RESULTS After an initial search of 994 original articles, 52 studies were found that reported 65 cases of sport-related structural brain injury associated with an AC. The median age at presentation was 16 years (range 4-75 years). Headache was the most common presenting symptom (98%), followed by nausea and vomiting in 49%. Thirteen patients (21%) presented with a neurological deficit, most commonly hemiparesis. Open craniotomy was the most common form of treatment (49%). Bur holes and cyst fenestration were performed in 29 (45%) and 31 (48%) patients, respectively. Seven patients (11%) received

  14. Evolution of brain region volumes during artificial selection for relative brain size.

    Science.gov (United States)

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-12-01

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  15. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    International Nuclear Information System (INIS)

    Ren, Qingguo; Dewan, Sheilesh Kumar; Li, Ming; Li, Jianying; Mao, Dingbiao; Wang, Zhenglei; Hua, Yanqing

    2012-01-01

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI vol ) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique

  16. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qingguo, E-mail: renqg83@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Dewan, Sheilesh Kumar, E-mail: sheilesh_d1@hotmail.com [Department of Geriatrics, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Ming, E-mail: minli77@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Jianying, E-mail: Jianying.Li@med.ge.com [CT Imaging Research Center, GE Healthcare China, Beijing (China); Mao, Dingbiao, E-mail: maodingbiao74@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Wang, Zhenglei, E-mail: Williswang_doc@yahoo.com.cn [Department of Radiology, Shanghai Electricity Hospital, Shanghai 200050 (China); Hua, Yanqing, E-mail: cjr.huayanqing@vip.163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China)

    2012-10-15

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI{sub vol}) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique.

  17. Plasma concentration of prolactin, testosterone might be associated with brain response to visual erotic stimuli in healthy heterosexual males.

    Science.gov (United States)

    Seo, Younghee; Jeong, Bumseok; Kim, Ji-Woong; Choi, Jeewook

    2009-09-01

    Many studies have showed that excess or lack of sexual hormones, such as prolactin and testosterone, induced the sexual dysfunction in humans. Little, however, is known about the role of sexual hormones showing normal range in, especially, the basal state unexposed to any sexual stimulation. We hypothesized sexual hormones in the basal state may affect sexual behavior. We investigated the association of the sexual hormones level in the basal hormonal state before visual sexual stimulation with the sexual response-related brain activity during the stimulation. Twelve heterosexual men were recorded the functional MRI signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Both plasma prolacitn and testosterone concentrations were measured before functional MR scanning. A voxel wise regression analyses were performed to investigate the relationship between the concentration of sexual hormones in basal state and brain activity elicited by ERO minus HA, not food minus nature, contrast. The plasma concentration of prolactin in basal state showed positive association with the activity of the brain involving cognitive component of sexual behavior including the left middle frontal gyrus, paracingulate/superior frontal/anterior cingulate gyri, bilateral parietal lobule, right angular, bilateral precuneus and right cerebellum. Testosterone in basal state was positively associated with the brain activity of the bilateral supplementary motor area which related with motivational component of sexual behavior. Our results suggested sexual hormones in basal state may have their specific target regions or network associated with sexual response.

  18. Creating a human brain proteome atlas--14th HUPO BPP workshop September 20-21, 2010, Sydney, Australia.

    Science.gov (United States)

    Gröttrup, Bernd; Marcus, Katrin; Grinberg, Lea T; Lee, Sang K; Meyer, Helmut E; Park, Young M

    2011-08-01

    The HUPO Brain Proteome Project (HUPO BPP) held its 14th workshop during the HUPO 9th Annual World Congress in Sydney, Australia. The principal aim of this project is to discover prognostic and diagnostic biomarkers associated with neurodegenerative diseases and brain aging, with the ultimate objective of obtaining a better understanding of these conditions and creating roads for the development of novel diagnostic techniques and effective treatments. The attendees came together to discuss progress in the human clinical neuroproteomics and to define the needs and guidelines required for more advanced proteomics approaches. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Visual problems associated with traumatic brain injury.

    Science.gov (United States)

    Armstrong, Richard A

    2018-02-28

    Traumatic brain injury (TBI) and its associated concussion are major causes of disability and death. All ages can be affected but children, young adults and the elderly are particularly susceptible. A decline in mortality has resulted in many more individuals living with a disability caused by TBI including those affecting vision. This review describes: (1) the major clinical and pathological features of TBI; (2) the visual signs and symptoms associated with the disorder; and (3) discusses the assessment of quality of life and visual rehabilitation of the patient. Defects in primary vision such as visual acuity and visual fields, eye movement including vergence, saccadic and smooth pursuit movements, and in more complex aspects of vision involving visual perception, motion vision ('akinopsia'), and visuo-spatial function have all been reported in TBI. Eye movement dysfunction may be an early sign of TBI. Hence, TBI can result in a variety of visual problems, many patients exhibiting multiple visual defects in combination with a decline in overall health. Patients with chronic dysfunction following TBI may require occupational, vestibular, cognitive and other forms of physical therapy. Such patients may also benefit from visual rehabilitation, including reading-related oculomotor training and the prescribing of spectacles with a variety of tints and prism combinations. © 2018 Optometry Australia.

  20. Physical fitness and psychological health in overweight/obese children: A cross-sectional study from the ActiveBrains project.

    Science.gov (United States)

    Rodriguez-Ayllon, M; Cadenas-Sanchez, C; Esteban-Cornejo, I; Migueles, J H; Mora-Gonzalez, J; Henriksson, P; Martín-Matillas, M; Mena-Molina, A; Molina-García, P; Estévez-López, F; Enriquez, G M; Perales, J C; Ruiz, J R; Catena, A; Ortega, F B

    2018-02-01

    To examine the associations of physical fitness (i.e. cardiorespiratory fitness, muscular strength, and speed/agility) with psychological distress and psychological well-being in overweight/obese pre-adolescent children. 110 overweight/obese children (10.0±1.1years old, 61 boys) from the ActiveBrains project (http://profith.ugr.es/activebrains) participated in this cross-sectional study. Physical fitness was evaluated by the ALPHA battery test. Cardiorespiratory fitness was additionally evaluated by a maximal incremental treadmill. Stress was assessed by the Children's Daily Stress Inventory, anxiety by the State-Trait Anxiety Inventory, depression by the Children Depression Inventory, positive affect and negative affect by the Positive and Negative Affect Scale for Children, happiness by the Subjective Happiness Scale, optimism by the Life Orientation Test, and self-esteem by the Rosenberg Self-Esteem questionnaire. Linear regression adjusted for sex and peak height velocity was used to examine associations. Absolute upper-body muscular strength was negatively associated with stress and negative affect (β=-0.246, p=0.047; β=-0.329, p=0.010, respectively). Furthermore, absolute lower-body muscular strength was negatively associated with negative affect (β=-0.301, p=0.029). Cardiorespiratory fitness, expressed by the last completed lap, and relative upper-body muscular strength were positively associated with optimism (β=0.220, p=0.042; β=0.240, p=0.017, respectively). Finally, absolute upper-body muscular strength was positively associated with self-esteem (β=0.362, p=0.003) independently of sex and weight status (p for interactions >0.3), and absolute lower-body muscular strength was also positively associated with self-esteem (β=0.352, p=0.008). Muscular strength was associated with psychological distress (i.e. stress and negative affect) and psychological well-being (i.e. optimism and self-esteem) as well as cardiorespiratory fitness was associated with

  1. Brain structural alterations associated with young women with subthreshold depression.

    Science.gov (United States)

    Li, Haijiang; Wei, Dongtao; Sun, Jiangzhou; Chen, Qunlin; Zhang, Qinglin; Qiu, Jiang

    2015-05-18

    Neuroanatomical abnormalities in patients with major depression disorder (MDD) have been attracted great research attention. However, the structural alterations associated with subthreshold depression (StD) remain unclear and, therefore, require further investigation. In this study, 42 young women with StD, and 30 matched non-depressed controls (NCs) were identified based on two-time Beck Depression Inventory scores. Whole-brain voxel-based morphometry (VBM) and region of interest method were used to investigate altered gray matter volume (GMV) and white matter volume (WMV) among a non-clinical sample of young women with StD. VBM results indicated that young women with StD showed significantly decreased GMV in the right inferior parietal lobule than NCs; increased GMV in the amygdala, posterior cingulate cortex, and precuneus; and increased WMV in the posterior cingulate cortex and precuneus. Together, structural alterations in specific brain regions, which are known to be involved in the fronto-limbic circuits implicated in depression may precede the occurrence of depressive episodes and influence the development of MDD.

  2. Statistical testing and power analysis for brain-wide association study.

    Science.gov (United States)

    Gong, Weikang; Wan, Lin; Lu, Wenlian; Ma, Liang; Cheng, Fan; Cheng, Wei; Grünewald, Stefan; Feng, Jianfeng

    2018-04-05

    The identification of connexel-wise associations, which involves examining functional connectivities between pairwise voxels across the whole brain, is both statistically and computationally challenging. Although such a connexel-wise methodology has recently been adopted by brain-wide association studies (BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and depression, the multiple correction and power analysis methods designed specifically for connexel-wise analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework for connexel-wise significance testing based on the Gaussian random field theory. It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference methods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate and increase statistical power by appropriately utilizing the spatial information of fMRI data. Importantly, our method bypasses the need of non-parametric permutation to correct for multiple comparison, thus, it can efficiently tackle large datasets with high resolution fMRI images. The utility of our method is shown in a case-control study. Our approach can identify altered functional connectivities in a major depression disorder dataset, whereas existing methods fail. A software package is available at https://github.com/weikanggong/BWAS. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A Genome-Wide Association Study Suggests Novel Loci Associated with a Schizophrenia-Related Brain-Based Phenotype.

    Directory of Open Access Journals (Sweden)

    Johanna Hass

    Full Text Available Patients with schizophrenia and their siblings typically show subtle changes of brain structures, such as a reduction of hippocampal volume. Hippocampal volume is heritable, may explain a variety of cognitive symptoms of schizophrenia and is thus considered an intermediate phenotype for this mental illness. The aim of our analyses was to identify single-nucleotide polymorphisms (SNP related to hippocampal volume without making prior assumptions about possible candidate genes. In this study, we combined genetics, imaging and neuropsychological data obtained from the Mind Clinical Imaging Consortium study of schizophrenia (n = 328. A total of 743,591 SNPs were tested for association with hippocampal volume in a genome-wide association study. Gene expression profiles of human hippocampal tissue were investigated for gene regions of significantly associated SNPs. None of the genetic markers reached genome-wide significance. However, six highly correlated SNPs (rs4808611, rs35686037, rs12982178, rs1042178, rs10406920, rs8170 on chromosome 19p13.11, located within or in close proximity to the genes NR2F6, USHBP1, and BABAM1, as well as four SNPs in three other genomic regions (chromosome 1, 2 and 10 had p-values between 6.75×10(-6 and 8.3×10(-7. Using existing data of a very recently published GWAS of hippocampal volume and additional data of a multicentre study in a large cohort of adolescents of European ancestry, we found supporting evidence for our results. Furthermore, allelic differences in rs4808611 and rs8170 were highly associated with differential mRNA expression in the cis-acting region. Associations with memory functioning indicate a possible functional importance of the identified risk variants. Our findings provide new insights into the genetic architecture of a brain structure closely linked to schizophrenia. In silico replication, mRNA expression and cognitive data provide additional support for the relevance of our findings

  4. 77 FR 73366 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Science.gov (United States)

    2012-12-10

    ... mental ``disabilities'' for VA compensation purposes. However, the behavioral, social, and occupational... Diagnosable Illnesses Associated With Traumatic Brain Injury AGENCY: Department of Veterans Affairs. ACTION... Sciences, Institute of Medicine (IOM), Gulf War and Health, Volume 7: Long-Term Consequences of Traumatic...

  5. Prevalence and association of oral candidiasis with dysphagia in individuals with acquired brain injury

    DEFF Research Database (Denmark)

    Odgaard, Lene; Kothari, Mohit

    2017-01-01

    Objective: To describe the prevalence of oral candidiasis (OC) in individuals with acquired brain injury (ABI) and to evaluate the association of OC with improvement in dysphagia. Design: Longitudinal observational study. Methods: Individuals with ABI admitted to rehabilitation were recruited over...

  6. Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis.

    Science.gov (United States)

    Kappus, Natalie; Weinstock-Guttman, Bianca; Hagemeier, Jesper; Kennedy, Cheryl; Melia, Rebecca; Carl, Ellen; Ramasamy, Deepa P; Cherneva, Mariya; Durfee, Jacqueline; Bergsland, Niels; Dwyer, Michael G; Kolb, Channa; Hojnacki, David; Ramanathan, Murali; Zivadinov, Robert

    2016-02-01

    Cardiovascular (CV) risk factors have been associated with changes in clinical outcomes in patients with multiple sclerosis (MS). To investigate the frequency of CV risks in patients with MS and their association with MRI outcomes. In a prospective study, 326 patients with relapsing-remitting MS and 163 patients with progressive MS, 61 patients with clinically isolated syndrome (CIS) and 175 healthy controls (HCs) were screened for CV risks and scanned on a 3T MRI scanner. Examined CV risks included hypertension, heart disease, smoking, overweight/obesity and type 1 diabetes. MRI measures assessed lesion volumes (LVs) and brain atrophy. Association between individual or multiple CV risks and MRI outcomes was examined adjusting for age, sex, race, disease duration and treatment status. Patients with MS showed increased frequency of smoking (51.7% vs 36.5%, p = 0.001) and hypertension (33.9% vs 24.7%, p=0.035) compared with HCs. In total, 49.9% of patients with MS and 36% of HCs showed ≥ 2 CV risks (p = 0.003), while the frequency of ≥ 3 CV risks was 18.8% in the MS group and 8.6% in the HCs group (p = 0.002). In patients with MS, hypertension and heart disease were associated with decreased grey matter (GM) and cortical volumes (p < 0.05), while overweight/obesity was associated with increased T1-LV (p < 0.39) and smoking with decreased whole brain volume (p = 0.049). Increased lateral ventricle volume was associated with heart disease (p = 0.029) in CIS. Patients with MS with one or more CV risks showed increased lesion burden and more advanced brain atrophy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Different brain structures associated with artistic and scientific creativity: a voxel-based morphometry study.

    Science.gov (United States)

    Shi, Baoguo; Cao, Xiaoqing; Chen, Qunlin; Zhuang, Kaixiang; Qiu, Jiang

    2017-02-21

    Creativity is the ability to produce original and valuable ideas or behaviors. In real life, artistic and scientific creativity promoted the development of human civilization; however, to date, no studies have systematically investigated differences in the brain structures responsible for artistic and scientific creativity in a large sample. Using voxel-based morphometry (VBM), this study identified differences in regional gray matter volume (GMV) across the brain between artistic and scientific creativity (assessed by the Creative Achievement Questionnaire) in 356 young, healthy subjects. The results showed that artistic creativity was significantly negatively associated with the regional GMV of the supplementary motor area (SMA) and anterior cingulate cortex (ACC). In contrast, scientific creativity was significantly positively correlated with the regional GMV of the left middle frontal gyrus (MFG) and left inferior occipital gyrus (IOG). Overall, artistic creativity was associated with the salience network (SN), whereas scientific creativity was associated with the executive attention network and semantic processing. These results may provide an effective marker that can be used to predict and evaluate individuals' creative performance in the fields of science and art.

  8. The development of brain systems associated with successful memory retrieval of scenes.

    Science.gov (United States)

    Ofen, Noa; Chai, Xiaoqian J; Schuil, Karen D I; Whitfield-Gabrieli, Susan; Gabrieli, John D E

    2012-07-18

    Neuroanatomical and psychological evidence suggests prolonged maturation of declarative memory systems in the human brain from childhood into young adulthood. Here, we examine functional brain development during successful memory retrieval of scenes in children, adolescents, and young adults ages 8-21 via functional magnetic resonance imaging. Recognition memory improved with age, specifically for accurate identification of studied scenes (hits). Successful retrieval (correct old-new decisions for studied vs unstudied scenes) was associated with activations in frontal, parietal, and medial temporal lobe (MTL) regions. Activations associated with successful retrieval increased with age in left parietal cortex (BA7), bilateral prefrontal, and bilateral caudate regions. In contrast, activations associated with successful retrieval did not change with age in the MTL. Psychophysiological interaction analysis revealed that there were, however, age-relate changes in differential connectivity for successful retrieval between MTL and prefrontal regions. These results suggest that neocortical regions related to attentional or strategic control show the greatest developmental changes for memory retrieval of scenes. Furthermore, these results suggest that functional interactions between MTL and prefrontal regions during memory retrieval also develop into young adulthood. The developmental increase of memory-related activations in frontal and parietal regions for retrieval of scenes and the absence of such an increase in MTL regions parallels what has been observed for memory encoding of scenes.

  9. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    Science.gov (United States)

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined. © 2014 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  10. Altered Associations between Pain Symptoms and Brain Morphometry in the Pain Matrix of HIV-Seropositive Individuals.

    Science.gov (United States)

    Castillo, Deborrah; Ernst, Thomas; Cunningham, Eric; Chang, Linda

    2018-03-01

    Pain remains highly prevalent in HIV-seropositive (HIV+) patients despite their well-suppressed viremia with combined antiretroviral therapy. Investigating brain abnormalities within the pain matrix, and in relation to pain symptoms, in HIV+ participants may provide objective biomarkers and insights regarding their pain symptoms. We used Patient-Reported Outcome Measurement Information System (PROMIS®) pain questionnaire to evaluate pain symptoms (pain intensity, pain interference and pain behavior), and structural MRI to assess brain morphometry using FreeSurfer (cortical area, cortical thickness and subcortical volumes were evaluated in 12 regions within the pain matrix). Compared to seronegative (SN) controls, HIV+ participants had smaller surface areas in prefrontal pars triangularis (right: p = 0.04, left: p = 0.007) and right anterior cingulate cortex (p = 0.03) and smaller subcortical regions (thalamus: p ≤ 0.003 bilaterally; right putamen: p = 0.01), as well as higher pain scores (pain intensity-p = 0.005; pain interference-p = 0.008; pain-behavior-p = 0.04). Furthermore, higher pain scores were associated with larger cortical areas, thinner cortices and larger subcortical volumes in HIV+ participants; but smaller cortical areas, thicker cortices and smaller subcortical volumes in SN controls (interaction-p = 0.009 to p = 0.04). These group differences in the pain-associated brain abnormalities suggest that HIV+ individuals have abnormal pain responses. Since these abnormal pain-associated brain regions belong to the affective component of the pain matrix, affective symptoms may influence pain perception in HIV+ patients and should be treated along with their physical pain symptoms. Lastly, associations of lower pain scores with better physical or mental health scores, regardless of HIV-serostatus (p < 0.001), suggest adequate pain treatment would lead to better quality of life in all participants.

  11. Structural brain abnormalities in a single gene disorder associated with epilepsy, language impairment and intellectual disability

    Directory of Open Access Journals (Sweden)

    Joe Bathelt

    2016-01-01

    Full Text Available Childhood speech and language deficits are highly prevalent and are a common feature of neurodevelopmental disorders. However, it is difficult to investigate the underlying causal pathways because many diagnostic groups have a heterogeneous aetiology. Studying disorders with a shared genetic cause and shared cognitive deficits can provide crucial insight into the cellular mechanisms and neural systems that give rise to those impairments. The current study investigated structural brain differences of individuals with mutations in ZDHHC9, which is associated with a specific neurodevelopmental phenotype including prominent speech and language impairments and intellectual disability. We used multiple structural neuroimaging methods to characterise neuroanatomy in this group, and observed bilateral reductions in cortical thickness in areas surrounding the temporo-parietal junction, parietal lobule, and inferior frontal lobe, and decreased microstructural integrity of cortical, subcortical-cortical, and interhemispheric white matter projections. These findings are compared to reports for other genetic groups and genetically heterogeneous disorders with a similar presentation. Overlap in the neuroanatomical phenotype suggests a common pathway that particularly affects the development of temporo-parietal and inferior frontal areas, and their connections.

  12. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children

    International Nuclear Information System (INIS)

    Lind, Annika; Parkkola, Riitta; Lehtonen, Liisa; Maunu, Jonna; Lapinleimu, Helena; Munck, Petriina; Haataja, Leena

    2011-01-01

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children. (orig.)

  13. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Annika [Turku University Hospital, Department of Pediatrics, Turku (Finland); Aabo Akademi University, Department of Psychology, Turku (Finland); Parkkola, Riitta [University of Turku and Turku University Hospital, Department of Radiology and Turku PET Center, PO Box 52, Turku (Finland); Lehtonen, Liisa; Maunu, Jonna; Lapinleimu, Helena [University of Turku and Turku University Hospital, Department of Pediatrics, Turku (Finland); Munck, Petriina [Turku University Hospital, Department of Pediatrics, Turku (Finland); University of Turku, Department of Psychology, Turku (Finland); Haataja, Leena [University of Turku and Turku University Hospital, Department of Pediatric Neurology, Turku (Finland)

    2011-08-15

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children. (orig.)

  14. Plasma Concentration of Prolactin, Testosterone Might Be Associated with Brain Response to Visual Erotic Stimuli in Healthy Heterosexual Males

    Science.gov (United States)

    Seo, Younghee; Kim, Ji-Woong; Choi, Jeewook

    2009-01-01

    Objective Many studies have showed that excess or lack of sexual hormones, such as prolactin and testosterone, induced the sexual dysfunction in humans. Little, however, is known about the role of sexual hormones showing normal range in, especially, the basal state unexposed to any sexual stimulation. We hypothesized sexual hormones in the basal state may affect sexual behavior. Methods We investigated the association of the sexual hormones level in the basal hormonal state before visual sexual stimulation with the sexual response-related brain activity during the stimulation. Twelve heterosexual men were recorded the functional MRI signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Both plasma prolacitn and testosterone concentrations were measured before functional MR scanning. A voxel wise regression analyses were performed to investigate the relationship between the concentration of sexual hormones in basal state and brain activity elicited by ERO minus HA, not food minus nature, contrast. Results The plasma concentration of prolactin in basal state showed positive association with the activity of the brain involving cognitive component of sexual behavior including the left middle frontal gyrus, paracingulate/superior frontal/anterior cingulate gyri, bilateral parietal lobule, right angular, bilateral precuneus and right cerebellum. Testosterone in basal state was positively associated with the brain activity of the bilateral supplementary motor area which related with motivational component of sexual behavior. Conclusion Our results suggested sexual hormones in basal state may have their specific target regions or network associated with sexual response. PMID:20046395

  15. Project Career: An individualized postsecondary approach to promoting independence, functioning, and employment success among students with traumatic brain injuries.

    Science.gov (United States)

    Minton, Deborah; Elias, Eileen; Rumrill, Phillip; Hendricks, Deborah J; Jacobs, Karen; Leopold, Anne; Nardone, Amanda; Sampson, Elaine; Scherer, Marcia; Gee Cormier, Aundrea; Taylor, Aiyana; DeLatte, Caitlin

    2017-09-14

    Project Career is a five-year interdisciplinary demonstration project funded by NIDILRR. It provides technology-driven supports, merging Cognitive Support Technology (CST) evidence-based practices and rehabilitation counseling, to improve postsecondary and employment outcomes for veteran and civilian undergraduate students with traumatic brain injury (TBI). Provide a technology-driven individualized support program to improve career and employment outcomes for students with TBI. Project staff provide assessments of students' needs relative to assistive technology, academic achievement, and career preparation; provide CST training to 150 students; match students with mentors; provide vocational case management; deliver job development and placement assistance; and maintain an electronic portal regarding accommodation and career resources. Participating students receive cognitive support technology training, academic enrichment, and career preparatory assistance from trained professionals at three implementation sites. Staff address cognitive challenges using the 'Matching Person with Technology' assessment to accommodate CST use (iPad and selected applications (apps)). JBS International (JBS) provides the project's evaluation. To date, 117 students participate with 63% report improved life quality and 75% report improved academic performance. Project Career provides a national model based on best practices for enabling postsecondary students with TBI to attain academic, employment, and career goals.

  16. Resilience of developing brain networks to interictal epileptiform discharges is associated with cognitive outcome.

    Science.gov (United States)

    Ibrahim, George M; Cassel, Daniel; Morgan, Benjamin R; Smith, Mary Lou; Otsubo, Hiroshi; Ochi, Ayako; Taylor, Margot; Rutka, James T; Snead, O Carter; Doesburg, Sam

    2014-10-01

    The effects of interictal epileptiform discharges on neurocognitive development in children with medically-intractable epilepsy are poorly understood. Such discharges may have a deleterious effect on the brain's intrinsic connectivity networks, which reflect the organization of functional networks at rest, and in turn on neurocognitive development. Using a combined functional magnetic resonance imaging-magnetoencephalography approach, we examine the effects of interictal epileptiform discharges on intrinsic connectivity networks and neurocognitive outcome. Functional magnetic resonance imaging was used to determine the location of regions comprising various intrinsic connectivity networks in 26 children (7-17 years), and magnetoencephalography data were reconstructed from these locations. Inter-regional phase synchronization was then calculated across interictal epileptiform discharges and graph theoretical analysis was applied to measure event-related changes in network topology in the peri-discharge period. The magnitude of change in network topology (network resilience/vulnerability) to interictal epileptiform discharges was associated with neurocognitive outcomes and functional magnetic resonance imaging networks using dual regression. Three main findings are reported: (i) large-scale network changes precede and follow interictal epileptiform discharges; (ii) the resilience of network topologies to interictal discharges is associated with stronger resting-state network connectivity; and (iii) vulnerability to interictal discharges is associated with worse neurocognitive outcomes. By combining the spatial resolution of functional magnetic resonance imaging with the temporal resolution of magnetoencephalography, we describe the effects of interictal epileptiform discharges on neurophysiological synchrony in intrinsic connectivity networks and establish the impact of interictal disruption of functional networks on cognitive outcome in children with epilepsy. The

  17. Factors Associated With Proximal Intracranial Aneurysms to Brain Arteriovenous Malformations: A Prospective Cohort Study.

    Science.gov (United States)

    Morgan, Michael Kerin; Alsahli, Khalid; Wiedmann, Markus; Assaad, Nazih N; Heller, Gillian Z

    2016-06-01

    The risk of hemorrhage from a brain arteriovenous malformation (bAVM) is increased when an associated proximal intracranial aneurysm (APIA) is present. Identifying factors that are associated with APIA may influence the prediction of hemorrhage in patients with bAVM. To identify patient- and bAVM-specific factors associated with APIA. We analyzed a prospective database of bAVMs for factors associated with the presence of APIA. Factors analyzed included age, sex, bAVM size, aneurysm size, circulation contributing to the bAVM, location of the aneurysm, deep venous drainage, and Spetzler-Ponce categories. Multiple logistic regression was performed to identify an association with APIA. Of 753 cases of bAVM with complete angiographic surveillance, 67 (9%) were found to have APIA. Older age (continuous variable; odds ratio, 1.04; 95% confidence interval, 1.02-1.05) and posterior circulation supply to the bAVM (odds ratio, 2.29; 95% confidence interval, 1.32-3.99) were factors associated with increased detection of APIA. The association of posterior circulation-supplied bAVM was not due to infratentorial bAVM location because 72% of posterior circulation APIAs were supplying supratentorial bAVM. APIAs appear to develop with time, as evident from the increased age for those with APIAs. Furthermore, they were more likely present in bAVMs supplied by the posterior circulation. This may be due to a difference in hemodynamic stress. APIA, associated proximal intracranial aneurysmbAVM, brain arteriovenous malformationDSA, digital subtraction angiographySMG, Spetzler-Martin gradeSPC, Spetzler-Ponce category.

  18. Brain norepinephrine identified by mass spectrometry is associated with reproductive status of females of the linden bug Pyrrhocoris apterus

    Czech Academy of Sciences Publication Activity Database

    Chvalová, D.; Zdechovanová, Lenka; Vaněčková, Hana; Hodková, Magdalena

    2014-01-01

    Roč. 168, č. 1 (2014), s. 70-75 ISSN 1096-4959 R&D Projects: GA ČR GAP502/10/1612 Institutional support: RVO:60077344 Keywords : adult diapause * brain complex * dopamine Subject RIV: ED - Physiology Impact factor: 1.551, year: 2014 http://www.sciencedirect.com/science/article/pii/S1096495913001796

  19. Training of verbal creativity modulates brain activity in regions associated with language- and memory-related demands.

    Science.gov (United States)

    Fink, Andreas; Benedek, Mathias; Koschutnig, Karl; Pirker, Eva; Berger, Elisabeth; Meister, Sabrina; Neubauer, Aljoscha C; Papousek, Ilona; Weiss, Elisabeth M

    2015-10-01

    This functional magnetic resonance (fMRI) study was designed to investigate changes in functional patterns of brain activity during creative ideation as a result of a computerized, 3-week verbal creativity training. The training was composed of various verbal divergent thinking exercises requiring participants to train approximately 20 min per day. Fifty-three participants were tested three times (psychometric tests and fMRI assessment) with an intertest-interval of 4 weeks each. Participants were randomly assigned to two different training groups, which received the training time-delayed: The first training group was trained between the first and the second test, while the second group accomplished the training between the second and the third test session. At the behavioral level, only one training group showed improvements in different facets of verbal creativity right after the training. Yet, functional patterns of brain activity during creative ideation were strikingly similar across both training groups. Whole-brain voxel-wise analyses (along with supplementary region of interest analyses) revealed that the training was associated with activity changes in well-known creativity-related brain regions such as the left inferior parietal cortex and the left middle temporal gyrus, which have been shown as being particularly sensitive to the originality facet of creativity in previous research. Taken together, this study demonstrates that continuous engagement in a specific complex cognitive task like divergent thinking is associated with reliable changes of activity patterns in relevant brain areas, suggesting more effective search, retrieval, and integration from internal memory representations as a result of the training. © 2015 Wiley Periodicals, Inc.

  20. Volumetric analysis of day of injury computed tomography is associated with rehabilitation outcomes after traumatic brain injury

    Science.gov (United States)

    Majercik, Sarah; Bledsoe, Joseph; Ryser, David; Hopkins, Ramona O.; Fair, Joseph E.; Frost, R. Brock; MacDonald, Joel; Barrett, Ryan; Horn, Susan; Pisani, David; Bigler, Erin D.; Gardner, Scott; Stevens, Mark; Larson, Michael J.

    2016-01-01

    Introduction Day-of-injury (DOI) brain lesion volumes in traumatic brain injury (TBI) patients are rarely used to predict long-term outcomes in the acute setting. The purpose of this study was to investigate the relationship between acute brain injury lesion volume and rehabilitation outcomes in patients with TBI at a Level One Trauma Center. Methods Patients with TBI who were admitted to our rehabilitation unit after the acute care trauma service from February 2009-July 2011 were eligible for the study. Demographic data and outcome variables including cognitive and motor FIM scores, length of stay (LOS) in the rehabilitation unit, and ability to return to home were obtained. DOI quantitative injury lesion volumes and degree of midline shift were obtained from day-of-injury (DOI) brain computed tomography (CT) scans. A multiple step-wise regression model including 13 independent variables was created. This model was used to predict post-rehabilitation outcomes, including FIM scores and ability to return to home. PInjury Severity Score 24.7±9.9, and head Abbreviated Injury Scale score 3.73±0.97. Acute hospital length of stay (LOS) was 12.3±8.9 days and rehabilitation LOS was 15.9±9.3 days. Day-of-injury TBI lesion volumes were inversely associated with cognitive FIM scores at rehabilitation admission (p=0.004) and discharge (p=0.004) and inversely associated with ability to be discharged to home after rehabilitation (p=0.006). Conclusion In a cohort of patients with moderate to severe TBI requiring a rehabilitation unit stay after the acute care hospital stay, DOI brain injury lesion volumes are associated with worse cognitive FIM scores at the time of rehabilitation admission and discharge. Smaller injury volumes were associated with eventual discharge to home. Volumetric neuroimaging in the acute injury phase may improve surgeons’ ultimate outcome predictions in TBI patients. Level of Evidence/Study Type Level V, case series, Prognostic/Epidemiological PMID

  1. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas.

    Science.gov (United States)

    Kuan, Leonard; Li, Yang; Lau, Chris; Feng, David; Bernard, Amy; Sunkin, Susan M; Zeng, Hongkui; Dang, Chinh; Hawrylycz, Michael; Ng, Lydia

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. Anatomical trajectories throughout the brain were mapped into a common 3D space using a standardized platform to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. This connectivity atlas has several desirable features, including brain-wide coverage, validated and versatile experimental techniques, a single standardized data format, a quantifiable and integrated neuroinformatics resource, and an open-access public online database (http://connectivity.brain-map.org/). Meaningful informatics data quantification and comparison is key to effective use and interpretation of connectome data. This relies on successful definition of a high fidelity atlas template and framework, mapping precision of raw data sets into the 3D reference framework, accurate signal detection and quantitative connection strength algorithms, and effective presentation in an integrated online application. Here we describe key informatics pipeline steps in the creation of the Allen Mouse Brain Connectivity Atlas and include basic application use cases. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Food functionality research as a new national project in special reference to improvement of cognitive and locomotive abilities.

    Science.gov (United States)

    Abe, Keiko; Misaka, Takumi

    2018-04-01

    In Japan, where a super-aging society is realized, we are most concerned about healthy longevity, which would ascertain the wellness of people by improving their quality of life (QOL). In 2014, the Cabinet Office proposed a strategic innovation promotion programme, launching a national project for the development of the agricultural-forestry-fisheries food products with new functionalities for the next generation. In addition to focusing on a conventional prevention of lifestyle-associated metabolic syndromes, the project targets the scientific evidence of the activation of brain cognitive ability and the improvement of bodily locomotive function. The project also involves the analysis of the foods-sports interrelation of chronic importance, and the development of devices for the verification of QOL-associated maintenance of homeostasis. In this review, we provide an overview of these studies, with special reference to cognition as a case of the gut-brain axis which the author is particularly interested in.

  3. Validation of new 3D post processing algorithm for improved maximum intensity projections of MR angiography acquisitions in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Bosmans, H; Verbeeck, R; Vandermeulen, D; Suetens, P; Wilms, G; Maaly, M; Marchal, G; Baert, A L [Louvain Univ. (Belgium)

    1995-12-01

    The objective of this study was to validate a new post processing algorithm for improved maximum intensity projections (mip) of intracranial MR angiography acquisitions. The core of the post processing procedure is a new brain segmentation algorithm. Two seed areas, background and brain, are automatically detected. A 3D region grower then grows both regions towards each other and this preferentially towards white regions. In this way, the skin gets included into the final `background region` whereas cortical blood vessels and all brain tissues are included in the `brain region`. The latter region is then used for mip. The algorithm runs less than 30 minutes on a full dataset on a Unix workstation. Images from different acquisition strategies including multiple overlapping thin slab acquisition, magnetization transfer (MT) MRA, Gd-DTPA enhanced MRA, normal and high resolution acquisitions and acquisitions from mid field and high field systems were filtered. A series of contrast enhanced MRA acquisitions obtained with identical parameters was filtered to study the robustness of the filter parameters. In all cases, only a minimal manual interaction was necessary to segment the brain. The quality of the mip was significantly improved, especially in post Gd-DTPA acquisitions or using MT, due to the absence of high intensity signals of skin, sinuses and eyes that otherwise superimpose on the angiograms. It is concluded that the filter is a robust technique to improve the quality of MR angiograms.

  4. Validation of new 3D post processing algorithm for improved maximum intensity projections of MR angiography acquisitions in the brain

    International Nuclear Information System (INIS)

    Bosmans, H.; Verbeeck, R.; Vandermeulen, D.; Suetens, P.; Wilms, G.; Maaly, M.; Marchal, G.; Baert, A.L.

    1995-01-01

    The objective of this study was to validate a new post processing algorithm for improved maximum intensity projections (mip) of intracranial MR angiography acquisitions. The core of the post processing procedure is a new brain segmentation algorithm. Two seed areas, background and brain, are automatically detected. A 3D region grower then grows both regions towards each other and this preferentially towards white regions. In this way, the skin gets included into the final 'background region' whereas cortical blood vessels and all brain tissues are included in the 'brain region'. The latter region is then used for mip. The algorithm runs less than 30 minutes on a full dataset on a Unix workstation. Images from different acquisition strategies including multiple overlapping thin slab acquisition, magnetization transfer (MT) MRA, Gd-DTPA enhanced MRA, normal and high resolution acquisitions and acquisitions from mid field and high field systems were filtered. A series of contrast enhanced MRA acquisitions obtained with identical parameters was filtered to study the robustness of the filter parameters. In all cases, only a minimal manual interaction was necessary to segment the brain. The quality of the mip was significantly improved, especially in post Gd-DTPA acquisitions or using MT, due to the absence of high intensity signals of skin, sinuses and eyes that otherwise superimpose on the angiograms. It is concluded that the filter is a robust technique to improve the quality of MR angiograms

  5. THE ROLE OF MULTIDRUG RESISTANCE ASSOCIATED PROTEIN (MRP) IN THE BLOOD-BRAIN BARRIER AND OPIOID ANALGESIA

    Science.gov (United States)

    Su, Wendy; Pasternak, Gavril W.

    2013-01-01

    The blood brain barrier protects the brain from circulating compounds and drugs. The ATP-binding cassette (ABC) transporter P-glycoprotein (Pgp) is involved with the barrier, both preventing the influx of agent from the blood into the brain and facilitating the efflux of compounds from the brain into the blood, raising the possibility of a similar role for other transporters. Multidrug resistance associated protein (MRP), a 190 kDa protein similar to Pgp is also ABC transport that has been implicated in the blood brain barrier. The current study explores its role in opioid action. Immunohistochemically, it is localized in the choroid plexus in ratsand can be selectively downregulated by antisense treatment at both the level of mRNA, as shown by RT-PCR, and protein, as demonstrated immunohistochemically. Behaviorally, downregulation of MRP significantly enhances the analgesic potency of systemic morphine in MRP knockout mice and in antisense-treated rats by lowering the blood brain barrier. Following intracerebroventricular administration, a number of compounds, including some opioids, are rapidly secreted from the brain into the blood where they contribute to the overall analgesic effects by activating peripheral systems. MRP plays a role in this efflux. Downregulating MRP expression leads to a corresponding decrease in the transport and a diminished analgesic response from opioids administered intracerebroventricularly. Thus, the transporter protein MRP plays a role in maintaining the blood-brain barrier and modulates the activity of opioids. PMID:23508590

  6. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions

    DEFF Research Database (Denmark)

    Thut, Gregor; Bergmann, Til Ole; Fröhlich, Flavio

    2017-01-01

    of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online...... and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned......Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension...

  7. Polycystic brain (cerebrum polycystica vera) associated with ectodermal dysplasia: a new neurocutaneous syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Sener, R.N. (Dept. of Radiology, Ege Univ. Hospital, Izmir (Turkey))

    1994-04-01

    This paper presents a unique case of true polycystic brain in which multiple cysts of curvilinear, round, oval, or layered configuration occurred. These apparently represented extremely dilated Virchow-Robin spaces: the perivascular spaces lined by ependymal/leptomeningeal cells. Irregular retinal pigment epithelium was also evident. In addition, the patient showed ectodermal dysplasia manifesting as thin hair, dystrophic nails, and dental abnormalities. A common ectodermal origin for the brain cysts and the ectodermal changes is proposed, as it is known that the central nervous system (including the ependymal/leptomeningeal cells and the retinal cells), the epidermis (including hair and nails), and the enamel of the teeth have the same origin - the embryonic ectoderm. This association appears to be a new, distinct neurocutaneous syndrome. (orig.)

  8. Polycystic brain (cerebrum polycystica vera) associated with ectodermal dysplasia: a new neurocutaneous syndrome

    International Nuclear Information System (INIS)

    Sener, R.N.

    1994-01-01

    This paper presents a unique case of true polycystic brain in which multiple cysts of curvilinear, round, oval, or layered configuration occurred. These apparently represented extremely dilated Virchow-Robin spaces: the perivascular spaces lined by ependymal/leptomeningeal cells. Irregular retinal pigment epithelium was also evident. In addition, the patient showed ectodermal dysplasia manifesting as thin hair, dystrophic nails, and dental abnormalities. A common ectodermal origin for the brain cysts and the ectodermal changes is proposed, as it is known that the central nervous system (including the ependymal/leptomeningeal cells and the retinal cells), the epidermis (including hair and nails), and the enamel of the teeth have the same origin - the embryonic ectoderm. This association appears to be a new, distinct neurocutaneous syndrome. (orig.)

  9. Association between resting-state brain network topological organization and creative ability: Evidence from a multiple linear regression model.

    Science.gov (United States)

    Jiao, Bingqing; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Li, Junchao; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Huang, Ruiwang; Liu, Ming

    2017-10-01

    Previous studies have indicated a tight linkage between resting-state functional connectivity of the human brain and creative ability. This study aimed to further investigate the association between the topological organization of resting-state brain networks and creativity. Therefore, we acquired resting-state fMRI data from 22 high-creativity participants and 22 low-creativity participants (as determined by their Torrance Tests of Creative Thinking scores). We then constructed functional brain networks for each participant and assessed group differences in network topological properties before exploring the relationships between respective network topological properties and creative ability. We identified an optimized organization of intrinsic brain networks in both groups. However, compared with low-creativity participants, high-creativity participants exhibited increased global efficiency and substantially decreased path length, suggesting increased efficiency of information transmission across brain networks in creative individuals. Using a multiple linear regression model, we further demonstrated that regional functional integration properties (i.e., the betweenness centrality and global efficiency) of brain networks, particularly the default mode network (DMN) and sensorimotor network (SMN), significantly predicted the individual differences in creative ability. Furthermore, the associations between network regional properties and creative performance were creativity-level dependent, where the difference in the resource control component may be important in explaining individual difference in creative performance. These findings provide novel insights into the neural substrate of creativity and may facilitate objective identification of creative ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children.

    Science.gov (United States)

    Lind, Annika; Parkkola, Riitta; Lehtonen, Liisa; Munck, Petriina; Maunu, Jonna; Lapinleimu, Helena; Haataja, Leena

    2011-08-01

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children.

  11. Brain Activities Associated with Graphic Emoticons: An fMRI Study

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe the brain activities that are associated with graphic emoticons by using functional MRI (fMRI). We use various types of faces from abstract to photorealistic in computer network applications. A graphics emoticon is an abstract face in communication over computer network. In this research, we created various graphic emoticons for the fMRI study and the graphic emoticons were classified according to friendliness and level of arousal. We investigated the brain activities of participants who were required to evaluate the emotional valence of the graphic emoticons (happy or sad). The experimental results showed that not only the right inferior frontal gyrus and the cingulate gyrus, but also the inferior and middle temporal gyrus and the fusiform gyrus, were found to be activated during the experiment. Forthermore, it is possible that the activation of the right inferior frontal gyrus and the cingulate gyrus is related to the type of abstract face. Since the inferior and middle temporal gyrus were activated, even though the graphic emoticons are static, we may perceive graphic emoticons as dynamic and living agents. Moreover, it is believed that text and graphics emoticons play an important role in enriching communication among users.

  12. Early brain response to low-dose radiation exposure involves molecular networks and pathways associated with cognitive functions, advanced aging and Alzheimer's disease.

    Science.gov (United States)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J

    2009-01-01

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease.

  13. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    International Nuclear Information System (INIS)

    Lowe, Xiu R.; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-01-01

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p -53 ) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease

  14. Genome-wide association studies of mri-defined brain infarcts: Meta-analysis from the charge consortium

    NARCIS (Netherlands)

    S. Debette (Stéphanie); J.C. Bis (Joshua); M. Fornage (Myriam); H.A. Schmid (Herbert); M.A. Ikram (Arfan); S. Sigurdsson (Stefan); G. Heiss (Gerardo); M.V. Struchalin (Maksim); A.V. Smith (Albert Vernon); A. van der Lugt (Aad); C. DeCarli (Charles); T. Lumley (Thomas); D.S. Knopman (David); C. Enzinger (Christian); G. Eiriksdottir (Gudny); P.J. Koudstaal (Peter Jan); A.L. DeStefano (Anita); B.M. Psaty (Bruce); C. Dufouil (Carole); D.J. Catellier (Diane); F. Fazekas (Franz); T. Aspelund (Thor); Y.S. Aulchenko (Yurii); A. Beiser (Alexa); J.I. Rotter (Jerome); C. Tzourio (Christophe); D.K. Shibata (Dean); M. Tscherner (Maria); T.B. Harris (Tamara); F. Rivadeneira Ramirez (Fernando); L.D. Atwood (Larry); K. Rice (Kenneth); R.F. Gottesman (Rebecca); M.A. van Buchem (Mark); A.G. Uitterlinden (André); M. Kelly-Hayes (Margaret); M. Cushman (Mary Ann); Y. Zhu (Yicheng); E.A. Boerwinkle (Eric); V. Gudnason (Vilmundur); A. Hofman (Albert); J.R. Romero (Jose Rafael); M.M.B. Breteler (Monique); R. Schmidt (Reinhold); L.J. Launer (Lenore); W.T. Longstreth Jr

    2010-01-01

    textabstractBackground and Purpose-Previous studies examining genetic associations with MRI-defined brain infarct have yielded inconsistent findings. We investigated genetic variation underlying covert MRI infarct in persons without histories of transient ischemic attack or stroke. We performed

  15. The Additional Detrimental Effects of Cold Preservation on Transplantation-Associated Injury in Kidneys from Living and Brain-Dead Donor Rats

    NARCIS (Netherlands)

    Hoeger, Simone; Petrov, Kiril; Reisenbuechler, Anke; Fontana, Johann; Selhorst, Jochen; Hanusch, Christine; Beck, Grietje; Seelen, Marc A.; van Son, Willem J.; Waldherr, Ruediger; Schnuelle, Peter; Yard, Benito A.

    2009-01-01

    Background. Brain death and cold preservation are major alloantigen-independent risk factors for transplantation Outcome. The present study was conducted to assess the influence of these factors on transplantation-associated injury independently or in combination. Methods. Brain death was induced in

  16. Modulatory Effect of Association of Brain Stimulation by Light and Binaural Beats in Specific Brain Waves.

    Science.gov (United States)

    Calomeni, Mauricio Rocha; Furtado da Silva, Vernon; Velasques, Bruna Brandão; Feijó, Olavo Guimarães; Bittencourt, Juliana Marques; Ribeiro de Souza E Silva, Alair Pedro

    2017-01-01

    One of the positive effects of brain stimulation is interhemispheric modulation as shown in some scientific studies. This study examined if a type of noninvasive stimulation using binaural beats with led-lights and sound would show different modulatory effects upon Alfa and SMR brain waves of elderlies and children with some disease types. The sample included 75 individuals of both genders, being, randomly, divided in 6 groups. Groups were named elderly without dementia diagnosis (EWD), n=15, 76±8 years, elderly diagnosed with Parkinson's disease (EDP), n=15, 72±7 years, elderly diagnosed with Alzheimer's disease (EDA), n=15, 81±6 years. The other groups were named children with Autism (CA), n=10, 11±4 years, children with Intellectual Impairment (CII), n=10, 12 ±5 years and children with normal cognitive development (CND), n=10, 11±4 years. Instruments were the Mini Mental State Examination Test (MMSE), EEG-Neurocomputer instrument for brain waves registration, brain stimulator, Digit Span Test and a Protocol for working memory training. Data collection followed a pre and post-conjugated stimulation version. The results of the inferential statistics showed that the stimulation protocol had different effects on Alpha and SMR brain waves of the patients. Also, indicated gains in memory functions, for both, children and elderlies as related to gains in brain waves modulation. The results may receive and provide support to a range of studies examining brain modulation and synaptic plasticity. Also, it was emphasized in the results discussion that there was the possibility of the technique serving as an accessory instrument to alternative brain therapies.

  17. The brain and the biology of belief: An interview with Andrew Newberg, MD. Interview by Nancy Nachman-Hunt.

    Science.gov (United States)

    Newberg, Andrew

    2009-01-01

    Andrew Newberg, MD, is an associate professor in the Department of Radiology, Division of Nuclear Medicine, at the Hospital of the University of Pennsylvania, Philadelphia, with secondary appointments in the Departments of Psychiatry and Religious Studies. He is actively involved in neuroimaging research projects, including the study of the neurophysiological correlates of meditation and other types of complementary therapies. Dr Newberg's research now largely focuses on how brain function is associated with various mental states, in particular, the relationship between brain function and mystical or religious experiences. He has authored several books, including Why God Won't Go Away: Brain Science and the Biology of Belief (Ballantine/Random House, 2001) and coauthor with Eugene G. d'Aquili, MD, of The Mystical Mind: Probing the Biology of Religious Experience (Fortress Press, 1999). His most recent book is How God Changes Your Brain, with coauthor Mark Waldman (Ballantine Books, 2009).

  18. Patient Effort in Traumatic Brain Injury Inpatient Rehabilitation: Course and Associations With Age, Brain Injury Severity, and Time Postinjury

    Science.gov (United States)

    Seel, Ronald T.; Corrigan, John D.; Dijkers, Marcel P.; Barrett, Ryan S.; Bogner, Jennifer; Smout, Randall J.; Garmoe, William; Horn, Susan D.

    2016-01-01

    Objective To describe patients' level of effort in occupational, physical, and speech therapy sessions during traumatic brain injury (TBI) inpatient rehabilitation and to evaluate how age, injury severity, cognitive impairment, and time are associated with effort. Design Prospective, multicenter, longitudinal cohort study. Setting Acute TBI rehabilitation programs. Participants Patients (N=1946) receiving 138,555 therapy sessions. Interventions Not applicable. Main Outcome Measures Effort in rehabilitation sessions rated on the Rehabilitation Intensity of Therapy Scale, FIM, Comprehensive Severity Index brain injury severity score, posttraumatic amnesia (PTA), and Agitated Behavior Scale (ABS). Results The Rehabilitation Intensity of Therapy Scale effort ratings in individual therapy sessions closely conformed to a normative distribution for all 3 disciplines. Mean Rehabilitation Intensity of Therapy Scale ratings for patients' therapy sessions were higher in the discharge week than in the admission week (Prehabilitation, differences in effort ratings (Pcognitive scores and over time. In linear mixed-effects modeling, age and Comprehensive Severity Index brain injury severity score at admission, days from injury to rehabilitation admission, days from admission, and daily ratings of PTA and ABS score were predictors of level of effort (Prehabilitation setting using the Rehabilitation Intensity of Therapy Scale. Patients who sustain TBI show varying levels of effort in rehabilitation therapy sessions, with effort tending to increase over the stay. PTA and agitated behavior are primary risk factors that substantially reduce patient effort in therapies. PMID:26212400

  19. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus

    Science.gov (United States)

    Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 ...

  20. A review on functional and structural brain connectivity in numerical cognition

    Directory of Open Access Journals (Sweden)

    Korbinian eMoeller

    2015-05-01

    Full Text Available Only recently has the complex anatomo-functional system underlying numerical cognition become accessible to evaluation in the living brain. We identified 26 studies investigating brain connectivity in numerical cognition. Despite considerable heterogeneity regarding methodological approaches, populations investigated, and assessment procedures implemented, the results provided largely converging evidence regarding the underlying brain connectivity involved in numerical cognition. Analyses of both functional/effective as well as structural connectivity have consistently corroborated the assumption that numerical cognition is subserved by a fronto-parietal network including (intraparietal as well as (prefrontal cortex sites. Evaluation of structural connectivity has indicated the involvement of fronto-parietal association fibers encompassing the superior longitudinal fasciculus dorsally and the external capsule/extreme capsule system ventrally. Additionally, commissural fibers seem to connect the bilateral intraparietal sulci when number magnitude information is processed. Finally, the identification of projection fibers such as the superior corona radiata indicates connections between cortex and basal ganglia as well as the thalamus in numerical cognition. Studies on functional/effective connectivity further indicated a specific role of the hippocampus. These specifications of brain connectivity augment the triple-code model of number processing and calculation with respect to how grey matter areas associated with specific number-related representations may work together.

  1. Contribution of thrombin-reactive brain pericytes to blood-brain barrier dysfunction in an in vivo mouse model of obesity-associated diabetes and an in vitro rat model.

    Directory of Open Access Journals (Sweden)

    Takashi Machida

    Full Text Available Diabetic complications are characterized by the dysfunction of pericytes located around microvascular endothelial cells. The blood-brain barrier (BBB exhibits hyperpermeability with progression of diabetes. Therefore, brain pericytes at the BBB may be involved in diabetic complications of the central nervous system (CNS. We hypothesized that brain pericytes respond to increased brain thrombin levels in diabetes, leading to BBB dysfunction and diabetic CNS complications. Mice were fed a high-fat diet (HFD for 2 or 8 weeks to induce obesity. Transport of i.v.-administered sodium fluorescein and 125I-thrombin across the BBB were measured. We evaluated brain endothelial permeability and expression of tight junction proteins in the presence of thrombin-treated brain pericytes using a BBB model of co-cultured rat brain endothelial cells and pericytes. Mice fed a HFD for 8 weeks showed both increased weight gain and impaired glucose tolerance. In parallel, the brain influx rate of sodium fluorescein was significantly greater than that in mice fed a normal diet. HFD feeding inhibited the decline in brain thrombin levels occurring during 6 weeks of feeding. In the HFD fed mice, plasma thrombin levels were significantly increased, by up to 22%. 125I-thrombin was transported across the BBB in normal mice after i.v. injection, with uptake further enhanced by co-injection of unlabeled thrombin. Thrombin-treated brain pericytes increased brain endothelial permeability and caused decreased expression of zona occludens-1 (ZO-1 and occludin and morphological disorganization of ZO-1. Thrombin also increased mRNA expression of interleukin-1β and 6 and tumor necrosis factor-α in brain pericytes. Thrombin can be transported from circulating blood through the BBB, maintaining constant levels in the brain, where it can stimulate pericytes to induce BBB dysfunction. Thus, the brain pericyte-thrombin interaction may play a key role in causing BBB dysfunction in

  2. Direct cost associated with acquired brain injury in Ontario

    Directory of Open Access Journals (Sweden)

    Chen Amy

    2012-08-01

    Full Text Available Abstract Background Acquired Brain Injury (ABI from traumatic and non traumatic causes is a leading cause of disability worldwide yet there is limited research summarizing the health system economic burden associated with ABI. The objective of this study was to determine the direct cost of publicly funded health care services from the initial hospitalization to three years post-injury for individuals with traumatic (TBI and non-traumatic brain injury (nTBI in Ontario Canada. Methods A population-based cohort of patients discharged from acute hospital with an ABI code in any diagnosis position in 2004 through 2007 in Ontario was identified from administrative data. Publicly funded health care utilization was obtained from several Ontario administrative healthcare databases. Patients were stratified according to traumatic and non-traumatic causes of brain injury and whether or not they were discharged to an inpatient rehabilitation center. Health system costs were calculated across a continuum of institutional and community settings for up to three years after initial discharge. The continuum of settings included acute care emergency departments inpatient rehabilitation (IR complex continuing care home care services and physician visits. All costs were calculated retrospectively assuming the government payer’s perspective. Results Direct medical costs in an ABI population are substantial with mean cost in the first year post-injury per TBI and nTBI patient being $32132 and $38018 respectively. Among both TBI and nTBI patients those discharged to IR had significantly higher treatment costs than those not discharged to IR across all institutional and community settings. This tendency remained during the entire three-year follow-up period. Annual medical costs of patients hospitalized with a brain injury in Ontario in the first follow-up year were approximately $120.7 million for TBI and $368.7 million for nTBI. Acute care cost accounted for 46

  3. Impact of a quality improvement project on deceased organ donor management

    Science.gov (United States)

    Olmos, Andrea; Feiner, John; Hirose, Ryutaro; Swain, Sharon; Blasi, Annabel; Roberts, John P.; Niemann, Claus U.

    2017-01-01

    Context Donors showed poor glucose control in the period between declaration of brain death and organ recovery. The level of hyperglycemia in the donors was associated with a decline in terminal renal function. Objective To determine whether implementation of a quality improvement project improved glucose control and preserved renal function in deceased organ donors. Methods Data collected retrospectively included demographics, medical history, mechanism of death, laboratory values, and data from the United Network for Organ Sharing. Results After implementation of the quality improvement project, deceased donors had significantly lower mean glucose concentrations (mean [SD], 162 [44] vs 212 [42] mg/dL; P donor cohorts from before and after the quality improvement project were analyzed together, mean glucose concentration remained a significant predictor of terminal creatinine level (P donors indicated that higher terminal creatinine level was associated with delayed graft function in recipients (P donor glucose homeostasis, and the data confirm that poor glucose homeostasis is associated with worsening terminal renal function. PMID:26645930

  4. Prenatal methadone exposure is associated with altered neonatal brain development

    Directory of Open Access Journals (Sweden)

    Victoria J. Monnelly

    Full Text Available Methadone is used for medication-assisted treatment of heroin addiction during pregnancy. The neurodevelopmental outcome of children with prenatal methadone exposure can be sub-optimal. We tested the hypothesis that brain development is altered among newborn infants whose mothers were prescribed methadone.20 methadone-exposed neonates born after 37weeks' postmenstrual age (PMA and 20 non-exposed controls underwent diffusion MRI at mean PMA of 39+2 and 41+1weeks, respectively. An age-optimized Tract-based Spatial Statistics (TBSS pipeline was used to perform voxel-wise statistical comparison of fractional anisotropy (FA data between exposed and non-exposed neonates.Methadone-exposed neonates had decreased FA within the centrum semiovale, inferior longitudinal fasciculi (ILF and the internal and external capsules after adjustment for GA at MRI (p<0.05, TFCE corrected. Median FA across the white matter skeleton was 12% lower among methadone-exposed infants. Mean head circumference (HC z-scores were lower in the methadone-exposed group (−0.52 (0.99 vs 1.15 (0.84, p<0.001; after adjustment for HC z-scores, differences in FA remained in the anterior and posterior limbs of the internal capsule and the ILF. Polydrug use among cases was common.Prenatal methadone exposure is associated with microstructural alteration in major white matter tracts, which is present at birth and is independent of head growth. Although the findings cannot be attributed to methadone per se, the data indicate that further research to determine optimal management of opioid use disorder during pregnancy is required. Future studies should evaluate childhood outcomes including infant brain development and long-term neurocognitive function. Keywords: Prenatal, Methadone, Brain, Neonate, MRI, Opioid

  5. "The Most Famous Brain in the World" Performance and Pedagogy on an Amnesiac's Brain

    Science.gov (United States)

    Sweaney, Katherine W.

    2012-01-01

    Project H.M. was just the sort of thing one might expect the Internet to latch onto: it was a live streaming video of a frozen human brain being slowly sliced apart. Users who clicked the link on Twitter or Facebook between the 2nd and 4th of December 2009 were immediately confronted with a close-up shot of the brain's interior, which was…

  6. Brain stem hypoplasia associated with Cri-du-Chat syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Ho; Lee, Ha Young; Lim, Myung Kwan; Kim, Mi Young; Kang, Young Hye; Lee, Kyung Hee; Cho, Soon Gu [Dept. of Radiology, Inha University Hospital, Inha University School of Medicine, Incheon (Korea, Republic of)

    2013-12-15

    Cri-du-Chat syndrome, also called the 5p-syndrome, is a rare genetic abnormality, and only few cases have been reported on its brain MRI findings. We describe the magnetic resonance imaging findings of a 1-year-old girl with Cri-du-Chat syndrome who showed brain stem hypoplasia, particularly in the pons, with normal cerebellum and diffuse hypoplasia of the cerebral hemispheres. We suggest that Cri-du-Chat syndrome chould be suspected in children with brain stem hypoplasia, particularly for those with high-pitched cries.

  7. Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis

    DEFF Research Database (Denmark)

    Sickmann, Helle M; Waagepetersen, Helle S; Schousboe, Arne

    2010-01-01

    Obesity and type 2 diabetes have reached epidemic proportions; however, scarce information about how these metabolic syndromes influence brain energy and neurotransmitter homeostasis exist. The objective of this study was to elucidate how brain glycogen and neurotransmitter homeostasis are affected...... by these conditions. [1-(13)C]glucose was administered to Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rats. Sprague-Dawley (SprD), Zucker lean (ZL), and ZDF lean rats were used as controls. Several brain regions were analyzed for glycogen levels along with (13)C-labeling and content of glutamate, glutamine...... of glutamine and glutamate were decreased in the cerebellum of the ZO and the ZDF rats. Glycogen levels were also lower in this region. These results suggest that the obese and type 2 diabetic models were associated with lower brain glucose metabolism. Glucose metabolism through the TCA cycle was more...

  8. Mice knocked out for the primary brain calcification associated gene Slc20a2 show unimpaired pre-natal survival but retarded growth and nodules in the brain that grow and calcify over time

    DEFF Research Database (Denmark)

    Jensen, Nina; Schrøder, Henrik Daa; Kildall Hejbøl, Eva

    2018-01-01

    Brain calcification of especially the basal ganglia characterises primary familial brain calcification (PFBC). PFBC is a rare neurodegenerative disorder with neuropsychiatric and motor symptoms, and only symptomatic treatment is available. Four PFBC-associated genes are known; about 40% of patien...

  9. Whole brain CT perfusion deficits using 320-detector-row CT scanner in TIA patients are associated with ABCD2 score.

    Science.gov (United States)

    Mehta, Bijal K; Mustafa, Ghulam; McMurtray, Aaron; Masud, Mohammed W; Gunukula, Sameer K; Kamal, Haris; Kandel, Amit; Beltagy, Abdelrahman; Li, Ping

    2014-01-01

    Transient ischemic attacks (TIA) are cerebral ischemic events without infarction. The uses of CT perfusion (CTP) techniques such as cerebral blood volume (CBV), time to peak (TTP), mean transit time (MTT) and cerebral blood flow (CBF) provide real time data about ischemia. It has been shown that CTP changes occur in less sensitive CTP scanners in patients with TIA. Larger detector row CTP (whole brain perfusion studies) may show that CTP abnormalities are more prevalent than previously noted. It is also unclear if these changes are associated with TIA severity. To demonstrate that TIA patients are associated with perfusion deficits using whole brain 320-detector-row CT perfusion, and to determine an association between ABCD2 score and perfusion deficit using whole brain perfusion. We retrospectively reviewed all TIA patients for CTP deficits from 2008-2010. Perfusion imaging was reviewed at admission; and it was determined if a perfusion deficit was present along with vascular territory involved. Of 364 TIA patients, 62 patients had CTP deficits. The largest group of patients had MCA territory involved with 48 of 62 patients (77.42%). The most common perfusion abnormality was increased TTP with 46 patients (74.19%). The ABCD2 score was reviewed in association with perfusion deficit. Increased age >60, severe hypertension (>180/100 mmHg), patients with speech abnormalities, and duration of symptoms >10 min were associated with a perfusion deficit but history of diabetes or minimal/moderate hypertension (140/90-179/99 mmHg) was not. There was no association between motor deficit and perfusion abnormality. Perfusion deficits are found in TIA patients using whole brain CTP and associated with components of the ABCD2 score.

  10. Three-Dimensional Computer Graphics Brain-Mapping Project

    Science.gov (United States)

    1988-03-24

    1975-76, one of these brains was hand digitized. It was then reconstructed three dimensionally, using an Evans and Sutherland Picture System 2. This...Yakovlev Collection, we use the Evans and Sutherland Picture System 2 which we have been employing for this purpose for a dozen years. Its virtue is...careful, experimentally designed new protocol (See Figure 20). Most of these heads were imaged with Computed Tomography, thanks to Clint Stiles of Picker

  11. Long-term exposure to ambient air pollution and incidence of brain tumor

    DEFF Research Database (Denmark)

    Andersen, Zorana J.; Pedersen, Marie; Weinmayr, Gudrun

    2018-01-01

    .5 absorbance (Hazard Ratio and 95% Confidence Interval: 1.67; 0.89-3.14 per 10 -5/m 3), and weak positive or null associations with the other pollutants. Hazard ratio for PM2.5 absorbance (1.01; 0.38-2.71 per 10 -5/m 3) and all other pollutants were lower for nonmalignant than for malignant brain tumors......Background: Epidemiological evidence on the association between ambient air pollution and brain tumor risk is sparse and inconsistent. Methods: In 12 cohorts from six European countries, individual estimates of annual mean air pollution levels at the baseline residence were estimated...... by standardized land-use regression models developed within the ESCAPE and TRANSPHORM projects: particulate matter (PM) ≤ 2.5, ≤ 10, and 2.5-10 μm in diameter (PM2.5, PM10, and PMcoarse), PM2.5 absorbance, nitrogen oxides (NO2 and NOx) and elemental composition of PM. We estimated cohort-specific associations...

  12. Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology

    NARCIS (Netherlands)

    van Velzen, Laura S.; Schmaal, Lianne; Jansen, Rick; Milaneschi, Yuri; Opmeer, Esther M.; Elzinga, Bernet M.; van der Wee, Nic J. A.; Veltman, Dick J.; Penninx, Brenda W. J. H.

    2016-01-01

    Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the

  13. Expression profiling associates blood and brain glucocorticoid receptor signaling with trauma-related individual differences in both sexes.

    Science.gov (United States)

    Daskalakis, Nikolaos P; Cohen, Hagit; Cai, Guiqing; Buxbaum, Joseph D; Yehuda, Rachel

    2014-09-16

    Delineating the molecular basis of individual differences in the stress response is critical to understanding the pathophysiology and treatment of posttraumatic stress disorder (PTSD). In this study, 7 d after predator-scent-stress (PSS) exposure, male and female rats were classified into vulnerable (i.e., "PTSD-like") and resilient (i.e., minimally affected) phenotypes on the basis of their performance on a variety of behavioral measures. Genome-wide expression profiling in blood and two limbic brain regions (amygdala and hippocampus), followed by quantitative PCR validation, was performed in these two groups of animals, as well as in an unexposed control group. Differentially expressed genes were identified in blood and brain associated with PSS-exposure and with distinct behavioral profiles postexposure. There was a small but significant between-tissue overlap (4-21%) for the genes associated with exposure-related individual differences, indicating convergent gene expression in both sexes. To uncover convergent signaling pathways across tissue and sex, upstream activated/deactivated transcription factors were first predicted for each tissue and then the respective pathways were identified. Glucocorticoid receptor (GR) signaling was the only convergent pathway associated with individual differences when using the most stringent statistical threshold. Corticosterone treatment 1 h after PSS-exposure prevented anxiety and hyperarousal 7 d later in both sexes, confirming the GR involvement in the PSS behavioral response. In conclusion, genes and pathways associated with extreme differences in the traumatic stress behavioral response can be distinguished from those associated with trauma exposure. Blood-based biomarkers can predict aspects of brain signaling. GR signaling is a convergent signaling pathway, associated with trauma-related individual differences in both sexes.

  14. A SPECT study of language and brain reorganization three years after pediatric brain injury.

    Science.gov (United States)

    Chiu Wong, Stephanie B; Chapman, Sandra B; Cook, Lois G; Anand, Raksha; Gamino, Jacquelyn F; Devous, Michael D

    2006-01-01

    Using single photon emission computed tomography (SPECT), we investigated brain plasticity in children 3 years after sustaining a severe traumatic brain injury (TBI). First, we assessed brain perfusion patterns (i.e., the extent of brain blood flow to regions of the brain) at rest in eight children who suffered severe TBI as compared to perfusion patterns in eight normally developing children. Second, we examined differences in perfusion between children with severe TBI who showed good versus poor recovery in complex discourse skills. Specifically, the children were asked to produce and abstract core meaning for two stories in the form of a lesson. Inconsistent with our predictions, children with severe TBI showed areas of increased perfusion as compared to normally developing controls. Adult studies have shown the reverse pattern with TBI associated with reduced perfusion. With regard to the second aim and consistent with previously identified brain-discourse relations, we found a strong positive association between perfusion in right frontal regions and discourse abstraction abilities, with higher perfusion linked to better discourse outcomes and lower perfusion linked to poorer discourse outcomes. Furthermore, brain-discourse patterns of increased perfusion in left frontal regions were associated with lower discourse abstraction ability. The results are discussed in terms of how brain changes may represent adaptive and maladaptive plasticity. The findings offer direction for future studies of brain plasticity in response to neurocognitive treatments.

  15. Early Life Stress-Related Elevations in Reaction Time Variability Are Associated with Brain Volume Reductions in HIV+ Adults

    Directory of Open Access Journals (Sweden)

    Uraina S. Clark

    2018-01-01

    Full Text Available There is burgeoning evidence that, among HIV+ adults, exposure to high levels of early life stress (ELS is associated with increased cognitive impairment as well as brain volume abnormalities and elevated neuropsychiatric symptoms. Currently, we have a limited understanding of the degree to which cognitive difficulties observed in HIV+ High-ELS samples reflect underlying neural abnormalities rather than increases in neuropsychiatric symptoms. Here, we utilized a behavioral marker of cognitive function, reaction time intra-individual variability (RT-IIV, which is sensitive to both brain volume reductions and neuropsychiatric symptoms, to elucidate the unique contributions of brain volume abnormalities and neuropsychiatric symptoms to cognitive difficulties in HIV+ High-ELS adults. We assessed the relation of RT-IIV to neuropsychiatric symptom levels and total gray and white matter volumes in 44 HIV+ adults (26 with high ELS. RT-IIV was examined during a working memory task. Self-report measures assessed current neuropsychiatric symptoms (depression, stress, post-traumatic stress disorder. Magnetic resonance imaging was used to quantify total gray and white matter volumes. Compared to Low-ELS participants, High-ELS participants exhibited elevated RT-IIV, elevated neuropsychiatric symptoms, and reduced gray and white matter volumes. Across the entire sample, RT-IIV was significantly associated with gray and white matter volumes, whereas significant associations with neuropsychiatric symptoms were not observed. In the High-ELS group, despite the presence of elevated neuropsychiatric symptom levels, brain volume reductions explained more than 13% of the variance in RT-IIV, whereas neuropsychiatric symptoms explained less than 1%. Collectively, these data provide evidence that, in HIV+ High-ELS adults, ELS-related cognitive difficulties (as indexed by RT-IIV exhibit strong associations with global brain volumes, whereas ELS-related elevations in

  16. Brain region-specific altered expression and association of mitochondria-related genes in autism.

    Science.gov (United States)

    Anitha, Ayyappan; Nakamura, Kazuhiko; Thanseem, Ismail; Yamada, Kazuo; Iwayama, Yoshimi; Toyota, Tomoko; Matsuzaki, Hideo; Miyachi, Taishi; Yamada, Satoru; Tsujii, Masatsugu; Tsuchiya, Kenji J; Matsumoto, Kaori; Iwata, Yasuhide; Suzuki, Katsuaki; Ichikawa, Hironobu; Sugiyama, Toshiro; Yoshikawa, Takeo; Mori, Norio

    2012-11-01

    Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of DNAJC19, DNM1L, LRPPRC

  17. Brain region-specific altered expression and association of mitochondria-related genes in autism

    Directory of Open Access Journals (Sweden)

    Anitha Ayyappan

    2012-11-01

    Full Text Available Abstract Background Mitochondrial dysfunction (MtD has been observed in approximately five percent of children with autism spectrum disorders (ASD. MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA. Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. Methods For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG, motor cortex (MC and thalamus (THL from autism patients (n=8 and controls (n=10 were obtained from the Autism Tissue Program (Princeton, NJ, USA. Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Results Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2, neurofilament, light polypeptide (NEFL and solute carrier family 25, member 27 (SLC25A27 showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066 and SLC25A27 (P = 0.046; Z-score 1.990 showed genetic association with autism in Caucasian and Japanese samples, respectively. The

  18. Proximate Mediators of Microvascular Dysfunction at the Blood-Brain Barrier: Neuroinflammatory Pathways to Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Barry W. Festoff

    2017-01-01

    Full Text Available Current projections are that by 2050 the numbers of people aged 65 and older with Alzheimer’s disease (AD in the US may increase threefold while dementia is projected to double every 20 years reaching ~115 million by 2050. AD is clinically characterized by progressive dementia and neuropathologically by neuronal and synapse loss, accumulation of amyloid plaques, and neurofibrillary tangles (NFTs in specific brain regions. The preclinical or presymptomatic stage of AD-related brain changes may begin over 20 years before symptoms occur, making development of noninvasive biomarkers essential. Distinct from neuroimaging and cerebrospinal fluid biomarkers, plasma or serum biomarkers can be analyzed to assess (i the presence/absence of AD, (ii the risk of developing AD, (iii the progression of AD, or (iv AD response to treatment. No unifying theory fully explains the neurodegenerative brain lesions but neuroinflammation (a lethal stressor for healthy neurons is universally present. Current consensus is that the earlier the diagnosis, the better the chance to develop treatments that influence disease progression. In this article we provide a detailed review and analysis of the role of the blood-brain barrier (BBB and damage-associated molecular patterns (DAMPs as well as coagulation molecules in the onset and progression of these neurodegenerative disorders.

  19. Role of Sertraline in insomnia associated with post traumatic brain injury (TBI depression

    Directory of Open Access Journals (Sweden)

    Ansari Ahmed

    2016-09-01

    Full Text Available Traumatic brain injury (TBI is a major cause of disability (1, 2. Sleep disturbances, such as insomnia, are very common following traumatic brain injury and have been reported in frequencies from 40% (3 to as high as 84% (4. Sleep disruption can be related to the TBI itself but may also be secondary to neuropsychiatric (e.g., depression or neuromuscular (e.g., pain conditions associated with TBI or to the pharmacological management of the injury and its consequences. Post-TBI insomnia has been associated with numerous negative outcomes including daytime fatigue, tiredness, difficulty functioning: impaired performance at work, memory problems, mood problems, greater functional disability, reduced participation in activities of daily living, less social and recreational activity, less employment potential, increased caregiver burden, greater sexual dysfunction, and also lower ratings of health, poor subjective wellbeing. These negative consequences can hamper the person’s reintegration into the community, adjustment after injury, and overall QOL. (5 The connection between depression and insomnia has not been investigated within the post TBI population to a great extent. For the general population, clinically significant insomnia is often associated with the presence of an emotional disorder (6. Fichtenberg et al. (2002 (7, in his study established that the strongest relationship with the diagnosis of insomnia belonged to depression. Given the high prevalence of depression during the first 2 years following TBI (8, a link between depression and insomnia among TBI patients makes innate sense. The present study aims at assessing role of sertralline in post TBI insomnia associated with depression.

  20. Volumetric analysis of day of injury computed tomography is associated with rehabilitation outcomes after traumatic brain injury.

    Science.gov (United States)

    Majercik, Sarah; Bledsoe, Joseph; Ryser, David; Hopkins, Ramona O; Fair, Joseph E; Brock Frost, R; MacDonald, Joel; Barrett, Ryan; Horn, Susan; Pisani, David; Bigler, Erin D; Gardner, Scott; Stevens, Mark; Larson, Michael J

    2017-01-01

    Day-of-injury (DOI) brain lesion volumes in traumatic brain injury (TBI) patients are rarely used to predict long-term outcomes in the acute setting. The purpose of this study was to investigate the relationship between acute brain injury lesion volume and rehabilitation outcomes in patients with TBI at a level one trauma center. Patients with TBI who were admitted to our rehabilitation unit after the acute care trauma service from February 2009-July 2011 were eligible for the study. Demographic data and outcome variables including cognitive and motor Functional Independence Measure (FIM) scores, length of stay (LOS) in the rehabilitation unit, and ability to return to home were obtained. The DOI quantitative injury lesion volumes and degree of midline shift were obtained from DOI brain computed tomography scans. A multiple stepwise regression model including 13 independent variables was created. This model was used to predict postrehabilitation outcomes, including FIM scores and ability to return to home. A p value less than 0.05 was considered significant. Ninety-six patients were enrolled in the study. Mean age was 43 ± 21 years, admission Glasgow Coma Score was 8.4 ± 4.8, Injury Severity Score was 24.7 ± 9.9, and head Abbreviated Injury Scale score was 3.73 ± 0.97. Acute hospital LOS was 12.3 ± 8.9 days, and rehabilitation LOS was 15.9 ± 9.3 days. Day-of-injury TBI lesion volumes were inversely associated with cognitive FIM scores at rehabilitation admission (p = 0.004) and discharge (p = 0.004) and inversely associated with ability to be discharged to home after rehabilitation (p = 0.006). In a cohort of patients with moderate to severe TBI requiring a rehabilitation unit stay after the acute care hospital stay, DOI brain injury lesion volumes are associated with worse cognitive FIM scores at the time of rehabilitation admission and discharge. Smaller-injury volumes were associated with eventual discharge to home. Volumetric neuroimaging in the acute

  1. [Hypoxic brain injuries notified to the Danish Patient Insurance Association during 1992-2004. Secondary publication

    DEFF Research Database (Denmark)

    Bock, J.; Christoffersen, J.K.; Hedegaard, M.

    2008-01-01

    We investigated the files of the Danish Patient Insurance Association for newborns suffering from hypoxic brain injuries. From 1992 to 2004, a total of 127 approved claims concerning peripartum hypoxic injury were registered. Thirty-eight newborns died and the majority of the 89 surviving children...

  2. Chronological age and its impact on associative learning proficiency and brain structure in middle adulthood.

    Science.gov (United States)

    Diwadkar, Vaibhav A; Bellani, Marcella; Ahmed, Rizwan; Dusi, Nicola; Rambaldelli, Gianluca; Perlini, Cinzia; Marinelli, Veronica; Ramaseshan, Karthik; Ruggeri, Mirella; Bambilla, Paolo

    2016-01-15

    The rate of biological change in middle-adulthood is relatively under-studied. Here, we used behavioral testing in conjunction with structural magnetic resonance imaging to examine the effects of chronological age on associative learning proficiency and on brain regions that previous functional MRI studies have closely related to the domain of associative learning. Participants (n=66) completed a previously established associative learning paradigm, and consented to be scanned using structural magnetic resonance imaging. Age-related effects were investigated both across sub-groups in the sample (younger vs. older) and across the entire sample (using regression approaches). Chronological age had substantial effects on learning proficiency (independent of IQ and Education Level), with older adults showing a decrement compared to younger adults. In addition, decreases in estimated gray matter volume were observed in multiple brain regions including the hippocampus and the dorsal prefrontal cortex, both of which are strongly implicated in associative learning. The results suggest that middle adulthood may be a more dynamic period of life-span change than previously believed. The conjunctive application of narrowly focused tasks, with conjointly acquired structural MRI data may allow us to enrich the search for, and the interpretation of, age-related changes in cross-sectional samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Functional associations at global brain level during perception of an auditory illusion by applying maximal information coefficient

    Science.gov (United States)

    Bhattacharya, Joydeep; Pereda, Ernesto; Ioannou, Christos

    2018-02-01

    Maximal information coefficient (MIC) is a recently introduced information-theoretic measure of functional association with a promising potential of application to high dimensional complex data sets. Here, we applied MIC to reveal the nature of the functional associations between different brain regions during the perception of binaural beat (BB); BB is an auditory illusion occurring when two sinusoidal tones of slightly different frequency are presented separately to each ear and an illusory beat at the different frequency is perceived. We recorded sixty-four channels EEG from two groups of participants, musicians and non-musicians, during the presentation of BB, and systematically varied the frequency difference from 1 Hz to 48 Hz. Participants were also presented non-binuaral beat (NBB) stimuli, in which same frequencies were presented to both ears. Across groups, as compared to NBB, (i) BB conditions produced the most robust changes in the MIC values at the whole brain level when the frequency differences were in the classical alpha range (8-12 Hz), and (ii) the number of electrode pairs showing nonlinear associations decreased gradually with increasing frequency difference. Between groups, significant effects were found for BBs in the broad gamma frequency range (34-48 Hz), but such effects were not observed between groups during NBB. Altogether, these results revealed the nature of functional associations at the whole brain level during the binaural beat perception and demonstrated the usefulness of MIC in characterizing interregional neural dependencies.

  4. Chernobyl birds have smaller brains.

    Directory of Open Access Journals (Sweden)

    Anders Pape Møller

    2011-02-01

    Full Text Available Animals living in areas contaminated by radioactive material from Chernobyl suffer from increased oxidative stress and low levels of antioxidants. Therefore, normal development of the nervous system is jeopardized as reflected by high frequencies of developmental errors, reduced brain size and impaired cognitive abilities in humans. Alternatively, associations between psychological effects and radiation have been attributed to post-traumatic stress in humans.Here we used an extensive sample of 550 birds belonging to 48 species to test the prediction that even in the absence of post-traumatic stress, there is a negative association between relative brain size and level of background radiation. We found a negative association between brain size as reflected by external head volume and level of background radiation, independent of structural body size and body mass. The observed reduction in brain size in relation to background radiation amounted to 5% across the range of almost a factor 5,000 in radiation level. Species differed significantly in reduction in brain size with increasing background radiation, and brain size was the only morphological character that showed a negative relationship with radiation. Brain size was significantly smaller in yearlings than in older individuals.Low dose radiation can have significant effects on normal brain development as reflected by brain size and therefore potentially cognitive ability. The fact that brain size was smaller in yearlings than in older individuals implies that there was significant directional selection on brain size with individuals with larger brains experiencing a viability advantage.

  5. Mapping neuroplastic potential in brain-damaged patients.

    Science.gov (United States)

    Herbet, Guillaume; Maheu, Maxime; Costi, Emanuele; Lafargue, Gilles; Duffau, Hugues

    2016-03-01

    It is increasingly acknowledged that the brain is highly plastic. However, the anatomic factors governing the potential for neuroplasticity have hardly been investigated. To bridge this knowledge gap, we generated a probabilistic atlas of functional plasticity derived from both anatomic magnetic resonance imaging results and intraoperative mapping data on 231 patients having undergone surgery for diffuse, low-grade glioma. The atlas includes detailed level of confidence information and is supplemented with a series of comprehensive, connectivity-based cluster analyses. Our results show that cortical plasticity is generally high in the cortex (except in primary unimodal areas and in a small set of neural hubs) and rather low in connective tracts (especially associative and projection tracts). The atlas sheds new light on the topological organization of critical neural systems and may also be useful in predicting the likelihood of recovery (as a function of lesion topology) in various neuropathological conditions-a crucial factor in improving the care of brain-damaged patients. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Endophenotypes of Dementia Associated with Traumatic Brain Injury in Retired Military Personnel

    Science.gov (United States)

    2014-10-01

    depression , anxiety, and  Parkinsonism compared to veterans with cognitive impairment/ dementia  who have not  experienced a TBI, and 2) veterans with TBI...Award Number:  W81XWH‐12‐1‐0581  TITLE:   Endophenotypes of  Dementia  Associated with Traumatic Brain Injury in Retired Military  Personnel  PRINCIPAL...REPORT TYPE Annual 3. DATES COVERED 30 Sept 2013– 29 Sept 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Endophenotypes of  Dementia  Associated with

  7. The APOE ε4 Allele Is Associated with Lower Selenium Levels in the Brain: Implications for Alzheimer's Disease.

    Science.gov (United States)

    R Cardoso, Bárbara; Hare, Dominic J; Lind, Monica; McLean, Catriona A; Volitakis, Irene; Laws, Simon M; Masters, Colin L; Bush, Ashley I; Roberts, Blaine R

    2017-07-19

    The antioxidant activity of selenium, which is mainly conferred by its incorporation into dedicated selenoproteins, has been suggested as a possible neuroprotective approach for mitigating neuronal loss in Alzheimer's disease. However, there is inconsistent information with respect to selenium levels in the Alzheimer's disease brain. We examined the concentration and cellular compartmentalization of selenium in the temporal cortex of Alzheimer's disease and control brain tissue. We found that Alzheimer's disease was associated with decreased selenium concentration in both soluble (i.e., cytosolic) and insoluble (i.e., plaques and tangles) fractions of brain homogenates. The presence of the APOE ε4 allele correlated with lower total selenium levels in the temporal cortex and a higher concentration of soluble selenium. Additionally, we found that age significantly contributed to lower selenium concentrations in the peripheral membrane-bound and vesicular fractions. Our findings suggest a relevant interaction between APOE ε4 and selenium delivery into brain, and show changes in cellular selenium distribution in the Alzheimer's disease brain.

  8. Intersubject synchronisation analysis of brain activity associated with the instant effects of acupuncture: an fMRI study.

    Science.gov (United States)

    Jin, Lingmin; Sun, Jinbo; Xu, Ziliang; Yang, Xuejuan; Liu, Peng; Qin, Wei

    2018-02-01

    To use a promising analytical method, namely intersubject synchronisation (ISS), to evaluate the brain activity associated with the instant effects of acupuncture and compare the findings with traditional general linear model (GLM) methods. 30 healthy volunteers were recruited for this study. Block-designed manual acupuncture stimuli were delivered at SP6, and de qi sensations were measured after acupuncture stimulation. All subjects underwent functional MRI (fMRI) scanning during the acupuncture stimuli. The fMRI data were separately analysed by ISS and traditional GLM methods. All subjects experienced de qi sensations. ISS analysis showed that the regions activated during acupuncture stimulation at SP6 were mainly divided into five clusters based on the time courses. The time courses of clusters 1 and 2 were in line with the acupuncture stimulation pattern, and the active regions were mainly involved in the sensorimotor system and salience network. Clusters 3, 4 and 5 displayed an almost contrary time course relative to the stimulation pattern. The brain regions activated included the default mode network, descending pain modulation pathway and visual cortices. GLM analysis indicated that the brain responses associated with the instant effects of acupuncture were largely implicated in sensory and motor processing and sensory integration. The ISS analysis considered the sustained effect of acupuncture and uncovered additional information not shown by GLM analysis. We suggest that ISS may be a suitable approach to investigate the brain responses associated with the instant effects of acupuncture. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Surgical Resection Followed by Whole Brain Radiotherapy Versus Whole Brain Radiotherapy Alone for Single Brain Metastasis

    International Nuclear Information System (INIS)

    Rades, Dirk; Kieckebusch, Susanne; Haatanen, Tiina; Lohynska, Radka; Dunst, Juergen; Schild, Steven E.

    2008-01-01

    Purpose: To compare the outcome of surgical resection followed by whole brain radiotherapy (WBRT) with WBRT alone in patients treated for single brain metastasis. Methods and Materials: The data from 195 patients with single brain metastases were retrospectively evaluated. Of the 195 patients, 99 underwent resection of the metastasis followed by WBRT and 96 underwent WBRT alone. Seven additional potential prognostic factors were investigated: age, gender, Eastern Cooperative Oncology Group performance score, tumor type, interval between initial tumor diagnosis and WBRT, extracranial metastases, and recursive partitioning analysis class. Both treatment groups were well balanced for these factors. Results: On multivariate analysis, improved survival was associated with resection (relative risk [RR], 1.20; 95% confidence interval [CI], 1.11-1.31; p < 0.001), lower recursive partitioning analysis class (RR, 1.58; 95% CI, 1.22-2.06; p < 0.001), age ≤61 years (RR, 1.79; 95% CI, 1.23-2.61; p = 0.002), Eastern Cooperative Oncology Group performance score of 0-1 (RR, 2.47; 95% CI, 1.70-3.59; p < 0.001), and the absence of extracranial metastases (RR, 1.99; 95% CI, 1.41-2.79; p < 0.001). Improved local control was associated with resection (RR, 1.25; 95% CI, 1.11-1.41; p < 0.001) and age ≤61 years (RR, 1.77; 95% CI, 1.09-2.88; p = 0.020). Improved brain control distant from the original site was associated with lower recursive partitioning analysis class (RR, 1.65; 95% CI, 1.03-2.69; p < 0.035), age ≤61 years (RR, 1.81; 95% CI, 1.12-2.96; p = 0.016), and the absence of extracranial metastases (RR, 2.42; 95% CI, 1.52-3.88; p < 0.001). Improved control within the entire brain was associated with surgery (RR, 1.24; 95% CI, 1.12-1.38; p < 0.001) and age ≤61 years (RR, 1.83; 95% CI, 1.21-2.77; p = 0.004). Conclusion: In patients with a single brain metastasis, the addition of resection to WBRT improved survival, local control at the original metastatic site, and control

  10. Brain Graph Topology Changes Associated with Anti-Epileptic Drug Use

    Science.gov (United States)

    Levin, Harvey S.; Chiang, Sharon

    2015-01-01

    Abstract Neuroimaging studies of functional connectivity using graph theory have furthered our understanding of the network structure in temporal lobe epilepsy (TLE). Brain network effects of anti-epileptic drugs could influence such studies, but have not been systematically studied. Resting-state functional MRI was analyzed in 25 patients with TLE using graph theory analysis. Patients were divided into two groups based on anti-epileptic medication use: those taking carbamazepine/oxcarbazepine (CBZ/OXC) (n=9) and those not taking CBZ/OXC (n=16) as a part of their medication regimen. The following graph topology metrics were analyzed: global efficiency, betweenness centrality (BC), clustering coefficient, and small-world index. Multiple linear regression was used to examine the association of CBZ/OXC with graph topology. The two groups did not differ from each other based on epilepsy characteristics. Use of CBZ/OXC was associated with a lower BC. Longer epilepsy duration was also associated with a lower BC. These findings can inform graph theory-based studies in patients with TLE. The changes observed are discussed in relation to the anti-epileptic mechanism of action and adverse effects of CBZ/OXC. PMID:25492633

  11. Brain potentials associated with the outcome processing in framing effects.

    Science.gov (United States)

    Ma, Qingguo; Feng, Yandong; Xu, Qing; Bian, Jun; Tang, Huixian

    2012-10-24

    Framing effect is a cognitive bias referring to the phenomenon that people respond differently to different but objectively equivalent descriptions of the same problem. By measuring event-related potentials, the present study aimed to investigate the neural mechanisms underlying the framing effect, especially how the negative and positive frames influence the outcome processing in our brain. Participants were presented directly with outcomes framed either positively in terms of lives saved or negatively in terms of lives lost in large and small group conditions, and were asked to rate the favorableness of each of them. The behavioral results showed that the framing effect occurred in both group size conditions, with more favorable evaluations associated with positive framing. Compared with outcomes in positive framing condition, a significant feedback-related negativity (FRN) effect was elicited by outcomes in negative framing condition, even though the outcomes in different conditions were objectively equivalent. The results are explained in terms of the associative model of attribute framing effect which states that attribute framing effect occurs as a result of a valence-based associative processing. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study.

    Science.gov (United States)

    Korevaar, Tim I M; Muetzel, Ryan; Medici, Marco; Chaker, Layal; Jaddoe, Vincent W V; de Rijke, Yolanda B; Steegers, Eric A P; Visser, Theo J; White, Tonya; Tiemeier, Henning; Peeters, Robin P

    2016-01-01

    Thyroid hormone is involved in the regulation of early brain development. Since the fetal thyroid gland is not fully functional until week 18-20 of pregnancy, neuronal migration and other crucial early stages of intrauterine brain development largely depend on the supply of maternal thyroid hormone. Current clinical practice mostly focuses on preventing the negative consequences of low thyroid hormone concentrations, but data from animal studies have shown that both low and high concentrations of thyroid hormone have negative effects on offspring brain development. We aimed to investigate the association of maternal thyroid function with child intelligence quotient (IQ) and brain morphology. In this population-based prospective cohort study, embedded within the Generation R Study (Rotterdam, Netherlands), we investigated the association of maternal thyroid function with child IQ (assessed by non-verbal intelligence tests) and brain morphology (assessed on brain MRI scans). Eligible women were those living in the study area at their delivery date, which had to be between April 1, 2002, and Jan 1, 2006. For this study, women with available serum samples who presented in early pregnancy (brain MRI scans (done at a median of 8·0 years of age [6·2-10·0]) were obtained. Analyses were adjusted for potential confounders including concentrations of human chorionic gonadotropin and child thyroid-stimulating hormone and free thyroxine. Data for child IQ were available for 3839 mother-child pairs, and MRI scans were available from 646 children. Maternal free thyroxine concentrations showed an inverted U-shaped association with child IQ (p=0·0044), child grey matter volume (p=0·0062), and cortex volume (p=0·0011). For both low and high maternal free thyroxine concentrations, this association corresponded to a 1·4-3·8 points reduction in mean child IQ. Maternal thyroid-stimulating hormone was not associated with child IQ or brain morphology. All associations remained

  13. Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases.

    Science.gov (United States)

    Zaslavsky, Ilya; Baldock, Richard A; Boline, Jyl

    2014-01-01

    Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today's data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF) initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML): XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POI)s, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems (SRSs) and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas Project.

  14. Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases

    Directory of Open Access Journals (Sweden)

    Ilya eZaslavsky

    2014-09-01

    Full Text Available Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today’s data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI. A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS, a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML: XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POIs, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas

  15. White matter integrity in brain networks relevant to anxiety and depression: evidence from the human connectome project dataset.

    Science.gov (United States)

    De Witte, Nele A J; Mueller, Sven C

    2017-12-01

    Anxiety and depression are associated with altered communication within global brain networks and between these networks and the amygdala. Functional connectivity studies demonstrate an effect of anxiety and depression on four critical brain networks involved in top-down attentional control (fronto-parietal network; FPN), salience detection and error monitoring (cingulo-opercular network; CON), bottom-up stimulus-driven attention (ventral attention network; VAN), and default mode (default mode network; DMN). However, structural evidence on the white matter (WM) connections within these networks and between these networks and the amygdala is lacking. The current study in a large healthy sample (n = 483) observed that higher trait anxiety-depression predicted lower WM integrity in the connections between amygdala and specific regions of the FPN, CON, VAN, and DMN. We discuss the possible consequences of these anatomical alterations for cognitive-affective functioning and underscore the need for further theory-driven research on individual differences in anxiety and depression on brain structure.

  16. Alterations in Brain Structure and Functional Connectivity in Alcohol Dependent Patients and Possible Association with Impulsivity.

    Science.gov (United States)

    Wang, Junkai; Fan, Yunli; Dong, Yue; Ma, Mengying; Ma, Yi; Dong, Yuru; Niu, Yajuan; Jiang, Yin; Wang, Hong; Wang, Zhiyan; Wu, Liuzhen; Sun, Hongqiang; Cui, Cailian

    2016-01-01

    Previous studies have documented that heightened impulsivity likely contributes to the development and maintenance of alcohol use disorders. However, there is still a lack of studies that comprehensively detected the brain changes associated with abnormal impulsivity in alcohol addicts. This study was designed to investigate the alterations in brain structure and functional connectivity associated with abnormal impulsivity in alcohol dependent patients. Brain structural and functional magnetic resonance imaging data as well as impulsive behavior data were collected from 20 alcohol dependent patients and 20 age- and sex-matched healthy controls respectively. Voxel-based morphometry was used to investigate the differences of grey matter volume, and tract-based spatial statistics was used to detect abnormal white matter regions between alcohol dependent patients and healthy controls. The alterations in resting-state functional connectivity in alcohol dependent patients were examined using selected brain areas with gray matter deficits as seed regions. Compared with healthy controls, alcohol dependent patients had significantly reduced gray matter volume in the mesocorticolimbic system including the dorsal posterior cingulate cortex, the dorsal anterior cingulate cortex, the medial prefrontal cortex, the orbitofrontal cortex and the putamen, decreased fractional anisotropy in the regions connecting the damaged grey matter areas driven by higher radial diffusivity value in the same areas and decreased resting-state functional connectivity within the reward network. Moreover, the gray matter volume of the left medial prefrontal cortex exhibited negative correlations with various impulse indices. These findings suggest that chronic alcohol dependence could cause a complex neural changes linked to abnormal impulsivity.

  17. Global and regional brain atrophy is associated with low or retrograde facial vein flow in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Dejan Jakimovski

    2017-09-01

    Full Text Available Increased collateral facial vein (FV flow may be associated with structural damage in patients with multiple sclerosis (MS. The objective was to assess differences in FV flow and magnetic resonance imaging (MRI-derived outcomes in MS. The study included 136 MS patients who underwent neck and head vascular system examination by echo-color Doppler. Inflammatory MRI markers were assessed on a 3T MRI using a semi-automated edge detection and contouring/ thresholding technique. MRI volumetric outcomes of whole brain (WB, gray matter (GM, white matter (WM, cortex, ventricular cerebrospinal fluid (vCSF, deep gray matter (DGM, thalamus, caudate nucleus (CN, putamen, globus pallidus (GP, and hippocampus were calculated. Independent t-test and ANCOVA, adjusted for age, were used to compare groups based on FV flow quartiles. Thirty-four MS patients with FV flow ≤327.8 mL/min (lowest quartile had significantly lower WB (P327.8 mL/min (higher quartiles. There were no differences in T1-, T2- and gadolinium- enhancing lesion volumes between the quartile groups. The lack of an association between FV blood flow and inflammatory MRI measures in MS patients, but an association with brain atrophy, suggests that the severity of neurodegenerative process may be related to hemodynamic alterations. MS patients with more advanced global and regional brain atrophy showed low or retrograde FV volume flow.

  18. Paraneoplastic brain stem encephalitis.

    Science.gov (United States)

    Blaes, Franz

    2013-04-01

    Paraneoplastic brain stem encephalitis can occur as an isolated clinical syndrome or, more often, may be part of a more widespread encephalitis. Different antineuronal autoantibodies, such as anti-Hu, anti-Ri, and anti-Ma2 can be associated with the syndrome, and the most frequent tumors are lung and testicular cancer. Anti-Hu-associated brain stem encephalitis does not normally respond to immunotherapy; the syndrome may stabilize under tumor treatment. Brain stem encephalitis with anti-Ma2 often improves after immunotherapy and/or tumor therapy, whereas only a minority of anti-Ri positive patients respond to immunosuppressants or tumor treatment. The Opsoclonus-myoclonus syndrome (OMS) in children, almost exclusively associated with neuroblastoma, shows a good response to steroids, ACTH, and rituximab, some patients do respond to intravenous immunoglobulins or cyclophosphamide. In adults, OMS is mainly associated with small cell lung cancer or gynecological tumors and only a small part of the patients show improvement after immunotherapy. Earlier diagnosis and treatment seem to be one major problem to improve the prognosis of both, paraneoplastic brain stem encephalitis, and OMS.

  19. Brain activation associated with deep brain stimulation causing dissociation in a patient with Tourette's syndrome.

    Science.gov (United States)

    Goethals, Ingeborg; Jacobs, Filip; Van der Linden, Chris; Caemaert, Jacques; Audenaert, Kurt

    2008-01-01

    Dissociation involves a disruption in the integrated functions of consciousness, memory, identity, or perception of the environment. Attempts at localizing dissociative responses have yielded contradictory results regarding brain activation, laterality, and regional involvement. Here, we used a single-day split-dose activation paradigm with single photon emission computed tomography and 99m-Tc ethylcysteinatedimer as a brain perfusion tracer in a patient with Tourette's syndrome undergoing bilateral high-frequency thalamic stimulation for the treatment of tics who developed an alternate personality state during right thalamic stimulation. We documented increased regional cerebral blood flow in bilateral prefrontal and left temporal brain areas during the alternate identity state. We conclude that our findings support the temporal lobe as well as the frontolimbic disconnection hypotheses of dissociation.

  20. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    Science.gov (United States)

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. Copyright © 2015, American Association for the Advancement of Science.

  1. Automatic detection of the hippocampal region associated with Alzheimer's disease from microscopic images of mice brain

    Science.gov (United States)

    Albaidhani, Tahseen; Hawkes, Cheryl; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    The hippocampus is the region of the brain that is primarily associated with memory and spatial navigation. It is one of the first brain regions to be damaged when a person suffers from Alzheimer's disease. Recent research in this field has focussed on the assessment of damage to different blood vessels within the hippocampal region from a high throughput brain microscopic images. The ultimate aim of our research is the creation of an automatic system to count and classify different blood vessels such as capillaries, veins, and arteries in the hippocampus region. This work should provide biologists with efficient and accurate tools in their investigation of the causes of Alzheimer's disease. Locating the boundary of the Region of Interest in the hippocampus from microscopic images of mice brain is the first essential stage towards developing such a system. This task benefits from the variation in colour channels and texture between the two sides of the hippocampus and the boundary region. Accordingly, the developed initial step of our research to locating the hippocampus edge uses a colour-based segmentation of the brain image followed by Hough transforms on the colour channel that isolate the hippocampus region. The output is then used to split the brain image into two sides of the detected section of the boundary: the inside region and the outside region. Experimental results on a sufficiently number of microscopic images demonstrate the effectiveness of the developed solution.

  2. An ANOVA approach for statistical comparisons of brain networks.

    Science.gov (United States)

    Fraiman, Daniel; Fraiman, Ricardo

    2018-03-16

    The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.

  3. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-06-06

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.

  4. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Science.gov (United States)

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).

  5. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Directory of Open Access Journals (Sweden)

    Mingrui Xia

    Full Text Available The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI, we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/.

  6. The Impact of Traumatic Brain Injury on the Aging Brain.

    Science.gov (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  7. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Ali [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Montefiore Medical Center, Department of Neurology, Bronx, NY (United States); Katz, Mindy J. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Lipton, Michael L. [Albert Einstein College of Medicine of Yeshiva University, The Gruss Magnetic Resonance Research Center and Departments of Radiology, Psychiatry and Behavioral Sciences and the Dominick P. Purpura Department of Neuroscience, Bronx, NY (United States); Montefiore Medical Center, The Department of Radiology, Bronx, NY (United States); Lipton, Richard B. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine of Yeshiva University, Department of Epidemiology and Population Health, Bronx, NY (United States); Verghese, Joe [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, Bronx, NY (United States)

    2015-08-15

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  8. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    International Nuclear Information System (INIS)

    Ezzati, Ali; Katz, Mindy J.; Lipton, Michael L.; Lipton, Richard B.; Verghese, Joe

    2015-01-01

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  9. Brain Activity and Functional Connectivity Associated with Hypnosis.

    Science.gov (United States)

    Jiang, Heidi; White, Matthew P; Greicius, Michael D; Waelde, Lynn C; Spiegel, David

    2017-08-01

    Hypnosis has proven clinical utility, yet changes in brain activity underlying the hypnotic state have not yet been fully identified. Previous research suggests that hypnosis is associated with decreased default mode network (DMN) activity and that high hypnotizability is associated with greater functional connectivity between the executive control network (ECN) and the salience network (SN). We used functional magnetic resonance imaging to investigate activity and functional connectivity among these three networks in hypnosis. We selected 57 of 545 healthy subjects with very high or low hypnotizability using two hypnotizability scales. All subjects underwent four conditions in the scanner: rest, memory retrieval, and two different hypnosis experiences guided by standard pre-recorded instructions in counterbalanced order. Seeds for the ECN, SN, and DMN were left and right dorsolateral prefrontal cortex, dorsal anterior cingulate cortex (dACC), and posterior cingulate cortex (PCC), respectively. During hypnosis there was reduced activity in the dACC, increased functional connectivity between the dorsolateral prefrontal cortex (DLPFC;ECN) and the insula in the SN, and reduced connectivity between the ECN (DLPFC) and the DMN (PCC). These changes in neural activity underlie the focused attention, enhanced somatic and emotional control, and lack of self-consciousness that characterizes hypnosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. The prefrontal cortex in the Göttingen minipig brain defined by neural projection criteria and cytoarchitecture

    DEFF Research Database (Denmark)

    Jelsing, J; Hay-Schmidt, Anders; Dyrby, Tim

    2006-01-01

    In an attempt to delineate the prefrontal cortex (PFC) in the Gottingen minipig brain the distribution of reciprocal thalamocortical projections was investigated using anterograde and retrograde tracing techniques and evaluated in relation to the specific cytoarchitectonic organization. Tracers...... the medial and rostral pole of the frontal lobe as well as the anterior cingulate, anterior insular and dorsomedial frontal cortices. Subsequently, the reciprocity and specificity of these connections were tested from injections into the traced frontal cortices indicating that the PFC has cortical...... connections to different parts of the MD nucleus. Although the granular layer IV, characteristic of primate PFC could not be identified, both cytoarchitectonic and connectional data suggests that the Gottingen minipig has a structurally divided prefrontal cortex. Stereological estimates of PFC volume showed...

  11. The genetic and environmental determinants of the association between brain abnormalities and schizophrenia: the schizophrenia twins and relatives consortium.

    Science.gov (United States)

    van Haren, Neeltje E M; Rijsdijk, Fruhling; Schnack, Hugo G; Picchioni, Marco M; Toulopoulou, Timothea; Weisbrod, Matthias; Sauer, Heinrich; van Erp, Theo G; Cannon, Tyrone D; Huttunen, Matti O; Boomsma, Dorret I; Hulshoff Pol, Hilleke E; Murray, Robin M; Kahn, Rene S

    2012-05-15

    Structural brain abnormalities are consistently found in schizophrenia (Sz) and have been associated with the familial risk for the disorder. We aim to define the relative contributions of genetic and nongenetic factors to the association between structural brain abnormalities and Sz in a uniquely powered cohort (Schizophrenia Twins and Relatives consortium). An international multicenter magnetic resonance imaging collaboration was set up to pool magnetic resonance imaging scans from twin pairs in Utrecht (The Netherlands), Helsinki (Finland), London (United Kingdom), and Jena (Germany). A sample of 684 subjects took part, consisting of monozygotic twins (n = 410, with 51 patients from concordant and 52 from discordant pairs) and dizygotic twins (n = 274, with 39 patients from discordant pairs). The additive genetic, common, and unique environmental contributions to the association between brain volumes and risk for Sz were estimated by structural equation modeling. The heritabilities of most brain volumes were significant and ranged between 52% (temporal cortical gray matter) and 76% (cerebrum). Heritability of cerebral gray matter did not reach significance (34%). Significant phenotypic correlations were found between Sz and reduced volumes of the cerebrum (-.22 [-.30/-.14]) and white matter (-.17 [-.25/-.09]) and increased volume of the third ventricle (.18 [.08/.28]). These were predominantly due to overlapping genetic effects (77%, 94%, and 83%, respectively). Some of the genes that transmit the risk for Sz also influence cerebral (white matter) volume. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Contextualizing aquired brain damage

    DEFF Research Database (Denmark)

    Nielsen, Charlotte Marie Bisgaard

    2014-01-01

    Contextualizing aquired brain damage Traditional approaches study ’communicational problems’ often in a discourse of disabledness or deficitness. With an ontology of communcation as something unique and a presupposed uniqueness of each one of us, how could an integrational approach (Integrational...... for people with aquired brain injuries will be presented and comparatively discussed in a traditional versus an integrational perspective. Preliminary results and considerations on ”methods” and ”participation” from this study will be presented along with an overview of the project's empirical data....

  13. Lutein and Brain Function

    Directory of Open Access Journals (Sweden)

    John W. Erdman

    2015-10-01

    Full Text Available Lutein is one of the most prevalent carotenoids in nature and in the human diet. Together with zeaxanthin, it is highly concentrated as macular pigment in the foveal retina of primates, attenuating blue light exposure, providing protection from photo-oxidation and enhancing visual performance. Recently, interest in lutein has expanded beyond the retina to its possible contributions to brain development and function. Only primates accumulate lutein within the brain, but little is known about its distribution or physiological role. Our team has begun to utilize the rhesus macaque (Macaca mulatta model to study the uptake and bio-localization of lutein in the brain. Our overall goal has been to assess the association of lutein localization with brain function. In this review, we will first cover the evolution of the non-human primate model for lutein and brain studies, discuss prior association studies of lutein with retina and brain function, and review approaches that can be used to localize brain lutein. We also describe our approach to the biosynthesis of 13C-lutein, which will allow investigation of lutein flux, localization, metabolism and pharmacokinetics. Lastly, we describe potential future research opportunities.

  14. Maternal Pseudo-Bartter Syndrome Associated with Severe Perinatal Brain Injury.

    Science.gov (United States)

    Vora, Shrenik; Ibrahim, Thowfique; Rajadurai, Victor Samuel

    2017-09-15

    Maternal electrolyte imbalance is rarely reported as causative factor of severe perinatal brain injury. This case outlines a unique maternal and neonatal pseudo-Bartter syndrome presented with metabolic alkalosis and hypochloremia due to maternal severe vomiting. Neonatal MRI brain revealed extensive brain hemorrhages with porencephalic cysts. Subsequent investigation workup points towards maternal severe metabolic alkalosis as its cause. Careful medical attention should be paid to pregnant women with excessive vomiting to ensure a healthy outcome for both the mother and the baby.

  15. Maternal Inflammation Contributes to Brain Overgrowth and Autism-Associated Behaviors through Altered Redox Signaling in Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Janel E. Le Belle

    2014-11-01

    Full Text Available A period of mild brain overgrowth with an unknown etiology has been identified as one of the most common phenotypes in autism. Here, we test the hypothesis that maternal inflammation during critical periods of embryonic development can cause brain overgrowth and autism-associated behaviors as a result of altered neural stem cell function. Pregnant mice treated with low-dose lipopolysaccharide at embryonic day 9 had offspring with brain overgrowth, with a more pronounced effect in PTEN heterozygotes. Exposure to maternal inflammation also enhanced NADPH oxidase (NOX-PI3K pathway signaling, stimulated the hyperproliferation of neural stem and progenitor cells, increased forebrain microglia, and produced abnormal autism-associated behaviors in affected pups. Our evidence supports the idea that a prenatal neuroinflammatory dysregulation in neural stem cell redox signaling can act in concert with underlying genetic susceptibilities to affect cellular responses to environmentally altered cellular levels of reactive oxygen species.

  16. Reduced brain/serum glucose ratios predict cerebral metabolic distress and mortality after severe brain injury.

    Science.gov (United States)

    Kurtz, Pedro; Claassen, Jan; Schmidt, J Michael; Helbok, Raimund; Hanafy, Khalid A; Presciutti, Mary; Lantigua, Hector; Connolly, E Sander; Lee, Kiwon; Badjatia, Neeraj; Mayer, Stephan A

    2013-12-01

    The brain is dependent on glucose to meet its energy demands. We sought to evaluate the potential importance of impaired glucose transport by assessing the relationship between brain/serum glucose ratios, cerebral metabolic distress, and mortality after severe brain injury. We studied 46 consecutive comatose patients with subarachnoid or intracerebral hemorrhage, traumatic brain injury, or cardiac arrest who underwent cerebral microdialysis and intracranial pressure monitoring. Continuous insulin infusion was used to maintain target serum glucose levels of 80-120 mg/dL (4.4-6.7 mmol/L). General linear models of logistic function utilizing generalized estimating equations were used to relate predictors of cerebral metabolic distress (defined as a lactate/pyruvate ratio [LPR] ≥ 40) and mortality. A total of 5,187 neuromonitoring hours over 300 days were analyzed. Mean serum glucose was 133 mg/dL (7.4 mmol/L). The median brain/serum glucose ratio, calculated hourly, was substantially lower (0.12) than the expected normal ratio of 0.40 (brain 2.0 and serum 5.0 mmol/L). In addition to low cerebral perfusion pressure (P = 0.05) and baseline Glasgow Coma Scale score (P brain/serum glucose ratios below the median of 0.12 were independently associated with an increased risk of metabolic distress (adjusted OR = 1.4 [1.2-1.7], P brain/serum glucose ratios were also independently associated with in-hospital mortality (adjusted OR = 6.7 [1.2-38.9], P brain/serum glucose ratios, consistent with impaired glucose transport across the blood brain barrier, are associated with cerebral metabolic distress and increased mortality after severe brain injury.

  17. Brain Activity and Human Unilateral Chewing

    Science.gov (United States)

    Quintero, A.; Ichesco, E.; Myers, C.; Schutt, R.; Gerstner, G.E.

    2012-01-01

    Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631

  18. The association between seizures and deposition of collagen in the brain in porcine Taenia solium neurocysticercosis.

    Science.gov (United States)

    Christensen, Nina M; Trevisan, Chiara; Leifsson, Páll S; Johansen, Maria V

    2016-09-15

    Neurocysticercosis caused by infection with Taenia solium is a significant cause of epilepsy and seizures in humans. The aim of this study was to assess the association between seizures and the deposition of collagen in brain tissue in pigs with T. solium neurocysticercosis. In total 78 brain tissue sections from seven pigs were examined histopathologically i.e. two pigs with epileptic seizures and T. solium cysts, four pigs without seizures but with cysts, and one non-infected control pig. Pigs with epileptic seizures had a larger amount of collagen in their brain tissue, showing as large fibrotic scars and moderate amount of collagen deposited around cysts, compared to pigs without seizures and the negative control pig. Our results indicate that collagen is likely to play a considerable part in the pathogenesis of seizures in T. solium neurocysticercosis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Alexithymia is associated with attenuated automatic brain response to facial emotion in clinical depression.

    Science.gov (United States)

    Suslow, Thomas; Kugel, Harald; Rufer, Michael; Redlich, Ronny; Dohm, Katharina; Grotegerd, Dominik; Zaremba, Dario; Dannlowski, Udo

    2016-02-04

    Alexithymia is a clinically relevant personality trait related to difficulties in recognizing and describing emotions. Previous studies examining the neural correlates of alexithymia have shown mainly decreased response of several brain areas during emotion processing in healthy samples and patients suffering from autism or post-traumatic stress disorder. In the present study, we examined the effect of alexithymia on automatic brain reactivity to negative and positive facial expressions in clinical depression. Brain activation in response to sad, happy, neutral, and no facial expression (presented for 33 ms and masked by neutral faces) was measured by functional magnetic resonance imaging at 3 T in 26 alexithymic and 26 non-alexithymic patients with major depression. Alexithymic patients manifested less activation in response to masked sad and happy (compared to neutral) faces in right frontal regions and right caudate nuclei than non-alexithymic patients. Our neuroimaging study provides evidence that the personality trait alexithymia has a modulating effect on automatic emotion processing in clinical depression. Our findings support the idea that alexithymia could be associated with functional deficits of the right hemisphere. Future research on the neural substrates of emotion processing in depression should assess and control alexithymia in their analyses.

  20. Low fetal hemoglobin percentage is associated with silent brain lesions in adults with homozygous sickle cell disease

    OpenAIRE

    Calvet, David; Tuilier, Titien; Mélé, Nicolas; Turc, Guillaume; Habibi, Anoosha; Abdallah, Nassim Ait; Majhadi, Loubna; Hemery, François; Edjlali, Myriam; Galacteros, Frédéric; Bartolucci, Pablo

    2017-01-01

    Low %HbF is independently associated with silent WMCs on brain imaging in adults with SCD.Our results highlight the potential use of therapeutic strategies inducing HbF expression in SCD patients with silent white matter changes.

  1. Identifying Associations Between Brain Imaging Phenotypes and Genetic Factors via A Novel Structured SCCA Approach.

    Science.gov (United States)

    Du, Lei; Zhang, Tuo; Liu, Kefei; Yan, Jingwen; Yao, Xiaohui; Risacher, Shannon L; Saykin, Andrew J; Han, Junwei; Guo, Lei; Shen, Li

    2017-06-01

    Brain imaging genetics attracts more and more attention since it can reveal associations between genetic factors and the structures or functions of human brain. Sparse canonical correlation analysis (SCCA) is a powerful bi-multivariate association identification technique in imaging genetics. There have been many SCCA methods which could capture different types of structured imaging genetic relationships. These methods either use the group lasso to recover the group structure, or employ the graph/network guided fused lasso to find out the network structure. However, the group lasso methods have limitation in generalization because of the incomplete or unavailable prior knowledge in real world. The graph/network guided methods are sensitive to the sign of the sample correlation which may be incorrectly estimated. We introduce a new SCCA model using a novel graph guided pairwise group lasso penalty, and propose an efficient optimization algorithm. The proposed method has a strong upper bound for the grouping effect for both positively and negatively correlated variables. We show that our method performs better than or equally to two state-of-the-art SCCA methods on both synthetic and real neuroimaging genetics data. In particular, our method identifies stronger canonical correlations and captures better canonical loading profiles, showing its promise for revealing biologically meaningful imaging genetic associations.

  2. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    Directory of Open Access Journals (Sweden)

    Mónica Millán

    2008-01-01

    Full Text Available Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA.

  3. Implementation of Neurocritical Care Is Associated With Improved Outcomes in Traumatic Brain Injury.

    Science.gov (United States)

    Sekhon, Mypinder S; Gooderham, Peter; Toyota, Brian; Kherzi, Navid; Hu, Vivien; Dhingra, Vinay K; Hameed, Morad S; Chittock, Dean R; Griesdale, Donald E

    2017-07-01

    Background Traditionally, the delivery of dedicated neurocritical care (NCC) occurs in distinct NCC units and is associated with improved outcomes. Institution-specific logistical challenges pose barriers to the development of distinct NCC units; therefore, we developed a consultancy NCC service coupled with the implementation of invasive multimodal neuromonitoring, within a medical-surgical intensive care unit. Our objective was to evaluate the effect of a consultancy NCC program on neurologic outcomes in severe traumatic brain injury patients. We conducted a single-center quasi-experimental uncontrolled pre- and post-NCC study in severe traumatic brain injury patients (Glasgow Coma Scale ≤8). The NCC program includes consultation with a neurointensivist and neurosurgeon and multimodal neuromonitoring. Demographic, injury severity metrics, neurophysiologic data, and therapeutic interventions were collected. Glasgow Outcome Scale (GOS) at 6 months was the primary outcome. Multivariable ordinal logistic regression was used to model the association between NCC implementation and GOS at 6 months. A total of 113 patients were identified: 76 pre-NCC and 37 post-NCC. Mean age was 39 years (standard deviation [SD], 2) and 87 of 113 (77%) patients were male. Median admission motor score was 3 (interquartile ratio, 1-4). Daily mean arterial pressure was higher (95 mmHg [SD, 10]) versus (88 mmHg [SD, 10], p<0.001) and daily mean core body temperature was lower (36.6°C [SD, 0.90]) versus (37.2°C [SD, 1.0], p=0.001) post-NCC compared with pre-NCC, respectively. Multivariable regression modelling revealed the NCC program was associated with a 2.5 increased odds (odds ratios, 2.5; 95% confidence interval, 1.1-5.3; p=0.022) of improved 6-month GOS. Implementation of a NCC program is associated with improved 6 month GOS in severe TBI patients.

  4. Age-related reduction of adaptive brain response during semantic integration is associated with gray matter reduction

    OpenAIRE

    Zhu, Zude; Yang, Fengjun; Li, Dongning; Zhou, Lianjun; Liu, Ying; Zhang, Ying; Chen, Xuezhi

    2017-01-01

    While aging is associated with increased knowledge, it is also associated with decreased semantic integration. To investigate brain activation changes during semantic integration, a sample of forty-eight 25-75 year-old adults read sentences with high cloze (HC) and low cloze (LC) probability while functional magnetic resonance imaging was conducted. Significant age-related reduction of cloze effect (LC vs. HC) was found in several regions, especially the left middle frontal gyrus (MFG) and ri...

  5. Insulin and the Brain

    Directory of Open Access Journals (Sweden)

    Grosu Cristina

    2017-12-01

    Full Text Available The brain represents an important site for the action of insulin. Besides the traditionally known importance in glucoregulation, insulin has significant neurotrophic properties and influences the brain activity: insulin influences eating behavior, regulates the storage of energy and several aspects concerning memory and knowledge. Insulin resistance and hyperinsulinism could be associated with brain aging, vascular and metabolic pathologies. Elucidating the pathways and metabolism of brain insulin could have a major impact on future targeted therapies.

  6. Brain imaging and schizophrenia

    International Nuclear Information System (INIS)

    Martinot, J.L.; Dao-Castellana, M.H.

    1991-01-01

    Brain structures and brain function have been investigated by the new brain imaging techniques for more than ten years. In Psychiatry, these techniques could afford a new understanding of mental diseases. In schizophrenic patients, CAT scanner and RMI pointed out statistically significant ventricular enlargments which are presently considered as evidence for abnormalities in brain maturation. Functional imaging techniques reported metabolic dysfunctions in the cortical associative areas which are probably linked to the cognitive features of schizophrenics [fr

  7. Pathological Area Detection in MR Images of Brain

    Czech Academy of Sciences Publication Activity Database

    Dvořák, P.; Kropatsch, W.G.; Bartušek, Karel

    2013-01-01

    Roč. 4, č. 1 (2013), s. 17-21 ISSN 1213-1539 R&D Projects: GA ČR GAP102/12/1104; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Brain * Brain tumor detection * MR * Symmetry analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  8. Exploring associations between self-regulatory mechanisms and neuropsychological functioning and driver behaviour after brain injury.

    Science.gov (United States)

    Rike, Per-Ola; Johansen, Hans J; Ulleberg, Pål; Lundqvist, Anna; Schanke, Anne-Kristine

    2018-04-01

    The objective of this prospective one-year follow-up study was to explore the associations between self-regulatory mechanisms and neuropsychological tests as well as baseline and follow-up ratings of driver behaviour. The participants were a cohort of subjects with stroke and traumatic brain injury (TBI) who were found fit to drive after a multi-disciplinary driver assessment (baseline). Baseline measures included neuropsychological tests and ratings of self-regulatory mechanisms, i.e., executive functions (Behavior Rating Inventory of Executive Function-Adult Version; BRIEF-A) and impulsive personality traits (UPPS Impulsive Behavior Scale). The participants rated pre-injury driving behaviour on the Driver Behaviour Qestionnaire (DBQ) retrospectively at baseline and after one year of post-injury driving (follow-up). Better performance on neuropsychological tests was significantly associated with more post-injury DBQ Violations. The BRIEF-A main indexes were significantly associated with baseline and follow-up ratings of DBQ Mistakes and follow-up DBQ Inattention. UPPS (lack of) Perseverance was significantly associated with baseline DBQ Inattention, whereas UPPS Urgency was significantly associated with baseline DBQ Inexperience and post-injury DBQ Mistakes. There were no significant changes in DBQ ratings from baseline (pre-injury) to follow-up (post-injury). It was concluded that neuropsychological functioning and self-regulatory mechanisms are related to driver behaviour. Some aspects of driver behaviour do not necessarily change after brain injury, reflecting the influence of premorbid driving behaviour or impaired awareness of deficits on post-injury driving behaviour. Further evidence is required to predict the role of self-regulatory mechanisms on driver behaviour and crashes or near misses.

  9. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation

    Directory of Open Access Journals (Sweden)

    Luissint Anny-Claude

    2012-11-01

    Full Text Available Abstract The Blood–brain barrier (BBB, present at the level of the endothelium of cerebral blood vessels, selectively restricts the blood-to-brain paracellular diffusion of compounds; it is mandatory for cerebral homeostasis and proper neuronal function. The barrier properties of these specialized endothelial cells notably depend on tight junctions (TJs between adjacent cells: TJs are dynamic structures consisting of a number of transmembrane and membrane-associated cytoplasmic proteins, which are assembled in a multimolecular complex and acting as a platform for intracellular signaling. Although the structural composition of these complexes has been well described in the recent years, our knowledge about their functional regulation still remains fragmentary. Importantly, pericytes, embedded in the vascular basement membrane, and perivascular microglial cells, astrocytes and neurons contribute to the regulation of endothelial TJs and BBB function, altogether constituting the so-called neurovascular unit. The present review summarizes our current understanding of the structure and functional regulation of endothelial TJs at the BBB. Accumulating evidence points to a correlation between BBB dysfunction, alteration of TJ complexes and progression of a variety of CNS diseases, such as stroke, multiple sclerosis and brain tumors, as well as neurodegenerative diseases like Parkinson’s and Alzheimer’s diseases. Understanding how TJ integrity is controlled may thus help improve drug delivery across the BBB and the design of therapeutic strategies for neurological disorders.

  10. Structural brain aberrations associated with the dissociative subtype of post-traumatic stress disorder.

    Science.gov (United States)

    Daniels, J K; Frewen, P; Theberge, J; Lanius, R A

    2016-03-01

    One factor potentially contributing to the heterogeneity of previous results on structural grey matter alterations in adult participants suffering from post-traumatic stress disorder (PTSD) is the varying levels of dissociative symptomatology. The aim of this study was therefore to test whether the recently defined dissociative subtype of PTSD characterized by symptoms of depersonalization and derealization is characterized by specific differences in volumetric brain morphology. Whole-brain MRI data were acquired for 59 patients with PTSD. Voxel-based morphometry was carried out to test for group differences between patients classified as belonging (n = 15) vs. not belonging (n = 44) to the dissociative subtype of PTSD. The correlation between dissociation (depersonalization/derealization) severity and grey matter volume was computed. Patients with PTSD classified as belonging to the dissociative subtype exhibited greater grey matter volume in the right precentral and fusiform gyri as well as less volume in the right inferior temporal gyrus. Greater dissociation severity was associated with greater volume in the right middle frontal gyrus. The results of this first whole-brain investigation of specific grey matter volume in dissociative subtype PTSD indentified structural aberrations in regions subserving the processing and regulation of emotional arousal. These might constitute characteristic biomarkers for the dissociative subtype PTSD. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Beneficial Roles of Emotion in Decision Making: Functional Association of Brain and Body

    Directory of Open Access Journals (Sweden)

    Hideki Ohira

    2011-12-01

    Full Text Available Though traditional microeconomics has supposed that human decisions are based on logical and exact computation of cost-benefit balances or efficacies, studies in behavioral economics have shown that humans sometimes make seemingly irrational decisions driven by emotions. In our everyday situations, factors related to decisions are complex and which alternative will be the most beneficial is uncertain. In such cases, emotions have been thought adaptive because they can quickly reduce negative alternatives and facilitate fast and effective decision making. Some theorists argued that one of important sources of such emotional drives affecting decision making is bodily responses that are represented in brain regions (Craig, 2009; Damasio, 1994. In this article, empirical evidence for the functional associations of the brain and body accompanying decision making will be shown as follows. (1 Heart rate responses and concentration of inflammatory cytokine (IL-6 can predict acceptance or rejection of an unfair offer in an economical negotiation game, the Ultimatum Game. Activation of the anterior insula mediates relationship between bodily states and decision making. (2 Sympathetic responses reflected by secretion of adrenaline are represented in brain regions such as the midbrain, anterior cingulate cortex, and anterior insula, and furthermore can determine exploration of decision making in a situation where an action-outcome contingency is stochastic and unstable. These findings suggest beneficial roles of emotion and bodily responses in decision making.

  12. An Aminopyridazine Inhibitor of Death Associated Protein Kinase Attenuates Hypoxia-Ischemia Induced Brain Damage

    Energy Technology Data Exchange (ETDEWEB)

    Velentza, A.V.; Wainwright, M.S.; Zasadzki, M.; Mirzoeva, S.; Haiech, J.; Focia, P.J.; Egli, M.; Watterson, D.M.

    2010-03-08

    Death associated protein kinase (DAPK) is a calcium and calmodulin regulated enzyme that functions early in eukaryotic programmed cell death, or apoptosis. To validate DAPK as a potential drug discovery target for acute brain injury, the first small molecule DAPK inhibitor was synthesized and tested in vivo. A single injection of the aminopyridazine-based inhibitor administered 6 h after injury attenuated brain tissue or neuronal biomarker loss measured, respectively, 1 week and 3 days later. Because aminopyridazine is a privileged structure in neuropharmacology, we determined the high-resolution crystal structure of a binary complex between the kinase domain and a molecular fragment of the DAPK inhibitor. The co-crystal structure describes a structural basis for interaction and provides a firm foundation for structure-assisted design of lead compounds with appropriate molecular properties for future drug development.

  13. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration

    Science.gov (United States)

    Pearson, Brandon L.; Simon, Jeremy M.; McCoy, Eric S.; Salazar, Gabriela; Fragola, Giulia; Zylka, Mark J.

    2016-01-01

    Environmental factors, including pesticides, have been linked to autism and neurodegeneration risk using retrospective epidemiological studies. Here we sought to prospectively identify chemicals that share transcriptomic signatures with neurological disorders, by exposing mouse cortical neuron-enriched cultures to hundreds of chemicals commonly found in the environment and on food. We find that rotenone, a pesticide associated with Parkinson's disease risk, and certain fungicides, including pyraclostrobin, trifloxystrobin, famoxadone and fenamidone, produce transcriptional changes in vitro that are similar to those seen in brain samples from humans with autism, advanced age and neurodegeneration (Alzheimer's disease and Huntington's disease). These chemicals stimulate free radical production and disrupt microtubules in neurons, effects that can be reduced by pretreating with a microtubule stabilizer, an antioxidant, or with sulforaphane. Our study provides an approach to prospectively identify environmental chemicals that transcriptionally mimic autism and other brain disorders. PMID:27029645

  14. Oxytocin and Estrogen Receptor β in the Brain: An Overview

    OpenAIRE

    Acevedo-Rodriguez, Alexandra; Mani, Shaila K.; Handa, Robert J.

    2015-01-01

    Oxytocin is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release oxytocin into the bloodstream to promote labor and lactation; however, oxytocin neurons also project to other brain areas where it plays a role in numerous brain functions. Oxytocin binds to the widely expressed oxytocin receptor, and, in doing so, it regulates homeostatic processes, social ...

  15. Parallel Computing for Brain Simulation.

    Science.gov (United States)

    Pastur-Romay, L A; Porto-Pazos, A B; Cedron, F; Pazos, A

    2017-01-01

    The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Missouri Soybean Association Biodiesel Demonstration Project: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Dale [Missouri Soybean Association, Jefferson City, MO (United States); Hamilton, Jill [Sustainable Energy Strategies, Inc., Fairfax, VA (United States)

    2011-10-27

    The Missouri Soybean Association (MSA) and the National Biodiesel Board (NBB) partnered together to implement the MSA Biodiesel Demonstration project under a United States Department of Energy (DOE) grant. The goal of this project was to provide decision makers and fleet managers with information that could lead to the increased use of domestically produced renewable fuels and could reduce the harmful impacts of school bus diesel exhaust on children. This project was initiated in September 2004 and completed in April 2011. The project carried out a broad range of activities organized under four areas: 1. Petroleum and related industry education program for fuel suppliers; 2. Fleet evaluation program using B20 with a Missouri school district; 3. Outreach and awareness campaign for school district fleet managers; and 4. Support of ongoing B20 Fleet Evaluation Team (FET) data collection efforts with existing school districts. Technical support to the biodiesel industry was also provided through NBB’s Troubleshooting Hotline. The hotline program was established in 2008 to troubleshoot fuel quality issues and help facilitate smooth implementation of the RFS and is described in greater detail under Milestone A.1 - Promote Instruction and Guidance on Best Practices. As a result of this project’s efforts, MSA and NBB were able to successfully reach out to and support a broad spectrum of biodiesel users in Missouri and New England. The MSA Biodiesel Demonstration was funded through a FY2004 Renewable Energy Resources Congressional earmark. The initial focus of this project was to test and evaluate biodiesel blends coupled with diesel oxidation catalysts as an emissions reduction technology for school bus fleets in the United States. The project was designed to verify emissions reductions using Environmental Protection Agency (EPA) protocols, then document – with school bus fleet experience – the viability of utilizing B20 blends. The fleet experience was expected to

  17. High frequency of silent brain infarcts associated with cognitive deficits in an economically disadvantaged population.

    Science.gov (United States)

    Squarzoni, Paula; Tamashiro-Duran, Jaqueline H; Duran, Fabio L S; Leite, Claudia C; Wajngarten, Mauricio; Scazufca, Marcia; Menezes, Paulo R; Lotufo, Paulo A; Alves, Tania C T F; Busatto, Geraldo F

    2017-08-01

    Using magnetic resonance imaging, we aimed to assess the presence of silent brain vascular lesions in a sample of apparently healthy elderly individuals who were recruited from an economically disadvantaged urban region (São Paulo, Brazil). We also wished to investigate whether the findings were associated with worse cognitive performance. A sample of 250 elderly subjects (66-75 years) without dementia or neuropsychiatric disorders were recruited from predefined census sectors of an economically disadvantaged area of Sao Paulo and received structural magnetic resonance imaging scans and cognitive testing. A high proportion of individuals had very low levels of education (4 years or less, n=185; 21 with no formal education). The prevalence of at least one silent vascular-related cortical or subcortical lesion was 22.8% (95% confidence interval, 17.7-28.5), and the basal ganglia was the most frequently affected site (63.14% of cases). The subgroup with brain infarcts presented significantly lower levels of education than the subgroup with no brain lesions as well as significantly worse current performance in cognitive test domains, including memory and attention (pcognitive deficits, and in the absence of magnetic resonance imaging data, this cognitive impairment may be considered simply related to ageing. Emphatic attention should be paid to potentially deleterious effects of vascular brain lesions in poorly educated elderly individuals from economically disadvantaged environments.

  18. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes.

    Directory of Open Access Journals (Sweden)

    Richard A Anderson

    Full Text Available Insulin resistance leads to memory impairment. Cinnamon (CN improves peripheral insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling and Alzheimer-associated mRNA expression in the brain were measured in male Wistar rats fed a high fat/high fructose (HF/HFr diet to induce insulin resistance, with or without CN, for 12 weeks. There was a decrease in insulin sensitivity associated with the HF/HFr diet that was reversed by CN. The CN fed rats were more active in a Y maze test than rats fed the control and HF/HFr diets. The HF/HFr diet fed rats showed greater anxiety in an elevated plus maze test that was lessened by feeding CN. The HF/HFr diet also led to a down regulation of the mRNA coding for GLUT1 and GLUT3 that was reversed by CN in the hippocampus and cortex. There were increases in Insr, Irs1 and Irs2 mRNA in the hippocampus and cortex due to the HF/HFr diet that were not reversed by CN. Increased peripheral insulin sensitivity was also associated with increased glycogen synthase in both hippocampus and cortex in the control and HF/HFr diet animals fed CN. The HF/HFr diet induced increases in mRNA associated with Alzheimers including PTEN, Tau and amyloid precursor protein (App were also alleviated by CN. In conclusion, these data suggest that the negative effects of a HF/HFr diet on behavior, brain insulin signaling and Alzheimer-associated changes were alleviated by CN suggesting that neuroprotective effects of CN are associated with improved whole body insulin sensitivity and related changes in the brain.

  19. N-terminal pro-brain natriuretic peptide and abnormal brain aging: The AGES-Reykjavik Study.

    Science.gov (United States)

    Sabayan, Behnam; van Buchem, Mark A; de Craen, Anton J M; Sigurdsson, Sigurdur; Zhang, Qian; Harris, Tamara B; Gudnason, Vilmundur; Arai, Andrew E; Launer, Lenore J

    2015-09-01

    To investigate the independent association of serum N-terminal fragment of the prohormone natriuretic peptide (NT-proBNP) with structural and functional features of abnormal brain aging in older individuals. In this cross-sectional study based on the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study, we included 4,029 older community-dwelling individuals (born 1907 to 1935) with a measured serum level of NT-proBNP. Outcomes included parenchymal brain volumes estimated from brain MRI, cognitive function measured by tests of memory, processing speed, and executive functioning, and presence of depressive symptoms measured using the Geriatric Depression Scale. In a substudy, cardiac output of 857 participants was assessed using cardiac MRI. In multivariate analyses, adjusted for sociodemographic and cardiovascular factors, higher levels of NT-proBNP were independently associated with lower total (p brain volumes. Likewise, in multivariate analyses, higher levels of NT-proBNP were associated with worse scores in memory (p = 0.005), processing speed (p = 0.001), executive functioning (p brain parenchymal volumes, impaired executive function and processing speed, and higher depressive symptoms were independent of the level of cardiac output. Higher serum levels of NT-proBNP, independent of cardiovascular risk factors and a measure of cardiac function, are linked with alterations in brain structure and function. Roles of natriuretic peptides in the process of brain aging need to be further elucidated. © 2015 American Academy of Neurology.

  20. Hacking the brain: Brain-computer interfacing technology and the ethics of neurosecurity

    NARCIS (Netherlands)

    Ienca, M.; Haselager, W.F.G.

    2016-01-01

    Brain-computer interfacing technologies are used as assistive technologies for patients as well as healthy subjects to control devices solely by brain activity. Yet the risks associated with the misuse of these technologies remain largely unexplored. Recent findings have shown that BCIs are

  1. Hospitalizations for critically ill children with traumatic brain injuries: a longitudinal analysis.

    Science.gov (United States)

    Tilford, John M; Aitken, Mary E; Anand, K J S; Green, Jerril W; Goodman, Allen C; Parker, James G; Killingsworth, Jeffrey B; Fiser, Debra H; Adelson, P David

    2005-09-01

    This study examines the incidence, utilization of procedures, and outcomes for critically ill children hospitalized with traumatic brain injury over the period 1988-1999 to describe the benefits of improved treatment. Retrospective analysis of hospital discharges was conducted using data from the Health Care Cost and Utilization Project Nationwide Inpatient Sample that approximates a 20% sample of U.S. acute care hospitals. Hospital inpatient stays from all types of U.S. community hospitals. The study sample included all children aged 0-21 with a primary or secondary ICD-9-CM diagnosis code for traumatic brain injury and a procedure code for either endotracheal intubation or mechanical ventilation. None. Deaths occurring during hospitalization were used to calculate mortality rates. Use of intracranial pressure monitoring and surgical openings of the skull were investigated as markers for the aggressiveness of treatment. Patients were further classified by insurance status, household income, and hospital characteristics. Over the 12-yr study period, mortality rates decreased 8 percentage points whereas utilization of intracranial pressure monitoring increased by 11 percentage points. The trend toward more aggressive management of traumatic brain injury corresponded with improved hospital outcomes over time. Lack of insurance was associated with vastly worse outcomes. An estimated 6,437 children survived their traumatic brain injury hospitalization because of improved treatment, and 1,418 children died because of increased mortality risk associated with being uninsured. Improved treatment was valued at approximately dollar 17 billion, whereas acute care hospitalization costs increased by dollar 1.5 billion (in constant 2000 dollars). Increased mortality in uninsured children was associated with a dollar 3.76 billion loss in economic benefits. More aggressive management of pediatric traumatic brain injury appears to have contributed to reduced mortality rates over

  2. The effects of vitamin D on brain development and adult brain function.

    Science.gov (United States)

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-05

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Decreased in vitro mitochondrial function is associated with enhanced brain metabolism, blood flow, and memory in Surf1-deficient mice

    Science.gov (United States)

    Lin, Ai-Ling; Pulliam, Daniel A; Deepa, Sathyaseelan S; Halloran, Jonathan J; Hussong, Stacy A; Burbank, Raquel R; Bresnen, Andrew; Liu, Yuhong; Podlutskaya, Natalia; Soundararajan, Anuradha; Muir, Eric; Duong, Timothy Q; Bokov, Alex F; Viscomi, Carlo; Zeviani, Massimo; Richardson, Arlan G; Van Remmen, Holly; Fox, Peter T; Galvan, Veronica

    2013-01-01

    Recent studies have challenged the prevailing view that reduced mitochondrial function and increased oxidative stress are correlated with reduced longevity. Mice carrying a homozygous knockout (KO) of the Surf1 gene showed a significant decrease in mitochondrial electron transport chain Complex IV activity, yet displayed increased lifespan and reduced brain damage after excitotoxic insults. In the present study, we examined brain metabolism, brain hemodynamics, and memory of Surf1 KO mice using in vitro measures of mitochondrial function, in vivo neuroimaging, and behavioral testing. We show that decreased respiration and increased generation of hydrogen peroxide in isolated Surf1 KO brain mitochondria are associated with increased brain glucose metabolism, cerebral blood flow, and lactate levels, and with enhanced memory in Surf1 KO mice. These metabolic and functional changes in Surf1 KO brains were accompanied by higher levels of hypoxia-inducible factor 1 alpha, and by increases in the activated form of cyclic AMP response element-binding factor, which is integral to memory formation. These findings suggest that Surf1 deficiency-induced metabolic alterations may have positive effects on brain function. Exploring the relationship between mitochondrial activity, oxidative stress, and brain function will enhance our understanding of cognitive aging and of age-related neurologic disorders. PMID:23838831

  4. Brain-specific transcriptional regulator T-brain-1 controls brain wiring and neuronal activity in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Tzyy-Nan eHuang

    2015-11-01

    Full Text Available T-brain-1 (TBR1 is a brain-specific T-box transcription factor. In 1995, Tbr1 was first identified from a subtractive hybridization that compared mouse embryonic and adult telencephalons. Previous studies of Tbr1–/– mice have indicated critical roles for TBR1 in the development of the cerebral cortex, amygdala and olfactory bulb. Neuronal migration and axonal projection are two important developmental features controlled by TBR1. Recently, recurrent de novo disruptive mutations in the TBR1 gene have been found in patients with autism spectrum disorders (ASDs. Human genetic studies have identified TBR1 as a high-confidence risk factor for ASDs. Because only one allele of the TBR1 gene is mutated in these patients, Tbr1+/– mice serve as a good genetic mouse model to explore the mechanism by which de novo TBR1 mutation leads to ASDs. Although neuronal migration and axonal projection defects of cerebral cortex are the most prominent phenotypes in Tbr1–/– mice, these features are not found in Tbr1+/– mice. Instead, inter- and intra-amygdalar axonal projections and NMDAR expression and activity in amygdala are particularly susceptible to Tbr1 haploinsufficiency. The studies indicated that both abnormal brain wiring (abnormal amygdalar connections and excitation/inhibition imbalance (NMDAR hypoactivity, two prominent models for ASD etiology, are present in Tbr1+/– mice. Moreover, calcium/calmodulin-dependent serine protein kinase (CASK was found to interact with TBR1. The CASK-TBR1 complex had been shown to directly bind the promoter of the Grin2b gene, which is also known as Nmdar2b, and upregulate Grin2b expression. This molecular function of TBR1 provides an explanation for NMDAR hypoactivity in Tbr1+/– mice. In addition to Grin2b, cell adhesion molecules-including Ntng1, Cdh8 and Cntn2-are also regulated by TBR1 to control axonal projections of amygdala. Taken together, the studies of Tbr1 provide an integrated picture of ASD

  5. Association of Ki-67, p53, and bcl-2 expression of the primary non-small-cell lung cancer lesion with brain metastatic lesion

    International Nuclear Information System (INIS)

    Bubb, Robbin S.; Komaki, Ritsuko; Hachiya, Tsutomu; Milas, Ivan; Ro, Jae Y.; Langford, Lauren; Sawaya, Raymond; Putnam, Joe B.; Allen, Pamela; Cox, James D.; McDonnell, Timothy J.; Brock, William; Hong, Waun K.; Roth, Jack A.; Milas, Luka

    2002-01-01

    Purpose: The study was conducted to determine whether immunohistochemical analysis of Ki-67, p53, and bcl-2 in patients with non-small-cell lung cancer is associated with a higher rate of brain metastases and whether the intrapatient expression of these biomarkers (in the primary tumors vs. brain lesions) is similar. Methods and Materials: At the M. D. Anderson Cancer Center, tumors from 29 case patients with primary lung tumor and brain metastasis and 29 control patients with primary lung tumor but no brain metastasis were resected and examined for immunohistochemical expression. Ki-67, p53, and bcl-2 were analyzed in resected primary lung, lymph node, and metastatic brain tumors. Each control patient was matched by age, gender, and histology to a patient with brain metastasis. Results: No significant differences in patient survival characteristics were detected between the case group and control group. Also, difference in patient outcome between the two groups was not generally predicted by biomarker analysis. However, when the groups were combined, the biomarker analysis was predictive for certain patient outcome end points. Using median values as cutoff points between low and high expression of biomarkers, it was observed that high expression of Ki-67 (>40%) in lung primaries was associated with poorer disease-free survival (p=0.04), whereas low expression of p53 in lung primaries was associated with poorer overall survival (p=0.04), and these patients had a higher rate of nonbrain distant metastases (p=0.02). The patients with brain metastases were particularly prone to developing nonbrain distant metastases if the percentage of p53-positive cells in brain metastases was low (p=0.01). There was a positive correlation in the expression of Ki-67 (p=0.02) (r 2 =0.1608), as well as p53 (p 2 =0.7380), between lung primaries and brain metastases. Compared to Ki-67 and p53, bcl-2 was the least predictive. Conclusion: Differences in biomarker expression between the

  6. Sporadic meningioangiomatosis-associated atypical meningioma mimicking parenchymal invasion of brain: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Luo Bo-ning

    2010-06-01

    Full Text Available Abstract Meningioangiomatosis is a rare hamartomatous lesion or meningiovascular malformation in brain. In extremely rare condition, meningioma may occur together with meningioangiomatosis, and only 19 cases have been described in English literature until now. We now report a case of meningioangiomatosis-associated meningioma with atypical and clear cell variant. A 34-year-old man presented a 3-month history of progressive numbness and weakness of his left lower extremity. He had no stigmata of neurofibromatosis type 2. Magnetic resonance imaging (MRI revealed multifocal lesions in the right frontoparietal lobe. The lesions were totally removed. Microscopically, parts of lesions were atypical and clear cell meningioma corresponding to WHO grade II. The adjacent brain parenchyma showed the histological features of meningioangiomatosis. Neoplastic cells in atypical meningioma area were immunoreactive to epithelial membrane antigen (EMA with high MIB-1 index of up to 20%. However, the spindle cells in meningioangiomatosis area were negative for EMA with low MIB-1 index of up to 1%. The diagnosis of atypical meningioma associated with sporadic meningioangiomatosis was made. To our knowledge, this is the first case of a meningioangiomatosis-associated meningioma with atypical and clear cell variant component to be described. The patient had been followed-up for 11 months without adjuvant radiotherapy or chemotherapy. No tumor recurrence was found during this period. Meningioangiomatosis-associated meningioma is more likely to occur in younger patients and histologically to mimic parenchymal invasion of brain. We suggest that postoperative radiotherapy or chemotherapy should be given careful consideration to avoid over-treatment due to erroneously interpret as malignant meningioma.

  7. Brain Vascular Malformation Consortium: Overview, Progress and Future Directions.

    Science.gov (United States)

    Akers, Amy L; Ball, Karen L; Clancy, Marianne; Comi, Anne M; Faughnan, Marie E; Gopal-Srivastava, Rashmi; Jacobs, Thomas P; Kim, Helen; Krischer, Jeffrey; Marchuk, Douglas A; McCulloch, Charles E; Morrison, Leslie; Moses, Marsha; Moy, Claudia S; Pawlikowska, Ludmilla; Young, William L

    2013-04-01

    Brain vascular malformations are resource-intensive to manage effectively, are associated with serious neurological morbidity, lack specific medical therapies, and have no validated biomarkers for disease severity and progression. Investigators have tended to work in "research silos" with suboptimal cross-communication. We present here a paradigm for interdisciplinary collaboration to facilitate rare disease research. The Brain Vascular Malformation Consortium (BVMC) is a multidisciplinary, inter-institutional group of investigators, one of 17 consortia in the Office of Rare Disease Research Rare Disease Clinical Research Network (RDCRN). The diseases under study are: familial Cerebral Cavernous Malformations type 1, common Hispanic mutation (CCM1-CHM); Sturge-Weber Syndrome (SWS); and brain arteriovenous malformation in hereditary hemorrhagic telangiectasia (HHT). Each project is developing biomarkers for disease progression and severity, and has established scalable, relational databases for observational and longitudinal studies that are stored centrally by the RDCRN Data Management and Coordinating Center. Patient Support Organizations (PSOs) are a key RDCRN component in the recruitment and support of participants. The BVMC PSOs include Angioma Alliance, Sturge Weber Foundation , and HHT Foundation International . Our networks of clinical centers of excellence in SWS and HHT, as well as our PSOs, have enhanced BVMC patient recruitment. The BVMC provides unique and valuable resources to the clinical neurovascular community, and recently reported findings are reviewed. Future planned studies will apply successful approaches and insights across the three projects to leverage the combined resources of the BVMC and RDCRN in advancing new biomarkers and treatment strategies for patients with vascular malformations.

  8. Cross-sectional associations of objectively measured physical activity with brain-derived neurotrophic factor in adolescents

    DEFF Research Database (Denmark)

    Huang, Tao; Gejl, Anne Kær; Tarp, Jakob

    2017-01-01

    .035). In girls, mean physical activity and MVPA were not associated with serum BDNF. Without adjustment for wear time, sedentary time was not associated with serum BDNF in either sex. CONCLUSION: These findings indicate that higher physical activity is associated with lower serum BDNF in boys, but not in girls....... standardized procedures. RESULTS: With adjustment for age, pubertal status and body mass index, mean physical activity (counts per minute) was negatively associated with serum BDNF in boys (P=0.013). Similarly, moderate-to-vigorous physical activity (MVPA) was negatively associated with serum BDNF in boys (P=0......OBJECTIVE: The purpose of this study was to examine the associations between objectively measured physical activity and serum brain-derived neurotrophic factor (BDNF) in adolescents. METHODS: Cross-sectional analyses were performed using data from 415 adolescents who participated in the 2015 follow...

  9. Project management plan for the gunite and associated tanks treatability studies project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-12-01

    This plan for the Gunite and Associated Tanks (GAAT) Treatability Studies Project satisfies the requirements of the program management plan for the Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program as established in the Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program. This plan is a subtier of several other ER documents designed to satisfy the US Department of Energy (DOE) Order 4700.1 requirement for major systems acquisitions. This project management plan identifies the major activities of the GAAT Treatability Studies Project; establishes performance criteria; discusses the roles and responsibilities of the organizations that will perform the work; and summarizes the work breakdown structure, schedule, milestones, and cost estimate for the project

  10. Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity.

    Science.gov (United States)

    Jastreboff, Ania M; Lacadie, Cheryl; Seo, Dongju; Kubat, Jessica; Van Name, Michelle A; Giannini, Cosimo; Savoye, Mary; Constable, R Todd; Sherwin, Robert S; Caprio, Sonia; Sinha, Rajita

    2014-11-01

    In the U.S., an astonishing 12.5 million children and adolescents are now obese, predisposing 17% of our nation's youth to metabolic complications of obesity, such as type 2 diabetes (T2D). Adolescent obesity has tripled over the last three decades in the setting of food advertising directed at children. Obese adults exhibit increased brain responses to food images in motivation-reward pathways. These neural alterations may be attributed to obesity-related metabolic changes, which promote food craving and high-calorie food (HCF) consumption. It is not known whether these metabolic changes affect neural responses in the adolescent brain during a crucial period for establishing healthy eating behaviors. Twenty-five obese (BMI 34.4 kg/m2, age 15.7 years) and fifteen lean (BMI 20.96 kg/m2, age 15.5 years) adolescents underwent functional MRI during exposure to HCF, low-calorie food (LCF), and nonfood (NF) visual stimuli 2 h after isocaloric meal consumption. Brain responses to HCF relative to NF cues increased in obese versus lean adolescents in striatal-limbic regions (i.e., putamen/caudate, insula, amygdala) (P < 0.05, family-wise error [FWE]), involved in motivation-reward and emotion processing. Higher endogenous leptin levels correlated with increased neural activation to HCF images in all subjects (P < 0.05, FWE). This significant association between higher circulating leptin and hyperresponsiveness of brain motivation-reward regions to HCF images suggests that dysfunctional leptin signaling may contribute to the risk of overconsumption of these foods, thus further predisposing adolescents to the development of obesity and T2D. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  11. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Maronpot, Robert R; Torres-Jardon, Ricardo; Henríquez-Roldán, Carlos; Schoonhoven, Robert; Acuña-Ayala, Hilda; Villarreal-Calderón, Anna; Nakamura, Jun; Fernando, Reshan; Reed, William; Azzarelli, Biagio; Swenberg, James A

    2003-01-01

    Acute, subchronic, or chronic exposures to particulate matter (PM) and pollutant gases affect people in urban areas and those exposed to fires, disasters, and wars. Respiratory tract inflammation, production of mediators of inflammation capable of reaching the brain, systemic circulation of PM, and disruption of the nasal respiratory and olfactory barriers are likely in these populations. DNA damage is crucial in aging and in age-associated diseases such as Alzheimer's disease. We evaluated apurinic/apyrimidinic (AP) sites in nasal and brain genomic DNA, and explored by immunohistochemistry the expression of nuclear factor NFkappaB p65, inducible nitric oxide synthase (iNOS), cyclo-oxygenase 2 (COX2), metallothionein I and II, apolipoprotein E, amyloid precursor protein (APP), and beta-amyloid(1-42) in healthy dogs naturally exposed to urban pollution in Mexico City. Nickel (Ni) and vanadium (V) were measured by inductively coupled plasma mass spectrometry (ICP-MS). Forty mongrel dogs, ages 7 days-10 years were studied (14 controls from Tlaxcala and 26 exposed to urban pollution in South West Metropolitan Mexico City (SWMMC)). Nasal respiratory and olfactory epithelium were found to be early pollutant targets. Olfactory bulb and hippocampal AP sites were significantly higher in exposed than in control age matched animals. Ni and V were present in a gradient from olfactory mucosa > olfactory bulb > frontal cortex. Exposed dogs had (a) nuclear neuronal NFkappaB p65, (b) endothelial, glial and neuronal iNOS, (c) endothelial and glial COX2, (d) ApoE in neuronal, glial and vascular cells, and (e) APP and beta amyloid(1-42) in neurons, diffuse plaques (the earliest at age 11 months), and in subarachnoid blood vessels. Increased AP sites and the inflammatory and stress protein brain responses were early and significant in dogs exposed to urban pollution. Oil combustion PM-associated metals Ni and V were detected in the brain. There was an acceleration of Alzheimer

  12. The Changes in the Hemodynamic Activity of the Brain during Motor Imagery Training with the Use of Brain-Computer Interface

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Silchenko, A.V.; Tintěra, J.; Rydlo, J.

    2016-01-01

    Roč. 42, č. 1 (2016), s. 1-12 ISSN 0362-1197 R&D Projects: GA MŠk ED1.1.00/02.0070 Grant - others:GA MŠk(CZ) EE.2.3.20.0073 Institutional support: RVO:67985807 Keywords : brain-computer interface * motor imagery * hemodynamic activity * brain plasticity * functional MRI Subject RIV: IN - Informatics, Computer Science

  13. The Neurona at Home project: Simulating a large-scale cellular automata brain in a distributed computing environment

    Science.gov (United States)

    Acedo, L.; Villanueva-Oller, J.; Moraño, J. A.; Villanueva, R.-J.

    2013-01-01

    The Berkeley Open Infrastructure for Network Computing (BOINC) has become the standard open source solution for grid computing in the Internet. Volunteers use their computers to complete an small part of the task assigned by a dedicated server. We have developed a BOINC project called Neurona@Home whose objective is to simulate a cellular automata random network with, at least, one million neurons. We consider a cellular automata version of the integrate-and-fire model in which excitatory and inhibitory nodes can activate or deactivate neighbor nodes according to a set of probabilistic rules. Our aim is to determine the phase diagram of the model and its behaviour and to compare it with the electroencephalographic signals measured in real brains.

  14. Different populations of prostaglandin EP3 receptor-expressing preoptic neurons project to two fever-mediating sympathoexcitatory brain regions.

    Science.gov (United States)

    Nakamura, Y; Nakamura, K; Morrison, S F

    2009-06-30

    The central mechanism of fever induction is triggered by an action of prostaglandin E(2) (PGE(2)) on neurons in the preoptic area (POA) through the EP3 subtype of prostaglandin E receptor. EP3 receptor (EP3R)-expressing POA neurons project directly to the dorsomedial hypothalamus (DMH) and to the rostral raphe pallidus nucleus (rRPa), key sites for the control of thermoregulatory effectors. Based on physiological findings, we hypothesize that the febrile responses in brown adipose tissue (BAT) and those in cutaneous vasoconstrictors are controlled independently by separate neuronal pathways: PGE(2) pyrogenic signaling is transmitted from EP3R-expressing POA neurons via a projection to the DMH to activate BAT thermogenesis and via another projection to the rRPa to increase cutaneous vasoconstriction. In this case, DMH-projecting and rRPa-projecting neurons would constitute segregated populations within the EP3R-expressing neuronal group in the POA. Here, we sought direct anatomical evidence to test this hypothesis with a double-tracing experiment in which two types of the retrograde tracer, cholera toxin b-subunit (CTb), conjugated with different fluorophores were injected into the DMH and the rRPa of rats and the resulting retrogradely labeled populations of EP3R-immunoreactive neurons in the POA were identified with confocal microscopy. We found substantial numbers of EP3R-immunoreactive neurons in both the DMH-projecting and the rRPa-projecting populations. However, very few EP3R-immunoreactive POA neurons were labeled with both the CTb from the DMH and that from the rRPa, although a substantial number of neurons that were not immunoreactive for EP3R were double-labeled with both CTbs. The paucity of the EP3R-expressing neurons that send collaterals to both the DMH and the rRPa suggests that pyrogenic signals are sent independently to these caudal brain regions from the POA and that such pyrogenic outputs from the POA reflect different control mechanisms for BAT

  15. Effects of NPY and the specific Y1 receptor agonist [D-His(26)]-NPY on the deficit in brain reward function and somatic signs associated with nicotine withdrawal in rats.

    Science.gov (United States)

    Rylkova, Daria; Boissoneault, Jeffrey; Isaac, Shani; Prado, Melissa; Shah, Hina P; Bruijnzeel, Adrie W

    2008-06-01

    Tobacco addiction is a chronic disorder that is characterized by dysphoria upon smoking cessation and relapse after periods of abstinence. Previous research suggests that Neuropeptide Y (NPY) and Y1 receptor agonists attenuate negative affective states and somatic withdrawal signs. The aim of the present experiments was to investigate the effects of NPY and the specific Y1 receptor agonist [D-His(26)]-NPY on the deficit in brain reward function and somatic signs associated with nicotine withdrawal in rats. The intracranial self-stimulation procedure was used to assess the effects of nicotine withdrawal on brain reward function as this procedure can provide a quantitative measure of emotional states in rodents. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. In the first experiment, NPY did not prevent the elevations in brain reward thresholds associated with precipitated nicotine withdrawal and elevated the brain reward thresholds of the saline-treated control rats. Similar to NPY, [D-His(26)]-NPY did not prevent the elevations in brain reward thresholds associated with precipitated nicotine withdrawal and elevated the brain reward thresholds of the saline-treated control rats. Neither NPY nor [D-His(26)]-NPY affected the response latencies. In a separate experiment, it was demonstrated that the specific Y1 receptor antagonist BIBP-3226 prevented the NPY-induced elevations in brain reward thresholds. NPY attenuated the overall somatic signs associated with precipitated nicotine withdrawal. [D-His(26)]-NPY did not affect the overall somatic signs associated with precipitated nicotine withdrawal, but decreased the number of abdominal constrictions. Both NPY and [D-His(26)]-NPY attenuated the overall somatic signs associated with spontaneous nicotine withdrawal. These findings indicate that NPY and [D-His(26)]-NPY attenuate somatic nicotine withdrawal signs, but do not prevent the deficit in brain reward function associated

  16. Association between structural and functional brain alterations in drug-free patients with schizophrenia: a multimodal meta-analysis.

    Science.gov (United States)

    Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John A; Lui, Su

    2018-03-01

    Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN

  17. Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study.

    Science.gov (United States)

    Tian, Lin; Meng, Chun; Jiang, Ying; Tang, Qunfeng; Wang, Shuai; Xie, Xiyao; Fu, Xiangshuai; Jin, Chunhui; Zhang, Fuquan; Wang, Jidong

    2016-04-03

    Abnormal brain networks have been observed in patients with obsessive-compulsive disorder (OCD). However, detailed network hub and connectivity changes remained unclear in treatment-naive patients with OCD. Here, we sought to determine whether patients show hub-related connectivity changes in their whole-brain functional networks. We used resting-state functional magnetic resonance imaging data and voxel-based graph-theoretic analysis to investigate functional connectivity strength and hubs of whole-brain networks in 29 treatment-naive patients with OCD and 29 age- and gender-matched healthy controls. Correlation analysis was applied for potential associations with OCD symptom severity. OCD selectively targeted brain regions of higher functional connectivity strength than the average including brain network hubs, mainly distributed in the cortico-striato-thalamo-cortical (CSTC) circuits and additionally parietal, occipital, temporal and cerebellar regions. Moreover, affected functional connectivity strength in the cerebellum, the medial orbitofrontal cortex and superior occipital cortex was significantly associated with global OCD symptom severity. Our results provide the evidence about OCD-related brain network hub changes, not only in the CSTC circuits but more distributed in whole brain networks. Data suggest that whole brain network hub analysis is useful for understanding the pathophysiology of OCD. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Patient Effort in Traumatic Brain Injury Inpatient Rehabilitation: Course and Associations With Age, Brain Injury Severity, and Time Postinjury.

    Science.gov (United States)

    Seel, Ronald T; Corrigan, John D; Dijkers, Marcel P; Barrett, Ryan S; Bogner, Jennifer; Smout, Randall J; Garmoe, William; Horn, Susan D

    2015-08-01

    To describe patients' level of effort in occupational, physical, and speech therapy sessions during traumatic brain injury (TBI) inpatient rehabilitation and to evaluate how age, injury severity, cognitive impairment, and time are associated with effort. Prospective, multicenter, longitudinal cohort study. Acute TBI rehabilitation programs. Patients (N=1946) receiving 138,555 therapy sessions. Not applicable. Effort in rehabilitation sessions rated on the Rehabilitation Intensity of Therapy Scale, FIM, Comprehensive Severity Index brain injury severity score, posttraumatic amnesia (PTA), and Agitated Behavior Scale (ABS). The Rehabilitation Intensity of Therapy Scale effort ratings in individual therapy sessions closely conformed to a normative distribution for all 3 disciplines. Mean Rehabilitation Intensity of Therapy Scale ratings for patients' therapy sessions were higher in the discharge week than in the admission week (Prehabilitation, differences in effort ratings (Prehabilitation admission, days from admission, and daily ratings of PTA and ABS score were predictors of level of effort (Prehabilitation setting using the Rehabilitation Intensity of Therapy Scale. Patients who sustain TBI show varying levels of effort in rehabilitation therapy sessions, with effort tending to increase over the stay. PTA and agitated behavior are primary risk factors that substantially reduce patient effort in therapies. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Brain cavernomas associated with en coup de sabre linear scleroderma: Two case reports

    Directory of Open Access Journals (Sweden)

    Laxer Ronald M

    2011-07-01

    Full Text Available Abstract Linear scleroderma is a form of localized scleroderma that primarily affects the pediatric population. When it occurs on the scalp or forehead, it is termed "en coup de sabre". In the en coup de sabre subtype, many extracutaneous associations, mostly neurological, have been described. A patient with linear scleroderma en coup de sabre was noted to have ipsilateral brain cavernomas by magnetic resonance imaging. Using a worldwide pediatric rheumatology electronic list-serve, another patient with the same 2 conditions was identified. These two patients are reported in this study. Consideration of neuroimaging studies to disclose abnormal findings in patients with linear scleroderma en coup de sabre is important for potentially preventing and treating neurological manifestations associated with this condition.

  20. Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome.

    Science.gov (United States)

    Batalle, Dafnis; Eixarch, Elisenda; Figueras, Francesc; Muñoz-Moreno, Emma; Bargallo, Nuria; Illa, Miriam; Acosta-Rojas, Ruthy; Amat-Roldan, Ivan; Gratacos, Eduard

    2012-04-02

    Intrauterine growth restriction (IUGR) due to placental insufficiency affects 5-10% of all pregnancies and it is associated with a wide range of short- and long-term neurodevelopmental disorders. Prediction of neurodevelopmental outcomes in IUGR is among the clinical challenges of modern fetal medicine and pediatrics. In recent years several studies have used magnetic resonance imaging (MRI) to demonstrate differences in brain structure in IUGR subjects, but the ability to use MRI for individual predictive purposes in IUGR is limited. Recent research suggests that MRI in vivo access to brain connectivity might have the potential to help understanding cognitive and neurodevelopment processes. Specifically, MRI based connectomics is an emerging approach to extract information from MRI data that exhaustively maps inter-regional connectivity within the brain to build a graph model of its neural circuitry known as brain network. In the present study we used diffusion MRI based connectomics to obtain structural brain networks of a prospective cohort of one year old infants (32 controls and 24 IUGR) and analyze the existence of quantifiable brain reorganization of white matter circuitry in IUGR group by means of global and regional graph theory features of brain networks. Based on global and regional analyses of the brain network topology we demonstrated brain reorganization in IUGR infants at one year of age. Specifically, IUGR infants presented decreased global and local weighted efficiency, and a pattern of altered regional graph theory features. By means of binomial logistic regression, we also demonstrated that connectivity measures were associated with abnormal performance in later neurodevelopmental outcome as measured by Bayley Scale for Infant and Toddler Development, Third edition (BSID-III) at two years of age. These findings show the potential of diffusion MRI based connectomics and graph theory based network characteristics for estimating differences in the

  1. The association of functional oral intake and pneumonia in patients with severe Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Schow, Trine; Larsen, Klaus; Engberg, Aase Worså

    Abstract Objective(s): This study investigates the incidence and onset time of pneumonia for patients with severe Traumatic Brain Injury (TBI) in the early phase of rehabilitation, and identifies parameters associated with the risk of pneumonia. Design: Observational retrospective cohort study....... Setting: A subacute rehabilitation department, university hospital, Denmark. Participants: One-hundred and seventy-three patients aged 16-65 years with severe TBI admitted over a 5-year period. Patients are transferred to the Brain Injury Unit (BIU) as soon as they ventilate spontaneously. Intervention......: None Main Outcome Measure(s): Pneumonia. Results: Twenty-seven percent (27%) of the patients admitted to the BIU were in treatment for pneumonia and 12% developed pneumonia during rehabilitation, all but one within 19 days of admission. Of these patients, 81% received nothing by mouth. Three factors...

  2. mammalian brain system

    Directory of Open Access Journals (Sweden)

    Alan Kania

    2014-06-01

    Full Text Available Relaxin-3, a member of the relaxin peptide family, was discovered in 2001 as a homologue of relaxin – a well-known reproductive hormone. However, it is the brain which turned out to be a major expression site of this newly discovered peptide. Both its molecular structure and expression pattern were shown to be very conserved among vertebrates. Extensive research carried out since the discovery of relaxin-3 contributed to the significant progress in our knowledge regarding this neuropeptide. The endogenous relaxin-3 receptor (RXFP3 was identified and the anatomy of the yet uncharacterized mammalian brain system was described, with nucleus incertus as the main center of relaxin-3 expression. Not only its diffusive projections throughout the whole brain, which reach various brain structures such as the hippocampus, septum, intergeniculate leaflet or amygdala, but also functional studies of the relaxin-3/RXFP3 signaling system, allowed this brain network to be classified as one of the ascending nonspecific brain systems. Thus far, research depicts the connection of relaxin-3 with phenomena such as feeding behavior, spatial memory, sleep/wake cycle or modulation of pituitary gland hormone secretion. Responsiveness of relaxin-3 neurons to stress factors and the strong orexigenic effect exerted by this peptide suggest its participation in modulation of feeding by stress, in particular of the chronic type. The discovery of relaxin-3 opened a new research field which will contribute to our better understanding of the neurobiological basis of feeding disorders.

  3. A network of genes, genetic disorders, and brain areas.

    Directory of Open Access Journals (Sweden)

    Satoru Hayasaka

    Full Text Available The network-based approach has been used to describe the relationship among genes and various phenotypes, producing a network describing complex biological relationships. Such networks can be constructed by aggregating previously reported associations in the literature from various databases. In this work, we applied the network-based approach to investigate how different brain areas are associated to genetic disorders and genes. In particular, a tripartite network with genes, genetic diseases, and brain areas was constructed based on the associations among them reported in the literature through text mining. In the resulting network, a disproportionately large number of gene-disease and disease-brain associations were attributed to a small subset of genes, diseases, and brain areas. Furthermore, a small number of brain areas were found to be associated with a large number of the same genes and diseases. These core brain regions encompassed the areas identified by the previous genome-wide association studies, and suggest potential areas of focus in the future imaging genetics research. The approach outlined in this work demonstrates the utility of the network-based approach in studying genetic effects on the brain.

  4. Brain perfusion abnormalities associated to drug abuse in recent abstinent patients using SPECT 99m Tc-ethylen-cysteinate-dimer (ECD)

    Energy Technology Data Exchange (ETDEWEB)

    Massardo, Teresa [University of Chile Clinical Hospital Nuclear Medicine Section, Department of Medicine, Santiago (Chile); Pallavicini, Julio [Addiction Unit, Psychiatric Clinic. University of Chile Clinical Hospital (Chile); Gonzalez, Patricio; Jaimovich, Rodrigo [University of Chile Clinical Hospital Nuclear Medicine Section, Department of Medicine, Santiago (Chile); Servat, Monica [Addiction Unit, Psychiatric Clinic. University of Chile Clinical Hospital (Chile); Lavados, Hugo [University of Chile Clinical Hospital Nuclear Medicine Section, Department of Medicine, Santiago (Chile); Arancibia, Pablo [Addiction Unit, Psychiatric Clinic. University of Chile Clinical Hospital (Chile); Padilla, Pamela [University of Chile Clinical Hospital Nuclear Medicine Section, Department of Medicine, Santiago (Chile)

    2009-04-15

    Several substances may produce brain perfusion abnormalities in drug-dependent patients. Their mechanism is unclear and several causes might be involved, especially vasospasm in cocaine consumption. Goal: To characterize residual brain perfusion abnormalities in substance-dependent population. We analyzed brain perfusion in 100 dependant patients (DSM-IV criteria) following a month of strict in-hospital abstinence (age:35{+-}12 y.o.; 86% men); 55% corresponded to poly-drug dependents, mainly to cocaine, alcohol and cannabis; 44% mono-drug users, mostly to alcohol. Results: Single Photon Emission Computed Tomography (SPECT) with 99mTc-ethylen-cysteinate-dimer (ECD) was abnormal in 54% of the cases, with bilateral cortical hypo-perfusion in 89%, focal in 54% and diffuse in 46% of them, with moderate or severe intensity in 61%. The abnormal perfusion group's age was 38{+-}12 versus 31{+-}10 years in the normal SPECT group (P=0.005) with a consumption period of 16{+-}11 versus 11{+-}8 years, respectively (P=0.043). Only 29% of women had abnormal perfusion versus 58% of men (P=0.047). Abnormal brain perfusion in 64% of mono and 45% in poly-drug dependents (P=0.07). Psychometric tests performed in 25 patients demonstrated association between perfusion defects and cognitive abnormalities. Relative risk for abnormal psychometric test was 2.5 [95%;CI=1.1-5.6] for abnormal SPECT. Conclusion: Dependent population after a month of abstinence persists with cortical brain perfusion abnormalities, associated to age, sex and type of drug consumption.

  5. Proton MRS of the peritumoral brain.

    Science.gov (United States)

    Chernov, Mikhail F; Kubo, Osami; Hayashi, Motohiro; Izawa, Masahiro; Maruyama, Takashi; Usukura, Masao; Ono, Yuko; Hori, Tomokatsu; Takakura, Kintomo

    2005-02-15

    Long-echo (TR: 2000 ms, TE: 136 ms) proton MRS of the cerebral tissue in the vicinity to intracranial lesion was done in 15 patients, mainly with parenchymal brain tumors. Significant decrease of N-acetylaspartate (NAA) (Plactate (Plactate in the lesion (Plactate in the lesion compared to perilesional brain (Plactate in the lesion is associated with lower relative NAA content in the perilesional brain tissue, independently on the presence or absence of any other factor, including brain edema (Plactate diffused from the tumor, or other metabolites secreted by lactate-producing neoplasm, should be considered as important contributors to the neuronal dysfunction in the surrounding brain. Decrease of NAA in the vicinity to intracranial lesions may reflect neuronal alteration responsible for associated epilepsy.

  6. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey

    DEFF Research Database (Denmark)

    Hannibal, J; Kankipati, L; Strang, C E

    2014-01-01

    ). The ipRGCs regulate other nonimage-forming visual functions such as the pupillary light reflex, masking behavior, and light-induced melatonin suppression. To evaluate whether PACAP-immunoreactive retinal projections are useful as a marker for central projection of ipRGCs in the monkey brain, we......, supporting previous retrograde tracer studies demonstrating that melanopsin-containing retinal projections reach areas in the primate brain involved in both image- and nonimage-forming visual processing....

  7. Migraine and brain changes

    NARCIS (Netherlands)

    Meinders, I.H.

    2018-01-01

    This thesis describes the longitudinal population-based CAMERA-study on the association between migraine and brain changes (e.g. white matter hyperintensities, infarct-like and other lesions) and possible causes and consequences of those brain changes. Women with migraine showed higher incidence of

  8. Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes

    Directory of Open Access Journals (Sweden)

    Alicia Blaker-Lee

    2012-11-01

    Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs, intellectual disability disorder (IDD and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV. The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed ‘dosage sensors’, which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development – impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa and kinesin family member 22 (kif22 genes were identified as giving clear phenotypes when RNA levels were reduced by ∼50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.

  9. Measuring and Inducing Brain Plasticity in Chronic Aphasia

    Science.gov (United States)

    Fridriksson, Julius

    2011-01-01

    Brain plasticity associated with anomia recovery in aphasia is poorly understood. Here, I review four recent studies from my lab that focused on brain modulation associated with long-term anomia outcome, its behavioral treatment, and the use of transcranial brain stimulation to enhance anomia treatment success in individuals with chronic aphasia…

  10. Insulin action in brain regulates systemic metabolism and brain function.

    Science.gov (United States)

    Kleinridders, André; Ferris, Heather A; Cai, Weikang; Kahn, C Ronald

    2014-07-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. © 2014 by the American Diabetes Association.

  11. Brain Structures Associated with Internet Addiction Tendency in Adolescent Online Game Players.

    Science.gov (United States)

    Pan, Nannan; Yang, Yongxin; Du, Xin; Qi, Xin; Du, Guijin; Zhang, Yang; Li, Xiaodong; Zhang, Quan

    2018-01-01

    With the development of the Internet, an increasing number of adolescents play online game excessively, which leads to adverse effects on individuals and society. Previous studies have demonstrated altered gray-matter volume (GMV) in individuals with Internet gaming disorder (IGD), but the relationship between the tendency to IGD and the GMV across whole brain is still unclear in adolescents. In the present study, anatomical imaging with high resolution was performed on 67 male adolescents who played online game; and Young's Internet addiction test (IAT) was conducted to test the tendency to IGD. FMRIB Software Library (FSL) was used to calculate the voxel-based correlations between the GMV and the IAT score after controlling for the age and years of education. The GMVs of the bilateral postcentral gyri (postCG), the bilateral precentral gyri (preCG), the right precuneus, the left posterior midcingulate cortex (pMCC), the left inferior parietal lobe (IPL), and the right middle frontal gyrus (MFG) were negatively correlated with the IAT score. The correlation still existed between the IAT score and the GMVs of the bilateral postCG, the left preCG, the left pMCC, and the right MFG after controlling for the total time of playing online game. When the participants were divided into two groups according to the IAT score, the GMVs of these IAT-related brain regions were lower in high IAT score subgroup (IAT score >50) than in low IAT score subgroup (IAT score ≤50). Our results suggested that the GMVs of brain regions involved in sensorimotor process and cognitive control were associated with the IGD tendency. These findings may lead to new targets for preventing and treating the IGD.

  12. BrainNet Europe's Code of Conduct for brain banking.

    Science.gov (United States)

    Klioueva, Natasja M; Rademaker, Marleen C; Dexter, David T; Al-Sarraj, Safa; Seilhean, Danielle; Streichenberger, Nathalie; Schmitz, Peer; Bell, Jeanne E; Ironside, James W; Arzberger, Thomas; Huitinga, Inge

    2015-07-01

    Research utilizing human tissue and its removal at post-mortem has given rise to many controversies in the media and posed many dilemmas in the fields of law and ethics. The law often lacks clear instructions and unambiguous guidelines. The absence of a harmonized international legislation with regard to post-mortem medical procedures and donation of tissue and organs contributes to the complexity of the issue. Therefore, within the BrainNet Europe (BNE) consortium, a consortium of 19 European brain banks, we drafted an ethical Code of Conduct for brain banking that covers basic legal rules and bioethical principles involved in brain banking. Sources include laws, regulations and guidelines (Declarations, Conventions, Recommendations, Guidelines and Directives) issued by international key organizations, such as the Council of Europe, European Commission, World Medical Association and World Health Organization. The Code of Conduct addresses fundamental topics as the rights of the persons donating their tissue, the obligations of the brain bank with regard to respect and observance of such rights, informed consent, confidentiality, protection of personal data, collections of human biological material and their management, and transparency and accountability within the organization of a brain bank. The Code of Conduct for brain banking is being adopted by the BNE network prior to being enshrined in official legislation for brain banking in Europe and beyond.

  13. Gunite and associated tanks remediation project recycling and waste minimization effort

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Saunders, A.D.

    1998-05-01

    The Department of Energy's Environmental Management Program at Oak Ridge National Laboratory has initiated clean up of legacy waste resulting from the Manhattan Project. The gunite and associated tanks project has taken an active pollution prevention role by successfully recycling eight tons of scrap metal, reusing contaminated soil in the Area of Contamination, using existing water (supernate) to aid in sludge transfer, and by minimizing and reusing personal protective equipment (PPE) and on-site equipment as much as possible. Total cost savings for Fiscal Year 1997 activities from these efforts are estimated at $4.2 million dollars

  14. Effect of AVP on brain edema following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    XU Miao; SU Wei; HUANG Wei-dong; LU Yuan-qiang; XU Qiu-ping; CHEN Zhao-jun

    2007-01-01

    Objective: To evaluate plasma arginine vasopressin (AVP) level in patients with traumatic brain injury and investigate the role of AVP in the process of brain edema. Methods: A total of 30 patients with traumatic brain injury were involved in our study. They were divided into two groups by Glasgow Coma Scale: severe traumatic brain injury group (STBI, GCS≤ 8) and moderate traumatic brain injury group (MTBI, GCS>8).Samples of venous blood were collected in the morning at rest from 15 healthy volunteers (control group)and within 24 h after traumatic brain injury from these patients for AVP determinations by radioimmunoassay. The severity and duration of the brain edema were estimated by head CT scan.Results: plasma AVP levels (ng/L) were (mean±SD): control, 3.06±1.49; MTBI, 38.12±7.25; and STBI, 66.61±17.10.The plasma level of AVP was significantly increased within 24 h after traumatic brain injury and followed by the reduction of GCS, suggesting the deterioration of cerebral injury (P<0.01). And the AVP level was correlated with the severity (STBI r=0.919, P<0.01; MTBI r=0.724, P<0.01) and the duration of brain edema (STBI r=0.790, P<0.01; MTBI r=0.712, P<0.01). Conclusions: The plasma AVP level is closely associated with the severity of traumatic brain injury. AVP may play an important role in pathogenesis of brain edema after traumatic brain injury.

  15. Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments.

    Directory of Open Access Journals (Sweden)

    Kimberly B Zumbrennen-Bullough

    Full Text Available Iron Regulatory Protein 2 (Irp2, Ireb2 is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2-/- mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc, expression are increased and decreased, respectively, in the brain from Irp2-/- mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.

  16. Brain structural connectivity and context-dependent extinction memory.

    Science.gov (United States)

    Hermann, Andrea; Stark, Rudolf; Blecker, Carlo R; Milad, Mohammed R; Merz, Christian J

    2017-08-01

    Extinction of conditioned fear represents an important mechanism in the treatment of anxiety disorders. Return of fear after successful extinction or exposure therapy in patients with anxiety disorders might be linked to poor temporal or contextual generalization of extinction due to individual differences in brain structural connectivity. The goal of this magnetic resonance imaging study was therefore to investigate the association of context-dependent extinction recall with brain structural connectivity. Diffusion-tensor imaging was used to determine the fractional anisotropy as a measure of white matter structural integrity of fiber tracts connecting central brain regions of the fear and extinction circuit (uncinate fasciculus, cingulum). Forty-five healthy men participated in a two-day fear conditioning experiment with fear acquisition in context A and extinction learning in context B on the first day. Extinction recall in the extinction context as well as renewal in the acquisition context and a novel context C took place one day later. Renewal of conditioned fear (skin conductance responses) in the acquisition context was associated with higher structural integrity of the hippocampal part of the cingulum. Enhanced structural integrity of the cingulum might be related to stronger hippocampal modulation of the dorsal anterior cingulate cortex, a region important for modulating conditioned fear output by excitatory projections to the amygdala. This finding underpins the crucial role of individual differences in the structural integrity of relevant fiber tracts for context-dependent extinction recall and return of fear after exposure therapy in anxiety disorders. © 2017 Wiley Periodicals, Inc.

  17. Pattern of Corticospinal Projections Defined by Brain Mapping During Resective Epilepsy Surgery in a Patient with Congenital Hemiparesis and Intractable Epilepsy.

    Science.gov (United States)

    Yang, Chen-Ya; Chen, Hsin-Hung; Chen, Chien; Chiu, Jan-Wei; Chou, Chen-Liang; Yang, Tsui-Fen

    2017-11-01

    Congenital or early-onset brain structural lesions often cause contralateral hemiparesis, cognitive deficits, developmental delays, and seizures. Seizure is the most debilitating condition, as it greatly impairs quality of life in both the affected individuals and their caregivers and prevents them from active social participation. A 34-year-old man with hemiparesis and early-onset seizures since childhood owing to a congenital brain lesion developed intractable seizures in the last 2 years and was subsequently admitted for resective epileptic surgery. During the operation, we employed an innovative intraoperative neurophysiologic monitoring technique. In contrast to routine application for transcranial stimulation, we recorded compound muscle action potentials over the bilateral limb muscles simultaneously, instead of over the contralateral muscles only, to determine the patterns of the corticospinal projections. Transcranial stimulation over the bilateral hemispheres was applied before craniotomy, and direct cortical stimulation over the lesioned hemisphere was applied after craniotomy. By integrating both approaches, we could first identify the pattern of corticospinal projections before craniotomy and then accurately define the noneloquent area, which guided the resection to successfully accomplish the surgical goal. This technique is simple because no patient participation is required. We believe that it has the potential to replace conventional preoperative functional magnetic resonance imaging and transcranial magnetic stimulation in resective epilepsy surgery, particularly for young patients. Not only can it improve the safety of surgical procedures, but also it can help predict functional outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effects of Ecballium elaterium on brain in a rat model of sepsis-associated encephalopathy

    Science.gov (United States)

    Arslan, Demet; Ekinci, Aysun; Arici, Akgul; Bozdemir, Eda; Akil, Esref; Ozdemir, Hasan Huseyin

    2017-01-01

    ABSTRACT Despite recent advances in antibiotic therapy, sepsis remains a major clinical challenge in intensive care units. Here we examined the anti-inflammatory and antioxidant effects of Ecballium elaterium (EE) on brain, and explored its therapeutic potential in an animal model of sepsis-associated encephalopathy (SAE) [induced by cecal ligation and puncture (CLP)]. Thirty rats were divided into three groups of 10 each: control, sepsis, and treatment. Rats were subjected to CLP except for the control group, which underwent laparatomy only. The treatment group received 2.5 mg/kg EE while the sepsis group was administered by saline. Twenty-four hours after laparotomy, animals were sacrificied and the brains were removed. Brain homogenates were prepared to assess interleukin 1beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), total antioxidant capacity (TAC), and total oxidant status (TOS). Brain tissue sections were stained by hematoxylin and eosin (H&E) to semi-quantitatively examine the histopathologic changes such as neuron degeneration, pericellular/perivascular edema and inflammatory cell infiltration in the cerebral cortex. We found a statistically significant reduction in brain tissue homogenate levels of TNF-α 59.5 ± 8.4/50.2 ± 6.2 (p = 0.007) and TOS 99.3 ± 16.9/82.3 ± 7.8 (p = 0.01) in rats treated with EE; although interleukin 6 levels were increased in the treatment group compared to the sepsis group, this was not statistically significant. Neuronal damage (p = 0.00), pericellular/perivascular edema and inflammatory cell infiltration (p = 0.001) were also significantly lower in the treatment group compared to those in the sepsis group. These data suggest that Ecballium elaterium contains some components that exert protective effects against SAE in part by attenuating accumulation of proinflammatory cytokines, which may be important contributors to its anti-inflammatory effects during sepsis. PMID:28859554

  19. Membrane associated phospholipase C from bovine brain

    International Nuclear Information System (INIS)

    Lee, K.; Ryu, S.H.; Suh, P.; Choi, W.C.; Rhee, S.G.

    1987-01-01

    Cytosolic fractions of bovine brain contain 2 immunologically distinct phosphoinositide-specific phospholipase (PLC), PLC-I and PLC-II, whose MW are 150,000 and 145,000 respectively, under a denaturing condition. Monoclonal antibodies were derived against each form and specific radioimmunoassays were developed. Distribution of PLC-I and PLC-II in cytosolic and particulate fractions was measured using the radioimmunoassay. More than 90% of PLC-II was found in the cytosolic fraction, while the anti-PLC-I antibody cross-reacting protein was distributed nearly equally between the soluble fraction and the 2 M KCl extract of particulate fraction. The PLC enzyme in the particulate fraction was purified to homogeneity, yielding 2 proteins of 140 KDa and 150 KDa when analyzed on SDS-PAGE. Neither of the 2 enzymes cross-reacted with anti-PLC-II antibodies, but both could be immunoblotted by all 4 different anti-PLC-I antibodies. This suggests that the 140 KDa PLC was derived from the 150 KDa form. The 150 Kda form from particulate fraction was indistinguishable from the cytosolic PLC-I when their mixture was analyzed on SDS-PAGE. In addition, the elution profile of tryptic peptides derived from the 150 KDa particulate form was identical to that of cytosolic PLC-I. This result indicates that PLC-I is reversibly associated to membranes

  20. A study of brain networks associated with swallowing using graph-theoretical approaches.

    Directory of Open Access Journals (Sweden)

    Bo Luan

    Full Text Available Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, [Formula: see text] years of age. To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia.

  1. Altered brain morphometry in carpal tunnel syndrome is associated with median nerve pathology☆☆☆

    Science.gov (United States)

    Maeda, Yumi; Kettner, Norman; Sheehan, James; Kim, Jieun; Cina, Stephen; Malatesta, Cristina; Gerber, Jessica; McManus, Claire; Mezzacappa, Pia; Morse, Leslie R.; Audette, Joseph; Napadow, Vitaly

    2013-01-01

    Objective Carpal tunnel syndrome (CTS) is a common median nerve entrapment neuropathy characterized by pain, paresthesias, diminished peripheral nerve conduction velocity (NCV) and maladaptive functional brain neuroplasticity. We evaluated structural reorganization in brain gray matter (GM) and white matter (WM) and whether such plasticity is linked to altered median nerve function in CTS. Methods We performed NCV testing, T1-weighted structural MRI, and diffusion tensor imaging (DTI) in 28 CTS and 28 age-matched healthy controls (HC). Voxel-based morphometry (VBM) contrasted regional GM volume for CTS versus HC. Significant clusters were correlated with clinical metrics and served as seeds to define associated WM tracts using DTI data and probabilistic tractography. Within these WM tracts, fractional anisotropy (FA), axial (AD) and radial (RD) diffusivity were evaluated for group differences and correlations with clinical metrics. Results For CTS subjects, GM volume was significantly reduced in contralesional S1 (hand-area), pulvinar and frontal pole. GM volume in contralesional S1 correlated with median NCV. NCV was also correlated with RD and was negatively correlated with FA within U-fiber cortico-cortical association tracts identified from the contralesional S1 VBM seed. Conclusions Our study identified clear morphometric changes in the CTS brain. This central morphometric change is likely secondary to peripheral nerve pathology and altered somatosensory afference. Enhanced axonal coherence and myelination within cortico-cortical tracts connecting primary somatosensory and motor areas may accompany peripheral nerve deafferentation. As structural plasticity was correlated with NCV and not symptomatology, the former may be a better determinant of appropriate clinical intervention for CTS, including surgery. PMID:23799199

  2. Explicit verbal memory impairments associated with brain functional deficits and morphological alterations in patients with generalized anxiety disorder.

    Science.gov (United States)

    Moon, Chung-Man; Yang, Jong-Chul; Jeong, Gwang-Woo

    2015-11-01

    Generalized anxiety disorder (GAD) is associated with brain function and morphological alterations. This study investigated explicit verbal memory impairment in patients with GAD in terms of brain functional deficits in combination with morphologic changes. Seventeen patients with GAD and 17 healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted MRI and fMR imaging at 3 T during explicit verbal memory tasks with emotionally neutral and anxiety-inducing words. In response to the neutral words, the patients showed significantly lower activities in the regions of the hippocampus (Hip), middle cingulate gyrus (MCG), putamen (Pu) and head of the caudate nucleus (HCd) compared with healthy controls. In response to the anxiety-inducing words, the patients showed significantly higher activities in the ventrolateral prefrontal cortex and precentral gyrus. However, they showed lower activities in the Hip, MCG, Pu and HCd. In addition, patients with GAD showed a significant reduction in gray matter volumes, especially in the regions of the Hip, midbrain, thalamus, insula and superior temporal gyrus, compared with healthy controls. This study examined a small sample sizes in each of the groups, and there was no consideration of a medication effect on brain activity and volume changes. This study provides evidence for the association between brain functional deficits and morphometric alterations in an explicit verbal memory task for patients with GAD. This finding is helpful for understanding explicit verbal memory impairment in connection with GAD symptoms. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction.

    Science.gov (United States)

    El Rawas, Rana; Klement, Sabine; Kummer, Kai K; Fritz, Michael; Dechant, Georg; Saria, Alois; Zernig, Gerald

    2012-01-01

    Positive social interaction could play an essential role in switching the preference of the substance dependent individual away from drug related activities. We have previously shown that conditioned place preference (CPP) for cocaine at the dose of 15 mg/kg and CPP for four 15-min episodes of social interaction were equally strong when rats were concurrently conditioned for place preference by pairing cocaine with one compartment and social interaction with the other. The aim of the present study was to investigate the differential activation of brain regions related to the reward circuitry after acquisition/expression of cocaine CPP or social interaction CPP. Our findings indicate that cocaine CPP and social interaction CPP activated almost the same brain regions. However, the granular insular cortex and the dorsal part of the agranular insular cortex were more activated after cocaine CPP, whereas the prelimbic cortex and the core subregion of the nucleus accumbens were more activated after social interaction CPP. These results suggest that the insular cortex appears to be potently activated after drug conditioning learning while activation of the prelimbic cortex-nucleus accumbens core projection seems to be preferentially involved in the conditioning to non-drug stimuli such as social interaction.

  4. Brain and bone abnormalities of thanatophoric dwarfism.

    Science.gov (United States)

    Miller, Elka; Blaser, Susan; Shannon, Patrick; Widjaja, Elysa

    2009-01-01

    The purpose of this article is to present the imaging findings of skeletal and brain abnormalities in thanatophoric dwarfism, a lethal form of dysplastic dwarfism. The bony abnormalities associated with thanatophoric dwarfism include marked shortening of the tubular bones and ribs. Abnormal temporal lobe development is a common associated feature and can be visualized as early as the second trimester. It is important to assess the brains of fetuses with suspected thanatophoric dwarfism because the presence of associated brain malformations can assist in the antenatal diagnosis of thanatophoric dwarfism.

  5. Peritumoral edema associated with metastatic brain tumor

    International Nuclear Information System (INIS)

    Shirotani, Toshiki; Takiguchi, Hiroshi; Shima, Katsuji; Chigasaki, Hiroo; Tajima, Atsushi; Watanabe, Satoru.

    1992-01-01

    Computed tomographic (CT) examinations were performed in 94 lesions of 50 patients with metastatic brain tumors. Peritumoral edema (A E ) and tumor area (A T ) were measured using the planimetric method on the CT scan films that demonstrated maximum size of the tumor. Then, the volume of the peritumoral edema (V E ) and the surface area of the tumor (S T ) were claculated from these data. Eighty-three brain lesions from lung cancers were subdivided into 49 adenocarcinomas, 11 squamous cell carcinomas, 16 small cell carcinomas and 7 large cell carcinomas. Eleven metastatic tumors from breast cancers were all adenocarcinomas. There was statistical correlation between the surface area of tumor and the volume of the peritumoral edema for the adenocarcinoma (r=0.4043, p E /S T ratios in small cell carcinomas were smaller then those in non-small cell carcinomas, when the volume of the tumor was larger than 10 mm 3 . Accordingly, we suggest that the volume of the peritumoral edema in the small cell carcinoma is generally smaller than that in others. (author)

  6. GRIN2B Gene and Associated Brain Cortical White Matter Changes in Bipolar Disorder: A Preliminary Combined Platform Investigation

    Directory of Open Access Journals (Sweden)

    Carissa Nadia Kuswanto

    2013-01-01

    Full Text Available Abnormalities in glutamate signaling and glutamate toxicity are thought to be important in the pathophysiology of bipolar disorder (BD. Whilst previous studies have found brain white matter changes in BD, there is paucity of data about how glutamatergic genes affect brain white matter integrity in BD. Based on extant neuroimaging data, we hypothesized that GRIN2B risk allele is associated with reductions of brain white matter integrity in the frontal, parietal, temporal, and occipital regions and cingulate gyrus in BD. Fourteen patients with BD and 22 healthy controls matched in terms of age, gender and handedness were genotyped using blood samples and underwent diffusion tensor imaging. Compared to G allele, brain FA values were significantly lower in BD patients with risk T allele in left frontal region (P=0.001, right frontal region (P=0.002, left parietal region (P=0.001, left occipital region (P=0.001, right occipital region (P<0.001, and left cingulate gyrus (P=0.001. Further elucidation of the interactions between different glutamate genes and their relationships with such structural, functional brain substrates will enhance our understanding of the link between dysregulated glutamatergic neurotransmission and neuroimaging endophenotypes in BD.

  7. The association between serum brain-derived neurotrophic factor and a cluster of cardiovascular risk factors in adolescents

    DEFF Research Database (Denmark)

    Pedersen, Natascha Holbæk; Tarp, Jakob; Andersen, Lars Bo

    2017-01-01

    BACKGROUND AND OBJECTIVE: Cardiovascular disease and type 2 diabetes pose a global health burden. Therefore, clarifying the pathology of these risk factors is essential. Previous studies have found positive and negative associations between one or more cardiovascular risk factors and brain...... fitness (CRF), anthropometrics, pubertal status, blood pressure (BP), serum BDNF, high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), blood glucose and insulin were measured. Information about alcohol consumption and socio-economic status was collected via questionnaires. Associations were...

  8. Brain signature characterizing the body-brain-mind axis of transsexuals.

    Directory of Open Access Journals (Sweden)

    Hsiao-Lun Ku

    Full Text Available Individuals with gender identity disorder (GID, who are commonly referred to as transsexuals (TXs, are afflicted by negative psychosocial stressors. Central to the psychological complex of TXs is the conviction of belonging to the opposite sex. Neuroanatomical and functional brain imaging studies have demonstrated that the GID is associated with brain alterations. In this study, we found that TXs identify, when viewing male-female couples in erotic or non-erotic ("neutral" interactions, with the couple member of the desired gender in both situations. By means of functional magnetic resonance imaging, we found that the TXs, as opposed to controls (CONs, displayed an increased functional connectivity between the ventral tegmental area, which is associated with dimorphic genital representation, and anterior cingulate cortex subregions, which play a key role in social exclusion, conflict monitoring and punishment adjustment. The neural connectivity pattern suggests a brain signature of the psychosocial distress for the gender-sex incongruity of TXs.

  9. A National Implementation Project to Prevent Catheter-Associated Urinary Tract Infection in Nursing Home Residents.

    Science.gov (United States)

    Mody, Lona; Greene, M Todd; Meddings, Jennifer; Krein, Sarah L; McNamara, Sara E; Trautner, Barbara W; Ratz, David; Stone, Nimalie D; Min, Lillian; Schweon, Steven J; Rolle, Andrew J; Olmsted, Russell N; Burwen, Dale R; Battles, James; Edson, Barbara; Saint, Sanjay

    2017-08-01

    Catheter-associated urinary tract infection (UTI) in nursing home residents is a common cause of sepsis, hospital admission, and antimicrobial use leading to colonization with multidrug-resistant organisms. To develop, implement, and evaluate an intervention to reduce catheter-associated UTI. A large-scale prospective implementation project was conducted in community-based nursing homes participating in the Agency for Healthcare Research and Quality Safety Program for Long-Term Care. Nursing homes across 48 states, Washington DC, and Puerto Rico participated. Implementation of the project was conducted between March 1, 2014, and August 31, 2016. The project was implemented over 12-month cohorts and included a technical bundle: catheter removal, aseptic insertion, using regular assessments, training for catheter care, and incontinence care planning, as well as a socioadaptive bundle emphasizing leadership, resident and family engagement, and effective communication. Urinary catheter use and catheter-associated UTI rates using National Healthcare Safety Network definitions were collected. Facility-level urine culture order rates were also obtained. Random-effects negative binomial regression models were used to examine changes in catheter-associated UTI, catheter utilization, and urine cultures and adjusted for covariates including ownership, bed size, provision of subacute care, 5-star rating, presence of an infection control committee, and an infection preventionist. In 4 cohorts over 30 months, 568 community-based nursing homes were recruited; 404 met inclusion criteria for analysis. The unadjusted catheter-associated UTI rates decreased from 6.78 to 2.63 infections per 1000 catheter-days. With use of the regression model and adjustment for facility characteristics, the rates decreased from 6.42 to 3.33 (incidence rate ratio [IRR], 0.46; 95% CI, 0.36-0.58; P project. Catheter utilization remained unchanged (4.50 at baseline, 4.45 at conclusion of project; IRR, 0

  10. Manitoba Motor Dealers Association pilot project : final report

    International Nuclear Information System (INIS)

    2006-08-01

    This report described a 3-month pilot project conducted by EnerGuide for Vehicles in collaboration with the Manitoba Motor Dealers Association (MMDA) to increase dealership and consumer awareness of vehicle impacts on climate change. The project also aimed to engage MMDA's members in helping to promote and distribute information on fuel efficient vehicles and fuel efficient driving habits. Program tools in both the dealership showroom as well as service areas were used. Objectives of the project also included gaining public opinion research (POR) information regarding the impact of program tools; gaining feedback from new car dealers regarding the success of the project; gauging customer perceptions of the importance of fuel efficiency when selecting a new vehicle; determining whether or not drivers verify tire pressure on their vehicles; determining whether or not drivers incorporate energy efficient driving habits; and gauging customer perceptions regarding the importance of incorporating behaviours to improve fuel efficiency. The study used a mixed methodology of online and telephone surveys. A total of 41 dealerships participated in the project. The final sample of surveys consisted of 1926 customer records. The total overall number of completed interviews was 463. Results indicated that most dealers believed the campaign was a success, and that staff and customers learned about energy efficiency as a result of the campaign. Seventy-five per cent of dealers agreed that they would participate in future energy efficiency programs. Campaign materials and customer incentives were widely viewed as successful in raising awareness. Seven in 10 dealership customers recalled at least 1 of the promotional endeavours, and a large majority of customers indicated the information they saw at the dealership encouraged them to consider fuel efficiency when buying or maintaining a vehicle in the future. The majority of new customers considered fuel consumption to be the second

  11. Quantization of a symplectic manifold associated to a manifold with projective structure

    International Nuclear Information System (INIS)

    Biswas, Indranil

    2009-01-01

    Let X be a complex manifold equipped with a projective structure P. There is a holomorphic principal C*-bundle L P ' over X associated with P. We show that the holomorphic cotangent bundle of the total space of L P ' equipped with the Liouville symplectic form has a canonical deformation quantization. This generalizes the construction in the work of and Ben-Zvi and Biswas [''A quantization on Riemann surfaces with projective structure,'' Lett. Math. Phys. 54, 73 (2000)] done under the assumption that dim C X=1.

  12. Gut-Brain Axis and Behavior.

    Science.gov (United States)

    Martin, Clair R; Mayer, Emeran A

    2017-01-01

    In the last 5 years, interest in the interactions among the gut microbiome, brain, and behavior has exploded. Preclinical evidence supports a role of the gut microbiome in behavioral responses associated with pain, emotion, social interactions, and food intake. Limited, but growing, clinical evidence comes primarily from associations of gut microbial composition and function to behavioral and clinical features and brain structure and function. Converging evidence suggests that the brain and the gut microbiota are in bidirectional communication. Observed dysbiotic states in depression, chronic stress, and autism may reflect altered brain signaling to the gut, while altered gut microbial signaling to the brain may play a role in reinforcing brain alterations. On the other hand, primary dysbiotic states due to Western diets may signal to the brain, altering ingestive behavior. While studies performed in patients with depression and rodent models generated by fecal microbial transfer from such patients suggest causation, evidence for an influence of acute gut microbial alterations on human behavioral and clinical parameters is lacking. Only recently has an open-label microbial transfer therapy in children with autism tentatively validated the gut microbiota as a therapeutic target. The translational potential of preclinical findings remains unclear without further clinical investigation. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  13. Delineating SPTAN1 associated phenotypes: from isolated epilepsy to encephalopathy with progressive brain atrophy.

    Science.gov (United States)

    Syrbe, Steffen; Harms, Frederike L; Parrini, Elena; Montomoli, Martino; Mütze, Ulrike; Helbig, Katherine L; Polster, Tilman; Albrecht, Beate; Bernbeck, Ulrich; van Binsbergen, Ellen; Biskup, Saskia; Burglen, Lydie; Denecke, Jonas; Heron, Bénédicte; Heyne, Henrike O; Hoffmann, Georg F; Hornemann, Frauke; Matsushige, Takeshi; Matsuura, Ryuki; Kato, Mitsuhiro; Korenke, G Christoph; Kuechler, Alma; Lämmer, Constanze; Merkenschlager, Andreas; Mignot, Cyril; Ruf, Susanne; Nakashima, Mitsuko; Saitsu, Hirotomo; Stamberger, Hannah; Pisano, Tiziana; Tohyama, Jun; Weckhuysen, Sarah; Werckx, Wendy; Wickert, Julia; Mari, Francesco; Verbeek, Nienke E; Møller, Rikke S; Koeleman, Bobby; Matsumoto, Naomichi; Dobyns, William B; Battaglia, Domenica; Lemke, Johannes R; Kutsche, Kerstin; Guerrini, Renzo

    2017-09-01

    De novo in-frame deletions and duplications in the SPTAN1 gene, encoding the non-erythrocyte αII spectrin, have been associated with severe West syndrome with hypomyelination and pontocerebellar atrophy. We aimed at comprehensively delineating the phenotypic spectrum associated with SPTAN1 mutations. Using different molecular genetic techniques, we identified 20 patients with a pathogenic or likely pathogenic SPTAN1 variant and reviewed their clinical, genetic and imaging data. SPTAN1 de novo alterations included seven unique missense variants and nine in-frame deletions/duplications of which 12 were novel. The recurrent three-amino acid duplication p.(Asp2303_Leu2305dup) occurred in five patients. Our patient cohort exhibited a broad spectrum of neurodevelopmental phenotypes, comprising six patients with mild to moderate intellectual disability, with or without epilepsy and behavioural disorders, and 14 patients with infantile epileptic encephalopathy, of which 13 had severe neurodevelopmental impairment and four died in early childhood. Imaging studies suggested that the severity of neurological impairment and epilepsy correlates with that of structural abnormalities as well as the mutation type and location. Out of seven patients harbouring mutations outside the α/β spectrin heterodimerization domain, four had normal brain imaging and three exhibited moderately progressive brain and/or cerebellar atrophy. Twelve of 13 patients with mutations located within the spectrin heterodimer contact site exhibited severe and progressive brain, brainstem and cerebellar atrophy, with hypomyelination in most. We used fibroblasts from five patients to study spectrin aggregate formation by Triton-X extraction and immunocytochemistry followed by fluorescence microscopy. αII/βII aggregates and αII spectrin in the insoluble protein fraction were observed in fibroblasts derived from patients with the mutations p.(Glu2207del), p.(Asp2303_Leu2305dup) and p.(Arg2308_Met2309dup

  14. Symptom dimensions are associated with progressive brain volume changes in schizophrenia

    NARCIS (Netherlands)

    Collin, G.; Derks, E. M.; van Haren, N. E. M.; Schnack, H. G.; Hulshoff Pol, H. E.; Kahn, R. S.; Cahn, W.

    2012-01-01

    Background: There is considerable variation in progressive brain volume changes in schizophrenia. Whether this is related to the clinical heterogeneity that characterizes the illness remains to be determined. This study examines the relationship between change in brain volume over time and

  15. All projects related to | Page 50 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Topic: LATIN AMERICA, BRAIN, CANADA, MENTAL HEALTH, MICROBIOLOGY, MICROORGANISMS, MATERNAL AND CHILD HEALTH. Region: Chile, Canada, Israel. Program: Foundations for Innovation. Total Funding: CA$ 625,500.00. The Effect of Antibiotics in Early Life on Brain Function and Behaviour. Project.

  16. Development of the Young Brain

    Medline Plus

    Full Text Available ... until now the human brain has done a great job of changing- adapting to these environments but ... age Researchers identify 44 genomic variants associated with depression Brain activity can predict success of depression treatment ...

  17. Oxygen-Glucose Deprivation Induces G2/M Cell Cycle Arrest in Brain Pericytes Associated with ERK Inactivation.

    Science.gov (United States)

    Wei, Wenjie; Yu, Zhiyuan; Xie, Minjie; Wang, Wei; Luo, Xiang

    2017-01-01

    Growing evidence has revealed that brain pericytes are multifunctional and contribute to the pathogenesis of a number of neurological disorders. However, the role of pericytes in cerebral ischemia, and especially the pathophysiological alterations in pericytes, remains unclear. In the present study, our aim was to determine whether the proliferation of pericytes is affected by cerebral ischemia and, if so, to identify the underlying mechanism(s). Cultured brain pericytes subjected to oxygen-glucose deprivation (OGD) were used as our model of cerebral ischemia; the protein expression levels of cyclin D1, cyclin E, cdk4, and cyclin B1 were determined by Western blot analysis, and cell cycle analysis was assessed by flow cytometry. The OGD treatment reduced the brain pericyte proliferation by causing G2/M phase arrest and downregulating the protein levels of cyclin D1, cyclin E, cdk4, and cyclin B1. Further studies demonstrated a simultaneous decrease in the activity of extracellular regulated protein kinases (ERK), suggesting a critical role of the ERK signaling cascade in the inhibition of OGD-induced pericyte proliferation. We suggest that OGD inhibition of the proliferation of brain pericytes is associated with the inactivation of the ERK signaling pathway, which arrests them in the G2/M phase.

  18. Brain SPECT using dipyridamole for evaluation of vascular reserve

    International Nuclear Information System (INIS)

    Kim, Su Zy; Park, Chan Hee; Yoon, Soo Hwan; Pai, Moon Sun; Yoon, Suk Nam; Cho, Kyung Kee

    1997-01-01

    Baseline and stress brain SPECT studies using CO 2 inhalation, acetazolamide (Diamox R ) and adenosine administrations have been used in the evaluation of cerebral vascular reserve. Recently dipyridamole (Persantine R ) which is one of the pharmacologic myocardial perfusion SPECT agents as a potent vasodilator is suggested as another cerebral vasodilator. IV Diamox R is not available in Korea. Therefore, the purpose of our study was to evaluate dipyridamole in stress brain SPECT in patients with Moya Moya disease. Eight patients with angiographically proven Moya Moya disease were studied. Their ages ranged from 7 to 62 year old. There were 4 males and 4 females. Each patient had a baseline and persantine brain SPECT studies with 1 to 3 days' interval. Dipyridamole was given intravenously at a dose of 0.56 mg/kg over 4 minutes while watching vital signs such as blood pressure, heart rate, and electrocardiogram. Three minutes after the completion of the infusion, 99mTc-ECD (0.2 mCi/Ib body weight) was injected. Brain SPECT was performed 30 minutes later using a tripple head gamma camera equipped with LEHR collimators. A total of 128 projections with an acquisition time of 30 second per projection was obtained and reconstructed by filtered back projections without attenuation correction. The difference between the baseline and persantine studies was analysed by visual and semiquantitavely. During the infusion of persantine, heart rate, blood pressure and side effects such as headache, chest discomfort were similar to the persantine myocardial SPECT studies. Five of eight patients showed a significant decrease in rCBF on persantine brain SPECT in comparison to the baseline study. The remaining three revealed no significant change in rCBF. Our study suggests that the dipyridamole stress brain SPECT is feasible and useful in assessing cerebral blood flow reserve. However we need to evaluate more number of patients in the future

  19. Brain Structures Associated with Internet Addiction Tendency in Adolescent Online Game Players

    Directory of Open Access Journals (Sweden)

    Nannan Pan

    2018-03-01

    Full Text Available With the development of the Internet, an increasing number of adolescents play online game excessively, which leads to adverse effects on individuals and society. Previous studies have demonstrated altered gray-matter volume (GMV in individuals with Internet gaming disorder (IGD, but the relationship between the tendency to IGD and the GMV across whole brain is still unclear in adolescents. In the present study, anatomical imaging with high resolution was performed on 67 male adolescents who played online game; and Young’s Internet addiction test (IAT was conducted to test the tendency to IGD. FMRIB Software Library (FSL was used to calculate the voxel-based correlations between the GMV and the IAT score after controlling for the age and years of education. The GMVs of the bilateral postcentral gyri (postCG, the bilateral precentral gyri (preCG, the right precuneus, the left posterior midcingulate cortex (pMCC, the left inferior parietal lobe (IPL, and the right middle frontal gyrus (MFG were negatively correlated with the IAT score. The correlation still existed between the IAT score and the GMVs of the bilateral postCG, the left preCG, the left pMCC, and the right MFG after controlling for the total time of playing online game. When the participants were divided into two groups according to the IAT score, the GMVs of these IAT-related brain regions were lower in high IAT score subgroup (IAT score >50 than in low IAT score subgroup (IAT score ≤50. Our results suggested that the GMVs of brain regions involved in sensorimotor process and cognitive control were associated with the IGD tendency. These findings may lead to new targets for preventing and treating the IGD.

  20. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    Science.gov (United States)

    Millán, Mónica; Sobrino, Tomás; Arenillas, Juan Francisco; Rodríguez-Yáñez, Manuel; García, María; Nombela, Florentino; Castellanos, Mar; de la Ossa, Natalia Pérez; Cuadras, Patricia; Serena, Joaquín; Castillo, José; Dávalos, Antoni

    2008-01-01

    Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA. Methods: Serum levels of ferritin (as index of increased cellular iron stores), glutamate, interleukin-6, matrix metalloproteinase-9 and cellular fibronectin were determined in 134 patients treated with i.v. t-PA within 3 hours from stroke onset in blood samples obtained before t-PA treatment, at 24 and 72 hours. Results: Serum ferritin levels before t-PA infusion correlated to glutamate (r = 0.59, p < 0.001) and interleukin-6 (r = 0.55, p <0.001) levels at baseline, and with glutamate (r = 0.57,p <0.001), interleukin-6 (r = 0.49,p <0.001), metalloproteinase-9 (r = 0.23, p = 0.007) and cellular fibronectin (r = 0.27, p = 0.002) levels measured at 24 hours and glutamate (r = 0.415, p < 0.001), interleukin-6 (r = 0.359, p < 0.001) and metalloproteinase-9 (r = 0.261, p = 0.004) at 72 hours. The association between ferritin and glutamate levels remained after adjustment for confounding factors in generalized linear models. Conclusions: Brain damage associated with increased iron stores in acute ischemic stroke patients treated with iv. tPA may be mediated by mechanisms linked to excitotoxic damage. The role of inflammation, blood brain barrier disruption and oxidative stress in this condition needs further research. PMID:19096131

  1. Autosomal dominant inheritance of brain cardiolipin fatty acid abnormality in VM/DK mice: association with hypoxic-induced cognitive insensitivity.

    Science.gov (United States)

    Ta, Nathan L; Jia, Xibei; Kiebish, Michael; Seyfried, Thomas N

    2014-01-01

    Cardiolipin is a complex polyglycerol phospholipid found almost exclusively in the inner mitochondrial membrane and regulates numerous enzyme activities especially those related to oxidative phosphorylation and coupled respiration. Abnormalities in cardiolipin can impair mitochondrial function and bioenergetics. We recently demonstrated that the ratio of shorter chain saturated and monounsaturated fatty acids (C16:0; C18:0; C18:1) to longer chain polyunsaturated fatty acids (C18:2; C20:4; C22:6) was significantly greater in the brains of adult VM/DK (VM) inbred mice than in the brains of C57BL/6 J (B6) mice. The cardiolipin fatty acid abnormalities in VM mice are also associated with alterations in the activity of mitochondrial respiratory complexes. In this study we found that the abnormal brain fatty acid ratio in the VM strain was inherited as an autosomal dominant trait in reciprocal B6 × VM F1 hybrids. To evaluate the potential influence of brain cardiolipin fatty acid composition on cognitive sensitivity, we placed the parental B6 and VM mice and their reciprocal male and female B6VMF1 hybrid mice (3-month-old) in a hypoxic chamber (5 % O2). Cognitive awareness (conscientiousness) under hypoxia was significantly lower in the VM parental mice and F1 hybrid mice (11.4 ± 0.4  and 11.0 ± 0.4 min, respectively) than in the parental B6 mice (15.3 ± 1.4 min), indicating an autosomal dominant inheritance like that of the brain cardiolipin abnormalities. These findings suggest that impaired cognitive awareness under hypoxia is associated with abnormalities in neural lipid composition.

  2. Abnormal metabolic brain network associated with Parkinson's disease: replication on a new European sample

    International Nuclear Information System (INIS)

    Tomse, Petra; Jensterle, Luka; Grmek, Marko; Zaletel, Katja; Pirtosek, Zvezdan; Trost, Maja; Dhawan, Vijay; Peng, Shichun; Eidelberg, David; Ma, Yilong

    2017-01-01

    The purpose of this study was to identify the specific metabolic brain pattern characteristic for Parkinson's disease (PD): Parkinson's disease-related pattern (PDRP), using network analysis of [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) brain images in a cohort of Slovenian PD patients. Twenty PD patients (age 70.1 ± 7.8 years, Movement Disorder Society Unified Parkinson's Disease Motor Rating Scale (MDS-UPDRS-III) 38.3 ± 12.2; disease duration 4.3 ± 4.1 years) and 20 age-matched normal controls (NCs) underwent FDG-PET brain imaging. An automatic voxel-based scaled subprofile model/principal component analysis (SSM/PCA) was applied to these scans for PDRP-Slovenia identification. The pattern was characterized by relative hypermetabolism in pallidum, putamen, thalamus, brain stem, and cerebellum associated with hypometabolism in sensorimotor cortex, posterior parietal, occipital, and frontal cortices. The expression of PDRP-Slovenia discriminated PD patients from NCs (p < 0.0001) and correlated positively with patients' clinical score (MDS-UPDRS-III, p = 0.03). Additionally, its topography agrees well with the original PDRP (p < 0.001) identified in American cohort of PD patients. We validated the PDRP-Slovenia expression on additional FDG-PET scans of 20 PD patients, 20 NCs, and 25 patients with atypical parkinsonism (AP). We confirmed that the expression of PDRP-Slovenia manifests good diagnostic accuracy with specificity and sensitivity of 85-90% at optimal pattern expression cutoff for discrimination of PD patients and NCs and is not expressed in AP. PDRP-Slovenia proves to be a robust and reproducible functional imaging biomarker independent of patient population. It accurately differentiates PD patients from NCs and AP and correlates well with the clinical measure of PD progression. (orig.)

  3. Spatial Mapping of Structural and Connectional Imaging Data for the Developing Human Brain with Diffusion Tensor Imaging

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M.; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S.; Huang, Hao

    2014-01-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. PMID:25448302

  4. Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging.

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S; Huang, Hao

    2015-02-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The brain-derived neurotrophic factor Val66Met polymorphism is associated with age-related change in reasoning skills.

    Science.gov (United States)

    Harris, S E; Fox, H; Wright, A F; Hayward, C; Starr, J M; Whalley, L J; Deary, I J

    2006-05-01

    A polymorphism (Val66Met) in the gene encoding brain-derived neurotrophic factor (BDNF) has previously been associated with impaired hippocampal function and scores on the Logical Memory subtest of the Wechsler Memory Scale-Revised (WMS-R). Despite its widespread expression in the brain, there have been few studies examining the role of BDNF on cognitive domains, other than memory. We examined the association between BDNF Val66Met genotype and non-verbal reasoning, as measured by Raven's standard progressive matrices (Raven), in two cohorts of relatively healthy older people, one aged 79 (LBC1921) and the other aged 64 (ABC1936) years. LBC1921 and ABC1936 subjects had reasoning measured at age 11 years, using the Moray House Test (MHT), in the Scottish Mental Surveys of 1932 and 1947, respectively. BDNF genotype was significantly associated with later life Raven scores, controlling for sex, age 11 MHT score and cohort (P = 0.001). MHT, Verbal Fluency and Logical Memory scores were available, in later life, for LBC1921 only. BDNF genotype was significantly associated with age 79 MHT score, controlling for sex and age 11 MHT score (P = 0.016). In both significant associations, Met homozygotes scored significantly higher than heterozygotes and Val homozygotes. This study indicates that BDNF genotype contributes to age-related changes in reasoning skills, which are closely related to general intelligence.

  6. Evidence for brain glucose dysregulation in Alzheimer's disease.

    Science.gov (United States)

    An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav

    2018-03-01

    It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.

  7. Location of brain lesions predicts conversion of clinically isolated syndromes to multiple sclerosis

    DEFF Research Database (Denmark)

    Giorgio, Antonio; Battaglini, Marco; Rocca, Maria Assunta

    2013-01-01

    OBJECTIVES: To assess in a large population of patients with clinically isolated syndrome (CIS) the relevance of brain lesion location and frequency in predicting 1-year conversion to multiple sclerosis (MS). METHODS: In this multicenter, retrospective study, clinical and MRI data at onset......: In CIS patients with hemispheric, multifocal, and brainstem/cerebellar onset, lesion probability map clusters were seen in clinically eloquent brain regions. Significant lesion clusters were not found in CIS patients with optic nerve and spinal cord onset. At 1 year, clinically definite MS developed...... in the converting group in projection, association, and commissural WM tracts, with larger clusters being in the corpus callosum, corona radiata, and cingulum. CONCLUSIONS: Higher frequency of lesion occurrence in clinically eloquent WM tracts can characterize CIS subjects with different types of onset...

  8. Brain activations to emotional pictures are differentially associated with valence and arousal ratings

    Directory of Open Access Journals (Sweden)

    Antje B M Gerdes

    2010-10-01

    Full Text Available Several studies have investigated the neural responses triggered by emotional pictures, but the specificity of the involved structures such as the amygdala or the ventral striatum is still under debate. Furthermore, only few studies examined the association of stimuli’s valence and arousal and the underlying brain responses. Therefore, we investigated brain responses with functional magnetic resonance imaging of 17 healthy subjects to pleasant and unpleasant affective pictures with comparable arousal levels and afterwards assessed ratings of valence and arousal. As expected, unpleasant pictures strongly activated the right and left amygdala, the right hippocampus, and the medial occipital lobe, whereas pleasant pictures elicited significant activations in left occipital regions, and in parts of the medial temporal lobe. The direct comparison of unpleasant and pleasant pictures which were comparable in arousal clearly indicated stronger amygdala activation in response to the unpleasant pictures. Most important, correlational analyses revealed on the one hand that the arousal of unpleasant pictures was significantly associated with activations in the right amygdala and the left caudate body. On the other hand, valence of pleasant pictures was significantly correlated with activations in the right caudate head, extending to the nucleus accumbens (NAcc and the left dorso-lateral prefrontal cortex. These findings support the notion that the amygdala is primarily involved in processing of unpleasant stimuli, and the stronger the more arousing the stimuli are, whereas reward-related structures like the NAcc primarily responds to pleasant stimuli, the stronger the more positive the valence of these stimuli is.

  9. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    Directory of Open Access Journals (Sweden)

    Martin K Schwarz

    Full Text Available In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.

  10. D6.7 BRAIN deliverable: Final dissemination, use, and exploitation plan

    NARCIS (Netherlands)

    Garcia Molina, G.

    2012-01-01

    The dissemination and exploitation strategies of BRAIN are reportedin this document. Dissemination activities included maintaining theproject website http://www.brain-project.org/, demonstrating BRAIN’sBCI system at large events such as Hannover fair 2010 and CeBIT 2011, drawing media attention on

  11. The CONNECT project: Combining macro- and micro-structure.

    Science.gov (United States)

    Assaf, Yaniv; Alexander, Daniel C; Jones, Derek K; Bizzi, Albero; Behrens, Tim E J; Clark, Chris A; Cohen, Yoram; Dyrby, Tim B; Huppi, Petra S; Knoesche, Thomas R; Lebihan, Denis; Parker, Geoff J M; Poupon, Cyril; Anaby, Debbie; Anwander, Alfred; Bar, Leah; Barazany, Daniel; Blumenfeld-Katzir, Tamar; De-Santis, Silvia; Duclap, Delphine; Figini, Matteo; Fischi, Elda; Guevara, Pamela; Hubbard, Penny; Hofstetter, Shir; Jbabdi, Saad; Kunz, Nicolas; Lazeyras, Francois; Lebois, Alice; Liptrot, Matthew G; Lundell, Henrik; Mangin, Jean-François; Dominguez, David Moreno; Morozov, Darya; Schreiber, Jan; Seunarine, Kiran; Nava, Simone; Poupon, Cyril; Riffert, Till; Sasson, Efrat; Schmitt, Benoit; Shemesh, Noam; Sotiropoulos, Stam N; Tavor, Ido; Zhang, Hui Gary; Zhou, Feng-Lei

    2013-10-15

    In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal diameter and axonal density). This unique insight into both tissue microstructure and connectivity has enormous potential value in understanding the structure and organization of the brain as well as providing unique insights to abnormalities that underpin disease states. The CONNECT (Consortium Of Neuroimagers for the Non-invasive Exploration of brain Connectivity and Tracts) project aimed to combine tractography and micro-structural measures of the living human brain in order to obtain a better estimate of the connectome, while also striving to extend validation of these measurements. This paper summarizes the project and describes the perspective of using micro-structural measures to study the connectome. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Brain metabolite alterations in infants born preterm with intrauterine growth restriction: association with structural changes and neurodevelopmental outcome.

    Science.gov (United States)

    Simões, Rui V; Muñoz-Moreno, Emma; Cruz-Lemini, Mónica; Eixarch, Elisenda; Bargalló, Núria; Sanz-Cortés, Magdalena; Gratacós, Eduard

    2017-01-01

    Intrauterine growth restriction and premature birth represent 2 independent problems that may occur simultaneously and contribute to impaired neurodevelopment. The objective of the study was to assess changes in the frontal lobe metabolic profiles of 1 year old intrauterine growth restriction infants born prematurely and adequate-for-gestational-age controls, both premature and term adequate for gestational age and their association with brain structural and biophysical parameters and neurodevelopmental outcome at 2 years. A total of 26 prematurely born intrauterine growth restriction infants (birthweight intrauterine growth restriction infants had slightly smaller brain volumes and increased frontal lobe white matter mean diffusivity compared with both prematurely born but adequate for gestational age and term adequate for gestational age controls. Frontal lobe N-acetylaspartate levels were significantly lower in prematurely born intrauterine growth restriction than in prematurely born but adequate for gestational age infants but increased in prematurely born but adequate for gestational age compared with term adequate-for-gestational-age infants. The prematurely born intrauterine growth restriction group also showed slightly lower choline compounds, borderline decrements of estimated glutathione levels, and increased myoinositol to choline ratios, compared with prematurely born but adequate for gestational age controls. These specific metabolite changes were locally correlated to lower gray matter content and increased mean diffusivity and reduced white matter fraction and fractional anisotropy. Prematurely born intrauterine growth restriction infants also showed a tendency for poorer neurodevelopmental outcome at 2 years, associated with lower levels of frontal lobe N-acetylaspartate at 1 year within the preterm subset. Preterm intrauterine growth restriction infants showed altered brain metabolite profiles during a critical stage of brain maturation, which

  13. Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry

    DEFF Research Database (Denmark)

    Haahr, M. E.; Rasmussen, Peter Mondrup; Madsen, K.

    2012-01-01

    in food intake, and that pharmacological or genetic manipulation of the receptor in reward-related brain areas alters food intake.Here, we used positron emission tomography in humans to examine the association between cerebral 5-HT4Rs and common obesity.We found in humans a strong positive association......The neurobiology underlying obesity is not fully understood. The neurotransmitter serotonin (5-HT) is established as a satiety-generating signal, but its rewarding role in feeding is less well elucidated. From animal experiments there is now evidence that the 5-HT4 receptor (5-HT4R) is involved......'s food intake. They also suggest that pharmacological stimulation of the cerebral 5-HT4R may reduce reward-related overeating in humans....

  14. Short parietal lobe connections of the human and monkey brain

    DEFF Research Database (Denmark)

    Catani, Marco; Robertsson, Naianna; Beyh, Ahmad

    2017-01-01

    projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain. The largest tract identified in both human and monkey brains...... and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres...... and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans....

  15. Increased brain-predicted aging in treated HIV disease.

    Science.gov (United States)

    Cole, James H; Underwood, Jonathan; Caan, Matthan W A; De Francesco, Davide; van Zoest, Rosan A; Leech, Robert; Wit, Ferdinand W N M; Portegies, Peter; Geurtsen, Gert J; Schmand, Ben A; Schim van der Loeff, Maarten F; Franceschi, Claudio; Sabin, Caroline A; Majoie, Charles B L M; Winston, Alan; Reiss, Peter; Sharp, David J

    2017-04-04

    To establish whether HIV disease is associated with abnormal levels of age-related brain atrophy, by estimating apparent brain age using neuroimaging and exploring whether these estimates related to HIV status, age, cognitive performance, and HIV-related clinical parameters. A large sample of virologically suppressed HIV-positive adults (n = 162, age 45-82 years) and highly comparable HIV-negative controls (n = 105) were recruited as part of the Comorbidity in Relation to AIDS (COBRA) collaboration. Using T1-weighted MRI scans, a machine-learning model of healthy brain aging was defined in an independent cohort (n = 2,001, aged 18-90 years). Neuroimaging data from HIV-positive and HIV-negative individuals were then used to estimate brain-predicted age; then brain-predicted age difference (brain-PAD = brain-predicted brain age - chronological age) scores were calculated. Neuropsychological and clinical assessments were also carried out. HIV-positive individuals had greater brain-PAD score (mean ± SD 2.15 ± 7.79 years) compared to HIV-negative individuals (-0.87 ± 8.40 years; b = 3.48, p brain-PAD score was associated with decreased performance in multiple cognitive domains (information processing speed, executive function, memory) and general cognitive performance across all participants. Brain-PAD score was not associated with age, duration of HIV infection, or other HIV-related measures. Increased apparent brain aging, predicted using neuroimaging, was observed in HIV-positive adults, despite effective viral suppression. Furthermore, the magnitude of increased apparent brain aging related to cognitive deficits. However, predicted brain age difference did not correlate with chronological age or duration of HIV infection, suggesting that HIV disease may accentuate rather than accelerate brain aging. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  16. Quantitative Susceptibility Mapping Reveals an Association between Brain Iron Load and Depression Severity

    Directory of Open Access Journals (Sweden)

    Shun Yao

    2017-08-01

    Full Text Available Previous studies have detected abnormal serum ferritin levels in patients with depression; however, the results have been inconsistent. This study used quantitative susceptibility mapping (QSM for the first time to examine brain iron concentration in depressed patients and evaluated whether it is related to severity. We included three groups of age- and gender-matched participants: 30 patients with mild-moderate depression (MD, 14 patients with major depression disorder (MDD and 20 control subjects. All participants underwent MR scans with a 3D gradient-echo sequence reconstructing for QSM and performed the 17-item Hamilton Depression Rating Scale (HDRS test. In MDD, the susceptibility value in the bilateral putamen was significantly increased compared with MD or control subjects. In addition, a significant difference was also observed in the left thalamus in MDD patients compared with controls. However, the susceptibility values did not differ between MD patients and controls. The susceptibility values positively correlated with the severity of depression as indicated by the HDRS scores. Our results provide evidence that brain iron deposition may be associated with depression and may even be a biomarker for investigating the pathophysiological mechanism of depression.

  17. Technetium 99mTc Pertechnetate Brain Scanning

    International Nuclear Information System (INIS)

    Rhee, Sang Min; Park, Jin Yung; Lee, Ahn Ki; Chung, Choo Il; Hong, Chang Gi; Rhee, Chong Heon; Koh, Chang Soon

    1968-01-01

    Technetium 99 mTc pertechnetate brain scanning were performed in 3 cases of head injury (2 chronic subdural hematomas and 1 acute epidural hematoma), 2 cases of brain abscess and 1 case of intracerebral hematoma associated with arteriovenous anomaly. In all the cases brain scintigrams showed 'hot areas.' Literatures on radioisotope scanning of intracranial lesions were briefly reviewed. With the improvement of radioisotope scanner and development of new radiopharmaceuticals brain scanning became a safe and useful screening test for diagnosis of intracranial lesions. Brain scanning can be easily performed even to a moribund patient without any discomfort and risk to the patient which are associated with cerebral angiography or pneumoencephalography. Brain scanning has been useful in diagnosis of brain tumor, brain abscess, subdural hematoma, and cerebral vascular diseases. In 80 to 90% of brain tumors positive scintigrams can be expected. Early studies were done with 203 Hg-Neohydrin or 131 I-serum albumin. With these agents, however, patients receive rather much radiation to the whole body and kidneys. In 1965 Harper introduced 99 mTc to reduce radiation dose to the patient and improve statistical variation in isotope scanning.

  18. Estrone is neuroprotective in rats after traumatic brain injury.

    Science.gov (United States)

    Gatson, Joshua W; Liu, Ming-Mei; Abdelfattah, Kareem; Wigginton, Jane G; Smith, Scott; Wolf, Steven; Simpkins, James W; Minei, Joseph P

    2012-08-10

    In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. Male rats were given either placebo (corn oil) or estrone (0.5 mg/kg) at 30 min after severe TBI. Using a controlled cortical impact device in rats that underwent a craniotomy, the right parietal cortex was injured using the impactor tip. Non-injured control and sham animals were also included. At 72 h following injury, the animals were perfused intracardially with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for TUNEL-positive cells. Estrone decreased cortical lesion volume (pcerebral cortical levels of TUNEL-positive staining (pprotective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.

  19. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan

    2011-01-01

    After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...... constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes...

  20. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan

    2011-01-01

    After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...

  1. Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression.

    Directory of Open Access Journals (Sweden)

    Dongsha Wang

    Full Text Available The main challenge in addressing the role of DNA methylation in human behaviour is the fact that the brain is inaccessible to epigenetic analysis in living humans. Using positron emission tomography (PET measures of brain serotonin (5-HT synthesis, we found in a longitudinal sample that adult males with high childhood-limited aggression (C-LHPA had lower in vivo 5-HT synthesis in the orbitofrontal cortex (OBFC. Here we hypothesized that 5-HT alterations associated with childhood aggression were linked to differential DNA methylation of critical genes in the 5-HT pathway and these changes were also detectable in peripheral white blood cells. Using pyrosequencing, we determined the state of DNA methylation of SLC6A4 promoter in T cells and monocytes isolated from blood of cohort members (N = 25 who underwent a PET scan, and we examined whether methylation status in the blood is associated with in vivo brain 5-HT synthesis. Higher levels of methylation were observed in both T cells and monocytes at specific CpG sites in the C-LHPA group. DNA methylation of SLC6A4 in monocytes appears to be associated more reliably with group membership than T cells. In both cell types the methylation state of these CpGs was associated with lower in vivo measures of brain 5-HT synthesis in the left and right lateral OBFC (N = 20 where lower 5-HT synthesis in C-LHPA group was observed. Furthermore, in vitro methylation of the SLC6A4 promoter in a luciferase reporter construct suppresses its transcriptional activity supporting a functional role of DNA methylation in SLC6A4 promoter regulation. These findings indicate that state of SLC6A4 promoter methylation is altered in peripheral white blood cells of individuals with physical aggression during childhood. This supports the relevance of peripheral DNA methylation for brain function and suggests that peripheral SLC6A4 DNA methylation could be a marker of central 5-HT function.

  2. Whole brain radiotherapy with radiosensitizer for brain metastases

    Directory of Open Access Journals (Sweden)

    Viani Gustavo

    2009-01-01

    Full Text Available Abstract Purpose To study the efficacy of whole brain radiotherapy (WBRT with radiosensitizer in comparison with WBRT alone for patients with brain metastases in terms of overall survival, disease progression, response to treatment and adverse effects of treatment. Methods A meta-analysis of randomized controlled trials (RCT was performed in order to compare WBRT with radiosensitizer for brain metastases and WBRT alone. The MEDLINE, EMBASE, LILACS, and Cochrane Library databases, in addition to Trial registers, bibliographic databases, and recent issues of relevant journals were researched. Significant reports were reviewed by two reviewers independently. Results A total of 8 RCTs, yielding 2317 patients were analyzed. Pooled results from this 8 RCTs of WBRT with radiosensitizer have not shown a meaningful improvement on overall survival compared to WBRT alone OR = 1.03 (95% CI0.84–1.25, p = 0.77. Also, there was no difference in local brain tumor response OR = 0.8(95% CI 0.5 – 1.03 and brain tumor progression (OR = 1.11, 95% CI 0.9 – 1.3 when the two arms were compared. Conclusion Our data show that WBRT with the following radiosentizers (ionidamine, metronidazole, misonodazole, motexafin gadolinium, BUdr, efaproxiral, thalidomide, have not improved significatively the overall survival, local control and tumor response compared to WBRT alone for brain metastases. However, 2 of them, motexafin- gadolinium and efaproxiral have been shown in recent publications (lung and breast to have positive action in lung and breast carcinoma brain metastases in association with WBRT.

  3. On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus.

    Science.gov (United States)

    Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-10-01

    It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Topodynamics of metastable brains

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F.; Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Marijuán, Pedro C.

    2017-07-01

    The brain displays both the anatomical features of a vast amount of interconnected topological mappings as well as the functional features of a nonlinear, metastable system at the edge of chaos, equipped with a phase space where mental random walks tend towards lower energetic basins. Nevertheless, with the exception of some advanced neuro-anatomic descriptions and present-day connectomic research, very few studies have been addressing the topological path of a brain embedded or embodied in its external and internal environment. Herein, by using new formal tools derived from algebraic topology, we provide an account of the metastable brain, based on the neuro-scientific model of Operational Architectonics of brain-mind functioning. We introduce a ;topodynamic; description that shows how the relationships among the countless intertwined spatio-temporal levels of brain functioning can be assessed in terms of projections and mappings that take place on abstract structures, equipped with different dimensions, curvatures and energetic constraints. Such a topodynamical approach, apart from providing a biologically plausible model of brain function that can be operationalized, is also able to tackle the issue of a long-standing dichotomy: it throws indeed a bridge between the subjective, immediate datum of the naïve complex of sensations and mentations and the objective, quantitative, data extracted from experimental neuro-scientific procedures. Importantly, it opens the door to a series of new predictions and future directions of advancement for neuroscientific research.

  5. Age-Modulated Associations between KIBRA, Brain Volume, and Verbal Memory among Healthy Older Adults

    Directory of Open Access Journals (Sweden)

    Ariana Stickel

    2018-01-01

    Full Text Available The resource modulation hypothesis suggests that the influence of genes on cognitive functioning increases with age. The KIBRA single nucleotide polymorphism rs17070145, associated with episodic memory and working memory, has been suggested to follow such a pattern, but few studies have tested this assertion directly. The present study investigated the relationship between KIBRA alleles (T carriers vs. CC homozygotes, cognitive performance, and brain volumes in three groups of cognitively healthy adults—middle aged (ages 52–64, n = 38, young old (ages 65–72, n = 45, and older old (ages 73–92, n = 62—who were carefully matched on potentially confounding variables including apolipoprotein ε4 status and hypertension. Consistent with our prediction, T carriers maintained verbal memory performance with increasing age while CC homozygotes declined. Voxel-based morphometric analysis of magnetic resonance images showed an advantage for T carriers in frontal white matter volume that increased with age. Focusing on the older old group, this advantage for T carriers was also evident in left lingual gyrus gray matter and several additional frontal white matter regions. Contrary to expectations, neither KIBRA nor the interaction between KIBRA and age predicted hippocampal volumes. None of the brain regions investigated showed a CC homozygote advantage. Taken together, these data suggest that KIBRA results in decreased verbal memory performance and lower brain volumes in CC homozygotes compared to T carriers, particularly among the oldest old, consistent with the resource modulation hypothesis.

  6. Intrinsic spontaneous brain activity predicts individual variability in associative memory in older adults.

    Science.gov (United States)

    Zheng, Zhiwei; Li, Rui; Xiao, Fengqiu; He, Rongqiao; Zhang, Shouzi; Li, Juan

    2018-04-19

    Older adults demonstrate notable individual differences in associative memory. Here, resting-state functional magnetic resonance imaging (rsfMRI) was used to investigate whether intrinsic brain activity at rest could predict individual differences in associative memory among cognitively healthy older adults. Regional amplitude of low-frequency fluctuations (ALFF) analysis and a correlation-based resting-state functional connectivity (RSFC) approach were used to analyze data acquired from 102 cognitively normal elderly who completed the paired-associative learning test (PALT) and underwent fMRI scans. Participants were divided into two groups based on the retrospective self-reports on whether or not they utilized encoding strategies during the PALT. The behavioral results revealed better associative memory performance in the participants who reported utilizing memory strategies compared with participants who reported not doing so. The fMRI results showed that higher associative memory performance was associated with greater functional connectivity between the right superior frontal gyrus and the right posterior cerebellum lobe in the strategy group. The regional ALFF values in the right superior frontal gyrus were linked to associative memory performance in the no-strategy group. These findings suggest that the regional spontaneous fluctuations and functional connectivity during rest may subserve the individual differences in the associative memory in older adults, and that this is modulated by self-initiated memory strategy use. © 2018 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  7. Epilepsy and Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhi-yi Sha

    2009-01-01

    @@ Epidemiology It is estimated 61,414 new cases of primary brain tumors are expected to be diagnosed in 2009 in the U.S. The incidence statistic of 61,414 persons diagnosed per year includes both malignant (22,738) and non-malignant (38,677) brain tumors. (Data from American Brain Tumor Association). During the years 2004-2005, approximately 359,000 people in the United States were living with the diagnosis of a primary brain or central nervous system tumor. Specifically, more than 81,000 persons were living with a malignant tumor, more than 267,000 persons with a benign tumor. For every 100,000 people in the United States, approximately 131 are living following the diagnosis of a brain tumor. This represents a prevalence rate of 130.8 per 100,000 person years[1].

  8. Apolipoprotein E epsilon 4 (APOE-ε4) genotype is associated with decreased 6-month verbal memory performance after mild traumatic brain injury

    NARCIS (Netherlands)

    J.K. Yue (John); Robinson, C.K. (Caitlin K.); J.F. Burke (John F.); E.A. Winkler (Ethan A.); Deng, H. (Hansen); M.C. Cnossen (Maryse); H.F. Lingsma (Hester); A.R. Ferguson (Adam); McAllister, T.W. (Thomas W.); J. Rosand (Jonathan); E.G. Burchard (Esteban); M.D. Sorani (Marco); S. Sharma (Sourabh); J.L. Nielson (Jessica L.); G.G. Satris (Gabriela G.); Talbott, J.F. (Jason F.); P.E. Tarapore (Phiroz E.); F.K. Korley (Frederick K.); Wang, K.K.W. (Kevin K.W.); E.L. Yuh (Esther); P. Mukherjee (Pratik); R. Diaz-Arrastia (Ramon); A.B. Valadka (Alex); D. Okonkwo (David); G. Manley (Geoffrey)

    2017-01-01

    textabstractIntroduction: The apolipoprotein E (APOE) ε4 allele associates with memory impairment in neurodegenerative diseases. Its association with memory after mild traumatic brain injury (mTBI) is unclear. Methods: mTBI patients (Glasgow Coma Scale score 13–15, no neurosurgical intervention,

  9. A World of Learning: Practical Manual. Enhancing the Multiplier Effect of the Associated Schools Project.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This manual presents the major lessons learned about how national authorities, individual institutions, and individual educators can work to increase the impact of the Associated Schools Project (ASP) schools and spread it to other parts of the educational system. ASP is a project of the United Nations Educational, Scientific and Cultural…

  10. Child overweight and obesity are associated with reduced executive cognitive performance and brain alterations: a magnetic resonance imaging study in Mexican children.

    Science.gov (United States)

    Bauer, C C C; Moreno, B; González-Santos, L; Concha, L; Barquera, S; Barrios, F A

    2015-06-01

    Overweight and obesity in childhood is associated with negative physical and psychological effects. It has been proposed that obesity increase the risk for developing cognitive deficits, dementia and Alzheimer's disease and that it may be associated with marked differences in specific brain structure volumes. The purpose of this study was a neurobiopsychological approach to examine the association between overweight and obesity, brain structure and a paediatric neuropsychological assessment in Mexican children between 6 and 8 years of age. We investigated the relation between the body mass index (BMI), brain volumetric segmentation of subcortical gray and white matter regions obtained with magnetic resonance imaging and the Neuropsychological Assessment of Children standardized for Latin America. Thirty-three healthy Mexican children between 6 and 8 years of age, divided into normal weight (18 children) and overweight/obese (15 children) groups. Overweight/obese children showed reduced executive cognitive performance on neuropsychological evaluations (i.e. verbal fluidity, P = 0.03) and presented differences in brain structures related to learning and memory (reduced left hippocampal volumes, P = 0.04) and executive functions (larger white matter volumes in the left cerebellum, P = 0.04 and mid-posterior corpus callosum, P = 0.03). Additionally, we found a positive correlation between BMI and left globulus pallidus (P = 0.012, ρ = 0.43) volume and a negative correlation between BMI and neuropsychological evaluation scores (P = 0.033, ρ = -0.37). The findings contribute to the idea that there is a relationship between BMI, executive cognitive performance and brain structure that may underlie the causal chain that leads to obesity in adulthood. © 2014 The Authors. Pediatric Obesity © 2014 World Obesity.

  11. Age of second language acquisition in multilinguals has an impact on gray matter volume in language-associated brain areas.

    Science.gov (United States)

    Kaiser, Anelis; Eppenberger, Leila S; Smieskova, Renata; Borgwardt, Stefan; Kuenzli, Esther; Radue, Ernst-Wilhelm; Nitsch, Cordula; Bendfeldt, Kerstin

    2015-01-01

    Numerous structural studies have established that experience shapes and reshapes the brain throughout a lifetime. The impact of early development, however, is still a matter of debate. Further clues may come from studying multilinguals who acquired their second language at different ages. We investigated adult multilinguals who spoke three languages fluently, where the third language was learned in classroom settings, not before the age of 9 years. Multilinguals exposed to two languages simultaneously from birth (SiM) were contrasted with multinguals who acquired their first two languages successively (SuM). Whole brain voxel based morphometry revealed that, relative to SuM, SiM have significantly lower gray matter volume in several language-associated cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the left inferior temporal gyrus. Thus, as shown by others, successive language learning increases the volume of language-associated cortical areas. In brains exposed early on and simultaneously to more than one language, however, learning of additional languages seems to have less impact. We conclude that - at least with respect to language acquisition - early developmental influences are maintained and have an effect on experience-dependent plasticity well into adulthood.

  12. Age of second language acquisition in multilinguals has an impact on grey matter volume in language-associated brain areas

    Directory of Open Access Journals (Sweden)

    Anelis eKaiser

    2015-06-01

    Full Text Available Numerous structural studies have established that experience shapes and reshapes the brain throughout a lifetime. The impact of early development, however, is still a matter of debate. Further clues may come from studying multilinguals who acquired their second language at different ages. We investigated adult multilinguals who spoke three languages fluently, where the third language was learned in classroom settings, not before the age of 9 years. Multilinguals exposed to 2 languages simultaneously from birth (SiM were contrasted with multinguals who acquired their first two languages successively (SuM. Whole brain voxel based morphometry revealed that, relative to SuM, SiM have significantly lower grey matter volume in several language-associated cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the left inferior frontal gyrus. Thus, as shown by others, successive language learning increases the volume of language-associated cortical areas. In brains exposed early on and simultaneously to more than one language, however, learning of additional languages seems to have less impact. We conclude that - at least with respect to language acquisition - early developmental influences are maintained and influence experience-dependent plasticity well into adulthood.

  13. Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity

    International Nuclear Information System (INIS)

    McDannold, N; Vykhodtseva, N; Hynynen, K

    2006-01-01

    Acoustic emission was monitored during focused ultrasound exposures in conjunction with an ultrasound contrast agent (Optison (registered) ) in order to determine if cavitation activity is associated with the induction of blood-brain barrier disruption (BBBD). Thirty-four locations were sonicated (frequency: 260 kHz) at targets 10 mm deep in rabbit brain (N = 9). The sonications were applied at peak pressure amplitudes ranging from 0.11 to 0.57 MPa (burst length: 10 ms; repetition frequency of 1 Hz; duration: 20 s). Acoustic emission was recorded with a focused passive cavitation detector. This emission was recorded at each location during sonications with and without Optison (registered) . Detectable wideband acoustic emission was observed only at 0.40 and 0.57 MPa. BBBD was observed in contrast MRI after sonication at 0.29-0.57 MPa. The appearance of small regions of extravasated erythrocytes appeared to be associated with this wideband emission signal. The results thus suggest that BBBD resulting from focused ultrasound pulses in the presence of Optison (registered) can occur without indicators for inertial cavitation in vivo, wideband emission and extravasation. If inertial cavitation is not responsible for the BBBD, other ultrasound/microbubble interactions are likely the source. A significant increase in the emission signal due to Optison (registered) at the second and third harmonics of the ultrasound driving frequency was found to correlate with BBBD and might be useful as an online method to indicate when the disruption occurs

  14. Concurrent low brain and high liver uptake on FDG PET are associated with cardiovascular risk factors

    International Nuclear Information System (INIS)

    Nam, Hyun Yeol; Jun, Sung Min; Pak, Kyoung June; Kim, In Joo

    2017-01-01

    Concurrent low brain and high liver uptake are sometimes observed on fluorine-18-labeled fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET). We investigated the potential clinical significance of this uptake pattern related to metabolic syndrome (MS). We retrospectively reviewed data from 264 consecutive males who had undergone general health check-ups, including FDG PET/CT scans. After an overnight fast, the men had their peripheral blood drawn and the levels of various laboratory parameters measured; an FDG PET/CT scan was performed on the same day. We measured the maximum standardized uptake values of the brain and liver from regions of interest manually placed over the frontal cortex at the level of the centrum semiovale and the right lobe of the liver parenchyma, respectively. Fasting blood glucose (FBG; odds ratio [OR] = 1.063, p < 0.001) and glycated hemoglobin (HbA1c; OR = 3.634, p = 0.010) were the strongest predictive factors for low brain FDG uptake, whereas waist circumference (OR = 1.200, p < 0.001) and γ-glutamyl transpeptidase (OR = 1.012, p = 0.001) were the strongest predictive factors for high liver uptake. Eleven subjects (4.2%) showed concurrent low brain and high liver FDG uptake, and all but one of these subjects (90.9%) had MS. Systolic blood pressure, waist circumference, FBG, triglyceride, alanine aminotransferase, insulin resistance (measured by homeostasis model assessment), insulin, HbA1c, and body mass index were higher in subjects with this FDG uptake pattern than in those without (all, p < 0.001). Concurrent low brain and high liver FDG uptake were closely associated with MS. Moreover, subjects with this pattern had higher values for various cardiovascular risk factors than did those without

  15. Concurrent low brain and high liver uptake on FDG PET are associated with cardiovascular risk factors

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Yeol [Dept. of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon (Korea, Republic of); Jun, Sung Min [Dept. of Nuclear Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan (Korea, Republic of); Pak, Kyoung June; Kim, In Joo [Dept. of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan (Korea, Republic of)

    2017-04-15

    Concurrent low brain and high liver uptake are sometimes observed on fluorine-18-labeled fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET). We investigated the potential clinical significance of this uptake pattern related to metabolic syndrome (MS). We retrospectively reviewed data from 264 consecutive males who had undergone general health check-ups, including FDG PET/CT scans. After an overnight fast, the men had their peripheral blood drawn and the levels of various laboratory parameters measured; an FDG PET/CT scan was performed on the same day. We measured the maximum standardized uptake values of the brain and liver from regions of interest manually placed over the frontal cortex at the level of the centrum semiovale and the right lobe of the liver parenchyma, respectively. Fasting blood glucose (FBG; odds ratio [OR] = 1.063, p < 0.001) and glycated hemoglobin (HbA1c; OR = 3.634, p = 0.010) were the strongest predictive factors for low brain FDG uptake, whereas waist circumference (OR = 1.200, p < 0.001) and γ-glutamyl transpeptidase (OR = 1.012, p = 0.001) were the strongest predictive factors for high liver uptake. Eleven subjects (4.2%) showed concurrent low brain and high liver FDG uptake, and all but one of these subjects (90.9%) had MS. Systolic blood pressure, waist circumference, FBG, triglyceride, alanine aminotransferase, insulin resistance (measured by homeostasis model assessment), insulin, HbA1c, and body mass index were higher in subjects with this FDG uptake pattern than in those without (all, p < 0.001). Concurrent low brain and high liver FDG uptake were closely associated with MS. Moreover, subjects with this pattern had higher values for various cardiovascular risk factors than did those without.

  16. All projects related to india | Page 2 | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2015-12-01

    Malignant brain tumours are the most common cause of death among children with cancer, but there is no known cure. This project will advance research in this important field. Start Date: December 1, 2015. Topic: BRAIN, MATERNAL AND CHILD HEALTH, CANCER, THERAPY, CANADA. Region: India, Canada, Israel.

  17. Rebelling against the brain: public engagement with the 'neurological adolescent'.

    Science.gov (United States)

    Choudhury, Suparna; McKinney, Kelly A; Merten, Moritz

    2012-02-01

    The adolescent brain has become a flourishing project for cognitive neuroscience. In the mid 1990s, MRI studies mapped out extended neuro-development in several cortical regions beyond childhood, and during adolescence. In the last ten years, numerous functional MRI studies have suggested that functions associated with these brain regions, such as cognitive control and social cognition undergo a period of development. These changes have been anecdotally and clinically used to account for behavioural changes during adolescence. The interpretation of these data that the "teen brain" is different has gained increasing visibility outside the neuroscience community, among policy makers and in the media, resonating strongly with current cultural conceptions of teenagers in Western societies. In the last two years, a new impetus has been placed on public engagement activities in science and in the popular science genre of the media that specifically attempts to educate children and teenagers about emerging models of the developing brain. In this article, we draw on data from an adolescent focus group and a questionnaire completed by 85 teenage students at a UK school, to show how teens may hold ambivalent and sometimes resistant views of cognitive neuroscience's teen brain model in terms of their own self-understandings. Our findings indicate that new "neuro"-identity formations are more fractured, resisted and incomplete than some of the current social science literature on neuro-subjectivities seem to suggest and that the effects of public policy and popular education initiatives in this domain will be more uneven and complex than currently imagined. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Structural Graphical Lasso for Learning Mouse Brain Connectivity

    KAUST Repository

    Yang, Sen; Sun, Qian; Ji, Shuiwang; Wonka, Peter; Davidson, Ian; Ye, Jieping

    2015-01-01

    Investigations into brain connectivity aim to recover networks of brain regions connected by anatomical tracts or by functional associations. The inference of brain networks has recently attracted much interest due to the increasing availability

  19. PET Imaging of Mild Traumatic Brain Injury and Whiplash Associated Disorder

    NARCIS (Netherlands)

    Vállez García, David

    2015-01-01

    Traumatic brain injury is the leading cause of brain injury in our society with 235 per 100,000 inhabitants per year in the European Union and about 500 per 100,000 inhabitants per year in the United States. About 80% of all these events are accounted for as mild cases. At the same time,

  20. Food-Related Odors Activate Dopaminergic Brain Areas

    OpenAIRE

    Agnieszka Sorokowska; Agnieszka Sorokowska; Katherina Schoen; Cornelia Hummel; Pengfei Han; Jonathan Warr; Thomas Hummel

    2017-01-01

    Food-associated cues of different sensory categories have often been shown to be a potent elicitor of cerebral activity in brain reward circuits. Smells influence and modify the hedonic qualities of eating experience, and in contrast to smells not associated with food, perception of food-associated odors may activate dopaminergic brain areas. In this study, we aimed to verify previous findings related to the rewarding value of food-associated odors by means of an fMRI design involving careful...

  1. R4D: Brain stimulation using RF and AM modulation

    OpenAIRE

    Orero López, Albert

    2017-01-01

    There are some previous experiments in which they demonstrate that radiofrequency radiation affects the brain electrical activity. So the purpose of this project is to study and develop a simulation through a device to stimulate a brain without contact with the skin, by radio frequency, with an amplitude modulation and with the distinguishing feature that we could control the transmitted signal whenever needed and read an electroencephalogram to check if we have caused changes in the brain el...

  2. Meditation is associated with increased brain network integration.

    Science.gov (United States)

    van Lutterveld, Remko; van Dellen, Edwin; Pal, Prasanta; Yang, Hua; Stam, Cornelis Jan; Brewer, Judson

    2017-09-01

    This study aims to identify novel quantitative EEG measures associated with mindfulness meditation. As there is some evidence that meditation is associated with higher integration of brain networks, we focused on EEG measures of network integration. Sixteen novice meditators and sixteen experienced meditators participated in the study. Novice meditators performed a basic meditation practice that supported effortless awareness, which is an important quality of experience related to mindfulness practices, while their EEG was recorded. Experienced meditators performed a self-selected meditation practice that supported effortless awareness. Network integration was analyzed with maximum betweenness centrality and leaf fraction (which both correlate positively with network integration) as well as with diameter and average eccentricity (which both correlate negatively with network integration), based on a phase-lag index (PLI) and minimum spanning tree (MST) approach. Differences between groups were assessed using repeated-measures ANOVA for the theta (4-8 Hz), alpha (8-13 Hz) and lower beta (13-20 Hz) frequency bands. Maximum betweenness centrality was significantly higher in experienced meditators than in novices (P = 0.012) in the alpha band. In the same frequency band, leaf fraction showed a trend toward being significantly higher in experienced meditators than in novices (P = 0.056), while diameter and average eccentricity were significantly lower in experienced meditators than in novices (P = 0.016 and P = 0.028 respectively). No significant differences between groups were observed for the theta and beta frequency bands. These results show that alpha band functional network topology is better integrated in experienced meditators than in novice meditators during meditation. This novel finding provides the rationale to investigate the temporal relation between measures of functional connectivity network integration and meditation quality, for example using

  3. Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia

    International Nuclear Information System (INIS)

    Adibzadeh, F; Verhaart, R F; Rijnen, Z; Franckena, M; Van Rhoon, G C; Paulides, M M; Verduijn, G M; Fortunati, V

    2015-01-01

    To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H and N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H and N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR 10g ) in the brains of 16 selected H and N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR 10g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF. (paper)

  4. BRCA1 Mutations Associated With Increased Risk of Brain Metastases in Breast Cancer: A 1: 2 Matched-pair Analysis.

    Science.gov (United States)

    Zavitsanos, Peter J; Wazer, David E; Hepel, Jaroslaw T; Wang, Yihong; Singh, Kamaljeet; Leonard, Kara L

    2018-05-18

    Brain metastases (BM) occur in ∼5% of breast cancer patients. BRCA1-associated cancers are often basal-like and basal-like cancers are known to have a predilection for central nervous system metastases. We performed a matched-pair analysis of breast cancer patients with and without BRCA mutations and compared the frequency of BM in both groups. From a database of 1935 patients treated for localized breast cancer at our institution from 2009 to 2014 we identified 20 patients with BRCA1 or BRCA2 mutations and manually matched 40 patients without BRCA mutations accounting for age, stage, estrogen receptor expression, and human epidermal growth factor receptor 2 (HER2) expression. Comparisons of freedom from brain metastasis, brain metastasis-free survival, and overall survival were made using the log rank test. Testing for a basal-type phenotype using the immunohistochemistry definition (ER/PR/HER2 and either CK 5/6 or EGFR) was performed for BRCA patients who developed BM and their matched controls. We analyzed 60 patients: 20 BRCA and 40 were matched controls. Median follow-up was 37 and 49 months, respectively. Three years freedom from brain metastasis was 84% for BRCA patients and 97% for BRCA controls (P=0.049). Three years brain metastasis-free survival was 84% and 97% for the BRCA+ and controls, respectively (P=0.176). Mean time to brain failure was 11 months from diagnosis for the BRCA patients. All 3 BRCA1 patients who developed BM were of a basal-type triple negative phenotype. Breast cancer patients with germline BRCA1 mutations appear to have a shorter interval to brain progression while accounting for confounding factors.

  5. Functional mapping of language networks in the normal brain using a word-association task

    International Nuclear Information System (INIS)

    Ghosh, Shantanu; Basu, Amrita; Kumaran, Senthil S; Khushu, Subash

    2010-01-01

    Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI) in normal human subjects. Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2*-weighted gradient-echo echo-planar imaging (GE-EPI) sequence (TR 4523 ms, TE 64 ms, flip angle 90°) with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s) with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2) with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD) signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Single subject analysis of the functional data (FWE-corrected, P≤0.001) revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG), superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG), anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001) revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Group data analysis revealed a cerebellar–occipital–fusiform–thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these areas facilitate language comprehension by activating a semantic

  6. Functional mapping of language networks in the normal brain using a word-association task

    Directory of Open Access Journals (Sweden)

    Ghosh Shantanu

    2010-01-01

    Full Text Available Background: Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. Aim: The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI in normal human subjects. Materials and Methods: Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2FNx01-weighted gradient-echo echo-planar imaging (GE-EPI sequence (TR 4523 ms, TE 64 ms, flip angle 90º with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2 with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Results: Single subject analysis of the functional data (FWE-corrected, P≤0.001 revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG, superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG, anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001 revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Conclusions: Group data analysis revealed a cerebellar-occipital-fusiform-thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these

  7. Brain regions associated with Anhedonia in healthy adults: a PET correlation study

    International Nuclear Information System (INIS)

    Jung, Young Chul; Chun, Ji Won; Kim, Jae Jin; Park, Hae Jeong; Lee, Jong Doo; Seok, Jeong Ho

    2005-01-01

    Anhedonia has been proposed to be the result of a basic neurophysiologic dysfunction and a vulnerability marker that precede and contribute to the liability of developing schizophrenia. We hypothesized that anhedonia, as a construct reflecting the decreased capacity to experience pleasure, should be associated with decreased positive hedonic affect trait. This study examined the relationship between anhedonia and positive hedonic affect trait and searched for the brain regions which correlate with anhedonia in normal subjects. Using 18 F-FDG PET scan, we investigated the brain activity of twenty one subjects during resting state. Questionnaires were administrated after the scan in order to assess the self-rated individual differences in physical/social anhedonia and positive/negative affect traits. Negative correlation between physical anhedonia score and positive affect trait score was significant (Pearson coefficient=-0.440, ρ <0.05). The subjects' physical and social anhedonia scores showed positive correlation with metabolic rates in the cerebellum and negative correlation with metabolic rates in the inferior temporal gyrus and middle frontal gyrus. In addition, the positive affect trait score positively correlated with various areas, most prominent with the inferior temporal gyrus. These results suggest that neural substrates, such as the inferior temporal gyrus and prefrontal-cerebellar circuit, which dysfunction has been proposed to be involved with the cognitive deficits of schizophrenia, may also play a significant role in the liability of affective deficits like anhedonia

  8. Development of quantitative analysis method for stereotactic brain image. Assessment of reduced accumulation in extent and severity using anatomical segmentation

    International Nuclear Information System (INIS)

    Mizumura, Sunao; Kumita, Shin-ichiro; Cho, Keiichi; Ishihara, Makiko; Nakajo, Hidenobu; Toba, Masahiro; Kumazaki, Tatsuo

    2003-01-01

    Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA), we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-stereotactic surface projections (SSP) program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution. (author)

  9. Structural Changes after Videogame Practice Related to a Brain Network Associated with Intelligence

    Science.gov (United States)

    Colom, Roberto; Quiroga, Ma. Angeles; Solana, Ana Beatriz; Burgaleta, Miguel; Roman, Francisco J.; Privado, Jesus; Escorial, Sergio; Martinez, Kenia; Alvarez-Linera, Juan; Alfayate, Eva; Garcia, Felipe; Lepage, Claude; Hernandez-Tamames, Juan Antonio; Karama, Sherif

    2012-01-01

    Here gray and white matter changes after four weeks of videogame practice were analyzed using optimized voxel-based morphometry (VBM), cortical surface and cortical thickness indices, and white matter integrity computed from several projection, commissural, and association tracts relevant to cognition. Beginning with a sample of one hundred young…

  10. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Takeda, Shumpei; Hatazawa, Jun

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT and following results were obtained. Brain atrophy was minimal in 34 -- 35 years old in both sexes, increased exponentially to the increasing age after 34 -- 35 years, and probably resulted in dementia, such as vascular or multiinfarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34 -- 35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extents of brain atrophy (20 -- 30 %) existed among aged subjects. Some aged subjects had little or no atrophy of their brains, as seen in young subjects, and others had markedly shrunken brains associated with senility. From these results there must be pathological factors promoting brain atrophy with a great individual difference. We have studied the relation of intelligence to brain volume, and have ascertained that progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was decrease in the cerebral blood flow. MNR-CT can easily detected small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy, while X-CT can not. Therefore NMR-CT is very useful for detection of subtle changes in the brain. (J.P.N.)

  11. Final Report on LDRD project 130784 : functional brain imaging by tunable multi-spectral Event-Related Optical Signal (EROS).

    Energy Technology Data Exchange (ETDEWEB)

    Speed, Ann Elizabeth; Spahn, Olga Blum; Hsu, Alan Yuan-Chun

    2009-09-01

    Functional brain imaging is of great interest for understanding correlations between specific cognitive processes and underlying neural activity. This understanding can provide the foundation for developing enhanced human-machine interfaces, decision aides, and enhanced cognition at the physiological level. The functional near infrared spectroscopy (fNIRS) based event-related optical signal (EROS) technique can provide direct, high-fidelity measures of temporal and spatial characteristics of neural networks underlying cognitive behavior. However, current EROS systems are hampered by poor signal-to-noise-ratio (SNR) and depth of measure, limiting areas of the brain and associated cognitive processes that can be investigated. We propose to investigate a flexible, tunable, multi-spectral fNIRS EROS system which will provide up to 10x greater SNR as well as improved spatial and temporal resolution through significant improvements in electronics, optoelectronics and optics, as well as contribute to the physiological foundation of higher-order cognitive processes and provide the technical foundation for miniaturized portable neuroimaging systems.

  12. Concurrent whole brain radiotherapy and bortezomib for brain metastasis

    International Nuclear Information System (INIS)

    Lao, Christopher D; Hamstra, Daniel; Lawrence, Theodore; Hayman, James; Redman, Bruce G; Friedman, Judah; Tsien, Christina I; Normolle, Daniel P; Chapman, Christopher; Cao, Yue; Lee, Oliver; Schipper, Matt; Van Poznak, Catherine

    2013-01-01

    Survival of patients with brain metastasis particularly from historically more radio-resistant malignancies remains dismal. A phase I study of concurrent bortezomib and whole brain radiotherapy was conducted to determine the tolerance and safety of this approach in patients with previously untreated brain metastasis. A phase I dose escalation study evaluated the safety of bortezomib (0.9, 1.1, 1.3, 1.5, and 1.7 mg/m 2 ) given on days 1, 4, 8 and 11 of whole brain radiotherapy. Patients with confirmed brain metastasis were recruited for participation. The primary endpoint was the dose-limiting toxicity, defined as any ≥ grade 3 non-hematologic toxicity or grade ≥ 4 hematologic toxicity from the start of treatment to one month post irradiation. Time-to-Event Continual Reassessment Method (TITE-CRM) was used to determine dose escalation. A companion study of brain diffusion tensor imaging MRI was conducted on a subset of patients to assess changes in the brain that might predict delayed cognitive effects. Twenty-four patients were recruited and completed the planned therapy. Patients with melanoma accounted for 83% of all participants. The bortezomib dose was escalated as planned to the highest dose of 1.7 mg/m 2 /dose. No grade 4/5 toxicities related to treatment were observed. Two patients had grade 3 dose-limiting toxicities (hyponatremia and encephalopathy). A partial or minor response was observed in 38% of patients. Bortezomib showed greater demyelination in hippocampus-associated white matter structures on MRI one month after radiotherapy compared to patients not treated with bortezomib (increase in radial diffusivity +16.8% versus 4.8%; p = 0.0023). Concurrent bortezomib and whole brain irradiation for brain metastasis is well tolerated at one month follow-up, but MRI changes that have been shown to predict delayed cognitive function can be detected within one month of treatment

  13. Migraine, the heart and the brain

    NARCIS (Netherlands)

    Koppen, H.

    2018-01-01

    The association between migraine and silent ischemic brain lesions was investigated. Also the occurence of right-to-left shunts in different migraine groups and controls. The functional consequences of silent ischemic brain lesions were investigated.

  14. 3 dimensional modelling of early human brain development using optical projection tomography

    Directory of Open Access Journals (Sweden)

    Strachan Tom

    2004-08-01

    Full Text Available Abstract Background As development proceeds the human embryo attains an ever more complex three dimensional (3D structure. Analyzing the gene expression patterns that underlie these changes and interpreting their significance depends on identifying the anatomical structures to which they map and following these patterns in developing 3D structures over time. The difficulty of this task greatly increases as more gene expression patterns are added, particularly in organs with complex 3D structures such as the brain. Optical Projection Tomography (OPT is a new technology which has been developed for rapidly generating digital 3D models of intact specimens. We have assessed the resolution of unstained neuronal structures within a Carnegie Stage (CS17 OPT model and tested its use as a framework onto which anatomical structures can be defined and gene expression data mapped. Results Resolution of the OPT models was assessed by comparison of digital sections with physical sections stained, either with haematoxylin and eosin (H&E or by immunocytochemistry for GAP43 or PAX6, to identify specific anatomical features. Despite the 3D models being of unstained tissue, peripheral nervous system structures from the trigeminal ganglion (~300 μm by ~150 μm to the rootlets of cranial nerve XII (~20 μm in diameter were clearly identifiable, as were structures in the developing neural tube such as the zona limitans intrathalamica (core is ~30 μm thick. Fourteen anatomical domains have been identified and visualised within the CS17 model. Two 3D gene expression domains, known to be defined by Pax6 expression in the mouse, were clearly visible when PAX6 data from 2D sections were mapped to the CS17 model. The feasibility of applying the OPT technology to all stages from CS12 to CS23, which encompasses the major period of organogenesis for the human developing central nervous system, was successfully demonstrated. Conclusion In the CS17 model considerable detail

  15. Brain network activation as a novel biomarker for the return-to-play pathway following sport-related brain injury: A prospective case study

    Directory of Open Access Journals (Sweden)

    Adam W Kiefer

    2015-11-01

    Full Text Available Children and adolescent athletes are at a higher risk for concussion than adults, and also experience longer recovery times and increased associated symptoms. It has also recently been demonstrated that multiple, seemingly mild concussions may result in exacerbated and prolonged neurologic deficits. Objective assessments and return to play criteria are needed to reduce risk and morbidity associated with concussive events in these populations. Recent research has pushed to study the use of electroencephalography as an objective measure of brain injury. In the present case study, we present a novel approach that examines event related potentials via a brain network activation (BNA analysis as a biomarker of concussion and recovery. Specifically, changes in BNA scores as indexed through this approach, offer a potential indicator of neurological health as the BNA assessment qualitatively and quantitatively indexes the network dynamics associated with brain injury. Objective tools such as these support accurate and efficient assessment of brain injury and may offer a useful step in categorizing the temporal and spatial changes in brain activity following concussive blows, as well as the functional connectivity of brain networks, associated with concussion.

  16. Cancer 'survivor-care': II. Disruption of prefrontal brain activation top-down control of working memory capacity as possible mechanism for chemo-fog/brain (chemotherapy-associated cognitive impairment).

    Science.gov (United States)

    Raffa, R B

    2013-08-01

    Cancer chemotherapy-associated cognitive impairments (termed 'chemo-fog' or 'chemo-brain'), particularly in memory, have been self-reported or identified in cancer survivors previously treated with chemotherapy. Although a variety of deficits have been detected, a consistent theme is a detriment in visuospatial working memory. The parietal cortex, a major site of storage of such memory, is implicated in chemotherapy-induced damage. However, if the findings of two recent publications are combined, the (pre)frontal cortex might be an equally viable target. Two recent studies, one postulating a mechanism for 'top-down control' of working memory capacity and another visualizing chemotherapy-induced alterations in brain activation during working memory processing, are reviewed and integrated. A computational model and the proposal that the prefrontal cortex plays a role in working memory via top-down control of parietal working memory capacity is consistent with a recent demonstration of decreased frontal hyperactivation following chemotherapy. Chemotherapy-associated impairment of visuospatial working memory might include the (pre)frontal cortex in addition to the parietal cortex. This provides new opportunity for basic science and clinical investigation. © 2013 John Wiley & Sons Ltd.

  17. Alcohol use disorder with and without stimulant use: brain morphometry and its associations with cigarette smoking, cognition, and inhibitory control.

    Directory of Open Access Journals (Sweden)

    David L Pennington

    Full Text Available Little is known about the effects of polysubstance use and cigarette smoking on brain morphometry. This study examined neocortical brain morphometric differences between abstinent polysubstance dependent and alcohol-only dependent treatment seekers (ALC as well as light drinking controls (CON, the associations of cigarette smoking in these polysubstance users (PSU, and morphometric relationships to cognition and inhibitory control.All participants completed extensive neuropsychological assessments and 4 Tesla brain magnetic resonance imaging. PSU and ALC were abstinent for one month at the time of study. Parcellated morphological data (volume, surface area, thickness were obtained with FreeSurfer methodology for the following bilateral components: dorso-prefrontal cortex (DPFC, anterior cingulate cortex (ACC, orbitofrontal cortex (OFC, and insula. Regional group differences were examined and structural data correlated with domains of cognition and inhibitory control.PSU had significantly smaller left OFC volume and surface area and trends to smaller right DPFC volume and surface area compared to CON; PSU did not differ significantly from ALC on these measures. PSU, however, had significantly thinner right ACC than ALC. Smoking PSU had significantly larger right OFC surface area than non-smoking PSU. No significant relationships between morphometry and quantity/frequency of substance use, alcohol use, or age of onset of heavy drinking were observed. PSU exhibited distinct relationships between brain structure and processing speed, cognitive efficiency, working memory and inhibitory control that were not observed in ALC or CON.Polysubstance users have unique morphometric abnormalities and structure-function relationships when compared to individuals dependent only on alcohol and light drinking controls. Chronic cigarette smoking is associated with structural brain irregularities in polysubstance users. Further elucidation of these distinctive

  18. Exploring the Associations Between Intrinsic Brain Connectivity and Creative Ability Using Functional Connectivity Strength and Connectome Analysis.

    Science.gov (United States)

    Gao, Zhenni; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Cai, Yuxuan; Li, Junchao; Gao, Mengxia; Liu, Xiaojin; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2017-11-01

    The present study aimed to explore the association between resting-state functional connectivity and creativity ability. Toward this end, the figural Torrance Tests of Creative Thinking (TTCT) scores were collected from 180 participants. Based on the figural TTCT measures, we collected resting-state functional magnetic resonance imaging data for participants with two different levels of creativity ability (a high-creativity group [HG, n = 22] and a low-creativity group [LG, n = 20]). For the aspect of group difference, this study combined voxel-wise functional connectivity strength (FCS) and seed-based functional connectivity to identify brain regions with group-change functional connectivity. Furthermore, the connectome properties of the identified regions and their associations with creativity were investigated using the permutation test, discriminative analysis, and brain-behavior correlation analysis. The results indicated that there were 4 regions with group differences in FCS, and these regions were linked to 30 other regions, demonstrating different functional connectivity between the groups. Together, these regions form a creativity-related network, and we observed higher network efficiency in the HG compared with the LG. The regions involved in the creativity network were widely distributed across the modality-specific/supramodality cerebral cortex, subcortex, and cerebellum. Notably, properties of regions in the supramodality networks (i.e., the default mode network and attention network) carried creativity-level discriminative information and were significantly correlated with the creativity performance. Together, these findings demonstrate a link between intrinsic brain connectivity and creative ability, which should provide new insights into the neural basis of creativity.

  19. Brain damage in former association football players

    International Nuclear Information System (INIS)

    Sortland, O.; Tysvaer, A.T.

    1989-01-01

    Thirty-three former football players from the National Football Team of Norway were examined by cerebral computer tomography (CT). The CT studies, evaluated for brain atrophy, visually and by linear measurements compared two different normal materials. One third of the players were found to have central cerebral atrophy. It is concluded that the atrophy probably was caused by repeated small head injuries during the football play, mainly in connection with heading the ball. (orig.)

  20. Opposite effect of phencyclidine on activity-regulated cytoskeleton-associated protein (Arc) in juvenile and adult limbic rat brain regions

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    -regulated cytoskeleton-associated protein (Arc) and parvalbumin mRNA expression in juvenile and adult rats. Arc is a marker for excitatory neurotransmission. Parvalbumin is a marker for GABAergic neurotransmission, known to be reduced in postmortem brains of schizophrenics. PCP reduced parvalbumin mRNA expression...