WorldWideScience

Sample records for brain association projection

  1. Brain Injury Association of America

    Science.gov (United States)

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  2. Multivariate projection method to investigate inflammation associated with secondary insults and outcome after human traumatic brain injury: a pilot study

    OpenAIRE

    Mazzeo, Anna Teresa; Filippini, Claudia; Rosato, Rosalba; Fanelli, Vito; Assenzio, Barbara; Piper, Ian; Howells, Timothy; Mastromauro, Ilaria; Berardino, Maurizio; Ducati, Alessandro; Mascia, Luciana

    2016-01-01

    Background Neuroinflammation has been proposed as a possible mechanism of brain damage after traumatic brain injury (TBI), but no consensus has been reached on the most relevant molecules. Furthermore, secondary insults occurring after TBI contribute to worsen neurological outcome in addition to the primary injury. We hypothesized that after TBI, a specific pattern of cytokines is related to secondary insults and outcome. Methods A prospective observational clinical study was performed. Secon...

  3. Remote Associates Test and Alpha Brain Waves

    OpenAIRE

    Haarmann, Henk J.; George, Timothy; Smaliy, Alexei; Dien, Joseph

    2012-01-01

    Previous studies found that performance on the remote associates test (RAT) improves after a period of incubation and that increased alpha brain waves over the right posterior brain predict the emergence of RAT insight solutions. We report an experiment that tested whether increased alpha brain waves during incubation improve RAT performance. Participants received two blocks of RAT items (RAT1 and RAT2), with the second block consisting of items that were not solved during the first block. Pa...

  4. Freud's "Project": The Mind-Brain Connection Revisited.

    Science.gov (United States)

    Glucksman, Myron L

    2016-03-01

    Freud's "Project for a Scientific Psychology" (1895) reflected his attempt to explain psychic phenomena in neurobiological terms. The recent discovery of the neuron motivated him to embark on this endeavor. His basic hypothesis was that neurons were vehicles for the conduction of "currents" or "excitations," and that they were connected to one another. Using this model, Freud attempted to describe a number of mental phenomena, including: consciousness, perception, affect, self, cognition, dreaming, memory, and symptom formation. However, he was unable to complete his exploration of these mental processes because he lacked the information and technology that became available over the following century. Subsequent discoveries, including fMRIs, PET scans, EEGs, synapses, neural networks, genetic factors, neurotransmitters, and discrete brain circuits facilitated a significant expansion of our knowledge of mind-brain phenomena. As a result, effective pharmacological treatments have been developed for schizophrenia, mood and anxiety disorders. Moreover, changes in brain function can be measured that reflect successful pharmacologic and psychotherapeutic treatment. Despite these advances, there remain limitations in our understanding of the relationship between mind and brain functions. More than a century after Freud began the "Project," the neurobiology underlying the phenomena of consciousness, unconsciousness, qualities of subjective feelings, thoughts, and memories is still not fully understood. Can we expect to reach a more comprehensive integration of mind and its neurobiological substrate a century from now? The purpose of this article is to update our knowledge of the neurobiology associated with the specific mental functions that Freud examined in the "Project," and to pose questions concerning mind-brain phenomena that will hopefully be answered in the future. PMID:26938800

  5. Human capital in European peripheral regions: brain - drain and brain - gain: project design [poster

    NARCIS (Netherlands)

    2004-01-01

    Project design - The action plan consists of two overlapping phases. In the initial analytic phase the specific details of brain gain/ brain drain and their underlying processes in three regions are analyzed. This is not meant as a study project but rather a method to evaluate, design and implement

  6. Human capital in European peripheral regions: brain - drain and brain - gain: project design [poster

    OpenAIRE

    2004-01-01

    Project design - The action plan consists of two overlapping phases. In the initial analytic phase the specific details of brain gain/ brain drain and their underlying processes in three regions are analyzed. This is not meant as a study project but rather a method to evaluate, design and implement brain drain gain instruments through a thorough analysis of processes. The implementation phase deals with the development, implementation and evaluation of instruments as well as the dissemination...

  7. Brain tumour-associated status epilepticus.

    Science.gov (United States)

    Goonawardena, Janindu; Marshman, Laurence A G; Drummond, Katharine J

    2015-01-01

    We have reviewed the scant literature on status epilepticus in patients with brain tumours. Patients with brain tumour-associated epilepsy (TAE) appear less likely to develop status epilepticus (TASE) than patients with epilepsy in the general population (EGP) are to develop status epilepticus (SEGP). TASE is associated with lesions in similar locations as TAE; in particular, the frontal lobes. However, in contrast to TAE, where seizures commence early in the course of the disease or at presentation, TASE is more likely to occur later in the disease course and herald tumour progression. In marked contrast to TAE, where epilepsy risk is inversely proportional to Word Health Organization tumour grade, TASE risk appears to be directly proportional to tumour grade (high grade gliomas appear singularly predisposed). Whilst anti-epileptic drug (AED) resistance is more common in TAE than EGP (with resistance directly proportional to tumour grade and frontal location), TASE appears paradoxically more responsive to simple AED regimes than either TAE or SEGP. Although some results suggest that mortality may be higher with TASE than with SEGP, it is likely that (as with SEGP) the major determinant of mortality is the underlying disease process. Because all such data have been derived from retrospective studies, because TASE and SEGP are less common than TAE and EGP, and because TASE and SEGP classification has often been inconsistent, findings can only be considered preliminary: multi-centre, prospective studies are required. Whilst preliminary, our review suggests that TASE has a distinct clinical profile compared to TAE and SEGP.

  8. 77 FR 34363 - Disability and Rehabilitation Research Projects and Centers Program; Traumatic Brain Injury Model...

    Science.gov (United States)

    2012-06-11

    ... Disability and Rehabilitation Research Projects and Centers Program; Traumatic Brain Injury Model Systems... Program--Disability Rehabilitation Research Project (DRRP)-- Traumatic Brain Injury Model Systems Centers... for the Disability and Rehabilitation Research Projects and Centers Program administered by...

  9. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    Science.gov (United States)

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  10. Brain-wide map of projections from mice ventral subiculum.

    Science.gov (United States)

    Tang, He; Wu, Gui-Sheng; Xie, Jing; He, Xiaobin; Deng, Ke; Wang, Huadong; Xu, Fuqiang; Luo, Huai-Rong

    2016-08-26

    The hippocampal formation plays a critical role in episodic memory formation and spatial navigation. Within the hippocampus, the subiculum is considered to be a hub connecting the hippocampal formation to the remainder of the brain. There are functional differences between the dorsal and ventral part of subiculum, while the ventral subiculum (vSub) plays a role in anxiety, stress and emotion. In the present study, we examined the projection of the ventral subiculum to the whole brain in mice by using a modified herpes simplex virus 1 strain H129 with an inserted fluorescent protein gene. In our experiments, the modified H129 transits the primary-order, second-order, and third-order neuronal projections at 36-44, 52-60 and 68-76h after inoculation in mice, respectively. Our data revealed that vSub directly projects to the medial entorhinal cortex, amygdalohippocampal area, anterodorsal thalamic nucleus, medial hypothalamus, supramammillary nucleus, medial septal nucleus and adjacent diagonal band, the connections between median raphe nucleus and interpeduncular nucleus in brain stem, while ventral prefrontal cortex, laterodorsal tegmental nucleus and locus coeruleus receives second-order projections from vSub. Our data would help further understanding the functional connections of vSub with other brain regions. PMID:27422730

  11. Research project: "Promotion of optimum brain ageing"

    CERN Multimedia

    IT Department

    2009-01-01

    The Rehabilitation and Geriatrics Department of the Geneva University Hospitals (HUG) has signed a research protocol with CERN with a view to promoting better understanding of the mechanisms that trigger Alzheimer’s disease. Alzheimer’s disease is a form of dementia associated with memory loss, inability to make plans and spatial disorientation. With 24 million sufferers worldwide at present, a figure that is predicted to rise to 29 million by 2020, it represents a major challenge for the coming decades. Prevention is a key factor in slowing the alarming spread of this disease. Delaying the onset of the disease could reduce the total number of cases by 50%. Why CERN? CERN is an international research organisation with a workforce that is predominantly male (a section of the population that has been little studied so far) and has a high level of education. Moreover, its pensioners are easy to reach since the majority live in the Geneva area. The aim of the study is to ev...

  12. Pathophysiologic mechanisms of brain-body associations in ruptured brain aneurysms: A systematic review

    Directory of Open Access Journals (Sweden)

    Benjamin W. Y. Lo

    2015-01-01

    Conclusions: This systematic review synthesizes the most current evidence of underlying mechanisms of brain related associations with body systems in aneurysmal subarachnoid hemorrhage. Results gained from these studies are clinically useful and shed light on how ruptured brain aneurysms affect the cardiopulmonary system. Subsequent neuro-cardio-endocrine responses then interact with other body systems as part of the secondary responses to primary injury.

  13. Towards neurofeedback training of associative brain areas for stroke rehabilitation

    OpenAIRE

    Özdenizci, Ozan; Ozdenizci, Ozan; Meyer, Timm; Çetin, Müjdat; Cetin, Mujdat; Grosse-Wentrup, Moritz

    2014-01-01

    We propose to extend the current focus of BCI-based stroke rehabilitation beyond sensorimotor-rhythms to also include associative brain areas. In particular, we argue that neurofeedback training of brain rhythms that signal a state-of-mind beneficial for motorlearning is likely to enhance post-stroke motor rehabilitation. We propose an adaptive neurofeedback paradigm for this purpose and demonstrate its viability on EEG data recorded with five healthy subjects.

  14. Functional brain networks associated with eating behaviors in obesity

    OpenAIRE

    Bo-yong Park; Jongbum Seo; Hyunjin Park

    2016-01-01

    Obesity causes critical health problems including diabetes and hypertension that affect billions of people worldwide. Obesity and eating behaviors are believed to be closely linked but their relationship through brain networks has not been fully explored. We identified functional brain networks associated with obesity and examined how the networks were related to eating behaviors. Resting state functional magnetic resonance imaging (MRI) scans were obtained for 82 participants. Data were from...

  15. Sleep variability in adolescence is associated with altered brain development

    Directory of Open Access Journals (Sweden)

    Eva H. Telzer

    2015-08-01

    Full Text Available Despite the known importance of sleep for brain development, and the sharp increase in poor sleep during adolescence, we know relatively little about how sleep impacts the developing brain. We present the first longitudinal study to examine how sleep during adolescence is associated with white matter integrity. We find that greater variability in sleep duration one year prior to a DTI scan is associated with lower white matter integrity above and beyond the effects of sleep duration, and variability in bedtime, whereas sleep variability a few months prior to the scan is not associated with white matter integrity. Thus, variability in sleep duration during adolescence may have long-term impairments on the developing brain. White matter integrity should be increasing during adolescence, and so sleep variability is directly at odds with normative developmental trends.

  16. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia

    OpenAIRE

    Vatthauer KE; Craggs JG; Robinson ME; Staud R; Berry RB; Perlstein WM; McCrae CS

    2015-01-01

    Karlyn E Vatthauer,1 Jason G Craggs,1 Michael E Robinson,1 Roland Staud,2 Richard B Berry,2 William M Perlstein,1 Christina S McCrae11Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA; 2Department of Medicine, University of Florida, Gainesville, FL, USAAbstract: Patients with chronic pain exhibit altered default mode network (DMN) activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations....

  17. Kocuria varians infection associated with brain abscess: A case report

    Directory of Open Access Journals (Sweden)

    Tsai Tai-Hsin

    2010-04-01

    Full Text Available Abstract Background Kocuria, established by Stackebrandt et al., previously was classified into Micrococcus. Only two species, K. rosea and K. kristinae are reported to be associated as pathogenic and found with catheter-related bacteremia and acute cholecystitis. Case presentation We herein report the first case of brain abscess caused by Kocuria varians, a gram-positive microorganism, in a 52-year-old man. Hematogenous spread is the probable pathogenesis. Conclusions This report presents a case of Kocuria varians brain abscess successfully treated with surgical excision combined with antimicrobial therapy. In addition, Vitek 2 system has been used to identify and differentiate between coagulase-negative staphylococcus.

  18. Whole brain and brain regional coexpression network interactions associated with predisposition to alcohol consumption.

    Directory of Open Access Journals (Sweden)

    Lauren A Vanderlinden

    Full Text Available To identify brain transcriptional networks that may predispose an animal to consume alcohol, we used weighted gene coexpression network analysis (WGCNA. Candidate coexpression modules are those with an eigengene expression level that correlates significantly with the level of alcohol consumption across a panel of BXD recombinant inbred mouse strains, and that share a genomic region that regulates the module transcript expression levels (mQTL with a genomic region that regulates alcohol consumption (bQTL. To address a controversy regarding utility of gene expression profiles from whole brain, vs specific brain regions, as indicators of the relationship of gene expression to phenotype, we compared candidate coexpression modules from whole brain gene expression data (gathered with Affymetrix 430 v2 arrays in the Colorado laboratories and from gene expression data from 6 brain regions (nucleus accumbens (NA; prefrontal cortex (PFC; ventral tegmental area (VTA; striatum (ST; hippocampus (HP; cerebellum (CB available from GeneNetwork. The candidate modules were used to construct candidate eigengene networks across brain regions, resulting in three "meta-modules", composed of candidate modules from two or more brain regions (NA, PFC, ST, VTA and whole brain. To mitigate the potential influence of chromosomal location of transcripts and cis-eQTLs in linkage disequilibrium, we calculated a semi-partial correlation of the transcripts in the meta-modules with alcohol consumption conditional on the transcripts' cis-eQTLs. The function of transcripts that retained the correlation with the phenotype after correction for the strong genetic influence, implicates processes of protein metabolism in the ER and Golgi as influencing susceptibility to variation in alcohol consumption. Integration of these data with human GWAS provides further information on the function of polymorphisms associated with alcohol-related traits.

  19. Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts.

    Science.gov (United States)

    Lovick, Jennifer K; Ngo, Kathy T; Omoto, Jaison J; Wong, Darren C; Nguyen, Joseph D; Hartenstein, Volker

    2013-12-15

    Neurons of the Drosophila central brain fall into approximately 100 paired groups, termed lineages. Each lineage is derived from a single asymmetrically-dividing neuroblast. Embryonic neuroblasts produce 1,500 primary neurons (per hemisphere) that make up the larval CNS followed by a second mitotic period in the larva that generates approximately 10,000 secondary, adult-specific neurons. Clonal analyses based on previous works using lineage-specific Gal4 drivers have established that such lineages form highly invariant morphological units. All neurons of a lineage project as one or a few axon tracts (secondary axon tracts, SATs) with characteristic trajectories, thereby representing unique hallmarks. In the neuropil, SATs assemble into larger fiber bundles (fascicles) which interconnect different neuropil compartments. We have analyzed the SATs and fascicles formed by lineages during larval, pupal, and adult stages using antibodies against membrane molecules (Neurotactin/Neuroglian) and synaptic proteins (Bruchpilot/N-Cadherin). The use of these markers allows one to identify fiber bundles of the adult brain and associate them with SATs and fascicles of the larval brain. This work lays the foundation for assigning the lineage identity of GFP-labeled MARCM clones on the basis of their close association with specific SATs and neuropil fascicles, as described in the accompanying paper (Wong et al., 2013. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Submitted.). PMID:23880429

  20. The Oilheat Manufacturers Associations Oilheat Advantages Project

    Energy Technology Data Exchange (ETDEWEB)

    Hedden, R. [Oil Heat Management Services, Pawlet, VT (United States); Bately, J.E. [Energy Research Center, Inc., Easton, CT (United States)

    1995-04-01

    The Oilheat Advantages Project is the Oilheat Manufacturers Association`s first project. It involves the creation and disseminaiton of the unified, well documented, compellingly packaged oilheat story. The project invovles three steps: the first step is to pull together all the existing data on the advantages of oilheat into a single, well documented engineering report. The second step will be to rewrite and package the technical document into a consumer piece and a scripted presentation supported with overheads, and to disseminate the information throughout the industry. The third step will be to fund new research to update existing information and discover new advantages of oilheat. This step will begin next year. The inforamtion will be packaged in the following formats: The Engineering Document. This will include all the technical information including the creditable third party sources for all the findings on the many advantages of oilheat; the Consumer Booklet. This summarizes all the findings in the Engineering Document in simple language with easy to understand illustrations and graphs; a series of single topic Statement Stuffers on each of the advantages; an Overhead Transparency-Supported Scripted Show that can be used by industry representatives for presentations to the general public, schools, civic groups, and service clubs; and the Periodic publication of updates to the Oilheat Advantages Study.

  1. Functional brain networks associated with eating behaviors in obesity.

    Science.gov (United States)

    Park, Bo-Yong; Seo, Jongbum; Park, Hyunjin

    2016-01-01

    Obesity causes critical health problems including diabetes and hypertension that affect billions of people worldwide. Obesity and eating behaviors are believed to be closely linked but their relationship through brain networks has not been fully explored. We identified functional brain networks associated with obesity and examined how the networks were related to eating behaviors. Resting state functional magnetic resonance imaging (MRI) scans were obtained for 82 participants. Data were from an equal number of people of healthy weight (HW) and non-healthy weight (non-HW). Connectivity matrices were computed with spatial maps derived using a group independent component analysis approach. Brain networks and associated connectivity parameters with significant group-wise differences were identified and correlated with scores on a three-factor eating questionnaire (TFEQ) describing restraint, disinhibition, and hunger eating behaviors. Frontoparietal and cerebellum networks showed group-wise differences between HW and non-HW groups. Frontoparietal network showed a high correlation with TFEQ disinhibition scores. Both frontoparietal and cerebellum networks showed a high correlation with body mass index (BMI) scores. Brain networks with significant group-wise differences between HW and non-HW groups were identified. Parts of the identified networks showed a high correlation with eating behavior scores. PMID:27030024

  2. Brain abscess associated with ethmoidal sinus osteoma: A case report

    Directory of Open Access Journals (Sweden)

    Hiroaki Nagashima

    2014-12-01

    Full Text Available Osteoma of the paranasal sinus is uncommon, and the occurrence of brain abscess associated with ethmoidal osteoma is particularly rare. We report here a case of a brain abscess complicating an ethmoidal osteoma in a 68-year-old man who presented with high-grade fever and disturbance in the level of consciousness. Computed tomography scanning and magnetic resonance imaging revealed a ring-enhancing mass in the left frontal lobe with surrounding edema and a bony mass in the ethmoidal sinus. We scheduled a two-stage operation. First, emergency aspiration and drainage of the abscess via the forehead were performed to reduce the abscess volume. These were followed by a left frontal craniotomy to totally remove both the brain abscess and the bony mass. The bony mass had breached the dura mater. After removing the bony mass, we repaired the anterior skull base using a pericranial flap. Pathological findings of the bony tumor were consistent with osteoma. The postoperative course was uneventful. In the case of a huge brain abscess associated with an ethmoidal osteoma, volume reduction by drainage followed by surgical removal of both lesions may help to control infection and achieve a cure. Use of a vascularized pericranial flap is important to prevent direct communication between the paranasal sinuses and the cranial cavity.

  3. Brain activity associated with illusory correlations in animal phobia

    OpenAIRE

    Wiemer, Julian; Stefan M Schulz; Reicherts, Philipp; Glotzbach-Schoon, Evelyn; Andreatta, Marta; Pauli, Paul

    2014-01-01

    Anxiety disorder patients were repeatedly found to overestimate the association between disorder-relevant stimuli and aversive outcomes despite random contingencies. Such an illusory correlation (IC) might play an important role in the return of fear after extinction learning; yet, little is known about how this cognitive bias emerges in the brain. In a functional magnetic resonance imaging study, 18 female patients with spider phobia and 18 healthy controls were exposed to pictures of spider...

  4. Myelin-associated Glycoprotein gene and brain morphometry in schizophrenia

    Directory of Open Access Journals (Sweden)

    Daniel Felsky

    2012-05-01

    Full Text Available Myelin and oligodendrocyte disruption may be a core feature of schizophrenia pathophysiology. The purpose of the present study was to localize the effects of previously identified risk variants in the myelin associated glycoprotein gene on brain morphometry in schizophrenia patients and healthy controls. 45 schizophrenia patients and 47 matched healthy controls underwent clinical, structural magnetic resonance imaging, and genetics procedures. Gray and white matter cortical lobe volumes along with subcortical structure volumes were calculated from T1-weighted MRI scans. Each subject was also genotyped for the two disease-associated MAG single nucleotide polymorphisms (rs720308 and rs720309. Repeated measures general linear model analysis found significant region by genotype and region by diagnosis interactions for the effects of MAG risk variants on lobar gray matter volumes. No significant associations were found with lobar white matter volumes or subcortical structure volumes. Follow-up univariate general linear models found the AA genotype of rs720308 predisposed schizophrenia patients to left temporal and parietal gray matter volume deficits. These results suggest that the effects of the MAG gene on cortical gray matter volume in schizophrenia patients can be localized to temporal and parietal cortices. Our results support a role for MAG gene variation in brain morphometry in schizophrenia, align with other lines of evidence implicating MAG in schizophrenia, and provide genetically-based insight into the heterogeneity of brain imaging findings in this disorder.

  5. Subspace Projection Filters for Real-Time Brain Electromagnetic Imaging

    OpenAIRE

    Congedo, Marco

    2006-01-01

    International audience An increasing number of neuroimaging laboratories are becoming interested in real-time investigations of the human brain. The opportunities offered by real-time applications are inversely proportional to the latency of the brain activity response and to the computational delay of brain activity estimation. Electromagnetic tomographies, based on EEG or MEG, feature immediacy of brain activity response and excellent time resolution, hence they are natural candidates. H...

  6. Fast brain decoding with random sampling and random projections

    OpenAIRE

    Hoyos-Idrobo, Andrés; Varoquaux, Gaël; Thirion, Bertrand

    2016-01-01

    Machine learning from brain images is a central tool for image-based diagnosis and diseases characterization. Predicting behavior from functional imaging, brain decoding, analyzes brain activity in terms of the behavior that it implies. While these multivariate techniques are becoming standard brain mapping tools, like mass-univariate analysis, they entail much larger computational costs. In an time of growing data sizes, with larger cohorts and higher-resolutions imaging, this cost is increa...

  7. Brain abscess in hepatopulmonary syndrome associated with biliary atresia.

    Science.gov (United States)

    Morita, Keiichi; Fukuzawa, Hiroaki; Maeda, Kosaku

    2015-12-01

    The first-choice therapy for biliary atresia (BA) is Kasai hepatoportoenterostomy, which has been shown to greatly improve outcome. Various long-term complications, however, such as portal hypertension and hepatopulmonary syndrome (HPS), can occur in patients with native liver. A rare case of brain abscess in an 11-year-old girl with HPS associated with BA is reported. The patient underwent hepatoportoenterostomy for BA at 53 days of age, with resolution of hyperbilirubinemia. At 10 years of age, she was diagnosed with severe HPS with right-to-left shunting, and preparations for liver transplantation proceeded. Three months after the diagnosis, she had a right parietal brain abscess. Given that the brain abscess enlarged in size, surgical drainage of the brain abscess was performed. The postoperative course was uneventful, but a slight left hemiplegia remained at discharge. The presumed mechanism of abscess formation in HPS may be right-to-left bacterial transit through intrapulmonary vascular dilatations and/or arteriovenous fistulae. PMID:26711920

  8. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2013-07-01

    Full Text Available Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  9. Assessing brain structural associations with working memory related brain patterns in schizophrenia and healthy controls using linked independent component analysis

    Directory of Open Access Journals (Sweden)

    Christine Lycke Brandt

    2015-01-01

    Full Text Available Schizophrenia (SZ is a psychotic disorder with significant cognitive dysfunction. Abnormal brain activation during cognitive processing has been reported, both in task-positive and task-negative networks. Further, structural cortical and subcortical brain abnormalities have been documented, but little is known about how task-related brain activation is associated with brain anatomy in SZ compared to healthy controls (HC. Utilizing linked independent component analysis (LICA, a data-driven multimodal analysis approach, we investigated structure–function associations in a large sample of SZ (n = 96 and HC (n = 142. We tested for associations between task-positive (fronto-parietal and task-negative (default-mode brain networks derived from fMRI activation during an n-back working memory task, and brain structural measures of surface area, cortical thickness, and gray matter volume, and to what extent these associations differed in SZ compared to HC. A significant association (p < .05, corrected for multiple comparisons was found between a component reflecting the task-positive fronto-parietal network and another component reflecting cortical thickness in fronto-temporal brain regions in SZ, indicating increased activation with increased thickness. Other structure–function associations across, between and within groups were generally moderate and significant at a nominal p-level only, with more numerous and stronger associations in SZ compared to HC. These results indicate a complex pattern of moderate associations between brain activation during cognitive processing and brain morphometry, and extend previous findings of fronto-temporal brain abnormalities in SZ by suggesting a coupling between cortical thickness of these brain regions and working memory-related brain activation.

  10. Dexamethasone alleviates tumor-associated brain damage and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Zheng Fan

    Full Text Available Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA, a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc-; SLC7a11 and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage.

  11. Methods and Management of the Healthy Brain Study: A Large Multisite Qualitative Research Project

    Science.gov (United States)

    Laditka, Sarah B.; Corwin, Sara J.; Laditka, James N.; Liu, Rui; Friedman, Daniela B.; Mathews, Anna E.; Wilcox, Sara

    2009-01-01

    Purpose of the study: To describe processes used in the Healthy Brain project to manage data collection, coding, and data distribution in a large qualitative project, conducted by researchers at 9 universities in 9 states. Design and Methods: Project management protocols included: (a) managing audiotapes and surveys to ensure data confidentiality,…

  12. Differential Conditioning of Associative Synaptic Enhancement in Hippocampal Brain Slices

    Science.gov (United States)

    Kelso, Stephen R.; Brown, Thomas H.

    1986-04-01

    An electrophysiological stimulation paradigm similar to one that produces Pavlovian conditioning was applied to synaptic inputs to pyramidal neurons of hippocampal brain slices. Persistent synaptic enhancement was induced in one of two weak synaptic inputs by pairing high-frequency electrical stimulation of the weak input with stimulation of a third, stronger input to the same region. Forward (temporally overlapping) but not backward (temporally separate) pairings caused this enhancement. Thus hippocampal synapses in vitro can undergo the conditional and selective type of associative modification that could provide the substrate for some of the mnemonic functions in which the hippocampus is thought to participate.

  13. Abstract representations of associated emotions in the human brain.

    Science.gov (United States)

    Kim, Junsuk; Schultz, Johannes; Rohe, Tim; Wallraven, Christian; Lee, Seong-Whan; Bülthoff, Heinrich H

    2015-04-01

    Emotions can be aroused by various kinds of stimulus modalities. Recent neuroimaging studies indicate that several brain regions represent emotions at an abstract level, i.e., independently from the sensory cues from which they are perceived (e.g., face, body, or voice stimuli). If emotions are indeed represented at such an abstract level, then these abstract representations should also be activated by the memory of an emotional event. We tested this hypothesis by asking human participants to learn associations between emotional stimuli (videos of faces or bodies) and non-emotional stimuli (fractals). After successful learning, fMRI signals were recorded during the presentations of emotional stimuli and emotion-associated fractals. We tested whether emotions could be decoded from fMRI signals evoked by the fractal stimuli using a classifier trained on the responses to the emotional stimuli (and vice versa). This was implemented as a whole-brain searchlight, multivoxel activation pattern analysis, which revealed successful emotion decoding in four brain regions: posterior cingulate cortex (PCC), precuneus, MPFC, and angular gyrus. The same analysis run only on responses to emotional stimuli revealed clusters in PCC, precuneus, and MPFC. Multidimensional scaling analysis of the activation patterns revealed clear clustering of responses by emotion across stimulus types. Our results suggest that PCC, precuneus, and MPFC contain representations of emotions that can be evoked by stimuli that carry emotional information themselves or by stimuli that evoke memories of emotional stimuli, while angular gyrus is more likely to take part in emotional memory retrieval. PMID:25855179

  14. Brain expression genome-wide association study (eGWAS identifies human disease-associated variants.

    Directory of Open Access Journals (Sweden)

    Fanggeng Zou

    Full Text Available Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n=197, temporal cortex n=202 and with other brain pathologies (non-AD, cerebellar n=177, temporal cortex n=197. We conducted an expression genome-wide association study (eGWAS using 213,528 cisSNPs within ± 100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596 unique cisSNPs significant in both ADs and non-ADs (q<0.05, p=7.70 × 10(-5-1.67 × 10(-82. Of these, 2,089 were also significant in the temporal cortex (p=1.85 × 10(-5-1.70 × 10(-141. The top cerebellar cisSNPs had 2.4-fold enrichment for human disease-associated variants (p<10(-6. We identified novel cisSNP/transcript associations for human disease-associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson's disease (PD MMRN1/rs6532197, Paget's disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there was 2.9-3.3 fold enrichment (p<10(-6 of significant cisSNPs with suggestive AD-risk association (p<10(-3 in the Alzheimer's Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant enrichment of brain cisSNPs among disease-associated variants advocates gene expression changes as a mechanism for many central nervous system (CNS and non-CNS diseases. Combined assessment of expression and disease GWAS may provide complementary information in discovery of human disease variants with functional implications. Our findings

  15. Brain Activity Associated with Emoticons: An fMRI Study

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  16. Endocarditis-associated Brain Lesions in Slaughter Pigs

    DEFF Research Database (Denmark)

    Karstrup, C.C.; Jensen, H.E.; Aalbæk, B.;

    2011-01-01

    and Streptococcus dysgalactiae subsp. equisimilis in the atrioventricular valve lesions. Renal infarcts were present in eight cases. Focal encephalitis was found in 12 cases, with the number of lesions ranging from one to 11. Most pigs had less than four microscopical lesions. Acute lesions were characterized......Left-sided valvular endocarditis (LSVE) is a common finding in slaughter pigs. The lesion is often associated with renal thromboembolism, but information on embolization to other organs is sparse. This study focuses on the presence and type of endocarditis-associated brain lesions (EABLs...... by focal microabscesses without observable bacteria. Chronic lesions were characterized by astrocytosis and focal accumulation of mononuclear leucocytes. An infarct was observed in one animal. Perivascular inflammation was seen in 14 cases, mostly as two or three lesions, while focal leptomeningitis...

  17. Using network science to evaluate exercise-associated brain changes in older adults

    Directory of Open Access Journals (Sweden)

    Jonathan H Burdette

    2010-06-01

    Full Text Available Literature has shown that exercise is beneficial for cognitive function in older adults and that aerobic fitness is associated with increased hippocampal tissue and blood volumes. The current study used novel network science methods to shed light on the neurophysiological implications of exercise-induced changes in the hippocampus of older adults. Participants represented a volunteer subgroup of older adults that were part of either the exercise training (ET or healthy aging educational control (HAC treatment arms from the Seniors Health and Activity Research Program Pilot (SHARP-P trial. Following the four-month interventions, MRI measures of resting brain blood flow and connectivity were performed. The ET group’s hippocampal CBF exhibited statistically significant increases compared to the HAC group. Novel whole-brain network connectivity analyses showed greater connectivity in the hippocampi of the ET participants compared to HAC. Furthermore, the hippocampus was consistently shown to be within the same network neighborhood (module as the anterior cingulate cortex only within the ET group. Thus, within the ET group, the hippocampus and anterior cingulate were highly interconnected and localized to the same network neighborhood. This project shows the power of network science to investigate potential mechanisms for exercise-induced benefits to the brain in older adults. We show a link between neurological network features and cerebral blood flow, and it is possible that this alteration of functional brain networks may lead to the known improvement in cognitive function among older adults following exercise.

  18. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    Science.gov (United States)

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  19. Brain Machine Interfaces for Robotic Control in Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will study the application of a brain machine interface (BMI) to enable crew to remotely operate and monitor robots from inside a flight vehicle, habitat...

  20. Paradoxical effects of brain death and associated trauma on rat mesenteric microcirculation: an intravital microscopic study

    OpenAIRE

    Rafael Simas; Paulina Sannomiya; José Walber M. C Cruz; Cristiano de Jesus Correia; Fernando Luiz Zanoni; Maurício Kase; Laura Menegat; Isaac Azevedo Silva; Moreira, Luiz Felipe P.

    2012-01-01

    OBJECTIVE: Experimental findings support clinical evidence that brain death impairs the viability of organs for transplantation, triggering hemodynamic, hormonal, and inflammatory responses. However, several of these events could be consequences of brain death–associated trauma. This study investigated microcirculatory alterations and systemic inflammatory markers in brain-dead rats and the influence of the associated trauma. METHOD: Brain death was induced using intracranial balloon inflatio...

  1. Structural brain correlates associated with professional handball playing.

    Directory of Open Access Journals (Sweden)

    Jürgen Hänggi

    Full Text Available There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands.We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM of the primary/secondary motor (MI/supplementary motor area, SMA and somatosensory cortex (SI/SII, basal ganglia, thalamus, and cerebellum and in the white matter (WM of the corticospinal tract (CST and corpus callosum, stronger in brain regions controlling the non-dominant left hand.Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women.Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a

  2. Association between brain structure and phenotypic characteristics in pedophilia.

    Science.gov (United States)

    Poeppl, Timm B; Nitschke, Joachim; Santtila, Pekka; Schecklmann, Martin; Langguth, Berthold; Greenlee, Mark W; Osterheider, Michael; Mokros, Andreas

    2013-05-01

    Studies applying structural neuroimaging to pedophiles are scarce and have shown conflicting results. Although first findings suggested reduced volume of the amygdala, pronounced gray matter decreases in frontal regions were observed in another group of pedophilic offenders. When compared to non-sexual offenders instead of community controls, pedophiles revealed deficiencies in white matter only. The present study sought to test the hypotheses of structurally compromised prefrontal and limbic networks and whether structural brain abnormalities are related to phenotypic characteristics in pedophiles. We compared gray matter volume of male pedophilic offenders and non-sexual offenders from high-security forensic hospitals using voxel-based morphometry in cross-sectional and correlational whole-brain analyses. The significance threshold was set to p pedophiles exhibited a volume reduction of the right amygdala (small volume corrected). Within the pedophilic group, pedosexual interest and sexual recidivism were correlated with gray matter decrease in the left dorsolateral prefrontal cortex (r = -.64) and insular cortex (r = -.45). Lower age of victims was strongly associated with gray matter reductions in the orbitofrontal cortex (r = .98) and angular gyri bilaterally (r = .70 and r = .93). Our findings of specifically impaired neural networks being related to certain phenotypic characteristics might account for the heterogeneous results in previous neuroimaging studies of pedophilia. The neuroanatomical abnormalities in pedophilia seem to be of a dimensional rather than a categorical nature, supporting the notion of a multifaceted disorder. PMID:23399486

  3. Social Determinants, Race, and Brain Health Outcomes: Findings from the Chicago Health and Aging Project.

    Science.gov (United States)

    Aggarwal, Neelum T; Everson-Rose, Susan A; Evans, Denis A

    2015-01-01

    The broad spectrum of economic and cultural diversity in the U.S. population correlates with and affects the study of behavioral aspects of health. The purpose of this article is to provide a selective overview of research findings from the Chicago Health and Aging Project (CHAP), which covers a socio-demographically diverse population in Chicago, with a focus on role-related psychosocial factors and observed racial/ethnic differences in aging outcomes. CHAP is a longitudinal, epidemiological study of common chronic conditions of aging with an emphasis on medical, psychosocial, and environmental risk factors for the decline in cognitive function across the older adult lifespan. We briefly summarize the study design and methods used in the CHAP study and characterize the study population and describe the psychosocial data, noting black-white associations as they relate to three common brain health outcomes: cognitive function and Alzheimer's Disease, stroke, and subclinical vascular disease as noted on neuroimaging. PMID:26239039

  4. 77 FR 73366 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Science.gov (United States)

    2012-12-10

    ... Traumatic Brain Injury AGENCY: Department of Veterans Affairs. ACTION: Proposed rule. SUMMARY: The... Medicine (IOM), Gulf War and Health, Volume 7: Long-Term Consequences of Traumatic Brain Injury, regarding the association between traumatic brain injury (TBI) and five diagnosable illnesses. The...

  5. Differential Cellular Tropism of Lentivirus and Adeno-Associated Virus in the Brain of Cynomolgus Monkey

    OpenAIRE

    An, Heeyoung; Cho, Doo-Wan; Lee, Seung Eun; Yang, Young-Su; Han, Su-Cheol; Lee, C. Justin

    2016-01-01

    Many researchers are using viruses to deliver genes of interest into the brains of laboratory animals. However, certain target brain cells are not easily infected by viruses. Moreover, the differential tropism of different viruses in monkey brain is not well established. We investigated the cellular tropism of lentivirus and adeno-associated virus (AAV) toward neuron and glia in the brain of cynomolgus monkeys (Macaca fascularis). Lentivirus and AAV were injected into putamen of the monkey br...

  6. Brain activity associated with illusory correlations in animal phobia.

    Science.gov (United States)

    Wiemer, Julian; Schulz, Stefan M; Reicherts, Philipp; Glotzbach-Schoon, Evelyn; Andreatta, Marta; Pauli, Paul

    2015-07-01

    Anxiety disorder patients were repeatedly found to overestimate the association between disorder-relevant stimuli and aversive outcomes despite random contingencies. Such an illusory correlation (IC) might play an important role in the return of fear after extinction learning; yet, little is known about how this cognitive bias emerges in the brain. In a functional magnetic resonance imaging study, 18 female patients with spider phobia and 18 healthy controls were exposed to pictures of spiders, mushrooms and puppies followed randomly by either a painful electrical shock or nothing. In advance, both patients and healthy controls expected more shocks after spider pictures. Importantly, only patients with spider phobia continued to overestimate this association after the experiment. The strength of this IC was predicted by increased outcome aversiveness ratings and primary sensory motor cortex activity in response to the shock after spider pictures. Moreover, increased activation of the left dorsolateral prefrontal cortex (dlPFC) to spider pictures predicted the IC. These results support the theory that phobia-relevant stimuli amplify unpleasantness and sensory motor representations of aversive stimuli, which in turn may promote their overestimation. Hyper-activity in dlPFC possibly reflects a pre-occupation of executive resources with phobia-relevant stimuli, thus complicating the accurate monitoring of objective contingencies and the unlearning of fear. PMID:25411452

  7. Dynamic brain architectures in local brain activity and functional network efficiency associate with efficient reading in bilinguals.

    Science.gov (United States)

    Feng, Gangyi; Chen, Hsuan-Chih; Zhu, Zude; He, Yong; Wang, Suiping

    2015-10-01

    The human brain is organized as a dynamic network, in which both regional brain activity and inter-regional connectivity support high-level cognitive processes, such as reading. However, it is still largely unknown how the functional brain network organizes to enable fast and effortless reading processing in the native language (L1) but not in a non-proficient second language (L2), and whether the mechanisms underlying local activity are associated with connectivity dynamics in large-scale brain networks. In the present study, we combined activation-based and multivariate graph-theory analysis with functional magnetic resonance imaging data to address these questions. Chinese-English unbalanced bilinguals read narratives for comprehension in Chinese (L1) and in English (L2). Compared with L2, reading in L1 evoked greater brain activation and recruited a more globally efficient but less clustered network organization. Regions with both increased network efficiency and enhanced brain activation in L1 reading were mostly located in the fronto-temporal reading-related network (RN), whereas regions with decreased global network efficiency, increased clustering, and more deactivation in L2 reading were identified in the default mode network (DMN). Moreover, functional network efficiency was closely associated with local brain activation, and such associations were also modulated by reading efficiency in the two languages. Our results demonstrate that an economical and integrative brain network topology is associated with efficient reading, and further reveal a dynamic association between network efficiency and local activation for both RN and DMN. These findings underscore the importance of considering interregional connectivity when interpreting local BOLD signal changes in bilingual reading. PMID:26095088

  8. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  9. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    Science.gov (United States)

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population. PMID:26184082

  10. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    Science.gov (United States)

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population.

  11. Objectively Measured Physical Activity Is Associated with Brain Volumetric Measurements in Multiple Sclerosis

    OpenAIRE

    Klaren, Rachel E; Hubbard, Elizabeth A.; Motl, Robert W.; Pilutti, Lara A.; Wetter, Nathan C.; Sutton, Bradley P.

    2015-01-01

    Background. Little is known about physical activity and its association with volumes of whole brain gray matter and white matter and deep gray matter structures in persons with multiple sclerosis (MS). Purpose. This study examined the association between levels of physical activity and brain volumetric measures from magnetic resonance imaging (MRI) in MS. Method. 39 persons with MS wore an accelerometer for a 7-day period and underwent a brain MRI. Normalized GM volume (NGMV), normalized WM v...

  12. Two cases of liver alveolar echinococcosis associated with simultaneous lung and brain metastases

    Institute of Scientific and Technical Information of China (English)

    蒋次鹏

    2002-01-01

    @@ Alveolar echinococcosis (AE) of liver associated with simultaneous lung and brain metastases is rare clinically. During a period of 15 years (1985-2000), 2 (1.9%) of 103 cases with liver AE diagnosed at our laboratory were associated with simultaneous lung or brain metastases.1 They were confirmed pathologically through surgical biopsy or autopsy respectively, and reported as follows.

  13. Associations between Family Adversity and Brain Volume in Adolescence: Manual vs. Automated Brain Segmentation Yields Different Results

    Science.gov (United States)

    Lyden, Hannah; Gimbel, Sarah I.; Del Piero, Larissa; Tsai, A. Bryna; Sachs, Matthew E.; Kaplan, Jonas T.; Margolin, Gayla; Saxbe, Darby

    2016-01-01

    Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation approaches. In the current study, 23 adolescents participated in two waves of a longitudinal study. Family aggression was measured when the youths were 12 years old, and structural scans were acquired an average of 4 years later. Bilateral amygdalae and hippocampi were segmented using three different methods (manual tracing, FSL, and NeuroQuant). The segmentation estimates were compared, and linear regressions were run to assess the relationship between early family aggression exposure and all three volume segmentation estimates. Manual tracing results showed a positive relationship between family aggression and right amygdala volume, whereas FSL segmentation showed negative relationships between family aggression and both the left and right hippocampi. However, results indicate poor overlap between methods, and different associations were found between early family aggression exposure and brain volume depending on the segmentation method used. PMID:27656121

  14. Sleep is associated with task-negative brain activity in fibromyalgia participants with comorbid chronic insomnia

    Directory of Open Access Journals (Sweden)

    Vatthauer KE

    2015-11-01

    Full Text Available Karlyn E Vatthauer,1 Jason G Craggs,1 Michael E Robinson,1 Roland Staud,2 Richard B Berry,2 William M Perlstein,1 Christina S McCrae11Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA; 2Department of Medicine, University of Florida, Gainesville, FL, USAAbstract: Patients with chronic pain exhibit altered default mode network (DMN activity. This preliminary project questioned whether comorbid disease states are associated with further brain alterations. Thirteen women with fibromyalgia (FM only and 26 women with fibromyalgia with comorbid chronic insomnia (FMI underwent a single night of ambulatory polysomnography and completed a sleep diary each morning for 14 days prior to performing a neuroimaging protocol. Novel imaging analyses were utilized to identify regions associated with significantly disordered sleep that were more active in task-negative periods than task-oriented periods in participants with FMI, when compared to participants with FM. It was hypothesized that core DMN areas (ie, cingulate cortex, inferior parietal lobule, medial prefrontal cortex, medial temporal cortex, precuneus would exhibit increased activity during task-negative periods. Analyses revealed that significantly disordered sleep significantly contributed to group differences in the right cingulate gyrus, left lentiform nucleus, left anterior cingulate, left superior gyrus, medial frontal gyrus, right caudate, and the left inferior parietal lobules. Results suggest that FMI may alter some brain areas of the DMN, above and beyond FM. However, future work will need to investigate these results further by controlling for chronic insomnia only before conclusions can be made regarding the effect of FMI comorbidity on the DMN.Keywords: insomnia, fibromyalgia, neuroimaging, task-negative, brain activity, comorbidity

  15. Phospholipase C associated with particulate fractions of bovine brain.

    OpenAIRE

    Lee, K Y; Ryu, S H; Suh, P G; Choi, W C; Rhee, S G

    1987-01-01

    We previously reported that cytosolic fractions of bovine brain contain two immunologically distinct phosphoinositide-specific phospholipases C (PLCs), PLC-I and PLC-II. In this report the subcellular distribution of PLC-I and PLC-II in brain homogenates was measured using RIA. Significant differences were found in the distribution of the two forms of PLC in 100,000 X g supernatants (cytosolic fraction) of brain homogenized in hypotonic buffer and 2 M KCl extracts of washed pellets (particula...

  16. Building World-Class Research University: The Brain Korea 21 Project

    Science.gov (United States)

    Shin, Jung Cheol

    2009-01-01

    This study evaluated the effects of South Korea's Brain Korea 21 (BK 21) project, a special research funding program designed to build world-class research university. The effects were measured by examining the frequency of article publications in SCI journals during the 1995-2005 period. The results of the analysis indicated that the growth of…

  17. Head First PMP A Brain-Friendly Guide to Passing the Project Management Professional Exam

    CERN Document Server

    Greene, Jennifer

    2009-01-01

    Learn the latest principles and certification objectives in The PMBOK Guide, Fourth Edition, in a unique and inspiring way with Head First PMP . The second edition of this book helps you prepare for the PMP certification exam using a visually rich format designed for the way your brain works. You'll find a full-length sample exam included inside the book. More than just proof of passing a test, a PMP certification means that you have the knowledge to solve most common project problems. But studying for a difficult four-hour exam on project management isn't easy, even for experienced project

  18. An Association Perspective: Responding to the American Dental Association's Future of Dentistry Project.

    Science.gov (United States)

    Hutchinson, Rowland A.; Haden, N. Karl; Valachovic, Richard W.

    2000-01-01

    In response to the American Dental Association's (ADA) Future of Dentistry Project, the American Dental Education Association (ADEA) provided perspective on the most critical issues facing the dental profession. ADEA responded in six areas, each corresponding to areas of focus in the ADA project. This report reflects comments provided to the ADEA…

  19. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    Science.gov (United States)

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.

  20. Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain.

    Science.gov (United States)

    Hartenstein, Volker; Younossi-Hartenstein, Amelia; Lovick, Jennifer K; Kong, Angel; Omoto, Jaison J; Ngo, Kathy T; Viktorin, Gudrun

    2015-10-01

    Fixed lineages derived from unique, genetically specified neuroblasts form the anatomical building blocks of the Drosophila brain. Neurons belonging to the same lineage project their axons in a common tract, which is labeled by neuronal markers. In this paper, we present a detailed atlas of the lineage-associated tracts forming the brain of the early Drosophila larva, based on the use of global markers (anti-Neuroglian, anti-Neurotactin, inscuteable-Gal4>UAS-chRFP-Tub) and lineage-specific reporters. We describe 68 discrete fiber bundles that contain axons of one lineage or pairs/small sets of adjacent lineages. Bundles enter the neuropil at invariant locations, the lineage tract entry portals. Within the neuropil, these fiber bundles form larger fascicles that can be classified, by their main orientation, into longitudinal, transverse, and vertical (ascending/descending) fascicles. We present 3D digital models of lineage tract entry portals and neuropil fascicles, set into relationship to commonly used, easily recognizable reference structures such as the mushroom body, the antennal lobe, the optic lobe, and the Fasciclin II-positive fiber bundles that connect the brain and ventral nerve cord. Correspondences and differences between early larval tract anatomy and the previously described late larval and adult lineage patterns are highlighted. Our L1 neuro-anatomical atlas of lineages constitutes an essential step towards following morphologically defined lineages to the neuroblasts of the early embryo, which will ultimately make it possible to link the structure and connectivity of a lineage to the expression of genes in the particular neuroblast that gives rise to that lineage. Furthermore, the L1 atlas will be important for a host of ongoing work that attempts to reconstruct neuronal connectivity at the level of resolution of single neurons and their synapses. PMID:26141956

  1. Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial

    Directory of Open Access Journals (Sweden)

    Dan M

    2012-07-01

    Full Text Available Mo Dan,1,2 Michael T Tseng,3 Peng Wu,4 Jason M Unrine,5 Eric A Grulke,4 Robert A Yokel1,21Department of Pharmaceutical Sciences, College of Pharmacy, 2Graduate Center for Toxicology, University of Kentucky, Lexington, KY, USA; 3Departments of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA; 4Chemical and Materials Engineering Department, 5Department of Plant and Soil Science, University of Kentucky, Lexington, KY, USAPurpose: Ceria engineered nanomaterials (ENMs have current commercial applications and both neuroprotective and toxic effects. Our hypothesis is that ceria ENMs can associate with brain capillary cells and/or cross the blood–brain barrier.Methods: An aqueous dispersion of ~5 nm ceria ENM was synthesized and characterized in house. Its uptake space in the Sprague Dawley rat brain was determined using the in situ brain perfusion technique at 15 and 20 mL/minute flow rates; 30, 100, and 500 µg/mL ceria perfused for 120 seconds at 20 mL/minute; and 30 µg/mL perfused for 20, 60, and 120 seconds at 20 mL/minute. The capillary depletion method and light and electron microscopy were used to determine its capillary cell and brain parenchymal association and localization.Results: The vascular space was not significantly affected by brain perfusion flow rate or ENM, demonstrating that this ceria ENM did not influence blood–brain barrier integrity. Cerium concentrations, determined by inductively coupled plasma mass spectrometry, were significantly higher in the choroid plexus than in eight brain regions in the 100 and 500 µg/mL ceria perfusion groups. Ceria uptake into the eight brain regions was similar after 120-second perfusion of 30, 100, and 500 µg ceria/mL. Ceria uptake space significantly increased in the eight brain regions and choroid plexus after 60 versus 20 seconds, and it was similar after 60 and 120 seconds. The capillary depletion method showed 99.4% ± 1.1% of the ceria ENM associated

  2. Traffic pollution exposure is associated with altered brain connectivity in school children.

    Science.gov (United States)

    Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi

    2016-04-01

    Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain.

  3. Association between flashbacks and structural brain abnormalities in posttraumatic stress disorder

    NARCIS (Netherlands)

    Kroes, M.C.W.; Whalley, M.G.; Rugg, M.D.; Brewin, C.R.

    2011-01-01

    OBJECTIVE: Posttraumatic stress disorder (PTSD) is reliably associated with reduced brain volume relative to healthy controls, in areas similar to those found in depression. We investigated whether in a PTSD sample brain volumes in these areas were related to reporting specific symptoms of PTSD or t

  4. Neuroscience Club in SKKK3 and SMSTMFP: The Brain Apprentice Project.

    Science.gov (United States)

    Mohd Ibrahim, Seri Dewi; Muda, Mazinah

    2015-01-01

    Sekolah Menengah Sains Tengku Muhammad Faris Petra (SMSTMFP) and Sekolah Kebangsaan Kubang Kerian (3) (SKKK3) were selected by the Department of Neurosciences, Universiti Sains Malaysia (USM), in 2011 to be a 'school-based Neuroscience Club' via the 'Knowledge Transfer Programme (KTP) - Community' project. This community project was known as "The Brain Apprentice Project". The objectives of this project were to promote science and the neurosciences beyond conventional classroom teachings whilst guiding creativity and innovation as well as to assist in the delivery of neuroscience knowledge through graduate interns as part of the cultivation of neuroscience as a fruitful future career option. All of the planned club activities moulded the students to be knowledgeable individuals with admirable leadership skills, which will help the schools produce more scientists, technocrats and professionals who can fulfil the requirements of our religion, race and nation in the future. Some of the activities carried out over the years include the "My Brain Invention Competition", "Mini Brain Bee Contest", "Recycled Melody" and "Brain Dissection". These activities educated the students well and improved their confidence levels in their communication and soft skills. The participation of the students in international-level competition, such as the "International Brain Bee", was one of the ways future professionals were created for the nation. The implementation of Neuroscience Club as one of the organisations in the school's cocurriculum was an appropriate step in transferring science and neuroscience knowledge and skills from a higher education institution, namely USM, to both of the schools, SMSTMFP and SKKK3. The club members showed great interest in all of the club's activities and their performance on the Ujian Pencapaian Sekolah Rendah (UPSR) or Primary School Achievement Test and Sijil Pelajaran Malaysia (SPM) or Malaysian Certificate of Education examinations improved

  5. An associative Brain-Computer-Interface for acute stroke patients

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Stevenson, Andrew James Thomas; Aliakbaryhosseinabadi, Susan;

    2017-01-01

    An efficient innovative Brain-Computer-Interface system that empowers chronic stroke patients to control an artificial activation of their lower limb muscle through task specific motor intent has been tested in the past. In the current study it was applied to acute stroke patients. The system...

  6. Brain Activation Associated with Practiced Left Hand Mirror Writing

    Science.gov (United States)

    Kushnir, T.; Arzouan, Y.; Karni, A.; Manor, D.

    2013-01-01

    Mirror writing occurs in healthy children, in various pathologies and occasionally in healthy adults. There are only scant experimental data on the underlying brain processes. Eight, right-handed, healthy young adults were scanned (BOLD-fMRI) before and after practicing left-hand mirror-writing (lh-MW) over seven sessions. They wrote dictated…

  7. Adult brain abscess associated with patent foramen ovale: a case report

    Directory of Open Access Journals (Sweden)

    Stathopoulos Georgios T

    2007-08-01

    Full Text Available Abstract Brain abscess results from local or metastatic septic spread to the brain. The primary infectious site is often undetected, more commonly so when it is distant. Unlike pediatric congenital heart disease, minor intracardiac right-to-left shunting due to patent foramen ovale has not been appreciated as a cause of brain abscess in adults. Here we present a case of brain abscess associated with a patent foramen ovale in a 53-year old man with dental-gingival sepsis treated in the intensive care unit. Based on this case and the relevant literature we suggest a link between a silent patent foramen ovale, paradoxic pathogen dissemination to the brain, and development of brain abscess.

  8. EGFR mutations in patients with brain metastases from lung cancer: Association with the efficacy of gefitinib

    OpenAIRE

    Shimato, Shinji; Mitsudomi, Tetsuya; Kosaka, Takayuki; Yatabe, Yasushi; Wakabayashi, Toshihiko; Mizuno, Masaaki; NAKAHARA, NORIMOTO; Hatano, Hisashi; Natsume, Atsushi; Ishii, Dai; YOSHIDA, Jun

    2006-01-01

    Gefitinib—a specific inhibitor of epidermal growth factor receptor (EGFR)-associated tyrosine kinase—has demonstrated efficacy in a subgroup of patients with non-small-cell lung carcinoma (NSCLC) who fail conventional chemotherapy. It is also reported to have an antitumor effect in brain metastases from NSCLC. Additionally, EGFR mutations have shown a strong association with gefitinib sensitivity for NSCLC. Here, we assessed the efficacy of gefitinib in brain metastases from NSCLC and evaluat...

  9. Mesh Association by Projection along Smoothed-Normal-Vector Fields: Association of Closed Manifolds

    OpenAIRE

    van Brummelen, E.H.

    2006-01-01

    The necessity to associate two geometrically distinct meshes arises in many engineering applications. Current mesh-association algorithms are generally unsuitable for the high-order geometry representations associated with high-order finite-element discretizations. In the present work we therefore propose a mesh-association method for high-order geometry representations. The associative map defines the image of a point on a mesh as its projection along a so-called smoothed normal-vector field...

  10. Role of histaminergic system in blood-brain barrier dysfunction associated with neurological disorders.

    Science.gov (United States)

    Bañuelos-Cabrera, Ivette; Valle-Dorado, María Guadalupe; Aldana, Blanca Irene; Orozco-Suárez, Sandra Adela; Rocha, Luisa

    2014-11-01

    Blood-brain barrier (BBB) disruption has been associated with several acute and chronic brain disorders such as Alzheimer's disease, Parkinson's disease and epilepsy. This represents a critical situation because damaged integrity of the BBB is related to the influx of immune mediators, plasma proteins and other outside elements from blood to the central nervous system (CNS) that may trigger a cascade of events that leads to neuroinflammation. In this review, evidence that mast cells and the release of factors such as histamine play an important role in the neuroinflammatory process associated with brain disorders such as Alzheimer's disease, Parkinson's disease and epilepsy is presented.

  11. Human functional neuroimaging of brain changes associated with practice

    OpenAIRE

    GARAVAN, HUGH PATRICK

    2005-01-01

    PUBLISHED The discovery that experience-driven changes in the human brain can occur from a neural to a cortical level throughout the lifespan has stimulated a proliferation of research into how neural function changes in response to experience, enabled by neuroimaging methods such as positron emission tomography and functional magnetic resonance imaging. Studies attempt to characterize these changes by examining how practice on a task affects the functional anatomy underlying performance. ...

  12. Paradoxical effects of brain death and associated trauma on rat mesenteric microcirculation: an intravital microscopic study

    Directory of Open Access Journals (Sweden)

    Rafael Simas

    2012-01-01

    Full Text Available OBJECTIVE: Experimental findings support clinical evidence that brain death impairs the viability of organs for transplantation, triggering hemodynamic, hormonal, and inflammatory responses. However, several of these events could be consequences of brain death-associated trauma. This study investigated microcirculatory alterations and systemic inflammatory markers in brain-dead rats and the influence of the associated trauma. METHOD: Brain death was induced using intracranial balloon inflation; sham-operated rats were trepanned only. After 30 or 180 min, the mesenteric microcirculation was observed using intravital microscopy. The expression of Pselectin and ICAM-1 on the endothelium was evaluated using immunohistochemistry. The serum cytokine, chemokine, and corticosterone levels were quantified using enzyme-linked immunosorbent assays. White blood cell counts were also determined. RESULTS: Brain death resulted in a decrease in the mesenteric perfusion to 30%, a 2.6-fold increase in the expression of ICAM-1 and leukocyte migration at the mesentery, a 70% reduction in the serum corticosterone level and pronounced leukopenia. Similar increases in the cytokine and chemokine levels were seen in the both the experimental and control animals. CONCLUSION: The data presented in this study suggest that brain death itself induces hypoperfusion in the mesenteric microcirculation that is associated with a pronounced reduction in the endogenous corticosterone level, thereby leading to increased local inflammation and organ dysfunction. These events are paradoxically associated with induced leukopenia after brain damage

  13. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones.

    Science.gov (United States)

    Wong, Darren C; Lovick, Jennifer K; Ngo, Kathy T; Borisuthirattana, Wichanee; Omoto, Jaison J; Hartenstein, Volker

    2013-12-15

    The Drosophila central brain is largely composed of lineages, units of sibling neurons derived from a single progenitor cell or neuroblast. During the early embryonic period, neuroblasts generate the primary neurons that constitute the larval brain. Neuroblasts reactivate in the larva, adding to their lineages a large number of secondary neurons which, according to previous studies in which selected lineages were labeled by stably expressed markers, differentiate during metamorphosis, sending terminal axonal and dendritic branches into defined volumes of the brain neuropil. We call the overall projection pattern of neurons forming a given lineage the "projection envelope" of that lineage. By inducing MARCM clones at the early larval stage, we labeled the secondary progeny of each neuroblast. For the supraesophageal ganglion excluding mushroom body (the part of the brain investigated in the present work) we obtained 81 different types of clones. Based on the trajectory of their secondary axon tracts (described in the accompanying paper, Lovick et al., 2013), we assigned these clones to specific lineages defined in the larva. Since a labeled clone reveals all aspects (cell bodies, axon tracts, terminal arborization) of a lineage, we were able to describe projection envelopes for all secondary lineages of the supraesophageal ganglion. This work provides a framework by which the secondary neurons (forming the vast majority of adult brain neurons) can be assigned to genetically and developmentally defined groups. It also represents a step towards the goal to establish, for each lineage, the link between its mature anatomical and functional phenotype, and the genetic make-up of the neuroblast it descends from. PMID:23872236

  14. Mining for associations between text and brain activation in a functional neuroimaging database

    DEFF Research Database (Denmark)

    Nielsen, Finn Arup; Hansen, Lars Kai; Balslev, Daniela

    2004-01-01

    We describe a method for mining a neuroimaging database for associations between text and brain locations. The objective is to discover association rules between words indicative of cognitive function as described in abstracts of neuroscience papers and sets of reported stereotactic Talairach...... that the statistically motivated associations are well aligned with general neuroscientific knowledge...

  15. Mining for associations between text and brain activation in a functional neuroimaging database

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai; Balslev, D.

    2004-01-01

    We describe a method for mining a neuroimaging database for associations between text and brain locations. The objective is to discover association rules between words indicative of cognitive function as described in abstracts of neuroscience papers and sets of reported stereotactic Talairach...... that the statistically motivated associations are well aligned with general neuroscientific knowledge....

  16. Association of structural global brain network properties with intelligence in normal aging.

    Directory of Open Access Journals (Sweden)

    Florian U Fischer

    Full Text Available Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.

  17. Elevated plasma homocysteine is associated with increased brain atrophy rates in older subjects with mild hypertension.

    Science.gov (United States)

    Narayan, Sunil K; Firbank, Michael J; Saxby, Brian K; Stansby, Gerard; Hansrani, Monica; O'Brien, John T; Ford, Gary A

    2011-01-01

    We determined using serial MR imaging whether raised plasma homocysteine levels are associated with increased brain atrophy, white matter lesion (WML) progression or incidence of silent brain infarcts (SBIs) in older hypertensive subjects. Brain atrophy rates (0.58 ± 0.48% per year, mean ± SD) were significantly correlated with homocysteine (β = 0.46, p = 0.001 homocysteine; β = 0.44, p = 0.007 homocysteine/folate/B12 models) but not with folate or B12 levels. Progression of WML (0.08 ± 0.16%) was not associated with homocysteine level (B = 0.01, p = 0.29). New SBIs were uncommon. In older hypertensive individuals, plasma homocysteine levels are associated with increased rates of whole-brain atrophy but not WML progression.

  18. The Circuitry of Olfactory Projection Neurons in the Brain of the Honeybee, Apis mellifera

    Science.gov (United States)

    Zwaka, Hanna; Münch, Daniel; Manz, Gisela; Menzel, Randolf; Rybak, Jürgen

    2016-01-01

    In the honeybee brain, two prominent tracts – the medial and the lateral antennal lobe tract – project from the primary olfactory center, the antennal lobes (ALs), to the central brain, the mushroom bodies (MBs), and the protocerebral lobe (PL). Intracellularly stained uniglomerular projection neurons were reconstructed, registered to the 3D honeybee standard brain atlas, and then used to derive the spatial properties and quantitative morphology of the neurons of both tracts. We evaluated putative synaptic contacts of projection neurons (PNs) using confocal microscopy. Analysis of the patterns of axon terminals revealed a domain-like innervation within the MB lip neuropil. PNs of the lateral tract arborized more sparsely within the lips and exhibited fewer synaptic boutons, while medial tract neurons occupied broader regions in the MB calyces and the PL. Our data show that uPNs from the medial and lateral tract innervate both the core and the cortex of the ipsilateral MB lip but differ in their innervation patterns in these regions. In the mushroombody neuropil collar we found evidence for ALT boutons suggesting the collar as a multi modal input site including olfactory input similar to lip and basal ring. In addition, our data support the conclusion drawn in previous studies that reciprocal synapses exist between PNs, octopaminergic-, and GABAergic cells in the MB calyces. For the first time, we found evidence for connections between both tracts within the AL. PMID:27746723

  19. Early initiation of prophylactic heparin in severe traumatic brain injury is associated with accelerated improvement on brain imaging

    Directory of Open Access Journals (Sweden)

    Luke Kim

    2014-01-01

    Full Text Available Background: Venous thromboembolic prophylaxis (VTEp is often delayed following traumatic brain injury (TBI, yet animal data suggest that it may reduce cerebral inflammation and improve cognitive recovery. We hypothesized that earlier VTEp initiation in severe TBI patients would result in more rapid neurologic recovery and reduced progression of brain injury on radiologic imaging. Study Design: Medical charts of severe TBI patients admitted to a level 1 trauma center in 2009-2010 were queried for admission Glasgow Coma Scale (GCS, head Abbreviated Injury Scale, Injury Severity Score (ISS, osmotherapy use, emergency neurosurgery, and delay to VTEp initiation. Progression (+1 = better, 0 = no change, −1 = worse of brain injury on head CTs and neurologic exam (by bedside MD, nurse was collected from patient charts. Head CT scan Marshall scores were calculated from the initial head CT results. Results: A total of 22, 34, and 19 patients received VTEp at early (5 days time intervals, respectively. Clinical and radiologic brain injury characteristics on admission were similar among the three groups (P > 0.05, but ISS was greatest in the early group (P < 0.05. Initial head CT Marshall scores were similar in early and late groups. The slowest progression of brain injury on repeated head CT scans was in the early VTEp group up to 10 days after admission. Conclusion: Early initiation of prophylactic heparin in severe TBI is not associated with deterioration neurologic exam and may result in less progression of injury on brain imaging. Possible neuroprotective effects of heparin in humans need further investigation.

  20. Normal brain activation in schizophrenia patients during associative emotional learning

    NARCIS (Netherlands)

    Swart, Marte; Liemburg, Edith Jantine; Kortekaas, Rudie; Wiersma, Durk; Bruggeman, Richard; Aleman, Andre

    2013-01-01

    Emotional deficits are among the core features of schizophrenia and both associative emotional learning and the related ability to verbalize emotions can be reduced. We investigated whether schizophrenia patients demonstrated impaired function of limbic and prefrontal areas during associative emotio

  1. Accelerated epigenetic aging in brain is associated with pre-mortem HIV-associated neurocognitive disorders.

    Science.gov (United States)

    Levine, Andrew J; Quach, Austin; Moore, David J; Achim, Cristian L; Soontornniyomkij, Virawudh; Masliah, Eliezer; Singer, Elyse J; Gelman, Benjamin; Nemanim, Natasha; Horvath, Steve

    2016-06-01

    HIV infection leads to age-related conditions in relatively young persons. HIV-associated neurocognitive disorders (HAND) are considered among the most prevalent of these conditions. To study the mechanisms underlying this disorder, researchers need an accurate method for measuring biological aging. Here, we apply a recently developed measure of biological aging, based on DNA methylation, to the study of biological aging in HIV+ brains. Retrospective analysis of tissue bank specimens and pre-mortem data was carried out. Fifty-eight HIV+ adults underwent a medical and neurocognitive evaluation within 1 year of death. DNA was obtained from occipital cortex and analyzed with the Illumina Infinium Human Methylation 450K platform. Biological age determined via the epigenetic clock was contrasted with chronological age to obtain a measure of age acceleration, which was then compared between those with HAND and neurocognitively normal individuals. The HAND and neurocognitively normal groups did not differ with regard to demographic, histologic, neuropathologic, or virologic variables. HAND was associated with accelerated aging relative to neurocognitively normal individuals, with average relative acceleration of 3.5 years. Age acceleration did not correlate with pre-mortem neurocognitive functioning or HAND severity. This is the first study to demonstrate that the epigenetic age of occipital cortex samples is associated with HAND status in HIV+ individuals pre-mortem. While these results suggest that the increased risk of a neurocognitive disorder due to HIV might be mediated by an epigenetic aging mechanism, future studies will be needed to validate the findings and dissect causal relationships and downstream effects. PMID:26689571

  2. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging.

    Science.gov (United States)

    Voss, Michelle W; Weng, Timothy B; Burzynska, Agnieszka Z; Wong, Chelsea N; Cooke, Gillian E; Clark, Rachel; Fanning, Jason; Awick, Elizabeth; Gothe, Neha P; Olson, Erin A; McAuley, Edward; Kramer, Arthur F

    2016-05-01

    Greater physical activity and cardiorespiratory fitness are associated with reduced age-related cognitive decline and lower risk for dementia. However, significant gaps remain in the understanding of how physical activity and fitness protect the brain from adverse effects of brain aging. The primary goal of the current study was to empirically evaluate the independent relationships between physical activity and fitness with functional brain health among healthy older adults, as measured by the functional connectivity of cognitively and clinically relevant resting state networks. To build context for fitness and physical activity associations in older adults, we first demonstrate that young adults have greater within-network functional connectivity across a broad range of cortical association networks. Based on these results and previous research, we predicted that individual differences in fitness and physical activity would be most strongly associated with functional integrity of the networks most sensitive to aging. Consistent with this prediction, and extending on previous research, we showed that cardiorespiratory fitness has a positive relationship with functional connectivity of several cortical networks associated with age-related decline, and effects were strongest in the default mode network (DMN). Furthermore, our results suggest that the positive association of fitness with brain function can occur independent of habitual physical activity. Overall, our findings provide further support that cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on cognitively and clinically relevant functional brain networks.

  3. Brain imaging changes associated with risk factors for cardiovascular and cerebrovascular disease in asymptomatic patients.

    Science.gov (United States)

    Friedman, Joseph I; Tang, Cheuk Y; de Haas, Hans J; Changchien, Lisa; Goliasch, Georg; Dabas, Puneet; Wang, Victoria; Fayad, Zahi A; Fuster, Valentin; Narula, Jagat

    2014-10-01

    Reviews of imaging studies assessing the brain effects of vascular risk factors typically include a substantial number of studies with subjects with a history of symptomatic cardiovascular or cerebrovascular disease and/or events, limiting our ability to disentangle the primary brain effects of vascular risk factors from those of resulting brain and cardiac damage. The objective of this study was to perform a systematic review of brain changes from imaging studies in patients with vascular risk factors but without clinically manifest cardiovascular or cerebrovascular disease or events. The 77 studies included in this review demonstrate that in persons without symptomatic cardiovascular, cerebrovascular, or peripheral vascular disease, the vascular risk factors of hypertension, diabetes mellitus, obesity, hyperlipidemia, and smoking are all independently associated with brain imaging changes before the clinical manifestation of cardiovascular or cerebrovascular disease. We conclude that the identification of brain changes associated with vascular risk factors, before the manifestation of clinically significant cerebrovascular damage, presents a window of opportunity wherein adequate treatment of these modifiable vascular risk factors may prevent the development of irreversible deleterious brain changes and potentially alter patients' clinical course.

  4. MR imaging of associated brain injuries in cases of acute extradural hematoma

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Yoji; Matsumura, Akira; Meguro, Kotoo; Shibata, Tomoyuki; Shibuya, Fumiho; Nakata, Yoshitaka (Tsukuba Medical Center Hospital, Ibaraki (Japan)); Nose, Tadao

    1993-09-01

    To assess the efficacy of magnetic resonance (MR) imaging for detection of associated brain injuries in cases of extradural hematoma (EDH), 32 patients with EDH were examined by MR. CT detected associated lesion in eleven patients (34%), while MR detected them in 24 patients (75%). MR is more sensitive than CT in detecting associated lesions, especially when T2-weighted imaging is used. Non-hemorrhagic contusions adjacent to EDH and near the cranial base were well shown by MR; however, they tended to be missed by CT. EEG findings were clearly related to abnormalities detected by MR. Coupling between functional change and organic change was confirmed. The improved detection and anatomic localization of associated brain injuries by MR should allow more accurate assessment of brain injuries, and sophisticated management of EDH patient. The authors also discuss the cardiorespiratory monitoring and support during MRI examination in critically ill patients. (author).

  5. Reorganization and plastic changes of the human brain associated with skill learning and expertise

    Directory of Open Access Journals (Sweden)

    Yongmin eChang

    2014-02-01

    Full Text Available Novel experience and learning new skills are known as modulators of brain function. Advances in non-invasive brain imaging have provided new insight into structural and functional reorganization associated with skill learning and expertise. Especially, significant imaging evidences come from the domains of sports and music. Data from in vivo imaging studies in sports and music have provided vital information on plausible neural substrates contributing to brain reorganization underlying skill acquisition in humans. This mini review will attempt to take a narrow snapshot of imaging findings demonstrating functional and structural plasticity that mediate skill learning and expertise while identifying converging areas of interest and possible avenues for future research.

  6. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases.

    Science.gov (United States)

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain tumors. PMID:27375363

  7. Objectively Measured Physical Activity Is Associated with Brain Volumetric Measurements in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Rachel E. Klaren

    2015-01-01

    Full Text Available Background. Little is known about physical activity and its association with volumes of whole brain gray matter and white matter and deep gray matter structures in persons with multiple sclerosis (MS. Purpose. This study examined the association between levels of physical activity and brain volumetric measures from magnetic resonance imaging (MRI in MS. Method. 39 persons with MS wore an accelerometer for a 7-day period and underwent a brain MRI. Normalized GM volume (NGMV, normalized WM volume (NWMV, and deep GM structures were calculated from 3D T1-weighted structural brain images. We conducted partial correlations (pr controlling for demographic and clinical variables. Results. Moderate-to-vigorous physical activity (MVPA was significantly associated with NGMV (pr=0.370, p<0.05, NWMV (pr=0.433, p<0.01, hippocampus (pr=0.499, p<0.01, thalamus (pr=0.380, p<0.05, caudate (pr=0.539, p<0.01, putamen (pr=0.369, p<0.05, and pallidum (pr=0.498, p<0.01 volumes, when controlling for sex, age, clinical course of MS, and Expanded Disability Status Scale score. There were no associations between sedentary and light physical activity with MRI outcomes. Conclusion. Our results provide the first evidence that MVPA is associated with volumes of whole brain GM and WM and deep GM structures that are involved in motor and cognitive functions in MS.

  8. Objectively Measured Physical Activity Is Associated with Brain Volumetric Measurements in Multiple Sclerosis

    Science.gov (United States)

    Klaren, Rachel E.; Hubbard, Elizabeth A.; Motl, Robert W.; Pilutti, Lara A.; Wetter, Nathan C.; Sutton, Bradley P.

    2015-01-01

    Background. Little is known about physical activity and its association with volumes of whole brain gray matter and white matter and deep gray matter structures in persons with multiple sclerosis (MS). Purpose. This study examined the association between levels of physical activity and brain volumetric measures from magnetic resonance imaging (MRI) in MS. Method. 39 persons with MS wore an accelerometer for a 7-day period and underwent a brain MRI. Normalized GM volume (NGMV), normalized WM volume (NWMV), and deep GM structures were calculated from 3D T1-weighted structural brain images. We conducted partial correlations (pr) controlling for demographic and clinical variables. Results. Moderate-to-vigorous physical activity (MVPA) was significantly associated with NGMV (pr = 0.370, p < 0.05), NWMV (pr = 0.433, p < 0.01), hippocampus (pr = 0.499, p < 0.01), thalamus (pr = 0.380, p < 0.05), caudate (pr = 0.539, p < 0.01), putamen (pr = 0.369, p < 0.05), and pallidum (pr = 0.498, p < 0.01) volumes, when controlling for sex, age, clinical course of MS, and Expanded Disability Status Scale score. There were no associations between sedentary and light physical activity with MRI outcomes. Conclusion. Our results provide the first evidence that MVPA is associated with volumes of whole brain GM and WM and deep GM structures that are involved in motor and cognitive functions in MS. PMID:26146460

  9. Epidermal Nevus Syndrome Associated with Brain Malformations and Medulloblastoma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-01-01

    Full Text Available Researchers at Juntendo University and Tokyo Women’s Medical University, Japan; and University of California, San Francisco, Ca, report a male infant with epidermal nevus syndrome associated with brainstem and cerebellar malformations and neonatal medulloblastoma.

  10. Plasma clusterin concentration is associated with longitudinal brain atrophy in mild cognitive impairment.

    Science.gov (United States)

    Thambisetty, Madhav; An, Yang; Kinsey, Anna; Koka, Deepthi; Saleem, Muzamil; Güntert, Andreas; Kraut, Michael; Ferrucci, Luigi; Davatzikos, Christos; Lovestone, Simon; Resnick, Susan M

    2012-01-01

    Recent genetic and proteomic studies demonstrate that clusterin/apolipoprotein-J is associated with risk, pathology, and progression of Alzheimer's disease (AD). Our main aim was to examine associations between plasma clusterin concentration and longitudinal changes in brain volume in normal aging and mild cognitive impairment (MCI). A secondary objective was to examine associations between peripheral concentration of clusterin and its concentration in the brain within regions that undergo neuropathological changes in AD. Non-demented individuals (N=139; mean baseline age 70.5 years) received annual volumetric MRI (912 MRI scans in total) over a mean six-year interval. Sixteen participants (92 MRI scans in total) were diagnosed during the course of the study with amnestic MCI. Clusterin concentration was assayed by ELISA in plasma samples collected within a year of the baseline MRI. Mixed effects regression models investigated whether plasma clusterin concentration was associated with rates of brain atrophy for control and MCI groups and whether these associations differed between groups. In a separate autopsy sample of individuals with AD (N=17) and healthy controls (N=4), we examined the association between antemortem clusterin concentration in plasma and postmortem levels in the superior temporal gyrus, hippocampus and cerebellum. The associations of plasma clusterin concentration with rates of change in brain volume were significantly different between MCI and control groups in several volumes including whole brain, ventricular CSF, temporal gray matter as well as parahippocampal, superior temporal and cingulate gyri. Within the MCI but not control group, higher baseline concentration of plasma clusterin was associated with slower rates of brain atrophy in these regions. In the combined autopsy sample of AD and control cases, representing a range of severity in AD pathology, we observed a significant association between clusterin concentration in the plasma and

  11. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    Science.gov (United States)

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.

  12. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning.

    Science.gov (United States)

    Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N

    2016-01-04

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.

  13. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning.

    Science.gov (United States)

    Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N

    2016-01-01

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect. PMID:26725509

  14. Quantitative estimation of brain atrophy and function with PET and MRI two-dimensional projection images

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Reiko; Uemura, Koji; Uchiyama, Akihiko [Waseda Univ., Tokyo (Japan). School of Science and Engineering; Toyama, Hinako; Ishii, Kenji; Senda, Michio

    2001-05-01

    The purpose of this paper is to estimate the extent of atrophy and the decline in brain function objectively and quantitatively. Two-dimensional (2D) projection images of three-dimensional (3D) transaxial images of positron emission tomography (PET) and magnetic resonance imaging (MRI) were made by means of the Mollweide method which keeps the area of the brain surface. A correlation image was generated between 2D projection images of MRI and cerebral blood flow (CBF) or {sup 18}F-fluorodeoxyglucose (FDG) PET images and the sulcus was extracted from the correlation image clustered by K-means method. Furthermore, the extent of atrophy was evaluated from the extracted sulcus on 2D-projection MRI and the cerebral cortical function such as blood flow or glucose metabolic rate was assessed in the cortex excluding sulcus on 2D-projection PET image, and then the relationship between the cerebral atrophy and function was evaluated. This method was applied to the two groups, the young and the aged normal subjects, and the relationship between the age and the rate of atrophy or the cerebral blood flow was investigated. This method was also applied to FDG-PET and MRI studies in the normal controls and in patients with corticobasal degeneration. The mean rate of atrophy in the aged group was found to be higher than that in the young. The mean value and the variance of the cerebral blood flow for the young are greater than those of the aged. The sulci were similarly extracted using either CBF or FDG PET images. The purposed method using 2-D projection images of MRI and PET is clinically useful for quantitative assessment of atrophic change and functional disorder of cerebral cortex. (author)

  15. Whole brain expression of bipolar disorder associated genes: structural and genetic analyses.

    Directory of Open Access Journals (Sweden)

    Michael J McCarthy

    Full Text Available Studies of bipolar disorder (BD suggest a genetic basis of the illness that alters brain function and morphology. In recent years, a number of genetic variants associated with BD have been identified. However, little is known about the associated genes, or brain circuits that rely upon their function. Using an anatomically comprehensive survey of the human transcriptome (The Allen Brain Atlas, we mapped the expression of 58 genes with suspected involvement in BD based upon their relationship to SNPs identified in genome wide association studies (GWAS. We then conducted a meta-analysis of structural MRI studies to identify brain regions that are abnormal in BD. Of 58 BD associated genes, 22 had anatomically distinct expression patterns that could be categorized into one of three clusters (C1-C3. Brain regions with the highest and lowest expression of these genes did not overlap strongly with anatomical sites identified as abnormal by structural MRI except in the parahippocampal gyrus, the inferior/superior temporal gyrus and the cerebellar vermis, regions where overlap was significant. Using the 22 genes in C1-C3 as reference points, additional genes with correlated expression patterns were identified and organized into sets based on similarity. Further analysis revealed that five of these gene sets were significantly associated with BD, suggesting that anatomical expression profile is correlated with genetic susceptibility to BD, particularly for genes in C2. Our data suggest that expression profiles of BD-associated genes do not explain the majority of structural abnormalities observed in BD, but may be useful in identifying new candidate genes. Our results highlight the complex neuroanatomical basis of BD, and reinforce illness models that emphasize impaired brain connectivity.

  16. Association study between brain-derived neurotrophic factor gene polymorphisms and methamphetamine abusers in Japan

    OpenAIRE

    Itoh, Kanako; Hashimoto, Kenji; Shimizu, Eiji; Sekine, Yoshimoto; Ozaki, Norio; Inada, Toshiya; Harano, Mutsuo; Iwata, Nakao; Komiyama, Tokutaro; Yamada, Mitsuhiko; Sora,Ichiro; Nakata, Kenji; Ujike, Hiroshi; Iyo, Masaomi

    2005-01-01

    Several lines of evidence suggest that genetic factors might contribute to drug abuse vulnerability. Recent genomic scans for association demonstrated that the brain-derived neurotrophic factor (BDNF) gene was associated with drug abuse vulnerability. In this study, we analyzed association of two BDNF gene single nucleotide polymorphisms (SNPs), 132C>T (C270T named formerly) in the noncoding region of exon V and 196G >A (val66met) in the coding region of exon XIIIA, with methamphetamine (MAP)...

  17. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    International Nuclear Information System (INIS)

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  18. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Ali [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Montefiore Medical Center, Department of Neurology, Bronx, NY (United States); Katz, Mindy J. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Lipton, Michael L. [Albert Einstein College of Medicine of Yeshiva University, The Gruss Magnetic Resonance Research Center and Departments of Radiology, Psychiatry and Behavioral Sciences and the Dominick P. Purpura Department of Neuroscience, Bronx, NY (United States); Montefiore Medical Center, The Department of Radiology, Bronx, NY (United States); Lipton, Richard B. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine of Yeshiva University, Department of Epidemiology and Population Health, Bronx, NY (United States); Verghese, Joe [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, Bronx, NY (United States)

    2015-08-15

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  19. How Many Brains Does It Take to Build a New Light: Knowledge Management Challenges of a Transdisciplinary Project

    Science.gov (United States)

    della Chiesa, Bruno; Christoph, Vanessa; Hinton, Christina

    2009-01-01

    The Organization for Economic Cooperation and Development's (OECD) Center for Educational Research and Innovation (CERI) carried out the "Learning Sciences and Brain Research" project (1999-2007) to investigate how neuroscience research can inform education policy and practice. This transdisciplinary project brought many challenges. Within the…

  20. Brain structure-function associations in multi-generational families genetically enriched for bipolar disorder.

    Science.gov (United States)

    Fears, Scott C; Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C; Aldana, Ileana; Teshiba, Terri M; Abaryan, Zvart; Al-Sharif, Noor B; Navarro, Linda; Tishler, Todd A; Altshuler, Lori; Bartzokis, George; Escobar, Javier I; Glahn, David C; Thompson, Paul M; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I; Sabatti, Chiara; Cantor, Rita M; Freimer, Nelson B; Bearden, Carrie E

    2015-07-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain-behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain-behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18-87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain-behaviour associations and test whether brain-behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain-behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family

  1. Localizing brain regions associated with female mate preference behavior in a swordtail.

    Directory of Open Access Journals (Sweden)

    Ryan Y Wong

    Full Text Available Female mate choice behavior is a critical component of sexual selection, yet identifying the neural basis of this behavior is largely unresolved. Previous studies have implicated sensory processing and hypothalamic brain regions during female mate choice and there is a conserved network of brain regions (Social Behavior Network, SBN that underlies sexual behaviors. However, we are only beginning to understand the role this network has in pre-copulatory female mate choice. Using in situ hybridization, we identify brain regions associated with mate preference in female Xiphophorus nigrensis, a swordtail species with a female choice mating system. We measure gene expression in 10 brain regions (linked to sexual behavior, reward, sensory integration or other processes and find significant correlations between female preference behavior and gene expression in two telencephalic areas associated with reward, learning and multi-sensory processing (medial and lateral zones of the dorsal telencephalon as well as an SBN region traditionally associated with sexual response (preoptic area. Network analysis shows that these brain regions may also be important in mate preference and that correlated patterns of neuroserpin expression between regions co-vary with differential compositions of the mate choice environment. Our results expand the emerging network for female preference from one that focused on sensory processing and midbrain sexual response centers to a more complex coordination involving forebrain areas that integrate primary sensory processing and reward.

  2. Regional Variations in Brain Gyrification Are Associated with General Cognitive Ability in Humans.

    Science.gov (United States)

    Gregory, Michael D; Kippenhan, J Shane; Dickinson, Dwight; Carrasco, Jessica; Mattay, Venkata S; Weinberger, Daniel R; Berman, Karen F

    2016-05-23

    Searching for a neurobiological understanding of human intellectual capabilities has long occupied those very capabilities. Brain gyrification, or folding of the cortex, is as highly evolved and variable a characteristic in humans as is intelligence. Indeed, gyrification scales with brain size, and relationships between brain size and intelligence have been demonstrated in humans [1-3]. However, gyrification shows a large degree of variability that is independent from brain size [4-6], suggesting that the former may independently contribute to cognitive abilities and thus supporting a direct investigation of this parameter in the context of intelligence. Moreover, uncovering the regional pattern of such an association could offer insights into evolutionary and neural mechanisms. We tested for this brain-behavior relationship in two separate, independently collected, large cohorts-440 healthy adults and 662 healthy children-using high-resolution structural neuroimaging and comprehensive neuropsychometric batteries. In both samples, general cognitive ability was significantly associated (pFDR distribution that was nearly identical in both samples (Dice similarity coefficient = 0.80). This neuroanatomical pattern is consistent with an existing, well-known proposal, the Parieto-Frontal Integration Theory of intelligence [7], and is also consistent with research in comparative evolutionary biology showing rapid neocortical expansion of these regions in humans relative to other species. These data provide a framework for understanding the neurobiology of human cognitive abilities and suggest a potential neurocellular association. PMID:27133866

  3. Brain Activation during Associative Short-Term Memory Maintenance is Not Predictive for Subsequent Retrieval

    Directory of Open Access Journals (Sweden)

    Heiko eBergmann

    2015-09-01

    Full Text Available Performance on working memory (WM tasks may partially be supported by long-term memory (LTM processing. Hence, brain activation recently being implicated in WM may actually have been driven by (incidental LTM formation. We examined which brain regions actually support successful WM processing, rather than being confounded by LTM processes, during the maintenance and probe phase of a WM task. We administered a four-pair (faces and houses associative delayed-match-to-sample (WM task using event-related fMRI and a subsequent associative recognition LTM task, using the same stimuli. This enabled us to analyze subsequent memory effects for both the WM and the LTM test by contrasting correctly recognized pairs with incorrect pairs for either task. Critically, with respect to the subsequent WM effect, we computed this analysis exclusively for trials that were forgotten in the subsequent LTM recognition task. Hence, brain activity associated with successful WM processing was less likely to be confounded by incidental LTM formation. The subsequent LTM effect, in contrast, was analyzed exclusively for pairs that previously had been correctly recognized in the WM task, disclosing brain regions involved in successful LTM formation after successful WM processing. Results for the subsequent WM effect showed no significantly activated brain areas for WM maintenance, possibly due to an insensitivity of fMRI to mechanisms underlying active WM maintenance. In contrast, a correct decision at WM probe was linked to activation in the retrieval success network (anterior and posterior midline brain structures. The subsequent LTM analyses revealed greater activation in left dorsolateral prefrontal cortex and posterior parietal cortex in the early phase of the maintenance stage. No supra-threshold activation was found during the WM probe. Together, we obtained clearer insights in which brain regions support successful WM and LTM without the potential confound of the

  4. Mutation in the sixth immunoglobulin domain of L1CAM is associated with migrational brain anomalies

    Science.gov (United States)

    Shieh, Christine; Moser, Franklin; Graham, John M.; Watiker, Valerie

    2015-01-01

    Objective: To describe the phenotype of a patient with classical features of X-linked L1 syndrome associated with novel brain malformations. Methods: Diagnostic analysis included physical and dysmorphology examinations, MRI of the brain, and exome sequencing of the family trio. Results: We report a 2.5-year-old boy with developmental delay, dysmorphic facies, and adducted thumbs. MRI of the brain showed a truncated corpus callosum and periventricular heterotopias associated with polymicrogyria (PMG). Variant segregation analysis with exome sequencing discovered a novel maternally derived hemizygous variant in exon 14 of the L1CAM gene (c.1759 G>C; p.G587R). Conclusions: This novel L1CAM mutation was located in the protein's sixth immunoglobin domain and involved glycine-587, a key residue in the structure of L1CAM because of its interactions with lysine-606, which indicates that any mutation at this site would likely affect the secondary structure and function of the protein. The replacement of the small nonpolar glycine residue with a large basic arginine would have an even more dramatic result. The presentation of periventricular nodular heterotopias with overlying PMG is very uncommon, and its association with L1CAM may provide insight into other similar cases. Furthermore, this presentation indicates the important role that L1CAM plays in neuronal migration and brain development and extends the phenotype associated with L1CAM-associated disorders. PMID:27066571

  5. Association of social engagement with brain volumes assessed by structural MRI.

    Science.gov (United States)

    James, Bryan D; Glass, Thomas A; Caffo, Brian; Bobb, Jennifer F; Davatzikos, Christos; Yousem, David; Schwartz, Brian S

    2012-01-01

    We tested the hypothesis that social engagement is associated with larger brain volumes in a cohort study of 348 older male former lead manufacturing workers (n = 305) and population-based controls (n = 43), age 48 to 82. Social engagement was measured using a summary scale derived from confirmatory factor analysis. The volumes of 20 regions of interest (ROIs), including total brain, total gray matter (GM), total white matter (WM), each of the four lobar GM and WM, and 9 smaller structures were derived from T1-weighted structural magnetic resonance images. Linear regression models adjusted for age, education, race/ethnicity, intracranial volume, hypertension, diabetes, and control (versus lead worker) status. Higher social engagement was associated with larger total brain and GM volumes, specifically temporal and occipital GM, but was not associated with WM volumes except for corpus callosum. A voxel-wise analysis supported an association in temporal lobe GM. Using longitudinal data to discern temporal relations, change in ROI volumes over five years showed null associations with current social engagement. Findings are consistent with the hypothesis that social engagement preserves brain tissue, and not consistent with the alternate hypothesis that persons with smaller or shrinking volumes become less socially engaged, though this scenario cannot be ruled out.

  6. Association of Social Engagement with Brain Volumes Assessed by Structural MRI

    Directory of Open Access Journals (Sweden)

    Bryan D. James

    2012-01-01

    Full Text Available We tested the hypothesis that social engagement is associated with larger brain volumes in a cohort study of 348 older male former lead manufacturing workers (=305 and population-based controls (=43, age 48 to 82. Social engagement was measured using a summary scale derived from confirmatory factor analysis. The volumes of 20 regions of interest (ROIs, including total brain, total gray matter (GM, total white matter (WM, each of the four lobar GM and WM, and 9 smaller structures were derived from T1-weighted structural magnetic resonance images. Linear regression models adjusted for age, education, race/ethnicity, intracranial volume, hypertension, diabetes, and control (versus lead worker status. Higher social engagement was associated with larger total brain and GM volumes, specifically temporal and occipital GM, but was not associated with WM volumes except for corpus callosum. A voxel-wise analysis supported an association in temporal lobe GM. Using longitudinal data to discern temporal relations, change in ROI volumes over five years showed null associations with current social engagement. Findings are consistent with the hypothesis that social engagement preserves brain tissue, and not consistent with the alternate hypothesis that persons with smaller or shrinking volumes become less socially engaged, though this scenario cannot be ruled out.

  7. Radiologic Determination of Corpus Callosum Injury in Patients with Mild Traumatic Brain Injury and Associated Clinical Characteristics

    OpenAIRE

    Kim, Dong Shin; Choi, Hyuk Jai; Yang, Jin Seo; Cho, Yong Jun; Kang, Suk Hyung

    2015-01-01

    Objective To investigate the incidence of corpus callosum injury (CCI) in patients with mild traumatic brain injury (TBI) using brain MRI. We also performed a review of the clinical characteristics associated with this injury. Methods A total of 356 patients in the study were diagnosed with TBI, with 94 patients classified as having mild TBI. We included patients with mild TBI for further evaluation if they had normal findings via brain computed tomography (CT) scans and also underwent brain ...

  8. Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment.

    Science.gov (United States)

    Tosun, Duygu; Schuff, Norbert; Mathis, Chester A; Jagust, William; Weiner, Michael W

    2011-04-01

    Amyloid-β accumulation in the brain is thought to be one of the earliest events in Alzheimer's disease, possibly leading to synaptic dysfunction, neurodegeneration and cognitive/functional decline. The earliest detectable changes seen with neuroimaging appear to be amyloid-β accumulation detected by (11)C-labelled Pittsburgh compound B positron emission tomography imaging. However, some individuals tolerate high brain amyloid-β loads without developing symptoms, while others progressively decline, suggesting that events in the brain downstream from amyloid-β deposition, such as regional brain atrophy rates, play an important role. The main purpose of this study was to understand the relationship between the regional distributions of increased amyloid-β and the regional distribution of increased brain atrophy rates in patients with mild cognitive impairment. To simultaneously capture the spatial distributions of amyloid-β and brain atrophy rates, we employed the statistical concept of parallel independent component analysis, an effective method for joint analysis of multimodal imaging data. Parallel independent component analysis identified significant relationships between two patterns of amyloid-β deposition and atrophy rates: (i) increased amyloid-β burden in the left precuneus/cuneus and medial-temporal regions was associated with increased brain atrophy rates in the left medial-temporal and parietal regions; and (ii) in contrast, increased amyloid-β burden in bilateral precuneus/cuneus and parietal regions was associated with increased brain atrophy rates in the right medial temporal regions. The spatial distribution of increased amyloid-β and the associated spatial distribution of increased brain atrophy rates embrace a characteristic pattern of brain structures known for a high vulnerability to Alzheimer's disease pathology, encouraging for the use of (11)C-labelled Pittsburgh compound B positron emission tomography measures as early indicators of

  9. Automatic detection of the hippocampal region associated with Alzheimer's disease from microscopic images of mice brain

    Science.gov (United States)

    Albaidhani, Tahseen; Hawkes, Cheryl; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    The hippocampus is the region of the brain that is primarily associated with memory and spatial navigation. It is one of the first brain regions to be damaged when a person suffers from Alzheimer's disease. Recent research in this field has focussed on the assessment of damage to different blood vessels within the hippocampal region from a high throughput brain microscopic images. The ultimate aim of our research is the creation of an automatic system to count and classify different blood vessels such as capillaries, veins, and arteries in the hippocampus region. This work should provide biologists with efficient and accurate tools in their investigation of the causes of Alzheimer's disease. Locating the boundary of the Region of Interest in the hippocampus from microscopic images of mice brain is the first essential stage towards developing such a system. This task benefits from the variation in colour channels and texture between the two sides of the hippocampus and the boundary region. Accordingly, the developed initial step of our research to locating the hippocampus edge uses a colour-based segmentation of the brain image followed by Hough transforms on the colour channel that isolate the hippocampus region. The output is then used to split the brain image into two sides of the detected section of the boundary: the inside region and the outside region. Experimental results on a sufficiently number of microscopic images demonstrate the effectiveness of the developed solution.

  10. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus

    Science.gov (United States)

    Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 ...

  11. [Hypoxic brain injuries notified to the Danish Patient Insurance Association during 1992-2004. Secondary publication

    DEFF Research Database (Denmark)

    Bock, J.; Christoffersen, J.K.; Hedegaard, M.;

    2008-01-01

    We investigated the files of the Danish Patient Insurance Association for newborns suffering from hypoxic brain injuries. From 1992 to 2004, a total of 127 approved claims concerning peripartum hypoxic injury were registered. Thirty-eight newborns died and the majority of the 89 surviving childre...

  12. Childhood abuse and deprivation are associated with distinct sex-dependent differences in brain morphology

    NARCIS (Netherlands)

    Everaerd, D.S.; Klumpers, F.; Zwiers, M.P.; Guadalupe, T.; Franke, B.; Oostrom, I.I.H. van; Schene, A.H.; Fernandez, G.S.E.; Tendolkar, I.

    2016-01-01

    Childhood adversity (CA) has been associated with long-term structural brain alterations and an increased risk for psychiatric disorders. Evidence is emerging that subtypes of CA, varying in the dimensions of threat and deprivation, lead to distinct neural and behavioral outcomes. However, these spe

  13. FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network

    Directory of Open Access Journals (Sweden)

    Zhao Baixiao

    2008-11-01

    Full Text Available Abstract Background Recently, increasing evidence has indicated that the primary acupuncture effects are mediated by the central nervous system. However, specific brain networks underpinning these effects remain unclear. Results In the present study using fMRI, we employed a within-condition interregional covariance analysis method to investigate functional connectivity of brain networks involved in acupuncture. The fMRI experiment was performed before, during and after acupuncture manipulations on healthy volunteers at an acupuncture point, which was previously implicated in a neural pathway for pain modulation. We first identified significant fMRI signal changes during acupuncture stimulation in the left amygdala, which was subsequently selected as a functional reference for connectivity analyses. Our results have demonstrated that there is a brain network associated with the amygdala during a resting condition. This network encompasses the brain structures that are implicated in both pain sensation and pain modulation. We also found that such a pain-related network could be modulated by both verum acupuncture and sham acupuncture. Furthermore, compared with a sham acupuncture, the verum acupuncture induced a higher level of correlations among the amygdala-associated network. Conclusion Our findings indicate that acupuncture may change this amygdala-specific brain network into a functional state that underlies pain perception and pain modulation.

  14. MRI brain findings in ephedrone encephalopathy associated with manganese abuse: Single-center perspective

    International Nuclear Information System (INIS)

    Manganese (Mn) is a well-known toxic agent causing symptoms of parkinsonism in employees of certain branches of industry. Home production of a psychostimulant ephedrone (methcathinone), involving the use of potassium permanganate, became a new cause of intoxications in Poland. This article presents clinical symptoms, initial brain MRI findings and characteristics of changes observed in follow-up examinations in 4 patients with manganese intoxication associated with intravenous administration of ephedrone. All patients in our case series presented symptoms of parkinsonism. T1-WI MRI revealed high intensity signal in globi pallidi in all patients; hyperintense lesions in midbrain were observed in three patients, while lesions located in cerebellar hemispheres and pituitary gland in just one patient. The reduction of signal intensity in the affected brain structures was observed in follow-up studies, with no significant improvement in clinical symptoms. Brain MRI is helpful in the assessment of distribution as well as dynamics of changes in ephedrone encephalopathy. Regression of signal intensity changes visible in brain MRI is not associated with clinical condition improvement. Although brain MRI findings are not characteristic for ephedrone encephalopathy, they may contribute to diagnosing this condition

  15. Variants in the DYX2 locus are associated with altered brain activation in reading-related brain regions in subjects with reading disability

    OpenAIRE

    Cope, Natalie; Eicher, John D.; Meng, Haiying; Gibson, Christopher J.; Hager, Karl; Lacadie, Cheryl; Fulbright, Robert K.; Constable, R. Todd; Page, Grier P.; Gruen, Jeffrey R.

    2012-01-01

    Reading disability (RD) is a complex genetic disorder with unknown etiology. Genes on chromosome 6p22, including DCDC2, KIAA0319, and TTRAP, have been identified as RD associated genes. Imaging studies have shown both functional and structural differences between brains of individuals with and without RD. There are limited association studies performed between RD genes, specifically genes on 6p22, and regional brain activation during reading tasks. Using fourteen variants in DCDC2, KIAA0319, ...

  16. Defunct brain stem cardiovascular regulation underlies cardiovascular collapse associated with methamphetamine intoxication

    Directory of Open Access Journals (Sweden)

    Li Faith CH

    2012-02-01

    Full Text Available Abstract Background Intoxication from the psychostimulant methamphetamine (METH because of cardiovascular collapse is a common cause of death within the abuse population. For obvious reasons, the heart has been taken as the primary target for this METH-induced toxicity. The demonstration that failure of brain stem cardiovascular regulation, rather than the heart, holds the key to cardiovascular collapse induced by the pesticide mevinphos implicates another potential underlying mechanism. The present study evaluated the hypothesis that METH effects acute cardiovascular depression by dampening the functional integrity of baroreflex via an action on brain stem nuclei that are associated with this homeostatic mechanism. Methods The distribution of METH in brain and heart on intravenous administration in male Sprague-Dawley rats, and the resultant changes in arterial pressure (AP, heart rate (HR and indices for baroreflex-mediated sympathetic vasomotor tone and cardiac responses were evaluated, alongside survival rate and time. Results Intravenous administration of METH (12 or 24 mg/kg resulted in a time-dependent and dose-dependent distribution of the psychostimulant in brain and heart. The distribution of METH to neural substrates associated with brain stem cardiovascular regulation was significantly larger than brain targets for its neurological and psychological effects; the concentration of METH in cardiac tissues was the lowest among all tissues studied. In animals that succumbed to METH, the baroreflex-mediated sympathetic vasomotor tone and cardiac response were defunct, concomitant with cessation of AP and HR. On the other hand, although depressed, those two indices in animals that survived were maintained, alongside sustainable AP and HR. Linear regression analysis further revealed that the degree of dampening of brain stem cardiovascular regulation was positively and significantly correlated with the concentration of METH in key neural

  17. An ICA with reference approach in identification of genetic variation and associated brain networks

    Directory of Open Access Journals (Sweden)

    Jingyu eLiu

    2012-02-01

    Full Text Available To address the statistical challenges associated with genome-wide association studies, we present an independent component analysis (ICA with reference approach to target a specific genetic variation and associated brain networks. First, a small set of single nucleotide polymorphisms (SNPs are empirically chosen to reflect a feature of interest and these SNPs are used as a reference when applying ICA to a full genomic SNP array. After extracting the genetic component maximally representing the characteristics of the reference, we test its association with brain networks in functional magnetic resonance imaging (fMRI data. The method was evaluated on both real and simulated datasets. Simulation demonstrates that ICA with reference can extract a specific genetic factor, even when the variance accounted for by such a factor is so small that a regular ICA fails. Our real data application from 48 schizophrenia patients and 40 healthy controls include 300K SNPs and fMRI images in an auditory oddball task. Using SNPs with allelic frequency difference in two groups as a reference, we extracted a genetic component that maximally differentiates patients from controls (p<4×10-17, and discovered a brain functional network that was significantly associated with this genetic component (p<1×10-4. The regions in the functional network mainly locate in the thalamus, anterior and posterior cingulate gyri. The contributing SNPs in the genetic factor mainly fall into two clusters centered at chromosome 7q21 and chromosome 5q35. The findings from the schizophrenia application are in concordance with previous knowledge about brain regions and gene function. All together, the results suggest that the ICA with reference can be particularly useful to explore the whole genome to find a specific factor of interest and further study its effect on brain.

  18. No association between brain size and male sexual behavior in the guppy

    Institute of Scientific and Technical Information of China (English)

    Alberto CORRAL-L(O)PEZ; Simon ECKERSTR(O)M-LIEDHOLM; Wouter VAN DER BIJL; Alexander KOTRSCHAL; Niclas KOLM

    2015-01-01

    Animal behavior is remarkably variable at all taxonomic levels.Over the last decades,research on animal behavior has focused on understanding ultimate processes.Yet,it has progressively become more evident that to fully understand behavioral variation,ultimate explanations need to be complemented with proximate ones.In particular,the mechanisms generating variation in sexual behavior remain an open question.Variation in aspects of brain morphology has been suggested as a plausible mechanism underlying this variation.However,our knowledge of this potential association is based almost exclusively on comparative analyses.Experimental studies are needed to establish causality and bridge the gap between micro-and macroevolutionary mechanisms concerning the link between brain and sexual behavior.We used male guppies that had been artificially selected for large or small relative brain size to study this association.We paired males with females and scored the full known set of male and female sexual behaviors described in guppies.We found several previously demonstrated associations between male traits,male behavior and female behavior.Females responded more strongly towards males that courted more and males with more orange coloration.Also,larger males and males with less conspicuous coloration attempted more coerced copulations.However,courting,frequency of coerced copulation attempts,total intensity of sexual behavior,and female response did not differ between large-and small-brained males.Our data suggest that relative brain size is an unlikely mechanism underlying variation in sexual behavior of the male guppy.We discuss these findings in the context of the conditions under which relative brain size might affect male sexual behavior [Current Zoology 61 (2):265-273,2015].

  19. Adverse associations between visceral adiposity, brain structure and cognitive performance in healthy elderly

    Directory of Open Access Journals (Sweden)

    Vivian eIsaac

    2011-09-01

    Full Text Available The link between central adiposity and cognition has been established by indirect measures such as BMI or waist-hip ratio. Magnetic resonance imaging (MRI quantification of central abdominal fat has been linked to elevated risk of cardio-vascular and cerebro-vascular disease. However it is not known how quantification of visceral fat correlates with cognitive performance and measures of brain structure. We filled this gap by characterizing the relationships between MRI measures of abdominal adiposity, brain morphometry and cognition, in healthy elderly. Methods: A total of 184 healthy community dwelling elderly subjects without cognitive impairment participated in this study. Anthropometric and biochemical markers of cardio-vascular risk, neuropsychological measurements as well as MRI of the brain and abdomen fat were obtained. Abdominal images were segmented into subcutaneous (SAT and visceral (VAT adipose tissue compartments. Brain MRI measures were analyzed quantitatively to determine total brain volume, hippocampal volume, ventricular volume and cortical thickness. Results: VAT showed negative association with verbal memory (r=0.21, p=0.005 and attention (r=0.18, p=0.01. Higher VAT was associated with lower hippocampal volume (F=5.39, p=0.02 and larger ventricular volume (F=6.07, p=0.02. The participants in the upper quartile of VAT had the lowest hippocampal volume even after adjusting for age, gender, hypertension and BMI (b=-0.28, p=0.005. There was a significant age by VAT interaction for cortical thickness in the left prefrontal region. Conclusions: In healthy older adults, elevated VAT is associated with negative effects on cognition, and brain morphometry.

  20. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ozelame, Rodrigo V.; Shroff, Manohar; Wood, Bradley; Bouffet, Eric; Bartels, Ute; Drake, James M.; Hawkins, Cynthia; Blaser, Susan [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, Ontario (Canada)

    2006-04-15

    Germinoma is the most common and least-malignant intracranial germ cell tumor, usually found in the midline. Germinoma that arises in the basal ganglia, called ectopic germinoma, is a rare and well-documented entity representing 5% to 10% of all intracranial germinomas. The association of cerebral and/or brain stem atrophy with basal ganglia germinoma on CT and MRI is found in 33% of the cases. To review the literature and describe the CT and MRI findings of basal ganglia germinoma in children, known as ectopic germinoma, with associated ipsilateral cerebral and brain stem hemiatrophy. Three brain CT and six brain MRI studies performed in four children at two institutions were retrospectively reviewed. All patients were male (case 1, 14 years; case 2, 13 years; case 3, 9 years; case 4, 13 years), with pathologically proved germinoma arising in the basal ganglia, and associated ipsilateral cerebral and/or brain stem hemiatrophy on the first imaging study. It is important to note that three of these children presented with cognitive decline, psychosis and slowly progressive hemiparesis as their indication for imaging. Imaging results on initial scans were varied. In all patients, the initial study showed ipsilateral cerebral and/or brain stem hemiatrophy, representing Wallerian degeneration. All patients who underwent CT imaging presented with a hyperdense or calcified lesion in the basal ganglia on unenhanced scans. Only one of these lesions had a mass effect on the surrounding structures. In one of these patients a large, complex, heterogeneous mass appeared 15 months later. Initial MR showed focal or diffusely increased T2 signal in two cases and heterogeneous signal in the other two. (orig.)

  1. Do white matter hyperintensities mediate the association between brain iron deposition and cognitive abilities in older people?

    OpenAIRE

    Valdes Hernandez, Maria; Allerhand, Michael; Glatz, Andreas; Clayson, L; Munoz-Maniega, Susana; Gow, Alan; Royle, Natalie; Bastin, Mark; Starr, John; Deary, Ian; Wardlaw, Joanna

    2016-01-01

    Background and purpose Several studies have reported associations between brain iron deposits (IDs), white matter hyperintensities (WMHs) and cognitive ability in older individuals. Whether the association between brain IDs and cognitive abilities in older people is mediated by or independent of total brain tissue damage represented by WMHs visible on structural magnetic resonance imaging (MRI) was examined. Methods Data from 676 community-dwelling individuals from the Lothian Birth Cohort 19...

  2. REM sleep loss associated changes in orexin-A levels in discrete brain areas in rats.

    Science.gov (United States)

    Mehta, Rachna; Khanday, Mudasir Ahmad; Mallick, Birendra Nath

    2015-03-17

    Rapid eye movement sleep (REMS) serves house-keeping function of the brain and its loss affects several pathophysiological processes. Relative levels of neurotransmitters including orexin A (Orx-A) in various parts of the brain in health and diseases are among the key factors for modulation of behaviors, including REMS. The level of neurotransmitter in an area in the brain directly depends on number of projecting neurons and their firing rates. The locus coeruleus (LC), the site of REM-OFF neurons, receives densest, while the pedunculo-pontine area (PPT), the site of REM-ON neurons receives lesser projections from the Orx-ergic neurons. Further, the Orx-ergic neurons are active during waking and silent during REMS and NREMS. Therefore, the level of Orx-A in discrete regions of the brain is likely to be different during normal and altered states, which in turn is likely to be responsible for altered behaviors in health and diseases, including in relation to REMS. Therefore, in the present study, we estimated Orx-A level in LC, cortex, posterior hypothalamus (PH), hippocampus, and PPT after 96 h REMSD, in post-deprivation recovered rats and in control rats. This is the first report of estimation of Orx-A in different brain regions after prolonged REMSD. It was observed that after REMSD the Orx-A level increased significantly in LC, cortex and PH which returned to normal level after recovery; however, the level did not change in the hippocampus and PPT. The Orx-A induced modulation of REMS could be secondary to increased waking.

  3. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Jiang, Ning; Stevenson, Andrew James Thomas;

    2016-01-01

    Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here, we evaluate the effect and the underlying mechanisms of three BCI training sessions in a double-blind-sham-controlled design. The applied BCI......-associative group. Fugl-Meyer motor scores (0.8±0.46 point difference p=0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCIassociative group, indicating clinically relevant improvements. For the BCI as applied here, the precise coupling between the brain command...

  4. Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins.

    Science.gov (United States)

    Butterfield, D A; Kanski, J

    2001-07-15

    Protein oxidation, one of a number of brain biomarkers of oxidative stress, is increased in several age-related neurodegenerative disorders or animal models thereof, including Alzheimer's disease, Huntington's disease, prion disorders, such as Creutzfeld-Jakob disease, and alpha-synuclein disorders, such as Parkinson's disease and frontotemporal dementia. Each of these neurodegenerative disorders is associated with aggregated proteins in brain. However, the relationship among protein oxidation, protein aggregation, and neurodegeneration remain unclear. The current rapid progress in elucidation of mechanisms of protein oxidation in neuronal loss should provide further insight into the importance of free radical oxidative stress in these neurodegenerative disorders.

  5. Whole-brain mapping of afferent projections to the bed nucleus of the stria terminalis in tree shrews.

    Science.gov (United States)

    Ni, Rong-Jun; Luo, Peng-Hao; Shu, Yu-Mian; Chen, Ju-Tao; Zhou, Jiang-Ning

    2016-10-01

    The bed nucleus of the stria terminalis (BST) plays an important role in integrating and relaying input information to other brain regions in response to stress. The cytoarchitecture of the BST in tree shrews (Tupaia belangeri chinensis) has been comprehensively described in our previous publications. However, the inputs to the BST have not been described in previous reports. The aim of the present study was to investigate the sources of afferent projections to the BST throughout the brain of tree shrews using the retrograde tracer Fluoro-Gold (FG). The present results provide the first detailed whole-brain mapping of BST-projecting neurons in the tree shrew brain. The BST was densely innervated by the prefrontal cortex, entorhinal cortex, ventral subiculum, amygdala, ventral tegmental area, and parabrachial nucleus. Moreover, moderate projections to the BST originated from the medial preoptic area, supramammillary nucleus, paraventricular thalamic nucleus, pedunculopontine tegmental nucleus, dorsal raphe nucleus, locus coeruleus, and nucleus of the solitary tract. Afferent projections to the BST are identified in the ventral pallidum, nucleus of the diagonal band, ventral posteromedial thalamic nucleus, posterior complex of the thalamus, interfascicular nucleus, retrorubral field, rhabdoid nucleus, intermediate reticular nucleus, and parvicellular reticular nucleus. In addition, the different densities of BST-projecting neurons in various regions were analyzed in the tree shrew brains. In summary, whole-brain mapping of direct inputs to the BST is delineated in tree shrews. These brain circuits are implicated in the regulation of numerous physiological and behavioral processes including stress, reward, food intake, and arousal. PMID:27436534

  6. Associations between insulin action and integrity of brain microstructure differ with familial longevity and with age

    Directory of Open Access Journals (Sweden)

    Abimbola A. Akintola

    2015-05-01

    Full Text Available Impaired glucose metabolism and type 2 diabetes have been associated with cognitive decline, dementia, and with structural and functional brain features. However, it is unclear whether these associations differ in individuals that differ in familial longevity or age. Here, we investigated the association between parameters of glucose metabolism and microstructural brain integrity in offspring of long-lived families (offspring and controls; and age categories thereof. From the Leiden Longevity Study, 132 participants underwent oral glucose tolerance test to assess glycemia (fasted glucose and glucose area-under-the-curve (AUC, insulin resistance (fasted insulin, AUCinsulin, and homeostatic model assessment of insulin resistance (HOMA-IR, and pancreatic Beta cell secretory capacity (insulinogenic index. 3Tesla MRI and Magnetization Transfer (MT imaging MT-ratio peak-height was used to quantify differences in microstructural brain parenchymal tissue homogeneity that remain invisible on conventional MRI. Analyses were performed in offspring and age-matched controls, with and without stratification for age.In the full offspring group only, reduced peak-height in grey and white matter was inversely associated with AUCinsulin, fasted insulin, HOMA-IR and insulinogenic-index (all p65 years: in younger controls, significantly stronger inverse associations were observed between peak-height and fasted glucose, AUCglucose, fasted insulin, AUCinsulin and HOMA-IR in grey matter; and for AUCglucose, fasted insulin and HOMA-IR in white matter (all P-interaction<0.05. Although the strength of the associations tended to attenuate with age in the offspring group, the difference between age groups was not statistically significant. Thus, associations between impaired insulin action and reduced microstructural brain parenchymal tissue homogeneity were stronger in offspring compared to controls, and seemed to diminish with age.

  7. Effect of lighting conditions on brain network complexity associated with response learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida M; González-Pardo, Héctor; Arias, Jorge L

    2013-10-25

    Several studies have reported the brain regions involved in response learning. However, there is discrepancy regarding the lighting conditions in the experimental setting (i.e. under dark or light conditions). In this regard, it would be relevant to know if the presence/absence of visual cues in the environment has any effect in the brain networks involved in a response learning task. Animals were trained in a water T-maze under two different lighting conditions (light versus dark). All subjects reached the learning criterion of 80% correct arm choices. Quantitative cytochrome oxidase (CO) histochemistry was used as a metabolic brain mapping technique. Our results show that the ventral hippocampus and the parietal cortex are associated with the acquisition of a response learning task regardless of lighting conditions. In addition, when the same task is run in the dark, widespread recruitment of structures involving cortical, limbic and striatal regions was found. PMID:24084195

  8. The association of functional oral intake and pneumonia in patients with severe traumatic brain injury

    DEFF Research Database (Denmark)

    Hansen, Trine Schow; Larsen, Klaus; Engberg, Aase Worså

    2008-01-01

    OBJECTIVES: To investigate the incidence and onset time of pneumonia for patients with severe traumatic brain injury (TBI) in the early phase of rehabilitation and to identify parameters associated with the risk of pneumonia. DESIGN: Observational retrospective cohort study. SETTING: Subacute...... rehabilitation department in a university hospital in Denmark. PARTICIPANTS: Patients (N=173) aged 16 to 65 years with severe TBI who were admitted during a 5-year period. Patients are transferred to the brain injury unit as soon as they ventilate spontaneously. INTERVENTIONS: Not applicable. MAIN OUTCOME...... MEASURE: Pneumonia. RESULTS: Twenty-seven percent of the patients admitted to the brain injury unit were in treatment for pneumonia; pneumonia developed in 12% of the patients during rehabilitation; the condition occurred within 19 days of admission in all but 1 patient. Of these patients, 81% received...

  9. The association between seizures and deposition of collagen in the brain in porcine Taenia solium neurocysticercosis

    DEFF Research Database (Denmark)

    Christensen, Nina Møller; Trevisan, Chiara; Leifsson, Páll Skúli;

    2016-01-01

    Neurocysticercosis caused by infection with Taenia solium is a significant cause of epilepsy and seizures in humans. The aim of this study was to assess the association between seizures and the deposition of collagen in brain tissue in pigs with T. solium neurocysticercosis. In total 78 brain...... tissue sections from seven pigs were examined histopathologically i.e. two pigs with epileptic seizures and T. solium cysts, four pigs without seizures but with cysts, and one non-infected control pig. Pigs with epileptic seizures had a larger amount of collagen in their brain tissue, showing as large...... fibrotic scars and moderate amount of collagen deposited around cysts, compared to pigs without seizures and the negative control pig. Our results indicate that collagen is likely to play a considerable part in the pathogenesis of seizures in T. solium neurocysticercosis....

  10. Missouri Soybean Association Biodiesel Demonstration Project: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Dale [Missouri Soybean Association, Jefferson City, MO (United States); Hamilton, Jill [Sustainable Energy Strategies, Inc., Fairfax, VA (United States)

    2011-10-27

    The Missouri Soybean Association (MSA) and the National Biodiesel Board (NBB) partnered together to implement the MSA Biodiesel Demonstration project under a United States Department of Energy (DOE) grant. The goal of this project was to provide decision makers and fleet managers with information that could lead to the increased use of domestically produced renewable fuels and could reduce the harmful impacts of school bus diesel exhaust on children. This project was initiated in September 2004 and completed in April 2011. The project carried out a broad range of activities organized under four areas: 1. Petroleum and related industry education program for fuel suppliers; 2. Fleet evaluation program using B20 with a Missouri school district; 3. Outreach and awareness campaign for school district fleet managers; and 4. Support of ongoing B20 Fleet Evaluation Team (FET) data collection efforts with existing school districts. Technical support to the biodiesel industry was also provided through NBB’s Troubleshooting Hotline. The hotline program was established in 2008 to troubleshoot fuel quality issues and help facilitate smooth implementation of the RFS and is described in greater detail under Milestone A.1 - Promote Instruction and Guidance on Best Practices. As a result of this project’s efforts, MSA and NBB were able to successfully reach out to and support a broad spectrum of biodiesel users in Missouri and New England. The MSA Biodiesel Demonstration was funded through a FY2004 Renewable Energy Resources Congressional earmark. The initial focus of this project was to test and evaluate biodiesel blends coupled with diesel oxidation catalysts as an emissions reduction technology for school bus fleets in the United States. The project was designed to verify emissions reductions using Environmental Protection Agency (EPA) protocols, then document – with school bus fleet experience – the viability of utilizing B20 blends. The fleet experience was expected to

  11. Association of the interleukin 1 beta gene and brain spontaneous activity in amnestic mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Zhuang Liying

    2012-12-01

    Full Text Available Abstract Purpose The inflammatory response has been associated with the pathogenesis of Alzheimer’s disease (AD. The purpose of this study is to determine whether the rs1143627 polymorphism of the interleukin-1 beta (IL-1β gene moderates functional magnetic resonance imaging (fMRI-measured brain regional activity in amnestic mild cognitive impairment (aMCI. Methods Eighty older participants (47 with aMCI and 33 healthy controls were recruited for this study. All of the participants were genotyped for variant rs1143627 in the IL1B gene and were scanned using resting-state fMRI. Brain activity was assessed by amplitude of low-frequency fluctuation (ALFF. Results aMCI patients had abnormal ALFF in many brain regions, including decreases in the inferior frontal gyrus, the superior temporal lobe and the middle temporal lobe, and increases in the occipital cortex (calcarine, parietal cortex (Pcu and cerebellar cortex. The regions associated with an interaction of group X genotypes of rs1143627 C/T were the parietal cortex (left Pcu, frontal cortex (left superior, middle, and medial gyrus, right anterior cingulum, occipital cortex (left middle lobe, left cuneus and the bilateral posterior lobes of the cerebellum. Regarding the behavioral significance, there were significant correlations between ALFF in different regions of the brain and with the cognitive scores of each genotype group. Conclusions The present study provided evidence that aMCI patients had abnormal ALFF in many brain regions. Specifically, the rs1143627 C/T polymorphism of the IL1B gene may modulate regional spontaneous brain activity in aMCI patients.

  12. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  13. Regional brain activation associated with addiction of computer games in adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y. H.; Shin, O. J.; Ko, Y. W.; Kim, H. J.; Yun, M. J.; Lee, J. D. [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-07-01

    Excessive computer game (CG) playing may cause not only behavioral addiction, but also potential negative effects on developing brain. It is necessary to reveal how brain is affected by excessive use of CG playing and behavioral addiction of it. By using PET, we address the issue seeking to identifying patterns of regional brain activation associated with behavioral addiction and excessive use of CG playing by adolescents. 6 normal control and 8 adolescents who were met by the criteria of behavioral addiction on the survey as addiction groups with an addiction of CG playing were participated. Initial screening survey which is the adapted version of DSM-IV for pathologic gambling was done. PET were performed twice in each participants both during resting state and after 20 min playing of CG. Psychological test including Youth Self Report (YSR), memory and attention test and vocabulary item from KWAIS were performed. Scores of the vocabulary item from KWAIS and social competence from YSR were significantly lower in the addiction group. On PET, addiction group showed higher resting metabolism on inferior frontal, premotor, prefrontal and superior temporal area. Adolescents with addiction of CG revealed different patterns of regional brain activation comparing to control groups. These suggest behavioral addiction and excessive use of CG may result in functional alteration of developing brain in adolescents.

  14. Regional brain activation associated with addiction of computer games in adolescents

    International Nuclear Information System (INIS)

    Excessive computer game (CG) playing may cause not only behavioral addiction, but also potential negative effects on developing brain. It is necessary to reveal how brain is affected by excessive use of CG playing and behavioral addiction of it. By using PET, we address the issue seeking to identifying patterns of regional brain activation associated with behavioral addiction and excessive use of CG playing by adolescents. 6 normal control and 8 adolescents who were met by the criteria of behavioral addiction on the survey as addiction groups with an addiction of CG playing were participated. Initial screening survey which is the adapted version of DSM-IV for pathologic gambling was done. PET were performed twice in each participants both during resting state and after 20 min playing of CG. Psychological test including Youth Self Report (YSR), memory and attention test and vocabulary item from KWAIS were performed. Scores of the vocabulary item from KWAIS and social competence from YSR were significantly lower in the addiction group. On PET, addiction group showed higher resting metabolism on inferior frontal, premotor, prefrontal and superior temporal area. Adolescents with addiction of CG revealed different patterns of regional brain activation comparing to control groups. These suggest behavioral addiction and excessive use of CG may result in functional alteration of developing brain in adolescents

  15. Brain region-specificity of palmitic acid-induced abnormalities associated with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Melrose Joseph

    2008-06-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a progressive, neurodegenerative disease mostly affecting the basal forebrain, cortex and hippocampus whereas the cerebellum is relatively spared. The reason behind this region-specific brain damage in AD is not well understood. Here, we report our data suggesting "differential free fatty acid metabolism in the different brain areas" as a potentially important factor in causing the region-specific damage observed in AD brain. Findings The astroglia from two different rat brain regions, cortex (region affected in AD and cerebellum (unaffected region, were treated with 0.2 mM of palmitic acid. The conditioned media were then transferred to the cortical neurons to study the possible effects on the two main, AD-associated protein abnormalities, viz. BACE1 upregulation and hyperphosphorylation of tau. The conditioned media from palmitic-acid treated cortical astroglia, but not the cerebellar astroglia, significantly elevated levels of phosphorylated tau and BACE1 in cortical neurons as compared to controls (47 ± 7% and 45 ± 4%, respectively. Conclusion The present data provide an experimental explanation for the region-specific damage observed in AD brain; higher fatty acid-metabolizing capacity of cortical astroglia as compared to cerebellar astroglia, may play a causal role in increasing vulnerability of cortex in AD, while sparing cerebellum.

  16. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qingguo, E-mail: renqg83@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Dewan, Sheilesh Kumar, E-mail: sheilesh_d1@hotmail.com [Department of Geriatrics, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Ming, E-mail: minli77@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Jianying, E-mail: Jianying.Li@med.ge.com [CT Imaging Research Center, GE Healthcare China, Beijing (China); Mao, Dingbiao, E-mail: maodingbiao74@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Wang, Zhenglei, E-mail: Williswang_doc@yahoo.com.cn [Department of Radiology, Shanghai Electricity Hospital, Shanghai 200050 (China); Hua, Yanqing, E-mail: cjr.huayanqing@vip.163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China)

    2012-10-15

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI{sub vol}) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique.

  17. An exercise-based randomized controlled trial on brain, cognition, physical health and mental health in overweight/obese children (ActiveBrains project): Rationale, design and methods.

    Science.gov (United States)

    Cadenas-Sánchez, Cristina; Mora-González, José; Migueles, Jairo H; Martín-Matillas, Miguel; Gómez-Vida, José; Escolano-Margarit, María Victoria; Maldonado, José; Enriquez, Gala María; Pastor-Villaescusa, Belén; de Teresa, Carlos; Navarrete, Socorro; Lozano, Rosa María; de Dios Beas-Jiménez, Juan; Estévez-López, Fernando; Mena-Molina, Alejandra; Heras, María José; Chillón, Palma; Campoy, Cristina; Muñoz-Hernández, Victoria; Martínez-Ávila, Wendy Daniela; Merchan, María Elisa; Perales, José C; Gil, Ángel; Verdejo-García, Antonio; Aguilera, Concepción M; Ruiz, Jonatan R; Labayen, Idoia; Catena, Andrés; Ortega, Francisco B

    2016-03-01

    The new and recent advances in neuroelectric and neuroimaging technologies provide a new era for further exploring and understanding how brain and cognition function can be stimulated by environmental factors, such as exercise, and particularly to study whether physical exercise influences brain development in early ages. The present study, namely the ActiveBrains project, aims to examine the effects of a physical exercise programme on brain and cognition, as well as on selected physical and mental health outcomes in overweight/obese children. A total of 100 participants aged 8 to 11 years are randomized into an exercise group (N=50) or a control group (N=50). The intervention lasts 20-weeks, with 3-5 sessions per week of 90 min each, and is mainly focused on high-intensity aerobic exercise yet also includes muscle-strengthening exercises. The extent to what the intervention effect remains 8-months after the exercise programme finishes is also studied in a subsample. Brain structure and function and cognitive performance are assessed using structural and functional magnetic resonance imaging and electroencephalographic recordings. Secondary outcomes include physical health outcomes (e.g. physical fitness, body fatness, bone mass and lipid-metabolic factors) and mental health outcomes (e.g. chronic stress indicators and overall behavioural and personality measurements such as anxiety or depression). This project will substantially contribute to the existing knowledge and will have an impact on societies, since early stimulation of brain development might have long lasting consequences on cognitive performance, academic achievement and in the prevention of behavioural problems and the promotion of psychological adjustment and mental health. Clinical trials. Gov identifier: NCT02295072. PMID:26924671

  18. Are there volumetric brain differences associated with the use of cocaine and amphetamine-type stimulants?

    Science.gov (United States)

    Mackey, Scott; Paulus, Martin

    2013-03-01

    While a large number of studies have examined brain volume differences associated with cocaine use, much less is known about structural differences related to amphetamine-type stimulant (ATS) use. What is known about cocaine may help to interpret emerging information on the interaction of brain volume with ATS consumption. To date, volumetric studies on the two types of stimulant have focused almost exclusively on brain differences associated with chronic use. There is considerable variability in the findings between studies which may be explained in part by the wide variety of methodologies employed. Despite this variability, seven recurrent themes are worth noting: (1) loci of lower cortical volume (approximately 10% on average) are consistently reported, (2) almost all studies indicate less volume in all or parts of the frontal cortex, (3) more specifically, a core group of studies implicate the ventromedial prefrontal cortex (including the medial portion of the orbital frontal cortex) and (4) the insula, (5) an enlarged striatal volume has been repeatedly observed, (6) reports on volume differences in the hippocampus and amygdala have been equivocal, (7) evidence supporting differential interaction of brain structure with cocaine vs. ATS is scant but the volume of all or parts of the temporal cortex appear lower in a majority of studies on cocaine but not ATS. Future research should include longitudinal designs on larger sample sizes and examine other stages of exposure to psychostimulants. PMID:23253945

  19. Association between Severe Upper Limb Spasticity and Brain Lesion Location in Stroke Patients

    Directory of Open Access Journals (Sweden)

    Alessandro Picelli

    2014-01-01

    Full Text Available Association between the site of brain injury and poststroke spasticity is poorly understood. The present study investigated whether lesion analysis could document brain regions associated with the development of severe upper limb poststroke spasticity. A retrospective analysis was conducted on 39 chronic stroke patients. Spasticity was assessed at the affected upper limb with the modified Ashworth scale (shoulder, elbow, wrist, and fingers. Brain lesions were traced from magnetic resonance imaging performed within the first 7 days after stroke and region of interest images were generated. The association between severe upper limb spasticity (modified Ashworth scale ≥2 and lesion location was determined with the voxel-based lesion-symptom mapping method implemented in MRIcro software. Colored maps representing the z statistics were generated and overlaid onto the automated anatomical labeling and the Johns Hopkins University white matter templates provided with MRIcron. Thalamic nuclei were identified with the Talairach Daemon software. Injuries to the insula, the thalamus, the basal ganglia, and white matter tracts (internal capsule, corona radiata, external capsule, and superior longitudinal fasciculus were significantly associated with severe upper limb poststroke spasticity. Further advances in our understanding of the neural correlates of spasticity may lead to early targeted rehabilitation when key regions are damaged.

  20. Changes in free amino acid and monoamine concentrations in the chick brain associated with feeding behavior.

    Science.gov (United States)

    Tran, Phuong V; Chowdhury, Vishwajit S; Nagasawa, Mao; Furuse, Mitsuhiro

    2015-01-01

    Domesticated chicks are precocial and therefore have relatively well-developed feeding behavior. The role of hypothalamic neuropeptides in food-intake regulation in chicks has been reported for decades. However, we hypothesized that nutrients and their metabolites in the brain may be involved in food intake in chicks because these animals exhibit a very frequent feeding pattern. Therefore, the purpose of this study was to examine the feeding behavior of chicks as well as the associated changes in free amino acid and monoamine concentrations in the chick brain. The feeding behavior of chicks was recorded continuously for 6 h. The next day, brain and blood samples were collected when the chicks either attempted to have food (hungry group) or turned food down (satiated group), in order to analyze the concentrations of the free amino acids and monoamines. We confirmed that the feeding behavior of neonatal chicks was characterized by short resting periods between very brief times spent on food intake. Several free amino acids in the mesencephalon were significantly lower in the satiated group than in the hungry group, while l-histidine and l-glutamine were significantly higher. Notably, there was no change in the free amino acid concentrations in other brain regions or plasma. As for monoamines, serotonin and norepinephrine were significantly lower in the mesencephalon of the hungry group compared with the satiated group, but 5 hydroxyindolacetic acid (5-HIAA) was higher. In addition, serotonin and norepinephrine levels were significantly higher in the brain stem of the hungry chicks compared with the satiated group, but levels of 5-HIAA and homovanillic acid were lower. Levels of both dopamine and its metabolite, 3,4-dihydroxyphenylacetic acid, were significantly higher in the diencephalon and telencephalon of the chicks in the hungry group. In conclusion, the changes in the free amino acids and monoamines in the brain may have some role in the feeding behavior of

  1. The Effect of Criticism on Functional Brain Connectivity and Associations with Neuroticism

    OpenAIRE

    Michelle Nadine Servaas; Harriëtte Riese; Remco Jan Renken; Jan-Bernard Cornelis Marsman; Johan Lambregs; Johan Ormel; André Aleman

    2013-01-01

    Neuroticism is a robust personality trait that constitutes a risk factor for psychopathology, especially anxiety disorders and depression. High neurotic individuals tend to be more self-critical and are overly sensitive to criticism by others. Hence, we used a novel resting-state paradigm to investigate the effect of criticism on functional brain connectivity and associations with neuroticism. Forty-eight participants completed the NEO Personality Inventory Revised (NEO-PI-R) to assess neurot...

  2. Facial Emotion Recognition Impairments are Associated with Brain Volume Abnormalities in Individuals with HIV

    OpenAIRE

    Clark, Uraina S.; Walker, Keenan A.; Cohen, Ronald A.; Devlin, Kathryn N.; Folkers, Anna M.; Pina, Mathew M.; Tashima, Karen T.

    2015-01-01

    Impaired facial emotion recognition abilities in HIV+ patients are well documented, but little is known about the neural etiology of these difficulties. We examined the relation of facial emotion recognition abilities to regional brain volumes in 44 HIV-positive (HIV+) and 44 HIV-negative control (HC) adults. Volumes of structures implicated in HIV− associated neuropathology and emotion recognition were measured on MRI using an automated segmentation tool. Relative to HC, HIV+ patients demons...

  3. Kocuria varians infection associated with brain abscess: A case report

    OpenAIRE

    Tsai Tai-Hsin; Chou Yu-lin; Cheng Yu-Hsin; Su Shou-hsin; Tsai Cheng-Yu; Lieu Ann-Shung

    2010-01-01

    Abstract Background Kocuria, established by Stackebrandt et al., previously was classified into Micrococcus. Only two species, K. rosea and K. kristinae are reported to be associated as pathogenic and found with catheter-related bacteremia and acute cholecystitis. Case presentation We herein report the first case of brain abscess caused by Kocuria varians, a gram-positive microorganism, in a 52-year-old man. Hematogenous spread is the probable pathogenesis. Conclusions This report presents a ...

  4. Brain state-dependent closed-loop modulation of paired associative stimulation controlled by sensorimotor desynchronization

    Directory of Open Access Journals (Sweden)

    Vladislav eRoyter

    2016-05-01

    Full Text Available Background: Pairing peripheral electrical stimulation (ES and transcranial magnetic stimulation (TMS increases corticospinal excitability when applied with a specific temporal pattern. When the two stimulation techniques are applied separately, motor imagery (MI-related oscillatory modulation amplifies both ES-related cortical effects -sensorimotor event-related desynchronization (ERD - and TMS-induced peripheral responses - motor-evoked potentials (MEP. However, the influence of brain self-regulation on the associative pairing of these stimulation techniques is still unclear.Objective: The aim of this pilot study was to investigate the effects of MI-related ERD during associative ES and TMS on subsequent corticospinal excitability. Method: The paired application of functional electrical stimulation (FES of the extensor digitorum communis (EDC muscle and subsequent single-pulse TMS (110% resting motor threshold of the contralateral primary motor cortex was controlled by beta-band (16-22Hz ERD during motor-imagery of finger extension and applied within a brain-machine interface environment in six healthy subjects. Neural correlates were probed by acquiring the stimulus-response curve (SRC of both MEP peak-to-peak amplitude and area under the curve (AUC before and after the intervention. Result: The application of approximately 150 pairs of associative FES and TMS resulted in a significant increase of MEP amplitudes and AUC, indicating that the induced increase of corticospinal excitability was mediated by the recruitment of additional neuronal pools. MEP increases were brain-state dependent and correlated with beta-band ERD, but not with the background EDC muscle activity; this finding was independent of the FES intensity applied.Conclusion: These results could be relevant for developing closed-loop therapeutic approaches such as the application of brain state-dependent, paired associative stimulation in the context of neurorehabilitation.

  5. Magnetic susceptibility of brain iron is associated with childhood spatial IQ.

    Science.gov (United States)

    Carpenter, Kimberly L H; Li, Wei; Wei, Hongjiang; Wu, Bing; Xiao, Xue; Liu, Chunlei; Worley, Gordon; Egger, Helen Link

    2016-05-15

    Iron is an essential micronutrient for healthy brain function and development. Because of the importance of iron in the brain, iron deficiency results in widespread and lasting effects on behavior and cognition. We measured iron in the basal ganglia of young children using a novel MRI method, quantitative susceptibility mapping, and examined the association of brain iron with age and cognitive performance. Participants were a community sample of 39 young children recruited from pediatric primary care who were participating in a 5-year longitudinal study of child brain development and anxiety disorders. The children were ages 7 to 11years old (mean age: 9.5years old) at the time of the quantitative susceptibility mapping scan. The differential abilities scale was administered when the children were 6years old to provide a measure of general intelligence and verbal (receptive and expressive), non-verbal, and spatial performance. Magnetic susceptibility values, which are linearly related to iron concentration in iron-rich areas, were extracted from regions of interest within iron-rich deep gray matter nuclei from the basal ganglia, including the caudate, putamen, substantia nigra, globus pallidus, and thalamus. Controlling for scan age, there was a significant positive association between iron in the basal ganglia and spatial IQ, with this effect being driven by iron in the right caudate We also replicated previous findings of a significant positive association between iron in the bilateral basal ganglia and age. Our finding of a positive association between spatial IQ and mean iron in the basal ganglia, and in the caudate specifically, suggests that iron content in specific regions of the iron-rich deep nuclei of the basal ganglia influences spatial intelligence. This provides a potential neurobiological mechanism linking deficits in spatial abilities reported in children who were severely iron deficient as infants to decreased iron within the caudate. PMID:26899787

  6. An event-related brain potential study of schizotypal personality and associative semantic processing

    OpenAIRE

    Kiang, Michael; Prugh, Jocelyn; Kutas, Marta

    2009-01-01

    To examine whether schizotypal personality is associated with the degree to which concepts activate each other in semantic memory, event-related brain potentials (ERPs) were recorded during a delayed lexical decision task from healthy volunteers rated for schizotypy. Each target word was directly, indirectly, or not at all related to a prime word preceding it at a 300- or 750-ms stimulus-onset asynchrony (SOA). Overall, N400 amplitudes were largest for unrelated targets, smallest for directly...

  7. The effect of criticism on functional brain connectivity and associations with neuroticism.

    Directory of Open Access Journals (Sweden)

    Michelle Nadine Servaas

    Full Text Available Neuroticism is a robust personality trait that constitutes a risk factor for psychopathology, especially anxiety disorders and depression. High neurotic individuals tend to be more self-critical and are overly sensitive to criticism by others. Hence, we used a novel resting-state paradigm to investigate the effect of criticism on functional brain connectivity and associations with neuroticism. Forty-eight participants completed the NEO Personality Inventory Revised (NEO-PI-R to assess neuroticism. Next, we recorded resting state functional magnetic resonance imaging (rsfMRI during two sessions. We manipulated the second session before scanning by presenting three standardized critical remarks through headphones, in which the subject was urged to please lie still in the scanner. A seed-based functional connectivity method and subsequent clustering were used to analyse the resting state data. Based on the reviewed literature related to criticism, we selected brain regions associated with self-reflective processing and stress-regulation as regions of interest. The findings showed enhanced functional connectivity between the clustered seed regions and brain areas involved in emotion processing and social cognition during the processing of criticism. Concurrently, functional connectivity was reduced between these clusters and brain structures related to the default mode network and higher-order cognitive control. Furthermore, individuals scoring higher on neuroticism showed altered functional connectivity between the clustered seed regions and brain areas involved in the appraisal, expression and regulation of negative emotions. These results may suggest that the criticized person is attempting to understand the beliefs, perceptions and feelings of the critic in order to facilitate flexible and adaptive social behavior. Furthermore, multiple aspects of emotion processing were found to be affected in individuals scoring higher on neuroticism during

  8. Associations between brain white matter integrity and disease severity in obstructive sleep apnea.

    Science.gov (United States)

    Tummala, Sudhakar; Roy, Bhaswati; Park, Bumhee; Kang, Daniel W; Woo, Mary A; Harper, Ronald M; Kumar, Rajesh

    2016-10-01

    Obstructive sleep apnea (OSA) is characterized by recurrent upper airway blockage, with continued diaphragmatic efforts to breathe during sleep. Brain structural changes in OSA appear in various regions, including white matter sites that mediate autonomic, mood, cognitive, and respiratory control. However, the relationships between brain white matter changes and disease severity in OSA are unclear. This study examines associations between an index of tissue integrity, magnetization transfer (MT) ratio values (which show MT between free and proton pools associated with tissue membranes and macromolecules), and disease severity (apnea-hypopnea index [AHI]) in OSA subjects. We collected whole-brain MT imaging data from 19 newly diagnosed, treatment-naïve OSA subjects (50.4 ± 8.6 years of age, 13 males, AHI 39.7 ± 24.3 events/hr], using a 3.0-Tesla MRI scanner. With these data, whole-brain MT ratio maps were calculated, normalized to common space, smoothed, and correlated with AHI scores by using partial correlation analyses (covariates, age and gender; P brain sites in OSA subjects, including superior and inferior frontal regions, ventral medial prefrontal cortex and nearby white matter, midfrontal white matter, insula, cingulate and cingulum bundle, internal and external capsules, caudate nuclei and putamen, basal forebrain, hypothalamus, corpus callosum, and temporal regions, showed principally lateralized negative correlations (P < 0.005). These regions showed significant correlations even with correction for multiple comparisons (cluster-level, family-wise error, P < 0.05), except for a few superior frontal areas. Predominantly negative correlations emerged between local MT values and OSA disease severity, indicating potential usefulness of MT imaging for examining the OSA condition. These findings indicate that OSA severity plays a significant role in white matter injury. © 2016 Wiley Periodicals, Inc. PMID:27315771

  9. Tract-tracing study of the extrabulbar olfactory projections in the brain of some teleosts.

    Science.gov (United States)

    D'aniello, Biagio; Luongo, Luciano; Rastogi, Rakesh K; Di Meglio, Maria; Pinelli, Claudia

    2015-04-01

    The extrabulbar olfactory projections (EBOP) is a collection of nerve fibers that originate from primary olfactory receptor neurons. These fibers penetrate into the brain, bypassing the olfactory bulbs (OBs). While the presence of an EBOP has been well established in teleosts, here we morphologically characterize the EBOP structure in four species each with a different morphological relationship of OB with the ventral telencephalic area. Tract-tracing methods (carbocyanine DiI/DIA and biocytin) were used. FMRFamide immunoreactive nervus terminalis (NT) components were also visualized to define any neuroanatomical relationship between the NT and EBOP. Unilateral DiI/DiA application to the olfactory chamber stained the entire olfactory epithelium, olfactory nerve fibers, and ipsilateral olfactory bulb. Labeled primary olfactory fibers running ventromedially as extrabulbar primary olfactory projections reached various regions of the secondary prosencephalon. Only in Moenkhausia sanctaefilomenae (no olfactory peduncle) did lipophilic tracer-labeled fibers reach the ipsilateral mesencephalon. The combination of tracing techniques and FMRFamide immunohistochemistry revealed a substantial overlap of the label along the olfactory pathways as well as in the anterior secondary prosencephalon. However, FMRFamide immunoreactivity was never colocalized in the same cellular or fiber component as visualized using tracer molecules. Our results showed a certain uniformity in the neuroanatomy and extension of EBOP in all four species, independent of the pedunculate feature of the OBs. The present study also provided additional evidence to support the view that EBOP and FMRFamide immunoreactive components of the NT are separate anatomical entities. PMID:25663434

  10. Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals.

    Science.gov (United States)

    Lancaster, Thomas M; Ihssen, Niklas; Brindley, Lisa M; Tansey, Katherine E; Mantripragada, Kiran; O'Donovan, Michael C; Owen, Michael J; Linden, David E J

    2016-02-01

    A substantial proportion of schizophrenia liability can be explained by additive genetic factors. Risk profile scores (RPS) directly index risk using a summated total of common risk variants weighted by their effect. Previous studies suggest that schizophrenia RPS predict alterations to neural networks that support working memory and verbal fluency. In this study, we apply schizophrenia RPS to fMRI data to elucidate the effects of polygenic risk on functional brain networks during a probabilistic-learning neuroimaging paradigm. The neural networks recruited during this paradigm have previously been shown to be altered to unmedicated schizophrenia patients and relatives of schizophrenia patients, which may reflect genetic susceptibility. We created schizophrenia RPS using summary data from the Psychiatric Genetic Consortium (Schizophrenia Working Group) for 83 healthy individuals and explore associations between schizophrenia RPS and blood oxygen level dependency (BOLD) during periods of choice behavior (switch-stay) and reflection upon choice outcome (reward-punishment). We show that schizophrenia RPS is associated with alterations in the frontal pole (PWHOLE-BRAIN-CORRECTED  = 0.048) and the ventral striatum (PROI-CORRECTED  = 0.036), during choice behavior, but not choice outcome. We suggest that the common risk variants that increase susceptibility to schizophrenia can be associated with alterations in the neural circuitry that support the processing of changing reward contingencies. Hum Brain Mapp 37:491-500, 2016. © 2015 Wiley Periodicals, Inc.

  11. Known glioma risk loci are associated with glioma with a family history of brain tumours

    DEFF Research Database (Denmark)

    Melin, Beatrice; Dahlin, Anna M; Andersson, Ulrika;

    2013-01-01

    family history of brain tumours, defined as having at least one first- or second-degree relative with a history of brain tumour, are associated with known glioma risk loci. One thousand four hundred and thirty-one glioma cases and 2,868 cancer-free controls were identified from four case-control studies...... and two prospective cohorts from USA, Sweden and Denmark and genotyped for seven SNPs previously reported to be associated with glioma risk in case-control designed studies. Odds ratios were calculated by unconditional logistic regression. In analyses including glioma cases with a family history of brain...... tumours (n = 104) and control subjects free of glioma at baseline, three of seven SNPs were associated with glioma risk: rs2736100 (5p15.33, TERT), rs4977756 (9p21.3, CDKN2A-CDKN2B) and rs6010620 (20q13.33, RTEL1). After Bonferroni correction for multiple comparisons, only one marker was statistically...

  12. Botulinum toxin injection for bruxism associated with brain injury: Case report

    Directory of Open Access Journals (Sweden)

    Serdar Kesikburun, MD

    2014-07-01

    Full Text Available Bruxism is involuntary grinding of the teeth and can occur as a complication of brain injury. If untreated, bruxism can lead to severe occlusal trauma. Herein, we present a patient with traumatic brain injury and nocturnal bruxism that was treated with botulinum toxin injection. A 21 yr old male patient with traumatic brain injury from a car accident was admitted to our inpatient rehabilitation unit. He had a history of coma for 2 wk in the intensive care unit. The initial cranial computed tomography scan indicated a superior thalamic hemorrhage. On admission to our department 3 mo postinjury, his mental status was good and he was able to walk without assistance, but he had mild ataxia. He complained about severe teeth grinding at night, which began 2 mo postinjury. Botulinum toxin-A was injected into the masseter muscles (20 U in each muscle and temporalis muscles (15 U in each muscle bilaterally. A decrease in bruxism was reported within 3 d. Clinical improvement persisted at assessment 4 mo posttreatment. Botulinum toxin injection can be used as an effective treatment for bruxism associated with brain injury.

  13. A new area in the brain associated with learning and memory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new subdivision, named marginal division (MrD), consisting of spindle-shaped neurons, has been identified at the caudomedial margin of the neostriatum in the brains of the rat, cat, monkey and human. It is distinguishable from the rest of striatum by special neural connections and many intensely expressed neuropeptides and some monoamines in the fibers, terminals and neuronal somata.Three-dimensional reconstruction of the rat brain reveals that the MrD is a flat pan-shaped area between the neostriatum and globus pallidns. Chemical lesions of bilateral MrD in rats will result in severely impaired learning and memory functions, as was demonstrated by double blind Y-maze test. The function of MrD has been shown to be associated with learning and memory by functional magnetic resonance imaging (fMRI) technique in human brain in vivo. Functional neuronal connections are observed between the MrD and hippocampus, amygdala, as well as the basal nucleus of Meynert by chemically induced c-Fos immunohistochemical staining. MrD is a newly discovered part and a universal structure in the neostriatum of the mammalian brain. MrD might very possibly play an important role in processes of the learning and memory.

  14. Frontal white matter volume is associated with brain enlargement and higher structural connectivity in anthropoid primates.

    Directory of Open Access Journals (Sweden)

    Jeroen Bert Smaers

    Full Text Available Previous research has indicated the importance of the frontal lobe and its 'executive' connections to other brain structures as crucial in explaining primate neocortical adaptations. However, a representative sample of volumetric measurements of frontal connective tissue (white matter has not been available. In this study, we present new volumetric measurements of white and grey matter in the frontal and non-frontal neocortical lobes from 18 anthropoid species. We analyze this data in the context of existing theories of neocortex, frontal lobe and white versus grey matter hyperscaling. Results indicate that the 'universal scaling law' of neocortical white to grey matter applies separately for frontal and non-frontal lobes; that hyperscaling of both neocortex and frontal lobe to rest of brain is mainly due to frontal white matter; and that changes in frontal (but not non-frontal white matter volume are associated with changes in rest of brain and basal ganglia, a group of subcortical nuclei functionally linked to 'executive control'. Results suggest a central role for frontal white matter in explaining neocortex and frontal lobe hyperscaling, brain size variation and higher neural structural connectivity in anthropoids.

  15. The time-course and spatial distribution of brain activity associated with sentence processing.

    Science.gov (United States)

    Brennan, Jonathan; Pylkkänen, Liina

    2012-04-01

    Sentence comprehension involves a host of highly interrelated processes, including syntactic parsing, semantic composition, and pragmatic inferencing. In neuroimaging, a primary paradigm for examining the brain bases of sentence processing has been to compare brain activity elicited by sentences versus unstructured lists of words. These studies commonly find an effect of increased activity for sentences in the anterior temporal lobes (aTL). Together with neuropsychological data, these findings have motivated the hypothesis that the aTL is engaged in sentence level combinatorics. Combinatoric processing during language comprehension, however, occurs within tens and hundreds of milliseconds, i.e., at a time-scale much faster than the temporal resolution of hemodynamic measures. Here, we examined the time-course of sentence-level processing using magnetoencephalography (MEG) to better understand the temporal profile of activation in this common paradigm and to test a key prediction of the combinatoric hypothesis: because sentences are interpreted incrementally, word-by-word, activity associated with basic linguistic combinatorics should be time-locked to word-presentation. Our results reveal increased anterior temporal activity for sentences compared to word lists beginning approximately 250 ms after word onset. We also observed increased activation in a network of other brain areas, extending across posterior temporal, inferior frontal, and ventral medial areas. These findings confirm a key prediction of the combinatoric hypothesis for the aTL and further elucidate the spatio-temporal characteristics of sentence-level computations in the brain.

  16. Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age.

    Science.gov (United States)

    Karama, S; Bastin, M E; Murray, C; Royle, N A; Penke, L; Muñoz Maniega, S; Gow, A J; Corley, J; Valdés Hernández, M del C; Lewis, J D; Rousseau, M-É; Lepage, C; Fonov, V; Collins, D L; Booth, T; Rioux, P; Sherif, T; Adalat, R; Starr, J M; Evans, A C; Wardlaw, J M; Deary, I J

    2014-05-01

    Associations between brain cortical tissue volume and cognitive function in old age are frequently interpreted as suggesting that preservation of cortical tissue is the foundation of successful cognitive aging. However, this association could also, in part, reflect a lifelong association between cognitive ability and cortical tissue. We analyzed data on 588 subjects from the Lothian Birth Cohort 1936 who had intelligence quotient (IQ) scores from the same cognitive test available at both 11 and 70 years of age as well as high-resolution brain magnetic resonance imaging data obtained at approximately 73 years of age. Cortical thickness was estimated at 81 924 sampling points across the cortex for each subject using an automated pipeline. Multiple regression was used to assess associations between cortical thickness and the IQ measures at 11 and 70 years. Childhood IQ accounted for more than two-third of the association between IQ at 70 years and cortical thickness measured at age 73 years. This warns against ascribing a causal interpretation to the association between cognitive ability and cortical tissue in old age based on assumptions about, and exclusive reference to, the aging process and any associated disease. Without early-life measures of cognitive ability, it would have been tempting to conclude that preservation of cortical thickness in old age is a foundation for successful cognitive aging when, instead, it is a lifelong association. This being said, results should not be construed as meaning that all studies on aging require direct measures of childhood IQ, but as suggesting that proxy measures of prior cognitive function can be useful to take into consideration.

  17. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration.

    Science.gov (United States)

    Pearson, Brandon L; Simon, Jeremy M; McCoy, Eric S; Salazar, Gabriela; Fragola, Giulia; Zylka, Mark J

    2016-03-31

    Environmental factors, including pesticides, have been linked to autism and neurodegeneration risk using retrospective epidemiological studies. Here we sought to prospectively identify chemicals that share transcriptomic signatures with neurological disorders, by exposing mouse cortical neuron-enriched cultures to hundreds of chemicals commonly found in the environment and on food. We find that rotenone, a pesticide associated with Parkinson's disease risk, and certain fungicides, including pyraclostrobin, trifloxystrobin, famoxadone and fenamidone, produce transcriptional changes in vitro that are similar to those seen in brain samples from humans with autism, advanced age and neurodegeneration (Alzheimer's disease and Huntington's disease). These chemicals stimulate free radical production and disrupt microtubules in neurons, effects that can be reduced by pretreating with a microtubule stabilizer, an antioxidant, or with sulforaphane. Our study provides an approach to prospectively identify environmental chemicals that transcriptionally mimic autism and other brain disorders.

  18. The association of functional oral intake and pneumonia in patients with severe traumatic brain injury

    DEFF Research Database (Denmark)

    Hansen, T.S.; Larsen, K.; Engberg, Anders

    2008-01-01

    OBJECTIVES: To investigate the incidence and onset time of pneumonia for patients with severe traumatic brain injury (TBI) in the early phase of rehabilitation and to identify parameters associated with the risk of pneumonia. DESIGN: Observational retrospective cohort study. SETTING: Subacute...... MEASURE: Pneumonia. RESULTS: Twenty-seven percent of the patients admitted to the brain injury unit were in treatment for pneumonia; pneumonia developed in 12% of the patients during rehabilitation; the condition occurred within 19 days of admission in all but 1 patient. Of these patients, 81% received...... nothing by mouth. Three factors identified patients at highest risk of pneumonia: Glasgow Coma Scale score less than 9 (1 day after cessation of sedation); Rancho Los Amigos Scale score less than 3 (on admission); and no oral intake on admission. Having a tracheotomy tube and/or feeding tube was also...

  19. Laterality of brain areas associated with arithmetic calculations revealed by functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-ting; ZHANG Quan; ZHANG Jing; LI Wei

    2005-01-01

    Background Asymmetry of bilateral cerebral function, i.e. laterality, is an important phenomenon in many brain actions: arithmetic calculation may be one of these phenomena. In this study, first, laterality of brain areas associated with arithmetic calculations was revealed by functional magnetic resonance imaging (fMRI). Second, the relationship among laterality, handedness, and types of arithmetic task was assessed. Third, we postulate possible reasons for laterality.Methods Using a block-designed experiment, twenty-five right-handed and seven left-handed healthy volunteers carried out simple calculations, complex calculations and proximity judgments. T1WI and GRE-EPI fMRI were performed with a GE 1.5T whole body MRI scanner. Statistical parametric mapping (SPM99) was used to process data and localize functional areas. Numbers of activated voxels were recorded to calculate laterality index for evaluating the laterality of functional brain areas.Results For both groups, the activation of functional areas in the frontal lobe showed a tendency towards the nonpredominant hand side, but the functional areas in the inferior parietal lobule had left laterality. During simple and complex calculations, the laterality indices of the prefrontal cortex and premotor area were higher in the right-handed group than that in the left-handed group, whereas the laterality of the inferior parietal lobule had no such significant difference. In both groups, when the difficulty of the task increased, the laterality of the prefrontal cortex, premotor area, and inferior parietal lobule decreased, but the laterality of posterior part of the inferior frontal gyrus increased.Conclusions The laterality of the functional brain areas associated with arithmetic calculations can be detected with fMRI. The laterality of the functional areas was related to handedness and task difficulty.

  20. Alterations in Brain Structure and Functional Connectivity in Alcohol Dependent Patients and Possible Association with Impulsivity

    Science.gov (United States)

    Dong, Yue; Ma, Mengying; Ma, Yi; Dong, Yuru; Niu, Yajuan; Jiang, Yin; Wang, Hong; Wang, Zhiyan; Wu, Liuzhen; Sun, Hongqiang; Cui, Cailian

    2016-01-01

    Background Previous studies have documented that heightened impulsivity likely contributes to the development and maintenance of alcohol use disorders. However, there is still a lack of studies that comprehensively detected the brain changes associated with abnormal impulsivity in alcohol addicts. This study was designed to investigate the alterations in brain structure and functional connectivity associated with abnormal impulsivity in alcohol dependent patients. Methods Brain structural and functional magnetic resonance imaging data as well as impulsive behavior data were collected from 20 alcohol dependent patients and 20 age- and sex-matched healthy controls respectively. Voxel-based morphometry was used to investigate the differences of grey matter volume, and tract-based spatial statistics was used to detect abnormal white matter regions between alcohol dependent patients and healthy controls. The alterations in resting-state functional connectivity in alcohol dependent patients were examined using selected brain areas with gray matter deficits as seed regions. Results Compared with healthy controls, alcohol dependent patients had significantly reduced gray matter volume in the mesocorticolimbic system including the dorsal posterior cingulate cortex, the dorsal anterior cingulate cortex, the medial prefrontal cortex, the orbitofrontal cortex and the putamen, decreased fractional anisotropy in the regions connecting the damaged grey matter areas driven by higher radial diffusivity value in the same areas and decreased resting-state functional connectivity within the reward network. Moreover, the gray matter volume of the left medial prefrontal cortex exhibited negative correlations with various impulse indices. Conclusions These findings suggest that chronic alcohol dependence could cause a complex neural changes linked to abnormal impulsivity. PMID:27575491

  1. Prospective associations between brain activation to cocaine and no-go cues and cocaine relapse*

    Science.gov (United States)

    Prisciandaro, James J.; Myrick, Hugh; Henderson, Scott; McRae-Clark, Aimee L.; Brady, Kathleen T.

    2013-01-01

    Background The ability to predict potential for relapse to substance use following treatment could be very useful in targeting aftercare strategies. Recently, a number of investigators have focused on using neural activity measured by fMRI to predict relapse propensity. The purpose of the present study was to use fMRI to investigate prospective associations between brain reactivity to cocaine and response inhibition cues and relapse to cocaine use. Methods Thirty cocaine-dependent participants with clean cocaine urine drug screens (UDS) completed a baseline fMRI scan, including a cocaine-cue reactivity task and a go/no-go response inhibition task. After participating in a brief clinical trial of D-cycloserine for the facilitation of cocaine cue extinction, they returned for a one-week follow-up UDS. Associations between baseline activation to cocaine and inhibition cues and relapse to cocaine use were explored. Results Positive cocaine UDS was significantly associated with cocaine cue activation in the right putamen and insula, as well as bilateral occipital regions. Associations between positive cocaine UDS and activation to no-go cues were concentrated in the postcentral gyri, a region involved in response execution. Conclusions Although preliminary, these results suggest that brain imaging may be a useful tool for predicting risk for relapse in cocaine-dependent individuals. Further, larger-scale naturalistic studies are needed to corroborate and extend these findings. PMID:23683790

  2. Identification and validation of S100A7 associated with lung squamous cell carcinoma metastasis to brain.

    Science.gov (United States)

    Zhang, Hao; Wang, Yinping; Chen, Yue; Sun, Suozhu; Li, Na; Lv, Dongxia; Liu, Chuanjun; Huang, Lingyun; He, Dacheng; Xiao, Xueyuan

    2007-07-01

    To identify potential markers associated with non-small cell lung cancer (NSCLC) metastasis to brain, comparative proteome analysis on two lung squamous cell carcinoma (SCC) cell lines, NCI-H226 and H226Br (the brain metastatic cell line of NCI-H226), was performed using two-dimensional electrophoresis (2-DE) followed by a tandem mass spectrometer with a matrix-assisted laser desorption/ionization (MALDI) source. Twenty differential proteins were identified, of which 6 proteins were up-regulated in H226Br cell compared with NCI-H226 cells, whereas 14 proteins were down-regulated. S100A7 and 14-3-3sigma, two of candidate proteins significantly upregulated and downregulated in H226Br cell, were selected to verify the liability of the differential proteins by Western blot. The results were in accordance with 2-D data. To determine whether S100A7 overexpression is actually associated with SCC metastasis to brain, S100A7 protein was testified in 10 brain metastasis tissues from NSCLC, 38 primary NSCLC tissues including half matched local positive lymph nodes, 5 primary brain tumors and 2 non-cancer brain tissues by immunohistochemistry. Of particular interest to us was that the positive staining of S100A7 could be found in 3/5 (60%) brain metastases tissue from SCC and 8/21 (38%) the primary lung SCC tissues, while no positive staining was observed in the brain metastases tissue from Ad (n=5), the primary adenocarcinoma (Ad) tissues (n=17), the primary brain tumors (n=5), all local positive lymph nodes from the primary NSCLC (n=19) and non-cancer brain tissues (n=2). These findings suggest that S100A7 expression is closely associated with SCC metastasis to brain and may be a potential biomarker for monitoring the development of SCC. PMID:17418446

  3. Sport-related structural brain injury associated with arachnoid cysts: a systematic review and quantitative analysis.

    Science.gov (United States)

    Zuckerman, Scott L; Prather, Colin T; Yengo-Kahn, Aaron M; Solomon, Gary S; Sills, Allen K; Bonfield, Christopher M

    2016-04-01

    OBJECTIVE Arachnoid cysts (ACs) are congenital lesions bordered by an arachnoid membrane. Researchers have postulated that individuals with an AC demonstrate a higher rate of structural brain injury after trauma. Given the potential neurological consequences of a structural brain injury requiring neurosurgical intervention, the authors sought to perform a systematic review of sport-related structural-brain injury associated with ACs with a corresponding quantitative analysis. METHODS Titles and abstracts were searched systematically across the following databases: PubMed, Embase, CINAHL, and PsycINFO. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Peer-reviewed case reports, case series, or observational studies that reported a structural brain injury due to a sport or recreational activity (hereafter referred to as sport-related) with an associated AC were included. Patients were excluded if they did not have an AC, suffered a concussion without structural brain injury, or sustained the injury during a non-sport-related activity (e.g., fall, motor vehicle collision). Descriptive statistical analysis and time to presentation data were summarized. Univariate logistic regression models to assess predictors of neurological deficit, open craniotomy, and cystoperitoneal shunt were completed. RESULTS After an initial search of 994 original articles, 52 studies were found that reported 65 cases of sport-related structural brain injury associated with an AC. The median age at presentation was 16 years (range 4-75 years). Headache was the most common presenting symptom (98%), followed by nausea and vomiting in 49%. Thirteen patients (21%) presented with a neurological deficit, most commonly hemiparesis. Open craniotomy was the most common form of treatment (49%). Bur holes and cyst fenestration were performed in 29 (45%) and 31 (48%) patients, respectively. Seven patients (11%) received

  4. Structural Changes after Videogame Practice Related to a Brain Network Associated with Intelligence

    Science.gov (United States)

    Colom, Roberto; Quiroga, Ma. Angeles; Solana, Ana Beatriz; Burgaleta, Miguel; Roman, Francisco J.; Privado, Jesus; Escorial, Sergio; Martinez, Kenia; Alvarez-Linera, Juan; Alfayate, Eva; Garcia, Felipe; Lepage, Claude; Hernandez-Tamames, Juan Antonio; Karama, Sherif

    2012-01-01

    Here gray and white matter changes after four weeks of videogame practice were analyzed using optimized voxel-based morphometry (VBM), cortical surface and cortical thickness indices, and white matter integrity computed from several projection, commissural, and association tracts relevant to cognition. Beginning with a sample of one hundred young…

  5. Geometric invariants associated with projective structures and univalence criteria

    CERN Document Server

    Kim, Seong-A

    2009-01-01

    For a nonconstant holomorphic map between projective Riemann surfaces with conformal metrics, we consider invariant Schwarzian derivatives and projective Schwarzian derivatives of general virtual order. We show that these two quantities are related by the "Schwarzian derivative" of the metrics of the surfaces (at least for the case of virtual orders 2 and 3). As an application, we give univalence criteria for a meromorphic function on the unit disk in terms of the projective Schwarzian derivative of virtual order 3.

  6. Glycosylation of microtubule-associated protein tau in Alzheimer's disease brain.

    Science.gov (United States)

    Takahashi, M; Tsujioka, Y; Yamada, T; Tsuboi, Y; Okada, H; Yamamoto, T; Liposits, Z

    1999-06-01

    In the neurofibrillary pathology of Alzheimer's disease (AD), neurofibrillary tangles (NFTs) contain paired helical filaments (PHFs) as their major fibrous component. Abnormally hyperphosphorylated, microtubule-associated protein tau is the major protein subunit of PHFs. A recent in vitro study showed that PHF tangles from AD brains are highly glycosylated, whereas no glycan is detected in normal tau. Deglycosylation of PHF tangles converts them into bundles of straight filaments and restores their accessibility to microtubules. We showed that PHF tangles from AD brain tissue were associated with specific glycan molecules by double immunostaining with peroxidase and alkaline phosphatase labeling. Intracellular tangles and dystrophic neurites in a neuritic plaque with abnormally hyperphosphorylated tau, detected with the monoclonal antibodies AT-8 and anti-tau-2, were also positive with lectin Galanthus nivalis agglutinin (GNA) which recognizes both the N- and O-glycosidically linked saccharides. Colocalization was not seen in the extracellular tangles and amyloid deposition, suggesting that the glycosylation of tau might be associated with the early phase of insoluble NFT formation. Thus, although abnormal phosphorylation might promote aggregation of tau and inhibition of the assembly of microtubules, glycosylation mediated by a GNA-positive glycan appears to be responsible for the formation of the PHF structures in vivo.

  7. Impaired cerebral autoregulation is associated with brain atrophy and worse functional status in chronic ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Mikio C Aoi

    Full Text Available Dynamic cerebral autoregulation (dCA is impaired following stroke. However, the relationship between dCA, brain atrophy, and functional outcomes following stroke remains unclear. In this study, we aimed to determine whether impairment of dCA is associated with atrophy in specific regions or globally, thereby affecting daily functions in stroke patients.We performed a retrospective analysis of 33 subjects with chronic infarctions in the middle cerebral artery territory, and 109 age-matched non-stroke subjects. dCA was assessed via the phase relationship between arterial blood pressure and cerebral blood flow velocity. Brain tissue volumes were quantified from MRI. Functional status was assessed by gait speed, instrumental activities of daily living (IADL, modified Rankin Scale, and NIH Stroke Score.Compared to the non-stroke group, stroke subjects showed degraded dCA bilaterally, and showed gray matter atrophy in the frontal, parietal and temporal lobes ipsilateral to infarct. In stroke subjects, better dCA was associated with less temporal lobe gray matter atrophy on the infracted side ([Formula: see text] = 0.029, faster gait speed ([Formula: see text] = 0.018 and lower IADL score ([Formula: see text]0.002. Our results indicate that better dynamic cerebral perfusion regulation is associated with less atrophy and better long-term functional status in older adults with chronic ischemic infarctions.

  8. Childhood abuse and deprivation are associated with distinct sex-dependent differences in brain morphology.

    Science.gov (United States)

    Everaerd, Daphne; Klumpers, Floris; Zwiers, Marcel; Guadalupe, Tulio; Franke, Barbara; van Oostrom, Iris; Schene, Aart; Fernández, Guillén; Tendolkar, Indira

    2016-06-01

    Childhood adversity (CA) has been associated with long-term structural brain alterations and an increased risk for psychiatric disorders. Evidence is emerging that subtypes of CA, varying in the dimensions of threat and deprivation, lead to distinct neural and behavioral outcomes. However, these specific associations have yet to be established without potential confounders such as psychopathology. Moreover, differences in neural development and psychopathology necessitate the exploration of sexual dimorphism. Young healthy adult subjects were selected based on history of CA from a large database to assess gray matter (GM) differences associated with specific subtypes of adversity. We compared voxel-based morphometry data of subjects reporting specific childhood exposure to abuse (n=127) or deprivation (n=126) and a similar sized group of controls (n=129) without reported CA. Subjects were matched on age, gender, and educational level. Differences between CA subtypes were found in the fusiform gyrus and middle occipital gyrus, where subjects with a history of deprivation showed reduced GM compared with subjects with a history of abuse. An interaction between sex and CA subtype was found. Women showed less GM in the visual posterior precuneal region after both subtypes of CA than controls. Men had less GM in the postcentral gyrus after childhood deprivation compared with abuse. Our results suggest that even in a healthy population, CA subtypes are related to specific alterations in brain structure, which are modulated by sex. These findings may help understand neurodevelopmental consequences related to CA. PMID:26576924

  9. Beneficial Roles of Emotion in Decision Making: Functional Association of Brain and Body

    Directory of Open Access Journals (Sweden)

    Hideki Ohira

    2011-12-01

    Full Text Available Though traditional microeconomics has supposed that human decisions are based on logical and exact computation of cost-benefit balances or efficacies, studies in behavioral economics have shown that humans sometimes make seemingly irrational decisions driven by emotions. In our everyday situations, factors related to decisions are complex and which alternative will be the most beneficial is uncertain. In such cases, emotions have been thought adaptive because they can quickly reduce negative alternatives and facilitate fast and effective decision making. Some theorists argued that one of important sources of such emotional drives affecting decision making is bodily responses that are represented in brain regions (Craig, 2009; Damasio, 1994. In this article, empirical evidence for the functional associations of the brain and body accompanying decision making will be shown as follows. (1 Heart rate responses and concentration of inflammatory cytokine (IL-6 can predict acceptance or rejection of an unfair offer in an economical negotiation game, the Ultimatum Game. Activation of the anterior insula mediates relationship between bodily states and decision making. (2 Sympathetic responses reflected by secretion of adrenaline are represented in brain regions such as the midbrain, anterior cingulate cortex, and anterior insula, and furthermore can determine exploration of decision making in a situation where an action-outcome contingency is stochastic and unstable. These findings suggest beneficial roles of emotion and bodily responses in decision making.

  10. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation

    Directory of Open Access Journals (Sweden)

    Luissint Anny-Claude

    2012-11-01

    Full Text Available Abstract The Blood–brain barrier (BBB, present at the level of the endothelium of cerebral blood vessels, selectively restricts the blood-to-brain paracellular diffusion of compounds; it is mandatory for cerebral homeostasis and proper neuronal function. The barrier properties of these specialized endothelial cells notably depend on tight junctions (TJs between adjacent cells: TJs are dynamic structures consisting of a number of transmembrane and membrane-associated cytoplasmic proteins, which are assembled in a multimolecular complex and acting as a platform for intracellular signaling. Although the structural composition of these complexes has been well described in the recent years, our knowledge about their functional regulation still remains fragmentary. Importantly, pericytes, embedded in the vascular basement membrane, and perivascular microglial cells, astrocytes and neurons contribute to the regulation of endothelial TJs and BBB function, altogether constituting the so-called neurovascular unit. The present review summarizes our current understanding of the structure and functional regulation of endothelial TJs at the BBB. Accumulating evidence points to a correlation between BBB dysfunction, alteration of TJ complexes and progression of a variety of CNS diseases, such as stroke, multiple sclerosis and brain tumors, as well as neurodegenerative diseases like Parkinson’s and Alzheimer’s diseases. Understanding how TJ integrity is controlled may thus help improve drug delivery across the BBB and the design of therapeutic strategies for neurological disorders.

  11. Problems associated with the apnea test in the diagnosis of brain death

    Directory of Open Access Journals (Sweden)

    Saposnik Gustavo

    2004-07-01

    Full Text Available Background: Brain death is the absence of all cortical functions, including the brainstem. The apnea test (AT is a necessary requisite to complete this diagnosis. Anecdotal reports describing hypotension and acidosis due to apnea test have been reported. However, there are few studies that evaluate complications or difficulties related to this procedure. Objective: To analyze medical problems associated with the apnea test. Methods and Patients: We analyzed clinical features, potential risk conditions, and problems in 129 brain dead patients during the apnea test. The diagnosis of brain death was made according to the American Academy of Neurology recommendations. Results: Clinical problems during the apnea test were detected in more than two thirds of patients, including: arterial hypotension (12%, acidosis (68%, and hypoxemia (23%. Four patients developed major complications, including: pneumothorax, cardiac arrest, bradycardia, atrial fibrillation and myocardial infarction. Conclusion: The apnea test is not an innocuous procedure. Complications during the AT are more common than reported and limit organ procurement for transplantation. Guidelines for performing the AT should be followed in order to avoid clinical complications.

  12. Complications associated with the apnea test in the determination of the brain death

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-liang; FANG Qiang; LI Li; QIU Yun-qing; LUO Ben-yan

    2008-01-01

    Background An apnea test is essentialin the clinical determination of brain death.This study was conducted to analyse complications associated with the apnea test in the determination of the brain death.Methods On 93 adult patients In coma in Zhejiang Province of China from January 2003 to December 2006,179 apnea tests were performed as a part of the determination of brain death.Potential risk conditions and complications were analysed during apnea tests.Results During apnea,sedous cardiac arrhythmia did not occur in all patients.Complications occurred in 37 of 179 (21%)apnea tests.Hypotension occurred in 30 patients(17%)and it was obsewed in 8/94(9%)tests with baseline value of systolic arterial blood pressure not less than 120 mmHg,and 22/85(26%)lass than 120 mmHg(P<0.05).Severe hypoxaemia occurred in 10 patients(6%)of which 3/138(2%)tests with baseline value of arterial oxygen pressure not less than 200 mmHg,and 7/41(17%)less than 200 mmHg(P<0.05).Conclusions This study demonstrated that complications occurred mostly in patients with inadequate baseline systolic arterial blood pressure and preoxygenation.Adequate precautions during the apnea tests may reduce the risk of cardiovascular and oxygenation complication.

  13. Human Serum Metabolites Associate With Severity and Patient Outcomes in Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Matej Orešič

    2016-10-01

    Full Text Available Traumatic brain injury (TBI is a major cause of death and disability worldwide, especially in children and young adults. TBI is an example of a medical condition where there are still major lacks in diagnostics and outcome prediction. Here we apply comprehensive metabolic profiling of serum samples from TBI patients and controls in two independent cohorts. The discovery study included 144 TBI patients, with the samples taken at the time of hospitalization. The patients were diagnosed as severe (sTBI; n = 22, moderate (moTBI; n = 14 or mild TBI (mTBI; n = 108 according to Glasgow Coma Scale. The control group (n = 28 comprised of acute orthopedic non-brain injuries. The validation study included sTBI (n = 23, moTBI (n = 7, mTBI (n = 37 patients and controls (n = 27. We show that two medium-chain fatty acids (decanoic and octanoic acids and sugar derivatives including 2,3-bisphosphoglyceric acid are strongly associated with severity of TBI, and most of them are also detected at high concentrations in brain microdialysates of TBI patients. Based on metabolite concentrations from TBI patients at the time of hospitalization, an algorithm was developed that accurately predicted the patient outcomes (AUC = 0.84 in validation cohort. Addition of the metabolites to the established clinical model (CRASH, comprising clinical and computed tomography data, significantly improved prediction of patient outcomes. The identified ‘TBI metabotype’ in serum, that may be indicative of disrupted blood-brain barrier, of protective physiological response and altered metabolism due to head trauma, offers a new avenue for the development of diagnostic and prognostic markers of broad spectrum of TBIs.

  14. Association of amyloid burden, brain atrophy and memory deficits in aged apolipoprotein ε4 mice.

    Science.gov (United States)

    Yin, Junxiang; Turner, Gregory H; Coons, Stephen W; Maalouf, Marwan; Reiman, Eric M; Shi, Jiong

    2014-03-01

    Apolipoprotein E ε4 allele (ApoE4) has been associated with increased risk of sporadic Alzheimer's disease (AD) and of conversion from mild cognitive impairment to AD. But the underlying mechanism of ApoE4 affecting brain atrophy and cognition is not fully understood. We investigated the effect of ApoE4 on amyloid beta (Aβ) protein burden and its correlation with the structure change of hippocampus and cortex, cognitive and behavioral changes in ApoE4 transgenic mice. Male ApoE4 transgenic mice and age-matched control mice at age 12 months and 24 months were tested in the Morris Water Maze (MWM). Brain volume changes (including whole brain, hippocampus, cortex, total ventricles and caudate putamen) were assessed by using small animal 7T-MRI. Aβ level was assessed by immunohistochemistry (IHC) and immunoprecipitation/western blot. In MWM, escape latency was longer and time spent in the target quadrant was shorter in aged ApoE4 mice (12- and 24-month-old), suggesting age- and ApoE4-dependent visuospatial deficits. Atrophy on MRI was prominent in the hippocampus (p=0.039) and cortex (p=0.013) of ApoE4 mice (24-month-old) as compared to age-matched control mice. IHC revealed elevated Aβ deposition in the hippocampus. Consistently, both soluble and insoluble Aβ aggregates were increased in aged ApoE4 mice. This increase was correlated inversely with hippocampal atrophy and cognitive deficits. These data give further evidence that ApoE4 plays an important role in brain atrophy and memory impairment by modulating amyloid production and deposition.

  15. Aberrant brain stem morphometry associated with sleep disturbance in drug-naïve subjects with Alzheimer’s disease

    Science.gov (United States)

    Lee, Ji Han; Jung, Won Sang; Choi, Woo Hee; Lim, Hyun Kook

    2016-01-01

    Objective Among patients with Alzheimer’s disease (AD), sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD. Materials and methods In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology. Results Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group. Conclusion This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings. PMID:27601903

  16. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury.

    Directory of Open Access Journals (Sweden)

    Shushi Kabu

    Full Text Available Blast-associated shock wave-induced traumatic brain injury (bTBI remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20-130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB integrity following blast exposure. Reactive oxygen species (ROS levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective

  17. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury.

    Science.gov (United States)

    Kabu, Shushi; Jaffer, Hayder; Petro, Marianne; Dudzinski, Dave; Stewart, Desiree; Courtney, Amy; Courtney, Michael; Labhasetwar, Vinod

    2015-01-01

    Blast-associated shock wave-induced traumatic brain injury (bTBI) remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20-130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB) integrity following blast exposure. Reactive oxygen species (ROS) levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective therapeutic strategies

  18. Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction.

    Science.gov (United States)

    El Rawas, Rana; Klement, Sabine; Kummer, Kai K; Fritz, Michael; Dechant, Georg; Saria, Alois; Zernig, Gerald

    2012-01-01

    Positive social interaction could play an essential role in switching the preference of the substance dependent individual away from drug related activities. We have previously shown that conditioned place preference (CPP) for cocaine at the dose of 15 mg/kg and CPP for four 15-min episodes of social interaction were equally strong when rats were concurrently conditioned for place preference by pairing cocaine with one compartment and social interaction with the other. The aim of the present study was to investigate the differential activation of brain regions related to the reward circuitry after acquisition/expression of cocaine CPP or social interaction CPP. Our findings indicate that cocaine CPP and social interaction CPP activated almost the same brain regions. However, the granular insular cortex and the dorsal part of the agranular insular cortex were more activated after cocaine CPP, whereas the prelimbic cortex and the core subregion of the nucleus accumbens were more activated after social interaction CPP. These results suggest that the insular cortex appears to be potently activated after drug conditioning learning while activation of the prelimbic cortex-nucleus accumbens core projection seems to be preferentially involved in the conditioning to non-drug stimuli such as social interaction. PMID:23015784

  19. Brain regions associated with the acquisition of conditioned place preference for cocaine versus social interaction

    Directory of Open Access Journals (Sweden)

    Rana eEl Rawas

    2012-09-01

    Full Text Available Positive social interaction could play an essential role in switching the preference of the substance dependent individual away from drug related activities. We have previously shown that conditioned place preference (CPP for cocaine at the dose of 15 mg/kg and CPP for four 15-min episodes of social interaction were equally strong when rats were concurrently conditioned for place preference by pairing cocaine with one compartment and social interaction with the other. The aim of the present study was to investigate the differential activation of brain regions related to the reward circuitry after acquisition/expression of cocaine CPP or social interaction CPP. Our findings indicate that cocaine CPP and social interaction CPP activated almost the same brain regions. However, the granular insular cortex and the dorsal part of the agranular insular cortex were more activated after cocaine CPP, whereas the prelimbic cortex and the core subregion of the nucleus accumbens were more activated after social interaction CPP. These results suggest that the insular cortex appears to be potently activated after drug conditioning learning while activation of the prelimbic cortex - nucleus accumbens core projection seems to be preferentially involved in the conditioning to non-drug stimuli such as social interaction.

  20. Divergent Projections of Catecholaminergic Neurons in the Nucleus of the Solitary Tract to Limbic Forebrain and Medullary Autonomic Brain Regions

    OpenAIRE

    Reyes, Beverly A. S.; Van Bockstaele, Elisabeth J.

    2006-01-01

    The nucleus of the solitary tract (NTS) is a critical structure involved in coordinating autonomic and visceral activities. Previous independent studies have demonstrated efferent projections from the NTS to the nucleus paragigantocellularis (PGi) and the central nucleus of the amygdala (CNA) in rat brain. To further characterize the neural circuitry originating from the NTS with postsynaptic targets in the amygdala and medullary autonomic targets, distinct green or red fluorescent latex micr...

  1. Validation of new 3D post processing algorithm for improved maximum intensity projections of MR angiography acquisitions in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Bosmans, H.; Verbeeck, R.; Vandermeulen, D.; Suetens, P.; Wilms, G.; Maaly, M.; Marchal, G.; Baert, A.L. [Louvain Univ. (Belgium)

    1995-12-01

    The objective of this study was to validate a new post processing algorithm for improved maximum intensity projections (mip) of intracranial MR angiography acquisitions. The core of the post processing procedure is a new brain segmentation algorithm. Two seed areas, background and brain, are automatically detected. A 3D region grower then grows both regions towards each other and this preferentially towards white regions. In this way, the skin gets included into the final `background region` whereas cortical blood vessels and all brain tissues are included in the `brain region`. The latter region is then used for mip. The algorithm runs less than 30 minutes on a full dataset on a Unix workstation. Images from different acquisition strategies including multiple overlapping thin slab acquisition, magnetization transfer (MT) MRA, Gd-DTPA enhanced MRA, normal and high resolution acquisitions and acquisitions from mid field and high field systems were filtered. A series of contrast enhanced MRA acquisitions obtained with identical parameters was filtered to study the robustness of the filter parameters. In all cases, only a minimal manual interaction was necessary to segment the brain. The quality of the mip was significantly improved, especially in post Gd-DTPA acquisitions or using MT, due to the absence of high intensity signals of skin, sinuses and eyes that otherwise superimpose on the angiograms. It is concluded that the filter is a robust technique to improve the quality of MR angiograms.

  2. Low-frequency connectivity is associated with mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    B.T. Dunkley

    2015-01-01

    Full Text Available Mild traumatic brain injury (mTBI occurs from a closed-head impact. Often referred to as concussion, about 20% of cases complain of secondary psychological sequelae, such as disorders of attention and memory. Known as post-concussive symptoms (PCS, these problems can severely disrupt the patient's quality of life. Changes in local spectral power, particularly low-frequency amplitude increases and/or peak alpha slowing have been reported in mTBI, but large-scale connectivity metrics based on inter-regional amplitude correlations relevant for integration and segregation in functional brain networks, and their association with disorders in cognition and behaviour, remain relatively unexplored. Here, we used non-invasive neuroimaging with magnetoencephalography to examine functional connectivity in a resting-state protocol in a group with mTBI (n = 20, and a control group (n = 21. We observed a trend for atypical slow-wave power changes in subcortical, temporal and parietal regions in mTBI, as well as significant long-range increases in amplitude envelope correlations among deep-source, temporal, and frontal regions in the delta, theta, and alpha bands. Subsequently, we conducted an exploratory analysis of patterns of connectivity most associated with variability in secondary symptoms of mTBI, including inattention, anxiety, and depression. Differential patterns of altered resting state neurophysiological network connectivity were found across frequency bands. This indicated that multiple network and frequency specific alterations in large scale brain connectivity may contribute to overlapping cognitive sequelae in mTBI. In conclusion, we show that local spectral power content can be supplemented with measures of correlations in amplitude to define general networks that are atypical in mTBI, and suggest that certain cognitive difficulties are mediated by disturbances in a variety of alterations in network interactions which are differentially

  3. A novel syndrome of lethal familial hyperekplexia associated with brain malformation

    Directory of Open Access Journals (Sweden)

    Seidahmed Mohammed

    2012-10-01

    Full Text Available Abstract Background Hyperekplexia (HPX is a rare non-epileptic disorder manifesting immediately after birth with exaggerated persistent startle reaction to unexpected auditory, somatosensory and visual stimuli, and non-habituating generalized flexor spasm in response to tapping of the nasal bridge (glabellar tap which forms its clinical hallmark. The course of the disease is usually benign with spontaneous amelioration with age. The disorder results from aberrant glycinergic neurotransmission, and several mutations were reported in the genes encoding glycine receptor (GlyR α1 and β subunits, glycine transporter GlyT2 as well as two other proteins involved in glycinergic neurotransmission gephyrin and collybistin. Methods The phenotype of six newborns, belonging to Saudi Arabian kindred with close consanguineous marriages, who presented with hyperekplexia associated with severe brain malformation, is described. DNA samples were available from two patients, and homozygosity scan to determine overlap with known hyperkplexia genes was performed. Results The kindred consisted of two brothers married to their cousin sisters, each with three affected children who presented antenatally with excessive fetal movements. Postnatally, they were found to have microcephaly, severe hyperekplexia and gross brain malformation characterized by severe simplified gyral pattern and cerebellar underdevelopment. The EEG was normal and they responded to clonazepam. All of the six patients died within six weeks. Laboratory investigations, including metabolic screen, were unremarkable. None of the known hyperkplexia genes were present within the overlapping regions of homozygosity between the two patients for whom DNA samples were available. Conclusions We present these cases as a novel syndrome of lethal familial autosomal recessive hyperekplexia associated with microcephaly and severe brain malformation.

  4. Brain gray matter volume changes associated with motor symptoms in patients with Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Dezhi Kang; Fuyong Chen; Fangyu Wang; Guorong Wu; Ying Liu; Gang Wu; Lianghong Yu

    2016-01-01

    Background:Parkinson's disease (PD) is a common neurodegenerative disease.Most studies have found that the histopathological lesion is not only localized at the extrapyramidal area (basal ganglia) but also at the cortex in PD patients.Voxel-based morphometry (VBM) based on the voxel as a unit is described for quantitative detection of density and volume of brain tissue.In this study,VBM was used to investigate the brain gray matter changes associated with motor symptoms in PD patients.Methods:Twelve outpatients with PD and 12 healthy controls were recruited in our hospital from September 2013 to March 2014.VBM was performed on the whole brain of all subjects.Image processing and statistical analysis were performed using SPM8.A two-sample t test and multiple regression analysis were performed.Results were displayed with a threshold of P < 0.01,corrected by false discovery rate (FDR) correction and cluster size >30 voxels.Results:Comparing control healthy subjects with the patients,the data showed that PD patients had reduced gray matter volume in the postcentral gyrus,the right supramarginal center,superior temporal gyrus,precentral gyrus,Brodmann area 41,transverse temporal gyrus,Brodmann area 3,and inferior parietal Iobule.The data also found that between gray matter volume and UPDRSIII in PD patients,there were negative correlations in the right middle frontal gyrus,BA06,right precentral gyrus,right superior frontal gyrus,and medial frontal gyrus,and between gray matter volume and Hoehn-Yahr (HY) in PD patients,there were negative correlations in the right middle frontal gyrus,right superior frontal gyrus,BA6,and right precentral gyrus.Conclusions:These data supported that extensive changes associated with motor symptoms in the gray matter volume was mainly located in the related area of movement,which had obvious relevance with the progression of PD.

  5. Brain activations to emotional pictures are differentially associated with valence and arousal ratings

    Directory of Open Access Journals (Sweden)

    Antje B M Gerdes

    2010-10-01

    Full Text Available Several studies have investigated the neural responses triggered by emotional pictures, but the specificity of the involved structures such as the amygdala or the ventral striatum is still under debate. Furthermore, only few studies examined the association of stimuli’s valence and arousal and the underlying brain responses. Therefore, we investigated brain responses with functional magnetic resonance imaging of 17 healthy subjects to pleasant and unpleasant affective pictures with comparable arousal levels and afterwards assessed ratings of valence and arousal. As expected, unpleasant pictures strongly activated the right and left amygdala, the right hippocampus, and the medial occipital lobe, whereas pleasant pictures elicited significant activations in left occipital regions, and in parts of the medial temporal lobe. The direct comparison of unpleasant and pleasant pictures which were comparable in arousal clearly indicated stronger amygdala activation in response to the unpleasant pictures. Most important, correlational analyses revealed on the one hand that the arousal of unpleasant pictures was significantly associated with activations in the right amygdala and the left caudate body. On the other hand, valence of pleasant pictures was significantly correlated with activations in the right caudate head, extending to the nucleus accumbens (NAcc and the left dorso-lateral prefrontal cortex. These findings support the notion that the amygdala is primarily involved in processing of unpleasant stimuli, and the stronger the more arousing the stimuli are, whereas reward-related structures like the NAcc primarily responds to pleasant stimuli, the stronger the more positive the valence of these stimuli is.

  6. Duration of exclusive breastfeeding is associated with differences in infants' brain responses to emotional body expressions.

    Science.gov (United States)

    Krol, Kathleen M; Rajhans, Purva; Missana, Manuela; Grossmann, Tobias

    2014-01-01

    Much research has recognized the general importance of maternal behavior in the early development and programing of the mammalian offspring's brain. Exclusive breastfeeding (EBF) duration, the amount of time in which breastfed meals are the only source of sustenance, plays a prominent role in promoting healthy brain and cognitive development in human children. However, surprisingly little is known about the influence of breastfeeding on social and emotional development in infancy. In the current study, we examined whether and how the duration of EBF impacts the neural processing of emotional signals by measuring electro-cortical responses to body expressions in 8-month-old infants. Our analyses revealed that infants with high EBF experience show a significantly greater neural sensitivity to happy body expressions than those with low EBF experience. Moreover, regression analyses revealed that the neural bias toward happiness or fearfulness differs as a function of the duration of EBF. Specifically, longer breastfeeding duration is associated with a happy bias, whereas shorter breastfeeding duration is associated with a fear bias. These findings suggest that breastfeeding experience can shape the way in which infants respond to emotional signals.

  7. Insulin-Associated Neuroinflammatory Pathways as Therapeutic Targets for Traumatic Brain Injury

    Science.gov (United States)

    Cerecedo-López, Christian D.; Kim-Lee, Jennifer H.; Hernandez, Diana; Acosta, Sandra A.; Borlongan, Cesar V.

    2014-01-01

    Traumatic brain injury (TBI) is characterized by an abrupt blow or exchange of force against the head and can be categorized as mild, moderate, and severe. The secondary cell death after TBI displays ischemic-like patterns including neuroinflammation. The scavenger receptor cluster of differentiation (CD) 36 is a lipid-associated protein capable of transducing intracellular signals to promote inflammatory mechanisms within different cell types. Expression and activation of CD36 is closely related to dyslipidemia secondary to diabetes. Diabetes mellitus (DM) has been documented as a co-morbidity factor in TBI, in that patients with a history of diabetes present with more severe brain damage and slower recovery from TBI than non-diabetic patients. Indeed, a strict regulation of blood serum glucose by the use of insulin promotes a better outcome for TBI patients. Based on these recent findings, we now advance the hypothesis that CD36 via DM insulin-associated pathways is closely involved in TBI chronic pathology. PMID:24332562

  8. Brain cavernomas associated with en coup de sabre linear scleroderma: Two case reports

    Directory of Open Access Journals (Sweden)

    Laxer Ronald M

    2011-07-01

    Full Text Available Abstract Linear scleroderma is a form of localized scleroderma that primarily affects the pediatric population. When it occurs on the scalp or forehead, it is termed "en coup de sabre". In the en coup de sabre subtype, many extracutaneous associations, mostly neurological, have been described. A patient with linear scleroderma en coup de sabre was noted to have ipsilateral brain cavernomas by magnetic resonance imaging. Using a worldwide pediatric rheumatology electronic list-serve, another patient with the same 2 conditions was identified. These two patients are reported in this study. Consideration of neuroimaging studies to disclose abnormal findings in patients with linear scleroderma en coup de sabre is important for potentially preventing and treating neurological manifestations associated with this condition.

  9. Facial emotion recognition impairments are associated with brain volume abnormalities in individuals with HIV.

    Science.gov (United States)

    Clark, Uraina S; Walker, Keenan A; Cohen, Ronald A; Devlin, Kathryn N; Folkers, Anna M; Pina, Matthew J; Tashima, Karen T

    2015-04-01

    Impaired facial emotion recognition abilities in HIV+ patients are well documented, but little is known about the neural etiology of these difficulties. We examined the relation of facial emotion recognition abilities to regional brain volumes in 44 HIV-positive (HIV+) and 44 HIV-negative control (HC) adults. Volumes of structures implicated in HIV-associated neuropathology and emotion recognition were measured on MRI using an automated segmentation tool. Relative to HC, HIV+ patients demonstrated emotion recognition impairments for fearful expressions, reduced anterior cingulate cortex (ACC) volumes, and increased amygdala volumes. In the HIV+ group, fear recognition impairments correlated significantly with ACC, but not amygdala volumes. ACC reductions were also associated with lower nadir CD4 levels (i.e., greater HIV-disease severity). These findings extend our understanding of the neurobiological substrates underlying an essential social function, facial emotion recognition, in HIV+ individuals and implicate HIV-related ACC atrophy in the impairment of these abilities.

  10. Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry

    DEFF Research Database (Denmark)

    Haahr, M. E.; Rasmussen, Peter Mondrup; Madsen, K.;

    2012-01-01

    between body mass index and the 5-HT4R density bilaterally in the two reward ‘hot spots’ nucleus accumbens and ventral pallidum, and additionally in the left hippocampal region and orbitofrontal cortex.These findings suggest that the 5-HT4R is critically involved in reward circuits that regulate people......The neurobiology underlying obesity is not fully understood. The neurotransmitter serotonin (5-HT) is established as a satiety-generating signal, but its rewarding role in feeding is less well elucidated. From animal experiments there is now evidence that the 5-HT4 receptor (5-HT4R) is involved...... in food intake, and that pharmacological or genetic manipulation of the receptor in reward-related brain areas alters food intake.Here, we used positron emission tomography in humans to examine the association between cerebral 5-HT4Rs and common obesity.We found in humans a strong positive association...

  11. Role of Sertraline in insomnia associated with post traumatic brain injury (TBI depression

    Directory of Open Access Journals (Sweden)

    Ansari Ahmed

    2016-09-01

    Full Text Available Traumatic brain injury (TBI is a major cause of disability (1, 2. Sleep disturbances, such as insomnia, are very common following traumatic brain injury and have been reported in frequencies from 40% (3 to as high as 84% (4. Sleep disruption can be related to the TBI itself but may also be secondary to neuropsychiatric (e.g., depression or neuromuscular (e.g., pain conditions associated with TBI or to the pharmacological management of the injury and its consequences. Post-TBI insomnia has been associated with numerous negative outcomes including daytime fatigue, tiredness, difficulty functioning: impaired performance at work, memory problems, mood problems, greater functional disability, reduced participation in activities of daily living, less social and recreational activity, less employment potential, increased caregiver burden, greater sexual dysfunction, and also lower ratings of health, poor subjective wellbeing. These negative consequences can hamper the person’s reintegration into the community, adjustment after injury, and overall QOL. (5 The connection between depression and insomnia has not been investigated within the post TBI population to a great extent. For the general population, clinically significant insomnia is often associated with the presence of an emotional disorder (6. Fichtenberg et al. (2002 (7, in his study established that the strongest relationship with the diagnosis of insomnia belonged to depression. Given the high prevalence of depression during the first 2 years following TBI (8, a link between depression and insomnia among TBI patients makes innate sense. The present study aims at assessing role of sertralline in post TBI insomnia associated with depression.

  12. When neutral turns significant: brain dynamics of rapidly formed associations between neutral stimuli and emotional contexts.

    Science.gov (United States)

    Ventura-Bort, Carlos; Löw, Andreas; Wendt, Julia; Dolcos, Florin; Hamm, Alfons O; Weymar, Mathias

    2016-09-01

    The ability to associate neutral stimuli with motivationally relevant outcomes is an important survival strategy. In this study, we used event-related potentials (ERPs) to investigate brain dynamics of associative emotional learning when participants were confronted with multiple heterogeneous information. Participants viewed 144 different objects in the context of 144 different emotional and neutral background scenes. During each trial, neutral objects were shown in isolation and then paired with the background scene. All pairings were presented twice to compare ERPs in response to neutral objects before and after single association. After single pairing, neutral objects previously encoded in the context of emotional scenes evoked a larger P100 over occipital electrodes compared to objects that were previously paired with neutral scenes. Likewise, larger late positive potentials (LPPs) were observed over parieto-occipital electrodes (450-750 ms) for objects previously associated with emotional relative to neutral contexts. The LPP - but not P100 - enhancement was also related to subjective object/context binding. Taken together, our ERP data provide evidence for fast emotional associative learning, as reflected by heightened perceptual and sustained elaborative processing for neutral information previously encountered in emotional contexts. These findings could assist in understanding binding mechanisms in stress and anxiety, as well as in addiction and eating-related disorders. PMID:27337689

  13. MMP-2/MMP-9 plasma level and brain expression in cerebral amyloid angiopathy-associated hemorrhagic stroke.

    Science.gov (United States)

    Hernandez-Guillamon, Mar; Martinez-Saez, Elena; Delgado, Pilar; Domingues-Montanari, Sophie; Boada, Cristina; Penalba, Anna; Boada, Mercè; Pagola, Jorge; Maisterra, Olga; Rodriguez-Luna, David; Molina, Carlos A; Rovira, Alex; Alvarez-Sabin, José; Ortega-Aznar, Arantxa; Montaner, Joan

    2012-03-01

    Cerebral amyloid angiopathy (CAA) is one of the main causes of intracerebral hemorrhage (ICH) in the elderly. Matrix metalloproteinases (MMPs) have been implicated in blood-brain barrier disruption and ICH pathogenesis. In this study, we determined the levels MMP-2 and MMP-9 in plasma and their brain expression in CAA-associated hemorrhagic stroke. Although MMP-2 and MMP-9 plasma levels did not differ among patients and controls, their brain expression was increased in perihematoma areas of CAA-related hemorrhagic strokes compared with contralateral areas and nonhemorrhagic brains. In addition, MMP-2 reactivity was found in β-amyloid (Aβ)-damaged vessels located far from the acute ICH and in chronic microbleeds. MMP-2 expression was associated to endothelial cells, histiocytes and reactive astrocytes, whereas MMP-9 expression was restricted to inflammatory cells. In summary, MMP-2 expression within and around Aβ-compromised vessels might contribute to the vasculature fatal fate, triggering an eventual bleeding. PMID:21707819

  14. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children

    International Nuclear Information System (INIS)

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children. (orig.)

  15. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Annika [Turku University Hospital, Department of Pediatrics, Turku (Finland); Aabo Akademi University, Department of Psychology, Turku (Finland); Parkkola, Riitta [University of Turku and Turku University Hospital, Department of Radiology and Turku PET Center, PO Box 52, Turku (Finland); Lehtonen, Liisa; Maunu, Jonna; Lapinleimu, Helena [University of Turku and Turku University Hospital, Department of Pediatrics, Turku (Finland); Munck, Petriina [Turku University Hospital, Department of Pediatrics, Turku (Finland); University of Turku, Department of Psychology, Turku (Finland); Haataja, Leena [University of Turku and Turku University Hospital, Department of Pediatric Neurology, Turku (Finland)

    2011-08-15

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children. (orig.)

  16. Are Brain Volumes based on Magnetic Resonance Imaging Mediators of the Associations of Cumulative Lead Dose with Cognitive Function?

    OpenAIRE

    Caffo, Brian; Chen, Sining; Stewart, Walter; Bolla, Karen; Yousem, David; Davatzikos, Christos; Schwartz, Brian S

    2007-01-01

    The authors used cross-sectional data (2001–2003) to consider the pathway through which past occupational lead exposure impacts cognitive function. They were motivated by studies linking cumulative lead dose with brain volumes, volumes with cognitive function, and lead dose with cognitive function. It was hypothesized that the brain regions associated with lead mediate a portion of the relation between lead dose and cognitive function. Data were derived from an ongoing US study of 513 former ...

  17. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    Directory of Open Access Journals (Sweden)

    Mónica Millán

    2008-01-01

    Full Text Available Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA.

  18. Association of Seafood Consumption, Brain Mercury Level, and APOEε4 Status With Brain Neuropathology in OlderAdults

    NARCIS (Netherlands)

    Morris, Martha Clare; Brockman, John; Schneider, J.; Wang, Yamin; Bennett, D.; Tangney, Christy; Nieuwerth-van de Rest, O.

    2016-01-01

    Importance Seafood consumption is promoted for its many health benefits even though its contamination by mercury, a known neurotoxin, is a growing concern.

    Objective To determine whether seafood consumption is correlated with increased brain mercury levels and also whether seafood consumpti

  19. Biological characteristics of brain natriuretic peptide and its association with central nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Yubao Huang; Changxiang Yan; Chunjiang Yu

    2007-01-01

    OBJECTIVE: To explain the mechanisms of tuhe synthesis, secretion and regulation of brain natriuretic peptide (BNP), and analyze its role in central nervous system diseases.DATA SOURCES: An online search of Pubmed was undertaken to identify articles related to BNP published in English from January 1990 to February 2007 by using the Key words of "brain natriuretic peptide (BNP), central nervous system, subarachnoid hemorrhage (SAH), brain edema, epilepsy". Other articles were searched in China Hospital Knowledge Database (CHKD) by concrete name of journals and title of articles.STUDY SELECTION: The collected articles were primarily screened, those about BNP and its association with central nervous system diseases were selected, whereas the obviously irrelative ones excluded, and the full-texts of the other literatures were searched manually.DATA EXTRACTION: Totally 96 articles were collected, 40 of them were enrolled, and the other 56 were excluded due to repetitive studies or reviews.DATA SYNTHESIS: At present, there are penetrating studies on BNP in the preclinical medicine and clinical medicine of cerebrovascular and cardiovascular diseases, and the investigative outcomes have been gradually applied in clinical practice, and satisfactory results have been obtained. However, the application of BNP in diagnosing and treating central nervous system diseases is still at the experimental phase without -outstanding outcomes, thus the preclinical and clinical studies should be enhanced.CONCLUSION: As a kind of central medium or modulator, BNP plays a certain role in the occurrence,development and termination of central nervous system diseases, the BNP level in serum has certain changing law in AH,brainedema,epilepsy,etc., but the specific mechanisms are unclear.

  20. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    Directory of Open Access Journals (Sweden)

    Chelsea N Wong

    2015-08-01

    Full Text Available Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59-80 years. Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA, thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function.

  1. Magnetic resonance imaging structural alterations in brain of alcohol abusers and its association with impulsivity.

    Science.gov (United States)

    Asensio, Samuel; Morales, Julia L; Senabre, Isabel; Romero, Maria J; Beltran, Miguel A; Flores-Bellver, Miguel; Barcia, Jorge M; Romero, Francisco J

    2016-07-01

    Despite the suggestion that impulsivity plays a central role in the transfer from a recreational drug use to a substance use disorder, very few studies focused on neurobiological markers for addiction. This study aimed to identify volumetric alterations in a sample of patients with mild alcohol use disorder with a short history of alcohol use, compared with a control group, and also focused on its association with impulsivity levels. Most magnetic resonance imaging studies have focused on severe alcohol use disorder, formerly called alcohol-dependent patients, showing alcohol-related structural alterations and their association with alcohol use history variables but not with personality parameters like impulsivity. Our hypothesis is that our group of alcohol users may already display structural alterations especially in brain regions related to inhibitory control like medial-prefrontal regions, and that those structural alterations could be more associated to personality traits like impulsivity than to drug use variables. Our results clearly demonstrate that our population showed lower regional grey and white matter volumes in the medial-prefrontal and orbitofrontal cortices, as well as higher regional white matter volume in the ventral striatum and the internal capsule. Volumetric alterations were associated to the Barratt's impulsivity score: the more impulsive the subjects, the lower the medial-prefrontal cortex grey matter volume. PMID:25988724

  2. Deep brain stimulation or thalamotomy in fragile X-associated tremor/ataxia syndrome? Case report.

    Science.gov (United States)

    Tamás, Gertrúd; Kovács, Norbert; Varga, Noémi Ágnes; Barsi, Péter; Erőss, Loránd; Molnár, Mária Judit; Balás, István

    2016-01-01

    We present the case of a 66-year-old man who has been treated for essential tremor since the age of 58. He developed mild cerebellar gait ataxia seven years after tremor onset. Moderate, global brain atrophy was identified on MRI scans. At the age of 68, only temporary tremor relief could be achieved by bilateral deep brain stimulation of the ventral intermedius nucleus of the thalamus. Bilateral stimulation of the subthalamic nucleus also resulted only in transient improvement. In the meantime, progressive gait ataxia and tetraataxia developed accompanied by other cerebellar symptoms, such as nystagmus and scanning speech. These correlated with progressive development of bilateral symmetric hyperintensity of the middle cerebellar peduncles on T2 weighted MRI scans. Genetic testing revealed premutation of the FMR1 gene, establishing the diagnosis of fragile X-associated tremor/ataxia syndrome. Although this is a rare disorder, it should be taken into consideration during preoperative evaluation of essential tremor. Postural tremor ceased two years later after thalamotomy on the left side, while kinetic tremor of the right hand also improved.

  3. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders.

    Science.gov (United States)

    Fields, Jerel Adam; Serger, Elisabeth; Campos, Sofia; Divakaruni, Ajit S; Kim, Changyoun; Smith, Kendall; Trejo, Margarita; Adame, Anthony; Spencer, Brian; Rockenstein, Edward; Murphy, Anne N; Ellis, Ronald J; Letendre, Scott; Grant, Igor; Masliah, Eliezer

    2016-02-01

    HIV-associated neurocognitive disorders (HAND) still occur in approximately 50% of HIV patients, and therapies to combat HAND progression are urgently needed. HIV proteins are released from infected cells and cause neuronal damage, possibly through mitochondrial abnormalities. Altered mitochondrial fission and fusion is implicated in several neurodegenerative disorders. Here, we hypothesized that mitochondrial fission/fusion may be dysregulated in neurons during HAND. We have identified decreased mitochondrial fission protein (dynamin 1-like; DNM1L) in frontal cortex tissues of HAND donors, along with enlarged and elongated mitochondria localized to the soma of damaged neurons. Similar pathology was observed in the brains of GFAP-gp120 tg mice. In vitro, recombinant gp120 decreased total and active DNM1L levels, reduced the level of Mitotracker staining, and increased extracellular acidification rate (ECAR) in primary neurons. DNM1L knockdown enhanced the effects of gp120 as measured by reduced Mitotracker signal in the treated cells. Interestingly, overexpression of DNM1L increased the level of Mitotracker staining in primary rat neurons and reduced neuroinflammation and neurodegeneration in the GFAP-gp120-tg mice. These data suggest that mitochondrial biogenesis dynamics are shifted towards mitochondrial fusion in brains of HAND patients and this may be due to gp120-induced reduction in DNM1L activity. Promoting mitochondrial fission during HIV infection of the CNS may restore mitochondrial biogenesis and prevent neurodegeneration.

  4. Glucocorticoids aggravate retrograde memory deficiency associated with traumatic brain injury in rats.

    Science.gov (United States)

    Chen, Xin; Zhang, Ke-Li; Yang, Shu-Yuan; Dong, Jing-Fei; Zhang, Jian-Ning

    2009-02-11

    Administration of glucocorticoid to patients with head injury has previously been demonstrated to impair memory. We hypothesize that glucocorticoids promote post-traumatic hippocampal apoptosis, resulting in retrograde memory deficiency associated with traumatic brain injury (TBI). In the present study, we tested this hypothesis by measuring spatial memory deficiency in rats subjected to fluid percussion injury (FPI) and receiving dexamethasone (DXM at 0.5-10 mg/kg) or methylprednisolone (MP at 5-30 mg/kg); we also examined neuronal apoptosis in hippocampus. Adult male Wistar rats were trained for the acquisition of spatial memory, then subjected to FPI and tested for spatial reference memory on post-injury days 7 and 14 using the Morris Water Maze. Brain tissue from injured rats was examined 24 h to 2 weeks after injury. The percent time in the goal quadrant, which measures spatial reference memory, was significantly lower in injured rats receiving either high-dose DXM or MP than in control groups. TUNEL-positive cells in hippocampus were first detected 24 h post-injury, plateauing at 48h. The number of TUNEL-positive cells was significantly higher in injured rats treated with either DXM or MP. The data suggest that glucocorticoid therapy for TBI may increase neuronal apoptosis in hippocampus and, as a result, aggravate retrograde memory deficits induced by TBI.

  5. Deep brain stimulation or thalamotomy in fragile X-associated tremor/ataxia syndrome? Case report.

    Science.gov (United States)

    Tamás, Gertrúd; Kovács, Norbert; Varga, Noémi Ágnes; Barsi, Péter; Erőss, Loránd; Molnár, Mária Judit; Balás, István

    2016-01-01

    We present the case of a 66-year-old man who has been treated for essential tremor since the age of 58. He developed mild cerebellar gait ataxia seven years after tremor onset. Moderate, global brain atrophy was identified on MRI scans. At the age of 68, only temporary tremor relief could be achieved by bilateral deep brain stimulation of the ventral intermedius nucleus of the thalamus. Bilateral stimulation of the subthalamic nucleus also resulted only in transient improvement. In the meantime, progressive gait ataxia and tetraataxia developed accompanied by other cerebellar symptoms, such as nystagmus and scanning speech. These correlated with progressive development of bilateral symmetric hyperintensity of the middle cerebellar peduncles on T2 weighted MRI scans. Genetic testing revealed premutation of the FMR1 gene, establishing the diagnosis of fragile X-associated tremor/ataxia syndrome. Although this is a rare disorder, it should be taken into consideration during preoperative evaluation of essential tremor. Postural tremor ceased two years later after thalamotomy on the left side, while kinetic tremor of the right hand also improved. PMID:27375149

  6. Brain regions associated with Anhedonia in healthy adults: a PET correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Young Chul; Chun, Ji Won; Kim, Jae Jin; Park, Hae Jeong; Lee, Jong Doo [Yonsei University College of Medicine, Gwangju (Korea, Republic of); Seok, Jeong Ho [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of)

    2005-10-15

    Anhedonia has been proposed to be the result of a basic neurophysiologic dysfunction and a vulnerability marker that precede and contribute to the liability of developing schizophrenia. We hypothesized that anhedonia, as a construct reflecting the decreased capacity to experience pleasure, should be associated with decreased positive hedonic affect trait. This study examined the relationship between anhedonia and positive hedonic affect trait and searched for the brain regions which correlate with anhedonia in normal subjects. Using {sup 18}F-FDG PET scan, we investigated the brain activity of twenty one subjects during resting state. Questionnaires were administrated after the scan in order to assess the self-rated individual differences in physical/social anhedonia and positive/negative affect traits. Negative correlation between physical anhedonia score and positive affect trait score was significant (Pearson coefficient=-0.440, {rho} <0.05). The subjects' physical and social anhedonia scores showed positive correlation with metabolic rates in the cerebellum and negative correlation with metabolic rates in the inferior temporal gyrus and middle frontal gyrus. In addition, the positive affect trait score positively correlated with various areas, most prominent with the inferior temporal gyrus. These results suggest that neural substrates, such as the inferior temporal gyrus and prefrontal-cerebellar circuit, which dysfunction has been proposed to be involved with the cognitive deficits of schizophrenia, may also play a significant role in the liability of affective deficits like anhedonia.

  7. Aberrant brain-stem morphometry associated with sleep disturbance in drug-naïve subjects with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lee JH

    2016-08-01

    Full Text Available Ji Han Lee,1 Won Sang Jung,2 Woo Hee Choi,3 Hyun Kook Lim4 1Washington University in St Louis, St Louis, MO, USA; 2Department of Radiology, 3Department of Nuclear Medicine, 4Department of Psychiatry, Saint Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon, South Korea Objective: Among patients with Alzheimer’s disease (AD, sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD.Materials and methods: In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology.Results: Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group.Conclusion: This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings. Keywords: Alzheimer’s disease, sleep, brain stem, MRI, shape analysis

  8. Cognition in an ever-changing world: climatic variability is associated with brain size in Neotropical parrots.

    Science.gov (United States)

    Schuck-Paim, Cynthia; Alonso, Wladimir J; Ottoni, Eduardo B

    2008-01-01

    Research on the conditions favoring the evolution of complex cognition and its underlying neural structures has increasingly stressed the role of environmental variability. These studies suggest that the ability to learn, behave flexibly and innovate would be favored under unpredictable variations in the availability of resources, as it would enable organisms to adjust to novel conditions. Despite the growing number of studies based on the idea that larger-brained organisms would be better prepared to cope with environmental challenges, direct testing of the association between brain size and environmental variability per se remains scant. Here we focus on Neotropical parrots as our model group and test the hypothesis that if relatively larger brains were favored in climatically variable environments, larger-brained species should currently tolerate a higher degree of environmental uncertainty. Although we show that there are also other factors underlying the dynamics of brain size variation in this group, our results support the hypothesis that proportionally larger-brained species are more tolerant to climatic variability, both on a temporal and spatial scale. Additionally, they suggest that the differences in relative brain size among Neotropical parrots represent multiple, recent events in the evolutionary history of the group, and are particularly tied to an increased dependence on more open and climatically unstable habitats. As this is the first study to present evidence of the link between brain size and climatic variability in birds, our findings provide a step towards understanding the potential benefits underlying variation in brain size and the maintenance of highly enlarged brains in this and other groups.

  9. The Impact of Childhood Trauma on Brain Development: A Literature Review and Supporting Handouts

    Science.gov (United States)

    Kirouac, Samantha; McBride, Dawn Lorraine

    2009-01-01

    This project provides a comprehensive overview of the research literature on the brain and how trauma impacts brain development, structures, and functioning. A basic exploration of childhood trauma is outlined in this project, as it is essential in making associations and connections to brain development. Childhood trauma is processed in the…

  10. Impact of Helmet Use in Traumatic Brain Injuries Associated with Recreational Vehicles

    Directory of Open Access Journals (Sweden)

    Latha Ganti

    2013-01-01

    Full Text Available Objective. To study the impact of helmet use on outcomes after recreational vehicle accidents. Methods. This is an observational cohort of adult and pediatric patients who sustained a TBI while riding a recreational vehicle. Recreational vehicles included bicycles, motorcycles, and all-terrain vehicles (ATVs, as well as a category for other vehicles such as skateboards and scooters. Results. Lack of helmet use was significantly associated with having a more severe traumatic brain injury and being admitted to the hospital. Similarly, 25% of those who did wearing a helmet were admitted to the ICU versus 36% of those who did not (P=0.0489. The hospital length of stay was significantly greater for patients who did not use helmets. Conclusion. Lack of helmet use is significantly correlated with abnormal neuroimaging and admission to the hospital and ICU; these data support a call for action to implement more widespread injury prevention and helmet safety education and advocacy.

  11. Association of retinal and macular damage with brain atrophy in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Jan Dörr

    Full Text Available Neuroaxonal degeneration in the central nervous system contributes substantially to the long term disability in multiple sclerosis (MS patients. However, in vivo determination and monitoring of neurodegeneration remain difficult. As the widely used MRI-based approaches, including the brain parenchymal fraction (BPF have some limitations, complementary in vivo measures for neurodegeneration are necessary. Optical coherence tomography (OCT is a potent tool for the detection of MS-related retinal neurodegeneration. However, crucial aspects including the association between OCT- and MRI-based atrophy measures or the impact of MS-related parameters on OCT parameters are still unclear. In this large prospective cross-sectional study on 104 relapsing remitting multiple sclerosis (RRMS patients we evaluated the associations of retinal nerve fiber layer thickness (RNFLT and total macular volume (TMV with BPF and addressed the impact of disease-determining parameters on RNFLT, TMV or BPF. BPF, normalized for subject head size, was estimated with SIENAX. Relations were analyzed primarily by Generalized Estimating Equation (GEE models considering within-patient inter-eye relations. We found that both RNFLT (p = 0.019, GEE and TMV (p = 0.004, GEE associate with BPF. RNFLT was furthermore linked to the disease duration (p<0.001, GEE but neither to disease severity nor patients' age. Contrarily, BPF was rather associated with severity (p<0.001, GEE than disease duration and was confounded by age (p<0.001, GEE. TMV was not associated with any of these parameters. Thus, we conclude that in RRMS patients with relatively short disease duration and rather mild disability RNFLT and TMV reflect brain atrophy and are thus promising parameters to evaluate neurodegeneration in MS. Furthermore, our data suggest that RNFLT and BPF reflect different aspects of MS. Whereas BPF best reflects disease severity, RNFLT might be the better parameter for monitoring axonal

  12. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones

    OpenAIRE

    Wong, Darren C.; Lovick, Jennifer K.; Ngo, Kathy T.; Borisuthirattana, Wichanee; Omoto, Jaison J.; Hartenstein, Volker

    2013-01-01

    The Drosophila central brain is largely composed of lineages, units of sibling neurons derived from a single progenitor cell or neuroblast. During the early embryonic period neuroblast generate the primary neurons that constitute the larval brain. Neuroblasts reactivate in the larva, adding to their lineages a large number of secondary neurons which, according to previous studies in which selected lineages were labeled by stably expressed markers, differentiate during metamorphosis, sending t...

  13. Association of Metabolic Dysregulation With Volumetric Brain Magnetic Resonance Imaging and Cognitive Markers of Subclinical Brain Aging in Middle-Aged Adults

    OpenAIRE

    Beiser, Alexa S; Au, Rhoda; Himali, Jayandra J.; Debette, Stephanie; DeCarli, Charles; Vasan, Ramachandran S.; Wolf, Philip A.; Seshadri, Sudha; Tan, Zaldy S.; Fox, Caroline

    2011-01-01

    Objective: Diabetic and prediabtic states, including insulin resistance, fasting hyperglycemia, and hyperinsulinemia, are associated with metabolic dysregulation. These components have been individually linked to increased risks of cognitive decline and Alzheimer’s disease. We aimed to comprehensively relate all of the components of metabolic dysregulation to cognitive function and brain magnetic resonance imaging (MRI) in middle-aged adults. Research Design and Methods: Framingham Offspring ...

  14. Epigenetic alterations in the brain associated with HIV-1 infection and methamphetamine dependence.

    Science.gov (United States)

    Desplats, Paula; Dumaop, Wilmar; Cronin, Peter; Gianella, Sara; Woods, Steven; Letendre, Scott; Smith, David; Masliah, Eliezer; Grant, Igor

    2014-01-01

    HIV involvement of the CNS continues to be a significant problem despite successful use of combination antiretroviral therapy (cART). Drugs of abuse can act in concert with HIV proteins to damage glia and neurons, worsening the neurotoxicity caused by HIV alone. Methamphetamine (METH) is a highly addictive psychostimulant drug, abuse of which has reached epidemic proportions and is associated with high-risk sexual behavior, increased HIV transmission, and development of drug resistance. HIV infection and METH dependence can have synergistic pathological effects, with preferential involvement of frontostriatal circuits. At the molecular level, epigenetic alterations have been reported for both HIV-1 infection and drug abuse, but the neuropathological pathways triggered by their combined effects are less known. We investigated epigenetic changes in the brain associated with HIV and METH. We analyzed postmortem frontal cortex tissue from 27 HIV seropositive individuals, 13 of which had a history of METH dependence, in comparison to 14 cases who never used METH. We detected changes in the expression of DNMT1, at mRNA and protein levels, that resulted in the increase of global DNA methylation. Genome-wide profiling of DNA methylation in a subset of cases, showed differential methylation on genes related to neurodegeneration; dopamine metabolism and transport; and oxidative phosphorylation. We provide evidence for the synergy of HIV and METH dependence on the patterns of DNA methylation on the host brain, which results in a distinctive landscape for the comorbid condition. Importantly, we identified new epigenetic targets that might aid in understanding the aggravated neurodegenerative, cognitive, motor and behavioral symptoms observed in persons living with HIV and addictions. PMID:25054922

  15. Epigenetic alterations in the brain associated with HIV-1 infection and methamphetamine dependence.

    Directory of Open Access Journals (Sweden)

    Paula Desplats

    Full Text Available HIV involvement of the CNS continues to be a significant problem despite successful use of combination antiretroviral therapy (cART. Drugs of abuse can act in concert with HIV proteins to damage glia and neurons, worsening the neurotoxicity caused by HIV alone. Methamphetamine (METH is a highly addictive psychostimulant drug, abuse of which has reached epidemic proportions and is associated with high-risk sexual behavior, increased HIV transmission, and development of drug resistance. HIV infection and METH dependence can have synergistic pathological effects, with preferential involvement of frontostriatal circuits. At the molecular level, epigenetic alterations have been reported for both HIV-1 infection and drug abuse, but the neuropathological pathways triggered by their combined effects are less known. We investigated epigenetic changes in the brain associated with HIV and METH. We analyzed postmortem frontal cortex tissue from 27 HIV seropositive individuals, 13 of which had a history of METH dependence, in comparison to 14 cases who never used METH. We detected changes in the expression of DNMT1, at mRNA and protein levels, that resulted in the increase of global DNA methylation. Genome-wide profiling of DNA methylation in a subset of cases, showed differential methylation on genes related to neurodegeneration; dopamine metabolism and transport; and oxidative phosphorylation. We provide evidence for the synergy of HIV and METH dependence on the patterns of DNA methylation on the host brain, which results in a distinctive landscape for the comorbid condition. Importantly, we identified new epigenetic targets that might aid in understanding the aggravated neurodegenerative, cognitive, motor and behavioral symptoms observed in persons living with HIV and addictions.

  16. 78 FR 28546 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Science.gov (United States)

    2013-05-15

    ... Traumatic Brain Injury Correction In proposed rule document 2012-29709 beginning on page 73366 in the issue...: Structural imaging of the brain. LOC--Loss of consciousness. AOC--Alteration of consciousness/mental...

  17. Established liked versus disliked brands: Brain activity, implicit associations and explicit responses

    Directory of Open Access Journals (Sweden)

    Shannon S. Bosshard

    2016-12-01

    Full Text Available Consumers’ attitudes towards established brands were tested using implicit and explicit measures. In particular, late positive potential (LPP effects were assessed as an implicit neurophysiological measure of motivational significance. The Implicit Association Test (IAT was used as an implicit behavioural measure of valence-related aspects (affective content of brand attitude. We constructed individualised stimulus lists of liked and disliked brand types from participants’ subjective pre-assessment. Participants then re-rated these visually presented brands whilst brain potential changes were recorded via electroencephalography (EEG. First, self-report measures during the test confirmed pre-assessed attitudes underlining consistent explicit rating performance. Second, liked brands elicited significantly more positive going waveforms (LPPs than disliked brands over right parietal cortical areas starting at about 800 ms post stimulus onset (reaching statistical significance at around 1,000 ms and lasting until the end of the recording epoch (2,000 ms. In accordance to the literature, this finding is interpreted as reflecting positive affect-related motivational aspects of liked brands. Finally, the IAT revealed that both liked and disliked brands indeed are associated with affect-related valence. The increased levels of motivation associated with liked brands is interpreted as potentially reflecting increased purchasing intention, but this is of course only speculation at this stage.

  18. Association of retinal and macular damage with brain atrophy in multiple sclerosis.

    Science.gov (United States)

    Dörr, Jan; Wernecke, Klaus D; Bock, Markus; Gaede, Gunnar; Wuerfel, Jens T; Pfueller, Caspar F; Bellmann-Strobl, Judith; Freing, Alina; Brandt, Alexander U; Friedemann, Paul

    2011-01-01

    Neuroaxonal degeneration in the central nervous system contributes substantially to the long term disability in multiple sclerosis (MS) patients. However, in vivo determination and monitoring of neurodegeneration remain difficult. As the widely used MRI-based approaches, including the brain parenchymal fraction (BPF) have some limitations, complementary in vivo measures for neurodegeneration are necessary. Optical coherence tomography (OCT) is a potent tool for the detection of MS-related retinal neurodegeneration. However, crucial aspects including the association between OCT- and MRI-based atrophy measures or the impact of MS-related parameters on OCT parameters are still unclear. In this large prospective cross-sectional study on 104 relapsing remitting multiple sclerosis (RRMS) patients we evaluated the associations of retinal nerve fiber layer thickness (RNFLT) and total macular volume (TMV) with BPF and addressed the impact of disease-determining parameters on RNFLT, TMV or BPF. BPF, normalized for subject head size, was estimated with SIENAX. Relations were analyzed primarily by Generalized Estimating Equation (GEE) models considering within-patient inter-eye relations. We found that both RNFLT (p = 0.019, GEE) and TMV (p = 0.004, GEE) associate with BPF. RNFLT was furthermore linked to the disease duration (pdamage longitudinally. Longitudinal studies are necessary for validation of data and to further clarify the relevance of TMV. PMID:21494659

  19. SIRT1 in the Brain – Connections with Aging-associated Disorders and Lifespan

    Directory of Open Access Journals (Sweden)

    Fanny eNg

    2015-03-01

    Full Text Available The silent mating type information regulation 2 proteins (sirtuins 1 of class III histone deacetylases have been associated with health span and longevity. SIRT1, the best studied member of the mammalian sirtuins, has a myriad of roles in multiple tissues and organs. However, a significant part of SIRT1’s role that impinges on aging and lifespan may lie in its activities in the central nervous system (CNS neurons. Systemically, SIRT1 influences energy metabolism and circadian rhythm through its activity in the hypothalamic nuclei. From a cell biological perspective, SIRT1 is a crucial component of multiple interconnected regulatory networks that modulate dendritic and axonal growth, as well as survival against stress. This neuronal cell autonomous activity of SIRT1 is also important for neuronal plasticity, cognitive functions, as well as protection against aging-associated neuronal degeneration and cognitive decline. We discuss recent findings that have shed light on the various activities of SIRT1 in the brain, which collectively impinge on aging-associated disorders and lifespan.

  20. Brain responses to audiovisual speech mismatch in infants are associated with individual differences in looking behaviour.

    Science.gov (United States)

    Kushnerenko, Elena; Tomalski, Przemyslaw; Ballieux, Haiko; Ribeiro, Helena; Potton, Anita; Axelsson, Emma L; Murphy, Elizabeth; Moore, Derek G

    2013-11-01

    Research on audiovisual speech integration has reported high levels of individual variability, especially among young infants. In the present study we tested the hypothesis that this variability results from individual differences in the maturation of audiovisual speech processing during infancy. A developmental shift in selective attention to audiovisual speech has been demonstrated between 6 and 9 months with an increase in the time spent looking to articulating mouths as compared to eyes (Lewkowicz & Hansen-Tift. (2012) Proc. Natl Acad. Sci. USA, 109, 1431-1436; Tomalski et al. (2012) Eur. J. Dev. Psychol., 1-14). In the present study we tested whether these changes in behavioural maturational level are associated with differences in brain responses to audiovisual speech across this age range. We measured high-density event-related potentials (ERPs) in response to videos of audiovisually matching and mismatched syllables /ba/ and /ga/, and subsequently examined visual scanning of the same stimuli with eye-tracking. There were no clear age-specific changes in ERPs, but the amplitude of audiovisual mismatch response (AVMMR) to the combination of visual /ba/ and auditory /ga/ was strongly negatively associated with looking time to the mouth in the same condition. These results have significant implications for our understanding of individual differences in neural signatures of audiovisual speech processing in infants, suggesting that they are not strictly related to chronological age but instead associated with the maturation of looking behaviour, and develop at individual rates in the second half of the first year of life.

  1. Neuropsychiatric disturbances associated with traumatic brain injury: a practical approach to evaluation and management.

    Science.gov (United States)

    Rao, Vani; Koliatsos, Vassilis; Ahmed, Faizi; Lyketsos, Constantine; Kortte, Kathleen

    2015-02-01

    Traumatic brain injury (TBI) causes a wide variety of neuropsychiatric disturbances associated with great functional impairments and low quality of life. These disturbances include disorders of mood, behavior, and cognition, and changes in personality. The diagnosis of specific neuropsychiatric disturbances can be difficult because there is significant symptom overlap. Systematic clinical evaluations are necessary to make the diagnosis and formulate a treatment plan that often requires a multipronged approach. Management of TBI-associated neuropsychiatric disorders should always include nonpharmacological interventions, including education, family involvement, supportive and behavioral psychotherapies, and cognitive rehabilitation. Pharmacological treatments include antidepressants, anticonvulsants, antipsychotics, dopaminergic agents, and cholinesterase inhibitors. However, evidence-based treatments are extremely limited, and management relies on clinical empiricism and resemblance of TBI neuropsychiatric symptom profiles with those of idiopathic psychiatric disorders. Although the understanding of TBI-associated neuropsychiatric disorders has improved in the last decade, further research is needed including prospective, longitudinal studies to explore biomarkers that will assist with management and prognosis as well as randomized-controlled studies to validate pharmacological and nonpharmacological treatments. The current review summarizes the available literature in support of a structured, systematic evaluation approach and treatment options as well as recommendations for further research directions.

  2. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism influences the association of the methylome with maternal anxiety and neonatal brain volumes.

    Science.gov (United States)

    Chen, Li; Pan, Hong; Tuan, Ta Anh; Teh, Ai Ling; MacIsaac, Julia L; Mah, Sarah M; McEwen, Lisa M; Li, Yue; Chen, Helen; Broekman, Birit F P; Buschdorf, Jan Paul; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang Mei; Gluckman, Peter D; Fortier, Marielle V; Rifkin-Graboi, Anne; Kobor, Michael S; Qiu, Anqi; Meaney, Michael J; Holbrook, Joanna D

    2015-02-01

    Early life environments interact with genotype to determine stable phenotypic outcomes. Here we examined the influence of a variant in the brain-derived neurotropic factor (BDNF) gene (Val66Met), which underlies synaptic plasticity throughout the central nervous system, on the degree to which antenatal maternal anxiety associated with neonatal DNA methylation. We also examined the association between neonatal DNA methylation and brain substructure volume, as a function of BDNF genotype. Infant, but not maternal, BDNF genotype dramatically influences the association of antenatal anxiety on the epigenome at birth as well as that between the epigenome and neonatal brain structure. There was a greater impact of antenatal maternal anxiety on the DNA methylation of infants with the methionine (Met)/Met compared to both Met/valine (Val) and Val/Val genotypes. There were significantly more cytosine-phosphate-guanine sites where methylation levels covaried with right amygdala volume among Met/Met compared with both Met/Val and Val/Val carriers. In contrast, more cytosine-phosphate-guanine sites covaried with left hippocampus volume in Val/Val infants compared with infants of the Met/Val or Met/Met genotype. Thus, antenatal Maternal Anxiety × BDNF Val66Met Polymorphism interactions at the level of the epigenome are reflected differently in the structure of the amygdala and the hippocampus. These findings suggest that BDNF genotype regulates the sensitivity of the methylome to early environment and that differential susceptibility to specific environmental conditions may be both tissue and function specific.

  3. Jet engine nozzle exit configurations, including projections oriented relative to pylons, and associated systems and methods

    Science.gov (United States)

    Mengle, Vinod G. (Inventor); Thomas, Russell H. (Inventor)

    2012-01-01

    Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter. Projections near a support pylon and/or associated heat shield can have particular configurations, including greater flow immersion than other projections.

  4. Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis

    DEFF Research Database (Denmark)

    Sickmann, Helle M; Waagepetersen, Helle S; Schousboe, Arne;

    2010-01-01

    Obesity and type 2 diabetes have reached epidemic proportions; however, scarce information about how these metabolic syndromes influence brain energy and neurotransmitter homeostasis exist. The objective of this study was to elucidate how brain glycogen and neurotransmitter homeostasis are affected...... by these conditions. [1-(13)C]glucose was administered to Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rats. Sprague-Dawley (SprD), Zucker lean (ZL), and ZDF lean rats were used as controls. Several brain regions were analyzed for glycogen levels along with (13)C-labeling and content of glutamate, glutamine...... of glutamine and glutamate were decreased in the cerebellum of the ZO and the ZDF rats. Glycogen levels were also lower in this region. These results suggest that the obese and type 2 diabetic models were associated with lower brain glucose metabolism. Glucose metabolism through the TCA cycle was more...

  5. Functional mapping of language networks in the normal brain using a word-association task

    International Nuclear Information System (INIS)

    Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI) in normal human subjects. Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2*-weighted gradient-echo echo-planar imaging (GE-EPI) sequence (TR 4523 ms, TE 64 ms, flip angle 90°) with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s) with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2) with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD) signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Single subject analysis of the functional data (FWE-corrected, P≤0.001) revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG), superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG), anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001) revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Group data analysis revealed a cerebellar–occipital–fusiform–thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these areas facilitate language comprehension by activating a semantic

  6. Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia

    International Nuclear Information System (INIS)

    To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H and N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H and N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR10g) in the brains of 16 selected H and N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR10g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF. (paper)

  7. Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia

    Science.gov (United States)

    Adibzadeh, F.; Verhaart, R. F.; Verduijn, G. M.; Fortunati, V.; Rijnen, Z.; Franckena, M.; van Rhoon, G. C.; Paulides, M. M.

    2015-02-01

    To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H&N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H&N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR10g) in the brains of 16 selected H&N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR10g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF.

  8. Projected Lifetime Healthcare Costs Associated with HIV Infection

    DEFF Research Database (Denmark)

    Nakagawa, Fumiyo; Miners, Alec; Smith, Colette J;

    2015-01-01

    computer simulation model to project the distribution of lifetime outcomes and costs of men-who-have-sex-with-men (MSM) infected with HIV in 2013 aged 30, over 10,000 simulations. We assumed a resource-rich setting with no loss to follow-up, and that standards and costs of healthcare management remain...... had been infected in 2013, then future lifetime costs relating to HIV care is likely to be in excess of £ 1 billion. It is imperative for investment into prevention programmes to be continued or scaled-up in settings with good access to HIV care services. Costs would be reduced considerably with use...

  9. Project management plan for the gunite and associated tanks treatability studies project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This plan for the Gunite and Associated Tanks (GAAT) Treatability Studies Project satisfies the requirements of the program management plan for the Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program as established in the Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program. This plan is a subtier of several other ER documents designed to satisfy the US Department of Energy (DOE) Order 4700.1 requirement for major systems acquisitions. This project management plan identifies the major activities of the GAAT Treatability Studies Project; establishes performance criteria; discusses the roles and responsibilities of the organizations that will perform the work; and summarizes the work breakdown structure, schedule, milestones, and cost estimate for the project.

  10. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost

    OpenAIRE

    Herculano-Houzel, Suzana

    2012-01-01

    Neuroscientists have become used to a number of “facts” about the human brain: It has 100 billion neurons and 10- to 50-fold more glial cells; it is the largest-than-expected for its body among primates and mammals in general, and therefore the most cognitively able; it consumes an outstanding 20% of the total body energy budget despite representing only 2% of body mass because of an increased metabolic need of its neurons; and it is endowed with an overdeveloped cerebral cortex, the largest ...

  11. Human von Economo neurons express transcription factors associated with Layer V subcerebral projection neurons.

    Science.gov (United States)

    Cobos, Inma; Seeley, William W

    2015-01-01

    The von Economo neurons (VENs) are large bipolar Layer V projection neurons found chiefly in the anterior cingulate and frontoinsular cortices. Although VENs have been linked to prevalent illnesses such as frontotemporal dementia, autism, and schizophrenia, little is known about VEN identity, including their major projection targets. Here, we undertook a developmental transcription factor expression study, focusing on markers associated with specific classes of Layer V projection neurons. Using mRNA in situ hybridization, we found that VENs prominently express FEZF2 and CTIP2, transcription factors that regulate the fate and differentiation of subcerebral projection neurons, in humans aged 3 months to 65 years. In contrast, few VENs expressed markers associated with callosal or corticothalamic projections. These findings suggest that VENs may represent a specialized Layer V projection neuron for linking cortical autonomic control sites to brainstem or spinal cord regions. PMID:23960210

  12. Sleep disturbance in mild cognitive impairment is associated with alterations in the brain's default mode network.

    Science.gov (United States)

    McKinnon, Andrew C; Lagopoulos, Jim; Terpening, Zoe; Grunstein, Ron; Hickie, Ian B; Batchelor, Jennifer; Lewis, Simon J G; Duffy, Shantel; Shine, James M; Naismith, Sharon L

    2016-06-01

    This study aimed to identify default mode network (DMN) functional connectivity deficits in patients with mild cognitive impairment (MCI) and sleep disturbance, relative to those with MCI and no sleep disturbance. A control group was included to aid in identifying DMN changes specific to MCI. A cross-sectional, single-center study was performed at the Brain and Mind Research Centre in Sydney, Australia. Participants (95 adults over the age of 65: 38 controls and 57 meeting criteria for MCI) underwent resting-state functional MRI along with comprehensive neuropsychological, medical, and psychiatric assessment. Self-report data were collected including sleep quality assessment via the Pittsburgh Sleep Quality Index. A total score of greater than 5 on the Pittsburgh Sleep Quality Index was used to signify the presence of significant sleep disturbance, as per commonly used methodology. Using this criterion, 53% (n = 30) of our MCI group were classified as sleep-disturbed. Whereas the total group of MCI subjects and controls demonstrated no significant differences, sleep-disturbed MCIs demonstrated increased connectivity between temporal and parietal regions, and decreased connectivity between the prefrontal cortex and the temporoparietal junction relative to sleep-disturbed controls. Relative to those MCIs without sleep disturbance, sleep-disturbed MCI participants demonstrated significantly diminished DMN connectivity between temporal and parietal regions, a finding that was particularly pronounced in amnestic MCI. Sleep disturbance in MCI is associated with distinct alterations in DMN functional connectivity in brain regions underpinning salient memory and sleep systems. Future studies may build on these results via experimental manipulation and objective measurement of sleep. (PsycINFO Database Record PMID:26963234

  13. Posttraumatic hydrocephalus associated with decompressive cranial defect in severe brain-injured patients

    Directory of Open Access Journals (Sweden)

    SHI Song-sheng

    2012-02-01

    Full Text Available 【Abstract】Objective: To investigate the occurrence of posttraumatic hydrocephalus (PTH in severe brain- injured patients who underwent decompressive craniectomy (DC and to discuss the management. Methods: A total of 389 patients suffering from severe head trauma between January 2004 and May 2010 were enrolled in this study. Clinical data were analyzed retrospectively. Of them, 149 patients who underwent DC were divided into two groups according to the presence of PTH: hydrocephalus group and nonhydrocephalus group. Clinical factors including preoperative Glasgow Coma Score (GCS, bilateral or unilateral decompression, and duraplasty in DC were assessed by single factor analysis to determine its relationship with the occurrence of PTH. Results: Of the 149 patients undergoing DC, 25 (16.8% developed PTH; while 23 developed PTH (9.6% among the rest 240 patients without DC. Preoperative GCS, bilateral or unilateral decompression, duraplasty in DC were significantly associated with the development of PTH. Ventriculoperitoneal shunt was performed on 23 of 25 patients with PTH after DC. Frontal horn was preferred for the placement of the catheter. Sixteen of them were operated upon via frontal approach and 7 via occipital approach. After shunt surgery, both radiological and clinical improvements were confirmed in 19 patients. Radiological improvement was found in 2 patients. One patient died eventually of severe pneumonia. Shunt-related infection occurred in 1 patient, which led to the removal of the catheter. Conclusions: It is demonstrated that the occurrence of PTH is high in patients with large decompressive skull defect. Patients with low GCS and bilateral decompression tend to develop PTH after DC. Duraplasty in DC might facilitate reducing the occurrence of PTH. Patients with PTH concomitant skull defect should be managed deliberately to restore the anatomical and physiological integrity so as to facilitate the neurological resuscitation. Key

  14. Functional and structural brain differences associated with mirror-touch synaesthesia.

    Science.gov (United States)

    Holle, Henning; Banissy, Michael J; Ward, Jamie

    2013-12-01

    Observing touch is known to activate regions of the somatosensory cortex but the interpretation of this finding is controversial (e.g. does it reflect the simulated action of touching or the simulated reception of touch?). For most people, observing touch is not linked to reported experiences of feeling touch but in some people it is (mirror-touch synaesthetes). We conducted an fMRI study in which participants (mirror-touch synaesthetes, controls) watched movies of stimuli (face, dummy, object) being touched or approached. In addition we examined whether mirror touch synaesthesia is associated with local changes of grey and white matter volume in the brain using VBM (voxel-based morphometry). Both synaesthetes and controls activated the somatosensory system (primary and secondary somatosensory cortices, SI and SII) when viewing touch, and the same regions were activated (by a separate localiser) when feeling touch--i.e. there is a mirror system for touch. However, when comparing the two groups, we found evidence that SII seems to play a particular important role in mirror-touch synaesthesia: in synaesthetes, but not in controls, posterior SII was active for watching touch to a face (in addition to SI and posterior temporal lobe); activity in SII correlated with subjective intensity measures of mirror-touch synaesthesia (taken outside the scanner), and we observed an increase in grey matter volume within the SII of the synaesthetes' brains. In addition, the synaesthetes showed hypo-activity when watching touch to a dummy in posterior SII. We conclude that the secondary somatosensory cortex has a key role in this form of synaesthesia.

  15. Brain Atrophy, Anti-Smooth Muscle Antibody and Cognitive Impairment: An Association Study.

    Science.gov (United States)

    Giulia, Paroni; Michele, Lauriola; Andrea, Fontana; Grazia, D'Onofrio; Filomena, Ciccone; Francesco, Paris; Leandro, Cascavilla; Maria, Urbano; Carolina, Gravina; Massimiliano, Copetti; Antonio, Greco

    2016-08-01

    Cortical atrophy, neuronal loss, beta-amyloid deposition, neuritic plaques, and neurofibrillary tangles are neuropathological key features in the Alzheimer's disease (AD). Antibodies against beta-amyloid, neurotransmitters, microvascular endothelium components and microglial cells have been detected in AD serum suggesting that AD could be another autoimmune disease and provides a link between vascular pathology, endothelium dysfunction and neuronal cells death. Aim of the present study was to evaluate the association between autoantibody profile and cognitive impairment in geriatric patients, accounting for ApoE genotype as a potential confounding factor. Three hundred and forty-four geriatric patients, attending the clinic for the cognitive decline, underwent a biochemical and immunological profile, chest X-ray, cerebral computed tomography scan and complete cognitive evaluation. All patients were also screened for the ApoE genotype. A significantly higher prevalence of Anti-Smooth Muscle Antibody (ASMA) positivity was found in 89/204 (43.63%) patients with diagnosed neuroradiological signs of cerebral atrophy compared with 15/140 (10.71%) patients without the condition (pbrain atrophy and with the presence of ASMA positivity. Our results shows a strong association between brain atrophy and ASMA positivity and are consistent with several studies that focused attention on the mechanisms of endothelial immune response in the development of dementia. PMID:27493830

  16. Human Obesity Associated with an Intronic SNP in the Brain-Derived Neurotrophic Factor Locus

    Directory of Open Access Journals (Sweden)

    Zongyang Mou

    2015-11-01

    Full Text Available Brain-derived neurotrophic factor (BDNF plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 BDNF SNPs. We observed that the minor C allele of rs12291063 is associated with lower human ventromedial hypothalamic BDNF expression (p < 0.001 and greater adiposity in both adult and pediatric cohorts (p values < 0.05. We further demonstrated that the major T allele for rs12291063 possesses a binding capacity for the transcriptional regulator, heterogeneous nuclear ribonucleoprotein D0B, knockdown of which disrupts transactivation by the T allele. Binding and transactivation functions are both disrupted by substituting C for T. These findings provide a rationale for BDNF augmentation as a targeted treatment for obesity in individuals who have the rs12291063 CC genotype.

  17. Bilateral brain abnormalities associated with dominantly inherited verbal and orofacial dyspraxia.

    Science.gov (United States)

    Belton, Emma; Salmond, Claire H; Watkins, Kate E; Vargha-Khadem, Faraneh; Gadian, David G

    2003-03-01

    The KE family is a large three-generational pedigree in which half of the members suffer from a verbal and orofacial dyspraxia in association with a point mutation in the FOXP2 gene. This report extends previous voxel-based morphometric analyses of magnetic resonance imaging (MRI) scans (Watkins et al. [2002] Brain 125:465-478) using a bilateral conjunction analysis. This searches specifically for areas of grey matter density that differ bilaterally in the affected members compared with both matched controls and the unaffected family members. 3-D T1-weighted MRI datasets of 17 family members (10 affected, 7 unaffected) and matched controls were compared. The most significant findings were reduced grey matter density bilaterally in the caudate nucleus, the cerebellum, and the left and right inferior frontal gyrus in the affected members. In addition, increased grey matter density was found bilaterally in the planum temporale. These results confirm that a point mutation in FOXP2 is associated with several bilateral grey matter abnormalities in both motor and language related regions. The results also demonstrate the advantages of using a conjunction analysis when bilateral abnormalities are suspected. PMID:12599277

  18. Association of Cognitive Abilities and Brain Lateralization among Primary School Children in Kuwait

    Directory of Open Access Journals (Sweden)

    Jasem Y. Al-Hashel

    2016-01-01

    Full Text Available Background. Many studies have explored the cognitive variation between left- and right-handed individuals; however, the differences remain poorly understood. Aim of the Work. To assess the association between brain lateralization indicated by handedness and cognitive abilities. Material and Methods. A total of 217 students aged between 7 and 10 years of both genders were identified for the study. Males and females were equally distributed. All left-handed students were chosen. An equal group with right-handed students was randomly selected. Handedness was assessed using traditional writing hand approach as well as the WatHand Cabient Test and the Grooved Pegboard Test. Cognition was measured using Cambridge University’s CANTAB eclipse cognitive battery. Pearson Correlation Coefficient Test “r” was calculated to measure the strength of association between quantitative data. Results. Right-handed children had superior visuospatial abilities (p=0.011, r=0.253, visual memory (p=0.034, r=0.205, and better scores in reaction time tests which incorporated elements of visual memory (p=0.004, r=-0.271. Left-handed children proved to have better simple reaction times (p=0.036, r=0.201. Conclusion. Right-handed children had superior visuospatial abilities and left-handed children have better simple reaction times.

  19. Maternal Inflammation Contributes to Brain Overgrowth and Autism-Associated Behaviors through Altered Redox Signaling in Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Janel E. Le Belle

    2014-11-01

    Full Text Available A period of mild brain overgrowth with an unknown etiology has been identified as one of the most common phenotypes in autism. Here, we test the hypothesis that maternal inflammation during critical periods of embryonic development can cause brain overgrowth and autism-associated behaviors as a result of altered neural stem cell function. Pregnant mice treated with low-dose lipopolysaccharide at embryonic day 9 had offspring with brain overgrowth, with a more pronounced effect in PTEN heterozygotes. Exposure to maternal inflammation also enhanced NADPH oxidase (NOX-PI3K pathway signaling, stimulated the hyperproliferation of neural stem and progenitor cells, increased forebrain microglia, and produced abnormal autism-associated behaviors in affected pups. Our evidence supports the idea that a prenatal neuroinflammatory dysregulation in neural stem cell redox signaling can act in concert with underlying genetic susceptibilities to affect cellular responses to environmentally altered cellular levels of reactive oxygen species.

  20. Maternal inflammation contributes to brain overgrowth and autism-associated behaviors through altered redox signaling in stem and progenitor cells.

    Science.gov (United States)

    Le Belle, Janel E; Sperry, Jantzen; Ngo, Amy; Ghochani, Yasmin; Laks, Dan R; López-Aranda, Manuel; Silva, Alcino J; Kornblum, Harley I

    2014-11-11

    A period of mild brain overgrowth with an unknown etiology has been identified as one of the most common phenotypes in autism. Here, we test the hypothesis that maternal inflammation during critical periods of embryonic development can cause brain overgrowth and autism-associated behaviors as a result of altered neural stem cell function. Pregnant mice treated with low-dose lipopolysaccharide at embryonic day 9 had offspring with brain overgrowth, with a more pronounced effect in PTEN heterozygotes. Exposure to maternal inflammation also enhanced NADPH oxidase (NOX)-PI3K pathway signaling, stimulated the hyperproliferation of neural stem and progenitor cells, increased forebrain microglia, and produced abnormal autism-associated behaviors in affected pups. Our evidence supports the idea that a prenatal neuroinflammatory dysregulation in neural stem cell redox signaling can act in concert with underlying genetic susceptibilities to affect cellular responses to environmentally altered cellular levels of reactive oxygen species.

  1. Deviations in the endocrine system and brain of patients with fibromyalgia: cause or consequence of pain and associated features?

    Science.gov (United States)

    Geenen, Rinie; Bijlsma, Johannes W J

    2010-04-01

    The brain and endocrine system are crucial interfaces responding to pathological and psychological processes. This review discusses whether endocrine deviations and structural and functional changes in the brain are a cause or consequence of fibromyalgia. Studies in patients with fibromyalgia virtually uniformly observed subtle alterations in hypothalamic pituitary adrenal functioning, hyporeactive autonomic nervous system responsiveness to stressors, and structural and functional changes in the brain. Our model proposes that predisposing factors, such as genetic vulnerability and trauma, have led to an alteration of the nociceptive system including several neuroendocrine changes. The resulting pain and associated symptoms, such as sleep disturbance, low fitness, fatigue, stress, and distress, are a cause of new neuroendocrine changes. The model predicts that favorable neuroendocrine changes are to be expected after successful pharmacological or non-pharmacological interventions that target pain and associated symptoms.

  2. Fat-Free Body Mass but not Fat Mass is Associated with Reduced Gray Matter Volume of Cortical Brain Regions Implicated in Autonomic and Homeostatic Regulation

    Science.gov (United States)

    Weise, Christopher M; Thiyyagura, Pradeep; Reiman, Eric M; Chen, Kewei; Krakoff, Jonathan

    2014-01-01

    Obesity has been associated with alterations of both functional and structural aspects of the human central nervous system. In obese individuals both fat mass (FM; primarily consisting of adipose tissue) and fat-free mass (FFM; all non-adipose tissues) are increased and it remains unknown whether these compartments have separate effects on human brain morphology. We used voxel-based morphometry to investigate the relationships between measures of body composition and regional gray matter volume (GMV) in 76 healthy adults with a wide range of adiposity (24F/52M; age 32.1±8.8y; percentage of body fat [PFAT%] 25.5±10.9%; BMI 29.8±8.9). Faf-free mass index (FFMI kg*m-2) showed negative associations in bilateral temporal regions, the bilateral medial and caudolateral OFC, and the left insula. Fat mass index (FMI kg*m-2) showed similar, but less extensive negative associations within temporal cortical regions and the left caudolateral orbitofrontal cortex (OFC). In addition, negative associations were seen for FMI with GMV of the cerebellum. Associations of FFMI with temporal and medial orbitofrontal GMV appeared to be independent of adiposity. No associations were seen between measures of adiposity (i.e. FM and PFAT) and GMV when adjusted for FFM. The majority of regions that we find associated with FFM have been implicated in the regulation of eating behavior and show extensive projections to central autonomic and homeostatic core structures. These data indicate that not adipose tissue or relative adiposity itself, but obesity related increases in absolute tissue mass and particularly FFM may have a more predominant effect on the human brain. This might be explained by the high metabolic demand of FFM and related increases in total energy needs. PMID:22974975

  3. Combined glutamate and glutamine levels in pain-processing brain regions are associated with individual pain sensitivity.

    Science.gov (United States)

    Zunhammer, Matthias; Schweizer, Lauren M; Witte, Vanessa; Harris, Richard E; Bingel, Ulrike; Schmidt-Wilcke, Tobias

    2016-10-01

    The relationship between glutamate and γ-aminobutyric acid (GABA) levels in the living human brain and pain sensitivity is unknown. Combined glutamine/glutamate (Glx), as well as GABA levels can be measured in vivo with single-voxel proton magnetic resonance spectroscopy. In this cross-sectional study, we aimed at determining whether Glx and/or GABA levels in pain-related brain regions are associated with individual differences in pain sensitivity. Experimental heat, cold, and mechanical pain thresholds were obtained from 39 healthy, drug-free individuals (25 men) according to the quantitative sensory testing protocol and summarized into 1 composite measure of pain sensitivity. The Glx levels were measured using point-resolved spectroscopy at 3 T, within a network of pain-associated brain regions comprising the insula, the anterior cingulate cortex, the mid-cingulate cortex, the dorsolateral prefrontal cortex, and the thalamus. GABA levels were measured using GABA-edited spectroscopy (Mescher-Garwood point-resolved spectroscopy) within the insula, the anterior cingulate cortex, and the mid-cingulate cortex. Glx and/or GABA levels correlated positively across all brain regions. Gender, weekly alcohol consumption, and depressive symptoms were significantly associated with Glx and/or GABA levels. A linear regression analysis including all these factors indicated that Glx levels pooled across pain-related brain regions were positively associated with pain sensitivity, whereas no appreciable relationship with GABA was found. In sum, we show that the levels of the excitatory neurotransmitter glutamate and its precursor glutamine across pain-related brain regions are positively correlated with individual pain sensitivity. Future studies will have to determine whether our findings also apply to clinical populations. PMID:27649042

  4. UNESCO and the Associated Schools Project: Symbolic Affirmation of World Community, International Understanding, and Human Rights

    Science.gov (United States)

    Suarez, David F.; Ramirez, Francisco O.; Koo, Jeong-Woo

    2009-01-01

    The UNESCO Associated Schools Project emphasizes world community, human rights, and international understanding. This article investigates the emergence and global diffusion of the project from 1953 to 2001, estimating the influence of national, regional, and world characteristics on the likelihood of a country adopting a UNESCO school. It also…

  5. Association of white-matter lesions with brain atrophy markers: the three-city Dijon MRI study

    International Nuclear Information System (INIS)

    Background: Brain atrophy and white-matter lesions (WML) are common features at cerebral MRI of both normal and demented elderly people. In a population-based study of 1, 792 elderly subjects aged 65-80 years, free of dementia, who had a cerebral MRI at entry, we investigated the relationship between WML volume and brain atrophy markers estimated by hippocampal, gray matter (GM) and cerebrospinal fluid (CSF) volumes. Methods: An automated algorithm of detection and quantification of WML was developed, and voxel-based morphometry methods were used to estimate GM, CSF and hippocampal volumes. To evaluate the relation between those volumes and WML load, we used analysis of covariance and multiple linear regression models adjusting for potential confounders and total intracranial volumes. Results: Age was highly correlated with WML load and all brain atrophy markers. Total WML volume was negatively associated with both GM (β = -0.03, p ≤ 0.0001) and hippocampal volumes (β = -0.75, p = 0.0009) and positively with CSF volumes (beta 0.008, p = 0.02) after controlling for sex, age, education level, hypertension and apolipoprotein E genotype. Evidence for a relationship between brain atrophy markers and WML was stronger for periventricular WML. We found that the relationship between WML and hippocampal volumes was independent of other brain tissue volumes. Conclusion: These results suggest that, in the brain of non demented elderly subjects, degenerative processes and vascular changes co-occur and are related independently of vascular risk factors. (authors)

  6. EGFR mutations are associated with favorable intracranial response and progression-free survival following brain irradiation in non-small cell lung cancer patients with brain metastases

    International Nuclear Information System (INIS)

    The presence of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) is associated with increased radiosensitivity in vitro. However, the results from clinical studies regarding the radiosensitivity in NSCLC with mutant EGFR are inconclusive. We retrospectively analyzed our NSCLC patients who had been regularly followed up by imaging studies after irradiation for brain metastases, and investigated the impact of EGFR mutations on radiotherapy (RT). Forty-three patients with brain metastases treated with RT, together with EGFR mutation status, demographics, smoking history, performance status, recursive partitioning analysis (RPA) class, tumor characteristics, and treatment modalities, were included. Radiological images were taken at 1 to 3 months after RT, and 3 to 6 months thereafter. Radiographic response was evaluated by RECIST criteria version 1.1 according to the intracranial images before and after RT. Log-rank test and Cox regression model were used to correlate EGFR mutation status and other clinical features with intracranial radiological progression-free survival (RPFS) and overall survival (OS). The median follow-up duration was 15 months. Patients with mutant EGFR had higher response rates to brain RT than those with wild-type EGFR (80% vs. 46%; p = 0.037). Logistic regression analysis showed that EGFR mutation status is the only predictor for treatment response (p = 0.032). The median intracranial RPFS was 18 months (95% CI = 8.33-27.68 months). In Cox regression analysis, mutant EGFR (p = 0.025) and lower RPA class (p = 0.026) were associated with longer intracranial RPFS. EGFR mutation status (p = 0.061) and performance status (p = 0.076) had a trend to predict OS. Mutant EGFR in NSCLC patients is an independent prognostic factor for better treatment response and longer intracranial RPFS following RT for brain metastases

  7. EGFR mutations are associated with favorable intracranial response and progression-free survival following brain irradiation in non-small cell lung cancer patients with brain metastases

    Science.gov (United States)

    2012-01-01

    Background The presence of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) is associated with increased radiosensitivity in vitro. However, the results from clinical studies regarding the radiosensitivity in NSCLC with mutant EGFR are inconclusive. We retrospectively analyzed our NSCLC patients who had been regularly followed up by imaging studies after irradiation for brain metastases, and investigated the impact of EGFR mutations on radiotherapy (RT). Methods Forty-three patients with brain metastases treated with RT, together with EGFR mutation status, demographics, smoking history, performance status, recursive partitioning analysis (RPA) class, tumor characteristics, and treatment modalities, were included. Radiological images were taken at 1 to 3 months after RT, and 3 to 6 months thereafter. Radiographic response was evaluated by RECIST criteria version 1.1 according to the intracranial images before and after RT. Log-rank test and Cox regression model were used to correlate EGFR mutation status and other clinical features with intracranial radiological progression-free survival (RPFS) and overall survival (OS). Results The median follow-up duration was 15 months. Patients with mutant EGFR had higher response rates to brain RT than those with wild-type EGFR (80% vs. 46%; p = 0.037). Logistic regression analysis showed that EGFR mutation status is the only predictor for treatment response (p = 0.032). The median intracranial RPFS was 18 months (95% CI = 8.33-27.68 months). In Cox regression analysis, mutant EGFR (p = 0.025) and lower RPA class (p = 0.026) were associated with longer intracranial RPFS. EGFR mutation status (p = 0.061) and performance status (p = 0.076) had a trend to predict OS. Conclusions Mutant EGFR in NSCLC patients is an independent prognostic factor for better treatment response and longer intracranial RPFS following RT for brain metastases. PMID:23110940

  8. Polymorphisms in genes involved in neurodevelopment may be associated with altered brain morphology in schizophrenia: preliminary evidence.

    Science.gov (United States)

    Gregório, Sheila P; Sallet, Paulo C; Do, Kim-Anh; Lin, E; Gattaz, Wagner F; Dias-Neto, Emmanuel

    2009-01-30

    An abnormality in neurodevelopment is one of the most robust etiologic hypotheses in schizophrenia (SZ). There is also strong evidence that genetic factors may influence abnormal neurodevelopment in the disease. The present study evaluated in SZ patients, whose brain structural data had been obtained with magnetic resonance imaging (MRI), the possible association between structural brain measures, and 32 DNA polymorphisms, located in 30 genes related to neurogenesis and brain development. DNA was extracted from peripheral blood cells of 25 patients with schizophrenia, genotyping was performed using diverse procedures, and putative associations were evaluated by standard statistical methods (using the software Statistical Package for Social Sciences - SPSS) with a modified Bonferroni adjustment. For reelin (RELN), a protease that guides neurons in the developing brain and underlies neurotransmission and synaptic plasticity in adults, an association was found for a non-synonymous polymorphism (Val997Leu) with left and right ventricular enlargement. A putative association was also found between protocadherin 12 (PCDH12), a cell adhesion molecule involved in axonal guidance and synaptic specificity, and cortical folding (asymmetry coefficient of gyrification index). Although our results are preliminary, due to the small number of individuals analyzed, such an approach could reveal new candidate genes implicated in anomalous neurodevelopment in schizophrenia. PMID:19054571

  9. Variation of the gene coding for DARPP-32 (PPP1R1B) and brain connectivity during associative emotional learning

    NARCIS (Netherlands)

    Curcic-Blake, Branislava; Swart, Marte; Ter Horst, Gert J.; Langers, Dave R. M.; Kema, Ido P.; Aleman, Andre

    2012-01-01

    Associative emotional learning, which is important for the social emotional functioning of individuals and is often impaired in psychiatric illnesses, is in part mediated by dopamine and glutamate pathways in the brain. The protein DARPP-32 is involved in the regulation of dopaminergic and glutamine

  10. Factors influencing clinical students' perceptions of an embedded research project and associated publication output.

    Science.gov (United States)

    Weller, Renate; May, Stephen A

    2013-01-01

    In this article, we describe student perceptions of the value of a short, compulsory research project embedded in a clinical degree program, the research output in terms of publications, and the factors influencing this. It was hypothesized that student attitudes toward the project, student perceptions of how much the project contributed to their generic skills, and the number of publications submitted or prepared for submission would be associated with perceived quality of supervision, perceived difficulty of the project, career plans, and attitude before commencement of the project. We explored this using a questionnaire comprising 30 questions that included demographics, Likert scales, and categorical responses. Student attitudes toward research were found to be associated with student attitude before the start of the project, perceived difficulty of the project, perceived quality of supervision, and perceived relevance to the profession. Students thought that the research project contributed most to the skills of "information gathering" and "critical evaluation" and the least to "teamwork," "problem solving," and "oral communication." Research output was significantly linked to perceived quality of supervision and the help students received with data analysis and data collection, though not with the project report itself. In conclusion, although the success of the research project was influenced by many factors, the perceived quality of supervision influenced all three outcome measures. Therefore it is clear that optimization of this aspect offers the most scope for enhancing the student learning experience. PMID:23709108

  11. Mouse Social Network Dynamics and Community Structure are Associated with Plasticity-Related Brain Gene Expression.

    Science.gov (United States)

    Williamson, Cait M; Franks, Becca; Curley, James P

    2016-01-01

    Laboratory studies of social behavior have typically focused on dyadic interactions occurring within a limited spatiotemporal context. However, this strategy prevents analyses of the dynamics of group social behavior and constrains identification of the biological pathways mediating individual differences in behavior. In the current study, we aimed to identify the spatiotemporal dynamics and hierarchical organization of a large social network of male mice. We also sought to determine if standard assays of social and exploratory behavior are predictive of social behavior in this social network and whether individual network position was associated with the mRNA expression of two plasticity-related genes, DNA methyltransferase 1 and 3a. Mice were observed to form a hierarchically organized social network and self-organized into two separate social network communities. Members of both communities exhibited distinct patterns of socio-spatial organization within the vivaria that was not limited to only agonistic interactions. We further established that exploratory and social behaviors in standard behavioral assays conducted prior to placing the mice into the large group was predictive of initial network position and behavior but were not associated with final social network position. Finally, we determined that social network position is associated with variation in mRNA levels of two neural plasticity genes, DNMT1 and DNMT3a, in the hippocampus but not the mPOA. This work demonstrates the importance of understanding the role of social context and complex social dynamics in determining the relationship between individual differences in social behavior and brain gene expression. PMID:27540359

  12. Elevated endogenous erythropoietin concentrations are associated with increased risk of brain damage in extremely preterm neonates.

    Directory of Open Access Journals (Sweden)

    Steven J Korzeniewski

    Full Text Available We sought to determine, in very preterm infants, whether elevated perinatal erythropoietin (EPO concentrations are associated with increased risks of indicators of brain damage, and whether this risk differs by the co-occurrence or absence of intermittent or sustained systemic inflammation (ISSI.Protein concentrations were measured in blood collected from 786 infants born before the 28th week of gestation. EPO was measured on postnatal day 14, and 25 inflammation-related proteins were measured weekly during the first 2 postnatal weeks. We defined ISSI as a concentration in the top quartile of each of 25 inflammation-related proteins on two separate days a week apart. Hypererythropoietinemia (hyperEPO was defined as the highest quartile for gestational age on postnatal day 14. Using logistic regression and multinomial logistic regression models, we compared risks of brain damage among neonates with hyperEPO only, ISSI only, and hyperEPO+ISSI, to those who had neither hyperEPO nor ISSI, adjusting for gestational age.Newborns with hyperEPO, regardless of ISSI, were more than twice as likely as those without to have very low (< 55 Mental (OR 2.3; 95% CI 1.5-3.5 and/or Psychomotor (OR 2.4; 95% CI 1.6-3.7 Development Indices (MDI, PDI, and microcephaly at age two years (OR 2.4; 95%CI 1.5-3.8. Newborns with both hyperEPO and ISSI had significantly increased risks of ventriculomegaly, hemiparetic cerebral palsy, microcephaly, and MDI and PDI < 55 (ORs ranged from 2.2-6.3, but not hypoechoic lesions or other forms of cerebral palsy, relative to newborns with neither hyperEPO nor ISSI.hyperEPO, regardless of ISSI, is associated with elevated risks of very low MDI and PDI, and microcephaly, but not with any form of cerebral palsy. Children with both hyperEPO and ISSI are at higher risk than others of very low MDI and PDI, ventriculomegaly, hemiparetic cerebral palsy, and microcephaly.

  13. Canby Area Service Project substation and associated transmission line

    International Nuclear Information System (INIS)

    Bonneville Power Administration (BPA) provides power to Surprise Valley Electrification Corporation (SVEC) in Modoc County, California. BPA uses PacificCorp's substation and transmission facilities between Alturas and Canby, California to transfer power to SVEC's Canby Substation. In the next year, SVEC expects increased industrial, agricultural, and residential electric loads on their 69-kV transmission system south of Canby. SVEC's substation can accommodate only about 10 percent of the expected additional electric load. BPA's proposed action is intended to meet SVEC's increasing electric load. BPA proposes to meet SVEC's increasing energy load by tapping into BPA's existing BPA Malin-Warner 230-kV transmission line, and building an 7.9-mile transmission line to a new BPA substation. BPA proposes to build the new substation next to the west side of SVEC's Canby Substation (Figure 1). This new substation will allow SVEC to move the additional power over their existing transmission or distribution lines. This report is the environmental assessment of the potential impact of the proposed project. The assessment determined that no ''environmental impact statement'' is not required

  14. Brain region-specificity of palmitic acid-induced abnormalities associated with Alzheimer's disease

    OpenAIRE

    Melrose Joseph; Balu Deebika; Patil Sachin; Chan Christina

    2008-01-01

    Abstract Background Alzheimer's disease (AD) is a progressive, neurodegenerative disease mostly affecting the basal forebrain, cortex and hippocampus whereas the cerebellum is relatively spared. The reason behind this region-specific brain damage in AD is not well understood. Here, we report our data suggesting "differential free fatty acid metabolism in the different brain areas" as a potentially important factor in causing the region-specific damage observed in AD brain. Findings The astrog...

  15. Subtle BBB alterations in brain edema associated with acute liver failure

    OpenAIRE

    Nguyen, Justin H

    2010-01-01

    Vasogenic mechanism of brain edema in acute liver failure (ALF) remains poorly understood. Recent work demonstrates that matrix metalloproteinase-9 (MMP-9) contributes to the development of brain edema in experimental ALF (J Hepatol 44:1105, 2006). Importantly, MMP-9 blockage with specific monoclonal antibodies and/or synthetic inhibitor, the edema is attenuated. Specifically, utrastructural evaluations demonstrate intact blood-brain barrier and its tight junction. These results suggest that ...

  16. Cubic Plus Association Equation of State for Flow Assurance Projects

    DEFF Research Database (Denmark)

    dos Santos, Leticia Cotia; Abunahman, Samir Silva; Tavares, Frederico Wanderley;

    2015-01-01

    Thermodynamic hydrate inhibitors such as methanol, ethanol, (mono) ethylene glycol (MEG), and triethylene glycol (TEG) are widely used in the oil and gas industry. On modeling these compounds, we show here how the CPA equation of state was implemented in an in-house process simulator as an in......-built model: To validate the implementation, we show calulations for binary systems containing hydrate inhibitors and water or hydrocarbons using the Cubic Plus Association (CPA) and Soave-Redlich-Kwong (SRK) equation of states, also comparing against experimental data. For streams containing natural gas...

  17. Projection effects in coronal dimmings and associated EUV wave event

    OpenAIRE

    Dissauer, Karin; Temmer, Manuela; Veronig, Astrid M.; Vanninathan, Kamalam; Magdalenić, Jasmina

    2016-01-01

    We investigate the high-speed ($v >$ 1000 km s$^{-1}$) extreme-ultraviolet (EUV) wave associated with an X1.2 flare and coronal mass ejection (CME) from NOAA active region 11283 on 2011 September 6 (SOL2011-09-06T22:12). This EUV wave features peculiar on-disk signatures, in particular we observe an intermittent "disappearance" of the front for 120 s in SDO/AIA 171, 193, 211 {\\AA} data, whereas the 335 {\\AA} filter, sensitive to hotter plasmas (T$\\sim$2.5 MK), shows a continuous evolution of ...

  18. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin.

    Directory of Open Access Journals (Sweden)

    Gesa Feenders

    Full Text Available Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor

  19. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin.

    Science.gov (United States)

    Feenders, Gesa; Liedvogel, Miriam; Rivas, Miriam; Zapka, Manuela; Horita, Haruhito; Hara, Erina; Wada, Kazuhiro; Mouritsen, Henrik; Jarvis, Erich D

    2008-03-12

    Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls

  20. Path Complexity in Virtual Water Maze Navigation: Differential Associations with Age, Sex, and Regional Brain Volume.

    Science.gov (United States)

    Daugherty, Ana M; Yuan, Peng; Dahle, Cheryl L; Bender, Andrew R; Yang, Yiqin; Raz, Naftali

    2015-09-01

    Studies of human navigation in virtual maze environments have consistently linked advanced age with greater distance traveled between the start and the goal and longer duration of the search. Observations of search path geometry suggest that routes taken by older adults may be unnecessarily complex and that excessive path complexity may be an indicator of cognitive difficulties experienced by older navigators. In a sample of healthy adults, we quantify search path complexity in a virtual Morris water maze with a novel method based on fractal dimensionality. In a two-level hierarchical linear model, we estimated improvement in navigation performance across trials by a decline in route length, shortening of search time, and reduction in fractal dimensionality of the path. While replicating commonly reported age and sex differences in time and distance indices, a reduction in fractal dimension of the path accounted for improvement across trials, independent of age or sex. The volumes of brain regions associated with the establishment of cognitive maps (parahippocampal gyrus and hippocampus) were related to path dimensionality, but not to the total distance and time. Thus, fractal dimensionality of a navigational path may present a useful complementary method of quantifying performance in navigation.

  1. Sympathoadrenal Activation is Associated with Acute Traumatic Coagulopathy and Endotheliopathy in Isolated Brain Injury

    Science.gov (United States)

    Di Battista, Alex P.; Rizoli, Sandro B.; Lejnieks, Brandon; Min, Arimie; Shiu, Maria Y.; Peng, Henry T.; Baker, Andrew J.; Hutchison, Michael G.; Churchill, Nathan; Inaba, Kenji; Nascimento, Bartolomeu B.; de Oliveira Manoel, Airton Leonardo; Beckett, Andrew; Rhind, Shawn G.

    2016-01-01

    ABSTRACT Background: Acute coagulopathy after traumatic brain injury (TBI) involves a complex multifactorial hemostatic response that is poorly characterized. Objectives: To examine early posttraumatic alterations in coagulofibrinolytic, endothelial, and inflammatory blood biomarkers in relation to sympathetic nervous system (SNS) activation and 6-month patient outcomes, using multivariate partial least-squares (PLS) analysis. Patients and Methods: A multicenter observational study of 159 adult isolated TBI patients admitted to the emergency department at an urban level I trauma center, was performed. Plasma concentrations of 6 coagulofibrinolytic, 10 vascular endothelial, 19 inflammatory, and 2 catecholamine biomarkers were measured by immunoassay on admission and 24 h postinjury. Neurological outcome at 6 months was assessed using the Extended Glasgow Outcome Scale. PLS-discriminant analysis was used to identify salient biomarker contributions to unfavorable outcome, whereas PLS regression analysis was used to evaluate the covariance between SNS correlates (catecholamines) and biomarkers of coagulopathy, endotheliopathy, and inflammation. Results: Biomarker profiles in patients with an unfavorable outcome displayed procoagulation, hyperfibrinolysis, glycocalyx and endothelial damage, vasculature activation, and inflammation. A strong covariant relationship was evident between catecholamines and biomarkers of coagulopathy, endotheliopathy, and inflammation at both admission and 24 h postinjury. Conclusions: Biomarkers of coagulopathy and endotheliopathy are associated with poor outcome after TBI. Catecholamine levels were highly correlated with endotheliopathy and coagulopathy markers within the first 24 h after injury. Further research is warranted to characterize the pathogenic role of SNS-mediated hemostatic alterations in isolated TBI. PMID:27206278

  2. Association between Bone Mineral Density and Clinical Parameters in Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Murat Ersöz,

    2016-04-01

    Full Text Available Objective: Determine the association between the bone mineral density and traumatic brain injury (TBI. Materials and Methods: Twenty-two patients with TBI included to the study. Dual energy X-ray absorptiometry measurements which determines the femur neck and L1-4 vertebrate T scores in patients was performed via Lunar Prodigy DPX system. Clinical parameters such as types of involvements (plegia, upper-lower extremity spasticity values, presence of heterotypic ossification, ambulation levels were determined and their relations with femur neck and L1-4 vertebrate T scores were examined with Mann-Whitney U Test. Results: In the comparison of sub groups of type of plegia (tetraplegic/hemi-paraplegic, lower extremity spasticity values [Ascworth score 0/1-2-3-4, presence of heterotopic ossification no statistically significant (p>0.05 difference was found in the femur neck and L1-4 vertebrate T scores. On the other hand, in the subgroups determined according to ambulatory levels of the patients (confined to bed-wheelchair/ ambulated (orthesis-hand support-independent] significant difference was observed in the femur neck T scores (p=0.044. Femur neck T scores were significantly high in ambulated patients (p=0.044. Conclusion: In TBI cases ambulation level is a factor which significantly affect bone mineral density. It is necessary to ambulate patients with potential as soon as possible and to plan alternative approaches in patient could not be ambulated.

  3. Long-term occupational stress is associated with regional reductions in brain tissue volumes.

    Directory of Open Access Journals (Sweden)

    Eva Blix

    Full Text Available There are increasing reports of cognitive and psychological declines related to occupational stress in subjects without psychiatric premorbidity or major life trauma. The underlying neurobiology is unknown, and many question the notion that the described disabilities represent a medical condition. Using PET we recently found that persons suffering from chronic occupational stress had limbic reductions in the 5-HT1A receptor binding potential. Here we examine whether chronic work-related stress is also associated with changes in brain structure. We performed MRI-based voxel-based morphometry and structural volumetry in stressed subjects and unstressed controls focusing on gray (GM and white matter (WM volumes, and the volumes of hippocampus, caudate, and putamen - structures known to be susceptible to neurotoxic changes. Stressed subjects exhibited significant reductions in the GM volumes of the anterior cingulate cortex and the dorsolateral prefrontal cortex. Furthermore, their caudate and putamen volumes were reduced, and the volumes correlated inversely to the degree of perceived stress. Our results add to previous data on chronic psychosocial stress, and indicate a morphological involvement of the frontostriatal circuits. The present findings of morphological changes in these regions confirm our previous conclusion that symptoms from occupational stress merit careful investigations and targeted treatment.

  4. Deep brain stimulation for obsessive-compulsive disorder is associated with cortisol changes.

    Science.gov (United States)

    de Koning, Pelle P; Figee, Martijn; Endert, Erik; Storosum, Jitschak G; Fliers, Eric; Denys, Damiaan

    2013-08-01

    Deep brain stimulation (DBS) is an effective treatment for obsessive-compulsive disorder (OCD), but its mechanism of action is largely unknown. Since DBS may induce rapid symptomatic changes and the pathophysiology of OCD has been linked to the hypothalamic-pituitary-adrenal (HPA) axis, we set out to study whether DBS affects the HPA axis in OCD patients. We compared a stimulation ON and OFF condition with a one-week interval in 16 therapy-refractory OCD patients, treated with DBS for at least one year, targeted at the nucleus accumbens (NAc). We measured changes in 24-h urinary excretion of free cortisol (UFC), adrenaline and noradrenaline and changes in obsessive-compulsive (Y-BOCS), depressive (HAM-D) and anxiety (HAM-A) symptom scores. Median UFC levels increased with 53% in the OFF condition (from 93 to 143nmol/24h, p=0.12). There were no changes in urinary adrenaline or noradrenaline excretion. The increase in Y-BOCS (39%), and HAM-D (78%) scores correlated strongly with increased UFC levels in the OFF condition. Our findings indicate that symptom changes following DBS for OCD patients are associated with changes in UFC levels. PMID:23333254

  5. A Qualitative Study Exploring Factors Associated with Provider Adherence to Severe Pediatric Traumatic Brain Injury Guidelines.

    Science.gov (United States)

    Brolliar, Sarah M; Moore, Megan; Thompson, Hilaire J; Whiteside, Lauren K; Mink, Richard B; Wainwright, Mark S; Groner, Jonathan I; Bell, Michael J; Giza, Christopher C; Zatzick, Douglas F; Ellenbogen, Richard G; Ng Boyle, Linda; Mitchell, Pamela H; Rivara, Frederick P; Vavilala, Monica S

    2016-08-15

    Despite demonstrated improvement in patient outcomes with use of the Pediatric Traumatic Brain Injury (TBI) Guidelines (Guidelines), there are differential rates of adherence. Provider perspectives on barriers and facilitators to adherence have not been elucidated. This study aimed to identify and explore in depth the provider perspective on factors associated with adherence to the Guidelines using 19 focus groups with nurses and physicians who provided acute management for pediatric patients with TBI at five university-affiliated Level 1 trauma centers. Data were examined using deductive and inductive content analysis. Results indicated that three inter-related domains were associated with clinical adherence: 1) perceived guideline credibility and applicability to individual patients, 2) implementation, dissemination, and enforcement strategies, and 3) provider culture, communication styles, and attitudes towards protocols. Specifically, Guideline usefulness was determined by the perceived relevance to the individual patient given age, injury etiology, and severity and the strength of the evidence. Institutional methods to formally endorse, codify, and implement the Guidelines into the local culture were important. Providers wanted local protocols developed using interdisciplinary consensus. Finally, a culture of collaboration, including consistent, respectful communication and interdisciplinary cooperation, facilitated adherence. Provider training and experience, as well as attitudes towards other standardized care protocols, mirror the use and attitudes towards the Guidelines. Adherence was determined by the interaction of each of these guideline, institutional, and provider factors acting in concert. Incorporating provider perspectives on barriers and facilitators to adherence into hospital and team protocols is an important step toward improving adherence and ultimately patient outcomes. PMID:26760283

  6. Patterns of regional brain activation associated with different forms of motor learning.

    Science.gov (United States)

    Ghilardi, M; Ghez, C; Dhawan, V; Moeller, J; Mentis, M; Nakamura, T; Antonini, A; Eidelberg, D

    2000-07-14

    To examine the variations in regional cerebral blood flow during execution and learning of reaching movements, we employed a family of kinematically and dynamically controlled motor tasks in which cognitive, mnemonic and executive features of performance were differentiated and characterized quantitatively. During 15O-labeled water positron emission tomography (PET) scans, twelve right-handed subjects moved their dominant hand on a digitizing tablet from a central location to equidistant targets displayed with a cursor on a computer screen in synchrony with a tone. In the preceding week, all subjects practiced three motor tasks: 1) movements to a predictable sequence of targets; 2) learning of new visuomotor transformations in which screen cursor motion was rotated by 30 degrees -60 degrees; 3) learning new target sequences by trial and error, by using previously acquired routines in a task placing heavy load on spatial working memory. The control condition was observing screen and audio displays. Subtraction images were analyzed with Statistical Parametric Mapping to identify significant brain activation foci. Execution of predictable sequences was characterized by a modest decrease in movement time and spatial error. The underlying pattern of activation involved primary motor and sensory areas, cerebellum, basal ganglia. Adaptation to a rotated reference frame, a form of procedural learning, was associated with decrease in the imposed directional bias. This task was associated with activation in the right posterior parietal cortex. New sequences were learned explicitly. Significant activation was found in dorsolateral prefrontal and anterior cingulate cortices. In this study, we have introduced a series of flexible motor tasks with similar kinematic characteristics and different spatial attributes. These tasks can be used to assess specific aspects of motor learning with imaging in health and disease. PMID:10882792

  7. The association between brain natriuretic peptide and tissue Doppler parameters in children with hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Taliha Öner

    2016-01-01

    Full Text Available In this study, we investigated the association between brain natriuretic peptide (BNP levels and tissue Doppler imaging measurements and also screening for deadly mutations in patients with hypertrophic cardiomyopathy (HCM. We enrolled 20 patients diagnosed with HCM (age:10.7±5 years (1-17, 85% male, weight:42.25±23.10 kg, height:141.80±32.45 cm and 20 age, gender and body weight-matched control subjects. We performed electrocardiography, transthoracic echocardiography, and tissue Doppler echocardiography in each group, as well as genetic tests (for Arg403Gln, Arg453Cys, Arg719Trp and Arg719Gln mutations in MYH7 Exons 13, 14, 19 and BNP in the patients. The patients were divided into two groups according to the presence (Group 1 or absence (Group 2 of left ventricular (LV outflow tract obstruction. QTc dispersion and the LV ejection fraction and left atrial (LA volume index were increased in Group 1. The LA volume index and the mitral and septal E/Ea ratio and septum Z-score were increased while the mitral lateral annulus and septal annulus Ea wave velocities and the mitral and tricuspid E/A ratio were decreased in patients with high levels of BNP compared to those with normal BNP levels. There were no mutations that are associated with increased risk of sudden death found in patients included in this study. In the light of our data, we conclude that such parameters BNP levels above the 98 pg/mL, septal thickness Z-score ˃6, and higher mitral and septal E/Ea ratios can be used for management of patients with HCM according to life-threatening conditions.

  8. Admission criteria to the Danish Brain Cancer Program are moderately associated with magnetic resonance imaging findings

    DEFF Research Database (Denmark)

    Hill, Thomas Winther; Nielsen, Mie Kiszka; Nepper-Rasmussen, Jørgen

    2013-01-01

    The objective of this study was to evaluate the Danish Brain Cancer Program by examining the criteria for admission to the program and the results of magnetic resonance imaging (MRI) of the brain in 359 patients referred to the program at the Odense University Hospital during one year...

  9. A study of brain networks associated with swallowing using graph-theoretical approaches.

    Directory of Open Access Journals (Sweden)

    Bo Luan

    Full Text Available Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, [Formula: see text] years of age. To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia.

  10. PET Imaging of Mild Traumatic Brain Injury and Whiplash Associated Disorder

    NARCIS (Netherlands)

    Vállez García, David

    2015-01-01

    Traumatic brain injury is the leading cause of brain injury in our society with 235 per 100,000 inhabitants per year in the European Union and about 500 per 100,000 inhabitants per year in the United States. About 80% of all these events are accounted for as mild cases. At the same time, whiplash-as

  11. Projection effects in coronal dimmings and associated EUV wave event

    CERN Document Server

    Dissauer, Karin; Veronig, Astrid M; Vanninathan, Kamalam; Magdalenić, Jasmina

    2016-01-01

    We investigate the high-speed ($v >$ 1000 km s$^{-1}$) extreme-ultraviolet (EUV) wave associated with an X1.2 flare and coronal mass ejection (CME) from NOAA active region 11283 on 2011 September 6 (SOL2011-09-06T22:12). This EUV wave features peculiar on-disk signatures, in particular we observe an intermittent "disappearance" of the front for 120 s in SDO/AIA 171, 193, 211 {\\AA} data, whereas the 335 {\\AA} filter, sensitive to hotter plasmas (T$\\sim$2.5 MK), shows a continuous evolution of the wave front. The eruption was also accompanied by localized coronal dimming regions. We exploit the multi-point quadrature position of SDO and STEREO-A, to make a thorough analysis of the EUV wave evolution, with respect to its kinematics and amplitude evolution and reconstruct the SDO line-of-sight (LOS) direction of the identified coronal dimming regions in STEREO-A. We show that the observed intensities of the dimming regions in SDO/AIA depend on the structures that are lying along their LOS and are the combination ...

  12. Projection effects in coronal dimmings and associated EUV wave event

    Science.gov (United States)

    Dissauer, Karin; Temmer, Manuela; Veronig, Astrid; Vanninathan, Kamalam; Magdalenic, Jasmina

    2016-04-01

    We investigate the high-speed (v > 1000 km s‑1) extreme-ultraviolet (EUV) wave associated with an X1.2 flare and coronal mass ejection (CME) from NOAA active region 11283. This EUV wave features peculiar on-disk signatures, in particular we observe an intermittent "disappearance" of the front for 120 s in SDO/AIA 171, 193, 211 Å data, whereas the 335 Å filter, sensitive to hotter plasmas (T˜ 2.5 MK), shows a continuous evolution of the wave front. We exploit the multi-point quadrature position of SDO and STEREO-A, to make a thorough analysis of the EUV wave evolution, with respect to its kinematics and amplitude evolution. We identify on-disk coronal dimming regions in SDO/AIA, reminiscent of core dimmings, that have no corresponding on-disk dimming signatures in STEREO-A/EUVI. Reconstructing the SDO line-of-sight (LOS) direction in STEREO-A clearly shows that the observed SDO on-disk dimming areas are not the footprints of the erupting fluxrope but result from decreased emission from the expanding CME body integrated along the LOS. In this context, we conclude that the intermittent disappearance of the EUV wave in the AIA 171, 193, 211 Å filters, which are channels sensitive to plasma with temperatures below ˜ 2 MK is also caused by such LOS integration effects. These observations clearly demonstrate that single-view image data provide us with limited insight to correctly interpret coronal features.

  13. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP......) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18...

  14. DHA Depletion in Rat Brain Is Associated With Impairment on Spatial Learning and Memory

    Institute of Scientific and Technical Information of China (English)

    YING XIAO; LING WANG; RUO-JUN XU; ZHEN-YU CHEN

    2006-01-01

    Objective To examine the effect of docosahexaenoic acid (DHA) deficiency in brain on spatial learning and memory in rats. Methods Sprague Dawley rats were fed with an n-3 fatty acid deficient diet for two generations to induce DHA depletion in brain. DHA in seven brain regions was analyzed using the gas-liquid chromatography. Morris water maze (MWM) was employed as an assessing index of spatial learning and memory in the n-3 fatty acid deficient adult rats of second generation. Results Feeding an n-3 deficient diet for two generations depleted DHA differently by 39%-63% in the seven brain regions including cerebellum, medulla, hypothalamus, striatum, hippocampus, cortex and midbrain. The MWM test showed that the n-3 deficient rats took a longer time and swam a longer distance to find the escape platform than the n-3 Adq group. Conclusion The spatial learning and memory in adult rats are partially impaired by brain DHA depletion.

  15. Beta-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation

    Science.gov (United States)

    Hayflick, Susan J.; Kruer, Michael C.; Gregory, Allison; Haack, Tobias B.; Kurian, Manju A.; Houlden, Henry H.; Anderson, James; Boddaert, Nathalie; Sanford, Lynn; Harik, Sami I.; Dandu, Vasuki H.; Nardocci, Nardo; Zorzi, Giovanna; Dunaway, Todd; Tarnopolsky, Mark; Skinner, Steven; Holden, Kenton R.; Frucht, Steven; Hanspal, Era; Schrander-Stumpel, Connie; Mignot, Cyril; Héron, Delphine; Saunders, Dawn E.; Kaminska, Margaret; Lin, Jean-Pierre; Lascelles, Karine; Cuno, Stephan M.; Meyer, Esther; Garavaglia, Barbara; Bhatia, Kailash; de Silva, Rajith; Crisp, Sarah; Lunt, Peter; Carey, Martyn; Hardy, John; Meitinger, Thomas; Prokisch, Holger; Hogarth, Penelope

    2013-01-01

    Neurodegenerative disorders with high iron in the basal ganglia encompass an expanding collection of single gene disorders collectively known as neurodegeneration with brain iron accumulation. These disorders can largely be distinguished from one another by their associated clinical and neuroimaging features. The aim of this study was to define the phenotype that is associated with mutations in WDR45, a new causative gene for neurodegeneration with brain iron accumulation located on the X chromosome. The study subjects consisted of WDR45 mutation-positive individuals identified after screening a large international cohort of patients with idiopathic neurodegeneration with brain iron accumulation. Their records were reviewed, including longitudinal clinical, laboratory and imaging data. Twenty-three mutation-positive subjects were identified (20 females). The natural history of their disease was remarkably uniform: global developmental delay in childhood and further regression in early adulthood with progressive dystonia, parkinsonism and dementia. Common early comorbidities included seizures, spasticity and disordered sleep. The symptoms of parkinsonism improved with l-DOPA; however, nearly all patients experienced early motor fluctuations that quickly progressed to disabling dyskinesias, warranting discontinuation of l-DOPA. Brain magnetic resonance imaging showed iron in the substantia nigra and globus pallidus, with a ‘halo’ of T1 hyperintense signal in the substantia nigra. All patients harboured de novo mutations in WDR45, encoding a beta-propeller protein postulated to play a role in autophagy. Beta-propeller protein-associated neurodegeneration, the only X-linked disorder of neurodegeneration with brain iron accumulation, is associated with de novo mutations in WDR45 and is recognizable by a unique combination of clinical, natural history and neuroimaging features. PMID:23687123

  16. Projection Effects in Coronal Dimmings and Associated EUV Wave Event

    Science.gov (United States)

    Dissauer, K.; Temmer, M.; Veronig, A. M.; Vanninathan, K.; Magdalenić, J.

    2016-10-01

    We investigate the high-speed (v > 1000 km s‑1) extreme-ultraviolet (EUV) wave associated with an X1.2 flare and coronal mass ejection (CME) from NOAA active region 11283 on 2011 September 6 (SOL2011-09-06T22:12). This EUV wave features peculiar on-disk signatures in particular, we observe an intermittent “disappearance” of the front for 120 s in Solar Dynamics Observatory (SDO)/AIA 171, 193, 211 Å data, whereas the 335 Å filter, sensitive to hotter plasmas (T ∼ 2.5 MK), shows a continuous evolution of the wave front. The eruption was also accompanied by localized coronal dimming regions. We exploit the multi-point quadrature position of SDO and STEREO-A, to make a thorough analysis of the EUV wave evolution, with respect to its kinematics and amplitude evolution and reconstruct the SDO line-of-sight (LOS) direction of the identified coronal dimming regions in STEREO-A. We show that the observed intensities of the dimming regions in SDO/AIA depend on the structures that are lying along their LOS and are the combination of their individual intensities, e.g., the expanding CME body, the enhanced EUV wave, and the CME front. In this context, we conclude that the intermittent disappearance of the EUV wave in the AIA 171, 193, and 211 Å filters, which are channels sensitive to plasma with temperatures below ∼2 MK is also caused by such LOS integration effects. These observations clearly demonstrate that single-view image data provide us with limited insight to correctly interpret coronal features.

  17. Behavioral evidence of heterospecific bonding between the lamb and the human caregiver and mapping of associated brain network.

    Science.gov (United States)

    Guesdon, Vanessa; Nowak, Raymond; Meurisse, Maryse; Boivin, Xavier; Cornilleau, Fabien; Chaillou, Elodie; Lévy, Frédéric

    2016-09-01

    While behavioral mechanisms of bonding between young mammals and humans have been explored, brain structures involved in the establishment of such processes are still unknown. The aim of the study was to identify brain regions activated by the presence of the caregiver. Since human positive interaction plays an important role in the bonding process, activation of specific brain structures by stroking was also examined. Twenty-four female lambs reared in groups of three were fed and stroked daily by a female caregiver between birth and 5-7 weeks of age. At 4 weeks, an isolation-reunion-separation test and a choice test revealed that lambs developed a strong bond with their caregiver. At 5-7 weeks of age, lambs were socially isolated for 90min. They either remained isolated or met their caregiver who stroked them, or not, at regular intervals over a 90-min period. Neuronal activation was investigated at the end of the period for maximum c-Fos expression. Reunion with the caregiver appeased similarly the lambs whether stroking was provided or not. Stroking did not activate a specific brain network compared to no stroking. In both cases, brain regions associated with olfactory, visual and tactile cue processing were activated in the presence of the caregiver, suggesting a multisensory process involved. In addition, activation of the oxytocinergic system in the hypothalamic paraventricular nucleus induced by the presence of the caregiver suggests similar neuroendocrine mechanisms involved in inter-conspecific and animal-human bonding. PMID:27286409

  18. GRIN2B Gene and Associated Brain Cortical White Matter Changes in Bipolar Disorder: A Preliminary Combined Platform Investigation

    Directory of Open Access Journals (Sweden)

    Carissa Nadia Kuswanto

    2013-01-01

    Full Text Available Abnormalities in glutamate signaling and glutamate toxicity are thought to be important in the pathophysiology of bipolar disorder (BD. Whilst previous studies have found brain white matter changes in BD, there is paucity of data about how glutamatergic genes affect brain white matter integrity in BD. Based on extant neuroimaging data, we hypothesized that GRIN2B risk allele is associated with reductions of brain white matter integrity in the frontal, parietal, temporal, and occipital regions and cingulate gyrus in BD. Fourteen patients with BD and 22 healthy controls matched in terms of age, gender and handedness were genotyped using blood samples and underwent diffusion tensor imaging. Compared to G allele, brain FA values were significantly lower in BD patients with risk T allele in left frontal region (P=0.001, right frontal region (P=0.002, left parietal region (P=0.001, left occipital region (P=0.001, right occipital region (P<0.001, and left cingulate gyrus (P=0.001. Further elucidation of the interactions between different glutamate genes and their relationships with such structural, functional brain substrates will enhance our understanding of the link between dysregulated glutamatergic neurotransmission and neuroimaging endophenotypes in BD.

  19. Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners.

    Science.gov (United States)

    Fox, Kieran C R; Nijeboer, Savannah; Dixon, Matthew L; Floman, James L; Ellamil, Melissa; Rumak, Samuel P; Sedlmeier, Peter; Christoff, Kalina

    2014-06-01

    Numerous studies have begun to address how the brain's gray and white matter may be shaped by meditation. This research is yet to be integrated, however, and two fundamental questions remain: Is meditation associated with altered brain structure? If so, what is the magnitude of these differences? To address these questions, we reviewed and meta-analyzed 123 brain morphology differences from 21 neuroimaging studies examining ∼300 meditation practitioners. Anatomical likelihood estimation (ALE) meta-analysis found eight brain regions consistently altered in meditators, including areas key to meta-awareness (frontopolar cortex/BA 10), exteroceptive and interoceptive body awareness (sensory cortices and insula), memory consolidation and reconsolidation (hippocampus), self and emotion regulation (anterior and mid cingulate; orbitofrontal cortex), and intra- and interhemispheric communication (superior longitudinal fasciculus; corpus callosum). Effect size meta-analysis (calculating 132 effect sizes from 16 studies) suggests a global 'medium' effect size (Cohen's d¯=0.46; r¯=.19). Publication bias and methodological limitations are strong concerns, however. Further research using rigorous methods is required to definitively link meditation practice to altered brain morphology.

  20. Pathophysiology of increased cerebrospinal fluid pressure associated to brain arteriovenous malformations: The hydraulic hypothesis

    Science.gov (United States)

    Rossitti, Sandro

    2013-01-01

    Background: Brain arteriovenous malformations (AVMs) produce circulatory and functional disturbances in adjacent as well as in remote areas of the brain, but their physiological effect on the cerebrospinal fluid (CSF) pressure is not well known. Methods: The hypothesis of an intrinsic disease mechanism leading to increased CSF pressure in all patients with brain AVM is outlined, based on a theory of hemodynamic control of intracranial pressure that asserts that CSF pressure is a fraction of the systemic arterial pressure as predicted by a two-resistor series circuit hydraulic model. The resistors are the arteriolar resistance (that is regulated by vasomotor tonus), and the venous resistance (which is mechanically passive as a Starling resistor). This theory is discussed and compared with the knowledge accumulated by now on intravasal pressures and CSF pressure measured in patients with brain AVM. Results: The theory provides a basis for understanding the occurrence of pseudotumor cerebri syndrome in patients with nonhemorrhagic brain AVMs, for the occurrence of local mass effect and brain edema bordering unruptured AVMs, and for the development of hydrocephalus in patients with unruptured AVMs. The theory also contributes to a better appreciation of the pathophysiology of dural arteriovenous fistulas, of vein of Galen aneurismal malformation, and of autoregulation-related disorders in AVM patients. Conclusions: The hydraulic hypothesis provides a comprehensive frame to understand brain AVM hemodynamics and its effect on the CSF dynamics. PMID:23607064

  1. Differential associations between impulsivity and risk-taking and brain activations underlying working memory in adolescents.

    Science.gov (United States)

    Panwar, Karni; Rutherford, Helena J V; Mencl, W Einar; Lacadie, Cheryl M; Potenza, Marc N; Mayes, Linda C

    2014-11-01

    Increased impulsivity and risk-taking are common during adolescence and relate importantly to addictive behaviors. However, the extent to which impulsivity and risk-taking relate to brain activations that mediate cognitive processing is not well understood. Here we examined the relationships between impulsivity and risk-taking and the neural correlates of working memory. Neural activity was measured in 18 adolescents (13-18 years) while they engaged in a working memory task that included verbal and visuospatial components that each involved encoding, rehearsal and recognition stages. Risk-taking and impulsivity were assessed using the Balloon Analogue Risk Task (BART) and the adolescent version of the Barratt Impulsiveness Scale-11 (BIS-11A), respectively. We found overlapping as well as distinct regions subserving the different stages of verbal and visuospatial working memory. In terms of risk-taking, we found a positive correlation between BART scores and activity in subcortical regions (e.g., thalamus, dorsal striatum) recruited during verbal rehearsal, and an inverse correlation between BART scores and cortical regions (e.g., parietal and temporal regions) recruited during visuospatial rehearsal. The BIS-11A evidenced that motor impulsivity was associated with activity in regions recruited during all stages of working memory, while attention and non-planning impulsivity was only associated with activity in regions recruited during recognition. In considering working memory, impulsivity and risk-taking together, both impulsivity and risk-taking were associated with activity in regions recruited during rehearsal; however, during verbal rehearsal, differential correlations were found. Specifically, positive correlations were found between: (1) risk-taking and activity in subcortical regions, including the thalamus and dorsal striatum; and, (2) motor impulsivity and activity in the left inferior frontal gyrus, insula, and dorsolateral prefrontal cortex. Therefore

  2. Botulinum toxin injection for bruxism associated with brain injury: Case report

    OpenAIRE

    Serdar Kesikburun, MD; Rıdvan Alaca, MD; Berke Aras, MD; İlknur Tuğcu, MD; Arif Kenan Tan, MD

    2014-01-01

    Bruxism is involuntary grinding of the teeth and can occur as a complication of brain injury. If untreated, bruxism can lead to severe occlusal trauma. Herein, we present a patient with traumatic brain injury and nocturnal bruxism that was treated with botulinum toxin injection. A 21 yr old male patient with traumatic brain injury from a car accident was admitted to our inpatient rehabilitation unit. He had a history of coma for 2 wk in the intensive care unit. The initial cranial computed to...

  3. From “Where” to “What”: Distributed Representations of Brand Associations in the Human Brain

    Science.gov (United States)

    Chen, Yu-Ping; Nelson, Leif D.; Hsu, Ming

    2015-01-01

    Considerable attention has been given to the notion that there exists a set of human-like characteristics associated with brands, referred to as brand personality. Here we combine newly available machine learning techniques with functional neuroimaging data to characterize the set of processes that give rise to these associations. We show that brand personality traits can be captured by the weighted activity across a widely distributed set of brain regions previously implicated in reasoning, imagery, and affective processing. That is, as opposed to being constructed via reflective processes, brand personality traits appear to exist a priori inside the minds of consumers, such that we were able to predict what brand a person is thinking about based solely on the relationship between brand personality associations and brain activity. These findings represent an important advance in the application of neuroscientific methods to consumer research, moving from work focused on cataloguing brain regions associated with marketing stimuli to testing and refining mental constructs central to theories of consumer behavior. PMID:27065490

  4. A Voxel-Based Morphometry Study Reveals Local Brain Structural Alterations Associated with Ambient Fine Particles in Older Women

    Science.gov (United States)

    Casanova, Ramon; Wang, Xinhui; Reyes, Jeanette; Akita, Yasuyuki; Serre, Marc L.; Vizuete, William; Chui, Helena C.; Driscoll, Ira; Resnick, Susan M.; Espeland, Mark A.; Chen, Jiu-Chiuan; Wassertheil-Smoller, Sylvia; Goodwin, Mimi; DeNise, Richard; Lipton, Michael; Hannigan, James; Carpini, Anthony; Noble, David; Guzman, Wilton; Kotchen, Jane Morley; Goveas, Joseph; Kerwin, Diana; Ulmer, John; Censky, Steve; Flinton, Troy; Matusewic, Tracy; Prost, Robert; Stefanick, Marcia L.; Swope, Sue; Sawyer-Glover, Anne Marie; Hartley, Susan; Jackson, Rebecca; Hallarn, Rose; Kennedy, Bonnie; Bolognone, Jill; Casimir, Lindsay; Kochis, Amanda; Robbins, John; Zaragoza, Sophia; Carter, Cameron; Ryan, John; Macias, Denise; Sonico, Jerry; Nathan, Lauren; Voigt, Barbara; Villablanca, Pablo; Nyborg, Glen; Godinez, Sergio; Perrymann, Adele; Limacher, Marian; Anderson, Sheila; Toombs, Mary Ellen; Bennett, Jeffrey; Jones, Kevin; Brum, Sandy; Chatfield, Shane; Vantrees, Kevin; Robinson, Jennifer; Wilson, Candy; Koch, Kevin; Hart, Suzette; Carroll, Jennifer; Cherrico, Mary; Ockene, Judith; Churchill, Linda; Fellows, Douglas; Serio, Anthony; Jackson, Sharon; Spavich, Deidre; Margolis, Karen; Bjerk, Cindy; Truwitt, Chip; Peitso, Margaret; Camcrena, Alexa; Grim, Richard; Levin, Julie; Perron, Mary; Brunner, Robert; Golding, Ross; Pansky, Leslie; Arguello, Sandie; Hammons, Jane; Peterson, Nikki; Murphy, Carol; Morgan, Maggie; Castillo, Mauricio; Beckman, Thomas; Huang, Benjamin; Kuller, Lewis; McHugh, Pat; Meltzer, Carolyn; Davis, Denise; Davis, Joyce; Kost, Piera; Lucas, Kim; Potter, Tom; Tarr, Lee; Shumaker, Sally; Espeland, Mark; Coker, Laura; Williamson, Jeff; Felton, Debbie; Gleiser, LeeAnn; Rapp, Steve; Legault, Claudine; Dailey, Maggie; Casanova, Ramon; Robertson, Julia; Hogan, Patricia; Gaussoin, Sarah; Nance, Pam; Summerville, Cheryl; Peral, Ricardo; Tan, Josh; Bryan, Nick; Davatzikos, Christos; Desiderio, Lisa; Buckholtz, Neil; Molchan, Susan; Resnick, Susan; Rossouw, Jacques; Pottern, Linda

    2016-01-01

    Objective: Exposure to ambient fine particulate matter (PM2.5: PM with aerodynamic diameters voxel-wise analyses, we examined whether PM2.5 exposure also affects brain structure. Methods: Brain MRI data were obtained from 1365 women (aged 71–89) in the Women's Health Initiative Memory Study and local brain volumes were estimated using RAVENS (regional analysis of volumes in normalized space). Based on geocoded residential locations and air monitoring data from the U.S. Environmental Protection Agency, we employed a spatiotemporal model to estimate long-term (3-year average) exposure to ambient PM2.5 preceding MRI scans. Voxel-wise linear regression models were fit separately to gray matter (GM) and white matter (WM) maps to analyze associations between brain structure and PM2.5 exposure, with adjustment for potential confounders. Results: Increased PM2.5 exposure was associated with smaller volumes in both cortical GM and subcortical WM areas. For GM, associations were clustered in the bilateral superior, middle, and medial frontal gyri. For WM, the largest clusters were in the frontal lobe, with smaller clusters in the temporal, parietal, and occipital lobes. No statistically significant associations were observed between PM2.5 exposure and hippocampal volumes. Conclusions: Long-term PM2.5 exposures may accelerate loss of both GM and WM in older women. While our previous work linked smaller WM volumes to PM2.5, this is the first neuroimaging study reporting associations between air pollution exposure and smaller volumes of cortical GM. Our data support the hypothesized synaptic neurotoxicity of airborne particles.

  5. Prevalence of "organic brain syndrome" in a Southern European population in two different time periods: The ZARADEMP Project

    Directory of Open Access Journals (Sweden)

    Antonio Lobo

    2005-06-01

    Full Text Available Background: Comparative studies of dementia in different time periods are quite limited in the international literature, but might be useful to test environmental hypotheses. The aim of this study is to compare the prevalence of "organic brain syndrome", as a measure of dementia, in the elderly living in the same community in two different time periods and using the same methods. Methods: Representative samples of the elderly in the Zaragoza Study or ZARADEMP 0 (n= 1,080, completed the past decade, and now in Wave I of the ZARADEMP Project or ZARADEMP I (n= 4,803 were interviewed. The Geriatric Mental State (GMS was the main case-finding instrument and the results were analysed using the AGECAT diagnostic package to generate diagnoses. Results: Adjusted, total prevalence of "organic brain syndrome" in individuals aged 65 years and older has not varied from the previous decade. It was 8.4% in ZARADEMP I , and 7.4% in ZARADEMP 0 (prevalence ratio, PR = 0.83; CI 0.65-1.07. Adjusted prevalence among men was lower in ZARADEMP I (3.6% when compared to ZARADEMP 0 (5.5%, although the differences do not reach statistically significance (PR= 0.65; CI 0.41-1.05. However, in support of the working hypothesis, the differences were more marked, and we consider they reach statistically significant proportions in the age group 80-84 years. Conclusions: The prevalence of "organic brain syndrome" has not increased from the previous decade. On the contrary, the prevalence tends to be lower in men, and the differences reach stastistical significance in the age group 80-84 years. New analysis using diagnostic criteria of dementia in the same sample are required to confirm these findings.

  6. Evaluation of brain functional states based on projections of electroencephalographic spectral parameters on 2-dimensional canonical space.

    Science.gov (United States)

    Won, Seung-Hee; Jang, Hwan-Soo; Lee, Ho-Won; Jang, Il-Sung; Lee, Maan-Gee

    2012-10-15

    Electroencephalographic (EEG) activities reflect the functional state of the brain, but it is difficult to objectively describe functional brain states. Here, we describe two statistical divergence measures, Mahalanobis distance and Hellinger distance of projections to the reference spaces, to evaluate their state-discriminating ability. Last, divergence measures of 30-min segments after caffeine treatment were compared to evaluate the dose- and time-dependent arousal effects of caffeine to the best reference space. EEG was recorded from Sprague-Dawley rats during pre- and post-administration of caffeine. Several two-dimensional reference spaces were constructed from subsets of the normalized 7 relative band powers pooled from the pre-drug period of all recordings for each cortex: two reference spaces from data sets of the frontal and parietal cortex, and four reference spaces from data sets of active wake, slow-wave sleep, paradoxical sleep state, and all states. Sleep-wake states used as test states were plotted onto the reference spaces, and then, two divergence measures were derived to measure state-discriminating ability of each reference space. First, the reference space of the same cortex as test data was better for discriminating test states than another cortical reference space. Second, the one reference space constructed from data of all states was better for discriminating test states than the other reference spaces. Third, divergence measures were well correlated with sleep-wake durations after caffeine administration and showed the temporal trends of caffeine-induced arousal effect. These results suggest that two statistical measures can objectively describe brain functional states and drug-induced states.

  7. Head First PMP A Brain-Friendly Guide to Passing the Project Management Professional Exam

    CERN Document Server

    Stellman, Andrew

    2008-01-01

    Media Reviews "I have been doing project management for over 30 years and am considered a subject matter expert in the PMBOK(r) Guide -Third Edition primarily because I am the Project Manager who led the team that developed this edition. As a consultant I was hired to review and evaluate eight of the top selling PMP Exam Preparation books for their accuracy in following the PMBOK® Guide - Third Edition. I have developed and taught a PMP Exam Prep course for a leading R.E.P., and taught PMP Exam preparation classes for PMI Chapters. I can honestly say that Head First PMP is by far the best P

  8. Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma

    DEFF Research Database (Denmark)

    Hartings, Jed A; Watanabe, Tomas; Bullock, M Ross;

    2011-01-01

    Cortical spreading depolarizations occur spontaneously after ischaemic, haemorrhagic and traumatic brain injury. Their effects vary spatially and temporally as graded phenomena, from infarction to complete recovery, and are reflected in the duration of depolarization measured by the negative dire...

  9. Acute Psychosis Associated with Subcortical Stroke: Comparison between Basal Ganglia and Mid-Brain Lesions

    Directory of Open Access Journals (Sweden)

    Aaron McMurtray

    2014-01-01

    Full Text Available Acute onset of psychosis in an older or elderly individual without history of previous psychiatric disorders should prompt a thorough workup for neurologic causes of psychiatric symptoms. This report compares and contrasts clinical features of new onset of psychotic symptoms between two patients, one with an acute basal ganglia hemorrhagic stroke and another with an acute mid-brain ischemic stroke. Delusions and hallucinations due to basal ganglia lesions are theorized to develop as a result of frontal lobe dysfunction causing impairment of reality checking pathways in the brain, while visual hallucinations due to mid-brain lesions are theorized to develop due to dysregulation of inhibitory control of the ponto-geniculate-occipital system. Psychotic symptoms occurring due to stroke demonstrate varied clinical characteristics that depend on the location of the stroke within the brain. Treatment with antipsychotic medications may provide symptomatic relief.

  10. Early life adversity is associated with brain changes in subjects at family risk for depression.

    LENUS (Irish Health Repository)

    Carballedo, Angela

    2012-12-01

    The interplay of genetic and early environmental factors is recognized as an important factor in the aetiology of major depressive disorder (MDD). The aim of the present study was to examine whether reduced volume of hippocampus and frontal brain regions involved in emotional regulation are already present in unaffected healthy individuals at genetic risk of suffering MDD and to investigate whether early life adversity is a relevant factor interacting with these reduced brain structures.

  11. Brain white matter lesions detected by magnetic resosnance imaging are associated with balance and gait speed

    OpenAIRE

    John M Starr; Leaper, S A; Murray, A D; Lemmon, H A; Staff, R T; Deary, Ian J.; Whalley, Lawrence J.

    2003-01-01

    Objective: To investigate the relations between premorbid and current mental ability, mood, and white matter signal abnormalities detected by T2 weighted brain magnetic resonance imaging (MRI) and impairment of balance and mobility in older adults. Methods: 97 subjects from the Aberdeen 1921 birth cohort underwent brain MRI, evaluation of balance, and measurement of gait speed. White matter hyperintensities detected on T2 weighted MRI scans were rated by three independent raters on three ...

  12. Duration of exclusive breastfeeding is associated with differences in infants’ brain responses to emotional body expressions

    OpenAIRE

    Kathleen Marie Krol; Purva eRajhans; Manuela eMissana; Tobias eGrossmann

    2015-01-01

    Much research has recognized the general importance of maternal behavior in the early development and programming of the mammalian offspring’s brain. Exclusive breastfeeding duration, the amount of time in which breastfed meals are the only source of sustenance, plays a prominent role in promoting healthy brain and cognitive development in human children. However, surprisingly little is known about the influence of breastfeeding on social and emotional development in infancy. In the current s...

  13. Reward Sensitivity Is Associated with Brain Activity during Erotic Stimulus Processing

    OpenAIRE

    Victor Costumero; Alfonso Barrós-Loscertales; Juan Carlos Bustamante; Noelia Ventura-Campos; Paola Fuentes; Patricia Rosell-Negre; César Ávila

    2013-01-01

    The behavioral approach system (BAS) from Gray’s reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray’s theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men compl...

  14. Maternal interpersonal affiliation is associated with adolescents' brain structure and reward processing

    OpenAIRE

    Schneider, S.; Brassen, S; Bromberg, U; Banaschewski, T; Conrod, P; Flor, H; Gallinat, J.; Garavan, Hugh; Heinz, A.; Martinot, J-L; Nees, F; Rietschel, M; Smolka, M N; Ströhle, A.; Struve, M

    2012-01-01

    Considerable animal and human research has been dedicated to the effects of parenting on structural brain development, focusing on hippocampal and prefrontal areas. Conversely, although functional imaging studies suggest that the neural reward circuitry is involved in parental affection, little is known about mothers' interpersonal qualities in relation to their children's brain structure and function. Moreover, gender differences concerning the effect of maternal qualities have rarely been i...

  15. Association of HIF- expression and cell apoptosis after traumatic brain injury in the rat

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To explore the expression of hypoxia inducible factor-1α (HIF-1~) and the correlation between HIF-1α and apoptosis after traumatic brain injury.Methods: Using experimental traumatic brain injury in the rats, the expression of HIF-1α was studied by immunohisto-chemistry in cerebral tissue, apoptotic cell death was evaluated with TUNEL (transferase-mediated XdUTP nick end labeling ), and double-labeled immunohistochemistry and TUNEL methods were used to investigate the relationship between HIF-1α and apoptosis.Results: There was remarkable difference in the expression of HIF-1α between the experimental groups and the control groups (P < 0.01), in the experimental groups,the expression of HIF-1α at 48 hours was highest; the evidence of apoptotic cell death after experimental traumatic brain injury was found by TUNEL; the apoptotic percentage increased or decreased according to the changes of the positive expression of HIF-1α (r = 0.99).Conclusions: The results suggest that secondary brain ischemia plays a crucial role in apoptotic cell death after traumatic brain injury; HIF-1α can prompt apoptotic cell death after experimental traumatic brain injury.e expres

  16. Functional Brain Network Changes Associated with Maintenance of Cognitive Function in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Santosh A Helekar

    2010-11-01

    Full Text Available In multiple sclerosis (MS functional changes in connectivity due to cortical reorganization could lead to cognitive impairment (CI, or reflect a re-adjustment to reduce the clinical effects of widespread tissue damage. Such alterations in connectivity could result in changes in neural activation as assayed by executive function tasks. We examined cognitive function in MS patients with mild to moderate cognitive impairment and age-matched controls. We evaluated brain activity using functional magnetic resonance imaging (fMRI during the successful performance of the Wisconsin-card sorting (WCS task by MS patients, showing compensatory maintenance of normal function, as measured by response latency and error rate. To assess changes in functional connectivity throughout the brain, we performed a global functional brain network analysis by computing voxel by voxel correlations on the fMRI time series data and carrying out a hierarchical cluster analysis. We found that during the WCS task there is a significant reduction in the number of smaller size brain functional networks, and a change in the brain areas representing the nodes of these networks in MS patients compared to age-matched controls. There is also a concomitant increase in the strength of functional connections between brain loci separated at intermediate scale distances in these patients. These functional alterations might reflect compensatory neuroplastic reorganization underlying maintenance of relatively normal cognitive function in the face of white matter lesions and cortical atrophy produced by MS.

  17. Learning to Live Together: A Review of UNESCO's Associated Schools Project Network

    Science.gov (United States)

    Schweisfurth, Michele

    2005-05-01

    Some 7400 schools belong to the global network of UNESCO's Associated School Project Network. They are committed to promoting ideals such as human rights, intercultural understanding, peace and environmental protection. This study is based on an extensive review undertaken in 2003. It discusses the origins and analyzes the achievements of the Associated School Project Network in bringing change to schools, communities and national policy. The analysis employs a variety of models of educational innovation and reform in order to assess the horizontal and vertical impact of the Associated School Project Network. It draws general conclusions on the usefulness of such networks for intercultural learning and educational and social change. Key issues include the commitment of stakeholders; the treatment of culturally sensitive issues; cultural interpretations of certain subjects; the value of horizontal networks; and the difficulty of achieving vertical impact on national policy-making.

  18. An associative and projective diagnosis focused on the analysis of statistical databases characteristic of academic education

    OpenAIRE

    Gheorghe Savoiu

    2015-01-01

    The paper presents a distinct manner of statistical analysis, defined by an original associative and projective diagnosis of a set of 10 academic study programmes of the University of Pitesti, generating 244 variables drawn from a larger study that is part of the POSDRU (HRD) contract 156/1.2/G/141632, part of the project known, in its abbreviated form, as NOVA-CURRICULA, a project co-funded by the European Social Fund through the Operational Programme Human Resources Development 2007-2013: “...

  19. Association between serotonin transporter genotype, brain structure and adolescent-onset major depressive disorder: a longitudinal prospective study

    OpenAIRE

    Little, K.; Olsson, C. A.; Whittle, S; Youssef, G J; Byrne, M L; J.G. Simmons; Yücel, M; Foley, D L; Allen, N. B.

    2014-01-01

    The extent to which brain structural abnormalities might serve as neurobiological endophenotypes that mediate the link between the variation in the promoter of the serotonin transporter gene (5-HTTLPR) and depression is currently unknown. We therefore investigated whether variation in hippocampus, amygdala, orbitofrontal cortex (OFC) and anterior cingulate cortex volumes at age 12 years mediated a putative association between 5-HTTLPR genotype and first onset of major depressive disorder (MDD...

  20. An Association Study of the Brain-Derived Neurotrophic Factor Val66Met Polymorphism and Amphetamine Response

    OpenAIRE

    Brody A Flanagin; Cook, Edwin H.; de Wit, Harriet

    2006-01-01

    Although genetic factors are known to be important in addiction, no candidate genes have yet been consistently linked to drug use or abuse. Brain-derived neurotrophic factor (BDNF), which has been implicated in the behavioral response to psychomotor stimulants and potentiates neurotransmitters that are strongly linked to addiction, is a logical candidate gene to study. Using a drug challenge approach, we tested for association between BDNF G196A (val66met) genotype and subjective responses to...

  1. Meta-analysis and association of brain-derived neurotrophic factor (BDNF) gene with obsessive-compulsive disorder.

    Science.gov (United States)

    Zai, Gwyneth; Zai, Clement C; Arnold, Paul D; Freeman, Natalie; Burroughs, Eliza; Kennedy, James L; Richter, Margaret A

    2015-04-01

    Obsessive-compulsive disorder (OCD) is a severe psychiatric condition with a clear genetic component (Nicolini et al., 2009) in which neurodevelopmental mechanisms may be etiologically important. Brain-derived neurotrophic factor (BDNF) is an interesting candidate for molecular analysis in OCD on the basis of potential functional relevance, positive association studies, and reported interaction between this gene and other neurotransmitters implicated in this disorder.

  2. Associations between white matter hyperintensities and β amyloid on integrity of projection, association, and limbic fiber tracts measured with diffusion tensor MRI.

    Directory of Open Access Journals (Sweden)

    Linda L Chao

    Full Text Available The goal of this study was to assess the relationship between Aβ deposition and white matter pathology (i.e., white matter hyperintensities, WMH on microstructural integrity of the white matter. Fifty-seven participants (mean age: 78±7 years from an ongoing multi-site research program who spanned the spectrum of normal to mild cognitive impairment (Clinical dementia rating 0-0.5 and low to high risk factors for arteriosclerosis and WMH pathology (defined as WMH volume >0.5% total intracranial volume were assessed with positron emission tomography (PET with Pittsburg compound B (PiB and magnetic resonance and diffusion tensor imaging (DTI. Multivariate analysis of covariance were used to investigate the relationship between Aβ deposition and WMH pathology on fractional anisotropy (FA from 9 tracts of interest (i.e., corona radiata, internal capsule, cingulum, parahippocampal white matter, corpus callosum, superior longitudinal, superior and inferior front-occipital fasciculi, and fornix. WMH pathology was associated with reduced FA in projection (i.e., internal capsule and corona radiate and association (i.e., superior longitudinal, superior and inferior fronto-occipital fasciculi fiber tracts. Aβ deposition (i.e., PiB positivity was associated with reduced FA in the fornix and splenium of the corpus callosum. There were interactions between PiB and WMH pathology in the internal capsule and parahippocampal white matter, where Aβ deposition reduced FA more among subjects with WMH pathology than those without. However, accounting for apoE ε4 genotype rendered these interactions insignificant. Although this finding suggests that apoE4 may increase amyloid deposition, both in the parenchyma (resulting in PiB positivity and in blood vessels (resulting in amyloid angiopathy and WMH pathology, and that these two factors together may be associated with compromised white matter microstructural integrity in multiple brain regions, additional studies

  3. Training of verbal creativity modulates brain activity in regions associated with language- and memory-related demands.

    Science.gov (United States)

    Fink, Andreas; Benedek, Mathias; Koschutnig, Karl; Pirker, Eva; Berger, Elisabeth; Meister, Sabrina; Neubauer, Aljoscha C; Papousek, Ilona; Weiss, Elisabeth M

    2015-10-01

    This functional magnetic resonance (fMRI) study was designed to investigate changes in functional patterns of brain activity during creative ideation as a result of a computerized, 3-week verbal creativity training. The training was composed of various verbal divergent thinking exercises requiring participants to train approximately 20 min per day. Fifty-three participants were tested three times (psychometric tests and fMRI assessment) with an intertest-interval of 4 weeks each. Participants were randomly assigned to two different training groups, which received the training time-delayed: The first training group was trained between the first and the second test, while the second group accomplished the training between the second and the third test session. At the behavioral level, only one training group showed improvements in different facets of verbal creativity right after the training. Yet, functional patterns of brain activity during creative ideation were strikingly similar across both training groups. Whole-brain voxel-wise analyses (along with supplementary region of interest analyses) revealed that the training was associated with activity changes in well-known creativity-related brain regions such as the left inferior parietal cortex and the left middle temporal gyrus, which have been shown as being particularly sensitive to the originality facet of creativity in previous research. Taken together, this study demonstrates that continuous engagement in a specific complex cognitive task like divergent thinking is associated with reliable changes of activity patterns in relevant brain areas, suggesting more effective search, retrieval, and integration from internal memory representations as a result of the training.

  4. A novel PGC-1α isoform in brain localizes to mitochondria and associates with PINK1 and VDAC

    International Nuclear Information System (INIS)

    Highlights: •Novel 35 kDa PGC-1α localizes to mitochondrial inner membrane and matrix in brain. •Mitochondrial localization of 35 kDa PGC-1α depends on VDAC protein. •Mitochondrial localization of 35 kDa PGC-1α depends on membrane potential. •The 35 kDa PGC-1α associates and colocalizes with PINK in brain mitochondria. -- Abstract: Peroxisome proliferator-activated receptor-gamma co-activator 1α (PGC-1α) and PTEN-induced putative kinase 1 (PINK1) are powerful regulators of mitochondrial function. Here, we report that a previously unrecognized, novel 35 kDa PGC-1α isoform localizes to the mitochondrial inner membrane and matrix in brain as determined by protease protection and carbonate extraction assays, as well as by immunoelectron microscopy. Immunoelectron microscopy and import experiments in vitro revealed that 35 kDa PGC-1α colocalizes and interacts with the voltage-dependent anion channel (VDAC), and that its import depends on VDAC. Valinomycin treatment which depolarizes the membrane potential, abolished mitochondrial localization of the 35 kDa PGC-1α. Using blue native-PAGE, co-immunoprecipitation, and immunoelectron microscopy analyses, we found that the 35 kDa PGC-1α binds and colocalizes with PINK1 in brain mitochondria. This is the first report regarding mitochondrial localization of a novel 35 kDa PGC-1α isoform and its association with PINK1, suggesting possible regulatory roles for mitochondrial function in the brain

  5. Alcohol use disorder with and without stimulant use: brain morphometry and its associations with cigarette smoking, cognition, and inhibitory control.

    Directory of Open Access Journals (Sweden)

    David L Pennington

    Full Text Available Little is known about the effects of polysubstance use and cigarette smoking on brain morphometry. This study examined neocortical brain morphometric differences between abstinent polysubstance dependent and alcohol-only dependent treatment seekers (ALC as well as light drinking controls (CON, the associations of cigarette smoking in these polysubstance users (PSU, and morphometric relationships to cognition and inhibitory control.All participants completed extensive neuropsychological assessments and 4 Tesla brain magnetic resonance imaging. PSU and ALC were abstinent for one month at the time of study. Parcellated morphological data (volume, surface area, thickness were obtained with FreeSurfer methodology for the following bilateral components: dorso-prefrontal cortex (DPFC, anterior cingulate cortex (ACC, orbitofrontal cortex (OFC, and insula. Regional group differences were examined and structural data correlated with domains of cognition and inhibitory control.PSU had significantly smaller left OFC volume and surface area and trends to smaller right DPFC volume and surface area compared to CON; PSU did not differ significantly from ALC on these measures. PSU, however, had significantly thinner right ACC than ALC. Smoking PSU had significantly larger right OFC surface area than non-smoking PSU. No significant relationships between morphometry and quantity/frequency of substance use, alcohol use, or age of onset of heavy drinking were observed. PSU exhibited distinct relationships between brain structure and processing speed, cognitive efficiency, working memory and inhibitory control that were not observed in ALC or CON.Polysubstance users have unique morphometric abnormalities and structure-function relationships when compared to individuals dependent only on alcohol and light drinking controls. Chronic cigarette smoking is associated with structural brain irregularities in polysubstance users. Further elucidation of these distinctive

  6. Cognitive impairment and associated loss in brain white microstructure in aircrew members exposed to engine oil fumes.

    Science.gov (United States)

    Reneman, Liesbeth; Schagen, Sanne B; Mulder, Michel; Mutsaerts, Henri J; Hageman, Gerard; de Ruiter, Michiel B

    2016-06-01

    Cabin air in airplanes can be contaminated with engine oil contaminants. These contaminations may contain organophosphates (OPs) which are known neurotoxins to brain white matter. However, it is currently unknown if brain white matter in aircrew is affected. We investigated whether we could objectify cognitive complaints in aircrew and whether we could find a neurobiological substrate for their complaints. After medical ethical approval from the local institutional review board, informed consent was obtained from 12 aircrew (2 females, on average aged 44.4 years, 8,130 flying hours) with cognitive complaints and 11 well matched control subjects (2 females, 43.4 years, 233 flying hours). Depressive symptoms and self-reported cognitive symptoms were assessed, in addition to a neuropsychological test battery. State of the art Magnetic Resonance Imaging (MRI) techniques were administered that assess structural and functional changes, with a focus on white matter integrity. In aircrew we found significantly more self-reported cognitive complaints and depressive symptoms, and a higher number of tests scored in the impaired range compared to the control group. We observed small clusters in the brain in which white matter microstructure was affected. Also, we observed higher cerebral perfusion values in the left occipital cortex, and reduced brain activation on a functional MRI executive function task. The extent of cognitive impairment was strongly associated with white matter integrity, but extent of estimated number of flight hours was not associated with cognitive impairment nor with reductions in white matter microstructure. Defects in brain white matter microstructure and cerebral perfusion are potential neurobiological substrates for cognitive impairments and mood deficits reported in aircrew. PMID:26063438

  7. Projections of Pain: Neonatal pain, what remains in the brain after the wheels of time

    NARCIS (Netherlands)

    G.E. van den Bosch (Gerbrich)

    2014-01-01

    textabstract__Abstract__ The International Association for the Study of Pain (IASP) has defined ’pain’ as ‘An unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage’ with the note that ‘Pain is always subjective. Each indi

  8. Inhibition of botulinum toxin's association with rat brain synaptosomes by toosendanin,an antibotulismic triterpenoid

    Institute of Scientific and Technical Information of China (English)

    Jianying Zhou; Yuliang Shi

    2006-01-01

    BACKGROUND:Toosendanin(TSN),a triterpenoid derivative extracted from the bark of Melia toosendanin Sieb et Zucc,has been demonstrated to be an effective drug for treatment of experimental botulism.OBJECTIVE:To explore its antibotulismic mechanism by observing the effect of toosendanin on association of botulinum toxin(BoTx)with rat brain synaptosomes under different conditions.DESIGN:A randomized controlled experiment.SETTING:Shanghai Institutes for Biological Sciences,Chinese Academy of Sciences.MATERIALS:Sprague-Dawley rats,weighing(220±12)g,were involved.TSN was a sample recrystallized in ethanol with a purity>98%.BoTx/A and BoTx/C of 500 ku(1.8x107mouse LD50/mg)were purchased from Wako(Japan),Horse antitoxins to BoTx/A and/C(pdmary antibodies)were purchased from Lanzhou Institute of Biological Products(China).METHODS:Major experiments were finished between March 2005 and October 2005 in key laboratory of neurobiology,Shanghai Institutes for Biological Sciences,Chinese Academy of Sciences.①Preparation of synaptosome of rats:one aliquot of synaptosome was pre-incubated with TSN(17μmol/L)for 20 minutes at 4℃or 37℃(another aliquot of synaptosome which was untouched was used as control).Then,BoTx was respectively added for another 20-minute incubation.②A homochronous experiment was still Derformed at 37℃.Differently,high level of K+ was used to stimulate synaptosome for 25 minutee.Two aliquots of synaptosomes with or without TSN(17 μmol/L)were preincubated for 15 minutes.Then,30 mmol/L KCl was separately added in two aliquots,5 minutes later,13 nmol/L BoTx/C was separately added followed by 20-minute incubation.[3]The effect of TSN on BoTx binding was observed by Western blot and synchronization method.③ttest was used for comparing the difference of measurement data.MAIN OUTCOME MEASURES:The gray value of BoTx bands from westem blot was used to estimate the bound amount of BoTx.RESULTS:①Preincubation of synaptosomes with TSN(17 μmol/L)at 4

  9. Brain glucose metabolism is associated with hormone level in Cushing's disease: A voxel-based study using FDG-PET.

    Science.gov (United States)

    Liu, Shuai; Wang, Yinyan; Xu, Kaibin; Ping, Fan; Wang, Renzhi; Li, Fang; Cheng, Xin

    2016-01-01

    Chronic exposure to elevated levels of glucocorticoids can exert a neurotoxic effect in patients, possibly manifesting as molecular imaging alterations in patients. The aim of this study was to investigate the potential association between brain metabolism and elevated hormone level using (18)F-fluorodeoxyglucose positron emission tomography. We retrospectively enrolled 92 consecutive patients with confirmed diagnosis of Cushing's disease. A voxel-based analysis was performed to investigate the association between cerebral (18)F-fluorodeoxyglucose uptake and serum cortisol level. Relatively impaired metabolism of specific brain regions correlated with serum cortisol level was found. Specifically, notable correlations were found in the hippocampus, amygdala, and cerebellum, regions considered to be involved in the regulation and central action of glucocorticoids. Moreover, some hormone-associated regions were found in the frontal and occipital cortex, possibly mediating the cognitive changes seen in Cushing's disease. Our findings link patterns of perturbed brain metabolism relates to individual hormone level, thus presenting a substrate for cognitive disturbances seen in Cushing's disease patients, as well as in other conditions with abnormal cortisol levels.

  10. Brain glucose metabolism is associated with hormone level in Cushing's disease: A voxel-based study using FDG-PET.

    Science.gov (United States)

    Liu, Shuai; Wang, Yinyan; Xu, Kaibin; Ping, Fan; Wang, Renzhi; Li, Fang; Cheng, Xin

    2016-01-01

    Chronic exposure to elevated levels of glucocorticoids can exert a neurotoxic effect in patients, possibly manifesting as molecular imaging alterations in patients. The aim of this study was to investigate the potential association between brain metabolism and elevated hormone level using (18)F-fluorodeoxyglucose positron emission tomography. We retrospectively enrolled 92 consecutive patients with confirmed diagnosis of Cushing's disease. A voxel-based analysis was performed to investigate the association between cerebral (18)F-fluorodeoxyglucose uptake and serum cortisol level. Relatively impaired metabolism of specific brain regions correlated with serum cortisol level was found. Specifically, notable correlations were found in the hippocampus, amygdala, and cerebellum, regions considered to be involved in the regulation and central action of glucocorticoids. Moreover, some hormone-associated regions were found in the frontal and occipital cortex, possibly mediating the cognitive changes seen in Cushing's disease. Our findings link patterns of perturbed brain metabolism relates to individual hormone level, thus presenting a substrate for cognitive disturbances seen in Cushing's disease patients, as well as in other conditions with abnormal cortisol levels. PMID:27622138

  11. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning.

    Science.gov (United States)

    Brown, Matthew T C; Tan, Kelly R; O'Connor, Eoin C; Nikonenko, Irina; Muller, Dominique; Lüscher, Christian

    2012-12-20

    The ventral tegmental area (VTA) and nucleus accumbens (NAc) are essential for learning about environmental stimuli associated with motivationally relevant outcomes. The task of signalling such events, both rewarding and aversive, from the VTA to the NAc has largely been ascribed to dopamine neurons. The VTA also contains GABA (γ-aminobutyric acid)-releasing neurons, which provide local inhibition and also project to the NAc. However, the cellular targets and functional importance of this long-range inhibitory projection have not been ascertained. Here we show that GABA-releasing neurons of the VTA that project to the NAc (VTA GABA projection neurons) inhibit accumbal cholinergic interneurons (CINs) to enhance stimulus-outcome learning. Combining optogenetics with structural imaging and electrophysiology, we found that VTA GABA projection neurons selectively target NAc CINs, forming multiple symmetrical synaptic contacts that generated inhibitory postsynaptic currents. This is remarkable considering that CINs represent a very small population of all accumbal neurons, and provide the primary source of cholinergic tone in the NAc. Brief activation of this projection was sufficient to halt the spontaneous activity of NAc CINs, resembling the pause recorded in animals learning stimulus-outcome associations. Indeed, we found that forcing CINs to pause in behaving mice enhanced discrimination of a motivationally important stimulus that had been associated with an aversive outcome. Our results demonstrate that VTA GABA projection neurons, through their selective targeting of accumbal CINs, provide a novel route through which the VTA communicates saliency to the NAc. VTA GABA projection neurons thus emerge as orchestrators of dopaminergic and cholinergic modulation in the NAc.

  12. The timing of language learning shapes brain structure associated with articulation.

    Science.gov (United States)

    Berken, Jonathan A; Gracco, Vincent L; Chen, Jen-Kai; Klein, Denise

    2016-09-01

    We compared the brain structure of highly proficient simultaneous (two languages from birth) and sequential (second language after age 5) bilinguals, who differed only in their degree of native-like accent, to determine how the brain develops when a skill is acquired from birth versus later in life. For the simultaneous bilinguals, gray matter density was increased in the left putamen, as well as in the left posterior insula, right dorsolateral prefrontal cortex, and left and right occipital cortex. For the sequential bilinguals, gray matter density was increased in the bilateral premotor cortex. Sequential bilinguals with better accents also showed greater gray matter density in the left putamen, and in several additional brain regions important for sensorimotor integration and speech-motor control. Our findings suggest that second language learning results in enhanced brain structure of specific brain areas, which depends on whether two languages are learned simultaneously or sequentially, and on the extent to which native-like proficiency is acquired. PMID:26420279

  13. Patterns of regional brain hypometabolism associated with knowledge of semantic features and categories in alzheimer's disease

    DEFF Research Database (Denmark)

    Zahn, R.; Garrard, P.; Talazko, J.;

    2006-01-01

    The study of semantic memory in patients with Alzheimer's disease (AD) has raised important questions about the representation of conceptual knowledge in the human brain. It is still unknown whether semantic memory impairments are caused by localized damage to specialized regions or by diffuse da...... and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas.......The study of semantic memory in patients with Alzheimer's disease (AD) has raised important questions about the representation of conceptual knowledge in the human brain. It is still unknown whether semantic memory impairments are caused by localized damage to specialized regions or by diffuse...... damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used...

  14. Altered brain functions in HIV positive patients free of HIV- associated neurocognitive disorders: A MRI study during unilateral hand movements

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-03-01

    Full Text Available This paper aimed to investigate the brain activity of human immunodeficiency virus (HIV positive patients with normal cognition during unilateral hand movement and whether highly active antiretroviral therapy (HAART could affect the brain function. Functional magnetic resonance imaging (fMRI was performed for 60 HIV positive (HIV+ subjects and −42 healthy age-matched right-handed control subjects. Each subject was evaluated by the neuropsychological test and examined with fMRI during left and right hand movement tasks. HIV+ subjects showed greater activation in anterior cingulum, precuneus, occipital lobes, ipsilateral postcentral gyrus and contralateral cerebellum compared with control group during right hand movement task. However, during left hand movement no statistically significant difference was detected between these two groups. HAART medication for HIV+ subjects lowered the increased activity to normal level. Meanwhile patients receiving the regimen of zidovudine, lamivudine and efavirenz showed lower activity at bilateral caudate and ipsilateral inferior frontal gyrus in comparison with subjects receiving other HAART regimens. Therefore, HIV+ subjects demonstrated brain asymmetry in motor cortex, with increased activity present during right hand movement but absent during left hand movement. HAART proves effective in HIV+ subjects even with normal cognition and the specific regimen of HAART could prevent cerebral abnormal functions. Meanwhile, this study validates that during motor tasks, fMRI can detect the brain signal changes prior to the occurrences of other HIV- associated dysfunctions.

  15. Association between brain natriuretic peptide, markers of inflammation and the objective and subjective response to cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Brouwers, Corline; Versteeg, Henneke; Meine, Mathias;

    2014-01-01

    Introduction: Studies suggest that cardiac resynchronization therapy (CRT) can induce a decrease in brain natriuretic peptide (BNP) and systemic inflammation, which may be associated with CRT-response. However, the evidence is inconclusive. We examined levels of BNP and inflammatory markers from ...... is not automatically related to a stronger overall decrease in inflammation. Large-scale studies are warranted that further examine the relation between the clinical effects of CRT on inflammatory markers, as the latter have been associated with poor prognosis in heart failure....

  16. The TimeStudio Project: An open source scientific workflow system for the behavioral and brain sciences.

    Science.gov (United States)

    Nyström, Pär; Falck-Ytter, Terje; Gredebäck, Gustaf

    2016-06-01

    This article describes a new open source scientific workflow system, the TimeStudio Project, dedicated to the behavioral and brain sciences. The program is written in MATLAB and features a graphical user interface for the dynamic pipelining of computer algorithms developed as TimeStudio plugins. TimeStudio includes both a set of general plugins (for reading data files, modifying data structures, visualizing data structures, etc.) and a set of plugins specifically developed for the analysis of event-related eyetracking data as a proof of concept. It is possible to create custom plugins to integrate new or existing MATLAB code anywhere in a workflow, making TimeStudio a flexible workbench for organizing and performing a wide range of analyses. The system also features an integrated sharing and archiving tool for TimeStudio workflows, which can be used to share workflows both during the data analysis phase and after scientific publication. TimeStudio thus facilitates the reproduction and replication of scientific studies, increases the transparency of analyses, and reduces individual researchers' analysis workload. The project website ( http://timestudioproject.com ) contains the latest releases of TimeStudio, together with documentation and user forums. PMID:26170051

  17. The TimeStudio Project: An open source scientific workflow system for the behavioral and brain sciences.

    Science.gov (United States)

    Nyström, Pär; Falck-Ytter, Terje; Gredebäck, Gustaf

    2016-06-01

    This article describes a new open source scientific workflow system, the TimeStudio Project, dedicated to the behavioral and brain sciences. The program is written in MATLAB and features a graphical user interface for the dynamic pipelining of computer algorithms developed as TimeStudio plugins. TimeStudio includes both a set of general plugins (for reading data files, modifying data structures, visualizing data structures, etc.) and a set of plugins specifically developed for the analysis of event-related eyetracking data as a proof of concept. It is possible to create custom plugins to integrate new or existing MATLAB code anywhere in a workflow, making TimeStudio a flexible workbench for organizing and performing a wide range of analyses. The system also features an integrated sharing and archiving tool for TimeStudio workflows, which can be used to share workflows both during the data analysis phase and after scientific publication. TimeStudio thus facilitates the reproduction and replication of scientific studies, increases the transparency of analyses, and reduces individual researchers' analysis workload. The project website ( http://timestudioproject.com ) contains the latest releases of TimeStudio, together with documentation and user forums.

  18. Global and regional cortical connectivity maturation index (CCMI) of developmental human brain with quantification of short-range association tracts

    Science.gov (United States)

    Ouyang, Minhui; Jeon, Tina; Mishra, Virendra; Du, Haixiao; Wang, Yu; Peng, Yun; Huang, Hao

    2016-03-01

    From early childhood to adulthood, synaptogenesis and synaptic pruning continuously reshape the structural architecture and neural connection in developmental human brains. Disturbance of the precisely balanced strengthening of certain axons and pruning of others may cause mental disorders such as autism and schizophrenia. To characterize this balance, we proposed a novel measurement based on cortical parcellation and diffusion MRI (dMRI) tractography, a cortical connectivity maturation index (CCMI). To evaluate the spatiotemporal sensitivity of CCMI as a potential biomarker, dMRI and T1 weighted datasets of 21 healthy subjects 2-25 years were acquired. Brain cortex was parcellated into 68 gyral labels using T1 weighted images, then transformed into dMRI space to serve as the seed region of interest for dMRI-based tractography. Cortico-cortical association fibers initiated from each gyrus were categorized into long- and short-range ones, based on the other end of fiber terminating in non-adjacent or adjacent gyri of the seed gyrus, respectively. The regional CCMI was defined as the ratio between number of short-range association tracts and that of all association tracts traced from one of 68 parcellated gyri. The developmental trajectory of the whole brain CCMI follows a quadratic model with initial decreases from 2 to 16 years followed by later increases after 16 years. Regional CCMI is heterogeneous among different cortical gyri with CCMI dropping to the lowest value earlier in primary somatosensory cortex and visual cortex while later in the prefrontal cortex. The proposed CCMI may serve as sensitive biomarker for brain development under normal or pathological conditions.

  19. Pulse Pressure Is Associated With Early Brain Atrophy and Cognitive Decline: Modifying Effects of APOE-ε4.

    Science.gov (United States)

    Nation, Daniel A; Preis, Sarah R; Beiser, Alexa; Bangen, Katherine J; Delano-Wood, Lisa; Lamar, Melissa; Libon, David J; Seshadri, Sudha; Wolf, Philip A; Au, Rhoda

    2016-01-01

    We investigated whether midlife pulse pressure is associated with brain atrophy and cognitive decline, and whether the association was modified by apolipoprotein-E ε4 (APOE-ε4) and hypertension. Participants (549 stroke-free and dementia-free Framingham Offspring Cohort Study participants, age range=55.0 to 64.9 y) underwent baseline neuropsychological and magnetic resonance imaging (subset, n=454) evaluations with 5- to 7-year follow-up. Regression analyses investigated associations between baseline pulse pressure (systolic-diastolic pressure) and cognition, total cerebral volume and temporal horn ventricular volume (as an index of smaller hippocampal volume) at follow-up, and longitudinal change in these measures. Interactions with APOE-ε4 and hypertension were assessed. Covariates included age, sex, education, assessment interval, and interim stroke. In the total sample, baseline pulse pressure was associated with worse executive ability, lower total cerebral volume, and greater temporal horn ventricular volume 5 to 7 years later, and longitudinal decline in executive ability and increase in temporal horn ventricular volume. Among APOE-ε4 carriers only, baseline pulse pressure was associated with longitudinal decline in visuospatial organization. Findings indicate arterial stiffening, indexed by pulse pressure, may play a role in early cognitive decline and brain atrophy in mid to late life, particularly among APOE-ε4 carriers. PMID:27556935

  20. Long-term meditation is associated with increased gray matter density in the brain stem

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, Peter; Beek, Martijn van; Skewes, Joshua;

    2009-01-01

    Extensive practice involving sustained attention can lead to changes in brain structure. Here, we report evidence of structural differences in the lower brainstem of participants engaged in the long-term practice of meditation. Using magnetic resonance imaging, we observed higher gray matter...... density in lower brain stem regions of experienced meditators compared with age-matched nonmeditators. Our findings show that long-term practitioners of meditation have structural differences in brainstem regions concerned with cardiorespiratory control. This could account for some...... of the cardiorespiratory parasympathetic effects and traits, as well as the cognitive, emotional, and immunoreactive impact reported in several studies of different meditation practices....

  1. TALE-class homeodomain transcription factors, homothorax and extradenticle, control dendritic and axonal targeting of olfactory projection neurons in the Drosophila brain.

    Science.gov (United States)

    Ando, Mai; Totani, Yoko; Walldorf, Uwe; Furukubo-Tokunaga, Katsuo

    2011-10-01

    Precise neuronal connectivity in the nervous system depends on specific axonal and dendritic targeting of individual neurons. In the Drosophila brain, olfactory projection neurons convey odor information from the antennal lobe to higher order brain centers such as the mushroom body and the lateral horn. Here, we show that Homothorax (Hth), a TALE-class homeodomain transcription factor, is expressed in many of the antennal lobe neurons including projection neurons and local interneurons. In addition, HTH is expressed in the progenitors of the olfactory projection neurons, and the activity of hth is required for the generation of the lateral but not for the anterodorsal and ventral lineages. MARCM analyses show that the hth is essential for correct dendritic targeting of projection neurons in the antennal lobe. Moreover, the activity of hth is required for axonal fasciculation, correct routing and terminal branching of the projection neurons. We also show that another TALE-class homeodomain protein, Extradenticle (Exd), is required for the dendritic and axonal development of projection neurons. Mutation of exd causes projection neuron defects that are reminiscent of the phenotypes caused by the loss of the hth activity. Double immunostaining experiments show that Hth and Exd are coexpressed in olfactory projection neurons and their progenitors, and that the expressions of Hth and Exd require the activity of each other gene. These results thus demonstrate the functional importance of the TALE-class homeodomain proteins in cell-type specification and precise wiring of the Drosophila olfactory network.

  2. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes

    Science.gov (United States)

    Insulin resistance leads to memory impairment. Cinnamon (CN) improves whole body insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling, and Alzheimer-associated gene expression in the brain were measured in male Wistar rats fed a high fat/high fructose...

  3. The Additional Detrimental Effects of Cold Preservation on Transplantation-Associated Injury in Kidneys from Living and Brain-Dead Donor Rats

    NARCIS (Netherlands)

    Hoeger, Simone; Petrov, Kiril; Reisenbuechler, Anke; Fontana, Johann; Selhorst, Jochen; Hanusch, Christine; Beck, Grietje; Seelen, Marc A.; van Son, Willem J.; Waldherr, Ruediger; Schnuelle, Peter; Yard, Benito A.

    2009-01-01

    Background. Brain death and cold preservation are major alloantigen-independent risk factors for transplantation Outcome. The present study was conducted to assess the influence of these factors on transplantation-associated injury independently or in combination. Methods. Brain death was induced in

  4. A Pilot Project of Early Integrated Traumatic Brain Injury Rehabilitation in Singapore

    Directory of Open Access Journals (Sweden)

    Siew Kwaon Lui

    2014-01-01

    Full Text Available Objective. Document acute neurosurgical and rehabilitation parameters of patients of all traumatic brain injury (TBI severities and determine whether early screening along with very early integrated TBI rehabilitation changes functional outcomes. Methods. Prospective study involving all patients with TBI admitted to a neurosurgical department of a tertiary hospital. They were assessed within 72 hours of admission by the rehabilitation team and received twice weekly rehabilitation reviews. Patients with further rehabilitation needs were then transferred to the attached acute inpatient TBI rehabilitation unit (TREATS and their functional outcomes were compared against a historical group of patients. Demographic variables, acute neurosurgical characteristics, medical complications, and rehabilitation outcomes were recorded. Results. There were 298 patients screened with an average age of 61.8±19.1 years. The most common etiology was falls (77.5%. Most patients were discharged home directly (67.4% and 22.8% of patients were in TREATS. The TREATS group functionally improved (P<0.001. Regression analysis showed by the intervention of TREATS, that there was a statistically significant FIM functional gain of 18.445 points (95% CI −30.388 to −0.6502, P=0.03. Conclusion. Our study demonstrated important epidemiological data on an unselected cohort of patients with TBI in Singapore and functional improvement in patients who further received inpatient rehabilitation.

  5. The Final Year Project (FYP) in Social Sciences: Establishment of Its Associated Competences and Evaluation Standards

    Science.gov (United States)

    Mateo, Joan; Escofet, Anna; Martinez, Francesc; Ventura, Javier; Vlachopoulos, Dimitrios

    2012-01-01

    This paper presents the fundamental characteristics of the Final Year Project (FYP), its associated competences and some evaluation standards that derived from a research conducted by the regional government of Catalonia (Spain) and the Catalan University Quality Assurance Agency. More analytically, the paper begins with the definition of the…

  6. Age of second language acquisition in multilinguals has an impact on gray matter volume in language-associated brain areas.

    Science.gov (United States)

    Kaiser, Anelis; Eppenberger, Leila S; Smieskova, Renata; Borgwardt, Stefan; Kuenzli, Esther; Radue, Ernst-Wilhelm; Nitsch, Cordula; Bendfeldt, Kerstin

    2015-01-01

    Numerous structural studies have established that experience shapes and reshapes the brain throughout a lifetime. The impact of early development, however, is still a matter of debate. Further clues may come from studying multilinguals who acquired their second language at different ages. We investigated adult multilinguals who spoke three languages fluently, where the third language was learned in classroom settings, not before the age of 9 years. Multilinguals exposed to two languages simultaneously from birth (SiM) were contrasted with multinguals who acquired their first two languages successively (SuM). Whole brain voxel based morphometry revealed that, relative to SuM, SiM have significantly lower gray matter volume in several language-associated cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the left inferior temporal gyrus. Thus, as shown by others, successive language learning increases the volume of language-associated cortical areas. In brains exposed early on and simultaneously to more than one language, however, learning of additional languages seems to have less impact. We conclude that - at least with respect to language acquisition - early developmental influences are maintained and have an effect on experience-dependent plasticity well into adulthood.

  7. Age of second language acquisition in multilinguals has an impact on gray matter volume in language-associated brain areas.

    Science.gov (United States)

    Kaiser, Anelis; Eppenberger, Leila S; Smieskova, Renata; Borgwardt, Stefan; Kuenzli, Esther; Radue, Ernst-Wilhelm; Nitsch, Cordula; Bendfeldt, Kerstin

    2015-01-01

    Numerous structural studies have established that experience shapes and reshapes the brain throughout a lifetime. The impact of early development, however, is still a matter of debate. Further clues may come from studying multilinguals who acquired their second language at different ages. We investigated adult multilinguals who spoke three languages fluently, where the third language was learned in classroom settings, not before the age of 9 years. Multilinguals exposed to two languages simultaneously from birth (SiM) were contrasted with multinguals who acquired their first two languages successively (SuM). Whole brain voxel based morphometry revealed that, relative to SuM, SiM have significantly lower gray matter volume in several language-associated cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the left inferior temporal gyrus. Thus, as shown by others, successive language learning increases the volume of language-associated cortical areas. In brains exposed early on and simultaneously to more than one language, however, learning of additional languages seems to have less impact. We conclude that - at least with respect to language acquisition - early developmental influences are maintained and have an effect on experience-dependent plasticity well into adulthood. PMID:26106338

  8. Association between blood pressure levels over time and brain atrophy in the elderly

    NARCIS (Netherlands)

    den Heijer, T; Skoog, [No Value; Oudkerk, M; de Leeuw, FE; de Groot, JC; Hofman, A; Breteler, MMB

    2003-01-01

    The relation between blood pressure level and degree of global brain atrophy is equivocal. We evaluated past and present blood pressure levels and change in blood pressure over 20 years in relation to the degree of cortical atrophy on magnetic resonance imaging (MRI). In 1995-1996, we measured blood

  9. Local oxytocin expression and oxytocin receptor binding in the male rat brain is associated with aggressiveness

    NARCIS (Netherlands)

    Calcagnoli, Federica; de Boer, Sietse F.; Beiderbeck, Daniela I.; Althaus, Monika; Koolhaas, Jaap M.; Neumann, Inga D.

    2014-01-01

    We recently demonstrated in male wild-type Groningen rats that enhancing brain oxytocin (OXT) levels acutely produces marked pro-social explorative and anti-aggressive effects. Moreover, these pharmacologically-induced changes are moderated by the individual's aggressive phenotype, suggesting an inv

  10. Longitudinal Associations between the Quality of Mother-Infant Interactions and Brain Development across Infancy

    Science.gov (United States)

    Bernier, Annie; Calkins, Susan D.; Bell, Martha Ann

    2016-01-01

    The aim of this study was to investigate if normative variations in parenting relate to brain development among typically developing children. A sample of 352 mother-infant dyads came to the laboratory when infants were 5, 10, and 24 months of age (final N = 215). At each visit, child resting electroencephalography (EEG) was recorded.…

  11. Association between Peripheral Oxidative Stress and White Matter Damage in Acute Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Wei-Ming Lin

    2014-01-01

    Full Text Available The oxidative stress is believed to be one of the mechanisms involved in the neuronal damage after acute traumatic brain injury (TBI. However, the disease severity correlation between oxidative stress biomarker level and deep brain microstructural changes in acute TBI remains unknown. In present study, twenty-four patients with acute TBI and 24 healthy volunteers underwent DTI. The peripheral blood oxidative biomarkers, like serum thiol and thiobarbituric acid-reactive substances (TBARS concentrations, were also obtained. The DTI metrics of the deep brain regions, as well as the fractional anisotropy (FA and apparent diffusion coefficient, were measured and correlated with disease severity, serum thiol, and TBARS levels. We found that patients with TBI displayed lower FAs in deep brain regions with abundant WMs and further correlated with increased serum TBARS level. Our study has shown a level of anatomic detail to the relationship between white matter (WM damage and increased systemic oxidative stress in TBI which suggests common inflammatory processes that covary in both the peripheral and central reactions after TBI.

  12. Brief Report: Abnormal Association between the Thalamus and Brain Size in Asperger's Disorder

    Science.gov (United States)

    Hardan, Antonio Y.; Girgis, Ragy R.; Adams, Jason; Gilbert, Andrew R.; Melhem, Nadine M.; Keshavan, Matcheri S.; Minshew, Nancy J.

    2008-01-01

    The objective of this study was to examine the relationship between thalamic volume and brain size in individuals with Asperger's disorder (ASP). Volumetric measurements of the thalamus were performed on MRI scans obtained from 12 individuals with ASP (age range: 10-35 years) and 12 healthy controls (age range: 9-33 years). A positive correlation…

  13. Gender specific associations of serum levels of brain-derived neurotrophic factor in anxiety

    NARCIS (Netherlands)

    Molendijk, Marc L.; Bus, Boudewijn A. A.; Spinhoven, Philip; Penninx, Brenda W. J. H.; Prickaerts, Jos; Voshaar, Richard C. Oude; Elzinga, Bernet M.

    2012-01-01

    Objectives. Whereas animal models indicate that brain-derived neurotrophic factor (BDNF) plays a role in anxiety-related behaviour, little is known about BDNF in patients with an anxiety disorder. We tested the hypothesis that serum BDNF levels are low in patients with an anxiety disorder as compare

  14. The NMDAR subunit NR3A interacts with microtubule-associated protein 1S in the brain

    DEFF Research Database (Denmark)

    Eriksson, Maria; Samuelsson, Helena; Samuelsson, Eva-Britt;

    2007-01-01

    -proximal part of the NR3A C-terminus. MAP1S belongs to the same family as MAP1A and MAP1B, and was found to be abundant in both postnatal and adult rat brain. In hippocampal neurons the distribution-pattern of MAP1S resembled that of beta-tubulin III, but a fraction of the protein colocalized with synaptic......When screening a brain cDNA library, we found that the N-methyl-D-aspartate receptor subunit NR3A binds to microtubule-associated protein (MAP) 1S/chromosome 19 open reading frame 5 (C19ORF5). The interaction was confirmed in vitro and in vivo, and binding of MAP1S was localized to the membrane...

  15. Bcl-2 enhances the formation of newborn striatal long-projection neurons in adult rat brain after a transient ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Jian-Jun Guo; Fang Liu; Xiao Sun; Jun-Jie Huang; Ming Xu; Feng-Yan Sun

    2012-01-01

    Objective It has been reported that B-cell lymphoma 2 (Bcl-2) enhances neurogenesis as well as supporting axonal growth after injury.In the present study,we investigated whether Bcl-2 overexpression plays a role in the formation of newborn striatonigral projection neurons in the adult rat brain after transient middle cerebral artery occlusion (MCAO).Methods We infused human Bcl-2-expressing plasmid (pBcl-2) into the lateral ventricle immediately after 30 min of MCAO,injected 5'-bromodeoxyuridine (BrdU) intraperitoneally to label proliferative cells,and microinjected fluorogold (FG) into the substantia nigra at 11 weeks of reperfusion followed by multiple immunostaining of striatonigral projection neurons at 12 weeks.Results We found that pBcl-2 treatment significantly increased the number of newborn neurons (BrdU+-NeuN+) in the striatum ipsilateral to the MCAO.We further detected newborn striatonigral projection neurons (BrdU+-FG+-NeuN+) in the ipsilateral striatum at 12 weeks.More interestingly,the number of newborn striatonigral projection neurons (BrdU+-FG+) was significantly increased by pBcl-2 treatment compared to that by pEGFP,a control plasmid.Conclusion Taken together,we found that Bcl-2 overexpression in the brain enhanced the generation of newborn striatonigral projection neurons.This provides a potential strategy for promoting the reestablishment of neural networks and brain repair after ischemic injury.

  16. Overview of the Texas Mining and Reclamation Association`s education project

    Energy Technology Data Exchange (ETDEWEB)

    Hutchins, M.F. [Texas Mining and Reclamation Association, Austin, TX (United States)

    1997-12-31

    The Texas Mining and Reclamation Association (TMRA) sponsors {open_quotes}Resources and the Environment,{close_quotes} a teacher workshop held at a lignite mine each summer. Over a period of five years more than two hundred science teachers have participated in the 4-day workshop, and through them approximately 50,000 middle school students have been exposed to the curriculum. The workshop was developed with a grant from Phillips Petroleum Foundation, provided to the Center for Engineering Geosciences at Texas A&M University. The funding enabled the development of a program consisting of a science education curriculum addressing the earth-science concepts associated with lignite production and reclamation activities. The workshop is currently being instructed by Jim Luppens, Phillips Coal Company, and two assisting earth science specialists. The workshop includes classroom instruction, presentations by guest speakers, hands-on activities, and a tour of a lignite mine. The workshop ends with a mock public hearing involving role-playing. Roles include mining personnel, regulatory agencies, local townspeople, and adjacent landowners. The curriculum is provided as a resource for teachers and includes 55 teaching units; each comprised of student story, teacher outline, and classroom/lab activities. The objective of the curriculum is to provide middle school students with an opportunity to learn about earth science and apply that knowledge to a real situation. The unifying theme of the workshop is geology and the development of lignite coal resources; from the planning stages of a mine to final reclamation.

  17. Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence

    Science.gov (United States)

    Barnes, Anna; Simon Jones, P.; Morein-Zamir, Sharon; Robbins, Trevor W.; Bullmore, Edward T.

    2011-01-01

    A growing body of preclinical evidence indicates that addiction to cocaine is associated with neuroadaptive changes in frontostriatal brain systems. Human studies in cocaine-dependent individuals have shown alterations in brain structure, but it is less clear how these changes may be related to the clinical phenotype of cocaine dependence characterized by impulsive behaviours and compulsive drug-taking. Here we compared self-report, behavioural and structural magnetic resonance imaging data on a relatively large sample of cocaine-dependent individuals (n = 60) with data on healthy volunteers (n = 60); and we investigated the relationships between grey matter volume variation, duration of cocaine use, and measures of impulsivity and compulsivity in the cocaine-dependent group. Cocaine dependence was associated with an extensive system of abnormally decreased grey matter volume in orbitofrontal, cingulate, insular, temporoparietal and cerebellar cortex, and with a more localized increase in grey matter volume in the basal ganglia. Greater duration of cocaine dependence was correlated with greater grey matter volume reduction in orbitofrontal, cingulate and insular cortex. Greater impairment of attentional control was associated with reduced volume in insular cortex and increased volume of caudate nucleus. Greater compulsivity of drug use was associated with reduced volume in orbitofrontal cortex. Cocaine-dependent individuals had abnormal structure of corticostriatal systems, and variability in the extent of anatomical changes in orbitofrontal, insular and striatal structures was related to individual differences in duration of dependence, inattention and compulsivity of cocaine consumption. PMID:21690575

  18. Sporadic meningioangiomatosis-associated atypical meningioma mimicking parenchymal invasion of brain: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Luo Bo-ning

    2010-06-01

    Full Text Available Abstract Meningioangiomatosis is a rare hamartomatous lesion or meningiovascular malformation in brain. In extremely rare condition, meningioma may occur together with meningioangiomatosis, and only 19 cases have been described in English literature until now. We now report a case of meningioangiomatosis-associated meningioma with atypical and clear cell variant. A 34-year-old man presented a 3-month history of progressive numbness and weakness of his left lower extremity. He had no stigmata of neurofibromatosis type 2. Magnetic resonance imaging (MRI revealed multifocal lesions in the right frontoparietal lobe. The lesions were totally removed. Microscopically, parts of lesions were atypical and clear cell meningioma corresponding to WHO grade II. The adjacent brain parenchyma showed the histological features of meningioangiomatosis. Neoplastic cells in atypical meningioma area were immunoreactive to epithelial membrane antigen (EMA with high MIB-1 index of up to 20%. However, the spindle cells in meningioangiomatosis area were negative for EMA with low MIB-1 index of up to 1%. The diagnosis of atypical meningioma associated with sporadic meningioangiomatosis was made. To our knowledge, this is the first case of a meningioangiomatosis-associated meningioma with atypical and clear cell variant component to be described. The patient had been followed-up for 11 months without adjuvant radiotherapy or chemotherapy. No tumor recurrence was found during this period. Meningioangiomatosis-associated meningioma is more likely to occur in younger patients and histologically to mimic parenchymal invasion of brain. We suggest that postoperative radiotherapy or chemotherapy should be given careful consideration to avoid over-treatment due to erroneously interpret as malignant meningioma.

  19. Traumatic brain injury induces neuroinflammation and neuronal degeneration that is associated with escalated alcohol self-administration in rats

    Science.gov (United States)

    Mayeux, Jacques P; Teng, Sophie X; Katz, Paige S; Gilpin, Nicholas W; Molina, Patricia E

    2014-01-01

    Background Traumatic brain injury (TBI) affects millions of people each year and is characterized by direct tissue injury followed by a neuroinflammatory response. The post-TBI recovery period can be associated with a negative emotional state characterized by alterations in affective behaviors implicated in the development of Alcohol Use Disorder in humans. The aim of this study was to test the hypothesis that post-TBI neuroinflammation is associated with behavioral dysfunction, including escalated alcohol intake. Methods Adult male Wistar rats were trained to self-administer alcohol prior to counterbalanced assignment into naïve, craniotomy, and TBI groups by baseline drinking. TBI was produced by lateral fluid percussion (LFP; >2 ATM; 25 ms). Alcohol drinking and neurobehavioral function were measured at baseline and following TBI in all experimental groups. Markers of neuroinflammation (GFAP & ED1) and neurodegeneration (FJC) were determined by fluorescence histochemistry in brains excised at sacrifice 19 days post-TBI. Results The cumulative increase in alcohol intake over the 15 days post-TBI was greater in TBI animals compared to naïve controls. A higher rate of pre-injury alcohol intake was associated with a greater increase in post-injury alcohol intake in both TBI and craniotomy animals. Immediately following TBI, both TBI and craniotomy animals exhibited greater neurobehavioral dysfunction compared to naïve animals. GFAP, IBA-1, ED1, and FJC immunoreactivity at 19 days post-TBI was significantly higher in brains from TBI animals compared to both craniotomy and naïve animals. Conclusions These results show an association between post-TBI escalation of alcohol drinking and marked localized neuroinflammation at the site of injury. Moreover, these results highlight the relevance of baseline alcohol preference in determining post-TBI alcohol drinking. Further investigation to determine the contribution of neuroinflammation to increased alcohol drinking

  20. Low Expression of Slit2 and Robo1 is Associated with Poor Prognosis and Brain-specific Metastasis of Breast Cancer Patients.

    Science.gov (United States)

    Qin, Fengxia; Zhang, Huikun; Ma, Li; Liu, Xiaoli; Dai, Kun; Li, Wenliang; Gu, Feng; Fu, Li; Ma, Yongjie

    2015-09-24

    Brain metastasis is a significant unmet clinical problem in breast cancer treatment. It is always associated with poor prognosis and high morbidity. Recently, Slit2/Robo1 pathway has been demonstrated to be involved in the progression of breast carcinoma. However, until present, there are no convincing reports that suggest whether the Slit2/Robo1 axis has any role in brain metastasis of breast cancer. In this study, we investigated the correlation between Slit2/Robo1 signaling and breast cancer brain metastasis for the first time. Our results demonstrated that (1) Invasive ductal carcinoma patients with low expression of Slit2 or Robo1 exhibited worse prognosis and brain-specific metastasis, but not liver, bone or lung. (2) Lower expression of Slit2 and Robo1 were observed in patients with brain metastasis, especially in their brain metastasis tumors, compared with patients without brain metastasis. (3) The interval from diagnosis of breast cancer to brain metastasis and brain metastasis to death were both much shorter in patients with low expression of Slit2 or Robo1 compared with the high expression group. Overall, our findings indicated that Slit2/Robo1 axis possibly be regarded as a significant clinical parameter for predicting brain metastasis in breast cancer patients.

  1. A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly

    Science.gov (United States)

    Stein, Jason L.; Hua, Xue; Lee, Suh; Hibar, Derrek P.; Leow, Alex D.; Dinov, Ivo D.; Toga, Arthur W.; Saykin, Andrew J.; Shen, Li; Foroud, Tatiana; Pankratz, Nathan; Huentelman, Matthew J.; Craig, David W.; Gerber, Jill D.; Allen, April N.; Corneveaux, Jason J.; Stephan, Dietrich A.; DeCarli, Charles S.; DeChairo, Bryan M.; Potkin, Steven G.; Jack, Clifford R.; Weiner, Michael W.; Raji, Cyrus A.; Lopez, Oscar L.; Becker, James T.; Carmichael, Owen T.; Thompson, Paul M.; Weiner, Michael; Thal, Leon; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowki, John; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Gamst, Anthony; Potter, William Z.; Montine, Tom; Anders, Dale; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Trojanowki, John; Shaw, Les; Lee, Virginia M.-Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Harvey, Danielle; Gamst, Anthony; Kornak, John; Kachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Vorobik, Remi; Quinn, Joseph; Schneider, Lon; Pawluczyk, Sonia; Spann, Bryan; Fleisher, Adam S.; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Badger, Beverly; Grossman, Hillel; Tang, Cheuk; Stern, Jessica; deToledo-Morrell, Leyla; Shah, Raj C.; Bach, Julie; Duara, Ranjan; Isaacson, Richard; Strauman, Silvia; Albert, Marilyn S.; Pedroso, Julia; Toroney, Jaimie; Rusinek, Henry; de Leon, Mony J; De Santi, Susan M; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Aiello, Marilyn; Clark, Christopher M.; Pham, Cassie; Nunez, Jessica; Smith, Charles D.; Given II, Curtis A.; Hardy, Peter; DeKosky, Steven T.; Oakley, MaryAnn; Simpson, Donna M.; Ismail, M. Saleem; Porsteinsson, Anton; McCallum, Colleen; Cramer, Steven C.; Mulnard, Ruth A.; McAdams-Ortiz, Catherine; Diaz-Arrastia, Ramon; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Laubinger, Mary M.; Bartzokis, George; Silverman, Daniel H.S.; Lu, Po H.; Fletcher, Rita; Parfitt, Francine; Johnson, Heather; Farlow, Martin; Herring, Scott; Hake, Ann M.; van Dyck, Christopher H.; MacAvoy, Martha G.; Bifano, Laurel A.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Graham, Simon; Caldwell, Curtis; Feldman, Howard; Assaly, Michele; Hsiung, Ging-Yuek R.; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Gitelman, Darren; Johnson, Nancy; Mesulam, Marsel; Sadowsky, Carl; Villena, Teresa; Mesner, Scott; Aisen, Paul S.; Johnson, Kathleen B.; Behan, Kelly E.; Sperling, Reisa A.; Rentz, Dorene M.; Johnson, Keith A.; Rosen, Allyson; Tinklenberg, Jared; Ashford, Wes; Sabbagh, Marwan; Connor, Donald; Obradov, Sanja; Killiany, Ron; Norbash, Alex; Obisesan, Thomas O.; Jayam-Trouth, Annapurni; Wang, Paul; Auchus, Alexander P.; Huang, Juebin; Friedland, Robert P.; DeCarli, Charles; Fletcher, Evan; Carmichael, Owen; Kittur, Smita; Mirje, Seema; Johnson, Sterling C.; Borrie, Michael; Lee, T-Y; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Highum, Diane; Preda, Adrian; Nguyen, Dana; Tariot, Pierre N.; Hendin, Barry A.; Scharre, Douglas W.; Kataki, Maria; Beversdorf, David Q.; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Gandy, Sam; Marenberg, Marjorie E.; Rovner, Barry W.; Pearlson, Godfrey; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Pare, Nadia; Williamson, Jeff D.; Sink, Kaycee M.; Potter, Huntington; Ashok Raj, B.; Giordano, Amy; Ott, Brian R.; Wu, Chuang-Kuo; Cohen, Ronald; Wilks, Kerri L.

    2010-01-01

    A recently identified variant within the fat mass and obesity-associated (FTO) gene is carried by 46% of Western Europeans and is associated with an ~1.2 kg higher weight, on average, in adults and an ~1 cm greater waist circumference. With >1 billion overweight and 300 million obese persons worldwide, it is crucial to understand the implications of carrying this very common allele for the health of our aging population. FTO is highly expressed in the brain and elevated body mass index (BMI) is associated with brain atrophy, but it is unknown how the obesity-associated risk allele affects human brain structure. We therefore generated 3D maps of regional brain volume differences in 206 healthy elderly subjects scanned with MRI and genotyped as part of the Alzheimer's Disease Neuroimaging Initiative. We found a pattern of systematic brain volume deficits in carriers of the obesity-associated risk allele versus noncarriers. Relative to structure volumes in the mean template, FTO risk allele carriers versus noncarriers had an average brain volume difference of ~8% in the frontal lobes and 12% in the occipital lobes—these regions also showed significant volume deficits in subjects with higher BMI. These brain differences were not attributable to differences in cholesterol levels, hypertension, or the volume of white matter hyperintensities; which were not detectably higher in FTO risk allele carriers versus noncarriers. These brain maps reveal that a commonly carried susceptibility allele for obesity is associated with structural brain atrophy, with implications for the health of the elderly. PMID:20404173

  2. Serum Biomarkers Associated with Clinical Outcomes Fail to Predict Brain Metastases in Patients with Stage IV Non-Small Cell Lung Cancers.

    Directory of Open Access Journals (Sweden)

    Bob T Li

    Full Text Available Lung cancers account for the majority of brain metastases which pose major therapeutic challenges. Biomarkers prognosticating for the development of brain metastases in patients with non-small cell lung cancers (NSCLC may improve personalized care. Six serum proteomic biomarkers were previously investigated at Memorial Sloan Kettering but their associations with brain metastases were unknown.Serum NSE, CYFRA 21-1, ProGRP, SCC-Ag, TIMP1, and HE4 by ELISA-based proteomic assays were prospectively collected from consecutive patients with stage IV NSCLC. Pre-treatment serum biomarker levels as well as age, histology, and epidermal growth factor receptor (EGFR mutation status were evaluated for association with the baseline presence of brain metastases using logistic regression and multivariable analysis. For patients without brain metastases at baseline, the cumulative incidence of subsequent brain metastases were compared according to baseline biomarkers and clinical factors using Gray's test.A total of 118 patients were enrolled, 31 (26%; 95% CI 0.19-0.35 had brain metastases at baseline and a further 26 (22%; 95% CI 0.15-0.30 developed brain metastases subsequently. Pre-treatment serum biomarker levels were available in 104 patients. There was no significant association between the six serum biomarkers and the baseline presence or subsequent development of brain metastases. Age younger than 65 years was the only clinical factor significantly associated with brain metastasis at baseline (OR 3.00; 95% CI 1.22-7.34, P = 0.02 by multivariable analysis. A trend toward increased cumulative incidence of subsequent brain metastases was observed in patients with EGFR mutation (p = 0.2, but this was not statistically significant possibly due to small sample size.Serum NSE, CYFRA 21-1, Pro-GRP, SCC-Ag, TIMP1, and HE4 are not significantly associated with brain metastases. Our methods taking into account follow-up time may be applied to independent datasets

  3. The accumulation of brain water-free sodium is associated with ischemic damage independent of the blood pressure in female rats.

    Science.gov (United States)

    Sumiyoshi, Manabu; Kitazato, Keiko T; Yagi, Kenji; Miyamoto, Takeshi; Kurashiki, Yoshitaka; Matsushita, Nobuhisa; Kinouchi, Tomoya; Kuwayama, Kazuyuki; Satomi, Junichiro; Nagahiro, Shinji

    2015-08-01

    Estrogen deficiency worsens ischemic stroke outcomes. In ovariectomized (OVX(+)) rats fed a high-salt diet (HSD), an increase in the body Na(+)/water ratio, which characterizes water-free Na(+) accumulation, was associated with detrimental vascular effects independent of the blood pressure (BP). We hypothesized that an increase in brain water-free Na(+) accumulation is associated with ischemic brain damage in OVX(+)/HSD rats. To test our hypothesis we divided female Wistar rats into 4 groups, OVX(+) and OVX(-) rats fed HSD or a normal diet (ND), and subjected them to transient cerebral ischemia. The brain Na(+)/water ratio was increased even in OVX(+)/ND rats and augmented in OVX(+)/HSD rats. The increase in the brain Na(+)/water ratio was positively correlated with expansion of the cortical infarct volume without affecting the BP. Interestingly, OVX(+) was associated with the decreased expression of ATP1α3, a subtype of the Na(+) efflux pump. HSD increased the expression of brain Na(+) influx-related molecules and the mineralocorticoid receptor (MR). The pretreatment of OVX(+)/HSD rats with the MR antagonist eplerenone reduced brain water-free Na(+) accumulation, up-regulated ATP1α3, down-regulated MR, and reduced the cortical infarct volume. Our findings show that the increase in the brain Na(+)/water ratio elicited by estrogen deficiency or HSD is associated with ischemic brain damage BP-independently, suggesting the importance of regulating the accumulation of brain water-free Na(+). The up-regulation of ATP1α3 and the down-regulation of MR may provide a promising therapeutic strategy to attenuate ischemic brain damage in postmenopausal women.

  4. Critical levels of brain atrophy associated with homocysteine and cognitive decline.

    Science.gov (United States)

    de Jager, Celeste A

    2014-09-01

    Few B-vitamin trials to lower homocysteine (Hcy) have reported evidence of beneficial effects on cognition in older adults with cognitive impairment or Alzheimer's disease. This article reviews the role of Hcy in cognitive decline. It also considers some reasons why meta-analyses have failed to find effects of B-vitamin treatment. Findings from the successful VITACOG trial are examined from a new perspective of critical levels of Hcy and brain atrophy that may impact on the efficacy of B-vitamin treatment. It appears that there is a critical level of brain shrinkage, possibly mediated by elevated Hcy, which when reached, results in cognitive decline, especially in episodic memory performance. Supplements, food sources, and effects of folic acid fortification are discussed in relation to B12 deficiency. PMID:24927906

  5. Association of Symptoms Following Mild Traumatic Brain Injury With Posttraumatic Stress Disorder vs Postconcussion Syndrome

    DEFF Research Database (Denmark)

    Lagarde, E.; Salmi, L. R.; Holm, L. W.;

    2014-01-01

    IMPORTANCE A proportion of patients experience long-lasting symptoms following mild traumatic brain injury (MTBI). The postconcussion syndrome (PCS), included in the DSM-IV, has been proposed to describe this condition. Because these symptoms are subjective and common to other conditions, there i......IMPORTANCE A proportion of patients experience long-lasting symptoms following mild traumatic brain injury (MTBI). The postconcussion syndrome (PCS), included in the DSM-IV, has been proposed to describe this condition. Because these symptoms are subjective and common to other conditions...... fulfilled the DSM-IV diagnosis of PCS; 8.8% of head-injured patients fulfilled the diagnostic criteria for PTSD compared with 2.2% of control patients. In multivariate analysis, MTBI was a predictor of PTSD (odds ratio, 4.47; 95% CI, 2.38-8.40) but not of PCS (odds ratio, 1.13; 95% CI, 0...

  6. Novel Polyomavirus associated with Brain Tumors in Free-Ranging Raccoons, Western United States

    Science.gov (United States)

    Dela Cruz, Florante N.; Giannitti, Federico; Li, Linlin; Woods, Leslie W.; Del Valle, Luis; Delwart, Eric

    2013-01-01

    Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010–May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons. PMID:23260029

  7. Pregnancy Zone Protein is Increased in the Alzheimer's Disease Brain and Associates with Senile Plaques.

    Science.gov (United States)

    Nijholt, Diana A T; Ijsselstijn, Linda; van der Weiden, Marcel M; Zheng, Ping-Pin; Sillevis Smitt, Peter A E; Koudstaal, Peter J; Luider, Theo M; Kros, Johan M

    2015-01-01

    Increased levels of pregnancy zone protein (PZP) were found in the serum of persons who later developed Alzheimer's disease (AD) in comparison to controls who remained dementia free. We suggested that this increase is due to brain derived PZP entering the blood stream during the early phase of the disease. Here we investigate the possible involvement of PZP in human AD pathogenesis. We observed increased PZP immunoreactivity in AD postmortem brain cortex compared to non-demented controls. In the AD cortex, PZP immunoreactivity localized to microglial cells that interacted with senile plaques and was occasionally observed in neurons. Our data link the finding of elevated serum PZP levels with the characteristic AD pathology and identify PZP as a novel component in AD.

  8. Heterogeneity of Regional Brain Atrophy Patterns Associated with Distinct Progression Rates in Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Min Soo Byun

    Full Text Available We aimed to identify and characterize subtypes of Alzheimer's disease (AD exhibiting different patterns of regional brain atrophy on MRI using age- and gender-specific norms of regional brain volumes. AD subjects included in the Alzheimer's Disease Neuroimaging Initiative study were classified into subtypes based on standardized values (Z-scores of hippocampal and regional cortical volumes on MRI with reference to age- and gender-specific norms obtained from 222 cognitively normal (CN subjects. Baseline and longitudinal changes of clinical characteristics over 2 years were compared across subtypes. Whole-brain-level gray matter (GM atrophy pattern using voxel-based morphometry (VBM and cerebrospinal fluid (CSF biomarkers of the subtypes were also investigated. Of 163 AD subjects, 58.9% were classified as the "both impaired" subtype with the typical hippocampal and cortical atrophy pattern, whereas 41.1% were classified as the subtypes with atypical atrophy patterns: "hippocampal atrophy only" (19.0%, "cortical atrophy only" (11.7%, and "both spared" (10.4%. Voxel-based morphometric analysis demonstrated whole-brain-level differences in overall GM atrophy across the subtypes. These subtypes showed different progression rates over 2 years; and all subtypes had significantly lower CSF amyloid-β 1-42 levels compared to CN. In conclusion, we identified four AD subtypes exhibiting heterogeneous atrophy patterns on MRI with different progression rates after controlling the effects of aging and gender on atrophy with normative information. CSF biomarker analysis suggests the presence of Aβ neuropathology irrespective of subtypes. Such heterogeneity of MRI-based neuronal injury biomarker and related heterogeneous progression patterns should be considered in clinical trials and practice with AD patients.

  9. Are Himalayan Sherpas better protected against brain damage associated with extreme altitude climbs?

    Science.gov (United States)

    Garrido, E; Segura, R; Capdevila, A; Pujol, J; Javierre, C; Ventura, J L

    1996-01-01

    1. The potential risk of brain damage when low-landers attempt to climb the highest summits is a well-known fact. However, very little is known about what occurs to Himalayan natives, perfectly adapted to high altitude, when performing the same type of activity. 2. Taking into account their long-life climbing experience at extreme altitudes, we examined seven of the most recognized Sherpas with the aim of performing a comprehensive neurological evaluation based on medical history, physical examination and magnetic resonance brain imaging. We compared them with one group of 21 lowland elite climbers who had ascended to altitudes of over 8000 m, and another control group of 21 healthy individuals who had never been exposed to high altitude. 3. While all of the lowland climbers presented psychoneurological symptoms during or after the expeditions, and 13 of them (61%) showed magnetic resonance abnormalities (signs of mild cortical atrophy and/or periventricular high-intensity signal areas in the white matter), only one Sherpa (14%) showed similar changes in the scans, presenting neurological symptoms at extreme altitude. The neurological examination was normal in all three groups, and no neuroimaging abnormalities were detected in the control group. 4. The significant differences, in both clinical and neuroimaging terms, suggest that Sherpa highlanders have better brain protection when exposed to extreme altitude. Although the key to protection against cerebral hypoxia cannot be established, it is possible that an increase in the usually short period of acclimatization could minimize brain damage in those low-landers who attempt the highest summits without supplementary oxygen. PMID:8697710

  10. A rare association of tuberculous longitudinally extensive transverse myelitis (LETM) with brain tuberculoma

    OpenAIRE

    Jain, Rajendra Singh; Kumar, Sunil; Tejwani, Shankar

    2015-01-01

    Background Longitudinally extensive transverse myelitis is characterized by contiguous inflammatory lesion of spinal cord involving three or more spinal segments. It is a well-recognized but rare presentation of Mycobacterium tuberculosis infection. Case description We report a case of young boy diagnosed with multiple brain tuberculomas. He was on antitubercular drugs therapy for 2 months and became asymptomatic. On 2-month followup visit, the patient complained of acute onset progressive se...

  11. Acute Psychosis Associated with Subcortical Stroke: Comparison between Basal Ganglia and Mid-Brain Lesions

    OpenAIRE

    Aaron McMurtray; Ben Tseng; Natalie Diaz; Julia Chung; Bijal Mehta; Erin Saito

    2014-01-01

    Acute onset of psychosis in an older or elderly individual without history of previous psychiatric disorders should prompt a thorough workup for neurologic causes of psychiatric symptoms. This report compares and contrasts clinical features of new onset of psychotic symptoms between two patients, one with an acute basal ganglia hemorrhagic stroke and another with an acute mid-brain ischemic stroke. Delusions and hallucinations due to basal ganglia lesions are theorized to develop as a result ...

  12. Empathy is associated with dynamic change in prefrontal brain electrical activity during positive emotion in children

    OpenAIRE

    Light, Sharee N.; James A Coan; Zahn-Waxler, Carolyn; Frye, Corrina; Goldsmith, H. Hill; Davidson, Richard J.

    2009-01-01

    Empathy is the combined ability to interpret the emotional states of others and experience resultant, related emotions. The relation between prefrontal electroencephalographic asymmetry and emotion in infants and children is well known. The relationship between positive emotion (assessed via parent-report), empathy (measured via observation) and second-by-second brain electrical activity (recorded during a pleasurable task) was investigated using a sample of 128 six to ten year olds. Contentm...

  13. Association of hemoglobin concentration and mortality in critically ill patients with severe traumatic brain injury

    OpenAIRE

    Sekhon, Mypinder S; McLean, Nielson; Henderson, William R.; Chittock, Dean R; Griesdale, Donald EG

    2012-01-01

    Introduction The critical care management of traumatic brain injury focuses on preventing secondary ischemic injury. Cerebral oxygen delivery is dependent upon the cerebral perfusion pressure and the oxygen content of blood, which is principally determined by hemoglobin. Despite its importance to the cerebral oxygen delivery, the precise hemoglobin concentration to provide adequate oxygen delivery to injured neuronal tissue in TBI patients is controversial with limited evidence to provide tra...

  14. Endothelin-1-mediated cerebrovascular remodeling is not associated with increased ischemic brain injury in diabetes

    OpenAIRE

    Li, Weiguo; Kelly-Cobbs, Aisha I.; Mezzetti, Erin M.; Fagan, Susan C; Ergul, Adviye

    2010-01-01

    Diabetes increases the risk as well as the poor outcome of stroke. Matrix metalloprotease (MMP) activation disrupts blood-brain barrier integrity after cerebral ischemia. We have previously shown that type 2 diabetes promotes remodeling of middle cerebral arteries (MCA) characterized by increased media:lumen (M/L) ratio and MMP activity in an endothelin (ET)-1-dependent manner in the Goto-Kakizaki (GK) rat model. In the present study, we examined the effects of ET-1-mediated vascular remodeli...

  15. Identification and investigation of gamma-secretase associated proteins from brain

    OpenAIRE

    Teranishi, Yasuhiro

    2012-01-01

    Alzheimer disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. The pathological hallmarks in the AD brain are extracellular deposition of amyloid plaques, mainly composed of the amyloid β-peptide (Aβ), and intracellular neurofibrillary tangles made of hyperphosphorylated tau. Several studies have shown that Aβ aggregation provides the initial insult, and the formation of tangles seems to be a secondary effect. Aβ is generated from the amyloid precurs...

  16. Association rule mining based study for identification of clinical parameters akin to occurrence of brain tumor

    OpenAIRE

    Dipankar SENGUPTA; Sood, Meemansa; Vijayvargia, Poorvika; Hota, Sunil; Naik, Pradeep K

    2013-01-01

    Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of an individual. Mining knowledge and providing scientific decision-making for the diagnosis & treatment of disease from the clinical dataset is therefore increasingly becoming necessary. Aim of this study was to assess the applicability of knowledge discovery in brain tumor data warehouse, applying data mining techniques for investigation of clinical parameters that...

  17. Environmental neurotoxin interaction with proteins: Dose-dependent increase of free and protein-associated BMAA (β-N-methylamino-L-alanine) in neonatal rat brain.

    Science.gov (United States)

    Karlsson, Oskar; Jiang, Liying; Ersson, Lisa; Malmström, Tim; Ilag, Leopold L; Brittebo, Eva B

    2015-01-01

    β-Methylamino-L-alanine (BMAA) is implicated in the aetiology of neurodegenerative disorders. Neonatal exposure to BMAA induces cognitive impairments and progressive neurodegenerative changes including intracellular fibril formation in the hippocampus of adult rats. It is unclear why the neonatal hippocampus is especially vulnerable and the critical cellular perturbations preceding BMAA-induced toxicity remains to be elucidated. The aim of this study was to compare the level of free and protein-associated BMAA in neonatal rat brain and peripheral tissues after different exposures to BMAA. Ultra-high performance liquid chromatography-tandem mass spectrometry analysis revealed that BMAA passed the neonatal blood-brain barrier and was distributed to all studied brain areas. BMAA was also associated to proteins in the brain, especially in the hippocampus. The level in the brain was, however, considerably lower compared to the liver that is not a target organ for BMAA. In contrast to the liver there was a significantly increased level of protein-association of BMAA in the hippocampus and other brain areas following repeated administration suggesting that the degradation of BMAA-associated proteins may be lower in neonatal brain than in the liver. Additional evidence is needed in support of a role for protein misincorporation in the neonatal hippocampus for long-term effects of BMAA.

  18. Associations of Circulating Growth Differentiation Factor-15 and ST2 Concentrations With Subclinical Vascular Brain Injury and Incident Stroke

    DEFF Research Database (Denmark)

    Andersson, Charlotte; Preis, Sarah R; Beiser, Alexa;

    2015-01-01

    .04). Higher GDF-15 concentrations were also associated with greater log-transformed white-matter hyperintensity volumes (β for Q4 versus Q1=0.19; P=0.01). Prospectively, a total of 203 (6%) individuals developed incident stroke/transient ischemic attack during follow-up. After multivariable adjustment, sST2...... remained significantly associated with stroke/transient ischemic attack, hazard ratio for Q4 versus Q1 of 1.76, 95% confidence interval of 1.06 to 2.92, and P=0.03. CONCLUSIONS: Circulating GDF-15 and sST2 are associated with subclinical brain injury and cognitive impairment. Higher sST2 concentrations...

  19. Reward sensitivity is associated with brain activity during erotic stimulus processing.

    Science.gov (United States)

    Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César

    2013-01-01

    The behavioral approach system (BAS) from Gray's reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray's theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food. PMID:23840558

  20. Reward sensitivity is associated with brain activity during erotic stimulus processing.

    Directory of Open Access Journals (Sweden)

    Victor Costumero

    Full Text Available The behavioral approach system (BAS from Gray's reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray's theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food.

  1. Altered Brain Activities Associated with Neural Repetition Effects in Mild Cognitive Impairment Patients.

    Science.gov (United States)

    Yu, Jing; Li, Rui; Jiang, Yang; Broster, Lucas S; Li, Juan

    2016-05-11

    Older adults with mild cognitive impairment (MCI) manifest impaired explicit memory. However, studies on implicit memory such as repetition effects in persons with MCI have been limited. In the present study, 17 MCI patients and 16 healthy normal controls (NC) completed a modified delayed-match-to-sample task while undergoing functional magnetic resonance imaging. We aim to examine the neural basis of repetition; specifically, to elucidate whether and how repetition-related brain responses are altered in participants with MCI. When repeatedly rejecting distracters, both NC and MCI showed similar behavioral repetition effects; however, in both whole-brain and region-of-interest analyses of functional data, persons with MCI showed reduced repetition-driven suppression in the middle occipital and middle frontal gyrus. Further, individual difference analysis found that activation in the left middle occipital gyrus was positively correlated with rejecting reaction time and negatively correlated with accuracy rate, suggesting a predictor of repetition behavioral performance. These findings provide new evidence to support the view that neural mechanisms of repetition effect are altered in MCI who manifests compensatory repetition-related brain activities along with their neuropathology. PMID:27176074

  2. Participation in cognitively-stimulating activities is associated with brain structure and cognitive function in preclinical Alzheimer's disease.

    Science.gov (United States)

    Schultz, Stephanie A; Larson, Jordan; Oh, Jennifer; Koscik, Rebecca; Dowling, Maritza N; Gallagher, Catherine L; Carlsson, Cynthia M; Rowley, Howard A; Bendlin, Barbara B; Asthana, Sanjay; Hermann, Bruce P; Johnson, Sterling C; Sager, Mark; LaRue, Asenath; Okonkwo, Ozioma C

    2015-12-01

    This study tested the hypothesis that frequent participation in cognitively-stimulating activities, specifically those related to playing games and puzzles, is beneficial to brain health and cognition among middle-aged adults at increased risk for Alzheimer's disease (AD). Three hundred twenty-nine cognitively normal, middle-aged adults (age range, 43.2-73.8 years) enrolled in the Wisconsin Registry for Alzheimer's Prevention (WRAP) participated in this study. They reported their current engagement in cognitive activities using a modified version of the Cognitive Activity Scale (CAS), underwent a structural MRI scan, and completed a comprehensive cognitive battery. FreeSurfer was used to derive gray matter (GM) volumes from AD-related regions of interest (ROIs), and composite measures of episodic memory and executive function were obtained from the cognitive tests. Covariate-adjusted least squares analyses were used to examine the association between the Games item on the CAS (CAS-Games) and both GM volumes and cognitive composites. Higher scores on CAS-Games were associated with greater GM volumes in several ROIs including the hippocampus, posterior cingulate, anterior cingulate, and middle frontal gyrus. Similarly, CAS-Games scores were positively associated with scores on the Immediate Memory, Verbal Learning & Memory, and Speed & Flexibility domains. These findings were not modified by known risk factors for AD. In addition, the Total score on the CAS was not as sensitive as CAS-Games to the examined brain and cognitive measures. For some individuals, participation in cognitive activities pertinent to game playing may help prevent AD by preserving brain structures and cognitive functions vulnerable to AD pathophysiology.

  3. Brain enhancer activities at the gene-poor 5p14.1 autism-associated locus.

    Science.gov (United States)

    Inoue, Yukiko U; Inoue, Takayoshi

    2016-01-01

    Due to the vast clinical and genetic heterogeneity, identification of causal genetic determinants for autism spectrum disorder (ASD) has proven to be complex. Whereas several dozen 'rare' genetic variants for ASD susceptibility have been identified, studies are still underpowered to analyse 'common' variants for their subtle effects. A recent application of genome-wide association studies (GWAS) to ASD indicated significant associations with the single nucleotide polymorphisms (SNPs) on chromosome 5p14.1, located in a non-coding region between cadherin10 (CDH10) and cadherin9 (CDH9). Here we apply an in vivo bacterial artificial chromosome (BAC) based enhancer-trapping strategy in mice to scan the gene desert for spatiotemporal cis-regulatory activities. Our results show that the ASD-associated interval harbors the cortical area, striatum, and cerebellum specific enhancers for a long non-coding RNA, moesin pseudogene1 antisense (MSNP1AS) during the brain developing stages. Mouse moesin protein levels are not affected by exogenously expressed human antisense RNAs in our transgenic brains, demonstrating the difficulty in modeling rather smaller effects of common variants. Our first in vivo evidence for the spatiotemporal transcription of MSNP1AS however provides a further support to connect this intergenic variant with the ASD susceptibility. PMID:27503586

  4. Adeno-associated virus-mediated brain delivery of 5-lipoxygenase modulates the AD-like phenotype of APP mice

    Directory of Open Access Journals (Sweden)

    Chu Jin

    2012-01-01

    Full Text Available Abstract Background The 5-lipoxygenase (5LO enzymatic pathway is widely distributed within the central nervous system. Previous works showed that this protein is up-regulated in Alzheimer's disease (AD, and that its genetic absence results in a reduction of Amyloid beta (Aβ levels in the Tg2576 mice. Here by employing an adeno-associated viral (AAV vector system to over-express 5LO in the same mouse model, we examined its contribution to their cognitive impairments and brain AD-like amyloid pathology. Results Our results showed that compared with controls, 5LO-targeted gene brain over-expression in Tg2576 mice results in significant memory deficits. On the other hand, brain tissues had a significant elevation in the levels of Aβ peptides and deposition, no change in the steady state levels of amyloid-β precursor protein (APP, BACE-1 or ADAM-10, but a significant increase in PS1, nicastrin, and Pen-2, three major components of the γ-secretase complex. Additional data indicate that the transcription factor CREB was elevated and so were the mRNA levels for PS1, nicastrin and Pen-2. Conclusions These data demonstrate that neuronal 5LO plays a functional role in the pathogenesis of AD-like amyloidotic phenotype by modulating the γ-secretase pathway. They support the hypothesis that this enzyme is a novel therapeutic target for the treatment and prevention of AD.

  5. Cardiolipin-mediated procoagulant activity of mitochondria contributes to traumatic brain injury-associated coagulopathy in mice.

    Science.gov (United States)

    Zhao, Zilong; Wang, Min; Tian, Ye; Hilton, Tristan; Salsbery, Breia; Zhou, Eric Z; Wu, Xiaoping; Thiagarajan, Perumal; Boilard, Eric; Li, Min; Zhang, Jianning; Dong, Jing-Fei

    2016-06-01

    Cardiolipin (CL) is an anionic phospholipid located exclusively in the mitochondrial inner membrane. Its presence in blood indicates mitochondrial damage and release from injured cells. Here, we report the detection of CL-exposed brain-derived mitochondrial microparticles (mtMPs) at 17 547 ± 2677/μL in the peripheral blood of mice subjected to fluid percussion injury to the brain. These mtMPs accounted for 55.2% ± 12.6% of all plasma annexin V-binding microparticles found in the acute phase of injury. They were also released from cultured neuronal and glial cells undergoing apoptosis. The mtMPs synergized with platelets to facilitate vascular leakage by disrupting the endothelial barrier. The disrupted endothelial barrier allowed the release of mtMPs into the systemic circulation to promote coagulation in both traumatically injured and mtMP- or CL-injected mice, leading to enhanced fibrinolysis, vascular fibrin deposition, and thrombosis. This mtMP-induced coagulation was mediated by CL transported from the inner to the outer mitochondrial membrane and was blocked by the scavenging molecule lactadherin. The mtMP-bound CL was ∼1600 times as active as purified CL in promoting coagulation. This study uncovered a novel procoagulant activity of CL and CL-exposed mitochondria that may contribute to traumatic brain injury-associated coagulopathy and identified potential pathways to block this activity. PMID:27002118

  6. Investigating changes in brain network properties in HIV-associated neurocognitive disease (HAND) using mutual connectivity analysis (MCA)

    Science.gov (United States)

    Abidin, Anas Zainul; D'Souza, Adora M.; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    About 50% of subjects infected with HIV present deficits in cognitive domains, which are known collectively as HIV associated neurocognitive disorder (HAND). The underlying synaptodendritic damage can be captured using resting state functional MRI, as has been demonstrated by a few earlier studies. Such damage may induce topological changes of brain connectivity networks. We test this hypothesis by capturing the functional interdependence of 90 brain network nodes using a Mutual Connectivity Analysis (MCA) framework with non-linear time series modeling based on Generalized Radial Basis function (GRBF) neural networks. The network nodes are selected based on the regions defined in the Automated Anatomic Labeling (AAL) atlas. Each node is represented by the average time series of the voxels of that region. The resulting networks are then characterized using graph-theoretic measures that quantify various network topology properties at a global as well as at a local level. We tested for differences in these properties in network graphs obtained for 10 subjects (6 male and 4 female, 5 HIV+ and 5 HIV-). Global network properties captured some differences between these subject cohorts, though significant differences were seen only with the clustering coefficient measure. Local network properties, such as local efficiency and the degree of connections, captured significant differences in regions of the frontal lobe, precentral and cingulate cortex amongst a few others. These results suggest that our method can be used to effectively capture differences occurring in brain network connectivity properties revealed by resting-state functional MRI in neurological disease states, such as HAND.

  7. Parieto-occipital hypoaccumulation of 123I-IMP in the brain SPECT associated with maternal inheritance of diabetes mellitus

    International Nuclear Information System (INIS)

    To determine the latent effect of diabetes inheritance on central nervous system, thirty diabetic patients were examined (14 male, 16 female). Seventeen patients had a mother with diabetes, and the other thirteen had non-diabetic mothers. They were previously determined to not have the 3243 mitochondrial tRNA mutation in peripheral leukocytes. Patients were tested for parieto-occipital hypoaccumulation of 123I-IMP of brain SPECT, a characteristic neurofinding of mitochondrial diabetes mellitus due to the 3243 tRNA mutation. Seven (41.2%) out of 17 subjects with material inheritance had the parieto-occipital abnormality, whereas one (7.7%) out of 13 subjects with non-maternal inheritance had the abnormality. Seventeen (94.4%) out of 18 patients diabetes due to mitochondrial tRNA mutation at position 3243 showed the abnormality. Our results suggest that the material inheritance of diabetes is associated with the hypoaccumulation of 123I-IMP of brain SPECT. We speculate that, because the patients with maternal inheritance might have subclinical mitochondrial dysfunction due to unknown mitochondrial DNA abnormalities, the mitochondrial DNA abnormality might cause their subclinical brain damage in the parieto-occipital area. (author)

  8. Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees

    Directory of Open Access Journals (Sweden)

    Robinson Gene E

    2007-06-01

    Full Text Available Abstract Background Honey bees are known for several striking social behaviors, including a complex pattern of behavioral maturation that gives rise to an age-related colony division of labor and a symbolic dance language, by which successful foragers communicate the location of attractive food sources to their nestmates. Our understanding of honey bees is mostly based on studies of the Western honey bee, Apis mellifera, even though there are 9–10 other members of genus Apis, showing interesting variations in social behavior relative to A. mellifera. To facilitate future in-depth genomic and molecular level comparisons of behavior across the genus, we performed a microarray analysis of brain gene expression for A. mellifera and three key species found in Asia, A. cerana, A. florea and A. dorsata. Results For each species we compared brain gene expression patterns between foragers and adult one-day-old bees on an A. mellifera cDNA microarray and calculated within-species gene expression ratios to facilitate cross-species analysis. The number of cDNA spots showing hybridization fluorescence intensities above the experimental threshold was reduced by an average of 16% in the Asian species compared to A. mellifera, but an average of 71% of genes on the microarray were available for analysis. Brain gene expression profiles between foragers and one-day-olds showed differences that are consistent with a previous study on A. mellifera and were comparable across species. Although 1772 genes showed significant differences in expression between foragers and one-day-olds, only 218 genes showed differences in forager/one-day-old expression between species (p Conclusion We conclude that the A. mellifera cDNA microarray can be used effectively for cross-species comparisons within the genus. Our results indicate that there is a widespread conservation of the molecular processes in the honey bee brain underlying behavioral maturation. Species differences in

  9. Impact of the resolution of brain parcels on connectome-wide association studies in fMRI.

    Science.gov (United States)

    Bellec, Pierre; Benhajali, Yassine; Carbonell, Felix; Dansereau, Christian; Albouy, Geneviève; Pelland, Maxime; Craddock, Cameron; Collignon, Oliver; Doyon, Julien; Stip, Emmanuel; Orban, Pierre

    2015-12-01

    A recent trend in functional magnetic resonance imaging is to test for association of clinical disorders with every possible connection between selected brain parcels. We investigated the impact of the resolution of functional brain parcels, ranging from large-scale networks to local regions, on a mass univariate general linear model (GLM) of connectomes. For each resolution taken independently, the Benjamini-Hochberg procedure controlled the false-discovery rate (FDR) at nominal level on realistic simulations. However, the FDR for tests pooled across all resolutions could be inflated compared to the FDR within resolution. This inflation was severe in the presence of no or weak effects, but became negligible for strong effects. We thus developed an omnibus test to establish the overall presence of true discoveries across all resolutions. Although not a guarantee to control the FDR across resolutions, the omnibus test may be used for descriptive analysis of the impact of resolution on a GLM analysis, in complement to a primary analysis at a predefined single resolution. On three real datasets with significant omnibus test (schizophrenia, congenital blindness, motor practice), markedly higher rate of discovery were obtained at low resolutions, below 50, in line with simulations showing increase in sensitivity at such resolutions. This increase in discovery rate came at the cost of a lower ability to localize effects, as low resolution parcels merged many different brain regions together. However, with 30 or more parcels, the statistical effect maps were biologically plausible and very consistent across resolutions. These results show that resolution is a key parameter for GLM-connectome analysis with FDR control, and that a functional brain parcellation with 30 to 50 parcels may lead to an accurate summary of full connectome effects with good sensitivity in many situations.

  10. The Milky Way Project: A statistical study of massive star formation associated with infrared bubbles

    CERN Document Server

    Kendrew, Sarah; Bressert, Eli; Povich, Matthew S; Sherman, Reid; Lintott, Chris; Robitaille, Thomas P; Schawinski, Kevin; Wolf-Chase, Grace

    2012-01-01

    The Milky Way Project citizen science initiative recently increased the number of known infrared bubbles in the inner Galactic plane by an order of magnitude compared to previous studies. We present a detailed statistical analysis of this dataset with the Red MSX Source catalog of massive young stellar sources to investigate the association of these bubbles with massive star formation. We particularly address the question of massive triggered star formation near infrared bubbles. We find a strong positional correlation of massive young stellar objects (MYSOs) and HII regions with Milky Way Project bubbles at separations of < 2 bubble radii. As bubble sizes increase, a statistically significant overdensity of massive young sources emerges in the region of the bubble rims, possibly indicating the occurrence of triggered star formation by the collect and collapse mechanism, to which the data and methods are most sensitive. Based on numbers of bubble-associated RMS sources we find that 67+/-3% of MYSOs and (ul...

  11. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-06-06

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.

  12. Leptin Is Associated With Exaggerated Brain Reward and Emotion Responses to Food Images in Adolescent Obesity

    OpenAIRE

    Jastreboff, Ania M.; Lacadie, Cheryl; Seo, Dongju; Kubat, Jessica; Van Name, Michelle A.; Giannini, Cosimo; Savoye, Mary; Constable, R. Todd; Sherwin, Robert S.; Caprio, Sonia; Sinha, Rajita

    2014-01-01

    OBJECTIVE In the U.S., an astonishing 12.5 million children and adolescents are now obese, predisposing 17% of our nation’s youth to metabolic complications of obesity, such as type 2 diabetes (T2D). Adolescent obesity has tripled over the last three decades in the setting of food advertising directed at children. Obese adults exhibit increased brain responses to food images in motivation-reward pathways. These neural alterations may be attributed to obesity-related metabolic changes, which p...

  13. Contribution of altered signal transduction associated to glutamate receptors in brain to the neurological alterations of hepatic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Vicente Felipo

    2006-01-01

    Patients with liver disease may present hepatic encephalopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations,including cognitive and motor disturbances. HE reduces the quality of life of the patients and is associated with poor prognosis. In the worse cases HE may lead to coma or death.The mechanisms leading to HE which are not well known are being studied using animal models. The neurological alterations in HE are a consequence of impaired cerebral function mainly due to alterations in neurotransmission. We review here some studies indicating that alterations in neurotransmission associated to different types of glutamate receptors are responsible for some of the cognitive and motor alterations present in HE.These studies show that the function of the signal transduction pathway glutamate-nitric oxide-cGMP associated to the NMDA type of glutamate receptors is impaired in brain in vivo in HE animal models as well as in brain of patients died of HE. Activation of NMDA receptors in brain activates this pathway and increases cGMP. In animal models of HE this increase in cGMP induced by activation of NMDA receptors is reduced,which is responsible for the impairment in learning ability in these animal models. Increasing cGMP by pharmacological means restores learning ability in rats with HE and may be a new therapeutic approach to improve cognitive function in patients with HE.However, it is necessary to previously assess the possible secondary effects.Patients with HE may present psychomotor slowing,hypokinesia and bradykinesia. Animal models of HE also show hypolocomotion. It has been shown in rats with HE that hypolocomotion is due to excessive activation of metabotropic glutamate receptors (mGluRs) in substantia nigra pars reticulata. Blocking mGluR1 in this brain area normalizes motor activity in the rats, suggesting that a similar treatment for patients with HE could be useful to treat psychomotor slowing and

  14. Working memory dysfunction associated with brain functional deficits and cellular metabolic changes in patients with generalized anxiety disorder.

    Science.gov (United States)

    Moon, Chung-Man; Sundaram, Thirunavukkarasu; Choi, Nam-Gil; Jeong, Gwang-Woo

    2016-08-30

    Generalized anxiety disorder (GAD) is associated with brain functional and morphological changes in connected with emotional dysregulation and cognitive deficit. This study dealt with the neural functional deficits and metabolic abnormalities in working memory (WM) task with emotion-inducing distractors in patients with GAD. Fourteen patients with GAD and 14 healthy controls underwent functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ((1)H-MRS) at 3T. In response to the emotional distractors in WM tasks, the patients concurrently showed higher activity in the hippocampus and lower activities in the superior occipital gyrus, superior parietal gyrus, dorsolateral prefrontal cortex (DLPFC) and precentral gyrus compared to the controls. MRS revealed significantly lower choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC. In particular, the Cho ratios were positively correlated with the brain activities based on blood oxygenation level-dependent signal change in the DLPFC. This study provides the first evidence for the association between the metabolic alterations and functional deficit in WM processing with emotion-inducing distractors in GAD. These findings will be helpful to understand the neural dysfunction in connection with WM impairment in GAD.

  15. Real world navigation independence in the early blind correlates with differential brain activity associated with virtual navigation.

    Science.gov (United States)

    Halko, Mark A; Connors, Erin C; Sánchez, Jaime; Merabet, Lotfi B

    2014-06-01

    Navigating is a complex cognitive task that places high demands on spatial abilities, particularly in the absence of sight. Significant advances have been made in identifying the neural correlates associated with various aspects of this skill; however, how the brain is able to navigate in the absence of visual experience remains poorly understood. Furthermore, how neural network activity relates to the wide variability in navigational independence and skill in the blind population is also unknown. Using functional magnetic resonance imaging, we investigated the neural correlates of audio-based navigation within a large scale, indoor virtual environment in early profoundly blind participants with differing levels of spatial navigation independence (assessed by the Santa Barbara Sense of Direction scale). Performing path integration tasks in the virtual environment was associated with activation within areas of a core network implicated in navigation. Furthermore, we found a positive relationship between Santa Barbara Sense of Direction scores and activation within right temporal parietal junction during the planning and execution phases of the task. These findings suggest that differential navigational ability in the blind may be related to the utilization of different brain network structures. Further characterization of the factors that influence network activity may have important implications regarding how this skill is taught in the blind community.

  16. Cerebrovascular ischemic changes associated with fetal posterior cerebral artery- descriptive retrospective study with magnetic resonance imaging and angiography of brain

    Directory of Open Access Journals (Sweden)

    Venkatraman Indiran

    2016-04-01

    Full Text Available Objectives: Circle of Willis, the main collateral pathway for cerebral circulation, is complete in only a portion of the population. There are many variations in the Circle of Willis. Fetal posterior cerebral artery, which is defined as posterior cerebral artery arising from internal carotid artery, is a common variant of the Circle of Willis. Though association between the fetal posterior cerebral artery and ischemia have been studied, no specific study has been conducted in the Indian population. We aim to identify the incidence of small and large vessel strokes in patients with fetal posterior cerebral artery using Magnetic Resonance Imaging (MRI and Magnetic Resonance Angiography (MRA of brain in the Indian population. Materials and methods: We retrospectively reviewed MR angiographies of the brain performed in our institution, in order to assess the posterior cerebral circulation and its association with small ischemic changes and large vessel strokes. Results: 92 of the 140 patients (65% with fetal posterior cerebral artery (PCA had small vessel ischemic changes. 72 patients (51.4% had large vessel infarcts in any of the vascular territories. 35% of the patients included in this study showed infarcts in the middle cerebral artery (MCA territory and 15 % showed infarcts in the PCA territory. Conclusion: Higher incidence of MCA infarcts in our study probably suggests that PCA cannot aid in collateral formation cases of reduced flow across the internal carotid artery and that fetal PCA could be an important risk factor in cerebrovascular ischemic diseases.

  17. Working memory dysfunction associated with brain functional deficits and cellular metabolic changes in patients with generalized anxiety disorder.

    Science.gov (United States)

    Moon, Chung-Man; Sundaram, Thirunavukkarasu; Choi, Nam-Gil; Jeong, Gwang-Woo

    2016-08-30

    Generalized anxiety disorder (GAD) is associated with brain functional and morphological changes in connected with emotional dysregulation and cognitive deficit. This study dealt with the neural functional deficits and metabolic abnormalities in working memory (WM) task with emotion-inducing distractors in patients with GAD. Fourteen patients with GAD and 14 healthy controls underwent functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ((1)H-MRS) at 3T. In response to the emotional distractors in WM tasks, the patients concurrently showed higher activity in the hippocampus and lower activities in the superior occipital gyrus, superior parietal gyrus, dorsolateral prefrontal cortex (DLPFC) and precentral gyrus compared to the controls. MRS revealed significantly lower choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC. In particular, the Cho ratios were positively correlated with the brain activities based on blood oxygenation level-dependent signal change in the DLPFC. This study provides the first evidence for the association between the metabolic alterations and functional deficit in WM processing with emotion-inducing distractors in GAD. These findings will be helpful to understand the neural dysfunction in connection with WM impairment in GAD. PMID:27442922

  18. Disruptions in brain networks of older fallers are associated with subsequent cognitive decline: a 12-month prospective exploratory study.

    Directory of Open Access Journals (Sweden)

    Chun Liang Hsu

    Full Text Available Cognitive impairment and impaired mobility are major public health concerns. There is growing recognition that impaired mobility is an early biomarker of cognitive impairment and dementia. The neural basis for this association is currently unclear. We propose disrupted functional connectivity as a potential mechanism. In this 12-month prospective exploratory study, we compared functional connectivity of four brain networks- the default mode network (DMN, fronto-executive network (FEN, fronto-parietal network (FPN, and the primary motor sensory network (SMN--between community-dwelling older adults with ≥ two falls in the last 12 months and their non-falling counterparts (≤ one fall in the last 12 months. Functional connectivity was examined both at rest and during a simple motor tapping task. Compared with non-fallers, fallers showed more connectivity between the DMN and FPN during right finger tapping (p  = 0.04, and significantly less functional connectivity between the SMN and FPN during rest (p ≤ 0.05. Less connectivity between the SMN and FPN during rest was significantly associated with greater decline in both cognitive function and mobility over the12-month period (r =  -0.32 and 0.33 respectively; p ≤ 0.04. Thus, a recent history of multiple falls among older adults without a diagnosis of dementia may indicate sub-clinical changes in brain function and increased risk for subsequent decline.

  19. Cognitive reserve is associated with the functional organization of brain in healthy aging: A MEG Study

    Directory of Open Access Journals (Sweden)

    Maria Eugenia eLopez

    2014-06-01

    Full Text Available The proportion of elderly people in the population has increased rapidly in the last century and consequently healthy aging is expected to become a critical area of research in neuroscience. Evidence reveals how healthy aging depends on three main behavioral factors: social lifestyle, cognitive activity and physical activity. In this study, we focused on the role of cognitive activity, concentrating specifically on educational and occupational attainment factors, which were considered two of the main pillars of cognitive reserve.21 subjects with similar rates of social lifestyle, physical and cognitive activity were selected from a sample of 55 healthy adults. These subjects were divided into two groups according to their level of cognitive reserve; one group comprised subjects with high cognitive reserve (9 members and the other contained those with low cognitive reserve (12 members. To evaluate the cortical brain connectivity network, all participants were recorded by Magnetoencephalography (MEG while they performed a memory task (modified version of the Sternberg´s Task. We then applied two algorithms (Phase Locking Value & Phase-Lag Index to study the dynamics of functional connectivity. In response to the same task, the subjects with lower cognitive reserve presented higher functional connectivity than those with higher cognitive reserve.These results may indicate that participants with low cognitive reserve needed a greater 'effort' than those with high cognitive reserve to achieve the same level of cognitive performance. Therefore, we conclude that cognitive reserve contributes to the modulation of the functional connectivity patterns of the aging brain.

  20. Nonmechanical Roles of Dystrophin and Associated Proteins in Exercise, Neuromuscular Junctions, and Brains

    Directory of Open Access Journals (Sweden)

    Bailey Nichols

    2015-07-01

    Full Text Available Dystrophin-glycoprotein complex (DGC is an important structural unit in skeletal muscle that connects the cytoskeleton (f-actin of a muscle fiber to the extracellular matrix (ECM. Several muscular dystrophies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, congenital muscular dystrophies (dystroglycanopathies, and limb-girdle muscular dystrophies (sarcoglycanopathies, are caused by mutations in the different DGC components. Although many early studies indicated DGC plays a crucial mechanical role in maintaining the structural integrity of skeletal muscle, recent studies identified novel roles of DGC. Beyond a mechanical role, these DGC members play important signaling roles and act as a scaffold for various signaling pathways. For example, neuronal nitric oxide synthase (nNOS, which is localized at the muscle membrane by DGC members (dystrophin and syntrophins, plays an important role in the regulation of the blood flow during exercise. DGC also plays important roles at the neuromuscular junction (NMJ and in the brain. In this review, we will focus on recently identified roles of DGC particularly in exercise and the brain.

  1. Widespread brain dysconnectivity associated with psychotic-like experiences in the general population

    Directory of Open Access Journals (Sweden)

    Joseph M. Orr

    2014-01-01

    Full Text Available It is becoming increasingly clear that psychosis occurs along a continuum. At the high end are formal psychotic disorders such as schizophrenia, and at the low-end are individuals who experience occasional psychotic symptoms, but are otherwise healthy (non-clinical psychosis, NCP. Schizophrenia has been shown to be marked by altered patterns of connectivity between brain regions, but it is not known if such dysconnectivity exists in NCP. In the current study we used functional magnetic resonance imaging (fMRI to compare resting-state functional connectivity in NCP individuals (n = 25 and healthy controls (n = 27 for four brain networks of interest (fronto-parietal, cingulo-opercular, default mode, and cerebellar networks. NCP individuals showed reduced connectivity compared to controls between regions of the default mode network and frontal regions, and between regions in all of the networks and the thalamus. NCP individuals showed greater connectivity compared to controls within regions of frontal control networks. Further, positive symptom scores in NCP individuals were positively correlated with connectivity between the cingulo-opercular network and the visual cortex, and were negatively correlated with connectivity between the cerebellar network and the posterior parietal cortex and dorsal premotor cortex. Connectivity was not correlated with positive symptom scores in controls. Taken together, these findings demonstrate that a spectrum of abnormal connectivity underlies the psychosis continuum, and that individuals with sub-clinical psychotic experiences represent a key population for understanding pathogenic processes.

  2. Widespread brain dysconnectivity associated with psychotic-like experiences in the general population.

    Science.gov (United States)

    Orr, Joseph M; Turner, Jessica A; Mittal, Vijay A

    2014-01-01

    It is becoming increasingly clear that psychosis occurs along a continuum. At the high end are formal psychotic disorders such as schizophrenia, and at the low-end are individuals who experience occasional psychotic symptoms, but are otherwise healthy (non-clinical psychosis, NCP). Schizophrenia has been shown to be marked by altered patterns of connectivity between brain regions, but it is not known if such dysconnectivity exists in NCP. In the current study we used functional magnetic resonance imaging (fMRI) to compare resting-state functional connectivity in NCP individuals (n = 25) and healthy controls (n = 27) for four brain networks of interest (fronto-parietal, cingulo-opercular, default mode, and cerebellar networks). NCP individuals showed reduced connectivity compared to controls between regions of the default mode network and frontal regions, and between regions in all of the networks and the thalamus. NCP individuals showed greater connectivity compared to controls within regions of frontal control networks. Further, positive symptom scores in NCP individuals were positively correlated with connectivity between the cingulo-opercular network and the visual cortex, and were negatively correlated with connectivity between the cerebellar network and the posterior parietal cortex and dorsal premotor cortex. Connectivity was not correlated with positive symptom scores in controls. Taken together, these findings demonstrate that a spectrum of abnormal connectivity underlies the psychosis continuum, and that individuals with sub-clinical psychotic experiences represent a key population for understanding pathogenic processes.

  3. Factors Associated with Changes in Brain Atrophy during a Three-Year Observation in Elderly Diabetic Patients: Effect of Renal Impairment on Hippocampal Atrophy

    Directory of Open Access Journals (Sweden)

    Takahiko Kawamura

    2016-02-01

    Full Text Available Background/Aims: We conducted a 3-year longitudinal study concerning factors associated with changes in brain atrophy in elderly diabetic patients. Methods: We evaluated hippocampal and global brain atrophy using automatic voxel-based morphometry of structural magnetic resonance images, 4 cognitive function tests, and cerebral small vessel disease (SVD in 66 diabetic patients. Results: During the 3-year follow-up, hippocampal and global brain atrophy advanced, and cognitive functions worsened. For changes in hippocampal atrophy, changes in estimated glomerular filtration rate (eGFR, albuminuria, and being an ApoE ε4 carrier were independent factors; change in the number of silent brain infarctions was an independent factor for changes in global brain atrophy. A significant association of changes in eGFR and albuminuria with hippocampal atrophy remained after adjusting for confounders including SVD. Both types of brain atrophy at baseline were significantly correlated with cognitive impairment at baseline and especially associated with changes in delayed word recall during the follow-up after adjusting for confounders. Conclusion: Changes in eGFR and albuminuria during follow-up were independent risk factors for hippocampal atrophy, which was associated with decline in delayed word recall, suggesting that management of chronic kidney disease may prevent the progression of hippocampal atrophy.

  4. Substantial and reversible brain gray matter reduction but no acute brain lesions in ultramarathon runners: experience from the TransEurope-FootRace Project

    Directory of Open Access Journals (Sweden)

    Freund Wolfgang

    2012-12-01

    Full Text Available Abstract Background During the extremely challenging 4,487 km ultramarathon TransEurope-FootRace 2009, runners showed considerable reduction of body weight. The effects of this endurance run on brain volume changes but also possible formation of brain edema or new lesions were explored by repeated magnetic resonance imaging (MRI studies. Methods A total of 15 runners signed an informed consent to participate in this study of planned brain scans before, twice during, and about 8 months after the race. Because of dropouts, global gray matter volume analysis could only be performed in ten runners covering three timepoints, and in seven runners who also had a follow-up scan. Scanning was performed on three identical 1.5 T Siemens MAGNETOM Avanto scanners, two of them located at our university. The third MRI scanner with identical sequence parameters was a mobile MRI unit escorting the runners. Volumetric 3D datasets were acquired using a magnetization prepared rapid acquisition gradient echo (MPRAGE sequence. Additionally, diffusion-weighted (DWI and fluid attenuated inversion recovery (FLAIR imaging was performed. Results Average global gray matter volume as well as body weight significantly decreased by 6% during the race. After 8 months, gray matter volume returned to baseline as well as body weight. No new brain lesions were detected by DWI or FLAIR imaging. Conclusions Physiological brain volume reduction during aging is less than 0.2% per year. Therefore a volume reduction of about 6% during the 2 months of extreme running appears to be substantial. The reconstitution in global volume measures after 8 months shows the process to be reversible. As possible mechanisms we discuss loss of protein, hypercortisolism and hyponatremia to account for both substantiality and reversibility of gray matter volume reductions. Reversible brain volume reduction during an ultramarathon suggests that extreme running might serve as a model to investigate

  5. Persistent symptoms in mild to moderate traumatic brain injury associated with executive dysfunction.

    Science.gov (United States)

    Hartikainen, Kaisa M; Waljas, Minna; Isoviita, Tuulia; Dastidar, Prasun; Liimatainen, Suvi; Solbakk, Anne-Kristin; Ogawa, Keith H; Soimakallio, Seppo; Ylinen, Aarne; Ohman, Juha

    2010-08-01

    In order to improve detection of subtle cognitive dysfunction and to shed light on the etiology of persistent symptoms after mild-to-moderate traumatic brain injury (TBI), we employed an experimental executive reaction time (RT) test, standardized neuropsychological tests, and diffusion tensor imaging (DTI). The Executive RT-Test, an Executive Composite Score from standardized neuropsychological tests, and DTI-indices in the midbrain differentiated between patients with persistent symptoms from those fully recovered after mild-to-moderate TBI. We suggest that persistent symptoms in mild-to-moderate TBI may reflect disrupted fronto-striatal network involved in executive functioning, and the Executive RT-Test provides an objective and novel method to detect it. PMID:20198531

  6. Brain damage associated with apraxia of speech: evidence from case studies.

    Science.gov (United States)

    Moser, Dana; Basilakos, Alexandra; Fillmore, Paul; Fridriksson, Julius

    2016-08-01

    The site of crucial damage that causes acquired apraxia of speech (AOS) has been debated in the literature. This study presents five in-depth cases that offer insight into the role of brain areas involved in AOS. Four of the examined participants had a primary impairment of AOS either with (n = 2) or without concomitant mild aphasia (n = 2). The fifth participant presented with a lesion relatively isolated to the left anterior insula (AIns-L), damage that is rarely reported in the literature, but without AOS. Taken together, these cases challenge the role of the AIns-L and implicate the left motor regions in AOS. PMID:27264534

  7. Standardizing ICU management of pediatric traumatic brain injury is associated with improved outcomes at discharge.

    Science.gov (United States)

    O'Lynnger, Thomas M; Shannon, Chevis N; Le, Truc M; Greeno, Amber; Chung, Dai; Lamb, Fred S; Wellons, John C

    2016-01-01

    OBJECT The goal of critical care in treating traumatic brain injury (TBI) is to reduce secondary brain injury by limiting cerebral ischemia and optimizing cerebral blood flow. The authors compared short-term outcomes as defined by discharge disposition and Glasgow Outcome Scale scores in children with TBI before and after the implementation of a protocol that standardized decision-making and interventions among neurosurgeons and pediatric intensivists. METHODS The authors performed a retrospective pre- and postprotocol study of 128 pediatric patients with severe TBI, as defined by Glasgow Coma Scale (GCS) scores accounting for injury severity and clinical parameters. Favorable discharge disposition included discharge home. Unfavorable discharge disposition included discharge to an inpatient facility or death. RESULTS Demographics were similar between the treatment periods, as was injury severity as assessed by GCS score (mean 5.43 preprotocol, mean 5.28 postprotocol; p = 0.67). The ordered logistic regression model demonstrated an odds ratio of 4.0 of increasingly favorable outcome in the postprotocol cohort (p = 0.007). Prior to protocol implementation, 63 patients (64%) had unfavorable discharge disposition and 36 patients (36%) had favorable discharge disposition. After protocol implementation, 9 patients (31%) had unfavorable disposition, while 20 patients (69%) had favorable disposition (p = 0.002). In the preprotocol group, 31 patients (31%) died while 6 patients (21%) died after protocol implementation (p = 0.04). CONCLUSIONS Discharge disposition and mortality rates in pediatric patients with severe TBI improved after implementation of a standardized protocol among caregivers based on best-practice guidelines. PMID:26451717

  8. Ischemic preconditioning reduces peripheral oxidative damage associated with brain ischemia in rats

    Directory of Open Access Journals (Sweden)

    S.S. Frassetto

    1999-10-01

    Full Text Available Brain ischemia followed by reperfusion causes neuronal death related to oxidative damage. Furthermore, it has been reported that subjects suffering from ischemic cerebrovascular disorders exhibit changes in circulating platelet aggregation, a characteristic that might be important for their clinical outcome. In the present investigation we studied tert-butyl hydroperoxide-initiated plasma chemiluminescence and thiol content as measures of peripheral oxidative damage in naive and preconditioned rats submitted to forebrain ischemia produced by the 4-vessel occlusion method. Rats were submitted to 2 or 10 min of global transient forebrain ischemia followed by 60 min or 1, 2, 5, 10 or 30 days of reperfusion. Preconditioned rats were submitted to a 10-min ischemic episode 1 day after a 2-min ischemic event (2 + 10 min, followed by 60 min or 1 or 2 days of reperfusion. It has been demonstrated that such preconditioning protects against neuronal death in rats and gerbils submitted to a lethal (10 min ischemic episode. The results show that both 2 and 10 min of ischemia cause an increase of plasma chemiluminescence when compared to control and sham rats. In the 2-min ischemic group, the effect was not present after reperfusion. In the 10-min ischemic group, the increase was present up to 1 day after recirculation and values returned to control levels after 2 days. However, rats preconditioned to ischemia (2 + 10 min and reperfusion showed no differences in plasma chemiluminescence when compared to controls. We also analyzed plasma thiol content since it has been described that sulfhydryl (SH groups significantly contribute to the antioxidant capacity of plasma. There was a significant decrease of plasma thiol content after 2, 10 and 2 + 10 min of ischemia followed by reperfusion when compared to controls. We conclude that ischemia may cause, along with brain oxidative damage and cell death, a peripheral oxidative damage that is reduced by the

  9. The Brain Functional Networks Associated to Human and Animal Suffering Differ among Omnivores, Vegetarians and Vegans

    Science.gov (United States)

    Filippi, Massimo; Riccitelli, Gianna; Falini, Andrea; Di Salle, Francesco; Vuilleumier, Patrik; Comi, Giancarlo; Rocca, Maria A.

    2010-01-01

    Empathy and affective appraisals for conspecifics are among the hallmarks of social interaction. Using functional MRI, we hypothesized that vegetarians and vegans, who made their feeding choice for ethical reasons, might show brain responses to conditions of suffering involving humans or animals different from omnivores. We recruited 20 omnivore subjects, 19 vegetarians, and 21 vegans. The groups were matched for sex and age. Brain activation was investigated using fMRI and an event-related design during observation of negative affective pictures of human beings and animals (showing mutilations, murdered people, human/animal threat, tortures, wounds, etc.). Participants saw negative-valence scenes related to humans and animals, alternating with natural landscapes. During human negative valence scenes, compared with omnivores, vegetarians and vegans had an increased recruitment of the anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG). More critically, during animal negative valence scenes, they had decreased amygdala activation and increased activation of the lingual gyri, the left cuneus, the posterior cingulate cortex and several areas mainly located in the frontal lobes, including the ACC, the IFG and the middle frontal gyrus. Nonetheless, also substantial differences between vegetarians and vegans have been found responding to negative scenes. Vegetarians showed a selective recruitment of the right inferior parietal lobule during human negative scenes, and a prevailing activation of the ACC during animal negative scenes. Conversely, during animal negative scenes an increased activation of the inferior prefrontal cortex was observed in vegans. These results suggest that empathy toward non conspecifics has different neural representation among individuals with different feeding habits, perhaps reflecting different motivational factors and beliefs. PMID:20520767

  10. The brain functional networks associated to human and animal suffering differ among omnivores, vegetarians and vegans.

    Science.gov (United States)

    Filippi, Massimo; Riccitelli, Gianna; Falini, Andrea; Di Salle, Francesco; Vuilleumier, Patrik; Comi, Giancarlo; Rocca, Maria A

    2010-05-26

    Empathy and affective appraisals for conspecifics are among the hallmarks of social interaction. Using functional MRI, we hypothesized that vegetarians and vegans, who made their feeding choice for ethical reasons, might show brain responses to conditions of suffering involving humans or animals different from omnivores. We recruited 20 omnivore subjects, 19 vegetarians, and 21 vegans. The groups were matched for sex and age. Brain activation was investigated using fMRI and an event-related design during observation of negative affective pictures of human beings and animals (showing mutilations, murdered people, human/animal threat, tortures, wounds, etc.). Participants saw negative-valence scenes related to humans and animals, alternating with natural landscapes. During human negative valence scenes, compared with omnivores, vegetarians and vegans had an increased recruitment of the anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG). More critically, during animal negative valence scenes, they had decreased amygdala activation and increased activation of the lingual gyri, the left cuneus, the posterior cingulate cortex and several areas mainly located in the frontal lobes, including the ACC, the IFG and the middle frontal gyrus. Nonetheless, also substantial differences between vegetarians and vegans have been found responding to negative scenes. Vegetarians showed a selective recruitment of the right inferior parietal lobule during human negative scenes, and a prevailing activation of the ACC during animal negative scenes. Conversely, during animal negative scenes an increased activation of the inferior prefrontal cortex was observed in vegans. These results suggest that empathy toward non conspecifics has different neural representation among individuals with different feeding habits, perhaps reflecting different motivational factors and beliefs.

  11. Association of Alzheimer's disease GWAS loci with MRI markers of brain aging

    NARCIS (Netherlands)

    G. Chauhan (Ganesh); H.H.H. Adams (Hieab); J.C. Bis (Joshua); G. Weinstein (Galit); L. Yu (Lei); A.M. Töglhofer (Anna Maria); G.D. Smith; S. van der Lee (Sven); R.F. Gottesman (Rebecca); R. Thomson (Russell); J. Wang (Jing); Q. Yang (Qiong Fang); W.J. Niessen (Wiro); O.L. Lopez (Oscar); J.T. Becker (James); T.G. Phan (Thanh); R.J. Beare (Richard); K. Arfanakis (Konstantinos); D. Fleischman (Debra); M.W. Vernooij (Meike); B. Mazoyer (Bernard); R. Schmidt (Reinhold); V. Srikanth (Velandai); D.S. Knopman (David); C.R. Jack Jr. (Clifford); P. Amouyel (Philippe); A. Hofman (Albert); C. DeCarli (Charles); C. Tzourio (Christophe); C.M. van Duijn (Cornelia M.); D.A. Bennett (David); R. Schmidt (Reinhold); W.T. Longstreth Jr; T.H. Mosley (Thomas H.); M. Fornage (Myriam); L.J. Launer (Lenore); S. Seshadri (Sudha); M.A. Ikram (Arfan); S. Debette (Stéphanie)

    2015-01-01

    textabstractWhether novel risk variants of Alzheimer's disease (AD) identified through genome-wide association studies also influence magnetic resonance imaging-based intermediate phenotypes of AD in the general population is unclear. We studied association of 24 AD risk loci with intracranial volum

  12. Genome-Wide Association Study of Intelligence: Additive Effects of Novel Brain Expressed Genes

    Science.gov (United States)

    Loo, Sandra K.; Shtir, Corina; Doyle, Alysa E.; Mick, Eric; McGough, James J.; McCracken, James; Biederman, Joseph; Smalley, Susan L.; Cantor, Rita M.; Faraone, Stephen V.; Nelson, Stanley F.

    2012-01-01

    Objective: The purpose of the present study was to identify common genetic variants that are associated with human intelligence or general cognitive ability. Method: We performed a genome-wide association analysis with a dense set of 1 million single-nucleotide polymorphisms (SNPs) and quantitative intelligence scores within an ancestrally…

  13. Kaposi's Sarcoma-Associated Herpesvirus-Related Solid Lymphoma Involving the Heart and Brain

    Directory of Open Access Journals (Sweden)

    Jason R. Andrews

    2011-01-01

    Full Text Available Since its discovery in 1994, Kaposi's sarcoma-associated herpesvirus (KSHV has been associated with lymphoproliferative disorders, particularly in patients infected with human immunodeficiency virus (HIV. The disorders most strongly linked to KSHV are multicentric Castleman's Disease (MCD, primary effusion lymphoma, and diffuse large B-cell lymphomas. We report an unusual case of KSHV-associated lymphoma in an HIV-infected patient manifesting with myocardial and central nervous system involvement. We discuss this case in the context of increasing array of KSHV-associated lymphomas. In the HIV-infected patient with a mass lesion, a history of cutaneous Kaposi's sarcoma and prolonged immunosuppression should alert clinicians as to the possibility of KSHV-associated lymphoproliferative disorders, in order to establish a timely diagnosis.

  14. Involvement of the NADPH Oxidase NOX2-Derived Brain Oxidative Stress in an Unusual Fatal Case of Cocaine-Related Neurotoxicity Associated With Excited Delirium Syndrome.

    Science.gov (United States)

    Schiavone, Stefania; Riezzo, Irene; Turillazzi, Emanuela; Trabace, Luigia

    2016-10-01

    Here, we investigated the possible role of the Nicotinamide Adenine Dinucleotide Phosphate oxidase NOX2-derived brain oxidative stress in a fatal case of cocaine-related neurotoxicity, associated to excited delirium syndrome. We detected a strong NOX2 immunoreactivity, mainly in cortical GABAergic neurons and astrocytes, with a minor presence in microglia, glutamatergic and dopaminergic neurons as well as a significant immunostaining for other markers of oxidative stress (8OhDG, HSP70, HSP90, and NF-κB) and apoptotic phenomena. These results support a crucial role of NOX2-derived brain oxidative stress in cocaine-induced brain dysfunctions and neurotoxicity. PMID:27533346

  15. Teachers' tendencies to promote student-led science projects: Associations with their views about science

    Science.gov (United States)

    Bencze, J. Lawrence; Bowen, G. Michael; Alsop, Steve

    2006-05-01

    School science students can benefit greatly from participation in student-directed, open-ended scientific inquiry projects. For various possible reasons, however, students tend not to be engaged in such inquiries. Among factors that may limit their opportunities to engage in open-ended inquiries of their design are teachers' conceptions about science. To explore possible relationships between teachers' conceptions about science and the types of inquiry activities in which they engage students, instrumental case studies of five secondary science teachers were developed, using field notes, repertory grids, samples of lesson plans and student activities, and semistructured interviews. Based on constructivist grounded theory analysis, participating teachers' tendencies to promote student-directed, open-ended scientific inquiry projects seemed to correspond with positions about the nature of science to which they indicated adherence. A tendency to encourage and enable students to carry out student-directed, open-ended scientific inquiry projects appeared to be associated with adherence to social constructivist views about science. Teachers who opposed social constructivist views tended to prefer tight control of student knowledge building procedures and conclusions. We suggest that these results can be explained with reference to human psychological factors, including those associated with teachers' self-esteem and their relationships with knowledge-building processes in the discipline of their teaching.

  16. Studies on the expression of the microtubule-associated protein, tau, during mouse brain development, with newly isolated complementary DNA probes

    OpenAIRE

    1984-01-01

    Tau protein is a collection of closely related polypeptides that associate with microtubules in vivo and stimulate their assembly in vitro. Using an affinity-purified antiserum against bovine brain tau protein, we found that the number and amount of tau polypeptides changes dramatically during mouse brain development. The different forms appear to result from changes in tau mRNA since in vitro translation products reflect the qualitative and quantitative changes found in vivo. To study the mR...

  17. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis.

    Science.gov (United States)

    Palmieri, Diane; Fitzgerald, Daniel; Shreeve, S Martin; Hua, Emily; Bronder, Julie L; Weil, Robert J; Davis, Sean; Stark, Andreas M; Merino, Maria J; Kurek, Raffael; Mehdorn, H Maximilian; Davis, Gary; Steinberg, Seth M; Meltzer, Paul S; Aldape, Kenneth; Steeg, Patricia S

    2009-09-01

    Brain metastases of breast cancer seem to be increasingin incidence as systemic therapy improves. Metastatic disease in the brain is associated with high morbidity and mortality. We present the first gene expression analysis of laser-captured epithelial cells from resected human brain metastases of breast cancer compared with unlinked primary breast tumors. The tumors were matched for histology, tumor-node-metastasis stage, and hormone receptor status. Most differentially expressed genes were down-regulated in the brain metastases, which included, surprisingly, many genes associated with metastasis. Quantitative real-time PCR analysis confirmed statistically significant differences or strong trends in the expression of six genes: BMP1, PEDF, LAMgamma3, SIAH, STHMN3, and TSPD2. Hexokinase 2 (HK2) was also of interest because of its increased expression in brain metastases. HK2 is important in glucose metabolism and apoptosis. In agreement with our microarray results, HK2 levels (both mRNA and protein) were elevated in a brain metastatic derivative (231-BR) of the human breast carcinoma cell line MDA-MB-231 relative to the parental cell line (231-P) in vitro. Knockdown of HK2 expression in 231-BR cells using short hairpin RNA reduced cell proliferation when cultures were maintained in glucose-limiting conditions. Finally, HK2 expression was analyzed in a cohort of 123 resected brain metastases of breast cancer. High HK2 expression was significantly associated with poor patient survival after craniotomy (P = 0.028). The data suggest that HK2 overexpression is associated with metastasis to the brain in breast cancer and it may be a therapeutic target. PMID:19723875

  18. Parallel olfactory processing in the honey bee brain: odor learning and generalization under selective lesion of a projection neuron tract

    Directory of Open Access Journals (Sweden)

    Julie eCarcaud

    2016-01-01

    Full Text Available The function of parallel neural processing is a fundamental problem in Neuroscience, as it is found across sensory modalities and evolutionary lineages, from insects to humans. Recently, parallel processing has attracted increased attention in the olfactory domain, with the demonstration in both insects and mammals that different populations of second-order neurons encode and/or process odorant information differently. Among insects, Hymenoptera present a striking olfactory system with a clear neural dichotomy from the periphery to higher-order centers, based on two main tracts of second-order (projection neurons: the medial and lateral antennal lobe tracts (m-ALT and l-ALT. To unravel the functional role of these two pathways, we combined specific lesions of the m-ALT tract with behavioral experiments, using the classical conditioning of the proboscis extension response (PER conditioning. Lesioned and intact bees had to learn to associate an odorant (1-nonanol with sucrose. Then the bees were subjected to a generalization procedure with a range of odorants differing in terms of their carbon chain length or functional group. We show that m-ALT lesion strongly affects acquisition of an odor-sucrose association. However, lesioned bees that still learned the association showed a normal gradient of decreasing generalization responses to increasingly dissimilar odorants. Generalization responses could be predicted to some extent by in vivo calcium imaging recordings of l-ALT neurons. The m-ALT pathway therefore seems necessary for normal classical olfactory conditioning performance.

  19. Six Tips for Brain-Based Learning: Plus, a Bonus Class Project, Resources, and a Reading List

    Science.gov (United States)

    George Lucas Educational Foundation, 2011

    2011-01-01

    By understanding how the brain works, educators are better equipped to help students with everything from focusing attention to increasing retention. That's the promise of brain-based learning, which draws insights from neurology, psychology, technology, and other fields. Bringing this information to the classroom can help teachers engage diverse…

  20. Association study of a brain-derived neurotrophic factor polymorphism and short-term antidepressant response in major depressive disorders

    Directory of Open Access Journals (Sweden)

    Lung-Cheng Huang

    2008-10-01

    Full Text Available Eugene Lin1,7, Po See Chen2,6,7, Lung-Cheng Huang3,4, Sen-Yen Hsu51Vita Genomics, Inc., Wugu Shiang, Taipei, Taiwan; 2Department of Psychiatry, Hospital and College of Medicine, National Cheng Kung University, Tainan, Taiwan; 3Department of Psychiatry, National Taiwan University Hospital Yun-Lin Branch, Taiwan; 4Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 5Department of Psychiatry, Chi Mei Medical Center, Liouying, Tainan, Taiwan; 6Department of Psychiatry, National Cheng Kung University Hospital, Dou-liou Branch, Yunlin, Taiwan; 7These authors contributed equally to this workAbstract: Major depressive disorder (MDD is one of the most common mental disorders worldwide. Single nucleotide polymorphisms (SNPs can be used in clinical association studies to determine the contribution of genes to drug efficacy. A common SNP in the brain-derived neurotrophic factor (BDNF gene, a methionine (Met substitution for valine (Val at codon 66 (Val66Met, is a candidate SNP for influencing antidepressant treatment outcome. In this study, our goal was to determine the relationship between the Val66Met polymorphism in the BDNF gene and the rapid antidepressant response to venlafaxine in a Taiwanese population with MDD. Overall, the BDNF Val66Met polymorphism was found not to be associated with short-term venlafaxine treatment outcome. However, the BDNF Val66Met polymorphism showed a trend to be associated with rapid venlafaxine treatment response in female patients. Future research with independent replication in large sample sizes is needed to confirm the role of the BDNF Val66Met polymorphism identified in this study.Keywords: antidepressant response, brain-derived neurotrophic factor, major depressive disorder, serotonin and norepinephrine reuptake inhibitor, single nucleotide polymorphisms

  1. Apathy is associated with white matter abnormalities in anterior, medial brain regions in persons with HIV infection

    Science.gov (United States)

    Kamat, Rujvi; Brown, Gregory G.; Bolden, Khalima; Fennema-Notestine, Christine; Archibald, Sarah; Marcotte, Thomas D.; Letendre, Scott L.; Ellis, Ronald J.; Woods, Steven Paul; Grant, Igor; Heaton, Robert K.

    2015-01-01

    Apathy is a relatively common psychiatric syndrome in HIV infection, but little is known about its neural correlates. In the present study, we examined the associations between apathy and diffusion tensor imaging (DTI) indices in key frontal white matter regions in the thalamocorticostriatal circuit that has been implicated in the expression of apathy. Nineteen participants with HIV infection and 19 demographically comparable seronegative comparison subjects completed the Apathy subscale of the Frontal Systems Behavioral Scale as a part of a comprehensive neuropsychiatric research evaluation. When compared to the seronegative participants, the HIV+ group had significantly more frontal white matter abnormalities. Within HIV+ persons, and as predicted, higher ratings of apathy were associated with greater white matter alterations in the anterior corona radiata, genu, and orbital medial prefrontal cortex. The associations between white matter alterations and apathy were independent of depression and were stronger among participants with lower current CD4 counts. All told, these findings indicate that apathy is independently associated with white matter abnormalities in anterior, medial brain regions in persons infected with HIV, particularly in the setting of lower current immune functioning, which may have implications for antiretroviral therapy. PMID:25275424

  2. Detergent resistant membrane-associated IDE in brain tissue and cultured cells: Relevance to Aβ and insulin degradation

    Directory of Open Access Journals (Sweden)

    Castaño Eduardo M

    2008-12-01

    Full Text Available Abstract Background Insulin degrading enzyme (IDE is implicated in the regulation of amyloid β (Aβ steady-state levels in the brain, and its deficient expression and/or activity may be a risk factor in sporadic Alzheimer's disease (AD. Although IDE sub-cellular localization has been well studied, the compartments relevant to Aβ degradation remain to be determined. Results Our results of live immunofluorescence, immuno gold electron-microscopy and gradient fractionation concurred to the demonstration that endogenous IDE from brain tissues and cell cultures is, in addition to its other localizations, a detergent-resistant membrane (DRM-associated metallopeptidase. Our pulse chase experiments were in accordance with the existence of two pools of IDE: the cytosolic one with a longer half-life and the membrane-IDE with a faster turn-over. DRMs-associated IDE co-localized with Aβ and its distribution (DRMs vs. non-DRMs and activity was sensitive to manipulation of lipid composition in vitro and in vivo. When IDE was mis-located from DRMs by treating cells with methyl-β-cyclodextrin (MβCD, endogenous Aβ accumulated in the extracellular space and exogenous Aβ proteolysis was impaired. We detected a reduced amount of IDE in DRMs of membranes isolated from mice brain with endogenous reduced levels of cholesterol (Chol due to targeted deletion of one seladin-1 allele. We confirmed that a moderate shift of IDE from DRMs induced a substantial decrement on IDE-mediated insulin and Aβ degradation in vitro. Conclusion Our results support the notion that optimal substrate degradation by IDE may require its association with organized-DRMs. Alternatively, DRMs but not other plasma membrane regions, may act as platforms where Aβ accumulates, due to its hydrophobic properties, reaching local concentration close to its Km for IDE facilitating its clearance. Structural integrity of DRMs may also be required to tightly retain insulin receptor and IDE for

  3. Brain serotonin 4 receptor binding is associated with the cortisol awakening response

    DEFF Research Database (Denmark)

    Jakobsen, Gustav R; Fisher, Patrick M; Dyssegaard, Agnete;

    2016-01-01

    Serotonin signalling is considered critical for an appropriate and dynamic adaptation to stress. Previously, we have shown that prefrontal serotonin transporter (SERT) binding is positively associated with the cortisol awakening response (CAR) (Frokjaer et al., 2013), which is an index of hypotha......Serotonin signalling is considered critical for an appropriate and dynamic adaptation to stress. Previously, we have shown that prefrontal serotonin transporter (SERT) binding is positively associated with the cortisol awakening response (CAR) (Frokjaer et al., 2013), which is an index...

  4. Differences in functional brain connectivity alterations associated with cerebral amyloid deposition in amnestic mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Dahyun eYi

    2015-02-01

    Full Text Available Despite potential implications for the early detection of impending AD, very little is known about the differences of large scale brain networks between amnestic MCI (aMCI with high cerebral amyloid beta protein (Aβ deposition (i.e., aMCI+ and aMCI with no or very little Aβ deposition (i.e., aMCI-. We first aimed to extend the current literature on altering intrinsic functional connectivity (FC of the default mode network (DMN and salience network (SN from CN to AD dementia. Second, we further examined the differences of the DMN and the SN between aMCI-, aMCI+, and CN. Forty-three older adult (12 CN, 10 aMCI+, 10 aMCI-, and 11 AD dementia subjects were included. All participants received clinical and neuropsychological assessment, resting state functional MRI, structural MRI, and Pittsburgh compound-B-PET scans. FC data were preprocessed using Multivariate Exploratory Linear Optimized Decomposition into Independent Components of FSL. Group comparisons were carried out using the dual-regression approach. In addition, to verify presence of grey matter (GM volume changes with intrinsic functional network alterations, Voxel Based Morphometry was performed on the acquired T1-weighted data. As expected, AD dementia participants exhibited decreased FC in the DMN compared to CN (in precuneus and cingulate gyrus. The degree of alteration in the DMN in aMCI+ compared to CN was intermediate to that of AD. In contrast, aMCI- exhibited increased FC in the DMN compared to CN (in precuneus as well as aMCI+. In terms of the SN, aMCI- exhibited decreased FC compared to both CN and aMCI+ particularly in the inferior frontal gyrus. FC within the SN in aMCI+ and AD did not differ from CN. Compared to CN, aMCI- showed atrophy in bilateral superior temporal gyri whereas aMCI+ showed atrophy in right precuneus. The results indicate that despite of the similarity in cross-sectional cognitive features aMCI- has quite different functional brain connectivity compared to

  5. S100B Protein, a Damage-Associated Molecular Pattern Protein in the Brain and Heart, and Beyond

    Directory of Open Access Journals (Sweden)

    Guglielmo Sorci

    2010-01-01

    Full Text Available S100B belongs to a multigenic family of Ca2+-binding proteins of the EF-hand type and is expressed in high abundance in the brain. S100B interacts with target proteins within cells thereby altering their functions once secreted/released with the multiligand receptor RAGE. As an intracellular regulator, S100B affects protein phosphorylation, energy metabolism, the dynamics of cytoskeleton constituents (and hence, of cell shape and migration, Ca2+ homeostasis, and cell proliferation and differentiation. As an extracellular signal, at low, physiological concentrations, S100B protects neurons against apoptosis, stimulates neurite outgrowth and astrocyte proliferation, and negatively regulates astrocytic and microglial responses to neurotoxic agents, while at high doses S100B causes neuronal death and exhibits properties of a damage-associated molecular pattern protein. S100B also exerts effects outside the brain; as an intracellular regulator, S100B inhibits the postinfarction hypertrophic response in cardiomyocytes, while as an extracellular signal, (high S100B causes cardiomyocyte death, activates endothelial cells, and stimulates vascular smooth muscle cell proliferation.

  6. Read My Lips: Brain Dynamics Associated with Audiovisual Integration and Deviance Detection.

    Science.gov (United States)

    Tse, Chun-Yu; Gratton, Gabriele; Garnsey, Susan M; Novak, Michael A; Fabiani, Monica

    2015-09-01

    Information from different modalities is initially processed in different brain areas, yet real-world perception often requires the integration of multisensory signals into a single percept. An example is the McGurk effect, in which people viewing a speaker whose lip movements do not match the utterance perceive the spoken sounds incorrectly, hearing them as more similar to those signaled by the visual rather than the auditory input. This indicates that audiovisual integration is important for generating the phoneme percept. Here we asked when and where the audiovisual integration process occurs, providing spatial and temporal boundaries for the processes generating phoneme perception. Specifically, we wanted to separate audiovisual integration from other processes, such as simple deviance detection. Building on previous work employing ERPs, we used an oddball paradigm in which task-irrelevant audiovisually deviant stimuli were embedded in strings of non-deviant stimuli. We also recorded the event-related optical signal, an imaging method combining spatial and temporal resolution, to investigate the time course and neuroanatomical substrate of audiovisual integration. We found that audiovisual deviants elicit a short duration response in the middle/superior temporal gyrus, whereas audiovisual integration elicits a more extended response involving also inferior frontal and occipital regions. Interactions between audiovisual integration and deviance detection processes were observed in the posterior/superior temporal gyrus. These data suggest that dynamic interactions between inferior frontal cortex and sensory regions play a significant role in multimodal integration.

  7. Metacognitive impairment in active cocaine use disorder is associated with individual differences in brain structure.

    Science.gov (United States)

    Moeller, Scott J; Fleming, Stephen M; Gan, Gabriela; Zilverstand, Anna; Malaker, Pias; d'Oleire Uquillas, Federico; Schneider, Kristin E; Preston-Campbell, Rebecca N; Parvaz, Muhammad A; Maloney, Thomas; Alia-Klein, Nelly; Goldstein, Rita Z

    2016-04-01

    Dysfunctional self-awareness has been posited as a key feature of drug addiction, contributing to compromised control over addictive behaviors. In the present investigation, we showed that, compared with healthy controls (n=13) and even individuals with remitted cocaine use disorder (n=14), individuals with active cocaine use disorder (n=8) exhibited deficits in basic metacognition, defined as a weaker link between objective performance and self-reported confidence of performance on a visuo-perceptual accuracy task. This metacognitive deficit was accompanied by gray matter volume decreases, also most pronounced in individuals with active cocaine use disorder, in the rostral anterior cingulate cortex, a region necessary for this function in health. Our results thus provide a direct unbiased measurement - not relying on long-term memory or multifaceted choice behavior - of metacognition deficits in drug addiction, which are further mapped onto structural deficits in a brain region that subserves metacognitive accuracy in health and self-awareness in drug addiction. Impairments of metacognition could provide a basic mechanism underlying the higher-order self-awareness deficits in addiction, particularly among recent, active users. PMID:26948669

  8. Linear and nonlinear associations between general intelligence and personality in Project TALENT.

    Science.gov (United States)

    Major, Jason T; Johnson, Wendy; Deary, Ian J

    2014-04-01

    Research on the relations of personality traits to intelligence has primarily been concerned with linear associations. Yet, there are no a priori reasons why linear relations should be expected over nonlinear ones, which represent a much larger set of all possible associations. Using 2 techniques, quadratic and generalized additive models, we tested for linear and nonlinear associations of general intelligence (g) with 10 personality scales from Project TALENT (PT), a nationally representative sample of approximately 400,000 American high school students from 1960, divided into 4 grade samples (Flanagan et al., 1962). We departed from previous studies, including one with PT (Reeve, Meyer, & Bonaccio, 2006), by modeling latent quadratic effects directly, controlling the influence of the common factor in the personality scales, and assuming a direction of effect from g to personality. On the basis of the literature, we made 17 directional hypotheses for the linear and quadratic associations. Of these, 53% were supported in all 4 male grades and 58% in all 4 female grades. Quadratic associations explained substantive variance above and beyond linear effects (mean R² between 1.8% and 3.6%) for Sociability, Maturity, Vigor, and Leadership in males and Sociability, Maturity, and Tidiness in females; linear associations were predominant for other traits. We discuss how suited current theories of the personality-intelligence interface are to explain these associations, and how research on intellectually gifted samples may provide a unique way of understanding them. We conclude that nonlinear models can provide incremental detail regarding personality and intelligence associations. PMID:24660993

  9. Brain Potentials Highlight Stronger Implicit Food Memory for Taste than Health and Context Associations.

    Science.gov (United States)

    Hoogeveen, Heleen R; Jolij, Jacob; Ter Horst, Gert J; Lorist, Monicque M

    2016-01-01

    Increasingly consumption of healthy foods is advised to improve population health. Reasons people give for choosing one food over another suggest that non-sensory features like health aspects are appreciated as of lower importance than taste. However, many food choices are made in the absence of the actual perception of a food's sensory properties, and therefore highly rely on previous experiences of similar consumptions stored in memory. In this study we assessed the differential strength of food associations implicitly stored in memory, using an associative priming paradigm. Participants (N = 30) were exposed to a forced-choice picture-categorization task, in which the food or non-food target images were primed with either non-sensory or sensory related words. We observed a smaller N400 amplitude at the parietal electrodes when categorizing food as compared to non-food images. While this effect was enhanced by the presentation of a food-related word prime during food trials, the primes had no effect in the non-food trials. More specifically, we found that sensory associations are stronger implicitly represented in memory as compared to non-sensory associations. Thus, this study highlights the neuronal mechanisms underlying previous observations that sensory associations are important features of food memory, and therefore a primary motive in food choice. PMID:27213567

  10. Brain Potentials Highlight Stronger Implicit Food Memory for Taste than Health and Context Associations.

    Directory of Open Access Journals (Sweden)

    Heleen R Hoogeveen

    Full Text Available Increasingly consumption of healthy foods is advised to improve population health. Reasons people give for choosing one food over another suggest that non-sensory features like health aspects are appreciated as of lower importance than taste. However, many food choices are made in the absence of the actual perception of a food's sensory properties, and therefore highly rely on previous experiences of similar consumptions stored in memory. In this study we assessed the differential strength of food associations implicitly stored in memory, using an associative priming paradigm. Participants (N = 30 were exposed to a forced-choice picture-categorization task, in which the food or non-food target images were primed with either non-sensory or sensory related words. We observed a smaller N400 amplitude at the parietal electrodes when categorizing food as compared to non-food images. While this effect was enhanced by the presentation of a food-related word prime during food trials, the primes had no effect in the non-food trials. More specifically, we found that sensory associations are stronger implicitly represented in memory as compared to non-sensory associations. Thus, this study highlights the neuronal mechanisms underlying previous observations that sensory associations are important features of food memory, and therefore a primary motive in food choice.

  11. Brain Potentials Highlight Stronger Implicit Food Memory for Taste than Health and Context Associations.

    Science.gov (United States)

    Hoogeveen, Heleen R; Jolij, Jacob; Ter Horst, Gert J; Lorist, Monicque M

    2016-01-01

    Increasingly consumption of healthy foods is advised to improve population health. Reasons people give for choosing one food over another suggest that non-sensory features like health aspects are appreciated as of lower importance than taste. However, many food choices are made in the absence of the actual perception of a food's sensory properties, and therefore highly rely on previous experiences of similar consumptions stored in memory. In this study we assessed the differential strength of food associations implicitly stored in memory, using an associative priming paradigm. Participants (N = 30) were exposed to a forced-choice picture-categorization task, in which the food or non-food target images were primed with either non-sensory or sensory related words. We observed a smaller N400 amplitude at the parietal electrodes when categorizing food as compared to non-food images. While this effect was enhanced by the presentation of a food-related word prime during food trials, the primes had no effect in the non-food trials. More specifically, we found that sensory associations are stronger implicitly represented in memory as compared to non-sensory associations. Thus, this study highlights the neuronal mechanisms underlying previous observations that sensory associations are important features of food memory, and therefore a primary motive in food choice.

  12. Projected Future Changes in Westerly Winds Associated the South Pacific Winter Split Jet

    Science.gov (United States)

    Bracegirdle, T.

    2015-12-01

    Projected changes in the Southern Hemisphere (SH) mid-latitude near-surface westerly winds and associated storm tracks are key influences on Antarctica and the Southern Ocean, with, for example, significant implications for ice sheet stability. Climate model projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble generally exhibit a poleward shift of the SH tropospheric westerly jet under increased greenhouse gas concentrations. However, the picture is more complex over the South Pacific in winter, when the climatological tropospheric jet is split into two components: a sub-tropical jet (STJ) (at around 25-30°S) and a higher-latitude polar front jet (PFJ) (at around 55-60°S) which is more directly related to the main mid-latitude lower-tropospheric storm track. On average the CMIP5 models project an equatorward shift of the winter PFJ which consequently becomes more merged with a poleward-shifted STJ. A key question is the extent to which this ensemble-mean picture is robust across the CMIP5 models, many of which poorly reproduce the observed split jet structure. To address this question CMIP5 output has been used to conduct the first detailed evaluation of future projections of the winter split jet. The PFJ dominates the surface signature of the split jet, but is too weak in historically-forced simulations of most CMIP5 models. It is found that this has important implications for future projections, since the ensemble mean projected equatorward shift is mainly attributable to models with weak PFJs. A subset of 10 CMIP5 models with the weakest surface expression of the PFJ (on average 39% weaker than reanalysis estimates) exhibit an equatorward shift of 2.5° over the 21st century following the high emissions RCP8.5 scenario. In contrast, a subset of 10 models with the smallest historical biases (on average 6% weaker than reanalysis) exhibit no shift in the PFJ, but do show a strengthening of approximately 1 m/s that

  13. The anatomy of the bill tip of kiwi and associated somatosensory regions of the brain: comparisons with shorebirds.

    Directory of Open Access Journals (Sweden)

    Susan J Cunningham

    Full Text Available Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes, Apterygidae (kiwi, and Threskiornithidae (ibises, including spoonbills have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles within pits in the bill-tip. These 'bill-tip organs' allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae and parrots (Psittaculidae and Cacatuidae, non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae. We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae. Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid

  14. The anatomy of the bill tip of kiwi and associated somatosensory regions of the brain: comparisons with shorebirds.

    Science.gov (United States)

    Cunningham, Susan J; Corfield, Jeremy R; Iwaniuk, Andrew N; Castro, Isabel; Alley, Maurice R; Birkhead, Tim R; Parsons, Stuart

    2013-01-01

    Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These 'bill-tip organs' allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill

  15. Not All Analogies Are Created Equal: Associative and Categorical Analogy Processing following Brain Damage

    Science.gov (United States)

    Schmidt, Gwenda L.; Cardillo, Eileen R.; Kranjec, Alexander; Lehet, Matthew; Widick, Page; Chatterjee, Anjan

    2012-01-01

    Current research on analogy processing assumes that different conceptual relations are treated similarly. However, just as words and concepts are related in distinct ways, different kinds of analogies may employ distinct types of relationships. An important distinction in how words are related is the difference between associative (dog-bone) and…

  16. Gray matter in the brain : Differences associated with tinnitus and hearing loss

    NARCIS (Netherlands)

    Boyen, Kris; Langers, Dave R. M.; de Kleine, Emile; van Dijk, Pim

    2013-01-01

    Tinnitus, usually associated with hearing loss, is characterized by the perception of sound without an external sound source. The pathophysiology of tinnitus is poorly understood. In the present study, voxel-based morphometiy (VBM) was employed to identify gray matter differences related to hearing

  17. Brain Activity Associated with Logical Inferences in Geometry: Focusing on Students with Different Levels of Ability

    Science.gov (United States)

    Waisman, Ilana; Leikin, Mark; Leikin, Roza

    2016-01-01

    Mathematical processing associated with solving short geometry problems requiring logical inference was examined among students who differ in their levels of general giftedness (G) and excellence in mathematics (EM) using ERP research methodology. Sixty-seven male adolescents formed four major research groups designed according to various…

  18. ADHD Related Behaviors Are Associated with Brain Activation in the Reward System

    Science.gov (United States)

    Stark, R.; Bauer, E.; Merz, C. J.; Zimmermann, M.; Reuter, M.; Plichta, M. M.; Kirsch, P.; Lesch, K. P.; Fallgatter, A. J.; Vaitl, D.; Herrmann, M. J.

    2011-01-01

    Neuroimaging studies on attention-deficit/hyperactivity disorder (ADHD) suggest dysfunctional reward processing, with hypo-responsiveness during reward anticipation in the reward system including the nucleus accumbens (NAcc). In this study, we investigated the association between ADHD related behaviors and the reward system using functional…

  19. Empathy Is Associated with Dynamic Change in Prefrontal Brain Electrical Activity during Positive Emotion in Children

    Science.gov (United States)

    Light, Sharee N.; Coan, James A.; Zahn-Waxler, Carolyn; Frye, Corrina; Goldsmith, H. Hill; Davidson, Richard J.

    2009-01-01

    Empathy is the combined ability to interpret the emotional states of others and experience resultant, related emotions. The relation between prefrontal electroencephalographic asymmetry and emotion in children is well known. The association between positive emotion (assessed via parent report), empathy (measured via observation), and…

  20. Individual Differences in Working Memory, Nonverbal IQ, and Mathematics Achievement and Brain Mechanisms Associated with Symbolic and Nonsymbolic Number Processing

    Science.gov (United States)

    Gullick, Margaret M.; Sprute, Lisa A.; Temple, Elise

    2011-01-01

    Individual differences in mathematics performance may stem from domain-general factors like working memory and intelligence. Parietal and frontal brain areas have been implicated in number processing, but the influence of such cognitive factors on brain activity during mathematics processing is not known. The relationship between brain mechanisms…

  1. The Association of Menopausal Age and NT-proBrain Natriuretic Peptide: The Multi-Ethnic Study of Atherosclerosis

    Science.gov (United States)

    Ebong, Imo A.; Watson, Karol E.; Goff, David C.; Bluemke, David A.; Srikanthan, Preethi; Horwich, Tamara; Bertoni, Alain G.

    2014-01-01

    Objective Menopausal age could affect the risk of developing cardiovascular disease (CVD). The purpose of this study was to investigate the associations of early menopause (menopause occurring before 45 years of age) and menopausal age with NT-pro brain natriuretic peptide (NT-proBNP), a potential risk marker of CVD and heart failure (HF). Methods Our cross-sectional study included 2275 postmenopausal women, aged 45–85 years, without clinical CVD (2000–2002), from the Multi-Ethnic Study of Atherosclerosis. Participants were classified as having or not having early menopause. NT-proBNP was log-transformed. Multivariable linear regression was used for analysis. Results There were 561 women with early menopause. The median NT-proBNP value was 79.0 (41.1–151.6) pg/ml for all participants with values of 83.4 (41.4–164.9) pg/ml and 78.0 (40.8–148.3) pg/ml for women with and without early menopause respectively. The mean (SD) age was 65 (10.1) and 65 (8.9) years for women with and without early menopause respectively. There were no significant interactions between menopausal age and ethnicity. In multivariable analysis, early menopause was associated with a 10.7% increase in NT-proBNP while each year increase in menopausal age was associated with a 0.7% decrease in NT-proBNP. Conclusion Early menopause is associated with greater NT-proBNP levels while each year increase in menopausal age is associated with lower NT-proBNP levels in postmenopausal women. PMID:25290536

  2. White matter abnormalities are associated with chronic postconcussion symptoms in blast-related mild traumatic brain injury.

    Science.gov (United States)

    Miller, Danielle R; Hayes, Jasmeet P; Lafleche, Ginette; Salat, David H; Verfaellie, Mieke

    2016-01-01

    Blast-related mild traumatic brain injury (mTBI) is a common injury among Iraq and Afghanistan military veterans due to the frequent use of improvised explosive devices. A significant minority of individuals with mTBI report chronic postconcussion symptoms (PCS), which include physical, emotional, and cognitive complaints. However, chronic PCS are nonspecific and are also associated with mental health disorders such as posttraumatic stress disorder (PTSD). Identifying the mechanisms that contribute to chronic PCS is particularly challenging in blast-related mTBI, where the incidence of comorbid PTSD is high. In this study, we examined whether blast-related mTBI is associated with diffuse white matter changes, and whether these neural changes are associated with chronic PCS. Ninety Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veterans were assigned to one of three groups including a blast-exposed no--TBI group, a blast-related mTBI without loss of consciousness (LOC) group (mTBI--LOC), and a blast-related mTBI with LOC group (mTBI + LOC). PCS were measured with the Rivermead Postconcussion Questionnaire. Results showed that participants in the mTBI + LOC group had more spatially heterogeneous white matter abnormalities than those in the no--TBI group. These white matter abnormalities were significantly associated with physical PCS severity even after accounting for PTSD symptoms, but not with cognitive or emotional PCS severity. A mediation analysis revealed that mTBI + LOC significantly influenced physical PCS severity through its effect on white matter integrity. These results suggest that white matter abnormalities are associated with chronic PCS independent of PTSD symptom severity and that these abnormalities are an important mechanism explaining the relationship between mTBI and chronic physical PCS.

  3. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder

    OpenAIRE

    Eilam-Stock, Tehila; Xu, Pengfei; Cao, Miao; Gu, Xiaosi; Van Dam, Nicholas T.; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Park, Yunsoo; Siller, Michael; He, Yong; Hof, Patrick R.; Fan, Jin

    2014-01-01

    Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance respon...

  4. Brain and blood gene expression pathways associated with susceptibility to PTSD

    OpenAIRE

    Daskalakis, Nikolaos P.; Joseph Buxbaum; Flory, Janine D.; Guiqing Cai; Li Shen; Linda M. Bierer; Hagit Cohen; Rachel Yehuda

    2012-01-01

    Background : The identification of molecular post-traumatic stress disorder (PTSD) susceptibility pathways associated with different patterns of behavioral response to trauma is essential to an understanding of the neurobiology of PTSD and can pave the design for new treatments. Although several genes have been reported to be differentially expressed in PTSD, methodological constraints have limited the interpretation, for example, variation in the type or magnitude of trauma exposure, inter-i...

  5. Presence of proteolipid protein in coelacanth brain myelin demonstrates tetrapod affinities and questions a chondrichthyan association.

    Science.gov (United States)

    Waehneldt, T V; Malotka, J

    1989-06-01

    The protein and glycoprotein compositions of CNS myelin from the living coelacanth (Latimeria chalumnae) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An unglycosylated component of 25 kilodaltons showed substantially stronger immunoblot reactivity with antibodies against mammalian proteolipid protein (PLP) than lungfish glycosylated PLP. DM-20 (intermediate protein) was not detectable in either fish. The presence of unglycosylated PLP in CNS myelin of the actinistian coelacanth contradicts an association with cartilaginous fishes but supports tetrapod affinities closer than those of lungfish.

  6. Structural Brain Alterations Associated with Rapid Eye Movement Sleep Behavior Disorder in Parkinson's Disease.

    Science.gov (United States)

    Boucetta, Soufiane; Salimi, Ali; Dadar, Mahsa; Jones, Barbara E; Collins, D Louis; Dang-Vu, Thien Thanh

    2016-01-01

    Characterized by dream-enactment motor manifestations arising from rapid eye movement (REM) sleep, REM sleep behavior disorder (RBD) is frequently encountered in Parkinson's disease (PD). Yet the specific neurostructural changes associated with RBD in PD patients remain to be revealed by neuroimaging. Here we identified such neurostructural alterations by comparing large samples of magnetic resonance imaging (MRI) scans in 69 PD patients with probable RBD, 240 patients without RBD and 138 healthy controls, using deformation-based morphometry (p < 0.05 corrected for multiple comparisons). All data were extracted from the Parkinson's Progression Markers Initiative. PD patients with probable RBD showed smaller volumes than patients without RBD and than healthy controls in the pontomesencephalic tegmentum, medullary reticular formation, hypothalamus, thalamus, putamen, amygdala and anterior cingulate cortex. These results demonstrate that RBD is associated with a prominent loss of volume in the pontomesencephalic tegmentum, where cholinergic, GABAergic and glutamatergic neurons are located and implicated in the promotion of REM sleep and muscle atonia. It is additionally associated with more widespread atrophy in other subcortical and cortical regions whose loss also likely contributes to the altered regulation of sleep-wake states and motor activity underlying RBD in PD patients. PMID:27245317

  7. Association between striatal dopamine D2/D3 receptors and brain activation during visual attention: effects of sleep deprivation

    Science.gov (United States)

    Tomasi, D; Wang, G-J; Volkow, N D

    2016-01-01

    Sleep deprivation (SD) disrupts dopamine (DA) signaling and impairs attention. However, the interpretation of these concomitant effects requires a better understanding of dopamine's role in attention processing. Here we test the hypotheses that D2/D3 receptors (D2/D3R) in dorsal and ventral striatum would distinctly regulate the activation of attention regions and that, by decreasing D2/D3, SD would disrupt these associations. We measured striatal D2/D3R using positron emission tomography with [11C]raclopride and brain activation to a visual attention (VA) task using 4-Tesla functional magnetic resonance imaging. Fourteen healthy men were studied during rested wakefulness and also during SD. Increased D2/D3R in striatum (caudate, putamen and ventral striatum) were linearly associated with higher thalamic activation. Subjects with higher D2/D3R in caudate relative to ventral striatum had higher activation in superior parietal cortex and ventral precuneus, and those with higher D2/D3R in putamen relative to ventral striatum had higher activation in anterior cingulate. SD impaired the association between striatal D2/D3R and VA-induced thalamic activation, which is essential for alertness. Findings suggest a robust DAergic modulation of cortical activation during the VA task, such that D2/D3R in dorsal striatum counterbalanced the stimulatory influence of D2/D3R in ventral striatum, which was not significantly disrupted by SD. In contrast, SD disrupted thalamic activation, which did not show counterbalanced DAergic modulation but a positive association with D2/D3R in both dorsal and ventral striatum. The counterbalanced dorsal versus ventral striatal DAergic modulation of VA activation mirrors similar findings during sensorimotor processing (Tomasi et al., 2015) suggesting a bidirectional influence in signaling between the dorsal caudate and putamen and the ventral striatum. PMID:27219347

  8. Elevated N-terminal pro-brain natriuretic peptide is associated with mortality in tobacco smokers independent of airflow obstruction.

    Directory of Open Access Journals (Sweden)

    Jason A Stamm

    Full Text Available BACKGROUND: Tobacco use is associated with an increased prevalence of cardiovascular disease. N-terminal pro-brain natiuretic peptide (NT-proBNP, a widely available biomarker that is associated with cardiovascular outcomes in other conditions, has not been investigated as a predictor of mortality in tobacco smokers. We hypothesized that NT-proBNP would be an independent prognostic marker in a cohort of well-characterized tobacco smokers without known cardiovascular disease. METHODS: Clinical data from 796 subjects enrolled in two prospective tobacco exposed cohorts was assessed to determine factors associated with elevated NT-proBNP and the relationship of these factors and NT-proBNP with mortality. RESULTS: Subjects were followed for a median of 562 (IQR 252-826 days. Characteristics associated with a NT-proBNP above the median (≥49 pg/mL were increased age, female gender, and decreased body mass index. By time-to-event analysis, an NT-proBNP above the median (≥49 pg/mL was a significant predictor of mortality (log rank p = 0.02. By proportional hazard analysis controlling for age, gender, cohort, and severity of airflow obstruction, an elevated NT-proBNP level (≥49 pg/mL remained an independent predictor of mortality (HR = 2.19, 95% CI 1.07-4.46, p = 0.031. CONCLUSIONS: Elevated NT-proBNP is an independent predictor of mortality in tobacco smokers without known cardiovascular disease, conferring a 2.2 fold increased risk of death. Future studies should assess the ability of this biomarker to guide further diagnostic testing and to direct specific cardiovascular risk reduction inventions that may positively impact quality of life and survival.

  9. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata

    Energy Technology Data Exchange (ETDEWEB)

    Liolios, Konstantinos; Chen, Amy; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Hugenholtz, Phil; Markowitz, Victor; Kyrpides, Nikos C.

    2009-09-01

    The Genomes On Line Database (GOLD) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2009, GOLD contains information for more than 5800 sequencing projects, of which 1100 have been completed and their sequence data deposited in a public repository. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about a (Meta)Genome Sequence (MIGS/MIMS) specification.

  10. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata

    Energy Technology Data Exchange (ETDEWEB)

    Fenner, Marsha W; Liolios, Konstantinos; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Kyrpides, Nikos C.

    2007-12-31

    The Genomes On Line Database (GOLD) is a comprehensive resource of information for genome and metagenome projects world-wide. GOLD provides access to complete and ongoing projects and their associated metadata through pre-computed lists and a search page. The database currently incorporates information for more than 2900 sequencing projects, of which 639 have been completed and the data deposited in the public databases. GOLD is constantly expanding to provide metadata information related to the project and the organism and is compliant with the Minimum Information about a Genome Sequence (MIGS) specifications.

  11. Excess soluble CD40L contributes to blood brain barrier permeability in vivo: implications for HIV-associated neurocognitive disorders.

    Directory of Open Access Journals (Sweden)

    Donna C Davidson

    Full Text Available Despite the use of anti-retroviral therapies, a majority of HIV-infected individuals still develop HIV-Associated Neurocognitive Disorders (HAND, indicating that host inflammatory mediators, in addition to viral proteins, may be contributing to these disorders. Consistently, we have previously shown that levels of the inflammatory mediator soluble CD40L (sCD40L are elevated in the circulation of HIV-infected, cognitively impaired individuals as compared to their infected, non-impaired counterparts. Recent studies from our group suggest a role for the CD40/CD40L dyad in blood brain barrier (BBB permeability and interestingly, sCD40L is thought to regulate BBB permeability in other inflammatory disorders of the CNS. Using complementary multiphoton microscopy and quantitative analyses in wild-type and CD40L deficient mice, we now reveal that the HIV transactivator of transcription (Tat can induce BBB permeability in a CD40L-dependent manner. This permeability of the BBB was found to be the result of aberrant platelet activation induced by Tat, since depletion of platelets prior to treatment reversed Tat-induced BBB permeability. Furthermore, Tat treatment led to an increase in granulocyte antigen 1 (Gr1 positive monocytes, indicating an expansion of the inflammatory subset of cells in these mice, which were found to adhere more readily to the brain microvasculature in Tat treated animals. Exploring the mechanisms by which the BBB becomes compromised during HIV infection has the potential to reveal novel therapeutic targets, thereby aiding in the development of adjunct therapies for the management of HAND, which are currently lacking.

  12. Excess soluble CD40L contributes to blood brain barrier permeability in vivo: implications for HIV-associated neurocognitive disorders.

    Science.gov (United States)

    Davidson, Donna C; Hirschman, Michael P; Sun, Anita; Singh, Meera V; Kasischke, Karl; Maggirwar, Sanjay B

    2012-01-01

    Despite the use of anti-retroviral therapies, a majority of HIV-infected individuals still develop HIV-Associated Neurocognitive Disorders (HAND), indicating that host inflammatory mediators, in addition to viral proteins, may be contributing to these disorders. Consistently, we have previously shown that levels of the inflammatory mediator soluble CD40L (sCD40L) are elevated in the circulation of HIV-infected, cognitively impaired individuals as compared to their infected, non-impaired counterparts. Recent studies from our group suggest a role for the CD40/CD40L dyad in blood brain barrier (BBB) permeability and interestingly, sCD40L is thought to regulate BBB permeability in other inflammatory disorders of the CNS. Using complementary multiphoton microscopy and quantitative analyses in wild-type and CD40L deficient mice, we now reveal that the HIV transactivator of transcription (Tat) can induce BBB permeability in a CD40L-dependent manner. This permeability of the BBB was found to be the result of aberrant platelet activation induced by Tat, since depletion of platelets prior to treatment reversed Tat-induced BBB permeability. Furthermore, Tat treatment led to an increase in granulocyte antigen 1 (Gr1) positive monocytes, indicating an expansion of the inflammatory subset of cells in these mice, which were found to adhere more readily to the brain microvasculature in Tat treated animals. Exploring the mechanisms by which the BBB becomes compromised during HIV infection has the potential to reveal novel therapeutic targets, thereby aiding in the development of adjunct therapies for the management of HAND, which are currently lacking.

  13. Monoacylglycerol lipase inhibition by organophosphorus compounds leads to elevation of brain 2-arachidonoylglycerol and the associated hypomotility in mice

    International Nuclear Information System (INIS)

    Three components of the cannabinoid system are sensitive to selected organophosphorus (OP) compounds: monoacylglycerol (MAG) lipase that hydrolyzes the major endogenous agonist 2-arachidonoylglycerol (2-AG); fatty acid amide hydrolase (FAAH) that cleaves the agonist anandamide present in smaller amounts; the CB1 receptor itself. This investigation considers which component of the cannabinoid system is the most likely contributor to OP-induced hypomotility in mice. Structure-activity studies by our laboratory and others rule against major involvement of a direct toxicant-CB1 receptor interaction for selected OPs. Attention was therefore focused on the OP sensitivities of MAG lipase and FAAH, assaying 19 structurally diverse OP chemicals (pesticides, their metabolites and designer compounds) for in vitro inhibition of both enzymes. Remarkably high potency and low selectivity is observed with three O-alkyl (C1, C2, C3) alkylphosphonofluoridates (C8, C12) (IC50 0.60-3.0 nM), five S-alkyl (C5, C7, C9) and alkyl (C1, C12) benzodioxaphosphorin oxides (IC50 0.15-5.7 nM) and one OP insecticide metabolite (chlorpyrifos oxon, IC50 34-40 nM). In ip-treated mice, the OPs at 1-30 mg/kg more potently inhibit brain FAAH than MAG lipase, but FAAH inhibition is not correlated with hypomotility. However, the alkylphosphonofluoridate-treated mice show dose-dependent increases in severity of hypomotility, inhibition of MAG lipase activity and elevation of 2-AG. Moderate to severe hypomotility is accompanied by 64 to 86% MAG lipase inhibition and about 6-fold elevation of brain 2-AG level. It therefore appears that OP-induced MAG lipase inhibition leads to elevated 2-AG and the associated hypomotility

  14. Association of initial CT findings with quality-of-life outcomes for traumatic brain injury in children

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Jonathan O. [Seattle Children' s Hospital and University of Washington, Department of Radiology, Seattle, WA (United States); Vavilala, Monica S.; Wang, Jin; Rivara, Frederick P. [Harborview Medical Center, University of Washington, Department of Pediatrics, Seattle, WA (United States); Pruthi, Sumit [Monroe Carell Jr. Children' s Hospital at Vanderbilt University, Department of Radiology, Nashville, TN (United States); Fink, James [University of Washington, Department of Radiology, Seattle, WA (United States); Jaffe, Kenneth M. [University of Washington, Department of Rehabilitation Medicine, Seattle, WA (United States); Durbin, Dennis [University of Pennsylvania, Department of Pediatrics, Center for Injury Research and Prevention, The Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Koepsell, Thomas [University of Washington, Department of Epidemiology, Seattle, WA (United States); Temkin, Nancy [University of Washington, Biostatistics, Seattle, WA (United States)

    2012-08-15

    Traumatic brain injury (TBI) is a leading cause of acquired disability in children and adolescents. To demonstrate the association between specific findings on initial noncontrast head CT and long-term outcomes in children who have suffered TBI. This was an IRB-approved prospective study of children ages 2-17 years treated in emergency departments for TBI and who underwent a head CT as part of the initial work-up (n = 347). The change in quality of life at 12 months after injury was measured by the PedsQL scale. Children with TBI who had intracranial injuries identified on the initial head CT had a significantly lower quality-of-life scores compared to children with TBI whose initial head CTs were normal. In multivariate analysis, children whose initial head CT scans demonstrated intraventricular hemorrhage, parenchymal injury, midline shift {>=}5 mm, hemorrhagic shear injury, abnormal cisterns or subdural hematomas {>=}3 mm had lower quality of life scores 1 year after injury than children whose initial CTs did not have these same injuries. Associations exist between findings from the initial noncontrast head CT and quality of life score 12 months after injury in children with TBI. (orig.)

  15. Altered Intrinsic Functional Connectivity in Language-Related Brain Regions in Association with Verbal Memory Performance in Euthymic Bipolar Patients

    Directory of Open Access Journals (Sweden)

    David E. J. Linden

    2013-09-01

    Full Text Available Potential abnormalities in the structure and function of the temporal lobes have been studied much less in bipolar disorder than in schizophrenia. This may not be justified because language-related symptoms, such as pressured speech and flight of ideas, and cognitive deficits in the domain of verbal memory are amongst the hallmark of bipolar disorder (BD, and contribution of temporal lobe dysfunction is therefore likely. In the current study, we examined resting-state functional connectivity (FC between the auditory cortex (Heschl’s gyrus [HG], planum temporale [PT] and whole brain using seed correlation analysis in n = 21 BD euthymic patients and n = 20 matched healthy controls and associated it with verbal memory performance. In comparison to controls BD patients showed decreased functional connectivity between Heschl’s gyrus and planum temporale and the left superior and middle temporal gyrus. Additionally, fronto-temporal functional connectivity with the right inferior frontal/precentral gyrus and the insula was increased in patients. Verbal episodic memory deficits in the investigated sample of BD patients and language-related symptoms might therefore be associated with a diminished FC within the auditory/temporal gyrus and a compensatory fronto-temporal pathway.

  16. Self-affirmation activates brain systems associated with self-related processing and reward and is reinforced by future orientation.

    Science.gov (United States)

    Cascio, Christopher N; O'Donnell, Matthew Brook; Tinney, Francis J; Lieberman, Matthew D; Taylor, Shelley E; Strecher, Victor J; Falk, Emily B

    2016-04-01

    Self-affirmation theory posits that people are motivated to maintain a positive self-view and that threats to perceived self-competence are met with resistance. When threatened, self-affirmations can restore self-competence by allowing individuals to reflect on sources of self-worth, such as core values. Many questions exist, however, about the underlying mechanisms associated with self-affirmation. We examined the neural mechanisms of self-affirmation with a task developed for use in a functional magnetic resonance imaging environment. Results of a region of interest analysis demonstrated that participants who were affirmed (compared with unaffirmed participants) showed increased activity in key regions of the brain's self-processing (medial prefrontal cortex + posterior cingulate cortex) and valuation (ventral striatum + ventral medial prefrontal cortex) systems when reflecting on future-oriented core values (compared with everyday activities). Furthermore, this neural activity went on to predict changes in sedentary behavior consistent with successful affirmation in response to a separate physical activity intervention. These results highlight neural processes associated with successful self-affirmation, and further suggest that key pathways may be amplified in conjunction with prospection.

  17. A Complex Network of MicroRNAs Expressed in Brain and Genes Associated with Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Santosh Shinde

    2013-01-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a rare neurological disease affecting mainly motor neurons and often leads to paralysis and death in extreme cases. For exploring the role of microRNAs in genes regulation in ALS disease, miRanda was employed for prediction of target sites of miRNAs expressed in various parts of brain and CNS on 35 genes associated with ALS. Similar search was conducted using TargetScan and PicTar for prediction of target sites in 3′ UTR only. 1456 target sites were predicted using miRanda and more target sites were found in 5′ UTR and CDS region as compared to 3′ UTR. 11 target sites were predicted to be common by all the algorithms and, thus, these represent the most significant sites. Target site hotspots were identified and were recognized as hotspots for multiple miRNAs action, thus, acting as favoured sites of action for the repression of gene expression. The complex interplay of genes and miRNAs brought about by multiplicity and cooperativity was explored. This investigation will aid in elucidating the mechanism of action of miRNAs for the considered genes. The intrinsic network of miRNAs expressed in nervous system and genes associated with ALS may provide rapid and effective outcome for therapeutic applications and diagnosis.

  18. SNPs in the TGF-β signaling pathway are associated with increased risk of brain metastasis in patients with non-small-cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Qianxia Li

    Full Text Available PURPOSE: Brain metastasis (BM from non-small cell lung cancer (NSCLC is relatively common, but identifying which patients will develop brain metastasis has been problematic. We hypothesized that genotype variants in the TGF-β signaling pathway could be a predictive biomarker of brain metastasis. PATIENTS AND METHODS: We genotyped 33 SNPs from 13 genes in the TGF-β signaling pathway and evaluated their associations with brain metastasis risk by using DNA from blood samples from 161 patients with NSCLC. Kaplan-Meier analysis was used to assess brain metastasis risk; Cox hazard analyses were used to evaluate the effects of various patient and disease characteristics on the risk of brain metastasis. RESULTS: The median age of the 116 men and 45 women in the study was 58 years; 62 (39% had stage IIIB or IV disease. Within 24 months after initial diagnosis of lung cancer, brain metastasis was found in 60 patients (37%. Of these 60 patients, 16 had presented with BM at diagnosis. Multivariate analysis showed the GG genotype of SMAD6: rs12913975 and TT genotype of INHBC: rs4760259 to be associated with a significantly higher risk of brain metastasis at 24 months follow-up (hazard ratio [HR] 2.540, 95% confidence interval [CI] 1.204-5.359, P = 0.014; and HR 1.885, 95% CI 1.086-3.273, P = 0.024, compared with the GA or CT/CC genotypes, respectively. When we analyzed combined subgroups, these rates showed higher for those having both the GG genotype of SMAD6: rs12913975 and the TT genotype of INHBC: rs4760259 (HR 2.353, 95% CI 1.390-3.985, P = 0.001. CONCLUSIONS: We found the GG genotype of SMAD6: rs12913975 and TT genotype of INHBC: rs4760259 to be associated with risk of brain metastasis in patients with NSCLC. This finding, if confirmed, can help to identify patients at high risk of brain metastasis.

  19. Job burnout is associated with dysfunctions in brain mechanisms of voluntary and involuntary attention.

    Science.gov (United States)

    Sokka, Laura; Leinikka, Marianne; Korpela, Jussi; Henelius, Andreas; Ahonen, Lauri; Alain, Claude; Alho, Kimmo; Huotilainen, Minna

    2016-05-01

    Individuals with job burnout symptoms often report having cognitive difficulties, but related electrophysiological studies are scarce. We assessed the impact of burnout on performing a visual task with varying memory loads, and on involuntary attention switch to distractor sounds using scalp recordings of event-related potentials (ERPs). Task performance was comparable between burnout and control groups. The distractor sounds elicited a P3a response, which was reduced in the burnout group. This suggests burnout-related deficits in processing novel and potentially important events during task performance. In the burnout group, we also observed a decrease in working-memory related P3b responses over posterior scalp and increase over frontal areas. These results suggest that burnout is associated with deficits in cognitive control needed to monitor and update information in working memory. Successful task performance in burnout might require additional recruitment of anterior regions to compensate the decrement in posterior activity.

  20. Fitness but not weight status is associated with projected physical independence in older adults.

    Science.gov (United States)

    Sardinha, Luis B; Cyrino, Edilson S; Santos, Leandro Dos; Ekelund, Ulf; Santos, Diana A

    2016-06-01

    Obesity and fitness have been associated with older adults' physical independence. We aimed to investigate the independent and combined associations of physical fitness and adiposity, assessed by body mass index (BMI) and waist circumference (WC) with the projected ability for physical independence. A total of 3496 non-institutionalized older adults aged 65 and older (1167 male) were included in the analysis. BMI and WC were assessed and categorized according to established criteria. Physical fitness was evaluated with the Senior Fitness Test and individual test results were expressed as Z-scores. Projected ability for physical independence was assessed with the 12-item composite physical function scale. Logistic regression was used to estimate the odds ratio (OR) for being physically dependent. A total of 30.1 % of participants were classified as at risk for losing physical independence at age 90 years. Combined fitness and fatness analysis demonstrated that unfit older adults had increased odds ratio for being physically dependent in all BMI categories (normal: OR = 9.5, 95 %CI = 6.5-13.8; overweight: OR = 6.0, 95 %CI = 4.3-8.3; obese: OR = 6.7, 95 %CI = 4.6-10.0) and all WC categories (normal: OR = 10.4, 95%CI = 6.5-16.8; middle: OR = 6.2, 95 %CI = 4.1-9.3; upper: OR = 7.0, 95 %CI = 4.8-10.0) compared to fit participants that were of normal weight and fit participants with normal WC, respectively. No increased odds ratio was observed for fit participants that had increased BMI or WC. In conclusion, projected physical independence may be enhanced by a normal weight, a normal WC, or an increased physical fitness. Adiposity measures were not associated with physical independence, whereas fitness is independently related to physical independence. Independent of their weight and WC status, unfit older adults are at increased risk for losing physical independence.

  1. Noise power associated with decreased task-induced variability of brain electrical activity in schizophrenia.

    Science.gov (United States)

    Molina, Vicente; Bachiller, Alejandro; Suazo, Vanessa; Lubeiro, Alba; Poza, Jesús; Hornero, Roberto

    2016-02-01

    In schizophrenia, both increased baseline metabolic and electroencephalographic (EEG) activities as well as decreased task-related modulation of neural dynamics have been reported. Noise power (NP) can measure the background EEG activity during task performance, and Shannon entropy (SE) is useful for quantifying the global modulation of EEG activity with a high temporal resolution. In this study, we have assessed the possible relationship between increased NP in theta and gamma bands and decreased SE modulation in 24 patients with schizophrenia and 26 controls over the parietal and central regions during a P300 task. SE modulation was calculated as the change from baseline to the active epoch (i.e., 150-550 ms following the target stimulus onset). Patients with schizophrenia displayed statistically significant higher NP values and lower SE modulation than healthy controls. We found a significant association between gamma NP and SE in all of the participants. Specifically, a NP increase in the gamma band was followed by a decrease in SE change. These results support the notion that an excess of gamma activity, unlocked to the task being performed, is accompanied by a decreased modulation of EEG activity in schizophrenia.

  2. Brain gene expression differences are associated with abnormal tail biting behavior in pigs.

    Science.gov (United States)

    Brunberg, E; Jensen, P; Isaksson, A; Keeling, L J

    2013-03-01

    Knowledge about gene expression in animals involved in abnormal behaviors can contribute to the understanding of underlying biological mechanisms. This study aimed to explore the motivational background to tail biting, an abnormal injurious behavior and severe welfare problem in pig production. Affymetrix microarrays were used to investigate gene expression differences in the hypothalamus and prefrontal cortex of pigs performing tail biting, pigs receiving bites to the tail and neutral pigs who were not involved in the behavior. In the hypothalamus, 32 transcripts were differentially expressed (P tail biters were compared with neutral pigs, 130 when comparing receiver pigs with neutrals, and two when tail biters were compared with receivers. In the prefrontal cortex, seven transcripts were differently expressed in tail biters when compared with neutrals, seven in receivers vs. neutrals and none in the tail biters vs. receivers. In total, 19 genes showed a different expression pattern in neutral pigs when compared with both performers and receivers. This implies that the functions of these may provide knowledge about why the neutral pigs are not involved in tail biting behavior as performers or receivers. Among these 19 transcripts were genes associated with production traits in pigs (PDK4), sociality in humans and mice (GTF2I) and novelty seeking in humans (EGF). These are in line with hypotheses linking tail biting with reduced back fat thickness and explorative behavior. PMID:23146156

  3. Sexually Dimorphic Gene Expression Associated with Growth and Reproduction of Tongue Sole (Cynoglossus semilaevis) Revealed by Brain Transcriptome Analysis.

    Science.gov (United States)

    Wang, Pingping; Zheng, Min; Liu, Jian; Liu, Yongzhuang; Lu, Jianguo; Sun, Xiaowen

    2016-01-01

    In this study, we performed a comprehensive analysis of the transcriptome of one- and two-year-old male and female brains of Cynoglossus semilaevis by high-throughput Illumina sequencing. A total of 77,066 transcripts, corresponding to 21,475 unigenes, were obtained with a N50 value of 4349 bp. Of these unigenes, 33 genes were found to have significant differential expression and potentially associated with growth, from which 18 genes were down-regulated and 12 genes were up-regulated in two-year-old males, most of these genes had no significant differences in expression among one-year-old males and females and two-year-old females. A similar analysis was conducted to look for genes associated with reproduction; 25 genes were identified, among them, five genes were found to be down regulated and 20 genes up regulated in two-year-old males, again, most of the genes had no significant expression differences among the other three. The performance of up regulated genes in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was significantly different between two-year-old males and females. Males had a high gene expression in genetic information processing, while female's highly expressed genes were mainly enriched on organismal systems. Our work identified a set of sex-biased genes potentially associated with growth and reproduction that might be the candidate factors affecting sexual dimorphism of tongue sole, laying the foundation to understand the complex process of sex determination of this economic valuable species. PMID:27571066

  4. Age and haplotype variations within FADS1 interact and associate with alterations in fatty acid composition in human male cortical brain tissue.

    Directory of Open Access Journals (Sweden)

    Erika Freemantle

    Full Text Available UNLABELLED: Fatty acids (FA play an integral role in brain function and alterations have been implicated in a variety of complex neurological disorders. Several recent genomic studies have highlighted genetic variability in the fatty acid desaturase (FADS1/2/3 gene cluster as an important contributor to FA alterations in serum lipids as well as measures of FA desaturase index estimated by ratios of relevant FAs. The contribution to alterations of FAs within the brain by local synthesis is still a matter of debate. Thus, the impact of genetic variants in FADS genes on gene expression and brain FA levels is an important avenue to investigate. METHODS: Analyses were performed on brain tissue from prefrontal cortex Brodmann area 47 (BA47 of 61 male subjects of French Canadian ancestry ranging in age from young adulthood to middle age (18-58 years old, with the exception of one teenager (15 years old. Haplotype tagging SNPs were selected using the publicly available HapMap genotyping dataset in conjunction with Haploview. DNA sequencing was performed by the Sanger method and gene expression was measured by quantitative real-time PCR. FAs in brain tissue were analysed by gas chromatography. Variants in the FADS1 gene region were sequenced and analyzed for their influence on both FADS gene expression and FAs in brain tissue. RESULTS: Our results suggest an association of the minor haplotype with alteration in estimated fatty acid desaturase activity. Analysis of the impact of DNA variants on expression and alternative transcripts of FADS1 and FADS2, however, showed no differences. Furthermore, there was a significant interaction between haplotype and age on certain brain FA levels. DISCUSSION: This study suggests that genetic variability in the FADS genes cluster, previously shown to be implicated in alterations in peripheral FA levels, may also affect FA composition in brain tissue, but not likely by local synthesis.

  5. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer's disease mouse models.

    Science.gov (United States)

    Zhao, Lingzhi; Gottesdiener, Andrew J; Parmar, Mayur; Li, Mingjie; Kaminsky, Stephen M; Chiuchiolo, Maria J; Sondhi, Dolan; Sullivan, Patrick M; Holtzman, David M; Crystal, Ronald G; Paul, Steven M

    2016-08-01

    The common apolipoprotein E alleles (ε4, ε3, and ε2) are important genetic risk factors for late-onset Alzheimer's disease, with the ε4 allele increasing risk and reducing the age of onset and the ε2 allele decreasing risk and markedly delaying the age of onset. Preclinical and clinical studies have shown that apolipoprotein E (APOE) genotype also predicts the timing and amount of brain amyloid-β (Aβ) peptide deposition and amyloid burden (ε4 >ε3 >ε2). Using several administration protocols, we now report that direct intracerebral adeno-associated virus (AAV)-mediated delivery of APOE2 markedly reduces brain soluble (including oligomeric) and insoluble Aβ levels as well as amyloid burden in 2 mouse models of brain amyloidosis whose pathology is dependent on either the expression of murine Apoe or more importantly on human APOE4. The efficacy of APOE2 to reduce brain Aβ burden in either model, however, was highly dependent on brain APOE2 levels and the amount of pre-existing Aβ and amyloid deposition. We further demonstrate that a widespread reduction of brain Aβ burden can be achieved through a single injection of vector via intrathalamic delivery of AAV expressing APOE2 gene. Our results demonstrate that AAV gene delivery of APOE2 using an AAV vector rescues the detrimental effects of APOE4 on brain amyloid pathology and may represent a viable therapeutic approach for treating or preventing Alzheimer's disease especially if sufficient brain APOE2 levels can be achieved early in the course of the disease. PMID:27318144

  6. Fast nuclear reactors. Associated international projects. State of the art and assessment of the concepts

    International Nuclear Information System (INIS)

    The recognition of the strategic importance of nuclear energy as a source of sustainable energy may be perceived in the continuous development, in many countries, of the technology of fast nuclear reactors with an associated closed fuel cycle, assuming that these Generation IV innovative systems will be required in the future. These reactors fulfill international requirements for safety and reliability, economic competitiveness, sustainability and proliferation resistance. They have the potential of using more efficiently the natural resources of Uranium and of reducing the volume and radiotoxicity of the nuclear waste by partitioning and transmutation of Minor Actinides. The national and international programs being carried out today are concentrated in the following concepts: Sodium Fast Reactor (SFR), Lead Fast Reactor (LFR), Gas Fast Reactor (GFR), Super Critical Water Reactor (SCWR) and Molten Salt Reactor (MSR). This article presents a short review of the technology of the mentioned concepts and details the current state of the main national and international related projects. (author)

  7. Conditional associative learning examined in a paralyzed patient with amyotrophic lateral sclerosis using brain-computer interface technology

    Directory of Open Access Journals (Sweden)

    Birbaumer N

    2008-11-01

    Full Text Available Abstract Background Brain-computer interface methodology based on self-regulation of slow-cortical potentials (SCPs of the EEG (electroencephalogram was used to assess conditional associative learning in one severely paralyzed, late-stage ALS patient. After having been taught arbitrary stimulus relations, he was evaluated for formation of equivalence classes among the trained stimuli. Methods A monitor presented visual information in two targets. The method of teaching was matching to sample. Three types of stimuli were presented: signs (A, colored disks (B, and geometrical shapes (C. The sample was one type, and the choice was between two stimuli from another type. The patient used his SCP to steer a cursor to one of the targets. A smiley was presented as a reward when he hit the correct target. The patient was taught A-B and B-C (sample – comparison matching with three stimuli of each type. Tests for stimulus equivalence involved the untaught B-A, C-B, A-C, and C-A relations. An additional test was discrimination between all three stimuli of one equivalence class presented together versus three unrelated stimuli. The patient also had sessions with identity matching using the same stimuli. Results The patient showed high accuracy, close to 100%, on identity matching and could therefore discriminate the stimuli and control the cursor correctly. Acquisition of A-B matching took 11 sessions (of 70 trials each and had to be broken into simpler units before he could learn it. Acquisition of B-C matching took two sessions. The patient passed all equivalence class tests at 90% or higher. Conclusion The patient may have had a deficit in acquisition of the first conditional association of signs and colored disks. In contrast, the patient showed clear evidence that A-B and B-C training had resulted in formation of equivalence classes. The brain-computer interface technology combined with the matching to sample method is a useful way to assess various

  8. Fetal Alcohol Spectrum Disorder-associated depression: evidence for reductions in the levels of brain-derived neurotrophic factor in a mouse model

    OpenAIRE

    Caldwell, Kevin K.; Sheema, S.; Paz, Rodrigo D.; Samudio-Ruiz, Sabrina L.; Laughlin, Mary H.; Spence, Nathan E.; Roehlk, Michael J; Alcon, Sara N.; Allan, Andrea M

    2008-01-01

    Prenatal ethanol exposure is associated with an increased incidence of depressive disorders in patient populations. However, the mechanisms that link prenatal ethanol exposure and depression are unknown. Several recent studies have implicated reduced brain-derived neurotrophic factor (BDNF) levels in the hippocampal formation and frontal cortex as important contributors to the etiology of depression. In the present studies, we sought to determine whether prenatal ethanol exposure is associate...

  9. Presentation of the project MobiKids Communication technologies, environmental exposures and risk of brain tumors in young people

    International Nuclear Information System (INIS)

    MOBI-Kids, an international study coordinated by CREAL, Barcelona, aims to assess the possible relationship between exposure in children and adolescents to electromagnetic fields (EMF) from communication technologies (RF - and extremely low frequency - ELF) and the risk of developing a brain tumor. It also investigated the effects of other risk factors, including environmental exposures in childhood and in utero.

  10. Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer's disease and mild cognitive impairment.

    Science.gov (United States)

    Mattsson, Niklas; Tosun, Duygu; Insel, Philip S; Simonson, Alix; Jack, Clifford R; Beckett, Laurel A; Donohue, Michael; Jagust, William; Schuff, Norbert; Weiner, Michael W

    2014-05-01

    Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to

  11. Age- and Sex-Associated Changes in Cerebral Glucose Metabolism in Normal Healthy Subjects: Statistical Parametric Mapping Analysis of F-18 Fluorodeoxyglucose Brain Positron Emission Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Ju; Kim, Seong-Jang; Kim, Yong-Ki (Dept. of Nuclear Medicine, Pusan National Univ. Hospital, Busan (Korea); Medical Research Institute, Pusan National Univ., Busan (Korea)). e-mail: growthkim@daum.net/growthkim@pusan.ac.kr)

    2009-12-15

    Background: The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. Purpose: To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Material and Methods: Seventy-eight healthy subjects (32 males, mean age 46.6+-18.2 years; 46 females, mean age 40.6+-19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. Results: In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Conclusion: Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake

  12. Age- and Sex-Associated Changes in Cerebral Glucose Metabolism in Normal Healthy Subjects: Statistical Parametric Mapping Analysis of F-18 Fluorodeoxyglucose Brain Positron Emission Tomography

    International Nuclear Information System (INIS)

    Background: The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. Purpose: To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Material and Methods: Seventy-eight healthy subjects (32 males, mean age 46.6±18.2 years; 46 females, mean age 40.6±19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. Results: In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Conclusion: Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake

  13. Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits

    Science.gov (United States)

    Aungst, Stephanie L; Kabadi, Shruti V; Thompson, Scott M; Stoica, Bogdan A; Faden, Alan I

    2014-01-01

    Repeated mild traumatic brain injury (mTBI) can cause sustained cognitive and psychiatric changes, as well as neurodegeneration, but the underlying mechanisms remain unclear. We examined histologic, neurophysiological, and cognitive changes after single or repeated (three injuries) mTBI using the rat lateral fluid percussion (LFP) model. Repeated mTBI caused substantial neuronal cell loss and significantly increased numbers of activated microglia in both ipsilateral and contralateral hippocampus on post-injury day (PID) 28. Long-term potentiation (LTP) could not be induced on PID 28 after repeated mTBI in ex vivo hippocampal slices from either hemisphere. N-Methyl-D-aspartate (NMDA) receptor-mediated responses were significantly attenuated after repeated mTBI, with no significant changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated responses. Long-term potentiation was elicited in slices after single mTBI, with potentiation significantly increased in ipsilateral versus contralateral hippocampus. After repeated mTBI, rats displayed cognitive impairments in the Morris water maze (MWM) and novel object recognition (NOR) tests. Thus, repeated mTBI causes deficits in the hippocampal function and changes in excitatory synaptic neurotransmission, which are associated with chronic neuroinflammation and neurodegeneration. PMID:24756076

  14. Stress-associated H3K4 methylation accumulates during postnatal development and aging of rhesus macaque brain.

    Science.gov (United States)

    Han, Yixing; Han, Dali; Yan, Zheng; Boyd-Kirkup, Jerome D; Green, Christopher D; Khaitovich, Philipp; Han, Jing-Dong J

    2012-12-01

    Epigenetic modifications are critical determinants of cellular and developmental states. Epigenetic changes, such as decreased H3K27me3 histone methylation on insulin/IGF1 genes, have been previously shown to modulate lifespan through gene expression regulation. However, global epigenetic changes during aging and their biological functions, if any, remain elusive. Here, we examined the histone modification H3K4 dimethylation (H3K4me2) in the prefrontal cortex of individual rhesus macaques at different ages by chromatin immunoprecipitation, followed by deep sequencing (ChIP-seq) at the whole genome level. Through integrative analysis of the ChIP-seq profiles with gene expression data, we found that H3K4me2 increased at promoters and enhancers globally during postnatal development and aging, and those that correspond to gene expression changes in cis are enriched for stress responses, such as the DNA damage response. This suggests that metabolic and environmental stresses experienced by an organism are associated with the progressive opening of chromatin. In support of this, we also observed increased expression of two H3K4 methyltransferases, SETD7 and DPY30, in aged macaque brain. PMID:22978322

  15. Association of DNA methylation and monoamine oxidase A gene expression in the brains of different dog breeds.

    Science.gov (United States)

    Eo, JungWoo; Lee, Hee-Eun; Nam, Gyu-Hwi; Kwon, Yun-Jeong; Choi, Yuri; Choi, Bong-Hwan; Huh, Jae-Won; Kim, Minkyu; Lee, Sang-Eun; Seo, Bohyun; Kim, Heui-Soo

    2016-04-15

    The monoamine oxidase A (MAOA) gene is an important candidate gene for human behavior that encodes an enzyme regulating the metabolism of key neurotransmitters. The regulatory mechanisms of the MAOA gene in dogs are yet to be elucidated. We measured MAOA gene transcription and analyzed the VNTR genotype and methylation status of the gene promoter region in different dog breeds to determine whether MAOA expression is correlated with the MAOA genotype or epigenetic modification in dogs. We found brain-specific expression of the MAOA gene and different transcription levels in different dog breeds including Beagle, Sapsaree, and German shepherd, and also a robust association of the DNA methylation of the gene promoter with mRNA levels. However, the 90 bp tandem repeats that we observed near the transcription start site were not variable, indicating no correlation with canine MAOA activity. These results show that differential DNA methylation in the MAOA promoter region may affect gene expression by modulating promoter activity. Moreover, the distinctive patterns of MAOA expression and DNA methylation may be involved in breed-specific or individual behavioral characteristics, such as aggression, because behavioral phenotypes are related to different physiological and neuroendocrine responses. PMID:26784655

  16. Chronic Fluoxetine Treatment Induces Brain Region-Specific Upregulation of Genes Associated with BDNF-Induced Long-Term Potentiation

    Directory of Open Access Journals (Sweden)

    Maria Nordheim Alme

    2007-01-01

    Full Text Available Several lines of evidence implicate BDNF in the pathogenesis of stress-induced depression and the delayed efficacy of antidepressant drugs. Antidepressant-induced upregulation of BDNF signaling is thought to promote adaptive neuronal plasticity through effects on gene expression, but the effector genes downstream of BDNF has not been identified. Local infusion of BDNF into the dentate gyrus induces a long-term potentiation (BDNF-LTP of synaptic transmission that requires upregulation of the immediate early gene Arc. Recently, we identified five genes (neuritin, Narp, TIEG1, Carp, and Arl4d that are coupregulated with Arc during BDNF-LTP. Here, we examined the expression of these genes in the dentate gyrus, hippocampus proper, and prefrontal cortex after antidepressant treatment. We show that chronic, but not acute, fluoxetine administration leads to upregulation of these BDNF-LTP-associated genes in a brain region-specific pattern. These findings link chronic effects of antidepressant treatment to molecular mechanisms underlying BDNF-induced synaptic plasticity.

  17. Chronic fluoxetine treatment induces brain region-specific upregulation of genes associated with BDNF-induced long-term potentiation.

    Science.gov (United States)

    Alme, Maria Nordheim; Wibrand, Karin; Dagestad, Grethe; Bramham, Clive R

    2007-01-01

    Several lines of evidence implicate BDNF in the pathogenesis of stress-induced depression and the delayed efficacy of antidepressant drugs. Antidepressant-induced upregulation of BDNF signaling is thought to promote adaptive neuronal plasticity through effects on gene expression, but the effector genes downstream of BDNF has not been identified. Local infusion of BDNF into the dentate gyrus induces a long-term potentiation (BDNF-LTP) of synaptic transmission that requires upregulation of the immediate early gene Arc. Recently, we identified five genes (neuritin, Narp, TIEG1, Carp, and Arl4d) that are coupregulated with Arc during BDNF-LTP. Here, we examined the expression of these genes in the dentate gyrus, hippocampus proper, and prefrontal cortex after antidepressant treatment. We show that chronic, but not acute, fluoxetine administration leads to upregulation of these BDNF-LTP-associated genes in a brain region-specific pattern. These findings link chronic effects of antidepressant treatment to molecular mechanisms underlying BDNF-induced synaptic plasticity. PMID:18301726

  18. Endothelial barrier antigen-immunoreactivity is conversely associated with blood-brain barrier dysfunction after embolic stroke in rats

    Directory of Open Access Journals (Sweden)

    J. Pelz

    2013-12-01

    Full Text Available While the concept of the Neurovascular Unit (NVU is increasingly recognized for exploring mechanisms of tissue damage in ischemic stroke, immunohistochemical analyses are of interest to specifically visualize constituents like the endothelium. Changes in immunoreactivity have also been discussed to reflect functional aspects, e.g., the integrity of the blood-brain barrier (BBB. This study aimed to characterize the endothelial barrier antigen (EBA as addressed by the antibody SMI-71 in a rat model of embolic stroke, considering FITC-albumin as BBB leakage marker and serum levels of BBB-associated matrix metalloproteinases (MMPs to explore its functional significance. Five and 25 h after ischemia onset, regions with decreased BBB integrity exhibited a reduction in number and area of EBA-immunopositive vessels, while the stained area per vessel was not affected. Surprisingly, EBA content of remaining vessels tended to be increased in areas of BBB dysfunction. Analyses addressing this interrelation resulted in a significant and inverse correlation between the vessels’ EBA content and degree of BBB permeability. In conclusion, these data provide evidence for a functional relationship between EBA-immunoreactivity and BBB dysfunction in experimental ischemic stroke. Further studies are required to explore the underlying mechanisms of altered EBA-immunoreactivity, which might help to identify novel neuroprotective strategies.

  19. TVA–based assessment of attentional capacities – associations with age and indices of brain white matter microstructure

    Directory of Open Access Journals (Sweden)

    Thomas eEspeseth

    2014-10-01

    Full Text Available In this study the primary aims were to characterize the effects of age on basic components of visual attention derived from assessments based on a theory of visual attention (TVA in 325 healthy volunteers covering the adult lifespan (19-81 years. Furthermore, we aimed to investigate how age-related differences on TVA parameters are associated with white matter (WM microstructure as indexed by diffusion tensor imaging (DTI. Finally, we explored how TVA parameter estimates were associated with complex, or multicomponent indices of processing speed (Digit-symbol substitution, DSS and fluid intelligence (gF. The results indicated that the TVA parameters for visual short-term memory capacity, K, and for attentional selectivity, α, were most strongly associated with age before the age of 50. However, in this age range, it was the parameter for processing speed, C, that was most clearly associated with DTI indices, in this case fractional anisotropy (FA, particularly in the genu and body of the corpus callosum. Furthermore, differences in the C parameter partially mediated differences in DSS within this age range. After the age of 50, the TVA parameter for the perceptual threshold, t0, as well as K, were most strongly related to participant age. Both parameters, but t0 more strongly so than K, were associated WM diffusivity, particularly in projection fibers such as the internal capsule, the sagittal stratum, and the corona radiata. Within this age range, t0 partially mediated age-related differences in gF. The results are consistent with, and provide novel empirical support for the neuroanatomical localization of TVA computations as outlined in the neuronal interpretation of TVA (NTVA. Furthermore, the results indicate that to understand the biological sources of age-related changes in processing speed and fluid cognition, it may be useful to employ methods that allow for computational fractionation of these multicomponent measures.

  20. High levels of brain-derived neurotrophic factor are associated with treatment adherence among crack-cocaine users.

    Science.gov (United States)

    Scherer, Juliana N; Schuch, Silvia; Ornell, Felipe; Sordi, Anne O; Bristot, Giovana; Pfaffenseller, Bianca; Kapczinski, Flávio; Kessler, Felix H P; Fumagalli, Fabio; Pechansky, Flavio; von Diemen, Lisia

    2016-09-01

    Due to the complexity of crack -cocaine addiction treatment, the identification of biological markers that could help determining the impact or outcome of drug use has become a major subject of study. Therefore, we aim to evaluate the association of Brain-Derived Neurotrophic Factor (BDNF) and Thiobarbituric Acid Reactive Substances (TBARS) levels in crack -cocaine users with treatment adherence and with drug addiction severity. A sample of 47 male inpatient crack- cocaine users were recruited in a treatment unit, and blood samples were collected at admission and discharge in order to measure BDNF and TBARS serum levels. Subjects were split into 2 groups: treatment non-completers (n=23) and treatment completers (n=24). The completer group had a tendency of higher levels of BDNF than non-completers at admission (16.85±3.24 vs. 14.65±5.45, p=0.10), and significant higher levels at discharge (18.10±4.88 vs. 13.91±4.77, p=0.001). A negative correlation between BDNF levels at admission and years of crack use was observed. We did not find significant changes in TBARS levels during inpatient treatment, although the completer group tended to decrease these levels while non-completers tend to increase it. These findings suggest an association between higher levels of BDNF and better clinical outcomes in crack- cocaine users after detoxification. We believe that the variation in BDNF and TBARS found here add evidence to literature data that propose that such biomarkers could be used to better understand the physiopathology of crack- cocaine addiction. PMID:27473943

  1. Selective brain gray matter atrophy associated with APOE ε4 and MAPT H1 in subjects with mild cognitive impairment.

    Science.gov (United States)

    Goñi, Joaquín; Cervantes, Sebastián; Arrondo, Gonzalo; Lamet, Isabel; Pastor, Pau; Pastor, María A

    2013-01-01

    The aim of our study was to elucidate whether specific patterns of gray matter loss were associated with apolipoprotein E ε4 (APOE ε4) and microtubule-associated protein tau (MAPT)-H1) genetic variants in subjects with mild cognitive impairment (MCI) at a baseline visit. Gray matter voxel-based morphometry analysis of T1 magnetic resonance imaging scans were performed in 65 amnestic-MCI subjects. MCI APOE ε4 carriers compared with non-carriers showed increased brain atrophy in right hippocampus and rostral amygdala, superior and middle temporal gyrus, and right parietal operculum, including inferior frontal gyrus, inferior parietal, and supramarginal gyrus. MAPT-H1/H1 MCI carriers showed an increased bilateral atrophy in superior frontal gyri (including frontal eye fields and left prefrontal cortex) and precentral gyrus but also unilateral left atrophy in the inferior temporal gyrus and calcarine gyrus. In addition, MCI subjects carrying both APOE ε4 and MAPT-H1/H1 variants showed gray matter loss in the supplementary motor area and right pre- and postcentral gyri. The effect of APOE ε4 on gray matter loss in right hippocampus suggests that, at least in some AD sub-types, the neuronal vulnerability could be increased in the right hemisphere. The pattern of frontal gray matter loss observed among MCI MAPT H1/H1 carriers has also been found in other tauopathies, suggesting that MCI may share etiological factors with other tauopathies. Frontal and parietal cortex vulnerability was found when adding MAPT H1/H1 and APOE ε4 effects, suggesting a synergistic effect of these variants. These results could be due to changes in APOE ε4 and MAPT expression.

  2. Analysis of 127 peripartum hypoxic brain injuries from closed claims registered by the Danish Patient Insurance Association

    DEFF Research Database (Denmark)

    Bock, J.; Christoffersen, J.K.; Hedegaard, M.;

    2008-01-01

    BACKGROUND: One of the most feared complications in medicine is hypoxic brain damage to a newborn. The authors investigated the circumstances of registered peripartum hypoxic brain injuries in order to identify potential opportunities to improve patient safety and prevent injuries. METHODS: The a...

  3. Menopause Analytical Hormonal Correlate Outcome Study (MAHCOS and the association to brain electrophysiology (P300 in a clinical setting.

    Directory of Open Access Journals (Sweden)

    Eric R Braverman

    Full Text Available Various studies have demonstrated that increased leptin levels and obesity are inversely related to cognitive decline in menopausal women. It is hypothesized that adiposity is inversely correlated with cognitive decline, as women with increased weight are less vulnerable to diminishing cognition. However, it is increasingly observed that menopausal women, even with increased adiposity, experience significant cognitive decline. Positron emission tomography (PET has been used to analyze cognitive function and processing in menopausal women. Evoked potentials (P300 and neurophysiologic tests have validated brain metabolism in cognitively impaired patients. Post-hoc analyses of 796 female patients entering PATH Medical Clinic, between January 4, 2009 and February 24, 2013, were performed as part of the "Menopause Analytical Hormonal Correlate Outcome Study" (MAHCOS. Patient age range was 39-76 years (46.7 ± 0.2. P300 latency and amplitude correlated with a number of hormones: follicle stimulating hormone (FSH, luteinizing hormone (LH, estradiol, estrone, estriol, DHEA, pregnenolone, progesterone, free and total testosterone, thyroid stimulating hormone (TSH, Vitamins D 1.25 and D 25OH, leptin, and insulin-like growth factor-binding protein 3 (IGF-BP3. Corrected statistics did not reveal significant associations with P300 latency or amplitude for these hormones except for leptin plasma levels. However, factor analysis showed that FSH and LH clustered together with Vitamin D1.25 and Vitamin D25OH, P300 latency (not amplitude, and log leptin were found to be associated in the same cluster. Utilizing regression analysis, once age adjusted, leptin was the only significant predictor for latency or speed (p = 0.03 with an effect size of 0.23. Higher plasma leptin levels were associated with abnormal P300 speed (OR = 0.98. Our findings show a significant relationship of higher plasma leptin levels, potentially due to leptin resistance, and prolonged P300

  4. Cysteamine-induced depletion of brain somatostatin is associated with up-regulation of cerebrocortical somatostatin receptors

    International Nuclear Information System (INIS)

    Cysteamine (CSH) administered as a single sc injection to rats produced rapid depletion of cerebrocortical Somatostatin-14 like immunoreactivity (S-14 LI) with a significant 48% reduction occurring within 5 min and maximum (72%) decrease at 4 h. The depletion of S-14 LI was associated with a 1.7 fold increase in Bmax of the cerebrocortical S-14 receptors 5 min after CSH administration and a concomitant but slower increase in the affinity of these receptors. Incubation of intact synaptosomes with 1 mM CSH at 37 C in vitro for 60 min also caused a rapid depletion of S-14 LI, but there was no change in the Bmax or Kd of the S-14 receptors for up to 30 min beyond which time a 2.8-fold decrease in the affinity of S-14 receptors was observed. Higher concentrations of CSH (greater than or equal to 10 mM) added during the incubation of synaptosomes in vitro completely abolished the specific binding of these receptors. The pituitary S-14 receptors were studied 30 min after CSH administration and unlike the cerebrocortical S-14 receptors at this time did not exhibit any change in Bmax or affinity. When added at the time of the binding assay CSH (1 mM) was without a direct effect on cerebrocortical as well as pituitary membrane S-14 receptors. Furthermore, addition of CSH at the time of binding assay did not destroy the integrity of [125I-Tyr11]S-14. It is concluded that administration of CSH to rats in vivo depletes brain S-14 LI and up-regulates synaptosomal S-14 receptors. Exposure of synaptosomes to CSH in vitro for 30 min also depletes S-14 LI but has no effect on S-14 receptors. CSH has a direct inhibitory effect on S-14 receptor binding after prolonged in vitro incubation. Pituitary S-14 receptors unlike those in the brain are unaffected by S-14 LI depletion at least acutely

  5. Treatment with a histone deacetylase inhibitor, valproic acid, is associated with increased platelet activation in a large animal model of traumatic brain injury and hemorrhagic shock

    DEFF Research Database (Denmark)

    Dekker, Simone E; Sillesen, Martin; Bambakidis, Ted;

    2014-01-01

    BACKGROUND: We have previously shown that resuscitation with fresh frozen plasma (FFP) in a large animal model of traumatic brain injury (TBI) and hemorrhagic shock (HS) decreases the size of the brain lesion, and that addition of a histone deacetylase inhibitor, valproic acid (VPA), provides...... synergistic benefits. In this study, we hypothesized that VPA administration would be associated with a conservation of platelet function as measured by increased platelet activation after resuscitation. MATERIALS AND METHODS: Ten swine (42-50 kg) were subjected to TBI and HS (40% blood loss). Animals were.......05). Circulating transforming growth factor beta levels were elevated in the FFP + VPA group, but this did not reach statistical significance (11.20 ± 1.46 versus 8.09 ± 1.41 ng/mL; P = 0.17). Brain platelet endothelial cell adhesion molecule 1 levels were significantly lower in the FFP + VPA group compared...

  6. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes.

    Directory of Open Access Journals (Sweden)

    Richard A Anderson

    Full Text Available Insulin resistance leads to memory impairment. Cinnamon (CN improves peripheral insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling and Alzheimer-associated mRNA expression in the brain were measured in male Wistar rats fed a high fat/high fructose (HF/HFr diet to induce insulin resistance, with or without CN, for 12 weeks. There was a decrease in insulin sensitivity associated with the HF/HFr diet that was reversed by CN. The CN fed rats were more active in a Y maze test than rats fed the control and HF/HFr diets. The HF/HFr diet fed rats showed greater anxiety in an elevated plus maze test that was lessened by feeding CN. The HF/HFr diet also led to a down regulation of the mRNA coding for GLUT1 and GLUT3 that was reversed by CN in the hippocampus and cortex. There were increases in Insr, Irs1 and Irs2 mRNA in the hippocampus and cortex due to the HF/HFr diet that were not reversed by CN. Increased peripheral insulin sensitivity was also associated with increased glycogen synthase in both hippocampus and cortex in the control and HF/HFr diet animals fed CN. The HF/HFr diet induced increases in mRNA associated with Alzheimers including PTEN, Tau and amyloid precursor protein (App were also alleviated by CN. In conclusion, these data suggest that the negative effects of a HF/HFr diet on behavior, brain insulin signaling and Alzheimer-associated changes were alleviated by CN suggesting that neuroprotective effects of CN are associated with improved whole body insulin sensitivity and related changes in the brain.

  7. Alpha-risk: a European project on the quantification of risks associated with multiple radiation exposures

    Energy Technology Data Exchange (ETDEWEB)

    Laurier, D.; Monchaux, G.; Tirmarche, M. [Institute for Radiological Protection and Nuclear Safety, 92 - Fontenay aux Roses (France); Darby, S. [Cancer Research UK, Oxford (United Kingdom); Cardis, E. [International Agency for Research on Cancer, 69 - Lyon (France); Binks, K. [Westlakes Scientific Consulti ng Ltd, Moor Row (United Kingdom); Hofmann, W. [Salzburg Univ. (Austria); Muirhead, C. [Health Protection Agency, Chilton (United Kingdom)

    2006-07-01

    The Alpha-Risk research project is being conducted within the Sixth European Framework Programme (EC-FP6, 2005 -2008). It aims to improve the quantification of risks associated with multiple exposures, taking into account the contribution of different radionuclides and external exposure using specific organ dose calculations. The Alpha-Risk Consortium involves 18 partners from 9 countries, and is coordinated by the IRSN. Its composition allows a multidisciplinary collaboration between researchers in epidemiology, dosimetry, statistics, modelling and risk assessment. Alpha-Risk brings together major epidemiological studies in Europe, which are able to evaluate long-term health effects of internal exposure from radionuclides. It includes large size cohort and case-control studies, with accurate registration of individual annual exposures: uranium miner studies, studies on lung cancer and indoor radon exposure, and studies of lung cancer and leukaemia among nuclear workers exposed to transuranic nuclides (mainly uranium and plutonium), for whom organ doses will be reconstructed individually. The contribution of experts in dosimetry will allow the calculation of organ doses in presence of multiple exposures (radon decay products, uranium dust and external gamma exposure). Expression of the risk per unit organ dose will make it possible to compare results with those from other populations exposed to external radiation. The multidisciplinary approach of Alpha-Risk promotes the development of coherent and improved methodological approaches regarding risk modelling. A specific work - package is dedicated to the integration of results and their use for risk assessment, especially for radon. Alpha-Risk will contribute to a better understanding of long-term health risks following chronic low doses from internal exposures. The project also has the great potential to help resolve major public health concerns about the effects of low and/or protracted exposures, especially

  8. Nocardia abscessus-related intracranial aneurysm of the internal carotid artery with associated brain abscess: A case report and review of the literature.

    Science.gov (United States)

    Farran, Yvette; Antony, Suresh

    2016-01-01

    Nocardia infections primarily begin in the lungs and spread hematogenously to other sites in the body. Thus, a Nocardia brain abscess is not a completely uncommon occurrence. However, a Nocardia brain abscess complicated by a middle cerebral artery and infectious intracranial aneurysm is a very rare clinical entity. We present a case of an infectious intracranial aneurysm with an associated Nocardia brain abscess that required surgical intervention and resection. The patient was an immunocompetent 60-year-old male who presented with a chief complaint of headache and was found to have an infected intracranial aneurysm and cerebral abscess. He underwent drainage of the abscess with subsequent resection of the infected aneurysm. Cultures from both the blood vessel and brain tissue grew Nocardia abscessus. He was successfully treated with 6 weeks of ceftriaxone and high-dose trimethoprim-sulfamethoxazole. Infectious intracranial aneurysms of the brain caused by Nocardia are rare occurrences, and only a single previous case has been described in the literature. The outcomes of this condition can be catastrophic if it is not treated with a combination of surgery and intravenous antibiotics. The guidelines for the management of this infection are not well defined at this time. PMID:26724261

  9. Minocycline Protects Against NLRP3 Inflammasome-Induced Inflammation and P53-Associated Apoptosis in Early Brain Injury After Subarachnoid Hemorrhage.

    Science.gov (United States)

    Li, Jianru; Chen, Jingsen; Mo, Hangbo; Chen, Jingyin; Qian, Cong; Yan, Feng; Gu, Chi; Hu, Qiang; Wang, Lin; Chen, Gao

    2016-05-01

    Minocycline has beneficial effects in early brain injury (EBI) following subarachnoid hemorrhage (SAH); however, the molecular mechanisms underlying these effects have not been clearly identified. This study was undertaken to determine the influence of minocycline on inflammation and neural apoptosis and the possible mechanisms of these effects in early brain injury following subarachnoid hemorrhage. SAH was induced by the filament perforation model of SAH in male Sprague-Dawley rats. Minocycline or vehicle was given via an intraperitoneal injection 1 h after SAH induction. Minocycline treatment markedly attenuated brain edema secondary to blood-brain barrier (BBB) dysfunction by inhibiting NLRP3 inflammasome activation, which controls the maturation and release of pro-inflammatory cytokines, especially interleukin-1β (IL-1β). Minocycline treatment also markedly reduced the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-positive cells. To further identify the potential mechanisms, we demonstrated that minocycline increased Bcl2 expression and reduced the protein expression of P53, Bax, and cleaved caspase-3. In addition, minocycline reduced the cortical levels of reactive oxygen species (ROS), which are closely related to both NLRP3 inflammasome and P53 expression. Minocycline protects against NLRP3 inflammasome-induced inflammation and P53-associated apoptosis in early brain injury following SAH. Minocycline's anti-inflammatory and anti-apoptotic effect may involve the reduction of ROS. Minocycline treatment may exhibit important clinical potentials in the management of SAH. PMID:26143258

  10. Raptor observations associated with Terror Lake hydroelectric project: 1984 annual progress report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Raptors in the vicinity of the Terror Lake Hydroelectric Project (TLHP) were studied to determine the effects of project construction and operation on nesting and...

  11. A comprehensive next generation sequencing-based virome assessment in brain tissue suggests no major virus - tumor association.

    Science.gov (United States)

    Strong, Michael J; Blanchard, Eugene; Lin, Zhen; Morris, Cindy A; Baddoo, Melody; Taylor, Christopher M; Ware, Marcus L; Flemington, Erik K

    2016-01-01

    Next generation sequencing (NGS) can globally interrogate the genetic composition of biological samples in an unbiased yet sensitive manner. The objective of this study was to utilize the capabilities of NGS to investigate the reported association between glioblastoma multiforme (GBM) and human cytomegalovirus (HCMV). A large-scale comprehensive virome assessment was performed on publicly available sequencing datasets from the Cancer Genome Atlas (TCGA), including RNA-seq datasets from primary GBM (n = 157), recurrent GBM (n = 13), low-grade gliomas (n = 514), recurrent low-grade gliomas (n = 17), and normal brain (n = 5), and whole genome sequencing (WGS) datasets from primary GBM (n = 51), recurrent GBM (n = 10), and normal matched blood samples (n = 20). In addition, RNA-seq datasets from MRI-guided biopsies (n = 92) and glioma stem-like cell cultures (n = 9) were analyzed. Sixty-four DNA-seq datasets from 11 meningiomas and their corresponding blood control samples were also analyzed. Finally, three primary GBM tissue samples were obtained, sequenced using RNA-seq, and analyzed. After in-depth analysis, the most robust virus findings were the detection of papillomavirus (HPV) and hepatitis B reads in the occasional LGG sample (4 samples and 1 sample, respectively). In addition, low numbers of virus reads were detected in several datasets but detailed investigation of these reads suggest that these findings likely represent artifacts or non-pathological infections. For example, all of the sporadic low level HCMV reads were found to map to the immediate early promoter intimating that they likely originated from laboratory expression vector contamination. Despite the detection of low numbers of Epstein-Barr virus reads in some samples, these likely originated from infiltrating B-cells. Finally, human herpesvirus 6 and 7 aligned viral reads were identified in all DNA-seq and a few RNA-seq datasets but detailed analysis

  12. Cell-Based in Vitro Blood–Brain Barrier Model Can Rapidly Evaluate Nanoparticles’ Brain Permeability in Association with Particle Size and Surface Modification

    Directory of Open Access Journals (Sweden)

    Sanshiro Hanada

    2014-01-01

    Full Text Available The possibility of nanoparticle (NP uptake to the human central nervous system is a major concern. Recent reports showed that in animal models, nanoparticles (NPs passed through the blood–brain barrier (BBB. For the safe use of NPs, it is imperative to evaluate the permeability of NPs through the BBB. Here we used a commercially available in vitro BBB model to evaluate the permeability of NPs for a rapid, easy and reproducible assay. The model is reconstructed by culturing both primary rat brain endothelial cells and pericytes to support the tight junctions of endothelial cells. We used the permeability coefficient (Papp to determine the permeability of NPs. The size dependency results, using fluorescent silica NPs (30, 100, and 400 nm, revealed that the Papp for the 30 nm NPs was higher than those of the larger silica. The surface charge dependency results using Qdots® (amino-, carboxyl-, and PEGylated-Qdots, showed that more amino-Qdots passed through the model than the other Qdots. Usage of serum-containing buffer in the model resulted in an overall reduction of permeability. In conclusion, although additional developments are desired to elucidate the NPs transportation, we showed that the BBB model could be useful as a tool to test the permeability of nanoparticles.

  13. Brain response to images of food varying in energy density is associated with body composition in 7- to 10-year-old children: Results of an exploratory study.

    Science.gov (United States)

    Fearnbach, S Nicole; English, Laural K; Lasschuijt, Marlou; Wilson, Stephen J; Savage, Jennifer S; Fisher, Jennifer O; Rolls, Barbara J; Keller, Kathleen L

    2016-08-01

    Energy balance is regulated by a multifaceted system of physiological signals that influence energy intake and expenditure. Therefore, variability in the brain's response to food may be partially explained by differences in levels of metabolically active tissues throughout the body, including fat-free mass (FFM) and fat mass (FM). The purpose of this study was to test the hypothesis that children's body composition would be related to their brain response to food images varying in energy density (ED), a measure of energy content per weight of food. Functional magnetic resonance imaging (fMRI) was used to measure brain response to High (>1.5kcal/g) and Low (reward processing. Pearson's correlations were then calculated between activation in these regions for various contrasts (High ED-Low ED, High ED-Control, Low ED-Control) and child body composition (FFM index, FM index, % body fat). Relative to Low ED foods, High ED foods elicited greater BOLD activation in the left thalamus. In the right substantia nigra, BOLD activation for the contrast of High ED-Low ED foods was positively associated with child FFM. There were no significant results for the High ED-Control or Low ED-Control contrasts. Our findings support literature on FFM as an appetitive driver, such that greater amounts of lean mass were associated with greater activation for High ED foods in an area of the brain associated with dopamine signaling and reward (substantia nigra). These results confirm our hypothesis that brain response to foods varying in energy content is related to measures of child body composition. PMID:26973134

  14. Changes in cannabinoid receptors, aquaporin 4 and vimentin expression after traumatic brain injury in adolescent male mice. Association with edema and neurological deficit.

    Directory of Open Access Journals (Sweden)

    Ana Belen Lopez-Rodriguez

    Full Text Available Traumatic brain injury (TBI incidence rises during adolescence because during this critical neurodevelopmental period some risky behaviors increase. The purpose of this study was to assess the contribution of cannabinoid receptors (CB1 and CB2, blood brain barrier proteins (AQP4 and astrogliosis markers (vimentin to neurological deficit and brain edema formation in a TBI weight drop model in adolescent male mice. These molecules were selected since they are known to change shortly after lesion. Here we extended their study in three different timepoints after TBI, including short (24h, early mid-term (72h and late mid-term (two weeks. Our results showed that TBI induced an increase in brain edema up to 72 h after lesion that was directly associated with neurological deficit. Neurological deficit appeared 24 h after TBI and was completely recovered two weeks after trauma. CB1 receptor expression decreased after TBI and was negatively correlated with edema formation and behavioral impairments. CB2 receptor increased after injury and was associated with high neurological deficit whereas no correlation with edema was found. AQP4 increased after TBI and was positively correlated with edema and neurological impairments as occurred with vimentin expression in the same manner. The results suggest that CB1 and CB2 differ in the mechanisms to resolve TBI and also that some of their neuroprotective effects related to the control of reactive astrogliosis may be due to the regulation of AQP4 expression on the end-feet of astrocytes.

  15. Changes in cannabinoid receptors, aquaporin 4 and vimentin expression after traumatic brain injury in adolescent male mice. Association with edema and neurological deficit.

    Science.gov (United States)

    Lopez-Rodriguez, Ana Belen; Acaz-Fonseca, Estefania; Viveros, Maria-Paz; Garcia-Segura, Luis M

    2015-01-01

    Traumatic brain injury (TBI) incidence rises during adolescence because during this critical neurodevelopmental period some risky behaviors increase. The purpose of this study was to assess the contribution of cannabinoid receptors (CB1 and CB2), blood brain barrier proteins (AQP4) and astrogliosis markers (vimentin) to neurological deficit and brain edema formation in a TBI weight drop model in adolescent male mice. These molecules were selected since they are known to change shortly after lesion. Here we extended their study in three different timepoints after TBI, including short (24h), early mid-term (72h) and late mid-term (two weeks). Our results showed that TBI induced an increase in brain edema up to 72 h after lesion that was directly associated with neurological deficit. Neurological deficit appeared 24 h after TBI and was completely recovered two weeks after trauma. CB1 receptor expression decreased after TBI and was negatively correlated with edema formation and behavioral impairments. CB2 receptor increased after injury and was associated with high neurological deficit whereas no correlation with edema was found. AQP4 increased after TBI and was positively correlated with edema and neurological impairments as occurred with vimentin expression in the same manner. The results suggest that CB1 and CB2 differ in the mechanisms to resolve TBI and also that some of their neuroprotective effects related to the control of reactive astrogliosis may be due to the regulation of AQP4 expression on the end-feet of astrocytes.

  16. Association of Serum Vitamin D with the Risk of Incident Dementia and Subclinical Indices of Brain Aging: The Framingham Heart Study

    Science.gov (United States)

    Karakis, Ioannis; Pase, Matthew P.; Beiser, Alexa; Booth, Sarah L.; Jacques, Paul F.; Rogers, Gail; DeCarli, Charles; Vasan, Ramachandran S.; Wang, Thomas J.; Himali, Jayandra J.; Annweiler, Cedric; Seshadri, Sudha

    2016-01-01

    Background Identifying nutrition- and lifestyle-based risk factors for cognitive impairment and dementia may aid future primary prevention efforts. Objective We aimed to examine the association of serum vitamin D levels with incident all-cause dementia, clinically characterized Alzheimer’s disease (AD), MRI markers of brain aging, and neuropsychological function. Methods Framingham Heart Study participants had baseline serum 25-hydroxyvitamin D (25(OH)D) concentrations measured between 1986 and 2001. Vitamin D status was considered both as a continuous variable and dichotomized as deficient (<10 ng/mL), or at the cohort-specific 20th and 80th percentiles. Vitamin D was related to the 9-year risk of incident dementia (n= 1663), multiple neuropsychological tests (n= 1291) and MRI markers of brain volume, white matter hyperintensities and silent cerebral infarcts (n = 1139). Results In adjusted models, participants with vitamin D deficiency (n = 104, 8% of the cognitive sample) displayed poorer performance on Trail Making B-A (β = −0.03 to −0.05 ±0.02) and the Hooper Visual Organization Test (β = −0.09 to −0.12 ±0.05), indicating poorer executive function, processing speed, and visuo-perceptual skills. These associations remained when vitamin D was examined as a continuous variable or dichotomized at the cohort specific 20th percentile. Vitamin D deficiency was also associated with lower hippocampal volumes (β = −0.01 ±0.01) but not total brain volume, white matter hyperintensities, or silent brain infarcts. No association was found between vitamin D deficiency and incident all-cause dementia or clinically characterized AD. Conclusions In this large community-based sample, low 25(OH)D concentrations were associated with smaller hippocampal volume and poorer neuropsychological function. PMID:26890771

  17. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  18. Dance type and flight parameters are associated with different mushroom body neural activities in worker honeybee brains.

    Directory of Open Access Journals (Sweden)

    Taketoshi Kiya

    Full Text Available BACKGROUND: Honeybee foragers can transmit the information concerning the location of food sources to their nestmates using dance communication. We previously used a novel immediate early gene, termed kakusei, to demonstrate that the neural activity of a specific mushroom body (MB neuron subtype is preferentially enhanced in the forager brain. The sensory information related to this MB neuron activity, however, remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used kakusei to analyze the relationship between MB neuron activity and types of foraging behavior. The number of kakusei-positive MB neurons was higher in the round dancers that had flown a short distance than in the waggle dancers that had flown a long distance. Furthermore, the amount of kakusei transcript in the MBs inversely related to the waggle-phase duration of the waggle dance, which correlates with the flight distance. Using a narrow tunnel whose inside was vertically or axially lined, we manipulated the pattern of visual input, which is received by the foragers during flight, and analysed kakusei expression. The amount of kakusei transcript in the MBs was related to the foraging frequency but not to the tunnel pattern. In contrast, the number of kakusei-positive MB neurons was affected by the tunnel patterns, but not related to foraging frequency. CONCLUSIONS/SIGNIFICANCE: These results suggest that the MB neuron activity depends on the foraging frequency, whereas the number of active MB neurons is related to the pattern of visual input received during foraging flight. Our results suggest that the foraging frequency and visual experience during foraging are associated with different MB neural activities.

  19. The moderating effects of sex and age on the association between traumatic brain injury and harmful psychological correlates among adolescents.

    Directory of Open Access Journals (Sweden)

    Gabriela Ilie

    Full Text Available BACKGROUND: Although it is well established that sex is a risk factor in acquiring a traumatic brain injury (TBI among adolescents, it has not been established whether it also moderates the influence of other TBI psychological health correlates. METHODS AND FINDINGS: Data were derived from a 2011 population-based cross-sectional school survey, which included 9,288 Ontario 7th-12th graders who completed anonymous self-administered questionnaires in classrooms. Response rate was 62%. Preliminary analyses found no evidence of nonresponse bias in the reporting of TBI. TBI was defined as a hit or blow to the head that resulted in a 5 minutes loss of consciousness or at least one overnight hospitalization due to symptoms associated with it. Reports of lifetime TBI were more common among males than females (23.1%, 95% CI: 20.5, 25.8 vs. 17.1%, 95% CI: 14.7, 19.8. Thirteen correlates were examined and included cigarette smoking, elevated psychological distress, suicide ideation, bully victimization (at school, as well as cyber bullying, bullying others, cannabis use, cannabis dependence and drug use problems, physical injuries, daily smoking, drinking alcohol, binge drinking, use of cannabis, and poor academic performance. Among the outcomes examined, sex moderated the relationship between lifetime TBI and cigarette smoking. In addition, sex and age jointly moderated the relationship between lifetime TBI and daily smoking, alcohol use and physical injuries. Late adolescent males who reported lifetime TBI, relative to females, displayed elevated daily smoking and injuries, whereas their females counterparts displayed elevated past year drinking. Possible bias related to self-report procedures and the preclusion of causal inferences due to the cross-sectional nature of the data are limitations of this study. CONCLUSIONS: TBI differences in outcomes need to be assessed for potential moderating effects of sex and age. Results have important implications for

  20. Electricity consumption and associated GHG emissions of the Jordanian industrial sector: Empirical analysis and future projection

    International Nuclear Information System (INIS)

    In this paper, an empirical model is developed for electricity consumption of the Jordanian industrial sector based on multivariate linear regression to identify the main drivers behind electricity consumption. In addition, projection of electricity consumption for the industrial sector based on time series forecasting is presented. It was found that industrial production outputs and capacity utilization are the two most important variables that affect demand on electrical power and the multivariate linear regression model can be used adequately to simulate industrial electricity consumption with very high coefficient of determination. To illustrate the importance of integrating energy efficiency within national energy plans, the impact of implementing high-efficiency motors was investigated and found to be significant. Without such basic energy conservation and management programs, electricity consumption and associated GHG emissions for the industrial sector are predicted to rise by 63% in the year 2019. However, if these measures are implemented on a gradual basis, over the same period, electricity consumption and GHG emissions are forecasted to ascend at a lower rate with low/no cost actions

  1. Nuclear fusion project. Semi-annual report of the Association KfK/EURATOM

    International Nuclear Information System (INIS)

    Nuclear fusion is one of the main activities of the Karlsruhe Nuclear Research Center (KfK). It is organized as a project under the Directorate of Reactor Development and Safety. The work of KfK concentrates on technology aspects of nuclear fusion with magnetic confinement. It is part of the European Fusion Programme where KfK participates as an association to EURATOM. Close links have been established to the Max Planck Institute for Plasma Physics (IPP). In the Entwicklungsgemeinschaft Kernfusion KfK and IPP cooperate for the development of future fusion experiments joining the experience gained in plasma physics (IPP) and materials, safety, and nuclear technology (KfK), respectively. As in the present strategy of the European Fusion Programme the Next European Tokamak (NET) is foreseen as the major next step, most of the activities of KfK address this subject. In addition to the contributions to NET, studies are carried out to innovate INTOR, the worldwide cooperation for an experimental reactor under the auspices of IAEA. Furthermore, the Entwicklungsgemeinschaft Kernfusion has evaluated the feasibility of a fusion reactor with a stellarator confinement. (orig./GG)

  2. Variable resolution pattern generation for the Associative Memory of the ATLAS FTK project

    CERN Document Server

    Annovi, A; The ATLAS collaboration; Faulkner, G; Giannetti, P; Jiang, Z; Luongo, C; Pandini, C; Shochet, M; Tompkins, L; Volpi, G

    2013-01-01

    The Associative Memory (AM) chip is special device that allows to find coincidence patterns, or just patterns, between the incoming data in up to 8 parallel streams. The latest AM chip has been designed to receive silicon clusters generated in 8 layers of the ATLAS silicon detector sensor, to perform parallel track pattern matching at high rate and it will be the core of the FTK project. Data going through each of the busses are compared with a bank of patterns and AM chip looks for matches in each line, like commercial content addressable memory (CAM). The high density of hits expected in the ATLAS inner detector from 2015 put a challenge in the capability of the AM chip in rejecting random coincidences, requiring either an extremely high number of high precision patterns, with increasing costs and complexity of the system, or more flexible solutions. For this reason in the most recent prototype of the AM chip ternary cells have been added in the logic, allowing “don’t care” (DC) bits in the match. Hav...

  3. [Project of the historical monograph on the "Origins of Occupational Medicine Associations in the world"].

    Science.gov (United States)

    Grieco, A; Porro, A; Berti, Giuseppina Bock; Marri, G

    2003-01-01

    The present contribution regards the project of the historical monograph on the Origins of OH associations in 23 countries, and in particular the chapter on the Origins of the Italian Society of Occupational Health. The Italian chapter is aimed at studying the foundation of the Italian Society of Occupational Health (Naples, October 12, 1929, within the 8th National Congress of Occupational Health) and the first decades of its activity. On account of the complexity and variety of the scientific and social context as well as the particular political period considered, the contribution is divided into 4 different parts. The first deals with the foundation of the Italian Society of Occupational Health and its statutory organization. The second part treats the role and presence of the discipline in the university world as well as the relationships with other cultural institutions such as academies. The third part concerns the law frame (specially as to accidents and work-related diseases) within which the activity of the Italian Society of Occupational Health has started and developed. The fourth part analyses the fascist corporative system and the role played by the trade unions in promoting better life and working conditions, with common issues also with the programmes of the Italian Society of Occupational Health. Finally, some closing remarks and references are provided. PMID:14582260

  4. Comparative primate neurobiology and the evolution of br