WorldWideScience

Sample records for brain aging deciphering

  1. GIN'n'CIN hypothesis of brain aging: deciphering the role of somatic genetic instabilities and neural aneuploidy during ontogeny

    Directory of Open Access Journals (Sweden)

    Iourov Ivan Y

    2009-11-01

    Full Text Available Abstract Genomic instability (GIN and chromosome instability (CIN are two closely related ways to produce a variety of pathogenic conditions, i.e. cancer, neurodegeneration, chromosomal and genomic diseases. The GIN and CIN manifestation that possesses the most appreciable impact on cell physiology and viability is aneuploidy. The latter has been consistently shown to be associated with aging. Classically, it has been considered that a failure of mitotic machinery leads to aneuploidy acquiring throughout aging in dividing cells. Paradoxically, this model is inapplicable for the human brain, which is composed of post-mitotic cells persisting throughout the lifetime. To solve this paradox, we have focused on mosaic neural aneuploidy, a remarkable biomarker of GIN and CIN in the normal and diseased brain (i.e. Alzheimer's disease and ataxia-telangiectasia. Looking through the available data on genomic variations in the developing and adult human central nervous system, we were able to propose a hypothesis suggesting that neural aneuploidy produced during early brain development plays a crucial role of genetic determinant of aging in the healthy and diseased brain.

  2. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis.

    Science.gov (United States)

    Westfall, Susan; Lomis, Nikita; Kahouli, Imen; Dia, Si Yuan; Singh, Surya Pratap; Prakash, Satya

    2017-10-01

    The gut microbiota is essential to health and has recently become a target for live bacterial cell biotherapies for various chronic diseases including metabolic syndrome, diabetes, obesity and neurodegenerative disease. Probiotic biotherapies are known to create a healthy gut environment by balancing bacterial populations and promoting their favorable metabolic action. The microbiota and its respective metabolites communicate to the host through a series of biochemical and functional links thereby affecting host homeostasis and health. In particular, the gastrointestinal tract communicates with the central nervous system through the gut-brain axis to support neuronal development and maintenance while gut dysbiosis manifests in neurological disease. There are three basic mechanisms that mediate the communication between the gut and the brain: direct neuronal communication, endocrine signaling mediators and the immune system. Together, these systems create a highly integrated molecular communication network that link systemic imbalances with the development of neurodegeneration including insulin regulation, fat metabolism, oxidative markers and immune signaling. Age is a common factor in the development of neurodegenerative disease and probiotics prevent many harmful effects of aging such as decreased neurotransmitter levels, chronic inflammation, oxidative stress and apoptosis-all factors that are proven aggravators of neurodegenerative disease. Indeed patients with Parkinson's and Alzheimer's diseases have a high rate of gastrointestinal comorbidities and it has be proposed by some the management of the gut microbiota may prevent or alleviate the symptoms of these chronic diseases.

  3. Initial brain aging

    DEFF Research Database (Denmark)

    Thomsen, Kirsten; Yokota, Takashi; Hasan-Olive, Md Mahdi

    2018-01-01

    Brain aging is accompanied by declining mitochondrial respiration. We hypothesized that mitochondrial morphology and dynamics would reflect this decline. Using hippocampus and frontal cortex of a segmental progeroid mouse model lacking Cockayne syndrome protein B (CSBm/m) and C57Bl/6 (WT) controls...... and comparing young (2–5 months) to middle-aged mice (13–14 months), we found that complex I-linked state 3 respiration (CI) was reduced at middle age in CSBm/m hippocampus, but not in CSBm/m cortex or WT brain. In hippocampus of both genotypes, mitochondrial size heterogeneity increased with age. Notably...... content was lower, and hypoxia-induced factor 1α mRNA was greater at both ages in CSBm/m compared to WT brain. Our findings show that decreased CI and increased mitochondrial size heterogeneity are highly associated and point to declining mitochondrial quality control as an initial event in brain aging....

  4. Consciousness and the brain deciphering how the brain codes our thoughts

    CERN Document Server

    Dehaene, Stanislas

    2014-01-01

    How does our brain generate a conscious thought? And why does so much of our knowledge remain unconscious? Thanks to clever psychological and brain-imaging experiments, scientists are closer to cracking this mystery than ever before. In this lively book, Stanislas Dehaene describes the pioneering work his lab and the labs of other cognitive neuroscientists worldwide have accomplished in defining, testing, and explaining the brain events behind a conscious state. We can now pin down the neurons that fire when a person reports becoming aware of a piece of information and understand the crucial role unconscious computations play in how we make decisions. The emerging theory enables a test of consciousness in animals, babies, and those with severe brain injuries. A joyous exploration of the mind and its thrilling complexities, Consciousness and the Brain will excite anyone interested in cutting-edge science and technology and the vast philosophical, personal, and ethical implications of finally quantifying cons...

  5. Yoga May Boost Aging Brains

    Science.gov (United States)

    ... gov/news/fullstory_167693.html Yoga May Boost Aging Brains Changes seen in areas involved with attention ... benefits older adults' brain function. In a recent pilot study, her team tested the effects of weekly ...

  6. Brain aging and therapeutic interventions

    DEFF Research Database (Denmark)

    This book brings together most up-to-date information on different aspects of brain aging and on the strategies for intervention and therapy of age-related brain disorders. It includes 18 chapters by leading researchers, and each chapter is a comprehensive and critical review of the topic...

  7. Neurogenesis in the aging brain.

    Science.gov (United States)

    Apple, Deana M; Solano-Fonseca, Rene; Kokovay, Erzsebet

    2017-10-01

    Adult neurogenesis is the process of producing new neurons from neural stem cells (NSCs) for integration into the brain circuitry. Neurogenesis occurs throughout life in the ventricular-subventricular zone (V-SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus. However, during aging, NSCs and their progenitors exhibit reduced proliferation and neuron production, which is thought to contribute to age-related cognitive impairment and reduced plasticity that is necessary for some types of brain repair. In this review, we describe NSCs and their niches during tissue homeostasis and how they undergo age-associated remodeling and dysfunction. We also discuss some of the functional ramifications in the brain from NSC aging. Finally, we discuss some recent insights from interventions in NSC aging that could eventually translate into therapies for healthy brain aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Resenha/Book Review DEHAENE, Stanislav. Consciousness and the brain: Deciphering how the brain codes our thoughts. New York: Viking Penguin, 2014. 336p. ISBN 978-0-670-02543-5.

    Directory of Open Access Journals (Sweden)

    Rosângela Gabriel

    2016-01-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2016v69n1p261 Trata-se de uma resenha do livro "Consciousness and the brain: deciphering how the brain codes our thought", da autoria de Stanislav Dehaene, publicado em 2014, pela Editora Vicking nos Estados Unidos.

  9. Biology of aging brain

    Directory of Open Access Journals (Sweden)

    Shankar S

    2010-10-01

    Full Text Available Normal aging of the nervous system is associated with some degree of decline in a number of cognitive functions. With the present day attempts to increase the life span, understanding the metabolic interactions and various mechanisms involved in normal neuronal aging continues to be a challenge. Loss of neurons is now recognized to be more modest than the initial estimates suggested and the loss only affected some of the specific neuroanatomical areas like hippocampus and prefrontal cortex. Individual neurons in addition show reduced size of dendritic and axonal arborization. Neurons have significant homeostatic control of the essential physiological functions like synaptic excitability, gene expression and metabolic regulation. Deviation in these normal events can have severe consequences as observed in aging and neurodegeneration. Based on experimental evidence, the evolution of aging is probably the result of altered metabolic triad: the mitochondria, reactive oxygen species and intracellular calcium homeostasis. Perturbations in the metabolic and functional state of this triad lead to a state of decreased homeostatic reserve, where the aged neurons still could maintain adequate function during normal activity. However, these neurons become vulnerable to the stress of excessive metabolic loads associated with spells of ischemia, trauma progressing to neuronal degeneration. Age-related neuronal dysfunction probably involves a host of subtle changes involving the synapses, receptors, neurotransmitters, cytological alterations, electrical transmission, leading to cognitive dysfunction. An exaggeration of it could be the clinical manifestation of dementia, with intraneuronal accumulation of protein aggregates deranging the metabolic state. This review deals with some of the structural, functional and metabolic features of aging nervous system and discusses briefly the functional consequences.

  10. Global aging and the brain.

    Science.gov (United States)

    Kirkwood, Thomas B L

    2010-12-01

    Intrinsic aging of the brain and its relationship to age-related neurodegenerative diseases need to be understood as part of global aging, which results from gradual accumulation of a variety of kinds of cellular and molecular damage. While certain kinds of molecular lesions are particularly associated with specific diseases, there is substantial overlap between the pathways causing disease and those contributing to global aging. Growing evidence indicates that the global aging process is more malleable than used to be thought. This needs to be taken into account in efforts to improve health and retention of mental capital across the life course. © 2010 International Life Sciences Institute.

  11. Harvard Aging Brain Study : Dataset and accessibility

    NARCIS (Netherlands)

    Dagley, Alexander; LaPoint, Molly; Huijbers, Willem; Hedden, Trey; McLaren, Donald G.; Chatwal, Jasmeer P.; Papp, Kathryn V.; Amariglio, Rebecca E.; Blacker, Deborah; Rentz, Dorene M.; Johnson, Keith A.; Sperling, Reisa A.; Schultz, Aaron P.

    2017-01-01

    The Harvard Aging Brain Study is sharing its data with the global research community. The longitudinal dataset consists of a 284-subject cohort with the following modalities acquired: demographics, clinical assessment, comprehensive neuropsychological testing, clinical biomarkers, and neuroimaging.

  12. Deciphering the Finger Prints of Brain Cancer Glioblastoma Multiforme from Four Different Patients by Using Near Infrared Raman Spectroscopy.

    Science.gov (United States)

    Banerjee, Hirendra Nath; Banerji, Arnold; Banerjee, Arunendra Nath; Riddick, Eilena; Petis, Jenae; Evans, Shavonda; Patel, Megha; Parson, Carl; Smith, Valerie; Gwebu, E; Voisin, Sarah

    2015-02-03

    To explore the effectiveness of Raman spectra to diagnose brain cancer glioblastoma multiforme (GBM), we investigated the Raman spectra of single cell from four different GBM cell lines developed from four different patients and analyzed the spectra. The Raman spectra of brain cancer (GBM) cells were similar in all these cell lines. The results indicate that Raman spectra can offer the experimental basis for the cancer diagnosis and treatment.

  13. Deciphering the Finger Prints of Brain Cancer Glioblastoma Multiforme from Four Different Patients by Using Near Infrared Raman Spectroscopy

    OpenAIRE

    Banerjee, Hirendra Nath; Banerji, Arnold; Banerjee, Arunendra Nath; Riddick, Eilena; Petis, Jenae; Evans, Shavonda; Patel, Megha; Parson, Carl; Smith, Valerie; Gwebu, E; Voisin, Sarah

    2015-01-01

    To explore the effectiveness of Raman spectra to diagnose brain cancer glioblastoma multiforme (GBM), we investigated the Raman spectra of single cell from four different GBM cell lines developed from four different patients and analyzed the spectra. The Raman spectra of brain cancer (GBM) cells were similar in all these cell lines. The results indicate that Raman spectra can offer the experimental basis for the cancer diagnosis and treatment.

  14. Antioxidative defense mechanisms in the aging brain

    Directory of Open Access Journals (Sweden)

    Jovanović Zorica

    2014-01-01

    Full Text Available Aging is an extremely complex, multifactorial process that is characterized by a gradual and continuous loss of physiological functions and responses, particularly marked in the brain. A common hallmark in aging and age-related diseases is an increase in oxidative stress and the failure of antioxidant defense systems. Current knowledge indicates that the level of glutathione progressively declines during aging. Because nerve cells are the longest-living cells that exhibit a high consumption rate of oxygen throughout an individual’s lifetime, the brain may be especially vulnerable to oxidative damage and this vulnerability increases during aging. In addition, the brain contains high concentrations of polyunsaturated fatty acids and transition metals and low antioxidative defense mechanisms. Although aging is an inevitable event, a growing volume of data confirms that antioxidant supplementation in combination with symptomatic drug treatments reduces oxidative stress and improves cognitive function in aging and age-related diseases. The present review discusses the neuroprotective effects of antioxidants in the aging brain.

  15. D-galactose-induced brain ageing model

    DEFF Research Database (Denmark)

    Sadigh-Eteghad, Saeed; Majdi, Alireza; McCann, Sarah K.

    2017-01-01

    Animal models are commonly used in brain ageing research. Amongst these, models where rodents are exposed to d-galactose are held to recapitulate a number of features of ageing including neurobehavioral and neurochemical changes. However, results from animal studies are often inconsistent...

  16. Brain cholesterol in normal and pathological aging.

    Science.gov (United States)

    Martin, Mauricio; Dotti, Carlos G; Ledesma, Maria Dolores

    2010-08-01

    Correct lipid homeostasis at the plasma membrane is essential for cell survival and performance. These are critically challenged in the aging brain. Changes in the levels of cholesterol, a major membrane component especially enriched in neurons, accompany the brain aging process. They also occur in neurodegenerative diseases. Understanding the causes and consequences of these changes is a crucial step when trying to delay the cognitive decline, which comes with age, or to design strategies to fight neurodegenerative disorders such as Alzheimer's disease. We here review work that has contributed to this understanding. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Deciphering the finger prints of brain cancer astrocytoma in comparison to astrocytes by using near infrared Raman spectroscopy.

    Science.gov (United States)

    Banerjee, Hirendra Nath; Zhang, L

    2007-01-01

    To explore the biochemical differences between brain cancer cells Astrocytoma and normal cells Astrocyte, we investigated the Raman spectra of single cell from these two cell types and analyzed the difference in spectra and intensity. Raman spectrum shows the banding pattern of different compounds as detected by the laser. Raman intensity measures the intensity of these individual bands. The Raman spectra of brain cancer cells was similar to those of normal cells, but the Raman intensity of cancer cells was much higher than that of normal cells. The Raman spectra of brain cancer Astrocytoma shows that the structural changes of cancer cells happen so that many biological functions of these cells are lost. The results indicate that Raman spectra can offer the experimental basis for the cancer diagnosis and treatment.

  18. The Impact of Traumatic Brain Injury on the Aging Brain.

    Science.gov (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  19. Cellular senescence and the aging brain.

    Science.gov (United States)

    Chinta, Shankar J; Woods, Georgia; Rane, Anand; Demaria, Marco; Campisi, Judith; Andersen, Julie K

    2015-08-01

    Cellular senescence is a potent anti-cancer mechanism that arrests the proliferation of mitotically competent cells to prevent malignant transformation. Senescent cells accumulate with age in a variety of human and mouse tissues where they express a complex 'senescence-associated secretory phenotype' (SASP). The SASP includes many pro-inflammatory cytokines, chemokines, growth factors and proteases that have the potential to cause or exacerbate age-related pathology, both degenerative and hyperplastic. While cellular senescence in peripheral tissues has recently been linked to a number of age-related pathologies, its involvement in brain aging is just beginning to be explored. Recent data generated by several laboratories suggest that both aging and age-related neurodegenerative diseases are accompanied by an increase in SASP-expressing senescent cells of non-neuronal origin in the brain. Moreover, this increase correlates with neurodegeneration. Senescent cells in the brain could therefore constitute novel therapeutic targets for treating age-related neuropathologies. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Brain plasticity, memory, and aging: a discussion

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, E.L.; Rosenzweig, M.R.

    1977-12-01

    It is generally assumed that memory faculties decline with age. A discussion of the relationship of memory and aging and the possibility of retarding the potential decline is hampered by the fact that no satisfactory explanation of memory is available in either molecular or anatomical terms. However, this lack of description of memory does not mean that there is a lack of suggested mechanisms for long-term memory storage. Present theories of memory usually include first, neurophysiological or electrical events, followed by a series of chemical events which ultimately lead to long-lasting anatomical changes in the brain. Evidence is increasing for the biochemical and anatomical plasticity of the nervous system and its importance in the normal functioning of the brain. Modification of this plasticity may be an important factor in senescence. This discussion reports experiments which indicate that protein synthesis and anatomical changes may be involved in long-term memory storage. Environmental influences can produce quantitative differences in brain anatomy and in behavior. In experimental animals, enriched environments lead to more complex anatomical patterns than do colony or impoverished environments. This raises fundamental questions about the adequacy of the isolated animal which is frequently being used as a model for aging research. A more important applied question is the role of social and intellectual stimulation in influencing aging of the human brain.

  1. Sirtuins: from Metabolic Regulation to Brain Aging

    Directory of Open Access Journals (Sweden)

    Wenzhen eDuan

    2013-07-01

    Full Text Available Brain aging is characterized by progressive loss of neurophysiological functions that is often accompanied by age-associated neurodegeneration. Calorie restriction has been linked to extension of lifespan and reduction of the risk of neurodegenerative diseases in experimental model systems. Several signaling pathways have been indicated to underlie the beneficial effects of calorie restriction, among which the sirtuin family has been suggested to play a central role. In mammals, it has been established that sirtuins regulate physiological responses to metabolism and stress, two key factors that affect the process of aging. Sirtuins represent a promising new class of conserved deacetylases that play an important role in regulating metabolism and aging. This review focuses on current understanding of the relation between metabolic pathways involving sirtuins and the brain aging process, with focus on SIRT1 and SIRT3. Identification of therapeutic agents capable of modulating the expression and/or activity of sirtuins is expected to provide promising strategies for ameliorating neurodegeneration. Future investigations regarding the concerted interplay of the different sirtuins will help us understand more about the aging process, and potentially lead to the development of therapeutic approaches for the treatment of age-related neurodegenerative diseases and promotion of successful aging.

  2. (Pre)diabetes, brain aging, and cognition.

    Science.gov (United States)

    S Roriz-Filho, Jarbas; Sá-Roriz, Ticiana M; Rosset, Idiane; Camozzato, Ana L; Santos, Antonio C; Chaves, Márcia L F; Moriguti, Júlio César; Roriz-Cruz, Matheus

    2009-05-01

    Cognitive dysfunction and dementia have recently been proven to be common (and underrecognized) complications of diabetes mellitus (DM). In fact, several studies have evidenced that phenotypes associated with obesity and/or alterations on insulin homeostasis are at increased risk for developing cognitive decline and dementia, including not only vascular dementia, but also Alzheimer's disease (AD). These phenotypes include prediabetes, diabetes, and the metabolic syndrome. Both types 1 and 2 diabetes are also important risk factors for decreased performance in several neuropsychological functions. Chronic hyperglycemia and hyperinsulinemia primarily stimulates the formation of Advanced Glucose Endproducts (AGEs), which leads to an overproduction of Reactive Oxygen Species (ROS). Protein glycation and increased oxidative stress are the two main mechanisms involved in biological aging, both being also probably related to the etiopathogeny of AD. AD patients were found to have lower than normal cerebrospinal fluid levels of insulin. Besides its traditional glucoregulatory importance, insulin has significant neurothrophic properties in the brain. How can clinical hyperinsulinism be a risk factor for AD whereas lab experiments evidence insulin to be an important neurothrophic factor? These two apparent paradoxal findings may be reconciliated by evoking the concept of insulin resistance. Whereas insulin is clearly neurothrophic at moderate concentrations, too much insulin in the brain may be associated with reduced amyloid-beta (Abeta) clearance due to competition for their common and main depurative mechanism - the Insulin-Degrading Enzyme (IDE). Since IDE is much more selective for insulin than for Abeta, brain hyperinsulinism may deprive Abeta of its main clearance mechanism. Hyperglycemia and hyperinsulinemia seems to accelerate brain aging also by inducing tau hyperphosphorylation and amyloid oligomerization, as well as by leading to widespread brain microangiopathy

  3. Microglia priming in the aging brain : Implications for neurodegeneration

    NARCIS (Netherlands)

    Darwin Arulseeli, Divya; Biber, Knut

    2016-01-01

    The primary aim of the thesis “Microglia priming in the aging brain: Implications for neurodegeneration” was to understand microglia phenotypes associated with brain aging and the potential mechanisms for this age-associated change. Microglia in the aging brain assume a hypersensitive

  4. Deciphering Your Lab Report

    Science.gov (United States)

    ... and services. Advertising & Sponsorship: Policy | Opportunities Deciphering Your Lab Report Share this page: Was this page helpful? The ... responsibility. You may encounter complex test results on lab reports and will need to recognize that there is ...

  5. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  6. Poststroke Cell Therapy of the Aged Brain

    Directory of Open Access Journals (Sweden)

    Aurel Popa-Wagner

    2015-01-01

    Full Text Available During aging, many neurodegenerative disorders are associated with reduced neurogenesis and a decline in the proliferation of stem/progenitor cells. The development of the stem cell (SC, the regenerative therapy field, gained tremendous expectations in the diseases that suffer from the lack of treatment options. Stem cell based therapy is a promising approach to promote neuroregeneration after brain injury and can be potentiated when combined with supportive pharmacological drug treatment, especially in the aged. However, the mechanism of action for a particular grafted cell type, the optimal delivery route, doses, or time window of administration after lesion is still under debate. Today, it is proved that these protections are most likely due to modulatory mechanisms rather than the expected cell replacement. Our group proved that important differences appear in the aged brain compared with young one, that is, the accelerated progression of ischemic area, or the delayed initiation of neurological recovery. In this light, these age-related aspects should be carefully evaluated in the clinical translation of neurorestorative therapies. This review is focused on the current perspectives and suitable sources of stem cells (SCs, mechanisms of action, and the most efficient delivery routes in neurorestoration therapies in the poststroke aged environment.

  7. Brain pathologies in extreme old age.

    Science.gov (United States)

    Neltner, Janna H; Abner, Erin L; Jicha, Gregory A; Schmitt, Frederick A; Patel, Ela; Poon, Leonard W; Marla, Gearing; Green, Robert C; Davey, Adam; Johnson, Mary Ann; Jazwinski, S Michal; Kim, Sangkyu; Davis, Daron; Woodard, John L; Kryscio, Richard J; Van Eldik, Linda J; Nelson, Peter T

    2016-01-01

    With an emphasis on evolving concepts in the field, we evaluated neuropathologic data from very old research volunteers whose brain autopsies were performed at the University of Kentucky Alzheimer's Disease Center, incorporating data from the Georgia Centenarian Study (n = 49 cases included), Nun Study (n = 17), and University of Kentucky Alzheimer's Disease Center (n = 11) cohorts. Average age of death was 102.0 (range: 98-107) years overall. Alzheimer's disease pathology was not universal (62% with "moderate" or "frequent" neuritic amyloid plaque densities), whereas frontotemporal lobar degeneration was absent. By contrast, some hippocampal neurofibrillary tangles (including primary age-related tauopathy) were observed in every case. Lewy body pathology was seen in 16.9% of subjects and hippocampal sclerosis of aging in 20.8%. We describe anatomic distributions of pigment-laden macrophages, expanded Virchow-Robin spaces, and arteriolosclerosis among Georgia Centenarians. Moderate or severe arteriolosclerosis pathology, throughout the brain, was associated with both hippocampal sclerosis of aging pathology and an ABCC9 gene variant. These results provide fresh insights into the complex cerebral multimorbidity, and a novel genetic risk factor, at the far end of the human aging spectrum. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Executive dysfunction, brain aging, and political leadership.

    Science.gov (United States)

    Fisher, Mark; Franklin, David L; Post, Jerrold M

    2014-01-01

    Decision-making is an essential component of executive function, and a critical skill of political leadership. Neuroanatomic localization studies have established the prefrontal cortex as the critical brain site for executive function. In addition to the prefrontal cortex, white matter tracts as well as subcortical brain structures are crucial for optimal executive function. Executive function shows a significant decline beginning at age 60, and this is associated with age-related atrophy of prefrontal cortex, cerebral white matter disease, and cerebral microbleeds. Notably, age-related decline in executive function appears to be a relatively selective cognitive deterioration, generally sparing language and memory function. While an individual may appear to be functioning normally with regard to relatively obvious cognitive functions such as language and memory, that same individual may lack the capacity to integrate these cognitive functions to achieve normal decision-making. From a historical perspective, global decline in cognitive function of political leaders has been alternatively described as a catastrophic event, a slowly progressive deterioration, or a relatively episodic phenomenon. Selective loss of executive function in political leaders is less appreciated, but increased utilization of highly sensitive brain imaging techniques will likely bring greater appreciation to this phenomenon. Former Israeli Prime Minister Ariel Sharon was an example of a political leader with a well-described neurodegenerative condition (cerebral amyloid angiopathy) that creates a neuropathological substrate for executive dysfunction. Based on the known neuroanatomical and neuropathological changes that occur with aging, we should probably assume that a significant proportion of political leaders over the age of 65 have impairment of executive function.

  9. 'A confession of ignorance': deaths from old age and deciphering cause-of-death statistics in Scotland, 1855-1949.

    Science.gov (United States)

    Reid, Alice; Garrett, Eilidh; Dibben, Chris; Williamson, Lee

    2015-07-03

    A large amount of the research undertaken in an attempt to discover the reasons underlying the late nineteenth- and early twentieth-century mortality decline in Britain has relied on the statistics published by the Registrars General. The processes by which individual causes of death are recorded and then processed in order to create the statistics are not, however, well understood. In this article, the authors build on previous work to piece together a time series of causes of death for Scotland, which removes many of the discontinuities encountered in the published statistics that result from the Registrar General deciding to update the nosology, or classification system, which was being used to compile his figures. Having regrouped individual causes of death to 'smooth' the time series, the authors use the new groups to examine the changing causes of death in Scotland for selected age groups, before turning to undertake a detailed examination of mortality amongst those aged 55 or more. The authors find that when deaths from 'old age' in the latter age group are separated from other 'ill-defined' causes, it becomes obvious that there was a 'rebranding' of cause of death. The authors then use individual-level data from two Scottish communities to further dissect the roles played by 'informants' and 'doctors' in this rebranding, in order to see how these roles may have altered over time and what the consequences might be for one's view of how mortality changed in Scotland between 1855 and 1949. Finally, the authors argue that their findings have important implications for some of historical demography's most prominent theories: the McKeown thesis and the theory of epidemiological transition.

  10. Harvard Aging Brain Study: Dataset and accessibility.

    Science.gov (United States)

    Dagley, Alexander; LaPoint, Molly; Huijbers, Willem; Hedden, Trey; McLaren, Donald G; Chatwal, Jasmeer P; Papp, Kathryn V; Amariglio, Rebecca E; Blacker, Deborah; Rentz, Dorene M; Johnson, Keith A; Sperling, Reisa A; Schultz, Aaron P

    2017-01-01

    The Harvard Aging Brain Study is sharing its data with the global research community. The longitudinal dataset consists of a 284-subject cohort with the following modalities acquired: demographics, clinical assessment, comprehensive neuropsychological testing, clinical biomarkers, and neuroimaging. To promote more extensive analyses, imaging data was designed to be compatible with other publicly available datasets. A cloud-based system enables access to interested researchers with blinded data available contingent upon completion of a data usage agreement and administrative approval. Data collection is ongoing and currently in its fifth year. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Brain Age in Early Stages of Bipolar Disorders or Schizophrenia.

    Science.gov (United States)

    Hajek, Tomas; Franke, Katja; Kolenic, Marian; Capkova, Jana; Matejka, Martin; Propper, Lukas; Uher, Rudolf; Stopkova, Pavla; Novak, Tomas; Paus, Tomas; Kopecek, Miloslav; Spaniel, Filip; Alda, Martin

    2017-12-20

    The greater presence of neurodevelopmental antecedants may differentiate schizophrenia from bipolar disorders (BD). Machine learning/pattern recognition allows us to estimate the biological age of the brain from structural magnetic resonance imaging scans (MRI). The discrepancy between brain and chronological age could contribute to early detection and differentiation of BD and schizophrenia. We estimated brain age in 2 studies focusing on early stages of schizophrenia or BD. In the first study, we recruited 43 participants with first episode of schizophrenia-spectrum disorders (FES) and 43 controls. In the second study, we included 96 offspring of bipolar parents (48 unaffected, 48 affected) and 60 controls. We used relevance vector regression trained on an independent sample of 504 controls to estimate the brain age of study participants from structural MRI. We calculated the brain-age gap estimate (BrainAGE) score by subtracting the chronological age from the brain age. Participants with FES had higher BrainAGE scores than controls (F(1, 83) = 8.79, corrected P = .008, Cohen's d = 0.64). Their brain age was on average 2.64 ± 4.15 years greater than their chronological age (matched t(42) = 4.36, P < .001). In contrast, participants at risk or in the early stages of BD showed comparable BrainAGE scores to controls (F(2,149) = 1.04, corrected P = .70, η2 = 0.01) and comparable brain and chronological age. Early stages of schizophrenia, but not early stages of BD, were associated with advanced BrainAGE scores. Participants with FES showed neurostructural alterations, which made their brains appear 2.64 years older than their chronological age. BrainAGE scores could aid in early differential diagnosis between BD and schizophrenia.

  12. TRAUMATIC BRAIN INJURY IN PEDIATRIC AGE GROUP

    Directory of Open Access Journals (Sweden)

    Hayagriva

    2015-11-01

    Full Text Available Traumatic brain injury is one of the major causes of morbidity and mortality in children. The anatomical features, physiological response to injury, neuronal development, and low myelination in children cause different clinical features compared to the adult traumatic brain injury. Our aim is to study the incidence, predisposing factors, clinical presentations, and outcome in pediatric head injuries. The patients included in this retrospective study are under the age of 14 years admitted in the Neurosurgery Department of King George Hospital, Visakhapatnam, which is a tertiary care centre. The study period is two years’ duration from 1.1.2013 to 31.12.2014. Data collected on the basis of history, physical examination, base line investigations, and the plain CT scan is all cases. The pediatric patients were 226 in total 1643 case of head injury cases. There were 64.6% (n=146 males and 35.4% (n=80 females. The age ranged from 12 days to 14 years. Fall from height was the commonest cause of head injury found in 48.6% (n=110 cases, road traffic accidents (RTA in 34.5% (n=78 and other causes 16.8% (n=38; 49 (21.68% patients had associated injuries. At 55.75% (n=126 cases mild head injury with GCS 13-15 was present and severe head injury with GCS less than 8 in 29 (12.8% patients. The 188 patients are treated conservatively, 38 patients underwent different neurosurgical procedures in which 5 patients died. CONCLUSION: Head injury in pediatric age group carries high risk of morbidity and mortality. Good outcome achieved by early diagnosis and referral from primary care centers to tertiary care centers.

  13. Brain Aging in the Oldest-Old

    Directory of Open Access Journals (Sweden)

    A. von Gunten

    2010-01-01

    Full Text Available Nonagenarians and centenarians represent a quickly growing age group worldwide. In parallel, the prevalence of dementia increases substantially, but how to define dementia in this oldest-old age segment remains unclear. Although the idea that the risk of Alzheimer's disease (AD decreases after age 90 has now been questioned, the oldest-old still represent a population relatively resistant to degenerative brain processes. Brain aging is characterised by the formation of neurofibrillary tangles (NFTs and senile plaques (SPs as well as neuronal and synaptic loss in both cognitively intact individuals and patients with AD. In nondemented cases NFTs are usually restricted to the hippocampal formation, whereas the progressive involvement of the association areas in the temporal neocortex parallels the development of overt clinical signs of dementia. In contrast, there is little correlation between the quantitative distribution of SP and AD severity. The pattern of lesion distribution and neuronal loss changes in extreme aging relative to the younger-old. In contrast to younger cases where dementia is mainly related to severe NFT formation within adjacent components of the medial and inferior aspects of the temporal cortex, oldest-old individuals display a preferential involvement of the anterior part of the CA1 field of the hippocampus whereas the inferior temporal and frontal association areas are relatively spared. This pattern suggests that both the extent of NFT development in the hippocampus as well as a displacement of subregional NFT distribution within the Cornu ammonis (CA fields may be key determinants of dementia in the very old. Cortical association areas are relatively preserved. The progression of NFT formation across increasing cognitive impairment was significantly slower in nonagenarians and centenarians compared to younger cases in the CA1 field and entorhinal cortex. The total amount of amyloid and the neuronal loss in these regions

  14. The Influence of the Brain on Overpopulation, Ageing and Dependency.

    Science.gov (United States)

    Cape, Ronald D. T.

    1989-01-01

    With time, an increasing number in the world population is becoming old, and changes in the aging brain mean that a significant proportion of the aged are likely to be dependent on others. The devotion of resources to research into the aging brain could bring benefits far outweighing the investment. (Author/CW)

  15. Purposeful Engagement, Healthy Aging, and the Brain

    Science.gov (United States)

    Ryff, Carol D.; Heller, Aaron S.; Schaefer, Stacey M.; van Reekum, Carien; Davidson, Richard J.

    2016-01-01

    Purpose of review Research on psychological well-being in later life has identified strengths and vulnerabilities that occur with aging. We review the conceptual and philosophical foundations of a eudaimonic model of well-being and its empirical translation into six key dimensions of positive functioning. We also consider its implications for health, broadly defined. Recent findings Numerous findings from national longitudinal samples of U.S. adults are described. They show declining scores on purpose in life and personal growth with aging, but also underscore the notable variability among older persons in these patterns. Recently, health benefits have been identified among older adults who maintain high levels of a particular aspect of well-being, namely, purposeful life engagement. These benefits include extended longevity, reduced risk for various disease outcomes, reduced physiological dysregulation, and gene expression linked to better inflammatory profiles. The brain mechanisms that underlie such outcomes are also examined via a focus on affective style. Adults with higher levels of purpose in life show more rapid recovery from negative stimulus provocation, whereas those with higher well-being overall show sustained activation of reward circuitry in response to positive stimuli, and this pattern is associated with lower diurnal cortisol output. Volumetric findings (right insular gray matter volume) have also been linked with eudaimonic well-being. Summary Eudaimonic well-being predicts better health and longer lives, and thus constitutes an important direction for future research and practice. Intervention studies designed to promote well-being, including among those suffering from psychological disorders, are briefly described. PMID:28534002

  16. Factors associated with morphometric brain changes in cognitively normal aging

    Directory of Open Access Journals (Sweden)

    Renata Eloah de Lucena Ferretti-Rebustini

    Full Text Available OBJECTIVE: Cognitive impairment is associated with reductions in brain weight and volume. The factors related to morphometric brain changes in cognitively normal aging remain unknown. We aimed to identify which clinical factors are associated with morphometric brain changes in cognitively normal aging. METHODS: A cross-sectional study of 414 subjects, ≥50 years old submitted to clinical assessment and brain autopsy, after informed consent, was carried out at the São Paulo Autopsy Service, Brazil. Data on cognitive and functional evaluations were collected through structured interview applied to the next-of-kin. Brain weight (g and volume (mL measurements were obtained and adjusted for head circumference (cm. Associations between brain weight/volume and related factors were obtained through univariate and multivariate analysis. RESULTS: Participants were predominantly male (60.4%, Caucasian (69%, with mean age of 67.1 ± 10.9 years. Mean brain weight was 1219.2 ± 140.9 g, and mean brain volume was 1217.1 ± 152.3 mL. Head circumference was independently associated with low brain weight (p<0.001 and volume (p<0.001. Total and adjusted brain weight and volume decreased in some conditions. Female gender (p<0.001, hypertension (p<0.009, coronary artery disease (p<0.013 and walking assistance (p<0.011 were associated with lower adjusted brain weight while schooling was associated with higher adjusted brain weight (p<0.003. Female gender (p<0.001, age (p<0.001 and hypertension (p<0.011 were associated with low adjusted brain volume. CONCLUSION: Morphometric brain changes occur despite the absence of cognitive impairment and were predominantly associated with age, female gender, mobility impairment and cardiovascular conditions. Schooling may be a protective factor.

  17. Parameters of glucose metabolism and the aging brain

    DEFF Research Database (Denmark)

    Akintola, Abimbola A; van den Berg, Annette; Altmann-Schneider, Irmhild

    2015-01-01

    Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean...... age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic model assessment of insulin sensitivity (HOMA-IS)) and insulin secretion (insulinogenic index). 3-T brain...... different parameters of glucose metabolism (impairment of which is characteristic of diabetes mellitus) and brain aging....

  18. The Disconnected Brain and Executive Function Decline in Aging.

    Science.gov (United States)

    Fjell, Anders M; Sneve, Markus H; Grydeland, Håkon; Storsve, Andreas B; Walhovd, Kristine B

    2017-03-01

    Higher order speeded cognitive abilities depend on efficient coordination of activity across the brain, rendering them vulnerable to age reductions in structural and functional brain connectivity. The concept of "disconnected aging" has been invoked, suggesting that degeneration of connections between distant brain regions cause cognitive reductions. However, it has not been shown that changes in cognitive functions over time can be explained by simultaneous changes in brain connectivity. We followed 119 young and middle-aged (23-52 years) and older (63-86 years) adults for 3.3 years with repeated assessments of structural and functional brain connectivity and executive functions. We found unique age-related longitudinal reductions in executive function over and above changes in more basic cognitive processes. Intriguingly, 82.5% of the age-related decline in executive function could be explained by changes in connectivity over time. While both structural and functional connectivity changes were related to longitudinal reductions in executive function, only structural connectivity change could explain the age-specific decline. This suggests that the major part of the age-related reductions in executive function can be attributed to micro- and macrostructural alterations in brain connectivity. Although correlational in nature, we believe the present results constitute evidence for a "disconnected brain" view on cognitive aging. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging

    Science.gov (United States)

    Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai

    2017-10-01

    Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.

  20. Plasticity of the aging brain: new directions in cognitive neuroscience.

    Science.gov (United States)

    Gutchess, Angela

    2014-10-31

    Cognitive neuroscience has revealed aging of the human brain to be rich in reorganization and change. Neuroimaging results have recast our framework around cognitive aging from one of decline to one emphasizing plasticity. Current methods use neurostimulation approaches to manipulate brain function, providing a direct test of the ways that the brain differently contributes to task performance for younger and older adults. Emerging research into emotional, social, and motivational domains provides some evidence for preservation with age, suggesting potential avenues of plasticity, alongside additional evidence for reorganization. Thus, we begin to see that aging of the brain, amidst interrelated behavioral and biological changes, is as complex and idiosyncratic as the brain itself, qualitatively changing over the life span. Copyright © 2014, American Association for the Advancement of Science.

  1. Do glutathione levels decline in aging human brain?

    Science.gov (United States)

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The blood brain barrier: Insights from development and ageing.

    Science.gov (United States)

    Delaney, Conor; Campbell, Matthew

    2017-10-02

    The blood brain barrier is a necessity for cerebral homeostasis and response to environmental insult, thus loss in functionality with age creates opportunities for disease to arise in the aged brain. Understanding how the barrier is developed and maintained throughout the earlier years of adult life can identify key processes that may have beneficial applications in the restoration of the aged brain. With an unprecedented increasing global aged population, the prevention and treatment of age-associated disorders has become a rising healthcare priority demanding novel approaches for the development of therapeutic strategies. The aging cardiovascular system has long been recognised to be a major factor in age-associated diseases such as stroke, atherosclerosis and cardiac arrest. Changes in the highly specialised cerebral vasculature may similarly drive neurodegenerative and neuropsychiatric disease.

  3. Lipidomics of human brain aging and Alzheimer's disease pathology.

    Science.gov (United States)

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  4. Exploring age-related brain degeneration in meditation practitioners.

    Science.gov (United States)

    Luders, Eileen

    2014-01-01

    A growing body of research suggests that meditation practices are associated with substantial psychological as well as physiological benefits. In searching for the biological mechanisms underlying the beneficial impact of meditation, studies have revealed practice-induced alterations of neurotransmitters, brain activity, and cognitive abilities, just to name a few. These findings not only imply a close link between meditation and brain structure, but also suggest possible modulating effects of meditation on age-related brain atrophy. Given that normal aging is associated with significant loss of brain tissue, meditation-induced growth and/or preservation might manifest as a seemingly reduced brain age in meditators (i.e., cerebral measures characteristic of younger brains). Surprisingly, there are only three published studies that have addressed the question of whether meditation diminishes age-related brain degeneration. This paper reviews these three studies with respect to the brain attributes studied, the analytical strategies applied, and the findings revealed. The review concludes with an elaborate discussion on the significance of existing studies, implications and directions for future studies, as well as the overall relevance of this field of research. © 2013 New York Academy of Sciences.

  5. Accelerated Brain Aging in Schizophrenia : A Longitudinal Pattern Recognition Study

    NARCIS (Netherlands)

    Schnack, Hugo G; van Haren, Neeltje E M; Nieuwenhuis, Mireille; Hulshoff Pol, Hilleke E; Cahn, Wiepke; Kahn, René S

    2016-01-01

    OBJECTIVE: Despite the multitude of longitudinal neuroimaging studies that have been published, a basic question on the progressive brain loss in schizophrenia remains unaddressed: Does it reflect accelerated aging of the brain, or is it caused by a fundamentally different process? The authors used

  6. Accelerated brain aging in schizophrenia : A longitudinal pattern recognition study

    NARCIS (Netherlands)

    Schnack, Hugo G.; Van Haren, Neeltje E M; Nieuwenhuis, Mireille; Pol, Hilleke E Hulshoff; Cahn, Wiepke; Kahn, René S.

    2016-01-01

    OBJECTIVE: Despite the multitude of longitudinal neuroimaging studies that have been published, a basic question on the progressive brain loss in schizophrenia remains unaddressed: Does it reflect accelerated aging of the brain, or is it caused by a fundamentally different process? The authors used

  7. Central region morphometry in a child brain; Age and gender ...

    African Journals Online (AJOL)

    2013-10-10

    ‑sagittal MR images was analyzed in age and gender ... adults. However, the brain of an adult is different from that of a child in terms of size and shape. The brain continues its development during childhood. When the entire ...

  8. Structural brain changes in aging: courses, causes and cognitive consequences.

    Science.gov (United States)

    Fjell, Anders M; Walhovd, Kristine B

    2010-01-01

    The structure of the brain is constantly changing from birth throughout the lifetime, meaning that normal aging, free from dementia, is associated with structural brain changes. This paper reviews recent evidence from magnetic resonance imaging (MRI) studies about age-related changes in the brain. The main conclusions are that (1) the brain shrinks in volume and the ventricular system expands in healthy aging. However, the pattern of changes is highly heterogeneous, with the largest changes seen in the frontal and temporal cortex, and in the putamen, thalamus, and accumbens. With modern approaches to analysis of MRI data, changes in cortical thickness and subcortical volume can be tracked over periods as short as one year, with annual reductions of between 0.5% and 1.0% in most brain areas. (2) The volumetric brain reductions in healthy aging are likely only to a minor extent related to neuronal loss. Rather, shrinkage of neurons, reductions of synaptic spines, and lower numbers of synapses probably account for the reductions in grey matter. In addition, the length of myelinated axons is greatly reduced, up to almost 50%. (3) Reductions in specific cognitive abilities--for instance processing speed, executive functions, and episodic memory--are seen in healthy aging. Such reductions are to a substantial degree mediated by neuroanatomical changes, meaning that between 25% and 100% of the differences between young and old participants in selected cognitive functions can be explained by group differences in structural brain characteristics.

  9. Brain aging and neurodegeneration: from a mitochondrial point of view.

    Science.gov (United States)

    Grimm, Amandine; Eckert, Anne

    2017-11-01

    Aging is defined as a progressive time-related accumulation of changes responsible for or at least involved in the increased susceptibility to disease and death. The brain seems to be particularly sensitive to the aging process since the appearance of neurodegenerative diseases, including Alzheimer's disease, is exponential with the increasing age. Mitochondria were placed at the center of the 'free-radical theory of aging', because these paramount organelles are not only the main producers of energy in the cells, but also to main source of reactive oxygen species. Thus, in this review, we aim to look at brain aging processes from a mitochondrial point of view by asking: (i) What happens to brain mitochondrial bioenergetics and dynamics during aging? (ii) Why is the brain so sensitive to the age-related mitochondrial impairments? (iii) Is there a sex difference in the age-induced mitochondrial dysfunction? Understanding mitochondrial physiology in the context of brain aging may help identify therapeutic targets against neurodegeneration. This article is part of a series "Beyond Amyloid". © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  10. Nutritional strategies to optimise cognitive function in the aging brain.

    Science.gov (United States)

    Wahl, Devin; Cogger, Victoria C; Solon-Biet, Samantha M; Waern, Rosilene V R; Gokarn, Rahul; Pulpitel, Tamara; Cabo, Rafael de; Mattson, Mark P; Raubenheimer, David; Simpson, Stephen J; Le Couteur, David G

    2016-11-01

    Old age is the greatest risk factor for most neurodegenerative diseases. During recent decades there have been major advances in understanding the biology of aging, and the development of nutritional interventions that delay aging including calorie restriction (CR) and intermittent fasting (IF), and chemicals that influence pathways linking nutrition and aging processes. CR influences brain aging in many animal models and recent findings suggest that dietary interventions can influence brain health and dementia in older humans. The role of individual macronutrients in brain aging also has been studied, with conflicting results about the effects of dietary protein and carbohydrates. A new approach known as the Geometric Framework (GF) has been used to unravel the complex interactions between macronutrients (protein, fat, and carbohydrate) and total energy on outcomes such as aging. These studies have shown that low-protein, high-carbohydrate (LPHC) diets are optimal for lifespan in ad libitum fed animals, while total calories have minimal effect once macronutrients are taken into account. One of the primary purposes of this review is to explore the notion that macronutrients may have a more translational potential than CR and IF in humans, and therefore there is a pressing need to use GF to study the impact of diet on brain aging. Furthermore, given the growing recognition of the role of aging biology in dementia, such studies might provide a new approach for dietary interventions for optimizing brain health and preventing dementia in older people. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Increased White Matter Inflammation in Aging- and Alzheimer's Disease Brain.

    Science.gov (United States)

    Raj, Divya; Yin, Zhuoran; Breur, Marjolein; Doorduin, Janine; Holtman, Inge R; Olah, Marta; Mantingh-Otter, Ietje J; Van Dam, Debby; De Deyn, Peter P; den Dunnen, Wilfred; Eggen, Bart J L; Amor, Sandra; Boddeke, Erik

    2017-01-01

    Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer's disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [11C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.

  12. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging.

    Science.gov (United States)

    Zamroziewicz, Marta K; Barbey, Aron K

    2016-01-01

    Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition's impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition-from entire diets to specific nutrients-affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i) methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns (NBPs), along with (ii) modern indices of brain health derived from high-resolution magnetic resonance imaging (MRI). By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging.

  13. A spatio-temporal reference model of the aging brain.

    Science.gov (United States)

    Huizinga, W; Poot, D H J; Vernooij, M W; Roshchupkin, G V; Bron, E E; Ikram, M A; Rueckert, D; Niessen, W J; Klein, S

    2017-12-05

    Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual inspection of magnetic resonance (MR) images. To facilitate making this distinction and thus aid the diagnosis of neurodegenerative disorders, we propose a method for developing a spatio-temporal model of morphological differences in the brain due to normal aging. The method utilizes groupwise image registration to characterize morphological variation across brain scans of people with different ages. To extract the deformations that are due to normal aging we use partial least squares regression, which yields modes of deformations highly correlated with age, and corresponding scores for each input subject. Subsequently, we determine a distribution of morphologies as a function of age by fitting smooth percentile curves to these scores. This distribution is used as a reference to which a person's morphology score can be compared. We validate our method on two different datasets, using images from both cognitively normal subjects and patients with Alzheimer disease (AD). Results show that the proposed framework extracts the expected atrophy patterns. Moreover, the morphology scores of cognitively normal subjects are on average lower than the scores of AD subjects, indicating that morphology differences between AD subjects and healthy subjects can be partly explained by accelerated aging. With our methods we are able to assess accelerated brain aging on both population and individual level. A spatio-temporal aging brain model derived from 988 T1-weighted MR brain scans from a large population imaging study (age range 45.9-91.7y, mean age 68.3y) is made publicly available at www.agingbrain.nl. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Age, Plasticity, and Homeostasis In Childhood Brain Disorders

    Science.gov (United States)

    Dennis, Maureen; Spiegler, Brenda J.; Juranek, Jenifer J.; Bigler, Erin D.; Snead, O. Carter; Fletcher, Jack M.

    2013-01-01

    It has been widely accepted that the younger the age and/or immaturity of the organism, the greater the brain plasticity, the young age plasticity privilege. This paper examines the relation of a young age to plasticity, reviewing human pediatric brain disorders, as well as selected animal models, human developmental and adult brain disorder studies. As well, we review developmental and childhood acquired disorders that involve a failure of regulatory homeostasis. Our core arguments are: Plasticity is neutral with respect to outcome. Although the effects of plasticity are often beneficial, the outcome of plasticity may be adaptive or maladaptive.The young age plasticity privilege has been overstated.Plastic change operates in concert with homeostatic mechanisms regulating change at every point in the lifespan.The same mechanisms that propel developmental change expose the immature brain to adverse events, making it more difficult for the immature than for the mature brain to sustain equilibrium between plasticity and homeostasis.Poor outcome in many neurodevelopmental disorders and childhood acquired brain insults is related to disequilibrium between plasticity and homeostasis. PMID:24096190

  15. Fertility, aging and the brain neuroendocrinological studies in female rats

    NARCIS (Netherlands)

    Franke, A.N.

    2003-01-01

    It is well known that fertility decreases in female mammals with advancing age. In women this decrease already starts around the age of 30 and shows a large variation between individuals. The aim of this thesis was to elucidate changes in the reproductive system, especially in the brain, that may

  16. The circadian clock and pathology of the ageing brain.

    Science.gov (United States)

    Kondratova, Anna A; Kondratov, Roman V

    2012-03-07

    Ageing leads to a functional deterioration of many brain systems, including the circadian clock--an internal time-keeping system that generates ∼24-hour rhythms in physiology and behaviour. Numerous clinical studies have established a direct correlation between abnormal circadian clock functions and the severity of neurodegenerative and sleep disorders. Latest data from experiments in model organisms, gene expression studies and clinical trials imply that dysfunctions of the circadian clock contribute to ageing and age-associated pathologies, thereby suggesting a functional link between the circadian clock and age-associated decline of brain functions. Potential molecular mechanisms underlying this link include the circadian control of physiological processes such as brain metabolism, reactive oxygen species homeostasis, hormone secretion, autophagy and stem cell proliferation.

  17. Premature Brain Aging in Baboons Resulting from Moderate Fetal Undernutrition.

    Science.gov (United States)

    Franke, Katja; Clarke, Geoffrey D; Dahnke, Robert; Gaser, Christian; Kuo, Anderson H; Li, Cun; Schwab, Matthias; Nathanielsz, Peter W

    2017-01-01

    Contrary to the known benefits from a moderate dietary reduction during adulthood on life span and health, maternal nutrient reduction during pregnancy is supposed to affect the developing brain, probably resulting in impaired brain structure and function throughout life. Decreased fetal nutrition delivery is widespread in both developing and developed countries, caused by poverty and natural disasters, but also due to maternal dieting, teenage pregnancy, pregnancy in women over 35 years of age, placental insufficiency, or multiples. Compromised development of fetal cerebral structures was already shown in our baboon model of moderate maternal nutrient reduction. The present study was designed to follow-up and evaluate the effects of moderate maternal nutrient reduction on individual brain aging in the baboon during young adulthood (4-7 years; human equivalent 14-24 years), applying a novel, non-invasive neuroimaging aging biomarker. The study reveals premature brain aging of +2.7 years (p life-long developmental programming. This non-invasive MRI biomarker allows further longitudinal in vivo tracking of individual brain aging trajectories to assess the life-long effects of developmental and environmental influences in programming paradigms, aiding preventive and curative treatments on cerebral atrophy in experimental animal models and humans.

  18. 5-Hydroxymethylcytosine, the "Sixth Base", during brain development and ageing.

    Science.gov (United States)

    Kraus, Theo F J; Guibourt, Virginie; Kretzschmar, Hans A

    2015-07-01

    The epigenome is of fundamental importance for development and ageing. The discovery of 5-hydroxymethylcytosine (5hmC), a further base modification of cytosine beyond 5-methylcytosine, might be of high relevance in understanding the complexity of the human brain, as 5hmC is found in great extent in brain tissue. The aim of this study was to investigate the quantity of 5hmC containing nuclei by immunohistochemistry in human and murine brains at several developmental stages. We performed immunohistochemical stainings on frontal cortex, white matter and cerebellar cortex of 15 healthy controls. Three cases each were assigned to five age groups (foetus, adolescent, adult, elderly, aged). Additionally, cortex and cerebellum of 15 mice sacrificed between day 0 and 120 after birth were investigated. We found marked alterations of 5hmC amount during ageing. In human cortex there was an increase of 5hmC of 50%, in white matter we found an increase of even 200% during ageing. In the cerebellum both internal granular cell layer and molecular cell layer showed a significant increase of 5hmC till adulthood. Purkinje cell nuclei showed constantly positive signals for 5hmC. These data were paralleled in murine brains. Co-labelling of 5hmC and markers for mature and immature cells in murine cerebellar cortex at the age of 7 days revealed that 5hmC was found in mature but not in immature cells. In conclusion, the findings described in this study emphasise the importance of 5hmC in brain development and ageing and will help to better understand the complexity and plasticity of the brain.

  19. EFFECTS OF BRAIN AGE TO INCREASE COGNITIVE FUNCTION IN ELDERLY

    Directory of Open Access Journals (Sweden)

    Achdiat Agoes

    2016-07-01

    Full Text Available Background. Among the elderly cognitive impairment is the biggest cause of the inability to perform normal daily activities, and also the most common reasons that lead to dependence on others to take care of their self. The concept of cognitive (from Latin cognosere, to know or to recognize refers to the ability to process information, applying knowledge, and change the trend. cognitive function of the elderly can be optimized through a variety of ways, one of that way is the brain training game (Brain Age. The game was created specifically to train the cognitive function of elderly. Objective. We determine the effect of brain training game (Brain Age to the improvement of cognitive function in the elderly in Malang. Methods. The design study is Quasi-experimental pretest-posttest approach, the treatment and control groups, and the sampling is done with purposive sampling to obtain the 20 respondents. Data collection instrument in this study are in general cognitive tests by using a measuring instrument MMSE. Results. Mann-Whitney test showed p value 0.000 <α 0.05. Conclusion. The conclusion from this study is that there is the effect of therapy brain training game (Brain Age on increasing cognitive function of elderly in Malang.

  20. Revisiting nicotine's role in the ageing brain and cognitive impairment

    DEFF Research Database (Denmark)

    Majdi, Alireza; Kamari, Farzin; Vafaee, Manouchehr Seyedi

    2017-01-01

    Brain ageing is a complex process which in its pathologic form is associated with learning and memory dysfunction or cognitive impairment. During ageing, changes in cholinergic innervations and reduced acetylcholinergic tonus may trigger a series of molecular pathways participating in oxidative...... in optimum therapeutic effects without imparting abuse potential or toxicity. Overall, this review aims to compile the previous and most recent data on nicotine and its effects on cognition-related mechanisms and age-related cognitive impairment....

  1. Associations between education and brain structure at age 73 years, adjusted for age 11 IQ.

    Science.gov (United States)

    Cox, Simon R; Dickie, David Alexander; Ritchie, Stuart J; Karama, Sherif; Pattie, Alison; Royle, Natalie A; Corley, Janie; Aribisala, Benjamin S; Valdés Hernández, Maria; Muñoz Maniega, Susana; Starr, John M; Bastin, Mark E; Evans, Alan C; Wardlaw, Joanna M; Deary, Ian J

    2016-10-25

    To investigate how associations between education and brain structure in older age were affected by adjusting for IQ measured at age 11. We analyzed years of full-time education and measures from an MRI brain scan at age 73 in 617 community-dwelling adults born in 1936. In addition to average and vertex-wise cortical thickness, we measured total brain atrophy and white matter tract fractional anisotropy. Associations between brain structure and education were tested, covarying for sex and vascular health; a second model also covaried for age 11 IQ. The significant relationship between education and average cortical thickness (β = 0.124, p = 0.004) was reduced by 23% when age 11 IQ was included (β = 0.096, p = 0.041). Initial associations between longer education and greater vertex-wise cortical thickness were significant in bilateral temporal, medial-frontal, parietal, sensory, and motor cortices. Accounting for childhood intelligence reduced the number of significant vertices by >90%; only bilateral anterior temporal associations remained. Neither education nor age 11 IQ was significantly associated with total brain atrophy or tract-averaged fractional anisotropy. The association between years of education and brain structure ≈60 years later was restricted to cortical thickness in this sample; however, the previously reported associations between longer education and a thicker cortex are likely to be overestimates in terms of both magnitude and distribution. This finding has implications for understanding, and possibly ameliorating, life-course brain health. © 2016 American Academy of Neurology.

  2. The dopaminergic system in the aging brain of Drosophila

    Directory of Open Access Journals (Sweden)

    Katherine E White

    2010-12-01

    Full Text Available Drosophila models of Parkinson’s disease are characterised by two principal phenotypes: the specific loss of dopaminergic neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analysed the dopaminergic system and motor behavior in aging Drosophila. Dopaminergic neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH>mCD8::GFP and cell type-specific MARCM clones revealed that dopaminergic neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, dopaminergic neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH>Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct dopaminergic behaviors in Drosophila. Moreover, dopaminergic neurons were maintained between early- and late life, as quantified by TH>mCD8::GFP and anti-TH labelling, indicating that adult onset, age-related degeneration of dopaminergic neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson’s disease as well as other disorders affecting dopaminergic neurons

  3. Sex differences in normal age trajectories of functional brain networks.

    Science.gov (United States)

    Scheinost, Dustin; Finn, Emily S; Tokoglu, Fuyuze; Shen, Xilin; Papademetris, Xenophon; Hampson, Michelle; Constable, R Todd

    2015-04-01

    Resting-state functional magnetic resonance image (rs-fMRI) is increasingly used to study functional brain networks. Nevertheless, variability in these networks due to factors such as sex and aging is not fully understood. This study explored sex differences in normal age trajectories of resting-state networks (RSNs) using a novel voxel-wise measure of functional connectivity, the intrinsic connectivity distribution (ICD). Males and females showed differential patterns of changing connectivity in large-scale RSNs during normal aging from early adulthood to late middle-age. In some networks, such as the default-mode network, males and females both showed decreases in connectivity with age, albeit at different rates. In other networks, such as the fronto-parietal network, males and females showed divergent connectivity trajectories with age. Main effects of sex and age were found in many of the same regions showing sex-related differences in aging. Finally, these sex differences in aging trajectories were robust to choice of preprocessing strategy, such as global signal regression. Our findings resolve some discrepancies in the literature, especially with respect to the trajectory of connectivity in the default mode, which can be explained by our observed interactions between sex and aging. Overall, results indicate that RSNs show different aging trajectories for males and females. Characterizing effects of sex and age on RSNs are critical first steps in understanding the functional organization of the human brain. © 2014 Wiley Periodicals, Inc.

  4. Working memory in middle-aged males: age related brain activation changes and cognitive fatigue effects

    NARCIS (Netherlands)

    Klaassen, E.B.; Evers, E.A.T.; Groot, R.H.M.; Backes, W.H.; Veltman, D.J.; Jolles, J.

    2014-01-01

    We examined the effects of aging and cognitive fatigue on working memory (WM) related brain activation using functional magnetic resonance imaging. Age-related differences were investigated in 13 young and 16 middle-aged male school teachers. Cognitive fatigue was induced by sustained performance on

  5. Deciphering the spatio-temporal expression and stress regulation of Fam107B, the paralog of the resilience-promoting protein DRR1 in the mouse brain.

    Science.gov (United States)

    Masana, M; Jukic, M M; Kretzschmar, A; Wagner, K V; Westerholz, S; Schmidt, M V; Rein, T; Brodski, C; Müller, M B

    2015-04-02

    Understanding the molecular mechanisms that promote stress resilience might open up new therapeutic avenues to prevent stress-related disorders. We recently characterized a stress and glucocorticoid-regulated gene, down-regulated in renal cell carcinoma - DRR1 (Fam107A). DRR1 is expressed in the mouse brain; it is up-regulated by stress and glucocorticoids and modulates neuronal actin dynamics. In the adult mouse, DRR1 was shown to facilitate specific behaviors which might be protective against some of the deleterious consequences of stress exposure: in the hippocampal CA3 region, DRR1 improved cognitive performance whereas in the septum, it specifically increased social behavior. Therefore DRR1 was suggested as a candidate protein promoting stress-resilience. Fam107B (family with sequence similarity 107, member B) is the unique paralog of DRR1, and both share high sequence similarities, predicted glucocorticoid response elements, heat-shock induction and tumor suppressor properties. So far, the role of Fam107B in the central nervous system was not studied. The aim of the present investigation, therefore, was to analyze whether Fam107B and DRR1 display comparable mRNA expression patterns in the brain and whether both are modulated by stress and glucocorticoids. Spatio-temporal mapping of Fam107B mRNA expression in the embryonic and adult mouse brain, by means of in situ hybridization, showed that Fam107B was expressed during embryogenesis and in the adulthood, with particularly high and specific expression in the forming telencephalon suggestive of an involvement in corticogenesis. In the adult mouse, expression was restricted to neurogenic niches, like the dentate gyrus. In contrast to DRR1, Fam107B mRNA expression failed to be modulated by glucocorticoids and social stress in the adult mouse. In summary, Fam107B and DRR1 show different spatio-temporal expression patterns in the central nervous system, suggesting at least partially different functional roles in

  6. The influence of exercise on brain aging and dementia.

    Science.gov (United States)

    Lautenschlager, Nicola T; Cox, Kay; Cyarto, Elizabeth V

    2012-03-01

    Physical activity has been recognized as an important protective factor reducing disability and mortality and therefore it is focus of many health promotion activities at all ages. More recently a growing body of literature is focusing whether physical activity could also have a positive impact on brain aging with exploring healthy brain aging as well as on cognitive impairment and dementia. An increasing number of prospective studies and randomized controlled trials involving humans take place both with older adults with normal cognition as well as with mild cognitive impairment or dementia. However, the body of evidence is still sparse and many methodological issues make comparisons across studies challenging. Increasingly research into underlying mechanisms in relation to physical activity and brain aging identify biomarker candidates with especially neuroimaging measurements being more used in trials with humans. Whilst the evidence base is slowly growing more detailed research is needed to address methodological issues to finally achieve clinical relevance. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease. Copyright © 2011. Published by Elsevier B.V.

  7. A brain network processing the age of faces.

    Directory of Open Access Journals (Sweden)

    György A Homola

    Full Text Available Age is one of the most salient aspects in faces and of fundamental cognitive and social relevance. Although face processing has been studied extensively, brain regions responsive to age have yet to be localized. Using evocative face morphs and fMRI, we segregate two areas extending beyond the previously established face-sensitive core network, centered on the inferior temporal sulci and angular gyri bilaterally, both of which process changes of facial age. By means of probabilistic tractography, we compare their patterns of functional activation and structural connectivity. The ventral portion of Wernicke's understudied perpendicular association fasciculus is shown to interconnect the two areas, and activation within these clusters is related to the probability of fiber connectivity between them. In addition, post-hoc age-rating competence is found to be associated with high response magnitudes in the left angular gyrus. Our results provide the first evidence that facial age has a distinct representation pattern in the posterior human brain. We propose that particular face-sensitive nodes interact with additional object-unselective quantification modules to obtain individual estimates of facial age. This brain network processing the age of faces differs from the cortical areas that have previously been linked to less developmental but instantly changeable face aspects. Our probabilistic method of associating activations with connectivity patterns reveals an exemplary link that can be used to further study, assess and quantify structure-function relationships.

  8. Brain energy metabolism and blood flow differences in healthy aging

    DEFF Research Database (Denmark)

    Aanerud, Joel; Borghammer, Per; Chakravarty, M Mallar

    2012-01-01

    Cerebral metabolic rate of oxygen consumption (CMRO(2)), cerebral blood flow (CBF), and oxygen extraction fraction (OEF) are important indices of healthy aging of the brain. Although a frequent topic of study, changes of CBF and CMRO(2) during normal aging are still controversial, as some authors...... find decreases of both CBF and CMRO(2) but increased OEF, while others find no change, and yet other find divergent changes. In this reanalysis of previously published results from positron emission tomography of healthy volunteers, we determined CMRO(2) and CBF in 66 healthy volunteers aged 21 to 81......, and in the temporal cortex. Because of the inverse relation between OEF and capillary oxygen tension, increased OEF can compromise oxygen delivery to neurons, with possible perturbation of energy turnover. The results establish a possible mechanism of progression from healthy to unhealthy brain aging, as the regions...

  9. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Aging Effects on Brain Efficiency in General Aviation Pilots

    OpenAIRE

    Chua, Zarrin; Causse, Mickael

    2016-01-01

    Understanding the effect of aging on brain efficiency and executive functions is important for high risk activities such as general aviation. In this study, ten private pilots in the age group 19-25 and ten in the 52-72 range completed the spatial working memory (SWM) and spatial planning and reasoning (One Touch Stockings, OTS) from the Cambridge Neuropsychological Test Automated Battery. The change in deoxygenated and oxygenated hemogoblin (HbO2) was measured. Younger pilots were found to ...

  11. New progress in brain aging and its related neurological diseases

    Directory of Open Access Journals (Sweden)

    Ming-wei ZHU

    2014-03-01

    Full Text Available Brain aging-related neurological diseases including Alzheimer's disease (AD, Parkinson's disease (PD and cerebral amyloid angiopathy (CAA have become one of the major diseases endangering the health of old people in China. Although the mechanism of brain aging and pathogenesis of its related neurodegenerative diseases remain unclear, protein pathological studies such as tau, α-synuclein (α-Syn, TDP-43 and amyloid-β protein (Aβ based on brain tissue bank and case registration database are opening the door to solve the mystery in the brain aging process and unlock pathogenesis of aging-related neurodegenerative diseases. Research on functional neuroimaging including 11C-PIB PET and 18F-FDDNP PET in Alzheimer's disease and 18F-FDG PET in Parkinson's disease, and biomarkers such as total-tau, phosphorylated-tau, and the 42 amino acid fragment of β-amyloid in cerebrospinal fluid (CSF in the preclinical stages of Alzheimer's disease now become hot topics in the field of elderly dementia and movement disorders. Clinicopathological correlation research of Alzheimer's disease, Parkinson's disease and cerebral amyloid angiopathy is also one of focuses in the geriatric neurological diseases. doi: 10.3969/j.issn.1672-6731.2014.03.004

  12. Effects of Age on Brain Development in Autism

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-09-01

    Full Text Available Total brain volumes were measured by MRI in 67 non-mentally retarded children with autism and 83 healthy controls, aged 8 to 46 years, in a study at University of Washington, Seattle: Johns Hopkins University Hospital, Baltimore: and University of Pittsburgh School of Medicine, PA.

  13. Alpha oscillatory correlates of motor inhibition in the aged brain

    Directory of Open Access Journals (Sweden)

    Marlene eBoenstrup

    2015-10-01

    Full Text Available Exerting inhibitory control is a cognitive ability mediated by functions known to decline with age. The goal of this study is to add to the mechanistic understanding of cortical inhibition during motor control in aged brains. Based on behavioral findings of impaired inhibitory control with age we hypothesized that elderly will show a reduced or a lack of EEG alpha-power increase during tasks that require motor inhibition. Since inhibitory control over movements has been shown to rely on prior motor memory formation, we investigated cortical inhibitory processes at two points in time - early after learning and after an overnight consolidation phase and hypothesized an overnight increase of inhibitory capacities. Young and elderly participants acquired a complex finger movement sequence and in each experimental session brain activity during execution and inhibition of the sequence was recorded with multi-channel EEG. We assessed cortical processes of sustained inhibition by means of task-induced changes of alpha oscillatory power. During inhibition of the learned movement, young participants showed a significant alpha power increase at the sensorimotor cortices whereas elderly did not. Interestingly, for both groups, the overnight consolidation phase improved up-regulation of alpha power during sustained inhibition. This points to deficits in the generation and enhancement of local inhibitory mechanisms at the sensorimotor cortices in aged brains. However, the alpha power increase in both groups implies neuroplastic changes that strengthen the network of alpha power generation over time in young as well as elderly brains.

  14. Acute stress enhances emotional face processing in the aging brain

    NARCIS (Netherlands)

    Everaerd, D.S.; Klumpers, F.; Oude Voshaar, R.C.; Fernandez, G.S.E.; Tendolkar, I.

    2017-01-01

    Background: Healthy aging has been associated with stable emotional wellbeing and attenuated brain responses to negative stimuli. At the same time, depressive symptoms are common in older adults. The neural mechanisms behind this paradox remain to be clarified. We hypothesized that acute stress

  15. Intrinsic brain connectivity related to age in young and middle aged adults.

    Science.gov (United States)

    Hampson, Michelle; Tokoglu, Fuyuze; Shen, Xilin; Scheinost, Dustin; Papademetris, Xenophon; Constable, R Todd

    2012-01-01

    Age-related variations in resting state connectivity of the human brain were examined from young adulthood through middle age. A voxel-based network measure, degree, was used to assess age-related differences in tissue connectivity throughout the brain. Increases in connectivity with age were found in paralimbic cortical and subcortical regions. Decreases in connectivity were found in cortical regions, including visual areas and the default mode network. These findings differ from those of recent developmental studies examining earlier growth trajectories, and are consistent with known changes in cognitive function and emotional processing during mature aging. The results support and extend previous findings that relied on a priori definitions of regions of interest for their analyses. This approach of applying a voxel-based measure to examine the functional connectivity of individual tissue elements over time, without the need for a priori region of interest definitions, provides an important new tool in brain science.

  16. Intrinsic brain connectivity related to age in young and middle aged adults.

    Directory of Open Access Journals (Sweden)

    Michelle Hampson

    Full Text Available Age-related variations in resting state connectivity of the human brain were examined from young adulthood through middle age. A voxel-based network measure, degree, was used to assess age-related differences in tissue connectivity throughout the brain. Increases in connectivity with age were found in paralimbic cortical and subcortical regions. Decreases in connectivity were found in cortical regions, including visual areas and the default mode network. These findings differ from those of recent developmental studies examining earlier growth trajectories, and are consistent with known changes in cognitive function and emotional processing during mature aging. The results support and extend previous findings that relied on a priori definitions of regions of interest for their analyses. This approach of applying a voxel-based measure to examine the functional connectivity of individual tissue elements over time, without the need for a priori region of interest definitions, provides an important new tool in brain science.

  17. Comparing Aging and Fitness Effects on Brain Anatomy

    Science.gov (United States)

    Fletcher, Mark A.; Low, Kathy A.; Boyd, Rachel; Zimmerman, Benjamin; Gordon, Brian A.; Tan, Chin H.; Schneider-Garces, Nils; Sutton, Bradley P.; Gratton, Gabriele; Fabiani, Monica

    2016-01-01

    Recent studies suggest that cardiorespiratory fitness (CRF) mitigates the brain’s atrophy typically associated with aging, via a variety of beneficial mechanisms. One could argue that if CRF is generally counteracting the negative effects of aging, the same regions that display the greatest age-related volumetric loss should also show the largest beneficial effects of fitness. To test this hypothesis we examined structural MRI data from 54 healthy older adults (ages 55–87), to determine the overlap, across brain regions, of the profiles of age and fitness effects. Results showed that lower fitness and older age are associated with atrophy in several brain regions, replicating past studies. However, when the profiles of age and fitness effects were compared using a number of statistical approaches, the effects were not entirely overlapping. Interestingly, some of the regions that were most influenced by age were among those not influenced by fitness. Presumably, the age-related atrophy occurring in these regions is due to factors that are more impervious to the beneficial effects of fitness. Possible mechanisms supporting regional heterogeneity may include differential involvement in motor function, the presence of adult neurogenesis, and differential sensitivity to cerebrovascular, neurotrophic and metabolic factors. PMID:27445740

  18. Evolution of the aging brain transcriptome and synaptic regulation.

    Directory of Open Access Journals (Sweden)

    Patrick M Loerch

    Full Text Available Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4. However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.

  19. Ketones and brain development: Implications for correcting deteriorating brain glucose metabolism during aging

    Directory of Open Access Journals (Sweden)

    Nugent Scott

    2016-01-01

    Full Text Available Brain energy metabolism in Alzheimer’s disease (AD is characterized mainly by temporo-parietal glucose hypometabolism. This pattern has been widely viewed as a consequence of the disease, i.e. deteriorating neuronal function leading to lower demand for glucose. This review will address deteriorating glucose metabolism as a problem specific to glucose and one that precedes AD. Hence, ketones and medium chain fatty acids (MCFA could be an alternative source of energy for the aging brain that could compensate for low brain glucose uptake. MCFA in the form of dietary medium chain triglycerides (MCT have a long history in clinical nutrition and are widely regarded as safe by government regulatory agencies. The importance of ketones in meeting the high energy and anabolic requirements of the infant brain suggest they may be able to contribute in the same way in the aging brain. Clinical studies suggest that ketogenesis from MCT may be able to bypass the increasing risk of insufficient glucose uptake or metabolism in the aging brain sufficiently to have positive effects on cognition.

  20. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    Science.gov (United States)

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Aging and Gene Expression in the Primate Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Khaitovich, Philipp; Plotkin, Joshua B.; Paabo, Svante; Eisen, Michael B.

    2005-02-18

    It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes in the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.

  2. Aging and gene expression in the primate brain.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    2005-09-01

    Full Text Available It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes in the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.

  3. Brain development and aging: overlapping and unique patterns of change.

    Science.gov (United States)

    Tamnes, Christian K; Walhovd, Kristine B; Dale, Anders M; Østby, Ylva; Grydeland, Håkon; Richardson, George; Westlye, Lars T; Roddey, J Cooper; Hagler, Donald J; Due-Tønnessen, Paulina; Holland, Dominic; Fjell, Anders M

    2013-03-01

    Early-life development is characterized by dramatic changes, impacting lifespan function more than changes in any other period. Developmental origins of neurocognitive late-life functions are acknowledged, but detailed longitudinal magnetic resonance imaging studies of brain maturation and direct comparisons with aging are lacking. To these aims, a novel method was used to measure longitudinal volume changes in development (n=85, 8-22 years) and aging (n=142, 60-91 years). Developmental reductions exceeded 1% annually in much of the cortex, more than double to that seen in aging, with a posterior-to-anterior gradient. Cortical reductions were greater than the subcortical during development, while the opposite held in aging. The pattern of lateral cortical changes was similar across development and aging, but the pronounced medial temporal reduction in aging was not precast in development. Converging patterns of change in adolescents and elderly, particularly in the medial prefrontal areas, suggest that late developed cortices are especially vulnerable to atrophy in aging. A key question in future research will be to disentangle the neurobiological underpinnings for the differences and the similarities between brain changes in development and aging. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Transcriptomics of Post-Stroke Angiogenesis in the Aged Brain

    Science.gov (United States)

    Buga, Ana Maria; Margaritescu, Claudiu; Scholz, Claus Juergen; Radu, Eugen; Zelenak, Christine; Popa-Wagner, Aurel

    2014-01-01

    Despite the obvious clinical significance of post-stroke angiogenesis in aged subjects, a detailed transcriptomic analysis of post-stroke angiogenesis has not yet been undertaken in an aged experimental model. In this study, by combining stroke transcriptomics with immunohistochemistry in aged rats and post-stroke patients, we sought to identify an age-specific gene expression pattern that may characterize the angiogenic process after stroke. We found that both young and old infarcted rats initiated vigorous angiogenesis. However, the young rats had a higher vascular density by day 14 post-stroke. “New-for-stroke” genes that were linked to the increased vasculature density in young animals included Angpt2, Angptl2, Angptl4, Cib1, Ccr2, Col4a2, Cxcl1, Lef1, Hhex, Lamc1, Nid2, Pcam1, Plod2, Runx3, Scpep1, S100a4, Tgfbi, and Wnt4, which are required for sprouting angiogenesis, reconstruction of the basal lamina (BL), and the resolution phase. The vast majority of genes involved in sprouting angiogenesis (Angpt2, Angptl4, Cib1, Col8a1, Nrp1, Pcam1, Pttg1ip, Rac2, Runx1, Tnp4, Wnt4); reconstruction of a new BL (Col4a2, Lamc1, Plod2); or tube formation and maturation (Angpt1, Gpc3, Igfbp7, Sparc, Tie2, Tnfsf10), had however, a delayed upregulation in the aged rats. The angiogenic response in aged rats was further diminished by the persistent upregulation of “inflammatory” genes (Cxcl12, Mmp8, Mmp12, Mmp14, Mpeg1, Tnfrsf1a, Tnfrsf1b) and vigorous expression of genes required for the buildup of the fibrotic scar (Cthrc1, Il6ra, Il13ar1, Il18, Mmp2, Rassf4, Tgfb1, Tgfbr2, Timp1). Beyond this barrier, angiogenesis in the aged brains was similar to that in young brains. We also found that the aged human brain is capable of mounting a vigorous angiogenic response after stroke, which most likely reflects the remaining brain plasticity of the aged brain. PMID:24672479

  5. Prevalence of mixed pathologies in the aging brain.

    Science.gov (United States)

    Rahimi, Jasmin; Kovacs, Gabor G

    2014-01-01

    The spectrum of mixed brain pathologies expands beyond accompanying vascular pathology in brains with Alzheimer's disease-related pathology. Co-occurrence of neurodegenerative non-Alzheimer's disease-type proteinopathies is increasingly recognized to be a frequent event in the brains of symptomatic and asymptomatic patients, particularly in older people. Owing to the evolving concept of neurodegenerative diseases, clinical and neuropathological diagnostic criteria have changed during the last decades. Autopsy-based studies differ in the selection criteria and also in the applied staining methods used. The present review summarizes the prevalence of mixed brain pathologies reported in recent community-based studies. In these cohorts, irrespective of the clinical symptoms, the frequency of Alzheimer's disease-related pathology is between 19 and 67%, of Lewy body pathology is between 6 and 39%, of vascular pathologies is between 28 and 70%, of TDP-43 proteinopathy is between 13 and 46%, of hippocampal sclerosis is between 3 and 13% and, finally, of mixed pathologies is between 10 and 74%. Some studies also mention tauopathies. White-matter pathologies are not discussed specifically in all studies, although these lesions may be present in more than 80% of the aging brains. In summary, community-based neuropathology studies have shown that complex constellations of underlying pathologies may lead to cognitive decline, and that the number of possible combinations increases in the aging brain. These observations have implications for the prediction of the prognosis, for the development of biomarkers or therapy targets, or for the stratification of patient cohorts for genome-wide studies or, eventually, for therapy trials.

  6. Association of brain network efficiency with aging, depression, and cognition.

    Science.gov (United States)

    Ajilore, Olusola; Lamar, Melissa; Kumar, Anand

    2014-02-01

    Newly developed techniques for understanding brain connectivity have emerged with the application of graph theory-based measures to neuroimaging modalities. However, the cognitive correlates of these measures, particularly in the context of clinical diagnoses like major depression, are still poorly understood. The purpose of this study was to compare four measures of network efficiency derived from novel techniques for understanding white matter connectivity on their associations with aging, depression, and cognition. In a cross-sectional neuroimaging study, we recruited from the general community 43 healthy comparison subjects and 40 subjects with major depressive disorder who volunteered in response to advertisements. Brain network efficiency measures were generated from diffusion tensor imaging-derived structural connectivity matrices using the Brain Connectivity Toolbox. Information processing speed and decision making were assessed with the Trail Making Test and the Object Alternation task, respectively. All four network efficiency measures correlated negatively with age. In the depressed group, normalized global efficiency was negatively correlated with depression severity, whereas increasing global efficiency was associated with poorer performance on Object Alternation. Brain network efficiency measures may represent different aspects of underlying network organization depending on the population and behaviors in question. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Prefrontal vulnerabilities and whole brain connectivity in aging and depression.

    Science.gov (United States)

    Lamar, Melissa; Charlton, Rebecca A; Ajilore, Olusola; Zhang, Aifeng; Yang, Shaolin; Barrick, Thomas R; Rhodes, Emma; Kumar, Anand

    2013-07-01

    Studies exploring the underpinnings of age-related neurodegeneration suggest fronto-limbic alterations that are increasingly vulnerable in the presence of disease including late life depression. Less work has assessed the impact of this specific vulnerability on widespread brain circuitry. Seventy-nine older adults (healthy controls=45; late life depression=34) completed translational tasks shown in non-human primates to rely on fronto-limbic networks involving dorsolateral (Self-Ordered Pointing Task) or orbitofrontal (Object Alternation Task) cortices. A sub-sample of participants also completed diffusion tensor imaging for white matter tract quantification (uncinate and cingulum bundle; n=58) and whole brain tract-based spatial statistics (n=62). Despite task associations to specific white matter tracts across both groups, only healthy controls demonstrated significant correlations between widespread tract integrity and cognition. Thus, increasing Object Alternation Task errors were associated with decreasing fractional anisotropy in the uncinate in late life depression; however, only in healthy controls was the uncinate incorporated into a larger network of white matter vulnerability associating fractional anisotropy with Object Alternation Task errors using whole brain tract-based spatial statistics. It appears that the whole brain impact of specific fronto-limbic vulnerabilities in aging may be eclipsed in the presence of disease-specific neuropathology like that seen in late life depression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Prefrontal vulnerabilities and whole brain connectivity in aging and depression

    OpenAIRE

    Lamar, Melissa; Charlton, Rebecca A.; Ajilore, Olusola; Zhang, Aifeng; Yang, Shaolin; Barrick, Thomas R.; Rhodes, Emma; Kumar, Anand

    2013-01-01

    Studies exploring the underpinnings of age-related neurodegeneration suggest fronto-limbic alterations that are increasingly vulnerable in the presence of disease including late life depression. Less work has assessed the impact of this specific vulnerability on widespread brain circuitry. Seventy-nine older adults (healthy controls=45; late life depression=34) completed translational tasks shown in non-human primates to rely on fronto-limbic networks involving dorsolateral (Self-Ordered Poin...

  9. Male brain ages faster: the age and gender dependence of subcortical volumes.

    Science.gov (United States)

    Király, András; Szabó, Nikoletta; Tóth, Eszter; Csete, Gergő; Faragó, Péter; Kocsis, Krisztián; Must, Anita; Vécsei, László; Kincses, Zsigmond Tamás

    2016-09-01

    Effects of gender on grey matter (GM) volume differences in subcortical structures of the human brain have consistently been reported. Recent research evidence suggests that both gender and brain size influences volume distribution in subcortical areas independently. The goal of this study was to determine the effects of the interplay between brain size, gender and age contributing to volume differences of subcortical GM in the human brain. High-resolution T1-weighted images were acquired from 53 healthy males and 50 age-matched healthy females. Total GM volume was determined using voxel-based morphometry. We used model-based subcortical segmentation analysis to measure the volume of subcortical nuclei. Main effects of gender, brain volume and aging on subcortical structures were examined using multivariate analysis of variance. No significant difference was found in total brain volume between the two genders after correcting for total intracranial volume. Our analysis revealed significantly larger hippocampus volume for females. Additionally, GM volumes of the caudate nucleus, putamen and thalamus displayed a significant age-related decrease in males as compared to females. In contrast to this only the thalamic volume loss proved significant for females. Strikingly, GM volume decreases faster in males than in females emphasizing the interplay between aging and gender on subcortical structures. These findings might have important implications for the interpretation of the effects of unalterable factors (i.e. gender and age) in cross-sectional structural MRI studies. Furthermore, the volume distribution and changes of subcortical structures have been consistently related to several neuropsychiatric disorders (e.g. Parkinson's disease, attention deficit hyperactivity disorder, etc.). Understanding these changes might yield further insight in the course and prognosis of these disorders.

  10. Fatty Acids, Antioxidants and Physical Activity in Brain Aging

    Directory of Open Access Journals (Sweden)

    Hércules Rezende Freitas

    2017-11-01

    Full Text Available Polyunsaturated fatty acids and antioxidants are important mediators in the central nervous system. Lipid derivatives may control the production of proinflammatory agents and regulate NF-κB activity, microglial activation, and fatty acid oxidation; on the other hand, antioxidants, such as glutathione and ascorbate, have been shown to signal through transmitter receptors and protect against acute and chronic oxidative stress, modulating the activity of different signaling pathways. Several authors have investigated the role of these nutrients in the brains of the young and the aged in degenerative diseases such as Alzheimer’s and Parkinson’s, and during brain aging due to adiposity- and physical inactivity-mediated metabolic disturbances, chronic inflammation, and oxidative stress. Through a literature review, we aimed to highlight recent data on the role of adiposity, fatty acids, antioxidants, and physical inactivity in the pathophysiology of the brain and in the molecular mechanisms of senescence. Data indicate the complexity and necessity of endogenous/dietary antioxidants for the maintenance of redox status and the control of neuroglial signaling under stress. Recent studies also indicate that omega-3 and -6 fatty acids act in a competitive manner to generate mediators for energy metabolism, influencing feeding behavior, neural plasticity, and memory during aging. Finding pharmacological or dietary resources that mitigate or prevent neurodegenerative affections continues to be a great challenge and requires additional effort from researchers, clinicians, and nutritionists in the field.

  11. Brain Plasticity and Motor Practice in Cognitive Aging

    Directory of Open Access Journals (Sweden)

    Liuyang eCai

    2014-03-01

    Full Text Available For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population.

  12. Lucid dreaming: an age-dependent brain dissociation.

    Science.gov (United States)

    Voss, Ursula; Frenzel, Clemens; Koppehele-Gossel, Judith; Hobson, Allan

    2012-12-01

    The current study focused on the distribution of lucid dreams in school children and young adults. The survey was conducted on a large sample of students aged 6-19 years. Questions distinguished between past and current experience with lucid dreams. Results suggest that lucid dreaming is quite pronounced in young children, its incidence rate drops at about age 16 years. Increased lucidity was found in those attending higher level compared with lower level schools. Taking methodological issues into account, we feel confident to propose a link between the natural occurrence of lucid dreaming and brain maturation. © 2012 European Sleep Research Society.

  13. Age and Gender Effects On Auditory Brain Stem Response (ABR

    Directory of Open Access Journals (Sweden)

    Yones Lotfi

    2012-10-01

    Full Text Available Objectives: Auditory Brain Stem Response (ABR is a result of eight nerve and brain stem nuclei stimulation. Several factors may affect the latencies, interpeak latencies and amplitudes in ABR especially sex and age. In this study, age and sex influence on ABR were studied. Methods: This study was performed on 120 cases (60 males and 60 females at Akhavan rehabilitation center of university of welfare and rehabilitation sciences, Tehran, Iran. Cases were divided in three age groups: 18-30, 31-50 and 51-70 years old. Each age group consists of 20 males and 20 females. Age and sex influences on absolute latency of wave I and V, and IPL of I-V were examined. Results: Independent t test showed that females have significantly shorter latency of wave I, V, and IPL I-V latency (P<0.001 than males. Two way ANOVA showed that latency of wave I, V and IPL I-V in 51-70 years old group was significantly higher than 18-30 and 31-50 years old groups (P<0.001 Discussion: According to the results of present study and similar studies, in clinical practice, different norms for older adults and both genders should be established.

  14. Primate aging in the mammalian scheme: the puzzle of extreme variation in brain aging.

    Science.gov (United States)

    Finch, Caleb E; Austad, Steven N

    2012-10-01

    At later ages, humans have high risk of developing Alzheimer disease (AD) which may afflict up to 50% by 90 years. While prosimians and monkeys show more substantial changes, the great apes brains examined show mild neurodegenerative changes. Compared with rodents, primates develop and reproduce slowly and are long lived. The New World primates contain some of the shortest as well as some of the longest-lived monkey species, while the prosimians develop the most rapidly and are the shortest lived. Great apes have the largest brains, slowest development, and longest lives among the primates. All primates share some level of slowly progressive, age-related neurodegenerative changes. However, no species besides humans has yet shown regular drastic neuron loss or cognitive decline approaching clinical grade AD. Several primates accumulate extensive deposits of diffuse amyloid-beta protein (Aβ) but only a prosimian-the gray mouse lemur-regularly develops a tauopathy approaching the neurofibrillary tangles of AD. Compared with monkeys, nonhuman great apes display even milder brain-aging changes, a deeply puzzling observation. The genetic basis for these major species differences in brain aging remains obscure but does not involve the Aβ coding sequence which is identical in nonhuman primates and humans. While chimpanzees merit more study, we note the value of smaller, shorter-lived species such as marmosets and small lemurs for aging studies. A continuing concern for all aging studies employing primates is that relative to laboratory rodents, primate husbandry is in a relatively primitive state, and better husbandry to control infections and obesity is needed for brain aging research.

  15. Challenges of multimorbidity of the aging brain: a critical update.

    Science.gov (United States)

    Jellinger, Kurt A; Attems, Johannes

    2015-04-01

    A major problem in elderly patients is the high incidence of multiple pathologies, referred to as multimorbidity, in the aging brain. It has been increasingly recognized that co-occurrence of neurodegenerative proteinopathies and other pathologies including cerebrovascular disorders is a frequent event in the brains of both cognitively intact and impaired aged subjects. Although clinical and neuropathological diagnostic criteria of the major neurodegenerative diseases have been improved, major challenges arise from cerebral multimorbidity, and the thresholds to cause clinical overt dementia are ill defined. More than 80% of aged human brains show neurodegenerative non-Alzheimer type proteinopathies and other pathologies which, however, frequently have been missed clinically and are even difficult to identify at neuropathological examination. Autopsy studies differ in selection criteria and the applied evaluation methods. Therefore, irrespective of the clinical symptoms, the frequency of cerebral pathologies vary considerably: Alzheimer-related pathology is seen in 19-100%, with "pure" Alzheimer's disease (AD) in 17-72%, Lewy pathology in 6-39% (AD + Lewy disease 9-28%), vascular pathologies in 28-93% (10.7-78% "pure" vascular dementia), TDP-43 proteinopathy in 6-39%, hippocampal sclerosis in 8-1%, and mixed pathologies in 10-93%. These data clearly suggest that pathologically deposited proteins in neurodegenerating diseases mutually interact and are influenced by other factors, in particular cardiovascular and cerebrovascular ones, to promote cognitive decline and other clinical symptoms. It is obvious that cognitive and other neuropsychiatric impairment in the aged result from a multimorbid condition in the CNS rather than from a single disease and that the number of complex pathologies progresses with increasing age. These facts have implications for improvement of the clinical diagnosis and prognosis, the development of specific biomarkers, preventive strategies

  16. How age of acquisition influences brain architecture in bilinguals.

    Science.gov (United States)

    Wei, Miao; Joshi, Anand A; Zhang, Mingxia; Mei, Leilei; Manis, Franklin R; He, Qinghua; Beattie, Rachel L; Xue, Gui; Shattuck, David W; Leahy, Richard M; Xue, Feng; Houston, Suzanne M; Chen, Chuansheng; Dong, Qi; Lu, Zhong-Lin

    2015-11-01

    In the present study, we explored how Age of Acquisition (AoA) of L2 affected brain structures in bilingual individuals. Thirty-six native English speakers who were bilingual were scanned with high resolution MRI. After MRI signal intensity inhomogeneity correction, we applied both voxel-based morphometry (VBM) and surface-based morphometry (SBM) approaches to the data. VBM analysis was performed using FSL's standard VBM processing pipeline. For the SBM analysis, we utilized a semi-automated sulci delineation procedure, registered the brains to an atlas, and extracted measures of twenty four pre-selected regions of interest. We addressed three questions: (1) Which areas are more susceptible to differences in AoA? (2) How do AoA, proficiency and current level of exposure work together in predicting structural differences in the brain? And (3) What is the direction of the effect of AoA on regional volumetric and surface measures? Both VBM and SBM results suggested that earlier second language exposure was associated with larger volumes in the right parietal cortex. Consistently, SBM showed that the cortical area of the right superior parietal lobule increased as AoA decreased. In contrast, in the right pars orbitalis of the inferior frontal gyrus, AoA, proficiency, and current level of exposure are equally important in accounting for the structural differences. We interpret our results in terms of current theory and research on the effects of L2 learning on brain structures and functions.

  17. Functional brain imaging of episodic memory decline in ageing.

    Science.gov (United States)

    Nyberg, L

    2017-01-01

    The episodic long-term memory system supports remembering of events. It is considered to be the most age-sensitive system, with an average onset of decline around 60 years of age. However, there is marked interindividual variability, such that some individuals show faster than average change and others show no or very little change. This variability may be related to the risk of developing dementia, with elevated risk for individuals with accelerated episodic memory decline. Brain imaging with functional magnetic resonance imaging (MRI) of blood oxygen level-dependent (BOLD) signalling or positron emission tomography (PET) has been used to reveal the brain bases of declining episodic memory in ageing. Several studies have demonstrated a link between age-related episodic memory decline and the hippocampus during active mnemonic processing, which is further supported by studies of hippocampal functional connectivity in the resting state. The hippocampus interacts with anterior and posterior neocortical regions to support episodic memory, and alterations in hippocampus-neocortex connectivity have been shown to contribute to impaired episodic memory. Multimodal MRI studies and more recently hybrid MRI/PET studies allow consideration of various factors that can influence the association between the hippocampal BOLD signal and memory performance. These include neurovascular factors, grey and white matter structural alterations, dopaminergic neurotransmission, amyloid-Β and glucose metabolism. Knowledge about the brain bases of episodic memory decline can guide interventions to strengthen memory in older adults, particularly in those with an elevated risk of developing dementia, with promising results for combinations of cognitive and physical stimulation. © 2016 The Association for the Publication of the Journal of Internal Medicine.

  18. Brain lipopigment accumulation in normal and pathological aging.

    Science.gov (United States)

    Riga, Dan; Riga, Sorin; Halalau, Florin; Schneider, Francisc

    2006-05-01

    A principal marker of brain vulnerability, stress, aging, and related pathology is represented by lipopigments (LPs)--lipofuscin, and ceroid. During ontogenesis, neuronal LP accumulations are significantly correlated with important changes in nerve cell morphology and biochemistry. In the aged neurons, LPs are present in all cellular compartments. Moreover, neuronal LP accumulations coexist with glial LP storage, especially in microglia. Owing to their transporting properties, and the migration capacity of microglia, glial cells deposit LP clusters in pericapillary areas. Thus, LP conglomerates appear in the whole nervous tissue, creating specific patterns of LP architectonics. Direct interrelations, critical LP concentrations, which generate cascades of negative subcellular events, and indirect impairment correlations determine characteristic neuropathologic aging profiles. These specific and associated negative neuropathologic consequences of LP accumulation have multiple and detrimental impacts on neuron and glia homeostasis, ranging from neuronal function to central nervous system physiology.

  19. ‘A confession of ignorance’: deaths from old age and deciphering cause-of-death statistics in Scotland, 1855–1949

    Science.gov (United States)

    Reid, Alice; Garrett, Eilidh; Dibben, Chris; Williamson, Lee

    2015-01-01

    A large amount of the research undertaken in an attempt to discover the reasons underlying the late nineteenth- and early twentieth-century mortality decline in Britain has relied on the statistics published by the Registrars General. The processes by which individual causes of death are recorded and then processed in order to create the statistics are not, however, well understood. In this article, the authors build on previous work to piece together a time series of causes of death for Scotland, which removes many of the discontinuities encountered in the published statistics that result from the Registrar General deciding to update the nosology, or classification system, which was being used to compile his figures. Having regrouped individual causes of death to ‘smooth’ the time series, the authors use the new groups to examine the changing causes of death in Scotland for selected age groups, before turning to undertake a detailed examination of mortality amongst those aged 55 or more. The authors find that when deaths from ‘old age’ in the latter age group are separated from other ‘ill-defined’ causes, it becomes obvious that there was a ‘rebranding’ of cause of death. The authors then use individual-level data from two Scottish communities to further dissect the roles played by ‘informants’ and ‘doctors’ in this rebranding, in order to see how these roles may have altered over time and what the consequences might be for one's view of how mortality changed in Scotland between 1855 and 1949. Finally, the authors argue that their findings have important implications for some of historical demography's most prominent theories: the McKeown thesis and the theory of epidemiological transition. PMID:26900320

  20. Obesity and Aging: Consequences for Cognition, Brain Structure, and Brain Function.

    Science.gov (United States)

    Bischof, Gérard N; Park, Denise C

    2015-01-01

    This review focuses on the relationship between obesity and aging and how these interact to affect cognitive function. The topics covered are guided by the Scaffolding Theory of Aging and Cognition (STAC [Park and Reuter-Lorenz. Annu Rev Psychol 2009;60:173-96]-a conceptual model designed to relate brain structure and function to one's level of cognitive ability. The initial literature search was focused on normal aging and was guided by the key words, "aging, cognition, and obesity" in PubMed. In a second search, we added key words related to neuropathology including words "Alzheimer's disease," "vascular dementia," and "mild cognitive impairment." The data suggest that being overweight or obese in midlife may be more detrimental to subsequent age-related cognitive decline than being overweight or obese at later stages of the life span. These effects are likely mediated by the accelerated effects obesity has on the integrity of neural structures, including both gray and white matter. Further epidemiological studies have provided evidence that obesity in midlife is linked to an increased risk for Alzheimer's disease and vascular dementia, most likely via an increased accumulation of Alzheimer's disease pathology. Although it is clear that obesity negatively affects cognition, more work is needed to better understand how aging plays a role and how brain structure and brain function might mediate the relationship of obesity and age on cognition. Guided by the STAC and the STAC-R models, we provide a roadmap for future investigations of the role of obesity on cognition across the life span.

  1. Neural Plastic Effects of Cognitive Training on Aging Brain.

    Science.gov (United States)

    Leung, Natalie T Y; Tam, Helena M K; Chu, Leung W; Kwok, Timothy C Y; Chan, Felix; Lam, Linda C W; Woo, Jean; Lee, Tatia M C

    2015-01-01

    Increasing research has evidenced that our brain retains a capacity to change in response to experience until late adulthood. This implies that cognitive training can possibly ameliorate age-associated cognitive decline by inducing training-specific neural plastic changes at both neural and behavioral levels. This longitudinal study examined the behavioral effects of a systematic thirteen-week cognitive training program on attention and working memory of older adults who were at risk of cognitive decline. These older adults were randomly assigned to the Cognitive Training Group (n = 109) and the Active Control Group (n = 100). Findings clearly indicated that training induced improvement in auditory and visual-spatial attention and working memory. The training effect was specific to the experience provided because no significant difference in verbal and visual-spatial memory between the two groups was observed. This pattern of findings is consistent with the prediction and the principle of experience-dependent neuroplasticity. Findings of our study provided further support to the notion that the neural plastic potential continues until older age. The baseline cognitive status did not correlate with pre- versus posttraining changes to any cognitive variables studied, suggesting that the initial cognitive status may not limit the neuroplastic potential of the brain at an old age.

  2. Deciphering infant mortality

    Science.gov (United States)

    Berrut, Sylvie; Pouillard, Violette; Richmond, Peter; Roehner, Bertrand M.

    2016-12-01

    This paper is about infant mortality. In line with reliability theory, "infant" refers to the time interval following birth during which the mortality (or failure) rate decreases. This definition provides a systems science perspective in which birth constitutes a sudden transition falling within the field of application of the Transient Shock (TS) conjecture put forward in Richmond and Roehner (2016c). This conjecture provides predictions about the timing and shape of the death rate peak. It says that there will be a death rate spike whenever external conditions change abruptly and drastically and also predicts that after a steep rise there will be a much longer hyperbolic relaxation process. These predictions can be tested by considering living organisms for which the transient shock occurs several days after birth. Thus, for fish there are three stages: egg, yolk-sac and young adult phases. The TS conjecture predicts a mortality spike at the end of the yolk-sac phase and this timing is indeed confirmed by observation. Secondly, the hyperbolic nature of the relaxation process can be tested using very accurate Swiss statistics for postnatal death rates spanning the period from one hour immediately after birth through to age 10 years. It turns out that since the 19th century despite a significant and large reduction in infant mortality, the shape of the age-specific death rate has remained basically unchanged. Moreover the hyperbolic pattern observed for humans is also found for small primates as recorded in the archives of zoological gardens. Our overall objective is to identify a series of cases which start from simple systems and move step by step to more complex organisms. The cases discussed here we believe represent initial landmarks in this quest.

  3. Prognostic significance of age in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    S S Dhandapani

    2012-01-01

    Full Text Available Background: Age is a strong prognostic factor following traumatic brain injury (TBI, with discrepancies defining the critical prognostic age threshold. This study was undertaken to determine the impact of various age thresholds on outcome after TBI. Materials and Methods : The ages of patients admitted with TBI were prospectively studied in relation to mode of injury, Glasgow coma score (GCS, CT category and surgical intervention. Mortality was assessed at 1 month, and neurological outcome was assessed at 6 months. Appropriate statistical analyzes (details in article were performed. Results: Of the total 244 patients enrolled, 144 patients had severe, 38 patients had moderate and 62 patients had mild TBI, respectively. Age had significant association with grade of injury, CT category and surgical intervention (P 59 years respectively (P 40 years in all subgroups, based on GCS and surgical intervention (P < 0.05. Conclusions : In patients with TBI, age demonstrates independent association with unfavorable outcome at 6 months, in stepwise manner centered on a threshold of 40 years.

  4. Reversal of glial and neurovascular markers of unhealthy brain aging by exercise in middle-aged female mice.

    Directory of Open Access Journals (Sweden)

    Caitlin S Latimer

    Full Text Available Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging.

  5. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    Science.gov (United States)

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  6. The role of the brain in female reproductive aging

    Science.gov (United States)

    Downs, Jodi L.; Wise, Phyllis M.

    2009-01-01

    In middle-aged women, follicular depletion is a critical factor mediating the menopausal transition; however, all levels of the hypothalamic-pituitary-gonadal (HPG) axis contribute to the age-related decline in reproductive function. To help elucidate the complex interactions between the ovary and brain during middle-age that lead to the onset of the menopause, we utilize animal models which share striking similarities in reproductive physiology. Our results show that during middle-age, prior to any overt irregularities in estrous cyclicity, the ability of 17β-estradiol (E2) to modulate the cascade of neurochemical events required for preovulatory gonadotropin-releasing hormone (GnRH) release and a luteinizing hormone (LH) surge is diminished. Middle-aged female rats experience a delay in and an attenuation of LH release in response to E2. Additionally, although we do not observe a decrease in GnRH neuron number until a very advanced age, E2-mediated GnRH neuronal activation declines during the earliest stages of age-related reproductive decline. Numerous hypothalamic neuropeptides and neurochemical stimulatory inputs (i.e., glutamate, norepinephrine (NE), and vasoactive intestinal peptide (VIP) that drive the E2-mediated GnRH/LH surge appear to dampen with age or lack the precise temporal coordination required for a specific pattern of GnRH secretion, while inhibitory signals such as gamma aminobutyric acid (GABA) and opioid peptides remain unchanged or elevated during the afternoon of proestrus. These changes, occurring at the level of the hypothalamus, lead to irregular estrous cycles and, ultimately, the cessation of reproductive function. Taken together, our studies indicate that the hypothalamus is an important contributor to age-related female reproductive decline. PMID:19063938

  7. Advanced BrainAGE in older adults with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Katja eFranke

    2013-12-01

    Full Text Available Aging alters brain structure and function and diabetes mellitus (DM may accelerate this process. This study investigated the effects of type 2 DM on individual brain aging as well as the relationships between individual brain aging, risk factors and functional measures. To differentiate a pattern of brain atrophy that deviates from normal brain aging, we used the novel BrainAGE approach, which determines the complex multidimensional aging pattern within the whole brain by applying established kernel regression methods to anatomical brain MRIs. The Brain Age Gap Estimation (i.e., BrainAGE score was then calculated as the difference between chronological age and estimated brain age. 185 subjects (98 with type 2 DM completed an MRI at 3T, laboratory and clinical assessments. Twenty-five subjects (12 with type 2 DM also completed a follow-up visit after 3.8 ± 1.5 years. The estimated brain age of DM subjects was 4.6 ± 7.2 years greater than their chronological age (p = 0.0001, whereas within the control group, estimated brain age was similar to chronological age. As compared to baseline, the average BrainAGE scores of DM subjects increased by 0.2 years per follow-up year (p = 0.034, whereas the BrainAGE scores of controls did not change between baseline and follow-up. At baseline, across all subjects, higher BrainAGE scores were associated with greater smoking and alcohol consumption, higher tumor necrosis factor (TNFα levels, lower verbal fluency scores and more severe depression. Within the DM group, higher BrainAGE scores were associated with longer diabetes duration (r = 0.31, p = 0.019 and increased fasting blood glucose levels (r = 0.34, p = 0.025. In conclusion, type 2 DM is independently associated with structural changes in the brain that reflect advanced aging. The BrainAGE approach may thus serve as a clinically relevant biomarker for the detection of abnormal patterns of brain aging associated with type 2 DM.

  8. Epidemiological pathology of Tau in the ageing brain: application of staging for neuropil threads (BrainNet Europe protocol) to the MRC cognitive function and ageing brain study.

    Science.gov (United States)

    Wharton, Stephen B; Minett, Thais; Drew, David; Forster, Gillian; Matthews, Fiona; Brayne, Carol; Ince, Paul G

    2016-02-08

    Deposition of abnormally phosphorylated tau (phospho-tau) occurs in Alzheimer's disease but also with brain ageing. The Braak staging scheme focused on neurofibrillary tangles, but abundant p-tau is also present in neuropil threads, and a recent scheme has been proposed by the BrainNet Europe consortium for staging tau pathology based on neuropil threads. We determined the relationship of threads to tangles, and the value of staging for threads in an unselected population-representative ageing brain cohort. We also determined the prevalence of astroglial tau pathologies, and their relationship to neuronal tau. Phospho-tau pathology was determined by immunohistochemistry (AT8 antibody) in the MRC-CFAS neuropathology cohort. Neuropil threads were staged using the BrainNet Europe protocol for tau pathology, and compared with Braak tangle stages. Astroglial tau pathology was assessed in neo-cortical, mesial temporal and subcortical areas. Cases conformed well to the hierarchical neuropil threads staging of the BrainNet Europe protocol and correlated strongly with Braak staging (r=0.84, p pathology.

  9. Microglial cell dysregulation in Brain Aging and Neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Rommy eVon Bernhardi

    2015-07-01

    Full Text Available Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergo phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD. We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide secretion in microglia from young mice, induction of reactive oxygen species (ROS predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in a reduction of protective activation and a facilitation of cytotoxic activation of microglia, resulting in the

  10. Neuropathological and transcriptomic characteristics of the aged brain

    Science.gov (United States)

    Miller, Jeremy A; Guillozet-Bongaarts, Angela; Gibbons, Laura E; Postupna, Nadia; Renz, Anne; Beller, Allison E; Sunkin, Susan M; Ng, Lydia; Rose, Shannon E; Smith, Kimberly A; Szafer, Aaron; Barber, Chris; Bertagnolli, Darren; Bickley, Kristopher; Brouner, Krissy; Caldejon, Shiella; Chapin, Mike; Chua, Mindy L; Coleman, Natalie M; Cudaback, Eiron; Cuhaciyan, Christine; Dalley, Rachel A; Dee, Nick; Desta, Tsega; Dolbeare, Tim A; Dotson, Nadezhda I; Fisher, Michael; Gaudreault, Nathalie; Gee, Garrett; Gilbert, Terri L; Goldy, Jeff; Griffin, Fiona; Habel, Caroline; Haradon, Zeb; Hejazinia, Nika; Hellstern, Leanne L; Horvath, Steve; Howard, Kim; Howard, Robert; Johal, Justin; Jorstad, Nikolas L; Josephsen, Samuel R; Kuan, Chihchau L; Lai, Florence; Lee, Eric; Lee, Felix; Lemon, Tracy; Li, Xianwu; Marshall, Desiree A; Melchor, Jose; Mukherjee, Shubhabrata; Nyhus, Julie; Pendergraft, Julie; Potekhina, Lydia; Rha, Elizabeth Y; Rice, Samantha; Rosen, David; Sapru, Abharika; Schantz, Aimee; Shen, Elaine; Sherfield, Emily; Shi, Shu; Sodt, Andy J; Thatra, Nivretta; Tieu, Michael; Wilson, Angela M; Montine, Thomas J; Larson, Eric B; Bernard, Amy; Crane, Paul K; Ellenbogen, Richard G

    2017-01-01

    As more people live longer, age-related neurodegenerative diseases are an increasingly important societal health issue. Treatments targeting specific pathologies such as amyloid beta in Alzheimer’s disease (AD) have not led to effective treatments, and there is increasing evidence of a disconnect between traditional pathology and cognitive abilities with advancing age, indicative of individual variation in resilience to pathology. Here, we generated a comprehensive neuropathological, molecular, and transcriptomic characterization of hippocampus and two regions cortex in 107 aged donors (median = 90) from the Adult Changes in Thought (ACT) study as a freely-available resource (http://aging.brain-map.org/). We confirm established associations between AD pathology and dementia, albeit with increased, presumably aging-related variability, and identify sets of co-expressed genes correlated with pathological tau and inflammation markers. Finally, we demonstrate a relationship between dementia and RNA quality, and find common gene signatures, highlighting the importance of properly controlling for RNA quality when studying dementia. PMID:29120328

  11. Deciphering Journal Abbreviations with JAbbr

    Directory of Open Access Journals (Sweden)

    Keith Jenkins

    2009-06-01

    Full Text Available JAbbr is an online tool developed at Cornell University to help users decipher journal title abbreviations. This article discusses why these abbreviations are so problematic, and how traditional tools are often insufficient, and then describes the novel approach used by JAbbr. Given an abbreviation, JAbbr creates a regular expression for fuzzy matching, tests it against a list of serial titles extracted from the library catalog, and returns a list of possible matches to the user. JAbbr is available as a web site and as a web service.

  12. Decipher

    CERN Multimedia

    2002-01-01

    Review of a new fiction work by Stel Pavlou whose starting point is the lifecycle of the sun and the implications for human civilization. The story invokes the use of the CERN accelerator to analyze a special type of crystal found in Antartica which may hold the key to the legend of the city of Atlantis (1/2 page).

  13. Age-Related Difference in Functional Brain Connectivity of Mastication

    Science.gov (United States)

    Lin, Chia-shu; Wu, Ching-yi; Wu, Shih-yun; Lin, Hsiao-Han; Cheng, Dong-hui; Lo, Wen-liang

    2017-01-01

    The age-related decline in motor function is associated with changes in intrinsic brain signatures. Here, we investigated the functional connectivity (FC) associated with masticatory performance, a clinical index evaluating general masticatory function. Twenty-six older adults (OA) and 26 younger (YA) healthy adults were recruited and assessed using the masticatory performance index (MPI) and resting-state functional magnetic resonance imaging (rs-fMRI). We analyzed the rs-fMRI FC network related to mastication, which was constructed based on 12 bilateral mastication-related brain regions according to the literature. For the OA and the YA group, we identified the mastication-related hubs, i.e., the nodes for which the degree centrality (DC) was positively correlated with the MPI. For each pair of nodes, we identified the inter-nodal link for which the FC was positively correlated with the MPI. The network analysis revealed that, in the YA group, the FC between the sensorimotor cortex, the thalamus (THA) and the cerebellum was positively correlated with the MPI. Consistently, the cerebellum nodes were defined as the mastication-related hubs. In contrast, in the OA group, we found a sparser connection within the sensorimotor regions and cerebellum and a denser connection across distributed regions, including the FC between the superior parietal lobe (SPL), the anterior insula (aINS) and the dorsal anterior cingulate cortex (dACC). Compared to the YA group, the network of the OA group also comprised more mastication-related hubs, which were spatially distributed outside the sensorimotor regions, including the right SPL, the right aINS, and the bilateral dACC. In general, the findings supported the hypothesis that in OA, higher masticatory performance is associated with a widespread pattern of mastication-related hubs. Such a widespread engagement of multiple brain regions associated with the MPI may reflect an increased demand in sensorimotor integration, attentional

  14. Neuronutrient impact of Ayurvedic Rasayana therapy in brain aging.

    Science.gov (United States)

    Singh, Ram Harsh; Narsimhamurthy, K; Singh, Girish

    2008-12-01

    Ayurveda is the oldest system of Medicine in the world, its antiquity going back to the Vedas. It adapts a unique holistic approach to the entire science of life, health and cure. The areas of special consideration in Ayurveda are geriatrics, rejuvenation, nutrition, immunology, genetics and higher consciousness. The Ayurvedic texts describe a set of rejuvenative measures to impart biological sustenance to the bodily tissues. These remedies are called Rasayana which are claimed to act as micronutrients. Some of these Rasayanas are organ and tissue specific. Those specific to brain tissue are called Medhya Rasayana. Such Rasayanas retard brain aging and help in regeneration of neural tissues besides producing antistress, adaptogenic and memory enhancing effect. In addition to the long tradition of textual and experience-based evidence for their efficacy, certain recent studies conducted on these traditional remedies on scientific parameters have shown promising results which have been reviewed in this paper for providing lead for further studies. The popular Medhya Rasayanas are Ashwagandha (Withania somnifera Dunal), Brahmi (Bacopa monnieri Linn), Mandukaparni (Centella asiatica Linn) and Sankhapuspi (Convolvulus pluricaulis Chois).

  15. Age-related and non-age-related changes in 100 surveyed horse brains.

    Science.gov (United States)

    Jahns, H; Callanan, J J; McElroy, M C; Sammin, D J; Bassett, H F

    2006-09-01

    Brains from 100 horses, aged 2-25 years, were systematically examined by histopathology at 46 different neuroanatomical sites. The horses were sourced from a slaughterhouse (group A, n = 57), from a kennel that collected dead animals, and from 2 diagnostic laboratories (group B, n = 43). All horses from group A and 26 horses from group B were examined by a veterinarian in the period before death. None of the horses were known to exhibit clinical signs suggestive of neurologic disease. Among the main changes identified were vacuolation in the neuropil (n = 73), neurons (n = 32), white matter (n = 31), and focal perivascular lymphoid cell infiltrates (n = 35). Spheroids were frequently seen (n = 91), and 10 horses each had more than 10 spheroids in the cuneate or gracile nucleus. Statistically significant age-related changes noted included intraneuronal (n = 97) and glial or extracellular lipofuscin deposition (n = 41), hemosiderin deposition around blood vessels (n = 60), and calcium depositions (n = 24). One horse had low-grade nonsuppurative meningoencephalitis; Alzheimer type II cells were detected in the brains of 2 horses. Hyalinized vessel walls in the cerebellum were observed in 1 horse. It was concluded that some histopathologic changes are a frequent feature in equine brains, which has implications for the pathologists involved in equine neurology and disease surveillance.

  16. Brain-predicted age in Down syndrome is associated with beta amyloid deposition and cognitive decline.

    Science.gov (United States)

    Cole, James H; Annus, Tiina; Wilson, Liam R; Remtulla, Ridhaa; Hong, Young T; Fryer, Tim D; Acosta-Cabronero, Julio; Cardenas-Blanco, Arturo; Smith, Robert; Menon, David K; Zaman, Shahid H; Nestor, Peter J; Holland, Anthony J

    2017-08-01

    Individuals with Down syndrome (DS) are more likely to experience earlier onset of multiple facets of physiological aging. This includes brain atrophy, beta amyloid deposition, cognitive decline, and Alzheimer's disease-factors indicative of brain aging. Here, we employed a machine learning approach, using structural neuroimaging data to predict age (i.e., brain-predicted age) in people with DS (N = 46) and typically developing controls (N = 30). Chronological age was then subtracted from brain-predicted age to generate a brain-predicted age difference (brain-PAD) score. DS participants also underwent [ 11 C]-PiB positron emission tomography (PET) scans to index the levels of cerebral beta amyloid deposition, and cognitive assessment. Mean brain-PAD in DS participants' was +2.49 years, significantly greater than controls (p brain-PAD was associated with the presence and the magnitude of PiB-binding and levels of cognitive performance. Our study indicates that DS is associated with premature structural brain aging, and that age-related alterations in brain structure are associated with individual differences in the rate of beta amyloid deposition and cognitive impairment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Studying variability in human brain aging in a population-based German cohort—rationale and design of 1000BRAINS

    OpenAIRE

    Svenja eCaspers; Susanne eMoebus; Silke eLux; Noreen ePundt; Holger eSchütz; Mühleisen, Thomas W.; Vincent eGras; Eickhoff, Simon B.; Sandro eRomanzetti; Tony eStöcker; Rüdiger eStirnberg; Kirlangic, Mehmet E.; Martina eMinnerop; Peter ePieperhoff; Ulrich eMödder

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collectio...

  18. Chronic vitamin C deficiency does not accelerate oxidative stress in ageing brains of guinea pigs

    DEFF Research Database (Denmark)

    Tveden-Nyborg, Pernille; Hasselholt, Stine; Miyashita, Namiyo

    2012-01-01

      Increased oxidative stress in the brain has consistently been implied in ageing and in several degenerative brain disorders. Acting as a pivotal antioxidant in the brain, vitamin C is preferentially retained during deficiency and may play an essential role in neuroprotection during ageing. Thus......, a lack of vitamin C could be associated with an increase in redox imbalance in the ageing brain. The present study compared oxidative stress of ageing to that of a long-term non-scorbutic vitamin C deficiency in guinea pigs. Adults (3-9 months old) were compared to old (36-42 months old) animals during...... a six-month dietary intervention by assessing vitamin C transport and redox homeostasis in the brain. In contrast to our hypothesis, chronic vitamin C deficiency did not affect the measured markers of oxidative stress in the brains of adult and aged animals. However, aged animals generally showed...

  19. Membrane raft domains and remodeling in aging brain.

    Science.gov (United States)

    Colin, Julie; Gregory-Pauron, Lynn; Lanhers, Marie-Claire; Claudepierre, Thomas; Corbier, Catherine; Yen, Frances T; Malaplate-Armand, Catherine; Oster, Thierry

    2016-11-01

    Lipids are the fundamental structural components of biological membranes. For a long time considered as simple barriers segregating aqueous compartments, membranes are now viewed as dynamic interfaces providing a molecular environment favorable to the activity of membrane-associated proteins. Interestingly, variations in membrane lipid composition, whether quantitative or qualitative, play a crucial role in regulation of membrane protein functionalities. Indeed, a variety of alterations in brain lipid composition have been associated with the processes of normal and pathological aging. Although not establishing a direct cause-and-effect relationship between these complex modifications in cerebral membranes and the process of cognitive decline, evidence shows that alterations in membrane lipid composition affect important physicochemical properties notably impacting the lateral organization of membranes, and thus microdomains. It has been suggested that preservation of microdomain functionality may represent an effective strategy for preventing or decelerating neuronal dysfunction and cerebral vulnerability, processes that are both aggravated by aging. The working hypothesis developed in this review proposes that preservation of membrane organization, for example, through nutritional supplementation of docosahexaenoic acid, could prevent disturbances in and preserve effective cerebral function. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Age- and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats

    Data.gov (United States)

    U.S. Environmental Protection Agency — Differences in various mitochondrial bioenergetics parameters in different brain regions in different age groups. This dataset is associated with the following...

  1. Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    NARCIS (Netherlands)

    Guadalupe, Tulio; Mathias, Samuel R.; Vanerp, Theo G. M.; Whelan, Christopher D.; Zwiers, Marcel P.; Abe, Yoshinari; Abramovic, Lucija; Agartz, Ingrid; Andreassen, Ole A.; Arias-Vasquez, Alejandro; Aribisala, Benjamin S.; Armstrong, Nicola J.; Arolt, Volker; Artiges, Eric; Ayesa-Arriola, Rosa; Baboyan, Vatche G.; Banaschewski, Tobias; Barker, Gareth; Bastin, Mark E.; Baune, Bernhard T.; Blangero, John; Bokde, Arun L. . W.; Boedhoe, Premika S. . W.; Bose, Anushree; Brem, Silvia; Brodaty, Henry; Bromberg, Uli; Brooks, Samantha; Buechel, Christian; Buitelaar, Jan; Calhoun, Vince D.; Cannon, Dara M.; Cattrell, Anna; Cheng, Yuqi; Conrod, Patricia J.; Conzelmann, Annette; Corvin, Aiden; Crespo-Facorro, Benedicto; Crivello, Fabrice; Dannlowski, Udo; De Zubicaray, Greig I.; De Zwarte, Sonja M. C.; Deary, Ian J.; Desrivieres, Sylvane; Doan, Nhat Trung; Donohoe, Gary; Dorum, Erlend S.; Ehrlich, Stefan; Espeseth, Thomas; Fernandez, Guillen; Flor, Herta; Fouche, Jean-Paul; Frouin, Vincent; Fukunaga, Masaki; Gallinat, Jurgen; Garavan, Hugh; Gill, Michael; Suarez, Andrea Gonzalez; Gowland, Penny; Grabe, Hans J.; Grotegerd, Dominik; Gruber, Oliver; Hagenaars, Saskia; Hashimoto, Ryota; Hauser, Tobias U.; Heinz, Andreas; Hibar, Derrek P.; Hoekstra, Pieter J.; Hoogman, Martine; Howells, Fleur M.; Hu, Hao; Pol, Hilleke E. Hulshoff; Huyser, Chaim; Ittermann, Bernd; Jahanshad, Neda; Jonsson, Erik G.; Jurk, Sarah; Kahn, Rene S.; Kelly, Sinead; Kraemer, Bernd; Kugel, Harald; Kwon, Jun Soo; Lemaitre, Herve; Lesch, Klaus-Peter; Lochner, Christine; Luciano, Michelle; Marquand, Andre F.; Martin, Nicholas G.; Martinez-Zalacain, Ignacio; Martinot, Jean-Luc; Mataix-Cols, David; Mather, Karen; McDonald, Colm; McMahon, Katie L.; Medland, Sarah E.; Menchon, Jose M.; Morris, Derek W.; Mothersill, Omar; Maniega, Susana Munoz; Mwangi, Benson; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswaamy, Janardhanan C.; Nees, Frauke; Nordvik, Jan E.; Onnink, A. Marten H.; Opel, Nils; Ophoff, Roel; Martinot, Marie-Laure Paillere; Orfanos, Dimitri Papadopoulos; Pauli, Paul; Paus, Tomas; Poustka, Luise; Reddy, Janardhan Y. C.; Renteria, Miguel E.; Roiz-Santianez, Roberto; Roos, Annerine; Royle, Natalie A.; Sachdev, Perminder; Sanchez-Juan, Pascual; Schmaal, Lianne; Schumann, Gunter; Shumskaya, Elena; Smolka, Michael N.; Soares, Jair C.; Soriano-Mas, Carles; Stein, Dan J.; Strike, Lachlan T.; Toro, Roberto; Turner, Jessica A.; Tzourio-Mazoyer, Nathalie; Uhlmann, Anne; Hernandez, Maria Valdes; Van den Heuvel, Odile A.; Van der Meer, Dennis; Van Haren, Neeltje E. M.; Veltman, Dick J.; Venkatasubramanian, Ganesan; Vetter, Nora C.; Vuletic, Daniella; Walitza, Susanne; Walter, Henrik; Walton, Esther; Wang, Zhen; Wardlaw, Joanna; Wen, Wei; Westlye, Lars T.; Whelan, Robert; Wittfeld, Katharina; Wolfers, Thomas; Wright, Margaret J.; Xu, Jian; Xu, Xiufeng; Yun, Je-Yeon; Zhao, JingJing; Franke, Barbara; Thompson, Paul M.; Glahn, David C.; Mazoyer, Bernard; Fisher, Simon E.; Francks, Clyde

    2017-01-01

    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain

  2. Prevalence of mixed pathologies in the aging brain

    OpenAIRE

    Rahimi, Jasmin; Kovacs, Gabor G

    2014-01-01

    The spectrum of mixed brain pathologies expands beyond accompanying vascular pathology in brains with Alzheimer’s disease-related pathology. Co-occurrence of neurodegenerative non-Alzheimer’s disease-type proteinopathies is increasingly recognized to be a frequent event in the brains of symptomatic and asymptomatic patients, particularly in older people. Owing to the evolving concept of neurodegenerative diseases, clinical and neuropathological diagnostic criteria have changed during the last...

  3. Multiple Brain Markers are Linked to Age-Related Variation in Cognition

    Science.gov (United States)

    Hedden, Trey; Schultz, Aaron P.; Rieckmann, Anna; Mormino, Elizabeth C.; Johnson, Keith A.; Sperling, Reisa A.; Buckner, Randy L.

    2016-01-01

    Age-related alterations in brain structure and function have been challenging to link to cognition due to potential overlapping influences of multiple neurobiological cascades. We examined multiple brain markers associated with age-related variation in cognition. Clinically normal older humans aged 65–90 from the Harvard Aging Brain Study (N = 186) were characterized on a priori magnetic resonance imaging markers of gray matter thickness and volume, white matter hyperintensities, fractional anisotropy (FA), resting-state functional connectivity, positron emission tomography markers of glucose metabolism and amyloid burden, and cognitive factors of processing speed, executive function, and episodic memory. Partial correlation and mediation analyses estimated age-related variance in cognition shared with individual brain markers and unique to each marker. The largest relationships linked FA and striatum volume to processing speed and executive function, and hippocampal volume to episodic memory. Of the age-related variance in cognition, 70–80% was accounted for by combining all brain markers (but only ∼20% of total variance). Age had significant indirect effects on cognition via brain markers, with significant markers varying across cognitive domains. These results suggest that most age-related variation in cognition is shared among multiple brain markers, but potential specificity between some brain markers and cognitive domains motivates additional study of age-related markers of neural health. PMID:25316342

  4. Working memory in middle-aged males: Age-related brain activation changes and cognitive fatigue effects

    NARCIS (Netherlands)

    Klaassen, Elissa; Evers, Elisabeth; De Groot, Renate; Backes, Walter; Veltman, Dick; Jolles, Jelle

    2017-01-01

    We examined the effects of aging and cognitive fatigue on working memory (WM) related brain activation using functional magnetic resonance imaging. Age-related differences were investigated in 13 young and 16 middle-aged male school teachers. Cognitive fatigue was induced by sustained performance on

  5. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Annika [Turku University Hospital, Department of Pediatrics, Turku (Finland); Aabo Akademi University, Department of Psychology, Turku (Finland); Parkkola, Riitta [University of Turku and Turku University Hospital, Department of Radiology and Turku PET Center, PO Box 52, Turku (Finland); Lehtonen, Liisa; Maunu, Jonna; Lapinleimu, Helena [University of Turku and Turku University Hospital, Department of Pediatrics, Turku (Finland); Munck, Petriina [Turku University Hospital, Department of Pediatrics, Turku (Finland); University of Turku, Department of Psychology, Turku (Finland); Haataja, Leena [University of Turku and Turku University Hospital, Department of Pediatric Neurology, Turku (Finland)

    2011-08-15

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children. (orig.)

  6. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children.

    Science.gov (United States)

    Lind, Annika; Parkkola, Riitta; Lehtonen, Liisa; Munck, Petriina; Maunu, Jonna; Lapinleimu, Helena; Haataja, Leena

    2011-08-01

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children.

  7. Central region morphometry in a child brain; Age and gender ...

    African Journals Online (AJOL)

    Background: Data on central region morphometry of a child brain is important not only in terms of providing us with information about central region anatomy of the brain but also in terms of the help of this information for the plans to be applied in neurosurgery. Objective: In the present study, central region morphometry of a ...

  8. Age-related neuronal loss in the rat brain starts at the end of adolescence

    OpenAIRE

    Priscilla eMorterá; Priscilla eMorterá; Suzana eHerculano-Houzel; Suzana eHerculano-Houzel

    2012-01-01

    Aging-related changes in the brain have been mostly studied through the comparison of young adult and very old animals. However, aging must be considered a lifelong process of cumulative changes that ultimately become evident at old age. To determine when this process of decline begins, we studied how the cellular composition of the rat brain changes from infancy to adolescence, early adulthood, and old age. Using the isotropic fractionator to determine total numbers of neuronal and non-neuro...

  9. Brain aging research at the close of the 20th century: from bench to bedside

    OpenAIRE

    Cidis Meltzer, Carolyn; Francis, Paul T.

    2001-01-01

    Remarkable and continued growth in the field of brain aging research has been fueled by a confluence of factors. Developments in molecular biology, imaging, and genetics coupled with the imperative caused by the aging of the population has created fertile ground for improved understanding of the interaction between brain function and behavior. Aging changes in neurochemical systems may account for the spectrum of cognitive and behavioral states of successfully aged pen sons, but may also cont...

  10. Nutrition for the ageing brain: Towards evidence for an optimal diet

    NARCIS (Netherlands)

    Vauzour, David; Camprubi-Robles, Maria; Miquel-Kergoat, Sophie; Andres-Lacueva, Cristina; Bánáti, Diána; Barberger-Gateau, Pascale; Bowman, Gene L.; Caberlotto, Laura; Clarke, Robert; Hogervorst, Eef; Kiliaan, Amanda J.; Lucca, Ugo; Manach, Claudine; Minihane, Anne-Marie; Mitchell, Ellen Siobhan; Perneczky, Robert; Perry, Hugh; Roussel, Anne-Marie; Schuermans, Jeroen; Sijben, John; Spencer, Jeremy P.E.; Thuret, Sandrine; De Rest, Van Ondine; Vandewoude, Maurits; Wesnes, Keith; Williams, Robert J.; Williams, Robin S.B.; Ramirez, Maria

    2017-01-01

    As people age they become increasingly susceptible to chronic and extremely debilitating brain diseases. The precise cause of the neuronal degeneration underlying these disorders, and indeed normal brain ageing remains however elusive. Considering the limits of existing preventive methods, there is

  11. Redox proteomics in aging rat brain: involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process.

    Science.gov (United States)

    Perluigi, M; Di Domenico, F; Giorgi, A; Schininà, M E; Coccia, R; Cini, C; Bellia, F; Cambria, M T; Cornelius, C; Butterfield, D A; Calabrese, V

    2010-12-01

    Increasing evidence supports the notion that increased oxidative stress is a fundamental cause in the aging process and in neurodegenerative diseases. As a result, a decline in cognitive function is generally associated with brain aging. Reactive oxygen species (ROS) are highly reactive intermediates, which can modify proteins, nucleic acids, and polyunsaturated fatty acids, leading to neuronal damage. Because proteins are major components of biological systems and play key roles in a variety of cellular functions, oxidative damage to proteins represents a primary event observed in aging and age-related neurodegenerative disorders. In the present study, with a redox proteomics approach, we identified mitochondrial oxidatively modified proteins as a function of brain aging, specifically in those brain regions, such as cortex and hippocampus, that are commonly affected by the aging process. In all brain regions examined, many of the identified proteins were energy-related, such as pyruvate kinase, ATP synthase, aldolase, creatine kinase, and α-enolase. These alterations were associated with significant changes in both cytosolic and mitochondrial redox status in all brain regions analyzed. Our finding is in line with current literature postulating that free radical damage and decreased energy production are characteristic hallmarks of the aging process. In additon, our results further contribute to identifying common pathological pathways involved both in aging and in neurodegenerative disease development. Copyright © 2010 Wiley-Liss, Inc.

  12. Metabolomics of human brain aging and age-related neurodegenerative diseases.

    Science.gov (United States)

    Jové, Mariona; Portero-Otín, Manuel; Naudí, Alba; Ferrer, Isidre; Pamplona, Reinald

    2014-07-01

    Neurons in the mature human central nervous system (CNS) perform a wide range of motor, sensory, regulatory, behavioral, and cognitive functions. Such diverse functional output requires a great diversity of CNS neuronal and non-neuronal populations. Metabolomics encompasses the study of the complete set of metabolites/low-molecular-weight intermediates (metabolome), which are context-dependent and vary according to the physiology, developmental state, or pathologic state of the cell, tissue, organ, or organism. Therefore, the use of metabolomics can help to unravel the diversity-and to disclose the specificity-of metabolic traits and their alterations in the brain and in fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of aging and neurodegenerative diseases. Here, we review the current applications of metabolomics in studies of CNS aging and certain age-related neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis. Neurometabolomics will increase knowledge of the physiologic and pathologic functions of neural cells and will place the concept of selective neuronal vulnerability in a metabolic context.

  13. Associations between insulin action and integrity of brain microstructure differ with familial longevity and with age

    DEFF Research Database (Denmark)

    Akintola, Abimbola A; van den Berg, Annette; van Buchem, Mark A

    2015-01-01

    Impaired glucose metabolism and type 2 diabetes have been associated with cognitive decline, dementia, and with structural and functional brain features. However, it is unclear whether these associations differ in individuals that differ in familial longevity or age. Here, we investigated......) peak-height was used to quantify differences in microstructural brain parenchymal tissue homogeneity that remain invisible on conventional MRI. Analyses were performed in offspring and age-matched controls, with and without stratification for age. In the full offspring group only, reduced MTR peak...... significant. Thus, associations between impaired insulin action and reduced microstructural brain parenchymal tissue homogeneity were stronger in offspring compared to controls, and seemed to diminish with age....

  14. Age- and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats

    Science.gov (United States)

    Differences in various mitochondrial bioenergetics parameters in different brain regions in different age groups.This dataset is associated with the following publication:Pandya, J.D., J. Royland , R.C. McPhail, P.G. Sullivan, and P. Kodavanti. Age-and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats. NEUROBIOLOGY OF AGING. Elsevier Science Ltd, New York, NY, USA, 42: 25-34, (2016).

  15. Onset of multiple sclerosis before adulthood leads to failure of age-expected brain growth.

    Science.gov (United States)

    Aubert-Broche, Bérengère; Fonov, Vladimir; Narayanan, Sridar; Arnold, Douglas L; Araujo, David; Fetco, Dumitru; Till, Christine; Sled, John G; Banwell, Brenda; Collins, D Louis

    2014-12-02

    To determine the impact of pediatric-onset multiple sclerosis (MS) on age-expected brain growth. Whole brain and regional volumes of 36 patients with relapsing-remitting MS onset prior to 18 years of age were segmented in 185 longitudinal MRI scans (2-11 scans per participant, 3-month to 2-year scan intervals). MRI scans of 25 age- and sex-matched healthy normal controls (NC) were also acquired at baseline and 2 years later on the same scanner as the MS group. A total of 874 scans from 339 participants from the NIH-funded MRI study of normal brain development acquired at 2-year intervals were used as an age-expected healthy growth reference. All data were analyzed with an automatic image processing pipeline to estimate the volume of brain and brain substructures. Mixed-effect models were built using age, sex, and group as fixed effects. Significant group and age interactions were found with the adjusted models fitting brain volumes and normalized thalamus volumes (p brain growth for the MS group, and an even greater failure of thalamic growth. In patients with MS, T2 lesion volume correlated with a greater reduction in age-expected thalamic volume. To exclude any scanner-related influence on our data, we confirmed no significant interaction of group in the adjusted models between the NC and NIH MRI Study of Normal Brain Development groups. Our results provide evidence that the onset of MS during childhood and adolescence limits age-expected primary brain growth and leads to subsequent brain atrophy, implicating an early onset of the neurodegenerative aspect of MS. © 2014 American Academy of Neurology.

  16. Brain Volumes at Term-Equivalent Age in Preterm Infants : Imaging Biomarkers for Neurodevelopmental Outcome through Early School Age

    NARCIS (Netherlands)

    Keunen, Kristin; Išgum, Ivana; van Kooij, Britt J M; Anbeek, Petronella; van Haastert, Ingrid C; Koopman-Esseboom, Corine; van Stam, Petronella C; Nievelstein, Rutger A J; Viergever, Max A; de Vries, Linda S; Groenendaal, Floris; Benders, Manon J N L

    OBJECTIVE: To evaluate the relationship between brain volumes at term and neurodevelopmental outcome through early school age in preterm infants. STUDY DESIGN: One hundred twelve preterm infants (born mean gestational age 28.6 ± 1.7 weeks) were studied prospectively with magnetic resonance imaging

  17. Brain Growth Across the Life Span in Autism: Age-Specific Changes in Anatomical Pathology

    Science.gov (United States)

    Courchesne, Eric; Campbell, Kathleen; Solso, Stephanie

    2014-01-01

    Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has lead to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism there may also be age-specific changes in gene expression, molecular, synaptic, cellular and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. PMID:20920490

  18. Vitamin D deficiency reduces the benefits of progesterone treatment after brain injury in aged rats

    OpenAIRE

    Cekic, Milos; Cutler, Sarah M.; VanLandingham, Jacob W.; Stein, Donald G.

    2009-01-01

    Administration of the neurosteroid progesterone (PROG) has been shown to be beneficial in a number of brain injury models and in two recent clinical trials. Given widespread vitamin D deficiency and increasing traumatic brain injuries (TBIs) in the elderly, we investigated the interaction of vitamin D deficiency and PROG with cortical contusion injury in aged rats. Vitamin D deficient (VitD-deficient) animals showed elevated inflammatory proteins (TNFα, IL-1β, IL-6, NFκB p65) in the brain eve...

  19. Nicotinamide phosphoribosyltransferase may be involved in age-related brain diseases.

    Directory of Open Access Journals (Sweden)

    Li-Ying Liu

    Full Text Available Nicotinamide phosphoribosyltransferase (NAMPT is a key enzyme for nicotinamide adenine dinucleotide (NAD biosynthesis, and can be found either intracellularly (iNAMPT or extracellularly (eNAMPT. Studies have shown that both iNAMPT and eNAMPT are implicated in aging and age-related diseases/disorders in the peripheral system. However, their functional roles in aged brain remain to be established. Here we showed that upon aging, NAMPT level increased in serum but decreased in brain, decreased in cortex and hippocampus but remained unchanged in cerebellum and striatum in brain, and increased in microglia but likely decreased in neuron. Accordingly, total NAD (tNAD level significantly decreased in hippocampus, cerebellum and striatum in aged brain. Application of recombinant NAMPT, mimicking the elevated serum NAMPT level, enhanced the susceptibility of cerebral endothelial cells to ischemic injury, while inhibition of iNAMPT by FK866, a specific inhibitor, reduced intracellular NAD level and induced neuronal death. Taken together, we have revealed a region- and cell-specific change of NAMPT level in brain and serum upon aging, deduced its potential consequences, which suggests that NAMPT is a regulatory factor in aging and age-related brain diseases.

  20. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair

    Directory of Open Access Journals (Sweden)

    Sandra Zárate

    2017-12-01

    Full Text Available Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer’s disease (AD. Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.

  1. Parameterization of the Age-Dependent Whole Brain Apparent Diffusion Coefficient Histogram

    Directory of Open Access Journals (Sweden)

    Uwe Klose

    2015-01-01

    Full Text Available Purpose. The distribution of apparent diffusion coefficient (ADC values in the brain can be used to characterize age effects and pathological changes of the brain tissue. The aim of this study was the parameterization of the whole brain ADC histogram by an advanced model with influence of age considered. Methods. Whole brain ADC histograms were calculated for all data and for seven age groups between 10 and 80 years. Modeling of the histograms was performed for two parts of the histogram separately: the brain tissue part was modeled by two Gaussian curves, while the remaining part was fitted by the sum of a Gaussian curve, a biexponential decay, and a straight line. Results. A consistent fitting of the histograms of all age groups was possible with the proposed model. Conclusions. This study confirms the strong dependence of the whole brain ADC histograms on the age of the examined subjects. The proposed model can be used to characterize changes of the whole brain ADC histogram in certain diseases under consideration of age effects.

  2. Diet and Age Interactions with Regards to Cholesterol Regulation and Brain Pathogenesis

    Directory of Open Access Journals (Sweden)

    Romina M. Uranga

    2010-01-01

    Full Text Available Cholesterol is an essential molecule for brain homeostasis; yet, hypercholesterolemia and its numerous complications are believed to play a role in promoting multiple aspects of brain pathogenesis. An ever increasing number of individuals in modern Western Society are regularly consuming diets high in fat which promote the development of hypercholesterolemia. Additionally, modern societies are becoming increasingly aged, causing a collision between increased hypercholesterolemia and increased aging, which will likely lead to the development of increased pathological conditions due to hypercholesterolemia, thereby promoting deleterious neurochemical and behavioral changes in the brain. Lastly, while beneficial in controlling cholesterol levels, the long-term use of statins itself may potentially promote adverse effects on brain homeostasis, although specifics on this remain largely unknown. This review will focus on linking the current understanding of diet-induced hypercholesterolemia (as well as statin use to the development of oxidative stress, neurochemical alterations, and cognitive disturbances in the aging brain.

  3. The Impact of MicroRNAs on Brain Aging and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Stephan P. Persengiev

    2012-01-01

    Full Text Available The molecular instructions that govern gene expression regulation are encoded in the genome and ultimately determine the morphology and functional specifications of the human brain. As a consequence, changes in gene expression levels might be directly related to the functional decline associated with brain aging. Small noncoding RNAs, including miRNAs, comprise a group of regulatory molecules that modulate the expression of hundred of genes which play important roles in brain metabolism. Recent comparative studies in humans and nonhuman primates revealed that miRNAs regulate multiple pathways and interconnected signaling cascades that are the basis for the cognitive decline and neurodegenerative disorders during aging. Identifying the roles of miRNAs and their target genes in model organisms combined with system-level studies of the brain would provide more comprehensive understanding of the molecular basis of brain deterioration during the aging process.

  4. Healthy aging: an automatic analysis of global and regional morphological alterations of human brain.

    Science.gov (United States)

    Long, Xiaojing; Liao, Weiqi; Jiang, Chunxiang; Liang, Dong; Qiu, Bensheng; Zhang, Lijuan

    2012-07-01

    Morphologic changes of the human brain during healthy aging provide useful reference knowledge for age-related brain disorders. The aim of this study was to explore age-related global and regional morphological changes of healthy adult brains. T1-weighted magnetic resonance images covering the entire brain were acquired for 314 subjects. Image processing of registration, segmentation, and surface construction were performed to calculate the volumes of the cerebrum, cerebellum, brain stem, lateral ventricle, and subcortical nuclei, as well as the surface area, mean curvature index, cortical thickness of the cerebral cortex, and subjacent white matter volume using FreeSurfer software. Mean values of each morphologic index were calculated and plotted against age group for sectional analysis. Regression analysis was conducted using SPSS to investigate the age effects on global and regional volumes of human brain. Overall global and regional volume loss was observed for the entire brain during healthy aging. Moderate atrophy was observed in subcortical gray matter structures, including the thalamus (R(2) = 0.476, P age, followed by a relatively faster decline after the age of 50 years (R(2) = 0.486, P aging relative to cortical thickness and subjacent white matter volume. Significant cortical thinning was mainly found in the parietal (R(2) = 0.553, P aging. The age effect on the hippocampus demonstrated a unique evolution. These findings provide informative reference knowledge that may help in identifying and differentiating pathologic aging and other neurologic disorders. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  5. Brain volumetric changes and cognitive ageing during the eighth decade of life

    Science.gov (United States)

    Dickie, David Alexander; Cox, Simon R.; Valdes Hernandez, Maria del C.; Corley, Janie; Royle, Natalie A.; Pattie, Alison; Aribisala, Benjamin S.; Redmond, Paul; Muñoz Maniega, Susana; Taylor, Adele M.; Sibbett, Ruth; Gow, Alan J.; Starr, John M.; Bastin, Mark E.; Wardlaw, Joanna M.; Deary, Ian J.

    2015-01-01

    Abstract Later‐life changes in brain tissue volumes—decreases in the volume of healthy grey and white matter and increases in the volume of white matter hyperintensities (WMH)—are strong candidates to explain some of the variation in ageing‐related cognitive decline. We assessed fluid intelligence, memory, processing speed, and brain volumes (from structural MRI) at mean age 73 years, and at mean age 76 in a narrow‐age sample of older individuals (n = 657 with brain volumetric data at the initial wave, n = 465 at follow‐up). We used latent variable modeling to extract error‐free cognitive levels and slopes. Initial levels of cognitive ability were predictive of subsequent brain tissue volume changes. Initial brain volumes were not predictive of subsequent cognitive changes. Brain volume changes, especially increases in WMH, were associated with declines in each of the cognitive abilities. All statistically significant results were modest in size (absolute r‐values ranged from 0.114 to 0.334). These results build a comprehensive picture of macrostructural brain volume changes and declines in important cognitive faculties during the eighth decade of life. Hum Brain Mapp 36:4910–4925, 2015. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc PMID:26769551

  6. Psychological and adjustment problems due to acquired brain lesions in pre-school-aged patients.

    Science.gov (United States)

    Pastore, Valentina; Colombo, Katia; Villa, Federica; Galbiati, Susanna; Adduci, Annarita; Poggi, Geraldina; Massimino, Maura; Recla, Monica; Liscio, Mariarosaria; Strazzer, Sandra

    2013-06-01

    To describe and compare psychological, behavioural and adjustment problems in pre-school patients with acquired brain lesions of different aetiology. Three groups of patients with acquired brain lesions (14 patients post-TBI, 18 brain tumour survivors and 23 patients with vascular or infectious brain lesions), ranging in age between 24-47 months, received a psychological evaluation, including the Child Behavior Checklist for Ages 2-3 (CBCL) and the Vineland Adaptive Behavior Scales (VABS). About half of the total sample (47.2%) showed psychological and behavioural problems. Difficulties vary according to the aetiology of the brain lesions. Brain tumour survivors showed more marked internalizing problems, whereas children with vascular or infectious brain lesions scored higher on the CBCL externalizing scales. Children with traumatic brain injury reported intermediate scores on most of the CBCL scales. Psychological and behavioural difficulties are very common, not only among school-aged children and adolescents, but also among pre-schoolers with acquired brain lesions. The relevance and the impact of these difficulties must necessarily be considered when developing psychological treatment and rehabilitation plans and planning for social re-entry.

  7. Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents.

    Science.gov (United States)

    Zhou, June; Keenan, Michael J; Fernandez-Kim, Sun Ok; Pistell, Paul J; Ingram, Donald K; Li, Bing; Raggio, Anne M; Shen, Li; Zhang, Hanjie; McCutcheon, Kathleen L; Tulley, Richard T; Blackman, Marc R; Keller, Jeffrey N; Martin, Roy J

    2013-11-01

    Resistant starch (RS) is a dietary fiber that exerts multiple beneficial effects. The current study explored the effects of dietary RS on selected brain and behavioral functions in adult and aged rodents. Because glucokinase (GK) expression in hypothalamic arcuate nucleus and area postrema of the brainstem is important for brain glucose sensing, GK mRNA was measured by brain nuclei microdissection and PCR. Adult RS-fed rats had a higher GK mRNA than controls in both brain nuclei, an indicator of improved brain glucose sensing. Next, we tested whether dietary RS improve selected behaviors in aged mice. RS-fed aged mice exhibited (i) an increased eating responses to fasting, a behavioral indicator of improvement in aged brain glucose sensing; (ii) a longer latency to fall from an accelerating rotarod, a behavioral indicator of improved motor coordination; and (iii) a higher serum active glucagon-like peptide-1 (GLP-1). Then, GLP-1 receptor null (GLP-1RKO) mice were used to test the role of GLP-1 in brain glucose sensing, and they exhibited impaired eating responses to fasting. We conclude that in rodents (i) dietary RS improves two important indicators of brain function: glucose sensing and motor coordination, and (ii) GLP-1 is important in the optimal feeding response to a fast. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Studying variability in human brain aging in a population-based German cohort – Rationale and design of 1000BRAINS

    Directory of Open Access Journals (Sweden)

    Svenja eCaspers

    2014-07-01

    Full Text Available The ongoing 1000 brains study (1000BRAINS is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions & language; examination of motor skills; ratings of personality, life quality, mood & daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla of the brain. The latter includes (i 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fibre tracking and for diffusion kurtosis imaging; (iii resting-state and task-based functional MRI; and (iv fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  9. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS.

    Science.gov (United States)

    Caspers, Svenja; Moebus, Susanne; Lux, Silke; Pundt, Noreen; Schütz, Holger; Mühleisen, Thomas W; Gras, Vincent; Eickhoff, Simon B; Romanzetti, Sandro; Stöcker, Tony; Stirnberg, Rüdiger; Kirlangic, Mehmet E; Minnerop, Martina; Pieperhoff, Peter; Mödder, Ulrich; Das, Samir; Evans, Alan C; Jöckel, Karl-Heinz; Erbel, Raimund; Cichon, Sven; Nöthen, Markus M; Sturma, Dieter; Bauer, Andreas; Jon Shah, N; Zilles, Karl; Amunts, Katrin

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  10. Association of structural global brain network properties with intelligence in normal aging.

    Science.gov (United States)

    Fischer, Florian U; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas

    2014-01-01

    Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.

  11. Association of structural global brain network properties with intelligence in normal aging.

    Directory of Open Access Journals (Sweden)

    Florian U Fischer

    Full Text Available Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.

  12. Fasting and Fast Food Diet Play an Opposite Role in Mice Brain Aging.

    Science.gov (United States)

    Castrogiovanni, Paola; Li Volti, Giovanni; Sanfilippo, Cristina; Tibullo, Daniele; Galvano, Fabio; Vecchio, Michele; Avola, Roberto; Barbagallo, Ignazio; Malaguarnera, Lucia; Castorina, Sergio; Musumeci, Giuseppe; Imbesi, Rosa; Di Rosa, Michelino

    2018-01-20

    Fasting may be exploited as a possible strategy for prevention and treatment of several diseases such as diabetes, obesity, and aging. On the other hand, high-fat diet (HFD) represents a risk factor for several diseases and increased mortality. The aim of the present study was to evaluate the impact of fasting on mouse brain aging transcriptome and how HFD regulates such pathways. We used the NCBI Gene Expression Omnibus (GEO) database, in order to identify suitable microarray datasets comparing mouse brain transcriptome under fasting or HFD vs aged mouse brain transcriptome. Three microarray datasets were selected for this study, GSE24504, GSE6285, and GSE8150, and the principal molecular mechanisms involved in this process were evaluated. This analysis showed that, regardless of fasting duration, mouse brain significantly expressed 21 and 30 upregulated and downregulated genes, respectively. The involved biological processes were related to cell cycle arrest, cell death inhibition, and regulation of cellular metabolism. Comparing mouse brain transcriptome under fasting and aged conditions, we found out that the number of genes in common increased with the duration of fasting (222 genes), peaking at 72 h. In addition, mouse brain transcriptome under HFD resembles for the 30% the one of the aged mice. Furthermore, several molecular processes were found to be shared between HFD and aging. In conclusion, we suggest that fasting and HFD play an opposite role in brain transcriptome of aged mice. Therefore, an intermittent diet could represent a possible clinical strategy to counteract aging, loss of memory, and neuroinflammation. Furthermore, low-fat diet leads to the inactivation of brain degenerative processes triggered by aging.

  13. Sleep duration and age-related changes in brain structure and cognitive performance.

    Science.gov (United States)

    Lo, June C; Loh, Kep Kee; Zheng, Hui; Sim, Sam K Y; Chee, Michael W L

    2014-07-01

    To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Community-based longitudinal brain and cognitive aging study using a convenience sample. Participants were studied in a research laboratory. Relatively healthy adults aged 55 y and older at study commencement. N/A. Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance.

  14. The role of nutrition on cognition and brain health in ageing: a targeted approach.

    Science.gov (United States)

    Monti, Jim M; Moulton, Christopher J; Cohen, Neal J

    2015-12-01

    Animal experiments and cross-sectional or prospective longitudinal research in human subjects suggest a role for nutrition in cognitive ageing. However, data from randomised controlled trials (RCT) that seek causal evidence for the impact of nutrients on cognitive ageing in humans often produce null results. Given that RCT test hypotheses in a rigorous fashion, one conclusion could be that the positive effects of nutrition on the aged brain observed in other study designs are spurious. On the other hand, it may be that the design of many clinical trials conducted thus far has been less than optimal. In the present review, we offer a blueprint for a more targeted approach to the design of RCT in nutrition, cognition and brain health in ageing that focuses on three key areas. First, the role of nutrition is more suited for the maintenance of health rather than the treatment of disease. Second, given that cognitive functions and brain regions vary in their susceptibility to ageing, those that especially deteriorate in senescence should be focal points in evaluating the efficacy of an intervention. Third, the outcome measures that assess change due to nutrition, especially in the cognitive domain, should not necessarily be the same neuropsychological tests used to assess gross brain damage or major pathological conditions. By addressing these three areas, we expect that clinical trials of nutrition, cognition and brain health in ageing will align more closely with other research in this field, and aid in revealing the true nature of nutrition's impact on the aged brain.

  15. Increased self-diffusion of brain water in normal aging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Henriksen, O

    1994-01-01

    by an increase in the extracellular volume due to age-dependent neuronal degeneration or to changes in myelination. These findings have implications for future clinical investigations with diffusion MR imaging techniques in patients with neurologic diseases, and stress the importance of having an age...... correlation was found between the ADC in white matter and age (r = .7069, P age. The increased ADC in white matter may be caused...

  16. Reduced Specificity of Functional Connectivity in the Aging Brain During Task Performance

    NARCIS (Netherlands)

    Geerligs, Linda; Maurits, Natasha M.; Renken, Remco J.; Lorist, Monicque M.

    The importance of studying connectivity in the aging brain is increasingly recognized. Recent studies have shown that connectivity within the default mode network is reduced with age and have demonstrated a clear relation of these changes with cognitive functioning. However, research on age-related

  17. Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Jared D. Hoffman

    2017-09-01

    Full Text Available Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer’s disease (AD. However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF, gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5–6 months of age and compared those to old mice (18–20 months of age by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to

  18. A longitudinal study of structural brain network changes with normal aging

    Directory of Open Access Journals (Sweden)

    Kai eWu

    2013-04-01

    Full Text Available The aim of this study was to investigate age-related changes in the topological organization of structural brain networks by applying a longitudinal design over 6 years. Structural brain networks were derived from measurements of regional gray matter volume and were constructed in age-specific groups from baseline and follow-up scans. The structural brain networks showed economical small-world properties, providing high global and local efficiency for parallel information processing at low connection costs. In the analysis of the global network properties, the local and global efficiency of the baseline scan were significantly lower compared to the follow-up scan. Moreover, the annual rate of changes in local and global efficiency showed a positive and negative quadratic correlation with the baseline age, respectively; both curvilinear correlations peaked at approximately the age of 50. In the analysis of the regional nodal properties, significant negative correlations between the annual rate of changes in nodal strength and the baseline age were found in the brain regions primarily involved in the visual and motor/ control systems, whereas significant positive quadratic correlations were found in the brain regions predominately associated with the default-mode, attention, and memory systems. The results of the longitudinal study are consistent with the findings of our previous cross-sectional study: the structural brain networks develop into a fast distribution from young to middle age (approximately 50 years old and eventually became a fast localization in the old age. Our findings elucidate the network topology of structural brain networks and its longitudinal changes, thus enhancing the understanding of the underlying physiology of normal aging in the human brain.

  19. Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome.

    Science.gov (United States)

    Hoffman, Jared D; Parikh, Ishita; Green, Stefan J; Chlipala, George; Mohney, Robert P; Keaton, Mignon; Bauer, Bjoern; Hartz, Anika M S; Lin, Ai-Ling

    2017-01-01

    Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer's disease (AD). However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF), gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5-6 months of age) and compared those to old mice (18-20 months of age) by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB) function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to define the

  20. Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype.

    Science.gov (United States)

    Salminen, Antero; Ojala, Johanna; Kaarniranta, Kai; Haapasalo, Annakaisa; Hiltunen, Mikko; Soininen, Hilkka

    2011-07-01

    Cellular stress increases progressively with aging in mammalian tissues. Chronic stress triggers several signaling cascades that can induce a condition called cellular senescence. Recent studies have demonstrated that senescent cells express a senescence-associated secretory phenotype (SASP). Emerging evidence indicates that the number of cells expressing biomarkers of cellular senescence increases in tissues with aging, which implies that cellular senescence is an important player in organismal aging. In the brain, the aging process is associated with degenerative changes, e.g. synaptic loss and white matter atrophy, which lead to progressive cognitive impairment. There is substantial evidence for the presence of oxidative, proteotoxic and metabolic stresses in aging brain. A low-level, chronic inflammatory process is also present in brain during aging. Astrocytes demonstrate age-related changes that resemble those of the SASP: (i) increased level of intermediate glial fibrillary acidic protein and vimentin filaments, (ii) increased expression of several cytokines and (iii) increased accumulation of proteotoxic aggregates. In addition, in vitro stress evokes a typical senescent phenotype in cultured astrocytes and, moreover, isolated astrocytes from aged brain display the proinflammatory phenotype. All of these observations indicate that astrocytes are capable of triggering the SASP and the astrocytes in aging brain display typical characteristics of cellular senescence. Bearing in mind the many functions of astrocytes, it is evident that the age-related senescence of astrocytes enhances the decline in functional capacity of the brain. We will review the astroglial changes occurring during aging and emphasize that senescent astrocytes can have an important role in age-related neuroinflammation and neuronal degeneration. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. Effects of brain amyloid deposition and reduced glucose metabolism on the default mode of brain function in normal aging.

    Science.gov (United States)

    Kikuchi, Mitsuru; Hirosawa, Tetsu; Yokokura, Masamichi; Yagi, Shunsuke; Mori, Norio; Yoshikawa, Etsuji; Yoshihara, Yujiro; Sugihara, Genichi; Takebayashi, Kiyokazu; Iwata, Yasuhide; Suzuki, Katsuaki; Nakamura, Kazuhiko; Ueki, Takatoshi; Minabe, Yoshio; Ouchi, Yasuomi

    2011-08-03

    Brain β-amyloid (Aβ) deposition during normal aging is highlighted as an initial pathogenetic event in the development of Alzheimer's disease. Many recent brain imaging studies have focused on areas deactivated during cognitive tasks [the default mode network (DMN), i.e., medial frontal gyrus/anterior cingulate cortex and precuneus/posterior cingulate cortex], where the strength of functional coordination was more or less affected by cerebral Aβ deposits. In the present positron emission tomography study, to investigate whether regional glucose metabolic alterations and Aβ deposits seen in nondemented elderly human subjects (n = 22) are of pathophysiological importance in changes of brain hemodynamic coordination in DMN during normal aging, we measured cerebral glucose metabolism with [(18)F]FDG, Aβ deposits with [(11)C]PIB, and regional cerebral blood flow during control and working memory tasks by H(2)(15)O on the same day. Data were analyzed using both region of interest and statistical parametric mapping. Our results indicated that the amount of Aβ deposits was negatively correlated with hemodynamic similarity between medial frontal and medial posterior regions, and the lower similarity was associated with poorer working memory performance. In contrast, brain glucose metabolism was not related to this medial hemodynamic similarity. These findings suggest that traceable Aβ deposition, but not glucose hypometabolism, in the brain plays an important role in occurrence of neuronal discoordination in DMN along with poor working memory in healthy elderly people.

  2. Perceptions of age and brain in relation to hearing help-seeking and rehabilitation.

    Science.gov (United States)

    Preminger, Jill E; Laplante-Lévesque, Ariane

    2014-01-01

    This study used a qualitative approach to explore the perspectives of adults with hearing impairment on hearing help-seeking and rehabilitation. Two superordinate themes, Age and Brain, emerged from prior analyses and are investigated in the present article. In-depth semistructured interviews were completed in four countries with 34 adults (aged 26 to 96 years) with hearing impairment. Participants were asked to "Tell the story of your hearing." Participants included individuals with different levels of experiences in hearing help-seeking and rehabilitation. The themes of Age and Brain emerged from the data based on qualitative content analysis. These major themes were analyzed further using interpretative phenomenology to create models of themes and subthemes as they related to hearing help-seeking and rehabilitation expectations and experience. Age was discussed by 68% of the 34 participants. The data were sorted into three themes: Expectations, Self-Image, and Ways of Coping. Brain was discussed by 50% of the participants. The data were sorted into three themes: Cognitive Operations, Plasticity, and Mental Effort. Adults with hearing impairment think of their age and their brain as contributing to their hearing impairment, disability, help-seeking, and rehabilitation. Although hearing impairment associated with older age was typically construed as a stigma, not all perceptions of aging and hearing impairment were negative. Some participants viewed older age and its influence on relationships or priorities as a reason for seeking out hearing health care or as the determining factor in deciding to wear hearing aids (HAs). Some expected hearing impairment with older age, thus they found it easier to accept wearing HAs than they may have at a younger age. They discussed the brain in terms of the cognitive operations that may either inhibit or improve speech communication. Participants believed that they could train their brains to improve their communication (and

  3. Effect of 17β estradiol on hippocampus region of aging female rat brain: Ultrastructural study

    Directory of Open Access Journals (Sweden)

    Rashmi Jha

    2015-01-01

    Full Text Available Estradiol has direct membrane-mediated effects on neurons and its effects are both neuroprotective and neurotrophic. This hormone modulates brain development and aging and affects neurochemical systems which are affected in age-related cognitive decline, AD and other neuropsychiatric disorders. The aim of the present study was to determine the effect of 17β estradiol (E2 in hippocampus region of different age groups of rats. The changes in the hippocampus region of female rat brain of different age groups with and without E2 treatment were observed by transmission electron microscopy. Age dependent changes in myelin sheath, axon and cytoplasm membrane were observed with aging in control group rat brain but the E2 treated rats showed significantly stable myelin sheath, myelin axon and cytoplasm structure. Our results showed that E2 treatment significantly effects hippocampus brain region of aging rats. These analyses revealed that fundamental age-related changes in brain and estrogen have important implications when estrogen levels and hippocampus dependent functions decline.

  4. Changes in topological organization of functional PET brain network with normal aging.

    Directory of Open Access Journals (Sweden)

    Zhiliang Liu

    Full Text Available Recent studies about brain network have suggested that normal aging is associated with alterations in coordinated patterns of the large-scale brain functional and structural systems. However, age-related changes in functional networks constructed via positron emission tomography (PET data are still barely understood. Here, we constructed functional brain networks composed of 90 regions in younger (mean age 36.5 years and older (mean age 56.3 years age groups with PET data. 113 younger and 110 older healthy individuals were separately selected for two age groups, from a physical examination database. Corresponding brain functional networks of the two groups were constructed by thresholding average cerebral glucose metabolism correlation matrices of 90 regions and analysed using graph theoretical approaches. Although both groups showed normal small-world architecture in the PET networks, increased clustering and decreased efficiency were found in older subjects, implying a degeneration process that brain system shifts from a small-world network to regular one along with normal aging. Moreover, normal senescence was related to changed nodal centralities predominantly in association and paralimbic cortex regions, e.g. increasing in orbitofrontal cortex (middle and decreasing in left hippocampus. Additionally, the older networks were about equally as robust to random failures as younger counterpart, but more vulnerable against targeted attacks. Finally, methods in the construction of the PET networks revealed reasonable robustness. Our findings enhanced the understanding about the topological principles of PET networks and changes related to normal aging.

  5. Changes in topological organization of functional PET brain network with normal aging.

    Science.gov (United States)

    Liu, Zhiliang; Ke, Lining; Liu, Huafeng; Huang, Wenhua; Hu, Zhenghui

    2014-01-01

    Recent studies about brain network have suggested that normal aging is associated with alterations in coordinated patterns of the large-scale brain functional and structural systems. However, age-related changes in functional networks constructed via positron emission tomography (PET) data are still barely understood. Here, we constructed functional brain networks composed of 90 regions in younger (mean age 36.5 years) and older (mean age 56.3 years) age groups with PET data. 113 younger and 110 older healthy individuals were separately selected for two age groups, from a physical examination database. Corresponding brain functional networks of the two groups were constructed by thresholding average cerebral glucose metabolism correlation matrices of 90 regions and analysed using graph theoretical approaches. Although both groups showed normal small-world architecture in the PET networks, increased clustering and decreased efficiency were found in older subjects, implying a degeneration process that brain system shifts from a small-world network to regular one along with normal aging. Moreover, normal senescence was related to changed nodal centralities predominantly in association and paralimbic cortex regions, e.g. increasing in orbitofrontal cortex (middle) and decreasing in left hippocampus. Additionally, the older networks were about equally as robust to random failures as younger counterpart, but more vulnerable against targeted attacks. Finally, methods in the construction of the PET networks revealed reasonable robustness. Our findings enhanced the understanding about the topological principles of PET networks and changes related to normal aging.

  6. A novel method of quantifying brain atrophy associated with age-related hearing loss

    Directory of Open Access Journals (Sweden)

    Z. Jason Qian

    2017-01-01

    Audiometric evaluations and mini-mental state exams were obtained in 34 subjects over the age of 80 who have had brain MRIs in the past 6 years. CSF and parenchymal brain volumes (whole brain and by lobe were obtained through a novel, fully automated algorithm. Atrophy was calculated by taking the ratio of CSF to parenchyma. High frequency hearing loss was associated with disproportional temporal lobe atrophy relative to whole brain atrophy independent of age (r = 0.471, p = 0.005. Mental state was associated with frontoparietal atrophy but not to temporal lobe atrophy, which is consistent with known results. Our method demonstrates that hearing loss is associated with temporal lobe atrophy and generalized whole brain atrophy. Our algorithm is efficient, fully automated, and able to detect significant associations in a small cohort.

  7. Opposing effects of aging on large-scale brain systems for memory encoding and cognitive control.

    Science.gov (United States)

    Salami, Alireza; Eriksson, Johan; Nyberg, Lars

    2012-08-01

    Episodic memory declines with advancing age. Neuroimaging studies have associated such decline to age-related changes in general cognitive-control networks as well as to changes in process-specific encoding or retrieval networks. To assess the specific influence of aging on encoding and retrieval processes and associated brain systems, it is vital to dissociate encoding and retrieval from each other and from shared cognitive-control processes. We used multivariate partial-least-squares to analyze functional magnetic resonance imaging data from a large population-based sample (n = 292, 25-80 years). The participants performed a face-name paired-associates task and an active baseline task. The analysis revealed two significant network patterns. The first reflected a process-general encoding-retrieval network that included frontoparietal cortices and posterior hippocampus. The second pattern dissociated encoding and retrieval networks. The anterior hippocampus was differentially engaged during encoding. Brain scores, representing whole-brain integrated measures of how strongly an individual recruited a brain network, were correlated with cognitive performance and chronological age. The scores from the general cognitive-control network correlated negatively with episodic memory performance and positively with age. The encoding brain scores, which strongly reflected hippocampal functioning, correlated positively with episodic memory performance and negatively with age. Univariate analyses confirmed that bilateral hippocampus showed the most pronounced activity reduction in older age, and brain structure analyses found that the activity reduction partly related to hippocampus atrophy. Collectively, these findings suggest that age-related structural brain changes underlie age-related reductions in the efficient recruitment of a process-specific encoding network, which cascades into upregulated recruitment of a general cognitive-control network.

  8. Increased White Matter Inflammation in Aging- and Alzheimer’s Disease Brain

    Directory of Open Access Journals (Sweden)

    Divya Raj

    2017-06-01

    Full Text Available Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer’s disease (AD-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis and HLA-DR (associated with antigen presentation, in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years. This early inflammation was also detectable by non-invasive positron emission tomography imaging using [11C]-(R-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.

  9. Gene expression changes with age in skin, adipose tissue, blood and brain.

    Science.gov (United States)

    Glass, Daniel; Viñuela, Ana; Davies, Matthew N; Ramasamy, Adaikalavan; Parts, Leopold; Knowles, David; Brown, Andrew A; Hedman, Asa K; Small, Kerrin S; Buil, Alfonso; Grundberg, Elin; Nica, Alexandra C; Di Meglio, Paola; Nestle, Frank O; Ryten, Mina; Durbin, Richard; McCarthy, Mark I; Deloukas, Panagiotis; Dermitzakis, Emmanouil T; Weale, Michael E; Bataille, Veronique; Spector, Tim D

    2013-07-26

    Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.

  10. Differentiating the Influences of Aging and Adiposity on Brain Weights, Levels of Serum and Brain Cytokines, Gastrointestinal Hormones, and Amyloid Precursor Protein.

    Science.gov (United States)

    Banks, William A; Abrass, Christine K; Hansen, Kim M

    2016-01-01

    Aging and obesity exert important effects on disease. Differentiating these effects is difficult, however, because weight gain often accompanies aging. Here, we used a nested design of aged, calorically restricted, and refed rats to measure changes in brain and blood levels of cytokines and gastrointestinal hormones, brain amyloid precursor protein levels, and brain and body weights. By comparing groups and using path analysis, we found divergent influences of chronological aging versus body weight, our main findings being (i) changes in whole brain weight and serum macrophage colony-stimulating factor levels correlated better with body weight than with chronological aging, (ii) a decrease in brain cytokines and brain plasminogen activator inhibitor levels correlated better with chronological aging than with body weight, (iii) serum erythropoietin levels were influenced by both body weight and aging, (iv) serum plasminogen activator inhibitor, serum cytokines, and brain tumor necrosis factor were not influenced by aging or body weight, and (v) brain amyloid precursor protein more closely related to body weight and serum levels of gastrointestinal hormones than to brain weight, chronological aging, or cytokines. These findings show that although aging and body weight interact, their influences are distinct not only among various cytokines and hormones but also between the central nervous system and the peripheral tissue compartments. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.

  11. Age-specific MRI brain and head templates for healthy adults from twenty through eighty-nine years of age

    Directory of Open Access Journals (Sweden)

    Paul T Fillmore

    2015-04-01

    Full Text Available This study created and tested a database of adult, age-specific MRI brain and head templates. The participants included healthy adults from 20 through 89 years of age. The templates were done in 5-year, 10-year, and multi-year intervals from 20 through 89 years, and consist of average T1W for the head and brain, and segmenting priors for GM, WM, and CSF. It was found that age-appropriate templates provided less biased tissue classification estimates than age-inappropriate reference data and reference data based on young adult templates. This database is available for use by other investigators and clinicians for their MRI studies, as well as other types of neuroimaging and electrophysiological research (http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase/.

  12. Exercise as an intervention for the age-related decline in brain metabolic support

    Directory of Open Access Journals (Sweden)

    Brenda J Anderson

    2010-08-01

    Full Text Available To identify interventions for brain aging, we must first identify the processes in which we hope to intervene. Brain aging is a period of decreasing functional capacity and increasing vulnerability, which reflect a reduction in morphological organization and perhaps degeneration. Since life is ultimately dependent upon the ability to maintain cellular organization through metabolism, this review explores evidence for a decline in neural metabolic support during aging, which includes a reduction in whole brain cerebral blood flow, and cellular metabolic capacity. Capillary density may also decrease with age, although the results are less clear. Exercise may be a highly effective intervention for brain aging, because it improves the cardiovascular system as a whole, and increases regional capillary density and neuronal metabolic capacity. Although the evidence is strongest for motor regions, more work may yield additional evidence for exercise-related improvement in metabolic support in non-motor regions. The protective effects of exercise may be specific to brain region and the type of insult. For example, exercise protects striatal cells from ischemia, but it produces mixed results after hippocampal seizures. Exercise can improve metabolic support and bioenergetic capacity in adult animals, but it remains to be determined whether it has similar effects in aging animals. What is clear is that exercise can influence the multiple levels of support necessary for maintaining optimal neuronal function, which is unique among proposed interventions for aging.

  13. Carnosinase levels in aging brain: redox state induction and cellular stress response.

    Science.gov (United States)

    Bellia, Francesco; Calabrese, Vittorio; Guarino, Francesca; Cavallaro, Monia; Cornelius, Carolin; De Pinto, Vito; Rizzarelli, Enrico

    2009-11-01

    Carnosinase is a dipeptidase found almost exclusively in brain and serum. Its natural substrate carnosine, present at high concentration in the brain, has been proposed as an antioxidant in vivo. We investigated the role of carnosinase in brain aging to establish a possible correlation with age-related changes in cellular stress response and redox status. In addition, a stable HeLa cell line expressing recombinant human serum carnosinase CN1 was established. The enzyme was purified from transfected cells, and specific antibodies were produced against it. Brain expression of CN1, Hsp72, heme oxygenase-1, and thioredoxin reductase increased with age, with a maximal induction in hippocampus and substantia nigra, followed by cerebellum, cortex, septum, and striatum. Hsps induction was associated with significant changes in total SH groups, GSH redox state, carbonyls, and HNE levels. A positive correlation between decrease in GSH and increase in Hsp72 expression was observed in all brain regions examined during aging. Increased carnosinase activity in the brain can lead to decreased carnosine levels and GSH/GSSG ratio. These results, consistent with the current notion that oxidative stress and cellular damage are characteristic hallmarks of the aging process, sustain the critical role of cellular stress-response mechanisms as possible targets for novel antiaging strategies.

  14. Cardiorespiratory fitness and attentional control in the aging brain

    Directory of Open Access Journals (Sweden)

    Ruchika S Prakash

    2011-01-01

    Full Text Available A growing body of literature provides evidence for the prophylactic influence of cardiorespiratory fitness on cognitive decline in older adults. This study examined the association between cardiorespiratory fitness and recruitment of the neural circuits involved in an attentional control task in a group of healthy older adults. Employing a version of the Stroop task, we examined whether higher levels of cardiorespiratory fitness were associated with an increase in activation in cortical regions responsible for imposing attentional control along with an up-regulation of activity in sensory brain regions that process task-relevant representations. Higher fitness levels were associated with better behavioral performance and an increase in the recruitment of prefrontal and parietal cortices in the most challenging condition, thus providing evidence that cardiorespiratory fitness is associated with an increase in the recruitment of the anterior processing regions. There was a top-down modulation of extrastriate visual areas that process both task-relevant and task-irrelevant attributes relative to the baseline. However, fitness was not associated with differential activation in the posterior processing regions, suggesting that fitness enhances attentional function by primarily influencing the neural circuitry of anterior cortical regions. This study provides novel evidence of a differential association of fitness with anterior and posterior brain regions, shedding further light onto the neural changes accompanying cardiorespiratory fitness.

  15. Recent Developments in Understanding Brain Aging: Implications for Alzheimer's Disease and Vascular Cognitive Impairment.

    Science.gov (United States)

    Deak, Ferenc; Freeman, Willard M; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E

    2016-01-01

    As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer's disease. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Even Moderate Drinking May Dull the Aging Brain

    Science.gov (United States)

    ... Topiwala, BMBCh, DPhil., clinical lecturer, old age psychiatry, University of Oxford, U.K.; Tim Stockwell, Ph.D., director, Center for Addictions Research of BC, University of Victoria, British Columbia, Canada; June 6, 2017 ...

  17. Sex differences in metabolic aging of the brain: insights into female susceptibility to Alzheimer's disease.

    Science.gov (United States)

    Zhao, Liqin; Mao, Zisu; Woody, Sarah K; Brinton, Roberta D

    2016-06-01

    Despite recent advances in the understanding of clinical aspects of sex differences in Alzheimer's disease (AD), the underlying mechanisms, for instance, how sex modifies AD risk and why the female brain is more susceptible to AD, are not clear. The purpose of this study is to elucidate sex disparities in brain aging profiles focusing on 2 major areas-energy and amyloid metabolism-that are most significantly affected in preclinical development of AD. Total RNA isolated from hippocampal tissues of both female and male 129/C57BL/6 mice at ages of 6, 9, 12, or 15 months were comparatively analyzed by custom-designed Taqman low-density arrays for quantitative real-time polymerase chain reaction detection of a total of 182 genes involved in a broad spectrum of biological processes modulating energy production and amyloid homeostasis. Gene expression profiles revealed substantial differences in the trajectory of aging changes between female and male brains. In female brains, 44.2% of genes were significantly changed from 6 months to 9 months and two-thirds showed downregulation. In contrast, in male brains, only 5.4% of genes were significantly altered at this age transition. Subsequent changes in female brains were at a much smaller magnitude, including 10.9% from 9 months to 12 months and 6.1% from 12 months to 15 months. In male brains, most changes occurred from 12 months to 15 months and the majority were upregulated. Furthermore, gene network analysis revealed that clusterin appeared to serve as a link between the overall decreased bioenergetic metabolism and increased amyloid dyshomeostasis associated with the earliest transition in female brains. Together, results from this study indicate that: (1) female and male brains follow profoundly dissimilar trajectories as they age; (2) female brains undergo age-related changes much earlier than male brains; (3) early changes in female brains signal the onset of a hypometabolic phenotype at risk for AD. These

  18. Exercise enhances memory consolidation in the aging brain.

    Science.gov (United States)

    Snigdha, Shikha; de Rivera, Christina; Milgram, Norton W; Cotman, Carl W

    2014-01-01

    Exercise has been shown to reduce age-related losses in cognitive function including learning and memory, but the mechanisms underlying this effect remain poorly understood. Memory formation occurs in stages that include an initial acquisition phase, an intermediate labile phase, and then a process of consolidation which leads to long-term memory formation. An effective way to examine the mechanism by which exercise improves memory is to introduce the intervention (exercise), post-acquisition, making it possible to selectively examine memory storage and consolidation. Accordingly we evaluated the effects of post-trial exercise (10 min on a treadmill) on memory consolidation in aged canines both right after, an hour after, and 24 h after acute exercise training in concurrent discrimination, object location memory (OLM), and novel object recognition tasks. Our study shows that post-trial exercise facilitates memory function by improving memory consolidation in aged animals in a time-dependent manner. The improvements were significant at 24 h post-exercise and not right after or 1 h after exercise. Aged animals were also tested following chronic exercise (10 min/day for 14 consecutive days) on OLM or till criterion were reached (for reversal learning task). We found improvements from a chronic exercise design in both the object location and reversal learning tasks. Our studies suggest that mechanisms to improve overall consolidation and cognitive function remain accessible even with progressing age and can be re-engaged by both acute and chronic exercise.

  19. Exercise enhances memory consolidation in the aging brain

    Directory of Open Access Journals (Sweden)

    Shikha eSnigdha

    2014-02-01

    Full Text Available Exercise has been shown to reduce age-related losses in cognitive function including learning and memory, but the mechanisms underlying this effect remain poorly understood. Memory formation occurs in stages that include an initial acquisition phase, an intermediate labile phase, and then a process of consolidation which leads to long term memory formation. An effective way to examine the mechanism by which exercise improves memory is to introduce the intervention (exercise, post-acquisition, making it possible to selectively examine memory storage and consolidation. Accordingly we evaluated the effects of post-trial exercise (10 minutes on a treadmill on memory consolidation in aged canines both right after, an hour after, and twenty-four hours after acute exercise training in concurrent discrimination, object location memory (OLM and novel object recognition (NOR tasks. Our study shows that post-trial exercise facilitates memory function by improving memory consolidation in aged animals in a time-dependent manner. The improvements were significant at twenty-four hour post exercise and not right after or one hour after exercise. Aged animals were also tested following chronic exercise (10 min/day for 14 consecutive days on OLM or till criterion were reached (for reversal learning task. We found improvements from a chronic exercise design in both the object location and reversal learning tasks. Our studies suggest that mechanisms to improve overall consolidation and cognitive function remain accessible even with progressing age and can be re-engaged by both acute and chronic exercise.

  20. Exercise enhances memory consolidation in the aging brain

    Science.gov (United States)

    Snigdha, Shikha; de Rivera, Christina; Milgram, Norton W.; Cotman, Carl W.

    2014-01-01

    Exercise has been shown to reduce age-related losses in cognitive function including learning and memory, but the mechanisms underlying this effect remain poorly understood. Memory formation occurs in stages that include an initial acquisition phase, an intermediate labile phase, and then a process of consolidation which leads to long-term memory formation. An effective way to examine the mechanism by which exercise improves memory is to introduce the intervention (exercise), post-acquisition, making it possible to selectively examine memory storage and consolidation. Accordingly we evaluated the effects of post-trial exercise (10 min on a treadmill) on memory consolidation in aged canines both right after, an hour after, and 24 h after acute exercise training in concurrent discrimination, object location memory (OLM), and novel object recognition tasks. Our study shows that post-trial exercise facilitates memory function by improving memory consolidation in aged animals in a time-dependent manner. The improvements were significant at 24 h post-exercise and not right after or 1 h after exercise. Aged animals were also tested following chronic exercise (10 min/day for 14 consecutive days) on OLM or till criterion were reached (for reversal learning task). We found improvements from a chronic exercise design in both the object location and reversal learning tasks. Our studies suggest that mechanisms to improve overall consolidation and cognitive function remain accessible even with progressing age and can be re-engaged by both acute and chronic exercise. PMID:24550824

  1. Nutrition for the ageing brain: Towards evidence for an optimal diet.

    Science.gov (United States)

    Vauzour, David; Camprubi-Robles, Maria; Miquel-Kergoat, Sophie; Andres-Lacueva, Cristina; Bánáti, Diána; Barberger-Gateau, Pascale; Bowman, Gene L; Caberlotto, Laura; Clarke, Robert; Hogervorst, Eef; Kiliaan, Amanda J; Lucca, Ugo; Manach, Claudine; Minihane, Anne-Marie; Mitchell, Ellen Siobhan; Perneczky, Robert; Perry, Hugh; Roussel, Anne-Marie; Schuermans, Jeroen; Sijben, John; Spencer, Jeremy P E; Thuret, Sandrine; van de Rest, Ondine; Vandewoude, Maurits; Wesnes, Keith; Williams, Robert J; Williams, Robin S B; Ramirez, Maria

    2017-05-01

    As people age they become increasingly susceptible to chronic and extremely debilitating brain diseases. The precise cause of the neuronal degeneration underlying these disorders, and indeed normal brain ageing remains however elusive. Considering the limits of existing preventive methods, there is a desire to develop effective and safe strategies. Growing preclinical and clinical research in healthy individuals or at the early stage of cognitive decline has demonstrated the beneficial impact of nutrition on cognitive functions. The present review is the most recent in a series produced by the Nutrition and Mental Performance Task Force under the auspice of the International Life Sciences Institute Europe (ILSI Europe). The latest scientific advances specific to how dietary nutrients and non-nutrient may affect cognitive ageing are presented. Furthermore, several key points related to mechanisms contributing to brain ageing, pathological conditions affecting brain function, and brain biomarkers are also discussed. Overall, findings are inconsistent and fragmented and more research is warranted to determine the underlying mechanisms and to establish dose-response relationships for optimal brain maintenance in different population subgroups. Such approaches are likely to provide the necessary evidence to develop research portfolios that will inform about new dietary recommendations on how to prevent cognitive decline. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Age-related neuronal loss in the rat brain starts at the end of adolescence

    Science.gov (United States)

    Morterá, Priscilla; Herculano-Houzel, Suzana

    2012-01-01

    Aging-related changes in the brain have been mostly studied through the comparison of young adult and very old animals. However, aging must be considered a lifelong process of cumulative changes that ultimately become evident at old age. To determine when this process of decline begins, we studied how the cellular composition of the rat brain changes from infancy to adolescence, early adulthood, and old age. Using the isotropic fractionator to determine total numbers of neuronal and non-neuronal cells in different brain areas, we find that a major increase in number of neurons occurs during adolescence, between 1 and 2–3 months of age, followed by a significant trend of widespread and progressive neuronal loss that begins as early as 3 months of age, when neuronal numbers are maximal in all structures, until decreases in numbers of neurons become evident at 12 or 22 months of age. Our findings indicate that age-related decline in the brain begins as soon as the end of adolescence, a novel finding has important clinical and social implications for public health and welfare. PMID:23112765

  3. Ketogenic diets: an historical antiepileptic therapy with promising potentialities for the aging brain.

    Science.gov (United States)

    Balietti, Marta; Casoli, Tiziana; Di Stefano, Giuseppina; Giorgetti, Belinda; Aicardi, Giorgio; Fattoretti, Patrizia

    2010-07-01

    Ketogenic diets (KDs), successfully used in the therapy of paediatric epilepsy for nearly a century, have recently shown beneficial effects also in cancer, obesity, diabetes, GLUT 1 deficiencies, hypoxia-ischemia, traumatic brain injuries, and neurodegeneration. The latter achievement designates aged individuals as optimal recipients, but concerns derive from possible age-dependent differences in KDs effectiveness. Indeed, the main factors influencing ketone bodies utilization by the brain (blood levels, transport mechanisms, catabolic enzymes) undergo developmental changes, although several reports indicate that KDs maintain some efficacy during adulthood and even during advanced aging. Encouraging results obtained in patients affected by age-related neurodegenerative diseases have prompted new interest on KDs' effect on the aging brain, also considering the poor efficacy of therapies currently used. However, recent morphological evidence in synapses of late-adult rats indicates that KDs consequences may be even opposite in different brain regions, likely depending on neuronal vulnerability to age. Thus, further studies are needed to design KDs specifically indicated for single neurodegenerative diseases, and to ameliorate the balance between beneficial and adverse effects in aged subjects. Here we review clinical and experimental data on KDs treatments, focusing on their possible use during pathological aging. Proposed mechanisms of action are also reported and discussed. 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Sex differences in morphology of the brain stem and cerebellum with normal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Oguro, H.; Okada, K.; Yamaguchi, S.; Kobayashi, S. [Internal Medicine III, Shimane Medical University, Izumo (Japan)

    1998-12-01

    The cerebral hemispheres become atrophic with age. The sex of the individual may affect this process. There are few studies of the effects of age and sex on the brain stem and cerebellum. We used MRI morphometry to study changes in these structures in 152 normal subjects over 40 years of age. In the linear measurements, men showed significant age-associated atrophy in the tegmentum and pretectum of the midbrain and the base of the pons. In women, only the pretectum of the midbrain showed significant ageing effects after the age of 50 years, and thereafter remained rather constant. Only men had significant age-associated reduction in area of the crebellar vermis area after the age of 70 years. Both men and women showed supratentorial brain atrophy that progressed by decades. There were significant correlations between supratentorial brain atrophy and the diameter of the ventral midbrain, pretectum, and base of the pons in men, and between brain atrophy and the diameter of the fourth ventricle in women. (orig.) With 4 figs., 3 tabs., 16 refs.

  5. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    Science.gov (United States)

    Herrera-Pérez, José Jaime; Fernández-Guasti, Alonso; Martínez-Mota, Lucía

    2013-01-01

    In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT) expression associated with low testosterone (T) levels. The objectives of this study were to establish (1) if brain SERT expression is reduced by aging and (2) if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months) and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population. PMID:26317087

  6. P-Glycoprotein Function at the Blood-Brain Barrier: Effects of Age and Gender

    NARCIS (Netherlands)

    van Assema, D.M.E.; Lubberink, J.M.; Boellaard, R.; Schuit, R.C.; Windhorst, A.D.; Scheltens, P.; Lammertsma, A.A.; van Berckel, B.N.M.

    2012-01-01

    Purpose: P-glycoprotein (Pgp) is an efflux transporter involved in transport of several compounds across the blood-brain barrier (BBB). Loss of Pgp function with increasing age may be involved in the development of age-related disorders, but this may differ between males and females. Pgp function

  7. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    Directory of Open Access Journals (Sweden)

    José Jaime Herrera-Pérez

    2013-01-01

    Full Text Available In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT expression associated with low testosterone (T levels. The objectives of this study were to establish (1 if brain SERT expression is reduced by aging and (2 if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population.

  8. Polychlorinated biphenyls in adipose tissue, liver, and brain from nine stillborns of varying gestational ages

    NARCIS (Netherlands)

    Huisman, M; Muskiet, FAJ; Van Der Paauw, CG; Essed, CE; Boersma, ER

    We analyzed polychlorinated biphenyls (PCBs) in s.c. adipose tissue, liver, and brain of nine fetuses who died in utero. Their median (range) gestational ages and birth weights were 34 (17-40) wk and 2050 (162-3225) g. Three fetuses were small for gestational age. The levels of PCB congener nos.

  9. Language in the aging brain: the network dynamics of cognitive decline and preservation.

    Science.gov (United States)

    Shafto, Meredith A; Tyler, Lorraine K

    2014-10-31

    Language is a crucial and complex lifelong faculty, underpinned by dynamic interactions within and between specialized brain networks. Whereas normal aging impairs specific aspects of language production, most core language processes are robust to brain aging. We review recent behavioral and neuroimaging evidence showing that language systems remain largely stable across the life span and that both younger and older adults depend on dynamic neural responses to linguistic demands. Although some aspects of network dynamics change with age, there is no consistent evidence that core language processes are underpinned by different neural networks in younger and older adults. Copyright © 2014, American Association for the Advancement of Science.

  10. Brain growth across the life span in autism: age-specific changes in anatomical pathology.

    Science.gov (United States)

    Courchesne, Eric; Campbell, Kathleen; Solso, Stephanie

    2011-03-22

    Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has led to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism, there may also be age-specific changes in gene expression, molecular, synaptic, cellular, and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation, and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Age-related decline in brain resources modulates genetic effects on cognitive functioning

    Directory of Open Access Journals (Sweden)

    Ulman Lindenberger

    2008-12-01

    Full Text Available Individual differences in cognitive performance increase from early to late adulthood, likely reflecting influences of a multitude of factors. We hypothesize that losses in neurochemical and anatomical brain resources in normal aging modulate the effects of common genetic variations on cognitive functioning. Our hypothesis is based on the assumption that the function relating brain resources to cognition is nonlinear, so that genetic differences exert increasingly large effects on cognition as resources recede from high to medium levels in the course of aging.Direct empirical support for this hypothesis comes from a study by Nagel et al. (2008, who reported that the effects of the Catechol-O-Methyltransferase (COMT gene on cognitive performance are magnified in old age and interacted with the Brain-Derived Neurotrophic Factor (BDNF gene. We conclude that common genetic polymorphisms contribute to the increasing heterogeneity of cognitive functioning in old age. Extensions of the hypothesis to other polymorphisms are discussed.

  12. Age-related changes in kynurenic acid production in rat brain

    DEFF Research Database (Denmark)

    Gramsbergen, J B; Schmidt, W; Turski, W A

    1992-01-01

    months of age in all five brain regions examined. No changes were observed in the liver. The changes were particularly pronounced in the cortex and in the striatum where enzyme activity increased three-fold during the period studied. KYNA production from its bioprecursor L-kynurenine was also...... investigated in tissue slices and was found to be significantly enhanced in the cortex and hippocampus of old animals. The effect of depolarizing agents or sodium replacement was virtually identical in tissues from young and old rats. These data, which are in excellent agreement with reports on an age......-dependent increase of KYNA concentration in brain tissue, suggest an enhanced KYNA tone in the aged brain. Together with the reported decline in cerebral excitatory amino acid receptor densities with age, increased production of KYNA may play a role in cognitive and memory dysfunction in old animals....

  13. Association of Perivascular Localization of Aquaporin-4 With Cognition and Alzheimer Disease in Aging Brains.

    Science.gov (United States)

    Zeppenfeld, Douglas M; Simon, Matthew; Haswell, J Douglas; D'Abreo, Daryl; Murchison, Charles; Quinn, Joseph F; Grafe, Marjorie R; Woltjer, Randall L; Kaye, Jeffrey; Iliff, Jeffrey J

    2017-01-01

    Cognitive impairment and dementia, including Alzheimer disease (AD), are common within the aging population, yet the factors that render the aging brain vulnerable to these processes are unknown. Perivascular localization of aquaporin-4 (AQP4) facilitates the clearance of interstitial solutes, including amyloid-β, through the brainwide network of perivascular pathways termed the glymphatic system, which may be compromised in the aging brain. To determine whether alterations in AQP4 expression or loss of perivascular AQP4 localization are features of the aging human brain and to define their association with AD pathology. Expression of AQP4 was analyzed in postmortem frontal cortex of cognitively healthy and histopathologically confirmed individuals with AD by Western blot or immunofluorescence for AQP4, amyloid-β 1-42, and glial fibrillary acidic protein. Postmortem tissue and clinical data were provided by the Oregon Health and Science University Layton Aging and Alzheimer Disease Center and Oregon Brain Bank. Postmortem tissue from 79 individuals was evaluated, including cognitively intact "young" individuals aged younger than 60 years (range, 33-57 years), cognitively intact "aged" individuals aged older than 60 years (range, 61-96 years) with no known neurological disease, and individuals older than 60 years (range, 61-105 years) of age with a clinical history of AD confirmed by histopathological evaluation. Forty-eight patient samples (10 young, 20 aged, and 18 with AD) underwent histological analysis. Sixty patient samples underwent Western blot analysis (15 young, 24 aged, and 21 with AD). Expression of AQP4 protein, AQP4 immunoreactivity, and perivascular AQP4 localization in the frontal cortex were evaluated. Expression of AQP4 was associated with advancing age among all individuals (R2 = 0.17; P = .003). Perivascular AQP4 localization was significantly associated with AD status independent of age (OR, 11.7 per 10% increase in localization; z

  14. Brain-Derived Neurotrophic Factor Expression in Individuals With Schizophrenia and Healthy Aging: Testing the Accelerated Aging Hypothesis of Schizophrenia.

    Science.gov (United States)

    Islam, Farhana; Mulsant, Benoit H; Voineskos, Aristotle N; Rajji, Tarek K

    2017-07-01

    Schizophrenia has been hypothesized to be a syndrome of accelerated aging. Brain plasticity is vulnerable to the normal aging process and affected in schizophrenia: brain-derived neurotrophic factor (BDNF) is an important neuroplasticity molecule. The present review explores the accelerated aging hypothesis of schizophrenia by comparing changes in BDNF expression in schizophrenia with aging-associated changes. Individuals with schizophrenia show patterns of increased overall mortality, metabolic abnormalities, and cognitive decline normally observed later in life in the healthy population. An overall decrease is observed in BDNF expression in schizophrenia compared to healthy controls and in older individuals compared to a younger cohort. There is a marked decrease in BDNF levels in the frontal regions and in the periphery among older individuals and those with schizophrenia; however, data for BDNF expression in the occipital, parietal, and temporal cortices and the hippocampus is inconclusive. Accelerated aging hypothesis is supported based on frontal regions and peripheral studies; however, further studies are needed in other brain regions.

  15. Flexible Connectivity in the Aging Brain Revealed by Task Modulations

    NARCIS (Netherlands)

    Geerligs, Linda; Saliasi, Emi; Renken, Remco J.; Maurits, Natasha M.; Lorist, Monicque M.

    Recent studies have shown that aging has a large impact on connectivity within and between functional networks. An open question is whether elderly still have the flexibility to adapt functional network connectivity (FNC) to the demands of the task at hand. To study this, we collected fMRI data in

  16. Exceptional Brain Aging in a Rural Population-Based Cohort

    Science.gov (United States)

    Kaye, Jeffrey; Michael, Yvonne; Calvert, James; Leahy, Marjorie; Crawford, Debbie; Kramer, Patricia

    2009-01-01

    Context: The 2000 US Census identified 50,454 Americans over the age of 100. Increased longevity is only of benefit if accompanied by maintenance of independence and quality of life. Little is known about the prevalence of dementia and other disabling conditions among rural centenarians although this information is important to clinicians caring…

  17. Ageing diminishes the modulation of human brain responses to visual food cues by meal ingestion.

    Science.gov (United States)

    Cheah, Y S; Lee, S; Ashoor, G; Nathan, Y; Reed, L J; Zelaya, F O; Brammer, M J; Amiel, S A

    2014-09-01

    Rates of obesity are greatest in middle age. Obesity is associated with altered activity of brain networks sensing food-related stimuli and internal signals of energy balance, which modulate eating behaviour. The impact of healthy mid-life ageing on these processes has not been characterised. We therefore aimed to investigate changes in brain responses to food cues, and the modulatory effect of meal ingestion on such evoked neural activity, from young adulthood to middle age. Twenty-four healthy, right-handed subjects, aged 19.5-52.6 years, were studied on separate days after an overnight fast, randomly receiving 50 ml water or 554 kcal mixed meal before functional brain magnetic resonance imaging while viewing visual food cues. Across the group, meal ingestion reduced food cue-evoked activity of amygdala, putamen, insula and thalamus, and increased activity in precuneus and bilateral parietal cortex. Corrected for body mass index, ageing was associated with decreasing food cue-evoked activation of right dorsolateral prefrontal cortex (DLPFC) and precuneus, and increasing activation of left ventrolateral prefrontal cortex (VLPFC), bilateral temporal lobe and posterior cingulate in the fasted state. Ageing was also positively associated with the difference in food cue-evoked activation between fed and fasted states in the right DLPFC, bilateral amygdala and striatum, and negatively associated with that of the left orbitofrontal cortex and VLPFC, superior frontal gyrus, left middle and temporal gyri, posterior cingulate and precuneus. There was an overall tendency towards decreasing modulatory effects of prior meal ingestion on food cue-evoked regional brain activity with increasing age. Healthy ageing to middle age is associated with diminishing sensitivity to meal ingestion of visual food cue-evoked activity in brain regions that represent the salience of food and direct food-associated behaviour. Reduced satiety sensing may have a role in the greater risk of

  18. Aging shapes the population-mean and -dispersion of gene expression in human brains

    Directory of Open Access Journals (Sweden)

    Candice Brinkmeyer-Langford

    2016-08-01

    Full Text Available Human aging is associated with cognitive decline and an increased risk of neurodegenerative disease. Our objective for this study was to evaluate potential relationships between age and variation in gene expression across different regions of the brain. We analyzed the Genotype-Tissue Expression (GTEx data from 54 and 101 tissue samples across 13 brain regions in post-mortem donors of European descent aged between 20 and 70 years at death. After accounting for the effects of covariates and hidden confounding factors, we identified 1,446 protein-coding genes whose expression in one or more brain regions is correlated with chronological age at a false discovery rate of 5%. These genes are involved in various biological processes including apoptosis, mRNA splicing, amino acid biosynthesis, and neurotransmitter transport. The distribution of these genes among brain regions is uneven, suggesting variable regional responses to aging. We also found that the aging response of many genes, e.g., TP37 and C1QA, depends on individuals’ genotypic backgrounds. Finally, using dispersion-specific analysis, we identified genes such as IL7R, MS4A4E, and TERF1/TERF2 whose expressions are differentially dispersed by aging, i.e., variances differ between age groups. Our results demonstrate that age-related gene expression is brain region-specific, genotype-dependent, and associated with both mean and dispersion changes. Our findings provide a foundation for more sophisticated gene expression modeling in the studies of age-related neurodegenerative diseases.

  19. A Novel Brain Network Construction Method for Exploring Age-Related Functional Reorganization.

    Science.gov (United States)

    Li, Wei; Wang, Miao; Li, Yapeng; Huang, Yue; Chen, Xi

    2016-01-01

    The human brain undergoes complex reorganization and changes during aging. Using graph theory, scientists can find differences in topological properties of functional brain networks between young and elderly adults. However, these differences are sometimes significant and sometimes not. Several studies have even identified disparate differences in topological properties during normal aging or in age-related diseases. One possible reason for this issue is that existing brain network construction methods cannot fully extract the "intrinsic edges" to prevent useful signals from being buried into noises. This paper proposes a new subnetwork voting (SNV) method with sliding window to construct functional brain networks for young and elderly adults. Differences in the topological properties of brain networks constructed from the classic and SNV methods were consistent. Statistical analysis showed that the SNV method can identify much more statistically significant differences between groups than the classic method. Moreover, support vector machine was utilized to classify young and elderly adults; its accuracy, based on the SNV method, reached 89.3%, significantly higher than that with classic method. Therefore, the SNV method can improve consistency within a group and highlight differences between groups, which can be valuable for the exploration and auxiliary diagnosis of aging and age-related diseases.

  20. A Novel Brain Network Construction Method for Exploring Age-Related Functional Reorganization

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-01-01

    Full Text Available The human brain undergoes complex reorganization and changes during aging. Using graph theory, scientists can find differences in topological properties of functional brain networks between young and elderly adults. However, these differences are sometimes significant and sometimes not. Several studies have even identified disparate differences in topological properties during normal aging or in age-related diseases. One possible reason for this issue is that existing brain network construction methods cannot fully extract the “intrinsic edges” to prevent useful signals from being buried into noises. This paper proposes a new subnetwork voting (SNV method with sliding window to construct functional brain networks for young and elderly adults. Differences in the topological properties of brain networks constructed from the classic and SNV methods were consistent. Statistical analysis showed that the SNV method can identify much more statistically significant differences between groups than the classic method. Moreover, support vector machine was utilized to classify young and elderly adults; its accuracy, based on the SNV method, reached 89.3%, significantly higher than that with classic method. Therefore, the SNV method can improve consistency within a group and highlight differences between groups, which can be valuable for the exploration and auxiliary diagnosis of aging and age-related diseases.

  1. Carnosine and taurine treatments diminished brain oxidative stress and apoptosis in D-galactose aging model.

    Science.gov (United States)

    Aydın, A Fatih; Çoban, Jale; Doğan-Ekici, Işın; Betül-Kalaz, Esra; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2016-04-01

    D-galactose (GAL) has been used as an animal model for brain aging and antiaging studies. GAL stimulates oxidative stress in several tissues including brain. Carnosine (CAR; β-alanil-L-histidine) and taurine (TAU; 2-aminoethanesulfonic acid) exhibit antioxidant properties. CAR and TAU have anti-aging and neuroprotective effects. We investigated the effect of CAR and TAU supplementations on oxidative stress and brain damage in GAL-treated rats. Rats received GAL (300 mg/kg; s.c.; 5 days per week) alone or together with CAR (250 mg/kg/daily; i.p.; 5 days per week) or TAU (2.5% w/w; in rat chow) for 2 months. Brain malondialdehyde (MDA), protein carbonyl (PC) and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione transferase (GST) and acetylcholinesterase (AChE) activities were determined. Expressions of B cell lymphoma-2 (Bcl-2), Bax and caspase-3 were also evaluated in the brains by immunohistochemistry. GAL treatment increased brain MDA and PC levels and AChE activities. It decreased significantly brain GSH levels, SOD and GSH-Px but not GST activities. GAL treatment caused histopathological changes and increased apoptosis. CAR and TAU significantly reduced brain AChE activities, MDA and PC levels and elevated GSH levels in GAL-treated rats. CAR, but not TAU, significantly increased low activities of SOD and GSH-Px. Both CAR and TAU diminished apoptosis and ameliorated histopathological findings in the brain of GAL-treated rats. Our results indicate that CAR and TAU may be effective to prevent the development of oxidative stress, apoptosis and histopathological deterioration in the brain of GAL-treated rats.

  2. Daily ingestion of green tea catechins from adulthood suppressed brain dysfunction in aged mice.

    Science.gov (United States)

    Unno, Keiko; Ishikawa, Yuichi; Takabayashi, Fumiyo; Sasaki, Toru; Takamori, Nina; Iguchi, Kazuaki; Hoshino, Minoru

    2008-01-01

    Oxidative damage is believed to be an important cause of senescence. We have previously found that green tea catechins (GT-catechin), potent antioxidants, decrease oxidative damage to DNA and suppress brain dysfunction in aged senescence-accelerated mice (SAMP10) when ingested from the age of 1 month to the age of 12 months. To clarify the effect of GT-catechin on suppression of brain senescence, we investigated the effect of starting period to ingest GT-catechin. Six- or 9-month-old SAMP10 mice were allowed free access to water containing 0.02% GT-catechin. SAMP10 mice exhibit senescence characteristics such as shortened life span, atrophied forebrain and lowered learning and memory abilities. Learning ability was significantly higher in mice that ingested GT-catechin from the age of 6 months to 12 months when compared with same-aged control mice drank water without GT-catechin. Starting GT-catechin intake from the age of 9 months tended to improve learning ability. The ages of 6 and 9 months are thought to be adult and middle ages, respectively in SAMP10 mice. This result suggested that GT-catechin was helpful in suppressing brain dysfunction with aging even when ingestion started at the adult age.

  3. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    Science.gov (United States)

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging.

    Science.gov (United States)

    Soreq, Lilach; Rose, Jamie; Soreq, Eyal; Hardy, John; Trabzuni, Daniah; Cookson, Mark R; Smith, Colin; Ryten, Mina; Patani, Rickie; Ule, Jernej

    2017-01-10

    Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Sleep apnea and sleep fragmentation contribute to brain aging

    OpenAIRE

    Richter, Kneginja; Miloseva, Lence; Niklewski, Günter

    2016-01-01

    Sleep apnea is a frequent disturbance with prevalence of 3-4% in adult man (Young, 1993, Shepertycky, 2005), and is 2-9 times more prevalent in men than women (Bozkurt 2008). The most prominent Symptoms of Sleep Apnoea are intermittent breaks of breathing in the night (Apnoea) which causes general hypoxia and daily sleepiness. Risk factors for Sleep Apnoea are vascular Hypertonia, Smoking, Obesitas, Diabetes mellitus and age (Guilleminault 1984). The Consequences of Sleep apnea are cardio-vas...

  6. Hippocampal Astrocyte Cultures from Adult and Aged Rats Reproduce Changes in Glial Functionality Observed in the Aging Brain.

    Science.gov (United States)

    Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André

    2017-05-01

    Astrocytes are dynamic cells that maintain brain homeostasis, regulate neurotransmitter systems, and process synaptic information, energy metabolism, antioxidant defenses, and inflammatory response. Aging is a biological process that is closely associated with hippocampal astrocyte dysfunction. In this sense, we demonstrated that hippocampal astrocytes from adult and aged Wistar rats reproduce the glial functionality alterations observed in aging by evaluating several senescence, glutamatergic, oxidative and inflammatory parameters commonly associated with the aging process. Here, we show that the p21 senescence-associated gene and classical astrocyte markers, such as glial fibrillary acidic protein (GFAP), vimentin, and actin, changed their expressions in adult and aged astrocytes. Age-dependent changes were also observed in glutamate transporters (glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)) and glutamine synthetase immunolabeling and activity. Additionally, according to in vivo aging, astrocytes from adult and aged rats showed an increase in oxidative/nitrosative stress with mitochondrial dysfunction, an increase in RNA oxidation, NADPH oxidase (NOX) activity, superoxide levels, and inducible nitric oxide synthase (iNOS) expression levels. Changes in antioxidant defenses were also observed. Hippocampal astrocytes also displayed age-dependent inflammatory response with augmentation of proinflammatory cytokine levels, such as TNF-α, IL-1β, IL-6, IL-18, and messenger RNA (mRNA) levels of cyclo-oxygenase 2 (COX-2). Furthermore, these cells secrete neurotrophic factors, including glia-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), S100 calcium-binding protein B (S100B) protein, and transforming growth factor-β (TGF-β), which changed in an age-dependent manner. Classical signaling pathways associated with aging, such as nuclear factor erythroid-derived 2-like 2 (Nrf2), nuclear factor kappa B (NFκ

  7. Fluid intelligence and brain functional organization in aging yoga and meditation practitioners

    Directory of Open Access Journals (Sweden)

    Tim eGard

    2014-04-01

    Full Text Available Numerous studies have documented the normal age-related decline of neural structure, function, and cognitive performance. Preliminary evidence suggests that meditation may reduce decline in specific cognitive domains and in brain structure. Here we extended this research by investigating the relation between age and fluid intelligence and resting state brain functional network architecture using graph theory, in middle-aged yoga and meditation practitioners, and matched controls. Fluid intelligence declined slower in yoga practitioners and meditators combined than in controls. Resting state functional networks of yoga practitioners and meditators combined were more integrated and more resilient to damage than those of controls. Furthermore, mindfulness was positively correlated with fluid intelligence, resilience, and global network efficiency. These findings reveal the possibility to increase resilience and to slow the decline of fluid intelligence and brain functional architecture and suggest that mindfulness plays a mechanistic role in this preservation.

  8. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Lauren P. Klosinski

    2015-12-01

    Full Text Available White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical.

  9. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease.

    Science.gov (United States)

    Klosinski, Lauren P; Yao, Jia; Yin, Fei; Fonteh, Alfred N; Harrington, Michael G; Christensen, Trace A; Trushina, Eugenia; Brinton, Roberta Diaz

    2015-12-01

    White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical.

  10. Brain Events Underlying Episodic Memory Changes in Aging: A Longitudinal Investigation of Structural and Functional Connectivity.

    Science.gov (United States)

    Fjell, Anders M; Sneve, Markus H; Storsve, Andreas B; Grydeland, Håkon; Yendiki, Anastasia; Walhovd, Kristine B

    2016-03-01

    Episodic memories are established and maintained by close interplay between hippocampus and other cortical regions, but degradation of a fronto-striatal network has been suggested to be a driving force of memory decline in aging. We wanted to directly address how changes in hippocampal-cortical versus striatal-cortical networks over time impact episodic memory with age. We followed 119 healthy participants (20-83 years) for 3.5 years with repeated tests of episodic verbal memory and magnetic resonance imaging for quantification of functional and structural connectivity and regional brain atrophy. While hippocampal-cortical functional connectivity predicted memory change in young, changes in cortico-striatal functional connectivity were related to change in recall in older adults. Within each age group, effects of functional and structural connectivity were anatomically closely aligned. Interestingly, the relationship between functional connectivity and memory was strongest in the age ranges where the rate of reduction of the relevant brain structure was lowest, implying selective impacts of the different brain events on memory. Together, these findings suggest a partly sequential and partly simultaneous model of brain events underlying cognitive changes in aging, where different functional and structural events are more or less important in various time windows, dismissing a simple uni-factorial view on neurocognitive aging. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Aging reduces the stimulating effect of blue light on cognitive brain functions.

    Science.gov (United States)

    Daneault, Véronique; Hébert, Marc; Albouy, Geneviève; Doyon, Julien; Dumont, Marie; Carrier, Julie; Vandewalle, Gilles

    2014-01-01

    Light exposure, particularly blue light, is being recognized as a potent mean to stimulate alertness and cognition in young individuals. Aging is associated with changes in alertness regulation and cognition. Whether the effect of light on cognitive brain function changes with aging is unknown, however. Cross-sectional study. Functional Neuroimaging Unit, University of Montreal Geriatric Institute. Sixteen younger (23 ± 4.1 y) and 14 older (61 ± 4.5 y) healthy participants were recruited in the current study. Blue light administration. We used functional magnetic resonance imaging to record brain responses to an auditory working memory task in young and older healthy individuals, alternatively maintained in darkness or exposed to blue light. Results show that the older brain remains capable of showing sustained responses to light in several brain areas. However, compared to young individuals, the effect of blue light is decreased in the pulvinar, amygdala, and tegmentum as well as in the insular, prefrontal, and occipital cortices in elderly individuals. The effect of blue light on brain responses diminishes with aging in areas typically involved in visual functions and in key regions for alertness regulation and higher executive processes. Our findings provide the first indications that the effect of light on cognition may be reduced in healthy aging.

  12. Mindfulness and the aging brain: A proposed paradigm shift

    Directory of Open Access Journals (Sweden)

    Ruchika Shaurya Prakash

    2014-06-01

    Full Text Available There has been a proliferation of cognitive training studies investigating the efficacy of various cognitive training paradigms as well as strategies for improving cognitive control in the elderly. While some have found support for the transfer of training, the majority of training studies show modest to no transfer effects. When transfer effects have been observed, the mechanisms contributing to enhanced functioning have been difficult to dissociate. In this review, we provide a theoretical rationale for the study of mindfulness in older adults as a particular type of training program designed to improve cognitive control by capitalizing on older adults’ acquired behavioral orientation toward higher socioemotional goals. Given the synergistic relationship between emotional and cognitive control processes, the paradoxical divergence in older adults’ functional trajectory in these respective domains, and the harmonious interplay of cognitive and emotional control embedded in the practice of mindfulness, we propose mindfulness training as an opportunistic approach to cultivating cognitive benefits in older adults. The study of mindfulness within aging, we argue, capitalizes on a fundamental finding of the socioemotional aging literature, namely the preferential change in motivational goals of older adults from ones involving future-oriented wants and desires to present-focused emotion regulation and gratification.

  13. Age-related changes of the nitric oxide system in the rat brain.

    Science.gov (United States)

    Siles, Eva; Martínez-Lara, Esther; Cañuelo, Ana; Sánchez, Marta; Hernández, Raquel; López-Ramos, Juan Carlos; Del Moral, María Luisa; Esteban, Francisco José; Blanco, Santos; Pedrosa, Juan Angel; Rodrigo, José; Peinado, María Angeles

    2002-11-29

    This work examines the age-related changes of the NO pathway in the central nervous system (CNS), analyzing nitric oxide synthase (NOS) isoform expression, the level of nitrotyrosine-modified proteins, and the NOS activity in the cerebral cortex, decorticated brain (basal ganglia, thalamus, hypothalamus, tegtum and tegmentum) and cerebellum of young, adult and aged rats. Our data demonstrate that the different NOS isoforms are not uniformly expressed across the CNS. In this sense, the nNOS and eNOS isoenzymes are expressed mainly in the cerebellum and decorticated brain, respectively, while the iNOS isoenzyme shows the highest level in cerebellum. Concerning age, in the cerebral cortex nNOS significantly increased its expression only in adult animals; meanwhile, in the cerebellum the eNOS expression decreased whereas iNOS increased in adult and aged rats. No age-related changes in any isoform were found in decorticated brain. NOS activity, determined by nitrate plus nitrite quantification, registered the highest levels in the cerebellum, where the significant increase detected with aging was probably related to iNOS activity. The number of nitrotyrosine-modified immunoreactive bands differed among regions; thus, the highest number was detected in the decorticated brain while the cerebellum showed the least number of bands. Finally, bulk protein nitration increased in cerebral cortex only in adult animal. No changes were found in the decorticated brain, and the decrease detected in the cerebellum of aged animals was not significant. According to these results, the NO pathway is differently modified with age in the three CNS regions analyzed. Copyright 2002 Elsevier Science B.V.

  14. Flexible connectivity in the aging brain revealed by task modulations.

    Science.gov (United States)

    Geerligs, Linda; Saliasi, Emi; Renken, Remco J; Maurits, Natasha M; Lorist, Monicque M

    2014-08-01

    Recent studies have shown that aging has a large impact on connectivity within and between functional networks. An open question is whether elderly still have the flexibility to adapt functional network connectivity (FNC) to the demands of the task at hand. To study this, we collected fMRI data in younger and older participants during resting state, a selective attention (SA) task and an n-back working memory task with varying levels of difficulty. Spatial independent component (IC) analysis was used to identify functional networks over all participants and all conditions. Dual regression was used to obtain participant and task specific time-courses per IC. Subsequently, functional connectivity was computed between all ICs in each of the tasks. Based on these functional connectivity matrices, a scaled version of the eigenvector centrality (SEC) was used to measure the total influence of each IC in the complete graph of ICs. The results demonstrated that elderly remain able to adapt FNC to task demands. However, there was an age-related shift in the impetus for FNC change. Older participants showed the maximal change in SEC patterns between resting state and the SA task. Young participants, showed the largest shift in SEC patterns between the less demanding SA task and the more demanding 2-back task. Our results suggest that increased FNC changes from resting state to low demanding tasks in elderly reflect recruitment of additional resources, compared with young adults. The lack of change between the low and high demanding tasks suggests that elderly reach a resource ceiling. Copyright © 2013 Wiley Periodicals, Inc.

  15. [Research of anti-aging mechanism of ginsenoside Rg1 on brain].

    Science.gov (United States)

    Li, Cheng-peng; Zhang, Meng-si; Liu, Jun; Geng, Shan; Li, Jing; Zhu, Jia-hong; Zhang, Yan-yan; Jia, Yan-yan; Wang, Lu; Wang, Shun-he; Wang, Ya-ping

    2014-11-01

    Neurodegenerative disease is common and frequently occurs in elderly patients. Previous studies have shown that ginsenoside Rg1 was able to inhibit senescent of brain, but the mechanism on the brain during the treatment remains elucidated. To study the mechanism of ginsenoside Rg1 in the process of anti-aging of brain, forty male SD rats were randomly divided into normal group, Rg1 normal group, brain aging model group and Rg1 brain aging model group, each group with 10 rats (brain aging model group: subcutaneous injection of D-galactose (120 mg kg(-1)), qd for 42 consecutive days; Rg1 brain aging model group: while copying the same test as that of brain aging model group, begin intraperitoneal injection of ginsenosides Rg1 (20 mg x kg(-1)) qd for 27 d from 16 d. Rg1 normal group: subcutaneous injection of the same amount of saline; begin intraperitoneal injection of ginsenosides Rg1 (20 mg x kg(-1)) qd for 27 d from 16 d. Normal: injected with an equal volume of saline within the same time. Perform the related experiment on the second day after finishing copying the model or the completion of the first two days of drug injections). Learning and memory abilities were measured by Morris water maze. The number of senescent cells was detected by SA-beta-Gal staining while the level of IL-1 and IL-6 proinflammatory cytokines in hippocampus were detected by ELISA. The activities of SOD, contents of GSH in hippo- campus were quantified by chromatometry. The change of telomerase activities and telomerase length were performed by TRAP-PCR and southern blotting assay, respectively. It is pointed that, in brain aging model group, the spatial learning and memory capacities were weaken, SA-beta-Gal positive granules increased in section of brain tissue, the activity of antioxidant enzyme SOD and the contents of GSH decreased in hippocampus, the level of IL-1 and IL-6 increased in hippocampus, while the length of telomere and the activity of telomerase decreased in hippocampus

  16. Span, CRUNCH, and beyond: working memory capacity and the aging brain.

    Science.gov (United States)

    Schneider-Garces, Nils J; Gordon, Brian A; Brumback-Peltz, Carrie R; Shin, Eunsam; Lee, Yukyung; Sutton, Bradley P; Maclin, Edward L; Gratton, Gabriele; Fabiani, Monica

    2010-04-01

    Neuroimaging data emphasize that older adults often show greater extent of brain activation than younger adults for similar objective levels of difficulty. A possible interpretation of this finding is that older adults need to recruit neuronal resources at lower loads than younger adults, leaving no resources for higher loads, and thus leading to performance decrements [Compensation-Related Utilization of Neural Circuits Hypothesis; e.g., Reuter-Lorenz, P. A., & Cappell, K. A. Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17, 177-182, 2008]. The Compensation-Related Utilization of Neural Circuits Hypothesis leads to the prediction that activation differences between younger and older adults should disappear when task difficulty is made subjectively comparable. In a Sternberg memory search task, this can be achieved by assessing brain activity as a function of load relative to the individual's memory span, which declines with age. Specifically, we hypothesized a nonlinear relationship between load and both performance and brain activity and predicted that asymptotes in the brain activation function should correlate with performance asymptotes (corresponding to working memory span). The results suggest that age differences in brain activation can be largely attributed to individual variations in working memory span. Interestingly, the brain activation data show a sigmoid relationship with load. Results are discussed in terms of Cowan's [Cowan, N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87-114, 2001] model of working memory and theories of impaired inhibitory processes in aging.

  17. Effects of glutamine on brain development in very preterm children at school age.

    Science.gov (United States)

    de Kieviet, Jorrit F; Oosterlaan, Jaap; Vermeulen, R Jeroen; Pouwels, Petra J W; Lafeber, Harrie N; van Elburg, Ruurd M

    2012-11-01

    The amino acid glutamine has been shown to reduce the number of serious neonatal infections in very preterm children, which may benefit long-term brain development. The aims of the current follow-up study were to (1) determine the long-term effects of glutamine-enriched feeding in the first month after birth in very preterm children on measures of brain development at school age, and (2) elucidate a potential mediating role of serious neonatal infections. Fifty-two very preterm children who originally took part in a randomized controlled trial on enteral glutamine supplementation between day 3 and 30 after birth participated at a mean (SD) age of 8.6 (0.3) years. Measures of brain development included volumetric outcomes of major brain structures, as well as fractional anisotropy (FA) values of major white matter tracts. Glutamine supplementation in the first month was associated with medium-sized increases in white matter (d = 0.54, P = .03), hippocampus (d = 0.47, P = .02), and brain stem (d = 0.54, P = .04) volumes at school age. Exploratory analyses using an uncorrected P value indicated higher FA values of the bilateral cingulum hippocampal tract in the glutamine group. All differences were either strongly associated (hippocampus volume, brain stem volume, and FA values of cingulum hippocampal tract) or completely mediated (white matter volume) by the lower number of serious neonatal infections in the glutamine group. Short-term glutamine supplementation after birth increases white matter, hippocampus, and brain stem volumes in very preterm children at school age, mediated by a decrease in serious neonatal infections.

  18. Differential Expression of Sirtuin Family Members in the Developing, Adult, and Aged Rat Brain

    Directory of Open Access Journals (Sweden)

    Elena eSidorova-Darmos

    2014-12-01

    Full Text Available The sirtuins are NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases that play roles in metabolic homeostasis, stress response and potentially aging. This enzyme family resides in different subcellular compartments, and acts on a number of different targets in the nucleus, cytoplasm and in the mitochondria. Despite their recognized ability to regulate metabolic processes, the roles played by specific sirtuins in the brain - the most energy demanding tissue in the body - remains less well investigated and understood. In the present study, we examined the regional mRNA and protein expression patterns of individual sirtuin family members in the developing, adult, and aged rat brain. Our results show that while each sirtuin is expressed in the brain at each of these different stages, they display unique spatial and temporal expression patterns within the brain. Further, for specific members of the family, the protein expression profile did not coincide with their respective mRNA expression profile. Moreover, using primary cultures enriched for neurons and astrocytes respectively, we found that specific sirtuin members display preferential neural lineage expression. Collectively, these results provide the first composite illustration that sirtuin family members display differential expression patterns in the brain, and provide evidence that specific sirtuins could potentially be targeted to achieve cell-type selective effects within the brain.

  19. Mining Time-Resolved Functional Brain Graphs to an EEG-Based Chronnectomic Brain Aged Index (CBAI).

    Science.gov (United States)

    Dimitriadis, Stavros I; Salis, Christos I

    2017-01-01

    The brain at rest consists of spatially and temporal distributed but functionally connected regions that called intrinsic connectivity networks (ICNs). Resting state electroencephalography (rs-EEG) is a way to characterize brain networks without confounds associated with task EEG such as task difficulty and performance. A novel framework of how to study dynamic functional connectivity under the notion of functional connectivity microstates (FCμstates) and symbolic dynamics is further discussed. Furthermore, we introduced a way to construct a single integrated dynamic functional connectivity graph (IDFCG) that preserves both the strength of the connections between every pair of sensors but also the type of dominant intrinsic coupling modes (DICM). The whole methodology is demonstrated in a significant and unexplored task for EEG which is the definition of an objective Chronnectomic Brain Aged index (CBAI) extracted from resting-state data (N = 94 subjects) with both eyes-open and eyes-closed conditions. Novel features have been defined based on symbolic dynamics and the notion of DICM and FCμstates. The transition rate of FCμstates, the symbolic dynamics based on the evolution of FCμstates (the Markovian Entropy, the complexity index), the probability distribution of DICM, the novel Flexibility Index that captures the dynamic reconfiguration of DICM per pair of EEG sensors and the relative signal power constitute a valuable pool of features that can build the proposed CBAI. Here we applied a feature selection technique and Extreme Learning Machine (ELM) classifier to discriminate young adults from middle-aged and a Support Vector Regressor to build a linear model of the actual age based on EEG-based spatio-temporal features. The most significant type of features for both prediction of age and discrimination of young vs. adults age groups was the dynamic reconfiguration of dominant coupling modes derived from a subset of EEG sensor pairs. Specifically, our

  20. Mining Time-Resolved Functional Brain Graphs to an EEG-Based Chronnectomic Brain Aged Index (CBAI

    Directory of Open Access Journals (Sweden)

    Stavros I. Dimitriadis

    2017-09-01

    Full Text Available The brain at rest consists of spatially and temporal distributed but functionally connected regions that called intrinsic connectivity networks (ICNs. Resting state electroencephalography (rs-EEG is a way to characterize brain networks without confounds associated with task EEG such as task difficulty and performance. A novel framework of how to study dynamic functional connectivity under the notion of functional connectivity microstates (FCμstates and symbolic dynamics is further discussed. Furthermore, we introduced a way to construct a single integrated dynamic functional connectivity graph (IDFCG that preserves both the strength of the connections between every pair of sensors but also the type of dominant intrinsic coupling modes (DICM. The whole methodology is demonstrated in a significant and unexplored task for EEG which is the definition of an objective Chronnectomic Brain Aged index (CBAI extracted from resting-state data (N = 94 subjects with both eyes-open and eyes-closed conditions. Novel features have been defined based on symbolic dynamics and the notion of DICM and FCμstates. The transition rate of FCμstates, the symbolic dynamics based on the evolution of FCμstates (the Markovian Entropy, the complexity index, the probability distribution of DICM, the novel Flexibility Index that captures the dynamic reconfiguration of DICM per pair of EEG sensors and the relative signal power constitute a valuable pool of features that can build the proposed CBAI. Here we applied a feature selection technique and Extreme Learning Machine (ELM classifier to discriminate young adults from middle-aged and a Support Vector Regressor to build a linear model of the actual age based on EEG-based spatio-temporal features. The most significant type of features for both prediction of age and discrimination of young vs. adults age groups was the dynamic reconfiguration of dominant coupling modes derived from a subset of EEG sensor pairs. Specifically

  1. The effect of aging on brain barriers and the consequences for Alzheimer's disease development.

    Science.gov (United States)

    Gorlé, Nina; Van Cauwenberghe, Caroline; Libert, Claude; Vandenbroucke, Roosmarijn E

    2016-08-01

    Life expectancy has increased in most developed countries, which has led to an increase in the proportion of elderly people in the world's population. However, this increase in life expectancy is not accompanied by a lengthening of the health span since aging is characterized with progressive deterioration in cellular and organ functions. The brain is particularly vulnerable to disease, and this is reflected in the onset of age-related neurodegenerative diseases such as Alzheimer's disease. Research shows that dysfunction of two barriers in the central nervous system (CNS), the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB), plays an important role in the progression of these neurodegenerative diseases. The BBB is formed by the endothelial cells of the blood capillaries, whereas the BCSFB is formed by the epithelial cells of the choroid plexus (CP), both of which are affected during aging. Here, we give an overview of how these barriers undergo changes during aging and in Alzheimer's disease, thereby disturbing brain homeostasis. Studying these changes is needed in order to gain a better understanding of the mechanisms of aging at the brain barriers, which might lead to the development of new therapies to lengthen the health span (including mental health) and reduce the chances of developing Alzheimer's disease.

  2. Insulin improves memory and reduces chronic neuroinflammation in the hippocampus of young but not aged brains.

    Science.gov (United States)

    Adzovic, Linda; Lynn, Ashley E; D'Angelo, Heather M; Crockett, Alexis M; Kaercher, Roxanne M; Royer, Sarah E; Hopp, Sarah C; Wenk, Gary L

    2015-04-02

    The role of insulin in the brain is still not completely understood. In the periphery, insulin can decrease inflammation induced by lipopolysaccharide (LPS); however, whether insulin can reduce inflammation within the brain is unknown. Experiments administrating intranasal insulin to young and aged adults have shown that insulin improves memory. In our animal model of chronic neuroinflammation, we administered insulin and/or LPS directly into the brain via the fourth ventricle for 4 weeks in young rats; we then analyzed their spatial memory and neuroinflammatory response. Additionally, we administered insulin or artificial cerebral spinal fluid (aCSF), in the same manner, to aged rats and then analyzed their spatial memory and neuroinflammatory response. Response to chronic neuroinflammation in young rats was analyzed in the presence or absence of insulin supplementation. Here, we show for the first time that insulin infused (i.c.v.) to young rats significantly attenuated the effects of LPS by decreasing the expression of neuroinflammatory markers in the hippocampus and by improving performance in the Morris water pool task. In young rats, insulin infusion alone significantly improved their performance as compared to all other groups. Unexpectedly, in aged rats, the responsiveness to insulin was completely absent, that is, spatial memory was still impaired suggesting that an age-dependent insulin resistance may contribute to the cognitive impairment observed in neurodegenerative diseases. Our data suggest a novel therapeutic effect of insulin on neuroinflammation in the young but not the aged brain.

  3. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.

    Science.gov (United States)

    Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo

    2017-12-01

    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.

  4. Cognitive profiles in dementia: Alzheimer disease vs healthy brain aging.

    Science.gov (United States)

    Johnson, D K; Storandt, M; Morris, J C; Langford, Z D; Galvin, J E

    2008-11-25

    To re-examine proposed models of cognitive test performance that concluded separate factor structures were required for people with Alzheimer disease (AD) and older adults without dementia. Five models of cognitive test performance were compared using multistep confirmatory factor analysis in 115 individuals with autopsy-confirmed AD and 191 research participants without clinical dementia from longitudinal studies at the Washington University AD Research Center. The models were then cross-validated using independent samples of 323 people with clinically diagnosed dementia of the Alzheimer type and 212 cognitively healthy older adults. After controlling for Alzheimer-specific changes in episodic memory, performance on the battery of tests used here was best represented in people both with and without dementia by a single model of one general factor and three specific factors (verbal memory, visuospatial ability, and working memory). Performance by people with dementia was lower on the general factor than it was by those without dementia. Larger variances associated with the specific factors in the group with dementia indicated greater individual differences in the pattern of cognitive deficits in the stage of AD. A hybrid model of general and specific cognitive domains simplifies cognitive research by allowing direct comparison of normal aging and Alzheimer disease performance. The presence of a general factor maximizes detection of the dementia, whereas the specific factors reveal the heterogeneity of dementia's associated cognitive deficits.

  5. Brain development, intelligence and cognitive outcome in children born small for gestational age.

    Science.gov (United States)

    de Bie, H M A; Oostrom, K J; Delemarre-van de Waal, H A

    2010-01-01

    Intrauterine growth restriction (IUGR) can lead to infants being born small for gestational age (SGA). SGA is associated with increased neonatal morbidity and mortality as well as short stature, cardiovascular disease, insulin resistance, diabetes mellitus type 2, dyslipidemia and end-stage renal disease in adulthood. In addition, SGA children have decreased levels of intelligence and cognition, although the effects are mostly subtle. The overall outcome of each child is the result of a complex interaction between intrauterine and extrauterine factors. Animal and human studies show structural alterations in the brains of individuals with IUGR/SGA. The presence of growth hormone (GH) receptors in the brain implies that the brain is also a target for GH. Exogenous GH theoretically has the ability to act on the brain. This is exemplified by the effects of GH on cognition in GH-deficient adults. In SGA children, data on the effect of exogenous GH on intelligence and cognition are scant and contradictory.

  6. Oxidative stress and genetic markers of suboptimal antioxidant defense in the aging brain: a theoretical review.

    Science.gov (United States)

    Salminen, Lauren E; Paul, Robert H

    2014-01-01

    Normal aging involves a gradual breakdown of physiological processes that leads to a decline in cognitive functions and brain integrity, yet the onset and progression of decline are variable among older individuals. While many biological changes may contribute to this degree of variability, oxidative stress is a key mechanism of the aging process that can cause direct damage to cellular architecture within the brain. Oligodendrocytes are at a high risk for oxidative damage due to their role in myelin maintenance and production and limited repair mechanisms, suggesting that white matter may be particularly vulnerable to oxidative activity. Antioxidant defense enzymes within the brain, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferase (GST), are crucial for breaking down the harmful end products of oxidative phosphorylation. Previous studies have revealed that allele variations of polymorphisms that encode these antioxidants are associated with abnormalities in SOD, CAT, GPx, and GST activity in the central nervous system. This review will focus on the role of oxidative stress in the aging brain and the impact of decreased antioxidant defense on brain integrity and cognitive function. Directions for future research investigations of antioxidant defense genes will also be discussed.

  7. Beet Root Juice: An Ergogenic Aid for Exercise and the Aging Brain.

    Science.gov (United States)

    Petrie, Meredith; Rejeski, W Jack; Basu, Swati; Laurienti, Paul J; Marsh, Anthony P; Norris, James L; Kim-Shapiro, Daniel B; Burdette, Jonathan H

    2017-09-01

    Exercise has positive neuroplastic effects on the aging brain. It has also been shown that ingestion of beet root juice (BRJ) increases blood flow to the brain and enhances exercise performance. Here, we examined whether there are synergistic effects of BRJ and exercise on neuroplasticity in the aging brain. Peak metabolic equivalent (MET) capacity and resting-state magnetic resonance imaging functional brain network organization are reported on 26 older (mean age = 65.4 years) participants randomly assigned to 6 weeks of exercise + BRJ or exercise + placebo. Somatomotor community structure consistency was significantly enhanced in the exercise + BRJ group following the intervention (MBRJ = -2.27, SE = 0.145, MPlacebo = -2.89, SE = 0.156, p = .007). Differences in second-order connections between the somatomotor cortex and insular cortex were also significant; the exercise + BRJ group (M = 3.28, SE = 0.167) had a significantly lower number of connections than exercise + placebo (M = 3.91, SE = 0.18, p = .017) following the intervention. Evaluation of peak MET capacity revealed a trend for the exercise + BRJ group to have higher MET capacity following the intervention. Older adults who exercised and consumed BRJ demonstrated greater consistency within the motor community and fewer secondary connections with the insular cortex compared with those who exercised without BRJ. The exercise + BRJ group had brain networks that more closely resembled those of younger adults, showing the potential enhanced neuroplasticity conferred by combining exercise and BRJ consumption.

  8. Age-dependent differences in brain tissue microstructure assessed with neurite orientation dispersion and density imaging.

    Science.gov (United States)

    Merluzzi, Andrew P; Dean, Douglas C; Adluru, Nagesh; Suryawanshi, Gaurav S; Okonkwo, Ozioma C; Oh, Jennifer M; Hermann, Bruce P; Sager, Mark A; Asthana, Sanjay; Zhang, Hui; Johnson, Sterling C; Alexander, Andrew L; Bendlin, Barbara B

    2016-07-01

    Human aging is accompanied by progressive changes in executive function and memory, but the biological mechanisms underlying these phenomena are not fully understood. Using neurite orientation dispersion and density imaging, we sought to examine the relationship between age, cellular microstructure, and neuropsychological scores in 116 late middle-aged, cognitively asymptomatic participants. Results revealed widespread increases in the volume fraction of isotropic diffusion and localized decreases in neurite density in frontal white matter regions with increasing age. In addition, several of these microstructural alterations were associated with poorer performance on tests of memory and executive function. These results suggest that neurite orientation dispersion and density imaging is capable of measuring age-related brain changes and the neural correlates of poorer performance on tests of cognitive functioning, largely in accordance with published histological findings and brain-imaging studies of people of this age range. Ultimately, this study sheds light on the processes underlying normal brain development in adulthood, knowledge that is critical for differentiating healthy aging from changes associated with dementia. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. EEG Resting-State Brain Topological Reorganization as a Function of Age.

    Science.gov (United States)

    Petti, Manuela; Toppi, Jlenia; Babiloni, Fabio; Cincotti, Febo; Mattia, Donatella; Astolfi, Laura

    2016-01-01

    Resting state connectivity has been increasingly studied to investigate the effects of aging on the brain. A reduced organization in the communication between brain areas was demonstrated by combining a variety of different imaging technologies (fMRI, EEG, and MEG) and graph theory. In this paper, we propose a methodology to get new insights into resting state connectivity and its variations with age, by combining advanced techniques of effective connectivity estimation, graph theoretical approach, and classification by SVM method. We analyzed high density EEG signals recorded at rest from 71 healthy subjects (age: 20-63 years). Weighted and directed connectivity was computed by means of Partial Directed Coherence based on a General Linear Kalman filter approach. To keep the information collected by the estimator, weighted and directed graph indices were extracted from the resulting networks. A relation between brain network properties and age of the subject was found, indicating a tendency of the network to randomly organize increasing with age. This result is also confirmed dividing the whole population into two subgroups according to the age (young and middle-aged adults): significant differences exist in terms of network organization measures. Classification of the subjects by means of such indices returns an accuracy greater than 80%.

  10. EEG Resting-State Brain Topological Reorganization as a Function of Age

    Directory of Open Access Journals (Sweden)

    Manuela Petti

    2016-01-01

    Full Text Available Resting state connectivity has been increasingly studied to investigate the effects of aging on the brain. A reduced organization in the communication between brain areas was demonstrated by combining a variety of different imaging technologies (fMRI, EEG, and MEG and graph theory. In this paper, we propose a methodology to get new insights into resting state connectivity and its variations with age, by combining advanced techniques of effective connectivity estimation, graph theoretical approach, and classification by SVM method. We analyzed high density EEG signals recorded at rest from 71 healthy subjects (age: 20–63 years. Weighted and directed connectivity was computed by means of Partial Directed Coherence based on a General Linear Kalman filter approach. To keep the information collected by the estimator, weighted and directed graph indices were extracted from the resulting networks. A relation between brain network properties and age of the subject was found, indicating a tendency of the network to randomly organize increasing with age. This result is also confirmed dividing the whole population into two subgroups according to the age (young and middle-aged adults: significant differences exist in terms of network organization measures. Classification of the subjects by means of such indices returns an accuracy greater than 80%.

  11. Deciphering neuron-glia compartmentalization in cortical energy metabolism

    Directory of Open Access Journals (Sweden)

    Renaud Jolivet

    2009-07-01

    Full Text Available Energy demand is an important constraint on neural signaling. Several methods have been proposed to assess the energy budget of the brain based on a bottom-up approach in which the energy demand of individual biophysical processes are first estimated independently and then summed up to compute the brain's total energy budget. Here, we address this question using a novel approach that makes use of published datasets that reported average cerebral glucose and oxygen utilization in humans and rodents during different activation states. Our approach allows us (1 to decipher neuron-glia compartmentalization in energy metabolism and (2 to compute a precise state-dependent energy budget for the brain. Under the assumption that the fraction of energy used for signaling is proportional to the cycling of neurotransmitters, we find that in the activated state, most of the energy (~80% is oxidatively produced and consumed by neurons to support neuron-to-neuron signaling. Glial cells, while only contributing for a small fraction to energy production (~6%, actually take up a significant fraction of glucose (50% or more from the blood and provide neurons with glucose-derived energy substrates. Our results suggest that glycolysis occurs for a significant part in astrocytes whereas most of the oxygen is utilized in neurons. As a consequence, a transfer of glucose-derived metabolites from glial cells to neurons has to take place. Furthermore, we find that the amplitude of this transfer is correlated to (1 the activity level of the brain; the larger the activity, the more metabolites are shuttled from glia to neurons and (2 the oxidative activity in astrocytes; with higher glial pyruvate metabolism, less metabolites are shuttled from glia to neurons. While some of the details of a bottom-up biophysical approach have to be simplified, our method allows for a straightforward assessment of the brain's energy budget from macroscopic measurements with minimal

  12. Effect of age and biological subtype on the risk and timing of brain metastasis in breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Man-Hsin Hung

    Full Text Available BACKGROUND: Brain metastasis is a major complication of breast cancer. This study aimed to analyze the effect of age and biological subtype on the risk and timing of brain metastasis in breast cancer patients. PATIENTS AND METHODS: We identified subtypes of invasive ductal carcinoma of the breast by determining estrogen receptor, progesterone receptor and HER2 status. Time to brain metastasis according to age and cancer subtype was analyzed by Cox proportional hazard analysis. RESULTS: Of the 2248 eligible patients, 164 (7.3% developed brain metastasis over a median follow-up of 54.2 months. Age 35 or younger, HER2-enriched subtype, and triple-negative breast cancer were significant risk factors of brain metastasis. Among patients aged 35 or younger, the risk of brain metastasis was independent of biological subtype (P = 0.507. Among patients aged 36-59 or >60 years, those with triple-negative or HER2-enriched subtypes had consistently increased risk of brain metastasis, as compared with those with luminal A tumors. Patients with luminal B tumors had higher risk of brain metastasis than luminal A only in patients >60 years. CONCLUSIONS: Breast cancer subtypes are associated with differing risks of brain metastasis among different age groups. Patients age 35 or younger are particularly at risk of brain metastasis independent of biological subtype.

  13. Effect of age and biological subtype on the risk and timing of brain metastasis in breast cancer patients.

    Science.gov (United States)

    Hung, Man-Hsin; Liu, Chun-Yu; Shiau, Cheng-Ying; Hsu, Chin-Yi; Tsai, Yi-Fang; Wang, Yu-Ling; Tai, Ling-Chen; King, Kuang-Liang; Chao, Ta-Chung; Chiu, Jen-Hwey; Su, Cheng-Hsi; Lo, Su-Shun; Tzeng, Cheng-Hwai; Shyr, Yi-Ming; Tseng, Ling-Ming

    2014-01-01

    Brain metastasis is a major complication of breast cancer. This study aimed to analyze the effect of age and biological subtype on the risk and timing of brain metastasis in breast cancer patients. We identified subtypes of invasive ductal carcinoma of the breast by determining estrogen receptor, progesterone receptor and HER2 status. Time to brain metastasis according to age and cancer subtype was analyzed by Cox proportional hazard analysis. Of the 2248 eligible patients, 164 (7.3%) developed brain metastasis over a median follow-up of 54.2 months. Age 35 or younger, HER2-enriched subtype, and triple-negative breast cancer were significant risk factors of brain metastasis. Among patients aged 35 or younger, the risk of brain metastasis was independent of biological subtype (P = 0.507). Among patients aged 36-59 or >60 years, those with triple-negative or HER2-enriched subtypes had consistently increased risk of brain metastasis, as compared with those with luminal A tumors. Patients with luminal B tumors had higher risk of brain metastasis than luminal A only in patients >60 years. Breast cancer subtypes are associated with differing risks of brain metastasis among different age groups. Patients age 35 or younger are particularly at risk of brain metastasis independent of biological subtype.

  14. Age-dependent guanine oxidation in DNA of different brain regions of Wistar rats and prematurely aging OXYS rats.

    Science.gov (United States)

    Sattarova, Evgeniya A; Sinitsyna, Olga I; Vasyunina, Elena A; Duzhak, Alexander B; Kolosova, Nataliya G; Zharkov, Dmitry O; Nevinsky, Georgy A

    2013-06-01

    Oxidative damage to the cell, including the formation of 8-oxoG, has been regarded as a significant factor in carcinogenesis and aging. An inbred prematurely aging rat strain (OXYS) is characterized by high sensitivity to oxidative stress, lipid peroxidation, protein oxidation, DNA rearrangements, and pathological conditions paralleling several human degenerative diseases including learning and memory deterioration. We have used monoclonal antibodies against a common pre-mutagenic base lesion 8-oxoguanine (8-oxoG) and 8-oxoguanine DNA glycosylase (OGG1) in combination with indirect immunofluorescence microscopy and image analysis to follow the relative amounts and distribution of 8-oxoG and OGG1 in various cells of different brain regions from OXYS and control Wistar rats. It was shown that 8-oxoG increased with age in mature neurons, nestin- and glial fibrillary acidic protein (GFAP)-positive cells of hippocampus and frontal cortex in both strains of rats, with OXYS rats always displaying statistically significantly higher levels of oxidative DNA damage than Wistar rats. The relative content of 8-oxoG and OGG1 in nestin- and GFAP-positive cells was higher than in mature neurons in both Wistar and OXYS rats. However, there was no significant interstrain difference in the content of OGG1 for all types of cells and brain regions analyzed, and no difference in the relative content of 8-oxoG between different brain regions. Oxidation of guanine may play an important role in the development of age-associated decrease in memory and learning capability of OXYS rats. The findings are important for validation of the OXYS rat strain as a model of mammalian aging. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Aging Brain: Prevention of Oxidative Stress by Vitamin E and Exercise

    Directory of Open Access Journals (Sweden)

    Sambe Asha Devi

    2009-01-01

    Full Text Available With aging, the brain undergoes neuronal loss in many areas. Although the loss of cells in the cerebral cortex, in particular the frontal cortex, has been recognized with aging, the influence of synaptic losses has a larger impact on cognitive decline. Much of the recent research on animals, as well as humans, has been aimed at slowing the cognitive decline through enrichment, and it has been found that the key factors are antioxidants and exercise. Several reports support the concept that regular supplementation of vitamin E and physical activity from as early as middle age can slow the cognitive decline observed during the later years. A few studies have also suggested that exercise is analogous to acetylcholine esterase inhibitors that are also used extensively to treat cognitive impairment and dementia in Alzheimer's disease. In addition, reports also support that vitamin E and exercise may act synergistically to overcome free radical injury and oxidative stress in the aging brain.

  16. The Increase of the Functional Entropy of the Human Brain with Age

    Science.gov (United States)

    Yao, Y.; Lu, W. L.; Xu, B.; Li, C. B.; Lin, C. P.; Waxman, D.; Feng, J. F.

    2013-01-01

    We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy. PMID:24103922

  17. Small-worldness and modularity of the resting-state functional brain network decrease with aging.

    Science.gov (United States)

    Onoda, Keiichi; Yamaguchi, Shuhei

    2013-11-27

    The human brain is a complex network that is known to be affected by normal aging. Graph-based analysis has been used to estimate functional brain network efficiency and effects of normal aging on small-worldness have been reported. This relationship is further investigated here along with network modularity, a statistic reflecting how well a network is organized into modules of densely interconnected nodes. Modularity has previously been observed to vary as a function of working memory capacity, therefore we hypothesized that both small-worldness and modularity would show age-related declines. We found that both small-worldness and modularity were negatively correlated with increasing age but that this decline was relatively slow. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Role of Sex Hormones on Brain Mitochondrial Function, with Special Reference to Aging and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Pauline Gaignard

    2017-12-01

    Full Text Available The mitochondria have a fundamental role in both cellular energy supply and oxidative stress regulation and are target of the effects of sex steroids, particularly the neuroprotective ones. Aging is associated with a decline in the levels of different steroid hormones, and this decrease may underline some neural dysfunctions. Besides, modifications in mitochondrial functions associated with aging processes are also well documented. In this review, we will discuss studies that describe the modifications of brain mitochondrial function and of steroid levels associated with physiological aging and with neurodegenerative diseases. A special emphasis will be placed on describing and discussing our recent findings concerning the concomitant study of mitochondrial function (oxidative phosphorylation, oxidative stress and brain steroid levels in both young (3-month-old and aged (20-month-old male and female mice.

  19. A Culture-Brain Link: Negative Age Stereotypes Predict Alzheimer’s-disease Biomarkers

    Science.gov (United States)

    Levy, Becca R.; Ferrucci, Luigi; Zonderman, Alan B.; Slade, Martin D.; Troncoso, Juan; Resnick, Susan M.

    2016-01-01

    Although negative age stereotypes have been found to predict adverse outcomes among older individuals, it was unknown whether the influence of stereotypes extends to brain changes associated with Alzheimer’s disease. To consider this possibility, we drew on the age stereotypes of dementia-free participants in the Baltimore Longitudinal Study of Aging that had been measured decades before yearly MRIs and brain autopsies were performed. Those with more negative age stereotypes earlier in life had significantly steeper hippocampal-volume loss, and significantly greater accumulation of neurofibrillary tangles and amyloid plaques at autopsy, adjusting for relevant covariates. These findings suggest a new pathway to identifying mechanisms and potential interventions related to the neuropathology of Alzheimer’s disease. PMID:26641877

  20. Morphometric brain changes during aging: Results from a Brazilian necropsy sample

    Directory of Open Access Journals (Sweden)

    Renata Eloah de Lucena Ferretti

    Full Text Available Abstract The present study aimed to establish the morphometric brain changes during aging in a necropsy series from Brazil and determine whether sexual dimorphisms interfere in these changes. Methods: A cross-sectional study was conducted at the São Paulo Autopsy Service in Brazil where, after informed consent, data was gathered from next of kin interview with reference to clinical status prior to death. Brain weight, volume and density measurements were taken and then adjusted for head circumference. Descriptive statistics and tests of hypothesis and correlations were applied, considering a p-value of 0.05. Results: 414 subjects, mostly men (60.4%, with a mean age of 67.1 years, were included. The mean brain weight of the sample was 1219.2g±140.9 and mean volume was 1217mL±152.3. The mean brain density of the sample was 1.0g/mL±0.09. Values differed between males and females in terms of weight and volume. Brain weight decreased during aging by about 45g per decade (r= -0.300; p<0.01 and volume by about 43mL (r= -0.278; p<0.00. Mean density of the sample was 1.0 g/mL in both genders. Conclusions: Brain weight and volume (with or without corrections decreased during aging, and these reductions were more pronounced in women. Density remained unchanged for both genders. Further studies are needed to investigate factors associated to these reductions.

  1. Calcium antagonists decrease capillary wall damage in aging hypertensive rat brain

    OpenAIRE

    Farkas, E.; Jong, G.I. de; Apro, E.; Keuker, J.I.H.; Luiten, P.G.M.

    2001-01-01

    Chronic hypertension during aging is a serious threat to the cerebral vasculature. The larger brain arteries can react to hypertension with an abnormal wall thickening, a loss of elasticity and a narrowed lumen. However, little is known about the hypertension-induced alterations of cerebral capillaries. The present study describes ultrastructural alterations of the cerebrocortical capillary wall, such as thickening and collagen accumulation in the basement membrane of aging spontaneously hype...

  2. Exercise and the Aging Brain. (The 1982 C. H. McCloy Research Lecture)

    Science.gov (United States)

    Spirduso, Waneen W.

    1983-01-01

    Exercise may postpone the deterioration in response speed that generally appears in the motor system of the aging by maintaining the nigrostriatal dopaminergic system in the brain. Exercise may also ameliorate symptoms of Parkinson's disease. Results of laboratory studies involving animals and rats are reported. (Author/PP)

  3. Watching TV news as a memory task -- brain activation and age effects

    Directory of Open Access Journals (Sweden)

    Frings Lars

    2010-08-01

    Full Text Available Abstract Background Neuroimaging studies which investigate brain activity underlying declarative memory processes typically use artificial, unimodal laboratory stimuli. In contrast, we developed a paradigm which much more closely approximates real-life situations of information encoding. Methods In this study, we tested whether ecologically valid stimuli - clips of a TV news show - are apt to assess memory-related fMRI activation in healthy participants across a wide age range (22-70 years. We contrasted brain responses during natural stimulation (TV news video clips with a control condition (scrambled versions of the same clips with reversed audio tracks. After scanning, free recall performance was assessed. Results The memory task evoked robust activation of a left-lateralized network, including primarily lateral temporal cortex, frontal cortex, as well as the left hippocampus. Further analyses revealed that - when controlling for performance effects - older age was associated with greater activation of left temporal and right frontal cortex. Conclusion We demonstrate the feasibility of assessing brain activity underlying declarative memory using a natural stimulation paradigm with high ecological validity. The preliminary result of greater brain activation with increasing age might reflect an attempt to compensate for decreasing episodic memory capacity associated with aging.

  4. Calcium antagonists decrease capillary wall damage in aging hypertensive rat brain

    NARCIS (Netherlands)

    Farkas, E.; de Jong, G.I.; Apro, E.; Keuker, J.I.H.; Luiten, P.G.M.

    2001-01-01

    Chronic hypertension during aging is a serious threat to the cerebral vasculature. The larger brain arteries can react to hypertension with an abnormal wall thickening, a loss of elasticity and a narrowed lumen. However, little is known about the hypertension-induced alterations of cerebral

  5. Age differences in brain activation associated with verbal learning and fatigue

    NARCIS (Netherlands)

    Klaasen, Elissa; Evers, Lisbeth; De Groot, Renate; Veltman, Dick; Jolles, Jelle

    2012-01-01

    Klaassen, E., Evers, E., De Groot, R. H. M., Veltman, D., & Jolles, J. (2011, February). Age differences in brain activation associated with verbal learning and fatigue. Poster presented at the School for Mental Health and Neuroscience Research Day 2011, Maastricht, The Netherlands.

  6. Aging brain from a network science perspective: something to be positive about?

    Directory of Open Access Journals (Sweden)

    Michelle W Voss

    Full Text Available To better understand age differences in brain function and behavior, the current study applied network science to model functional interactions between brain regions. We observed a shift in network topology whereby for older adults subcortical and cerebellar structures overlapping with the Salience network had more connectivity to the rest of the brain, coupled with fragmentation of large-scale cortical networks such as the Default and Fronto-Parietal networks. Additionally, greater integration of the dorsal medial thalamus and red nucleus in the Salience network was associated with greater satisfaction with life for older adults, which is consistent with theoretical predictions of age-related increases in emotion regulation that are thought to help maintain well-being and life satisfaction in late adulthood. In regard to cognitive abilities, greater ventral medial prefrontal cortex coherence with its topological neighbors in the Default Network was associated with faster processing speed. Results suggest that large-scale organizing properties of the brain differ with normal aging, and this perspective may offer novel insight into understanding age-related differences in cognitive function and well-being.

  7. Keep Your Brain Fit! A Psychoeducational Training Program for Healthy Cognitive Aging: A Feasibility Study

    Science.gov (United States)

    Reijnders, Jennifer; van Heugten, Caroline; van Boxtel, Martin

    2015-01-01

    A psychoeducational face-to-face training program (Keep Your Brain Fit!) was developed to support the working population in coping with age-related cognitive changes and taking proactive preventive measures to maintain cognitive health. A feasibility study was conducted to test the training program presented in a workshop format. Participants…

  8. Cognitive function and brain structure after recurrent mild traumatic brain injuries in young-to-middle-aged adults

    OpenAIRE

    List, Jonathan; Ott, Stefanie; Bukowski, Martin; Lindenberg, Robert; Fl?el, Agnes

    2015-01-01

    Recurrent mild traumatic brain injuries (mTBIs) are regarded as an independent risk factor for developing dementia in later life. We here aimed to evaluate associations between recurrent mTBIs, cognition, and gray matter volume and microstructure as revealed by structural magnetic resonance imaging (MRI) in the chronic phase after mTBIs in young adulthood. We enrolled 20 young-to-middle-aged subjects, who reported two or more sports-related mTBIs, with the last mTBI > 6 months prior to study ...

  9. Brain network characterization of high-risk preterm-born school-age children

    Directory of Open Access Journals (Sweden)

    Elda Fischi-Gomez

    2016-01-01

    Full Text Available Higher risk for long-term cognitive and behavioral impairments is one of the hallmarks of extreme prematurity (EP and pregnancy-associated fetal adverse conditions such as intrauterine growth restriction (IUGR. While neurodevelopmental delay and abnormal brain function occur in the absence of overt brain lesions, these conditions have been recently associated with changes in microstructural brain development. Recent imaging studies indicate changes in brain connectivity, in particular involving the white matter fibers belonging to the cortico-basal ganglia-thalamic loop. Furthermore, EP and IUGR have been related to altered brain network architecture in childhood, with reduced network global capacity, global efficiency and average nodal strength. In this study, we used a connectome analysis to characterize the structural brain networks of these children, with a special focus on their topological organization. On one hand, we confirm the reduced averaged network node degree and strength due to EP and IUGR. On the other, the decomposition of the brain networks in an optimal set of clusters remained substantially different among groups, talking in favor of a different network community structure. However, and despite the different community structure, the brain networks of these high-risk school-age children maintained the typical small-world, rich-club and modularity characteristics in all cases. Thus, our results suggest that brain reorganizes after EP and IUGR, prioritizing a tight modular structure, to maintain the small-world, rich-club and modularity characteristics. By themselves, both extreme prematurity and IUGR bear a similar risk for neurocognitive and behavioral impairment, and the here defined modular network alterations confirm similar structural changes both by IUGR and EP at school age compared to control. Interestingly, the combination of both conditions (IUGR + EP does not result in a worse outcome. In such cases, the alteration

  10. Brain network characterization of high-risk preterm-born school-age children.

    Science.gov (United States)

    Fischi-Gomez, Elda; Muñoz-Moreno, Emma; Vasung, Lana; Griffa, Alessandra; Borradori-Tolsa, Cristina; Monnier, Maryline; Lazeyras, François; Thiran, Jean-Philippe; Hüppi, Petra S

    2016-01-01

    Higher risk for long-term cognitive and behavioral impairments is one of the hallmarks of extreme prematurity (EP) and pregnancy-associated fetal adverse conditions such as intrauterine growth restriction (IUGR). While neurodevelopmental delay and abnormal brain function occur in the absence of overt brain lesions, these conditions have been recently associated with changes in microstructural brain development. Recent imaging studies indicate changes in brain connectivity, in particular involving the white matter fibers belonging to the cortico-basal ganglia-thalamic loop. Furthermore, EP and IUGR have been related to altered brain network architecture in childhood, with reduced network global capacity, global efficiency and average nodal strength. In this study, we used a connectome analysis to characterize the structural brain networks of these children, with a special focus on their topological organization. On one hand, we confirm the reduced averaged network node degree and strength due to EP and IUGR. On the other, the decomposition of the brain networks in an optimal set of clusters remained substantially different among groups, talking in favor of a different network community structure. However, and despite the different community structure, the brain networks of these high-risk school-age children maintained the typical small-world, rich-club and modularity characteristics in all cases. Thus, our results suggest that brain reorganizes after EP and IUGR, prioritizing a tight modular structure, to maintain the small-world, rich-club and modularity characteristics. By themselves, both extreme prematurity and IUGR bear a similar risk for neurocognitive and behavioral impairment, and the here defined modular network alterations confirm similar structural changes both by IUGR and EP at school age compared to control. Interestingly, the combination of both conditions (IUGR + EP) does not result in a worse outcome. In such cases, the alteration in network

  11. Taurine content in different brain structures during ageing: effect on hippocampal synaptic plasticity.

    Science.gov (United States)

    Suárez, Luz M; Muñoz, María-Dolores; Martín Del Río, Rafael; Solís, José M

    2016-05-01

    A reduction in taurine content accompanies the ageing process in many tissues. In fact, the decline of brain taurine levels has been associated with cognitive deficits whereas chronic administration of taurine seems to ameliorate age-related deficits such as memory acquisition and retention. In the present study, using rats of three age groups (young, adult and aged) we determined whether the content of taurine and other amino acids (glutamate, serine, glutamine, glycine, alanine and GABA) was altered during ageing in different brain areas (cerebellum, cortex and hippocampus) as well non-brain tissues (heart, kidney, liver and plasma). Moreover, using hippocampal slices we tested whether ageing affects synaptic function and plasticity. These parameters were also determined in aged rats fed with either taurine-devoid or taurine-supplemented diets. With age, we found heterogeneous changes in amino acid content depending on the amino acid type and the tissue. In the case of taurine, its content was reduced in the cerebellum of adult and aged rats, but it remained unchanged in the hippocampus, cortex, heart and liver. The synaptic response amplitude decreased in aged rats, although the late phase of long-term synaptic potentiation (late-LTP), a taurine-dependent process, was not altered. Our study highlights the stability of taurine content in the hippocampus during ageing regardless of whether taurine was present in the diet, which is consistent with the lack of changes detected in late-LTP. These results indicate that the beneficial effects of taurine supplementation might be independent of the replenishment of taurine stores.

  12. Effects of Age and Age-Related Hearing Loss on the Brain

    Science.gov (United States)

    Tremblay, Kelly; Ross, Bernhard

    2007-01-01

    It is well documented that aging adversely affects the ability to perceive time-varying acoustic cues. Here we review how physiological measures are being used to explore the effects of aging (and concomitant hearing loss) on the neural representation of temporal cues. Also addressed are the implications of current research findings on the…

  13. Neurogenetic effects on cognition in aging brains: A window of opportunity for intervention?

    Directory of Open Access Journals (Sweden)

    Ivar Reinvang

    2010-11-01

    Full Text Available Knowledge of genetic influences on cognitive aging can constrain and guide interventions aimed at limiting age-related cognitive decline in older adults. Progress in understanding the neural basis of cognitive aging also requires a better understanding of the neurogenetics of cognition. This selective review article describes studies aimed at deriving specific neurogenetic information from three parallel and interrelated phenotype based approaches: psychometric constructs, cognitive neuroscience based processing measures, and brain imaging morphometric data. Developments in newer genetic analysis tools, including genome wide association, are also described. In particular, we focus on models for establishing genotype-phenotype associations within an explanatory framework linking molecular, brain, and cognitive levels of analysis. Such multiple-phenotype approaches indicate that individual variation in genes central to maintaining synaptic integrity, neurotransmitter function, and synaptic plasticity are important in affecting age-related changes in brain structure and cognition. Investigating phenotypes at multiple levels is recommended as a means to advance understanding of the neural impact of genetic variants relevant to cognitive aging. Further knowledge regarding the mechanisms of interaction between genetic and preventative procedures will in turn help in understanding the ameliorative effect of various experiential and lifestyle factors on age-related cognitive decline.

  14. Aging associated changes in the motor control of ankle movements in the brain.

    Science.gov (United States)

    Linortner, Patricia; Jehna, Margit; Johansen-Berg, Heidi; Matthews, Paul; Schmidt, Reinhold; Fazekas, Franz; Enzinger, Christian

    2014-10-01

    Although age-related gait changes have been well characterized, little is known regarding potential functional changes in central motor control of distal lower limb movements with age. We hypothesized that there are age-related changes in brain activity associated with the control of repetitive ankle movements, an element of gait feasible for study with functional magnetic resonance imaging. We analyzed standardized functional magnetic resonance imaging data from 102 right-foot dominant healthy participants aged 20-83 years for age-associated effects using FSL and a meta-analysis using coordinate-based activation likelihood estimation. For the first time, we have confirmed age-related changes in brain activity with this gait-related movement of the lower limb in a large population. Increasing age correlated strongly with increased movement-associated activity in the cerebellum and precuneus. Given that task performance did not vary with age, we interpret these changes as potentially compensatory for other age-related changes in the sensorimotor network responsible for control of limb function. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Bayesian Optimization for Neuroimaging Pre-processing in Brain Age Classification and Prediction

    Directory of Open Access Journals (Sweden)

    Jenessa Lancaster

    2018-02-01

    Full Text Available Neuroimaging-based age prediction using machine learning is proposed as a biomarker of brain aging, relating to cognitive performance, health outcomes and progression of neurodegenerative disease. However, even leading age-prediction algorithms contain measurement error, motivating efforts to improve experimental pipelines. T1-weighted MRI is commonly used for age prediction, and the pre-processing of these scans involves normalization to a common template and resampling to a common voxel size, followed by spatial smoothing. Resampling parameters are often selected arbitrarily. Here, we sought to improve brain-age prediction accuracy by optimizing resampling parameters using Bayesian optimization. Using data on N = 2003 healthy individuals (aged 16–90 years we trained support vector machines to (i distinguish between young (<22 years and old (>50 years brains (classification and (ii predict chronological age (regression. We also evaluated generalisability of the age-regression model to an independent dataset (CamCAN, N = 648, aged 18–88 years. Bayesian optimization was used to identify optimal voxel size and smoothing kernel size for each task. This procedure adaptively samples the parameter space to evaluate accuracy across a range of possible parameters, using independent sub-samples to iteratively assess different parameter combinations to arrive at optimal values. When distinguishing between young and old brains a classification accuracy of 88.1% was achieved, (optimal voxel size = 11.5 mm3, smoothing kernel = 2.3 mm. For predicting chronological age, a mean absolute error (MAE of 5.08 years was achieved, (optimal voxel size = 3.73 mm3, smoothing kernel = 3.68 mm. This was compared to performance using default values of 1.5 mm3 and 4mm respectively, resulting in MAE = 5.48 years, though this 7.3% improvement was not statistically significant. When assessing generalisability, best performance was achieved when applying the entire Bayesian

  16. Distinct Brain and Behavioral Benefits from Cognitive vs. Physical Training: A Randomized Trial in Aging Adults.

    Science.gov (United States)

    Chapman, Sandra B; Aslan, Sina; Spence, Jeffrey S; Keebler, Molly W; DeFina, Laura F; Didehbani, Nyaz; Perez, Alison M; Lu, Hanzhang; D'Esposito, Mark

    2016-01-01

    Insidious declines in normal aging are well-established. Emerging evidence suggests that non-pharmacological interventions, specifically cognitive and physical training, may counter diminishing age-related cognitive and brain functions. This randomized trial compared effects of two training protocols: cognitive training (CT) vs. physical training (PT) on cognition and brain function in adults 56-75 years. Sedentary participants (N = 36) were randomized to either CT or PT group for 3 h/week over 12 weeks. They were assessed at baseline-, mid-, and post-training using neurocognitive, MRI, and physiological measures. The CT group improved on executive function whereas PT group's memory was enhanced. Uniquely deploying cerebral blood flow (CBF) and cerebral vascular reactivity (CVR) MRI, the CT cohort showed increased CBF within the prefrontal and middle/posterior cingulate cortex (PCC) without change to CVR compared to PT group. Improvements in complex abstraction were positively associated with increased resting CBF in dorsal anterior cingulate cortex (dACC). Exercisers with higher CBF in hippocampi bilaterally showed better immediate memory. The preliminary evidence indicates that increased cognitive and physical activity improves brain health in distinct ways. Reasoning training enhanced frontal networks shown to be integral to top-down cognitive control and brain resilience. Evidence of increased resting CBF without changes to CVR implicates increased neural health rather than improved vascular response. Exercise did not improve cerebrovascular response, although CBF increased in hippocampi of those with memory gains. Distinct benefits incentivize testing effectiveness of combined protocols to strengthen brain health.

  17. Distinct Brain and Behavioral Benefits from Cognitive versus Physical Training: A Randomized Trial in Aging Adults

    Directory of Open Access Journals (Sweden)

    Sandra Bond Chapman

    2016-07-01

    Full Text Available Insidious declines in normal aging are well established. Emerging evidence suggests that non-pharmacological interventions, specifically cognitive and physical training, may counter diminishing age-related cognitive and brain functions. This randomized trial compared effects of two training protocols: cognitive training (CT versus physical training (PT on cognition and brain function in adults 56–75 years. Sedentary participants (N=36 were randomized to either CT or PT group for 3 hours/week over 12 weeks. They were assessed at baseline, mid-training and post-training using neurocognitive, MRI and physiological measures. The CT group improved on executive function whereas PT group’s memory was enhanced. Uniquely deploying cerebral blood flow (CBF and cerebral vascular reactivity (CVR MRI, the CT cohort showed increased CBF within the prefrontal and middle/posterior cingulate cortex without change to CVR compared to PT group. Improvements in complex abstraction were positively associated with increased resting CBF in dorsal anterior cingulate cortex. Exercisers with higher CBF in hippocampi bilaterally showed better immediate memory. The preliminary evidence indicates that increased cognitive and physical activity improves brain health in distinct ways. Reasoning training enhanced frontal networks shown to be integral to top-down cognitive control and brain resilience. Evidence of increased resting CBF without changes to CVR implicates increased neural health rather than improved vascular response. Exercise did not improve cerebrovascular response, although CBF increased in hippocampi of those with memory gains. Distinct benefits incentivize testing effectiveness of combined protocols to strengthen brain health.

  18. Global and regional annual brain volume loss rates in physiological aging.

    Science.gov (United States)

    Schippling, Sven; Ostwaldt, Ann-Christin; Suppa, Per; Spies, Lothar; Manogaran, Praveena; Gocke, Carola; Huppertz, Hans-Jürgen; Opfer, Roland

    2017-03-01

    The objective is to estimate average global and regional percentage brain volume loss per year (BVL/year) of the physiologically ageing brain. Two independent, cross-sectional single scanner cohorts of healthy subjects were included. The first cohort (n = 248) was acquired at the Medical Prevention Center (MPCH) in Hamburg, Germany. The second cohort (n = 316) was taken from the Open Access Series of Imaging Studies (OASIS). Brain parenchyma (BP), grey matter (GM), white matter (WM), corpus callosum (CC), and thalamus volumes were calculated. A non-parametric technique was applied to fit the resulting age-volume data. For each age, the BVL/year was derived from the age-volume curves. The resulting BVL/year curves were compared between the two cohorts. For the MPCH cohort, the BVL/year curve of the BP was an increasing function starting from 0.20% at the age of 35 years increasing to 0.52% at 70 years (corresponding values for GM ranged from 0.32 to 0.55%, WM from 0.02 to 0.47%, CC from 0.07 to 0.48%, and thalamus from 0.25 to 0.54%). Mean absolute difference between BVL/year trajectories across the age range of 35-70 years was 0.02% for BP, 0.04% for GM, 0.04% for WM, 0.11% for CC, and 0.02% for the thalamus. Physiological BVL/year rates were remarkably consistent between the two cohorts and independent from the scanner applied. Average BVL/year was clearly age and compartment dependent. These results need to be taken into account when defining cut-off values for pathological annual brain volume loss in disease models, such as multiple sclerosis.

  19. Learning-based prediction of gestational age from ultrasound images of the fetal brain.

    Science.gov (United States)

    Namburete, Ana I L; Stebbing, Richard V; Kemp, Bryn; Yaqub, Mohammad; Papageorghiou, Aris T; Alison Noble, J

    2015-04-01

    We propose an automated framework for predicting gestational age (GA) and neurodevelopmental maturation of a fetus based on 3D ultrasound (US) brain image appearance. Our method capitalizes on age-related sonographic image patterns in conjunction with clinical measurements to develop, for the first time, a predictive age model which improves on the GA-prediction potential of US images. The framework benefits from a manifold surface representation of the fetal head which delineates the inner skull boundary and serves as a common coordinate system based on cranial position. This allows for fast and efficient sampling of anatomically-corresponding brain regions to achieve like-for-like structural comparison of different developmental stages. We develop bespoke features which capture neurosonographic patterns in 3D images, and using a regression forest classifier, we characterize structural brain development both spatially and temporally to capture the natural variation existing in a healthy population (N=447) over an age range of active brain maturation (18-34weeks). On a routine clinical dataset (N=187) our age prediction results strongly correlate with true GA (r=0.98,accurate within±6.10days), confirming the link between maturational progression and neurosonographic activity observable across gestation. Our model also outperforms current clinical methods by ±4.57 days in the third trimester-a period complicated by biological variations in the fetal population. Through feature selection, the model successfully identified the most age-discriminating anatomies over this age range as being the Sylvian fissure, cingulate, and callosal sulci. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Associations between insulin action and integrity of brain microstructure differ with familial longevity and with age

    Directory of Open Access Journals (Sweden)

    Abimbola A. Akintola

    2015-05-01

    Full Text Available Impaired glucose metabolism and type 2 diabetes have been associated with cognitive decline, dementia, and with structural and functional brain features. However, it is unclear whether these associations differ in individuals that differ in familial longevity or age. Here, we investigated the association between parameters of glucose metabolism and microstructural brain integrity in offspring of long-lived families (offspring and controls; and age categories thereof. From the Leiden Longevity Study, 132 participants underwent oral glucose tolerance test to assess glycemia (fasted glucose and glucose area-under-the-curve (AUC, insulin resistance (fasted insulin, AUCinsulin, and homeostatic model assessment of insulin resistance (HOMA-IR, and pancreatic Beta cell secretory capacity (insulinogenic index. 3Tesla MRI and Magnetization Transfer (MT imaging MT-ratio peak-height was used to quantify differences in microstructural brain parenchymal tissue homogeneity that remain invisible on conventional MRI. Analyses were performed in offspring and age-matched controls, with and without stratification for age.In the full offspring group only, reduced peak-height in grey and white matter was inversely associated with AUCinsulin, fasted insulin, HOMA-IR and insulinogenic-index (all p65 years: in younger controls, significantly stronger inverse associations were observed between peak-height and fasted glucose, AUCglucose, fasted insulin, AUCinsulin and HOMA-IR in grey matter; and for AUCglucose, fasted insulin and HOMA-IR in white matter (all P-interaction<0.05. Although the strength of the associations tended to attenuate with age in the offspring group, the difference between age groups was not statistically significant. Thus, associations between impaired insulin action and reduced microstructural brain parenchymal tissue homogeneity were stronger in offspring compared to controls, and seemed to diminish with age.

  1. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    Science.gov (United States)

    Banerjee, S; Poddar, M K

    2016-04-05

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Skin and brain age together: The role of hormones in the ageing process

    OpenAIRE

    Makrantonaki, Evgenia; Schönknecht, Peter; Hossini, Amir M; Kaiser, Elmar; Katsouli, Myrto-Maria; Adjaye, James; Schröder, Johannes; Zouboulis, Christos C.

    2010-01-01

    Abstract The importance of the endocrine environment in the initiation of the ageing process has been elucidated in several in vivo an in vitro studies. Changes in endocrine pathways accompany healthy ageing, these include the growth hormone /insulin like growth factor-I axis (somatopause) and that of sexual hormones, namely estradiol (menopause), testosterone (andropause), and dehydroepiandrosterone and its sulphate (adrenopause). The clinical significance of these changes is vari...

  3. Cognitive function and brain structure after recurrent mild traumatic brain injuries in young-to-middle-aged adults

    Directory of Open Access Journals (Sweden)

    Jonathan eList

    2015-05-01

    Full Text Available Recurrent mild traumatic brain injuries (mTBIs are regarded as an independent risk factor for developing dementia in later life. We here aimed to evaluate associations between recurrent mTBIs, cognition, and grey matter volume and microstructure as revealed by structural magnetic resonance imaging (MRI in the chronic phase after mTBIs in young adulthood. We enrolled 20 young-to-middle-aged subjects, who reported two or more sports-related mTBIs, with the last mTBI>6 months prior to study enrolment (mTBI group, and 21 age-, sex- and education matched controls with no history of mTBI (control group. All participants received comprehensive neuropsychological testing, and high resolution T1-weighted and diffusion tensor MRI in order to assess cortical thickness (CT and microstructure, hippocampal volume, and ventricle size. Compared to the control group, subjects of the mTBI group presented with lower CT within the right temporal lobe and left insula using an a priori region of interest approach. Higher number of mTBIs was associated with lower CT in bilateral insula, right middle temporal gyrus and right entorhinal area. Our results suggest persistent detrimental effects of recurrent mTBIs on CT already in young-to-middle-aged adults. If additional structural deterioration occurs during aging, subtle neuropsychological decline may progress to clinically overt dementia earlier than in age-matched controls, a hypothesis to be assessed in future prospective trials.

  4. Cognitive function and brain structure after recurrent mild traumatic brain injuries in young-to-middle-aged adults.

    Science.gov (United States)

    List, Jonathan; Ott, Stefanie; Bukowski, Martin; Lindenberg, Robert; Flöel, Agnes

    2015-01-01

    Recurrent mild traumatic brain injuries (mTBIs) are regarded as an independent risk factor for developing dementia in later life. We here aimed to evaluate associations between recurrent mTBIs, cognition, and gray matter volume and microstructure as revealed by structural magnetic resonance imaging (MRI) in the chronic phase after mTBIs in young adulthood. We enrolled 20 young-to-middle-aged subjects, who reported two or more sports-related mTBIs, with the last mTBI > 6 months prior to study enrolment (mTBI group), and 21 age-, sex- and education matched controls with no history of mTBI (control group). All participants received comprehensive neuropsychological testing, and high resolution T1-weighted and diffusion tensor MRI in order to assess cortical thickness (CT) and microstructure, hippocampal volume, and ventricle size. Compared to the control group, subjects of the mTBI group presented with lower CT within the right temporal lobe and left insula using an a priori region of interest approach. Higher number of mTBIs was associated with lower CT in bilateral insula, right middle temporal gyrus and right entorhinal area. Our results suggest persistent detrimental effects of recurrent mTBIs on CT already in young-to-middle-aged adults. If additional structural deterioration occurs during aging, subtle neuropsychological decline may progress to clinically overt dementia earlier than in age-matched controls, a hypothesis to be assessed in future prospective trials.

  5. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Jose L. Labandeira-Garcia

    2017-05-01

    Full Text Available Microglia can transform into proinflammatory/classically activated (M1 or anti-inflammatory/alternatively activated (M2 phenotypes following environmental signals related to physiological conditions or brain lesions. An adequate transition from the M1 (proinflammatory to M2 (immunoregulatory phenotype is necessary to counteract brain damage. Several factors involved in microglial polarization have already been identified. However, the effects of the brain renin-angiotensin system (RAS on microglial polarization are less known. It is well known that there is a “classical” circulating RAS; however, a second RAS (local or tissue RAS has been observed in many tissues, including brain. The locally formed angiotensin is involved in local pathological changes of these tissues and modulates immune cells, which are equipped with all the components of the RAS. There are also recent data showing that brain RAS plays a major role in microglial polarization. Level of microglial NADPH-oxidase (Nox activation is a major regulator of the shift between M1/proinflammatory and M2/immunoregulatory microglial phenotypes so that Nox activation promotes the proinflammatory and inhibits the immunoregulatory phenotype. Angiotensin II (Ang II, via its type 1 receptor (AT1, is a major activator of the NADPH-oxidase complex, leading to pro-oxidative and pro-inflammatory effects. However, these effects are counteracted by a RAS opposite arm constituted by Angiotensin II/AT2 receptor signaling and Angiotensin 1–7/Mas receptor (MasR signaling. In addition, activation of prorenin-renin receptors may contribute to activation of the proinflammatory phenotype. Aged brains showed upregulation of AT1 and downregulation of AT2 receptor expression, which may contribute to a pro-oxidative pro-inflammatory state and the increase in neuron vulnerability. Several recent studies have shown interactions between the brain RAS and different factors involved in microglial polarization

  6. Comparison of automated brain volumetry methods with stereology in children aged 2 to 3 years

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Kristina N. [University Children' s Hospital of Zurich, Center for MR Research, Zurich (Switzerland); University Children' s Hospital, Pediatric Cardiology, Zurich (Switzerland); Latal, Beatrice [University Children' s Hospital, Child Development Center, Zurich (Switzerland); University Children' s Hospital, Children' s Research Center, Zurich (Switzerland); Knirsch, Walter [University Children' s Hospital, Pediatric Cardiology, Zurich (Switzerland); University Children' s Hospital, Children' s Research Center, Zurich (Switzerland); Scheer, Ianina [University Children' s Hospital, Department for Diagnostic Neuroradiology, Zurich (Switzerland); Rhein, Michael von [University Children' s Hospital, Child Development Center, Zurich (Switzerland); Reich, Bettina; Bauer, Juergen; Gummel, Kerstin [Justus-Liebig University, Pediatric Heart Center, University Hospital Giessen, Giessen (Germany); Roberts, Neil [University of Edinburgh, Clinical Research and Imaging Centre (CRIC), The Queens Medical Research Institute (QMRI), Edinburgh (United Kingdom); O' Gorman Tuura, Ruth [University Children' s Hospital of Zurich, Center for MR Research, Zurich (Switzerland); University Children' s Hospital, Children' s Research Center, Zurich (Switzerland)

    2016-09-15

    The accurate and precise measurement of brain volumes in young children is important for early identification of children with reduced brain volumes and an increased risk for neurodevelopmental impairment. Brain volumes can be measured from cerebral MRI (cMRI), but most neuroimaging tools used for cerebral segmentation and volumetry were developed for use in adults and have not been validated in infants or young children. Here, we investigate the feasibility and accuracy of three automated software methods (i.e., SPM, FSL, and FreeSurfer) for brain volumetry in young children and compare the measures with corresponding volumes obtained using the Cavalieri method of modern design stereology. Cerebral MRI data were collected from 21 children with a complex congenital heart disease (CHD) before Fontan procedure, at a median age of 27 months (range 20.9-42.4 months). Data were segmented with SPM, FSL, and FreeSurfer, and total intracranial volume (ICV) and total brain volume (TBV) were compared with corresponding measures obtained using the Cavalieri method. Agreement between the estimated brain volumes (ICV and TBV) relative to the gold standard stereological volumes was strongest for FreeSurfer (p < 0.001) and moderate for SPM segment (ICV p = 0.05; TBV p = 0.006). No significant association was evident between ICV and TBV obtained using SPM NewSegment and FSL FAST and the corresponding stereological volumes. FreeSurfer provides an accurate method for measuring brain volumes in young children, even in the presence of structural brain abnormalities. (orig.)

  7. Brain connectivity in late-life depression and aging revealed by network analysis.

    Science.gov (United States)

    Charlton, Rebecca A; Leow, Alex; GadElkarim, Johnson; Zhang, Aifeng; Ajilore, Olusola; Yang, Shaolin; Lamar, Melissa; Kumar, Anand

    2015-06-01

    To use novel methods to examine age associations across an integrated brain network in healthy older adults (HOA) and individuals with late-life depression (LLD). Graph theory metrics describe the organizational configuration of both the global network and specified brain regions. Cross-sectional data were acquired. Graph theory was used to explore diffusion tensor imaging-derived white matter networks. Forty-eight HOA and 28 adults with LLD were recruited from the community. Global and local metrics in prefrontal, cingulate, and temporal regions were calculated. Group differences and associations with age were explored. Group differences were noted in local metrics of the right prefrontal and temporal regions, but no significant differences were observed on global metrics. Local (not global) metrics were associated with age differently across groups. For HOA, local metrics across all regions correlated with age, whereas in adults with LLD, correlations were only observed within temporal regions. In keeping with hypothesized regions impacted by LLD, stronger hubs in right temporal regions were observed among HOA, whereas LLD individuals were characterized by robust hubs in frontal regions. We demonstrate widespread age-related changes in local network properties among HOA with different and more restricted local changes in LLD. Although a preliminary analysis, different patterns of correlations in local networks coupled with equivalent global metrics may reflect altered local structural brain networks in patients with LLD. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Maternal age affects brain metabolism in adult children of mothers affected by Alzheimer's disease.

    Science.gov (United States)

    Mosconi, Lisa; Tsui, Wai; Murray, John; McHugh, Pauline; Li, Yi; Williams, Schantel; Pirraglia, Elizabeth; Glodzik, Lidia; De Santi, Susan; Vallabhajosula, Shankar; de Leon, Mony J

    2012-03-01

    Cognitively normal (NL) individuals with a maternal history of late-onset Alzheimer's disease (MH) show reduced brain glucose metabolism on FDG-PET as compared to those with a paternal history (PH) and those with negative family history (NH) of Alzheimer's disease (AD). This FDG-PET study investigates whether metabolic deficits in NL MH are associated with advancing maternal age at birth. Ninety-six NL individuals with FDG-PET were examined, including 36 MH, 24 PH, and 36 NH. Regional-to-whole brain gray matter standardized FDG uptake value ratios were examined for associations with parental age across groups using automated regions-of-interest and statistical parametric mapping. Groups were comparable for clinical and neuropsychological measures. Brain metabolism in AD-vulnerable regions was lower in MH compared to NH and PH, and negatively correlated with maternal age at birth only in MH. There were no associations between paternal age and metabolism in any group. Evidence for a maternally inherited, maternal age-related mechanism provides further insight on risk factors and genetic transmission in late-onset AD. Published by Elsevier Inc.

  9. Distribution of lithostathine in the mouse lemur brain with aging and Alzheimer's-like pathology.

    Science.gov (United States)

    Marchal, Stéphane; Givalois, Laurent; Verdier, Jean Michel; Mestre-Francés, Nadine

    2012-02-01

    We analyzed the cellular distribution of the pancreatic inflammatory protein lithostathine and its receptor EXTL3 in the brain of the lemurian primate Microcebus murinus which develops amyloid deposits along with aging. In adult animals (2-4.5 years old), lithostathine and EXTL3 immunoreactivities were largely distributed in the whole brain, and more intensively in almost all cortical layers and hippocampal formation. Lithostathine was observed in the perikarya and neurites of cortical neurons but also in glial cells in the border of the ventricle and the corpus callosum. In healthy aged animals (8-13 years old), highest densities of lithostathine-containing cells were observed, mainly in occipital and parietal cortex. In aged animals with Aβ deposits, the increase in lithostathine immunoreactivity was lower as compared with aged animals. Noteworthy, lithostathine-immunopositive cells did almost never colocalize with Aβ plaques. In conclusion, lithostathine immunoreactivity in adult Microcebus murinus appeared ubiquitous and particularly in visual, sensorial, and cognitive brain areas. Immunoreactivity increased with aging and appeared markedly affected in neuropathological conditions. Its possible neuroprotection or neurodegeneration role in Alzheimer pathology deserves therefore to be investigated. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Brain Food for Alzheimer-Free Ageing: Focus on Herbal Medicines.

    Science.gov (United States)

    Hügel, Helmut M

    2015-01-01

    Healthy brain aging and the problems of dementia and Alzheimer's disease (AD) are a global concern. Beyond 60 years of age, most, if not everyone, will experience a decline in cognitive skills, memory capacity and changes in brain structure. Longevity eventually leads to an accumulation of amyloid plaques and/or tau tangles, including some vascular dementia damage. Therefore, lifestyle choices are paramount to leading either a brain-derived or a brain-deprived life. The focus of this review is to critically examine the evidence, impact, influence and mechanisms of natural products as chemopreventive agents which induce therapeutic outcomes that modulate the aggregation process of beta-amyloid (Aβ), providing measureable cognitive benefits in the aging process. Plants can be considered as chemical factories that manufacture huge numbers of diverse bioactive substances, many of which have the potential to provide substantial neuroprotective benefits. Medicinal herbs and health food supplements have been widely used in Asia since over 2,000 years. The phytochemicals utilized in traditional Chinese medicine have demonstrated safety profiles for human consumption. Many herbs with anti-amyloidogenic activity, including those containing polyphenolic constituents such as green tea, turmeric, Salvia miltiorrhiza, and Panax ginseng, are presented. Also covered in this review are extracts from kitchen spices including cinnamon, ginger, rosemary, sage, salvia herbs, Chinese celery and many others some of which are commonly used in herbal combinations and represent highly promising therapeutic natural compounds against AD. A number of clinical trials conducted on herbs to counter dementia and AD are discussed.

  11. Classification of normal and pathological aging processes based on brain MRI morphology measures

    Science.gov (United States)

    Perez-Gonzalez, J. L.; Yanez-Suarez, O.; Medina-Bañuelos, V.

    2014-03-01

    Reported studies describing normal and abnormal aging based on anatomical MRI analysis do not consider morphological brain changes, but only volumetric measures to distinguish among these processes. This work presents a classification scheme, based both on size and shape features extracted from brain volumes, to determine different aging stages: healthy control (HC) adults, mild cognitive impairment (MCI), and Alzheimer's disease (AD). Three support vector machines were optimized and validated for the pair-wise separation of these three classes, using selected features from a set of 3D discrete compactness measures and normalized volumes of several global and local anatomical structures. Our analysis show classification rates of up to 98.3% between HC and AD; of 85% between HC and MCI and of 93.3% for MCI and AD separation. These results outperform those reported in the literature and demonstrate the viability of the proposed morphological indexes to classify different aging stages.

  12. Anthocyanins from Black Chokeberry (Aroniamelanocarpa Elliot) Delayed Aging-Related Degenerative Changes of Brain.

    Science.gov (United States)

    Wei, Jie; Zhang, Guokun; Zhang, Xiao; Xu, Dexin; Gao, Jun; Fan, Jungang; Zhou, Zhiquan

    2017-07-26

    Aging is the greatest risk factor for most neurodegenerative diseases, which is associated with decreasing cognitive function and significantly affecting life quality in the elderly. Computational analysis suggested that 4 anthocyanins from chokeberry fruit increased Klotho (aging-suppressor) structural stability, so we hypothesized that chokeberry anthocyanins could antiaging. To explore the effects of anthocyanins treatment on brain aging, mice treated with 15 or 30 mg/kg anthocyanins by gavage and injected D-galactose accelerated aging per day. After 8 weeks, cognitive and noncognitive components of behavior were determined. Our studies showed that anthocyanins blocked age-associated cognitive decline and response capacity in senescence accelerated mice. Furthermore, mice treated with anthocyanins-supplemented showed better balance of redox systems (SOD, GSH-PX, and MDA) in all age tests. Three major monoamines were norepinephrine, dopamine, and 5-hydroxytryptamine, and their levels were significantly increased; the levels of inflammatory cytokines (COX2, TGF-β1, and IL-1) transcription and DNA damage were decreased significantly in brains of anthocyanins treated mice compared to aged models. The DNA damage signaling pathway was also regulated with anthocyanins. Our results suggested that anthocyanins was a potential approach for maintaining thinking and memory in aging mice, possibly by regulating the balance of redox system and reducing inflammation accumulation, and the most important factor was inhibiting DNA damage.

  13. Dietary and behavioral interventions protect against age related activation of caspase cascades in the canine brain.

    Directory of Open Access Journals (Sweden)

    Shikha Snigdha

    Full Text Available Lifestyle interventions such as diet, exercise, and cognitive training represent a quietly emerging revolution in the modern approach to counteracting age-related declines in brain health. Previous studies in our laboratory have shown that long-term dietary supplementation with antioxidants and mitochondrial cofactors (AOX or behavioral enrichment with social, cognitive, and exercise components (ENR, can effectively improve cognitive performance and reduce brain pathology of aged canines, including oxidative damage and Aβ accumulation. In this study, we build on and extend our previous findings by investigating if the interventions reduce caspase activation and ceramide accumulation in the aged frontal cortex, since caspase activation and ceramide accumulation are common convergence points for oxidative damage and Aβ, among other factors associated with the aged and AD brain. Aged beagles were placed into one of four treatment groups: CON--control environment/control diet, AOX--control environment/antioxidant diet, ENR--enriched environment/control diet, AOX/ENR--enriched environment/antioxidant diet for 2.8 years. Following behavioral testing, brains were removed and frontal cortices were analyzed to monitor levels of active caspase 3, active caspase 9 and their respective cleavage products such as tau and semaphorin7a, and ceramides. Our results show that levels of activated caspase-3 were reduced by ENR and AOX interventions with the largest reduction occurring with combined AOX/ENR group. Further, reductions in caspase-3 correlated with reduced errors in a reversal learning task, which depends on frontal cortex function. In addition, animals treated with an AOX arm showed reduced numbers of cells expressing active caspase 9 or its cleavage product semaphorin 7A, while ENR (but not AOX reduced ceramide levels. Overall, these data demonstrate that lifestyle interventions curtail activation of pro-degenerative pathways to improve cellular

  14. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain.

    Science.gov (United States)

    Zhang, Zhan-Chi; Luan, Feng; Xie, Chun-Yan; Geng, Dan-Dan; Wang, Yan-Yong; Ma, Jun

    2015-06-01

    In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.

  15. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain

    Directory of Open Access Journals (Sweden)

    Zhan-chi Zhang

    2015-01-01

    Full Text Available In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers, to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.

  16. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.

    Science.gov (United States)

    Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong

    2016-05-01

    Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function. Published by Elsevier Inc.

  17. Exercise benefits for the aging brain depend on the accompanying cognitive load: insights from sleep electroencephalogram.

    Science.gov (United States)

    Horne, Jim

    2013-11-01

    Although exercise clearly offsets aging effects on the body, its benefits for the aging brain are likely to depend on the extent that physical activity (especially locomotion) facilitates multisensory encounters, curiosity, and interactions with novel environments; this is especially true for exploratory activity, which occupies much of wakefulness for most mammals in the wild. Cognition is inseparable from physical activity, with both interlinked to promote neuroplasticity and more successful brain aging. In these respects and for humans, exercising in a static, featureless, artificially lit indoor setting contrasts with exploratory outdoor walking within a novel environment during daylight. However, little is known about the comparative benefits for the aging brain of longer-term daily regimens of this latter nature including the role of sleep, to the extent that sleep enhances neuroplasticity as shown in short-term laboratory studies. More discerning analyses of sleep electroencephalogram (EEG) slow-wave activity especially 0.5-2-Hz activity would provide greater insights into use-dependent recovery processes during longer-term tracking of these regimens and complement slower changing waking neuropsychologic and resting functional magnetic resonance imaging (fMRI) measures, including those of the brain's default mode network. Although the limited research only points to ephemeral small sleep EEG effects of pure exercise, more enduring effects seem apparent when physical activity incorporates cognitive challenges. In terms of "use it or lose it," curiosity-driven "getting out and about," encountering, interacting with, and enjoying novel situations may well provide the brain with its real exercise, further reflected in changes to the dynamics of sleep. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Invasive Procedures in Preterm Children: Brain and Cognitive Development at School Age

    Science.gov (United States)

    Vinall, Jillian; Miller, Steven P.; Bjornson, Bruce H.; Fitzpatrick, Kevin P.V.; Poskitt, Kenneth J.; Brant, Rollin; Synnes, Anne R.; Cepeda, Ivan L.

    2014-01-01

    BACKGROUND: Very preterm infants (born 24–32 weeks’ gestation) undergo numerous invasive procedures during neonatal care. Repeated skin-breaking procedures in rodents cause neuronal cell death, and in human preterm neonates higher numbers of invasive procedures from birth to term-equivalent age are associated with abnormal brain development, even after controlling for other clinical risk factors. It is unknown whether higher numbers of invasive procedures are associated with long-term alterations in brain microstructure and cognitive outcome at school age in children born very preterm. METHODS: Fifty children born very preterm underwent MRI and cognitive testing at median age 7.6 years (interquartile range, 7.5–7.7). T1- and T2-weighted images were assessed for the severity of brain injury. Magnetic resonance diffusion tensor sequences were used to measure fractional anisotropy (FA), an index of white matter (WM) maturation, from 7 anatomically defined WM regions. Child cognition was assessed using the Wechsler Intelligence Scale for Children–IV. Multivariate modeling was used to examine relationships between invasive procedures, brain microstructure, and cognition, adjusting for clinical confounders (eg, infection, ventilation, brain injury). RESULTS: Greater numbers of invasive procedures were associated with lower FA values of the WM at age 7 years (P = .01). The interaction between the number of procedures and FA was associated with IQ (P = .02), such that greater numbers of invasive procedures and lower FA of the superior WM were related to lower IQ. CONCLUSIONS: Invasive procedures during neonatal care contribute to long-term abnormalities in WM microstructure and lower IQ. PMID:24534406

  19. Evaluating the Patterns of Aging-Related Tau Astrogliopathy Unravels Novel Insights Into Brain Aging and Neurodegenerative Diseases.

    Science.gov (United States)

    Kovacs, Gabor G; Robinson, John L; Xie, Sharon X; Lee, Edward B; Grossman, Murray; Wolk, David A; Irwin, David J; Weintraub, Dan; Kim, Christopher F; Schuck, Theresa; Yousef, Ahmed; Wagner, Stephanie T; Suh, Eunran; Van Deerlin, Vivianna M; Lee, Virginia M-Y; Trojanowski, John Q

    2017-04-01

    The term "aging-related tau astrogliopathy" (ARTAG) describes pathological accumulation of abnormally phosphorylated tau protein in astrocytes. We evaluated the correlates of ARTAG types (i.e., subpial, subependymal, white and gray matter, and perivascular) in different neuroanatomical regions. Clinical, neuropathological, and genetic (eg, APOE ε4 allele, MAPT H1/H2 haplotype) data from 628 postmortem brains from subjects were investigated; most of the patients had been longitudinally followed at the University of Pennsylvania. We found that (i) the amygdala is a hotspot for all ARTAG types; (ii) age at death, male sex, and presence of primary frontotemporal lobar degeneration (FTLD) tauopathy are significantly associated with ARTAG; (iii) age at death, greater degree of brain atrophy, ventricular enlargement, and Alzheimer disease (AD)-related variables are associated with subpial, white matter, and perivascular ARTAG types; (iv) AD-related variables are associated particularly with lobar white matter ARTAG; and (v) gray matter ARTAG in primary FTLD-tauopathies appears in areas without neuronal tau pathology. We provide a reference map of ARTAG types and propose at least 5 constellations of ARTAG. Furthermore, we propose a conceptual link between primary FTLD-tauopathy and ARTAG-related astrocytic tau pathologies. Our observations serve as a basis for etiological stratification and definition of progression patterns of ARTAG. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  20. Age dependent white matter lesions and brain volume changes in healthy volunteers

    DEFF Research Database (Denmark)

    Christiansen, P; Larsson, H B; Thomsen, C

    1994-01-01

    was measured. An almost linear increase in the number of volunteers with WMHL was seen with aging for males and females. With aging a significant decrease in the volume of the cerebral hemispheres was found for males, and a significant increase in the volume of the lateral ventricles was seen for both males......The brain of 142 healthy volunteers aged 21 to 80 years were investigated using MR imaging. The number and size of the white matter hyperintensity lesions (WMHL) in the cerebral hemispheres were determined. Furthermore, the volume of the cerebral hemispheres and of the lateral ventricles...

  1. Oxidative stress induces the decline of brain EPO expression in aging rats.

    Science.gov (United States)

    Li, Xu; Chen, Yubao; Shao, Siying; Tang, Qing; Chen, Weihai; Chen, Yi; Xu, Xiaoyu

    2016-10-01

    Brain Erythropoietin (EPO), an important neurotrophic factor and neuroprotective factor, was found to be associated with aging. Studies found EPO expression was significantly decreased in the hippocampus of aging rat compared with that of the youth. But mechanisms of the decline of the brain EPO during aging remain unclear. The present study utilized a d-galactose (d-gal)-induced aging model in which the inducement of aging was mainly oxidative injury, to explore underlying mechanisms for the decline of brain EPO in aging rats. d-gal-induced aging rats (2months) were simulated by subcutaneously injecting with d-gal at doses of 50mg·kg(-1), 150mg·kg(-1) and 250mg·kg(-1) daily for 8weeks while the control group received vehicle only. These groups were all compared with the aging rats (24months) which had received no other treatment. The cognitive impairment was assessed using Morris water maze (MWM) in the prepared models, and the amount of β-galactosidase, the lipid peroxidation product malondialdehyde (MDA) level and the superoxide dismutase (SOD) activity in the hippocampus was examined by assay kits. The levels of EPO, EPOR, p-JAK2 and hypoxia-inducible factor-2α (HIF-2α) in the hippocampus were detected by western blot. Additionally, the correlation coefficient between EPO/EPOR expression and MDA level was analyzed. The MWM test showed that compared to control group, the escape latency was significantly extended and the times of crossing the platform was decreased at the doses of 150mg·kg(-1) and 250mg·kg(-1) (paging rats, the expressions of EPO, EPOR, p-JAK2, and HIF-2αin the brain of d-gal-treated rats were significantly decreased (paging could result in the decline of EPO in the hippocampus and oxidative stress might be the main reason for the decline of brain EPO in aging rats, involved with the decrease of HIF-2α stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease.

    Science.gov (United States)

    Nelson, Peter T; Smith, Charles D; Abner, Erin L; Wilfred, Bernard J; Wang, Wang-Xia; Neltner, Janna H; Baker, Michael; Fardo, David W; Kryscio, Richard J; Scheff, Stephen W; Jicha, Gregory A; Jellinger, Kurt A; Van Eldik, Linda J; Schmitt, Frederick A

    2013-08-01

    Hippocampal sclerosis of aging (HS-Aging) is a causative factor in a large proportion of elderly dementia cases. The current definition of HS-Aging rests on pathologic criteria: neuronal loss and gliosis in the hippocampal formation that is out of proportion to AD-type pathology. HS-Aging is also strongly associated with TDP-43 pathology. HS-Aging pathology appears to be most prevalent in the oldest-old: autopsy series indicate that 5-30 % of nonagenarians have HS-Aging pathology. Among prior studies, differences in study design have contributed to the study-to-study variability in reported disease prevalence. The presence of HS-Aging pathology correlates with significant cognitive impairment which is often misdiagnosed as AD clinically. The antemortem diagnosis is further confounded by other diseases linked to hippocampal atrophy including frontotemporal lobar degeneration and cerebrovascular pathologies. Recent advances characterizing the neurocognitive profile of HS-Aging patients have begun to provide clues that may help identify living individuals with HS-Aging pathology. Structural brain imaging studies of research subjects followed to autopsy reveal hippocampal atrophy that is substantially greater in people with eventual HS-Aging pathology, compared to those with AD pathology alone. Data are presented from individuals who were followed with neurocognitive and neuroradiologic measurements, followed by neuropathologic evaluation at the University of Kentucky. Finally, we discuss factors that are hypothesized to cause or modify the disease. We conclude that the published literature on HS-Aging provides strong evidence of an important and under-appreciated brain disease of aging. Unfortunately, there is no therapy or preventive strategy currently available.

  3. Estradiol Reverses a Calcium-Related Biomarker of Brain Aging in Female Rats

    Science.gov (United States)

    Brewer, Lawrence D.; Dowling, Amy L.S.; Curran-Rauhut, Meredith A.; Landfield, Philip W.; Porter, Nada M.; Blalock, Eric M.

    2009-01-01

    An increase in L-type voltage-gated calcium channel (LTCC) current is a prominent biomarker of brain aging and is believed to contribute to cognitive decline and vulnerability to neuropathologies. Studies examining age-related changes in LTCCs have focused primarily on males, even though estrogen (17β-estradiol, E2) affects calcium-dependent activities associated with cognition. Therefore, to better understand brain aging in females, the effects of chronic E2 replacement on LTCC current activity in hippocampal neurons of young and aged ovariectomized rats were determined. The zipper slice preparation was utilized to expose CA1 pyramidal neurons for recording LTCC currents using the cell-attached patch-clamp technique. We found that an age-related increase in LTCC current in neurons from control animals was prevented by E2 treatment. In addition, in situ hybridization revealed that within stratum pyramidale of the CA1 area, mRNA expression of the Cav1.2 LTCC subunit, but not the Cav1.3 subunit, was decreased in aged E2-treated rats. Thus, the reported benefits of E2 on cognition and neuronal health may be attributed, at least in part, to its age-related decrease in LTCC current. PMID:19439583

  4. Fetal functional brain age assessed from universal developmental indices obtained from neuro-vegetative activity patterns.

    Directory of Open Access Journals (Sweden)

    Dirk Hoyer

    Full Text Available Fetal brain development involves the development of the neuro-vegetative (autonomic control that is mediated by the autonomic nervous system (ANS. Disturbances of the fetal brain development have implications for diseases in later postnatal life. In that context, the fetal functional brain age can be altered. Universal principles of developmental biology applied to patterns of autonomic control may allow a functional age assessment. The work aims at the development of a fetal autonomic brain age score (fABAS based on heart rate patterns. We analysed n = 113 recordings in quiet sleep, n = 286 in active sleep, and n = 29 in active awakeness from normals. We estimated fABAS from magnetocardiographic recordings (21.4-40.3 weeks of gestation preclassified in quiet sleep (n = 113, 63 females and active sleep (n = 286, 145 females state by cross-validated multivariate linear regression models in a cross-sectional study. According to universal system developmental principles, we included indices that address increasing fluctuation range, increasing complexity, and pattern formation (skewness, power spectral ratio VLF/LF, pNN5. The resulting models constituted fABAS. fABAS explained 66/63% (coefficient of determination R(2 of training and validation set of the variance by age in quiet, while 51/50% in active sleep. By means of a logistic regression model using fluctuation range and fetal age, quiet and active sleep were automatically reclassified (94.3/93.1% correct classifications. We did not find relevant gender differences. We conclude that functional brain age can be assessed based on universal developmental indices obtained from autonomic control patterns. fABAS reflect normal complex functional brain maturation. The presented normative data are supplemented by an explorative study of 19 fetuses compromised by intrauterine growth restriction. We observed a shift in the state distribution towards active awakeness. The lower WGA

  5. Changes in whole-brain functional networks and memory performance in aging.

    Science.gov (United States)

    Sala-Llonch, Roser; Junqué, Carme; Arenaza-Urquijo, Eider M; Vidal-Piñeiro, Dídac; Valls-Pedret, Cinta; Palacios, Eva M; Domènech, Sara; Salvà, Antoni; Bargalló, Nuria; Bartrés-Faz, David

    2014-10-01

    We used resting-functional magnetic resonance imaging data from 98 healthy older adults to analyze how local and global measures of functional brain connectivity are affected by age, and whether they are related to differences in memory performance. Whole-brain networks were created individually by parcellating the brain into 90 cerebral regions and obtaining pairwise connectivity. First, we studied age-associations in interregional connectivity and their relationship with the length of the connections. Aging was associated with less connectivity in the long-range connections of fronto-parietal and fronto-occipital systems and with higher connectivity of the short-range connections within frontal, parietal, and occipital lobes. We also used the graph theory to measure functional integration and segregation. The pattern of the overall age-related correlations presented positive correlations of average minimum path length (r = 0.380, p = 0.008) and of global clustering coefficients (r = 0.454, p memory functions. In conclusion, we found that older participants showed lower connectivity of long-range connections together with higher functional segregation of these same connections, which appeared to indicate a more local clustering of information processing. Higher local clustering in older participants was negatively related to memory performance. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Age-related brain structural alterations in children with specific language impairment.

    Science.gov (United States)

    Soriano-Mas, Carles; Pujol, Jesús; Ortiz, Héctor; Deus, Joan; López-Sala, Anna; Sans, Anna

    2009-05-01

    Previous neuroimaging studies have suggested that children with specific language impairment (SLI) may show subtle anatomical alterations in specific brain regions. We aimed to characterize structural abnormalities in children with SLI using a voxel-wise analysis over the whole brain. Subjects covered a wide age range (5-17 years) in order to assess the dynamic nature of the disorder across childhood. Three-dimensional MRIs were collected from 36 children with SLI and from a comparable group of healthy controls. Global gray and white matter measurements were obtained for each subject, and voxel-based morphometry (VBM) was used to evaluate between-group differences in regional brain anatomy. Possible age-related changes were assessed in separate analyses of younger (below 11 years of age) and older children. SLI patients showed larger global gray and white matter volumes, particularly in the younger subgroup. Voxel-wise analyses of the whole sample showed two regions of increased gray matter volume in SLI: the right perisylvian region and the occipital petalia. Age-group analyses suggested a more extended pattern of volume increases in the younger subjects, which included entorhinal, temporopolar, caudate nucleus, motor-precentral and precuneus gray matter, and white matter of the frontal and temporal lobes. Our results suggest that in the SLI brain there are enduring anatomical alterations that exist across a wide age range, as well as a distributed pattern of abnormalities that appear to normalize with development. They also suggest that the neuroanatomical basis of SLI may be better characterized by considering the dynamic course of the disorder throughout childhood. (c) 2008 Wiley-Liss, Inc.

  7. Age differences in brain activity related to unsuccessful declarative memory retrieval.

    Science.gov (United States)

    Grady, Cheryl L; St-Laurent, Marie; Burianová, Hana

    2015-07-01

    Although memory recall is known to be reduced with normal aging, little is known about the patterns of brain activity that accompany these recall failures. By assessing faulty memory, we can identify the brain regions engaged during retrieval attempts in the absence of successful memory and determine the impact of aging on this functional activity. We used functional magnetic resonance imaging to examine age differences in brain activity associated with memory failure in three memory retrieval tasks: autobiographical (AM), episodic (EM) and semantic (SM). Compared to successful memory retrieval, both age groups showed more activity when they failed to recall a memory in regions consistent with the salience network (SLN), a brain network also associated with non-memory errors. Both groups also showed strong functional coupling among SLN regions during incorrect trials and in intrinsic patterns of functional connectivity. In comparison to young adults, older adults demonstrated (1) less activity within the SLN during unsuccessful AM trials; (2) weaker intrinsic functional connectivity between SLN nodes and dorsolateral prefrontal cortex; and (3) less differentiation of SLN functional connectivity during incorrect trials across memory conditions. These results suggest that the SLN is engaged during recall failures, as it is for non-memory errors, which may be because errors in general have particular salience for adapting behavior. In older adults, the dedifferentiation of functional connectivity within the SLN across memory conditions and the reduction of functional coupling between it and prefrontal cortex may indicate poorer inter-network communication and less flexible use of cognitive control processes, either while retrieval is attempted or when monitoring takes place after retrieval has failed. This article is part of a Special Issue entitled SI: Memory & Aging. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Age-related changes in modular organization of human brain functional networks.

    Science.gov (United States)

    Meunier, David; Achard, Sophie; Morcom, Alexa; Bullmore, Ed

    2009-02-01

    Graph theory allows us to quantify any complex system, e.g., in social sciences, biology or technology, that can be abstractly described as a set of nodes and links. Here we derived human brain functional networks from fMRI measurements of endogenous, low frequency, correlated oscillations in 90 cortical and subcortical regions for two groups of healthy (young and older) participants. We investigated the modular structure of these networks and tested the hypothesis that normal brain aging might be associated with changes in modularity of sparse networks. Newman's modularity metric was maximised and topological roles were assigned to brain regions depending on their specific contributions to intra- and inter-modular connectivity. Both young and older brain networks demonstrated significantly non-random modularity. The young brain network was decomposed into 3 major modules: central and posterior modules, which comprised mainly nodes with few inter-modular connections, and a dorsal fronto-cingulo-parietal module, which comprised mainly nodes with extensive inter-modular connections. The mean network in the older group also included posterior, superior central and dorsal fronto-striato-thalamic modules but the number of intermodular connections to frontal modular regions was significantly reduced, whereas the number of connector nodes in posterior and central modules was increased.

  9. A review of cardiorespiratory fitness-related neuroplasticity in the aging brain

    Directory of Open Access Journals (Sweden)

    Scott M Hayes

    2013-07-01

    Full Text Available The literature examining the relationship between cardiorespiratory fitness and the brain in older adults has increased rapidly, with 30 of 34 studies published since 2008. Here we review cross-sectional and exercise intervention studies in older adults examining the relationship between cardiorespiratory fitness and brain structure and function, typically assessed using Magnetic Resonance Imaging (MRI. Studies of patients with Alzheimer’s disease are discussed when available. The structural MRI studies revealed a consistent positive relationship between cardiorespiratory fitness and brain volume in cortical regions including anterior cingulate, lateral prefrontal, and lateral parietal cortex. Support for a positive relationship between cardiorespiratory fitness and medial temporal lobe volume was less consistent, although evident when a region-of-interest approach was implemented. In fMRI studies, cardiorespiratory fitness in older adults was associated with activation in similar regions as those identified in the structural studies, including anterior cingulate, lateral prefrontal, and lateral parietal cortex, despite heterogeneity among the functional tasks implemented. This comprehensive review highlights the overlap in brain regions showing a positive relationship with cardiorespiratory fitness in both structural and functional imaging modalities. The findings suggest that aerobic exercise and cardiorespiratory fitness contribute to healthy brain aging, although additional studies in Alzheimer’s disease are needed.

  10. Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program.

    Science.gov (United States)

    Beach, Thomas G; Adler, Charles H; Sue, Lucia I; Serrano, Geidy; Shill, Holly A; Walker, Douglas G; Lue, LihFen; Roher, Alex E; Dugger, Brittany N; Maarouf, Chera; Birdsill, Alex C; Intorcia, Anthony; Saxon-Labelle, Megan; Pullen, Joel; Scroggins, Alexander; Filon, Jessica; Scott, Sarah; Hoffman, Brittany; Garcia, Angelica; Caviness, John N; Hentz, Joseph G; Driver-Dunckley, Erika; Jacobson, Sandra A; Davis, Kathryn J; Belden, Christine M; Long, Kathy E; Malek-Ahmadi, Michael; Powell, Jessica J; Gale, Lisa D; Nicholson, Lisa R; Caselli, Richard J; Woodruff, Bryan K; Rapscak, Steven Z; Ahern, Geoffrey L; Shi, Jiong; Burke, Anna D; Reiman, Eric M; Sabbagh, Marwan N

    2015-08-01

    The Brain and Body Donation Program (BBDP) at Banner Sun Health Research Institute (http://www.brainandbodydonationprogram.org) started in 1987 with brain-only donations and currently has banked more than 1600 brains. More than 430 whole-body donations have been received since this service was commenced in 2005. The collective academic output of the BBDP is now described as the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). Most BBDP subjects are enrolled as cognitively normal volunteers residing in the retirement communities of metropolitan Phoenix, Arizona. Specific recruitment efforts are also directed at subjects with Alzheimer's disease, Parkinson's disease and cancer. The median age at death is 82. Subjects receive standardized general medical, neurological, neuropsychological and movement disorders assessments during life and more than 90% receive full pathological examinations by medically licensed pathologists after death. The Program has been funded through a combination of internal, federal and state of Arizona grants as well as user fees and pharmaceutical industry collaborations. Subsets of the Program are utilized by the US National Institute on Aging Arizona Alzheimer's Disease Core Center and the US National Institute of Neurological Disorders and Stroke National Brain and Tissue Resource for Parkinson's Disease and Related Disorders. Substantial funding has also been received from the Michael J. Fox Foundation for Parkinson's Research. The Program has made rapid autopsy a priority, with a 3.0-hour median post-mortem interval for the entire collection. The median RNA Integrity Number (RIN) for frozen brain and body tissue is 8.9 and 7.4, respectively. More than 2500 tissue requests have been served and currently about 200 are served annually. These requests have been made by more than 400 investigators located in 32 US states and 15 countries. Tissue from the BBDP has contributed to more than 350 publications and more than 200

  11. β-Amyloid affects frontal and posterior brain networks in normal aging.

    Science.gov (United States)

    Oh, Hwamee; Mormino, Elizabeth C; Madison, Cindee; Hayenga, Amynta; Smiljic, Andre; Jagust, William J

    2011-02-01

    Although deposition of β-amyloid (Aβ), a pathological hallmark of Alzheimer's disease (AD), has also been reported in cognitively intact older people, its influence on brain structure and cognition during normal aging remains controversial. Using PET imaging with the radiotracer Pittsburgh compound B (PIB), structural MRI, and cognitive measures, we examined the relationships between Aβ deposition, gray matter volume, and cognition in older people without AD. Fifty-two healthy older participants underwent PIB-PET and structural MRI scanning and detailed neuropsychological tests. Results from the whole-brain voxel-based morphometry (VBM) analysis revealed that gray matter volume in the left inferior frontal cortex was negatively associated with amyloid deposition across all participants whereas reduced gray matter volume was shown in the posterior cingulate among older people with high amyloid deposition. When gray matter density measures extracted from these two regions were related to other brain regions by applying a structural covariance analysis, distinctive frontal and posterior brain networks were seen. Gray matter volume in these networks in relation to cognition, however, differed such that reduced frontal network gray matter volume was associated with poorer working memory performance while no relationship was found for the posterior network. The present findings highlight structural and cognitive changes in association with the level of Aβ deposition in cognitively intact normal elderly and suggest a differential role of Aβ-dependent gray matter loss in the frontal and posterior networks in cognition during normal aging. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Body–Brain Connections: The Effects of Obesity and Behavioral Interventions on Neurocognitive Aging

    Directory of Open Access Journals (Sweden)

    Chelsea M. Stillman

    2017-05-01

    Full Text Available Obesity is a growing public health problem in the United States, particularly in middle-aged and older adults. Although the key factors leading to a population increase in body weight are still under investigation, there is evidence that certain behavioral interventions can mitigate the negative cognitive and brain (“neurocognitive” health consequences of obesity. The two primary behaviors most often targeted for weight loss are caloric intake and physical activity. These behaviors might have independent, as well as overlapping/synergistic effects on neurocognitive health. To date obesity is often described independently from behavioral interventions in regards to neurocognitive outcomes, yet there is conceptual and mechanistic overlap between these constructs. This review summarizes evidence linking obesity and modifiable behaviors, such as physical activity and diet, with brain morphology (e.g., gray and white matter volume and integrity, brain function (e.g., functional activation and connectivity, and cognitive function across the adult lifespan. In particular, we review evidence bearing on the following question: Are associations between obesity and brain health in aging adults modifiable by behavioral interventions?

  13. Sparse representation of brain aging: extracting covariance patterns from structural MRI.

    Directory of Open Access Journals (Sweden)

    Longfei Su

    Full Text Available An enhanced understanding of how normal aging alters brain structure is urgently needed for the early diagnosis and treatment of age-related mental diseases. Structural magnetic resonance imaging (MRI is a reliable technique used to detect age-related changes in the human brain. Currently, multivariate pattern analysis (MVPA enables the exploration of subtle and distributed changes of data obtained from structural MRI images. In this study, a new MVPA approach based on sparse representation has been employed to investigate the anatomical covariance patterns of normal aging. Two groups of participants (group 1:290 participants; group 2:56 participants were evaluated in this study. These two groups were scanned with two 1.5 T MRI machines. In the first group, we obtained the discriminative patterns using a t-test filter and sparse representation step. We were able to distinguish the young from old cohort with a very high accuracy using only a few voxels of the discriminative patterns (group 1:98.4%; group 2:96.4%. The experimental results showed that the selected voxels may be categorized into two components according to the two steps in the proposed method. The first component focuses on the precentral and postcentral gyri, and the caudate nucleus, which play an important role in sensorimotor tasks. The strongest volume reduction with age was observed in these clusters. The second component is mainly distributed over the cerebellum, thalamus, and right inferior frontal gyrus. These regions are not only critical nodes of the sensorimotor circuitry but also the cognitive circuitry although their volume shows a relative resilience against aging. Considering the voxels selection procedure, we suggest that the aging of the sensorimotor and cognitive brain regions identified in this study has a covarying relationship with each other.

  14. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data.

    Science.gov (United States)

    Vecchio, Fabrizio; Miraglia, Francesca; Bramanti, Placido; Rossini, Paolo Maria

    2014-01-01

    Modern analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity. To test the hypothesis that aging processes modulate the brain connectivity network, EEG recording was conducted on 113 healthy volunteers. They were divided into three groups in accordance with their ages: 36 Young (15-45 years), 46 Adult (50-70 years), and 31 Elderly (>70 years). To evaluate the stability of the investigated parameters, a subgroup of 10 subjects underwent a second EEG recording two weeks later. Graph theory functions were applied to the undirected and weighted networks obtained by the lagged linear coherence evaluated by eLORETA on cortical sources. EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). The spectral connectivity analysis of cortical sources showed that the normalized Characteristic Path Length (λ) presented the pattern Young > Adult>Elderly in the higher alpha band. Elderly also showed a greater increase in delta and theta bands than Young. The correlation between age and λ showed that higher ages corresponded to higher λ in delta and theta and lower in the alpha2 band; this pattern reflects the age-related modulation of higher (alpha) and decreased (delta) connectivity. The Normalized Clustering coefficient (γ) and small-world network modeling (σ) showed non-significant age-modulation. Evidence from the present study suggests that graph theory can aid in the analysis of connectivity patterns estimated from EEG and can facilitate the study of the physiological and pathological brain aging features of functional connectivity networks.

  15. Introduction and overview of the special issue "Brain imaging and aging": The new era of neuroimaging in aging research.

    Science.gov (United States)

    Furukawa, Katsutoshi; Ishiki, Aiko; Tomita, Naoki; Onaka, Yuta; Saito, Haruka; Nakamichi, Tomoko; Hara, Kazunari; Kusano, Yusuke; Ebara, Masamune; Arata, Yuki; Sakota, Miku; Miyazawa, Isabelle; Totsune, Tomoko; Okinaga, Shoji; Okamura, Nobuyuki; Kudo, Yukitsuka; Arai, Hiroyuki

    2016-09-01

    It is well known that the brain is one of the organs particularly affected by aging in terms of function, relative to the gastrointestinal tract and liver, which exhibit less functional decline. There is also a wide range of age-related neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. Therefore, it is very important to understand the relationship between functional age-related change and neurological dysfunction. Neuroimaging techniques including magnetic resonance imaging and positron emission tomography have been significantly improved over recent years. Many physicians and researchers have investigated various mechanisms of age-related cerebral change and associated neurological disorders using neuroimaging techniques. In this special issue of Ageing Research Reviews, we focus on cerebral- and neuro-imaging, which are a range of tools used to visualize structure, functions, and pathogenic molecules in the nervous system. In addition, we summarize several review articles about the history, present values, and future perspectives of neuroimaging modalities. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Environment as 'Brain Training': A review of geographical and physical environmental influences on cognitive ageing.

    Science.gov (United States)

    Cassarino, Marica; Setti, Annalisa

    2015-09-01

    Global ageing demographics coupled with increased urbanisation pose major challenges to the provision of optimal living environments for older persons, particularly in relation to cognitive health. Although animal studies emphasize the benefits of enriched environments for cognition, and brain training interventions have shown that maintaining or improving cognitive vitality in older age is possible, our knowledge of the characteristics of our physical environment which are protective for cognitive ageing is lacking. The present review analyses different environmental characteristics (e.g. urban vs. rural settings, presence of green) in relation to cognitive performance in ageing. Studies of direct and indirect associations between physical environment and cognitive performance are reviewed in order to describe the evidence that our living contexts constitute a measurable factor in determining cognitive ageing. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Visceral fat is associated with lower brain volume in healthy middle-aged adults.

    Science.gov (United States)

    Debette, Stéphanie; Beiser, Alexa; Hoffmann, Udo; Decarli, Charles; O'Donnell, Christopher J; Massaro, Joseph M; Au, Rhoda; Himali, Jayandra J; Wolf, Philip A; Fox, Caroline S; Seshadri, Sudha

    2010-08-01

    Midlife obesity has been associated with an increased risk of dementia. The underlying mechanisms are poorly understood. Our aim was to examine the cross-sectional association of body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and computed tomography (CT)-based measurements of subcutaneous (SAT) and visceral (VAT) adipose tissue with various magnetic resonance imaging (MRI) markers of brain aging in middle-aged community adults. Participants from the Framingham Offspring cohort were eligible if in addition to having measurements of BMI, WC, WHR, SAT, and VAT, they had undergone a volumetric brain MRI scan with measurements of total brain volume (TCBV), temporal horn volume (THV), white matter hyperintensity volume (WMHV), and MRI-defined brain infarcts (BI). All analyses were adjusted for age, sex, and time interval between abdominal CT and brain MRI. In a sample of 733 community participants (mean age, 60 years; 53% women), we observed an inverse association of BMI (estimate by standard deviation unit +/- standard error = -0.27 +/- 0.12; p = 0.02), WC (-0.30 +/- 0.12; p = 0.01), WHR (-0.37 +/- 0.12; p = 0.02), SAT (-0.23 +/- 0.11; p = 0.04), and VAT (-0.36 +/- 0.12; p = 0.002) with TCBV, independent of vascular risk factors. The association between VAT and TCBV was the strongest and most robust, and was also independent of BMI (-0.35 +/- 0.15; p = 0.02) and insulin resistance (-0.32 +/- 0.13; p = 0.01). When adjusting for C-reactive protein levels, the associations were attenuated (-0.17 +/- 0.13; p = 0.17 for VAT). No consistently significant association was observed between the anthropometric or CT-based abdominal fat measurements and THV, WMHV, or BI. In middle-aged community participants, we observed a significant inverse association of anthropometric and CT-based measurements of abdominal, especially visceral, fat with total brain volume.

  18. Computed tomographic features of the feline brain change with advancing age?

    Directory of Open Access Journals (Sweden)

    Viviam R. Babicsak

    2015-12-01

    Full Text Available Abstract: A better understanding of normal or expected encephalic changes with increasing age in cats is needed as a growing number of these animals is attended in veterinary clinics, and imaging data referring to normal age-associated changes are extremely scarce in the literature. The objective of this study was to identify age-related changes in feline brain using CT imaging. Fifteen non-brachycephalic healthy cats with age between 1 to 6 years (adult group and others over 12 years (geriatric group were submitted to CT scan of the brain. Statistically significant differences were found between the groups for the ability to identify the left lateral ventricle and for falx cerebri calcification, both identified in a greater number of cats of the geriatric group. A significantly higher mean width of the third ventricle was also detected in geriatric animals. There were no statistically significant differences between lateral ventricular dimensions and encephalic parenchymal attenuation on pre and post-contrast CT phases. The results of the present study show an increase in the incidence of falx cerebri calcification and a third ventricular dilatation with advancing age in cats. Future researches using MRI scanners and a greater quantity of cats are needed in order to identify supplementary age-related changes.

  19. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  20. New neurons in aging brains: molecular control by small non-coding RNAs

    Directory of Open Access Journals (Sweden)

    Marijn eSchouten

    2012-02-01

    Full Text Available Adult neurogenesis is a process that continues in the adult and also aging brain. It generates functional neurons from neural stem cells present in specific brain regions. This phenomenon is largely confined to two main regions: the subventricular zone of the lateral ventricle, and the subgranular zone of the dentate gyrus, in the hippocampus. With age, the hippocampus and particularly the dentate gyrus are affected. For instance, adult neurogenesis is decreased with aging, in both the number of proliferating cells as well as their neuronal differentiation, while in parallel an age-associated decline in cognitive performance is often seen. Surprisingly, the synaptogenic potential of adult-born neurons appears unaffected by aging. Therefore, although proliferation, differentiation, survival and synaptogenesis of adult-born new neurons in the dentate gyrus are closely related to each other, they appear differentially regulated with aging. In this review we discuss the crucial role of a novel class of recently discovered regulators of gene expression, i.e. the small non-coding RNAs, in the development of adult neurogenesis from neural stem cells to functionally integrated neurons. In particular, a subgroup of the small non-coding RNAs, the microRNAs, fine-tune many events during adult neurogenesis progression. Moreover, multiple small non-coding RNAs are differentially expressed in the aged hippocampus. This makes small non-coding RNAs appealing candidates to orchestrate, and possibly correct or prevent, the functional alterations in adult neurogenesis and cognition associated with aging. Finally, we briefly summarize observations that link changes in circulating levels of steroid hormones with alterations in adult neurogenesis and subsequent vulnerability to psychopathology in advanced age, and discuss a possible role of microRNAs in stress-associated alterations in adult neurogenesis during aging.

  1. Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age.

    Science.gov (United States)

    Karama, S; Bastin, M E; Murray, C; Royle, N A; Penke, L; Muñoz Maniega, S; Gow, A J; Corley, J; Valdés Hernández, M del C; Lewis, J D; Rousseau, M-É; Lepage, C; Fonov, V; Collins, D L; Booth, T; Rioux, P; Sherif, T; Adalat, R; Starr, J M; Evans, A C; Wardlaw, J M; Deary, I J

    2014-05-01

    Associations between brain cortical tissue volume and cognitive function in old age are frequently interpreted as suggesting that preservation of cortical tissue is the foundation of successful cognitive aging. However, this association could also, in part, reflect a lifelong association between cognitive ability and cortical tissue. We analyzed data on 588 subjects from the Lothian Birth Cohort 1936 who had intelligence quotient (IQ) scores from the same cognitive test available at both 11 and 70 years of age as well as high-resolution brain magnetic resonance imaging data obtained at approximately 73 years of age. Cortical thickness was estimated at 81 924 sampling points across the cortex for each subject using an automated pipeline. Multiple regression was used to assess associations between cortical thickness and the IQ measures at 11 and 70 years. Childhood IQ accounted for more than two-third of the association between IQ at 70 years and cortical thickness measured at age 73 years. This warns against ascribing a causal interpretation to the association between cognitive ability and cortical tissue in old age based on assumptions about, and exclusive reference to, the aging process and any associated disease. Without early-life measures of cognitive ability, it would have been tempting to conclude that preservation of cortical thickness in old age is a foundation for successful cognitive aging when, instead, it is a lifelong association. This being said, results should not be construed as meaning that all studies on aging require direct measures of childhood IQ, but as suggesting that proxy measures of prior cognitive function can be useful to take into consideration.

  2. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia

    Science.gov (United States)

    Wahl, Devin; Coogan, Sean CP; Solon-Biet, Samantha M; de Cabo, Rafael; Haran, James B; Raubenheimer, David; Cogger, Victoria C; Mattson, Mark P; Simpson, Stephen J; Le Couteur, David G

    2017-01-01

    Evaluation of behavior and cognition in rodent models underpins mechanistic and interventional studies of brain aging and neurodegenerative diseases, especially dementia. Commonly used tests include Morris water maze, Barnes maze, object recognition, fear conditioning, radial arm water maze, and Y maze. Each of these tests reflects some aspects of human memory including episodic memory, recognition memory, semantic memory, spatial memory, and emotional memory. Although most interventional studies in rodent models of dementia have focused on pharmacological agents, there are an increasing number of studies that have evaluated nutritional interventions including caloric restriction, intermittent fasting, and manipulation of macronutrients. Dietary interventions have been shown to influence various cognitive and behavioral tests in rodents indicating that nutrition can influence brain aging and possibly neurodegeneration. PMID:28932108

  3. Age-dependent changes of glyoxalase I expression in human brain.

    Science.gov (United States)

    Kuhla, Björn; Boeck, Katharina; Lüth, Hans-Joachim; Schmidt, Angela; Weigle, Bernd; Schmitz, Marc; Ogunlade, Vera; Münch, Gerald; Arendt, Thomas

    2006-06-01

    Increased modification and crosslinking of proteins by advanced glycation end products (AGEs) is a characteristic feature of aging, and contributes to the formation of many of the lesions of neurodegenerative diseases including neurofibrillary tangles and amyloid plaques in Alzheimer's disease. Therefore, defense mechanisms against AGE formation or detoxification of their precursors such as the glyoxalase system are of particular interest in aging research. Thus, we investigated the age-dependent protein expression, the activity as well as the RNA level of glyoxalase I in Brodmann area 22 (auditory association area of superior temporal gyrus) of the human cerebral cortex. Our immunohistochemical results demonstrate the localization of glyoxalase I in neurons, predominantly pyramidal cells, as well as in astroglia, located predominantly in the subpial region. The number of glyoxalase I expressing neurons and astroglia increases with age, with a peak at approximately 55 years, and progressively decreases thereafter. These results were confirmed by biochemical investigations in total brain tissue, where the RNA, the protein level as well as the activity of glyoxalase I enzyme were analyzed in different age groups. In conclusion, the increase in glyoxalase I expression up to the age of 55 may be a compensatory mechanism against high oxoaldyde levels and the accumulation of AGEs. However, the decline of glyoxalase expression and activity in old age, possibly caused by impairment in transcription or/and translation, may subsequently lead to increased levels of reactive carbonyl compounds, followed by protein crosslinking, inflammation, oxidative stress and neuronal degeneration.

  4. Watching TV news as a memory task -- brain activation and age effects

    OpenAIRE

    Frings Lars; Mader Irina; Hüll Michael

    2010-01-01

    Abstract Background Neuroimaging studies which investigate brain activity underlying declarative memory processes typically use artificial, unimodal laboratory stimuli. In contrast, we developed a paradigm which much more closely approximates real-life situations of information encoding. Methods In this study, we tested whether ecologically valid stimuli - clips of a TV news show - are apt to assess memory-related fMRI activation in healthy participants across a wide age range (22-70 years). ...

  5. Brain volumetric and microstructural correlates of executive and motor performance in aged rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Aadhavi eSridharan

    2012-11-01

    Full Text Available The aged rhesus macaque exhibits brain atrophy and behavioral deficits similar to normal aging in humans. Here we studied the association between cognitive and motor performance and anatomic and microstructural brain integrity measured with 3T magnetic resonance imaging in aged monkeys. About half of these animals were maintained on moderate calorie restriction, the only intervention shown to delay the aging process in lower animals. T1-weighted anatomic and diffusion tensor images were used to obtain gray matter volume, and fractional anisotropy and mean diffusivity, respectively. We tested the extent to which brain health indexed by gray matter volume, fractional anisotropy, and mean diffusivity were related to executive and motor function, and determined the effect of the dietary intervention on this relationship. We hypothesized that fewer errors on the executive function test and faster motor times would be correlated with higher volume, higher fractional anisotropy, and lower mean diffusivity in frontal areas that mediate executive function, and in motor, premotor, subcortical, and cerebellar areas underlying goal-directed motor behaviors. Higher error percentage on a cognitive conceptual shift task was significantly associated with lower gray matter volume in frontal and parietal cortices, and lower fractional anisotropy in major association fiber bundles. Similarly, slower performance time on the motor task was significantly correlated with lower volumetric measures in cortical, subcortical, and cerebellar areas and decreased fractional anisotropy in several major association fiber bundles. Notably, performance during the acquisition phase of the hardest level of the motor task was significantly associated with anterior mesial temporal lobe volume. Finally, these brain-behavior correlations for the motor task were attenuated in calorie restricted animals compared to controls, indicating a potential protective effect of the dietary

  6. Sexually dimorphic brain volume interaction in college-aged binge drinkers

    Directory of Open Access Journals (Sweden)

    Timo L. Kvamme

    2016-01-01

    Conclusions: These findings dovetail with previous studies reporting that a state effect of BD in college-aged drinkers and the severity of alcohol use are associated with volumetric alterations in the cortical and subcortical areas of the brain. Our study indicates that these widespread volumetric changes vary differentially by gender, suggesting either sexual dimorphic endophenotypic risk factors, or differential neurotoxic sensitivities for males and females.

  7. Age-related reduction of adaptive brain response during semantic integration is associated with gray matter reduction.

    Directory of Open Access Journals (Sweden)

    Zude Zhu

    Full Text Available While aging is associated with increased knowledge, it is also associated with decreased semantic integration. To investigate brain activation changes during semantic integration, a sample of forty-eight 25-75 year-old adults read sentences with high cloze (HC and low cloze (LC probability while functional magnetic resonance imaging was conducted. Significant age-related reduction of cloze effect (LC vs. HC was found in several regions, especially the left middle frontal gyrus (MFG and right inferior frontal gyrus (IFG, which play an important role in semantic integration. Moreover, when accounting for global gray matter volume reduction, the age-cloze correlation in the left MFG and right IFG was absent. The results suggest that brain structural atrophy may disrupt brain response in aging brains, which then show less brain engagement in semantic integration.

  8. Exercise-related changes of networks in aging and mild cognitive impairment brain

    Directory of Open Access Journals (Sweden)

    Pei eHuang

    2016-03-01

    Full Text Available Aging and mild cognitive impairment are accompanied by decline of cognitive functions. Meanwhile, the most common form of dementia is Alzheimer’s disease, which is characterized by loss of memory and other intellectual abilities serious to make difficulties for patients in their daily life. Mild cognitive impairment is a transition period between normal aging and dementia, which has been used for early detection of emerging dementia. It converts to dementia with an annual rate of 5-15% as compared to normal aging with 1% rate. Small decreases in the conversion rate of mild cognitive impairment to Alzheimer’s disease might significantly reduce the prevalence of dementia. Thus, it is important to intervene at the preclinical stage. Since there are still no effective drugs to treat Alzheimer’s disease, non-drug intervention is crucial for the prevention and treatment of cognitive decline in aging and mild cognitive impairment populations. Previous studies have found some cognitive brain networks disrupted in aging and mild cognitive impairment population, and physical exercise could effectively remediate the function of these brain networks. Understanding the exercise-related mechanisms is crucial to design efficient and effective physical exercise programs for treatment/intervention of cognitive decline. In this review, we provide an overview of the neuroimaging studies on physical training in normal aging and mild cognitive impairment to identify the potential mechanisms underlying current physical training procedures. Studies of functional magnetic resonance imaging, electroencephalography, magnetoencephalography and positron emission tomography on brain networks were all included. Based on our review, the default mode network, fronto-parietal network and fronto-executive network are probably the three most valuable targets for efficiency evaluation of interventions.

  9. Age of language learning shapes brain structure: a cortical thickness study of bilingual and monolingual individuals.

    Science.gov (United States)

    Klein, Denise; Mok, Kelvin; Chen, Jen-Kai; Watkins, Kate E

    2014-04-01

    We examined the effects of learning a second language (L2) on brain structure. Cortical thickness was measured in the MRI datasets of 22 monolinguals and 66 bilinguals. Some bilingual subjects had learned both languages simultaneously (0-3 years) while some had learned their L2 after achieving proficiency in their first language during either early (4-7 years) or late childhood (8-13 years). Later acquisition of L2 was associated with significantly thicker cortex in the left inferior frontal gyrus (IFG) and thinner cortex in the right IFG. These effects were seen in the group comparisons of monolinguals, simultaneous bilinguals and early and late bilinguals. Within the bilingual group, significant correlations between age of acquisition of L2 and cortical thickness were seen in the same regions: cortical thickness correlated with age of acquisition positively in the left IFG and negatively in the right IFG. Interestingly, the monolinguals and simultaneous bilinguals did not differ in cortical thickness in any region. Our results show that learning a second language after gaining proficiency in the first language modifies brain structure in an age-dependent manner whereas simultaneous acquisition of two languages has no additional effect on brain development. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Brain aging and AD-like pathology in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies.

  11. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jian-Qin Wang

    2014-01-01

    Full Text Available Objective. Numerous epidemiological studies have linked diabetes mellitus (DM with an increased risk of developing Alzheimer’s disease (AD. However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ- induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC. Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies.

  12. The brain ages optimally to model its environment: evidence from sensory learning over the adult lifespan.

    Science.gov (United States)

    Moran, Rosalyn J; Symmonds, Mkael; Dolan, Raymond J; Friston, Karl J

    2014-01-01

    The aging brain shows a progressive loss of neuropil, which is accompanied by subtle changes in neuronal plasticity, sensory learning and memory. Neurophysiologically, aging attenuates evoked responses--including the mismatch negativity (MMN). This is accompanied by a shift in cortical responsivity from sensory (posterior) regions to executive (anterior) regions, which has been interpreted as a compensatory response for cognitive decline. Theoretical neurobiology offers a simpler explanation for all of these effects--from a Bayesian perspective, as the brain is progressively optimized to model its world, its complexity will decrease. A corollary of this complexity reduction is an attenuation of Bayesian updating or sensory learning. Here we confirmed this hypothesis using magnetoencephalographic recordings of the mismatch negativity elicited in a large cohort of human subjects, in their third to ninth decade. Employing dynamic causal modeling to assay the synaptic mechanisms underlying these non-invasive recordings, we found a selective age-related attenuation of synaptic connectivity changes that underpin rapid sensory learning. In contrast, baseline synaptic connectivity strengths were consistently strong over the decades. Our findings suggest that the lifetime accrual of sensory experience optimizes functional brain architectures to enable efficient and generalizable predictions of the world.

  13. Financial literacy is associated with medial brain region functional connectivity in old age.

    Science.gov (United States)

    Han, S Duke; Boyle, Patricia A; Yu, Lei; Fleischman, Debra A; Arfanakis, Konstantinos; Leurgans, Sue; Bennett, David A

    2014-01-01

    Financial literacy refers to the ability to access and utilize financial information in ways that promote better outcomes. In old age, financial literacy has been associated with a wide range of positive characteristics; however, the neural correlates remain unclear. Recent work has suggested greater co-activity between anterior-posterior medial brain regions is associated with better brain functioning. We hypothesized financial literacy would be associated with this pattern. We assessed whole-brain functional connectivity to a posterior cingulate cortex (PCC) seed region of interest (ROI) in 138 participants of the Rush Memory and Aging Project. Results revealed financial literacy was associated with greater functional connectivity between the PCC and three regions: the right ventromedial prefrontal cortex (vmPFC), the left postcentral gyrus, and the right precuneus. Results also revealed financial literacy was associated negatively with functional connectivity between the PCC and left caudate. Post hoc analyses showed the PCC-vmPFC relationship accounted for the most variance in a regression model adjusted for all four significant functional connectivity relationships, demographic factors, and global cognition. These findings provide information on the neural mechanisms associated with financial literacy in old age. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity.

    Science.gov (United States)

    Yin, Fei; Yao, Jia; Sancheti, Harsh; Feng, Tao; Melcangi, Roberto C; Morgan, Todd E; Finch, Caleb E; Pike, Christian J; Mack, Wendy J; Cadenas, Enrique; Brinton, Roberta D

    2015-07-01

    The perimenopause is an aging transition unique to the female that leads to reproductive senescence which can be characterized by multiple neurological symptoms. To better understand potential underlying mechanisms of neurological symptoms of perimenopause, the present study determined genomic, biochemical, brain metabolic, and electrophysiological transformations that occur during this transition using a rat model recapitulating fundamental characteristics of the human perimenopause. Gene expression analyses indicated two distinct aging programs: chronological and endocrine. A critical period emerged during the endocrine transition from regular to irregular cycling characterized by decline in bioenergetic gene expression, confirmed by deficits in fluorodeoxyglucose-positron emission tomography (FDG-PET) brain metabolism, mitochondrial function, and long-term potentiation. Bioinformatic analysis predicted insulin/insulin-like growth factor 1 and adenosine monophosphate-activated protein kinase/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (AMPK/PGC1α) signaling pathways as upstream regulators. Onset of acyclicity was accompanied by a rise in genes required for fatty acid metabolism, inflammation, and mitochondrial function. Subsequent chronological aging resulted in decline of genes required for mitochondrial function and β-amyloid degradation. Emergence of glucose hypometabolism and impaired synaptic function in brain provide plausible mechanisms of neurological symptoms of perimenopause and may be predictive of later-life vulnerability to hypometabolic conditions such as Alzheimer's. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Effects of brain-derived neurotrophic factor on dopaminergic function and motor behavior during aging

    OpenAIRE

    Boger, Heather A.; Mannangatti, Padmanabhan; Samuvel, Devadoss J.; Saylor, Alicia J.; Bender, Tara S.; McGinty, Jacqueline F.; Fortress, Ashley M.; Zaman, Vandana; Huang, Peng; Middaugh, Lawrence D.; Randall, Patrick K.; Jayanthi, Lankupalle D.; Rohrer, Baerbel; Helke, Kristi L.; Granholm, Ann-Charlotte

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is critical in synaptic plasticity and in the survival and function of midbrain dopamine neurons. In the present study, we assessed the effects of a partial genetic deletion of BDNF on motor function and dopamine (DA) neurotransmitter measures by comparing (Bdnf+/−) with wildtype mice (WT) at different ages. Bdnf+/ and WT mice had similar body weights until 12 months of age; however, at 21 months, Bdnf+/− mice were significantly heavier than WT mice. H...

  16. Oxidative stress is a central target for physical exercise neuroprotection against pathological brain aging

    OpenAIRE

    Garcia-Mesa, Yoelvis; Colie, Sandra; Corpas, Ruben; Cristofol, Rosa; Comellas Padró, Francesc De Paula; Nebreda, Angel; Giménez-Llort, Lydia; Sanfeliu, Coral

    2015-01-01

    Physical exercise is suggested for preventing or delaying senescence and Alzheimer’s disease (AD). We have examined its therapeutic value in the advanced stage of AD-like pathology in 3xTg-AD female mice through voluntary wheel running from 12 to 15 months of age. Mice submitted to exercise showed improved body fitness, immunorejuvenation, improvement of behavior and cognition, and reduced amyloid and tau pathology. Brain tissue analysis of aged 3xTg-AD mice showed high levels of oxidative da...

  17. The Correlations Between Postmortem Brain Pathologies and Cognitive Dysfunction in Aging and Alzheimer's Disease.

    Science.gov (United States)

    Qiu, Wen-Ying; Yang, Qian; Zhang, Wanying; Wang, Naili; Zhang, Di; Huang, Yue; Ma, Chao

    2017-11-06

    Background The pathological diagnostic criteria for Alzheimer's disease (AD) updated by National Institute on Aging-Alzheimer's Association (NIA-AA) in 2012 has been widely adopted, but the clinicopathological relevance remained obscure in Chinese population. Objective This study aims to investigate the correlations between the antemortem clinical cognitive performances and the postmortem neuropathological changes in the aging and AD brains collected in a human brain bank in China. Method A total of 52 human brains with antemortem cognitive status information [Everyday Cognition (ECog)] were collected through the willed donation program by CAMS/PUMC Human Brain Bank. Pathological changes were evaluated with the "ABC" score following the guidelines of NIA-AA. The clinicopathological relationship was analyzed with correlation analysis and general linear multivariate model. Results The general ABC score has a significant correlation with global ECog score (r=0.37, p=0.014) and most of ECog domains. The CERAD score of neuritic plaques (C score) has a significant correlation with global ECog score (r=0.40, p=0.007) and the majority of ECog domains, such as memory (r=0.50, p=0.001), language (r=0.45, p=0.002), visuospatial functions (r=0.31, p=0.040), planning (r=0.35, p=0.021) and organization (r=0.39, p=0.010). The Braak stage of neurofibrillary tangles (NFTs) (B score) has a moderate correlation with memory (r=0.32, p=0.035). The Thal phases of amyloid-β (Aβ) deposits (A score) presents no significant correlation with any of ECog domains. Conclusion In this study, we verified the correlation of postmortem C and B scores, but not the A score with cognition performance in a collection of samples from the Chinese human brain bank. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence.

    Directory of Open Access Journals (Sweden)

    Kai Wu

    Full Text Available Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence.

  19. Healthy and pathological processes in adult development: new evidence from neuroimaging of the aging brain.

    Science.gov (United States)

    Hedden, Trey; Gabrieli, John D E

    2005-12-01

    Recent research has revealed that the population of older adults is composed not only of individuals who are either healthy or have an age-related disease, most commonly Alzheimer's disease, but also individuals with mild cognitive impairment who are at-risk for or already in the prodromal stage of Alzheimer's disease. These variations in cognitive aging can be related to their neural bases via structural and functional neuroimaging methods. Healthy aging appears to primarily affect a frontal-striatal system that undergirds executive control of cognition, while minimally affecting medial temporal lobe structures. Functional imaging studies suggest that enhanced prefrontal engagement may offer compensatory plasticity that minimizes age-related cognitive losses. Mild cognitive impairment appears to affect the entorhinal cortex in particular, with functional consequences in other brain regions. Alzheimer's disease is characterized by severe hippocampal injury, although early-stage Alzheimer's disease may relatively spare some cortical regions. Advances in in-vivo imaging methods are providing the tools for identifying different trajectories of neurocognitive aging, and knowledge about these brain changes may promote opportunities for treatment.

  20. Age dependent white matter lesions and brain volume changes in healthy volunteers

    DEFF Research Database (Denmark)

    Christiansen, P; Larsson, H B; Thomsen, C

    1994-01-01

    The brain of 142 healthy volunteers aged 21 to 80 years were investigated using MR imaging. The number and size of the white matter hyperintensity lesions (WMHL) in the cerebral hemispheres were determined. Furthermore, the volume of the cerebral hemispheres and of the lateral ventricles was meas......The brain of 142 healthy volunteers aged 21 to 80 years were investigated using MR imaging. The number and size of the white matter hyperintensity lesions (WMHL) in the cerebral hemispheres were determined. Furthermore, the volume of the cerebral hemispheres and of the lateral ventricles...... was measured. An almost linear increase in the number of volunteers with WMHL was seen with aging for males and females. With aging a significant decrease in the volume of the cerebral hemispheres was found for males, and a significant increase in the volume of the lateral ventricles was seen for both males...... and females. Our results suggest that with aging central atrophy increases more (relatively) than cortical atrophy. No correlation was found between the decreasing volume of the cerebral hemispheres and the increasing number and size of WMHL, nor between the increasing volume of the lateral ventricles...

  1. Modulative effects of COMT haplotype on age-related associations with brain morphology.

    Science.gov (United States)

    Lee, Annie; Qiu, Anqi

    2016-06-01

    Catechol-O-methyltransferase (COMT), located on chromosome 22q11.2, encodes an enzyme critical for dopamine flux in the prefrontal cortex. Genetic variants of COMT have been suggested to functionally manipulate prefrontal morphology and function in healthy adults. This study aims to investigate modulative roles of individuals COMT SNPs (rs737865, val158met, rs165599) and its haplotypes in age-related brain morphology using an Asian sample with 174 adults aged from 21 to 80 years. We showed an age-related decline in cortical thickness of the dorsal visual pathway, including the left dorsolateral prefrontal cortex, bilateral angular gyrus, right superior frontal cortex, and age-related shape compression in the basal ganglia as a function of the genotypes of the individual COMT SNPs, especially COMT val158met. Using haplotype trend regression analysis, COMT haplotype probabilities were estimated and further revealed an age-related decline in cortical thickness in the default mode network (DMN), including the posterior cingulate, precuneus, supramarginal and paracentral cortex, and the ventral visual system, including the occipital cortex and left inferior temporal cortex, as a function of the COMT haplotype. Our results provided new evidence on an antagonistic pleiotropic effect in COMT, suggesting that genetically programmed neural benefits in early life may have a potential bearing towards neural susceptibility in later life. Hum Brain Mapp 37:2068-2082, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. The role of free radicals in the aging brain and Parkinson's Disease: convergence and parallelism.

    Science.gov (United States)

    Kumar, Hemant; Lim, Hyung-Woo; More, Sandeep Vasant; Kim, Byung-Wook; Koppula, Sushruta; Kim, In Su; Choi, Dong-Kug

    2012-01-01

    Free radical production and their targeted action on biomolecules have roles in aging and age-related disorders such as Parkinson's disease (PD). There is an age-associated increase in oxidative damage to the brain, and aging is considered a risk factor for PD. Dopaminergic neurons show linear fallout of 5-10% per decade with aging; however, the rate and intensity of neuronal loss in patients with PD is more marked than that of aging. Here, we enumerate the common link between aging and PD at the cellular level with special reference to oxidative damage caused by free radicals. Oxidative damage includes mitochondrial dysfunction, dopamine auto-oxidation, α-synuclein aggregation, glial cell activation, alterations in calcium signaling, and excess free iron. Moreover, neurons encounter more oxidative stress as a counteracting mechanism with advancing age does not function properly. Alterations in transcriptional activity of various pathways, including nuclear factor erythroid 2-related factor 2, glycogen synthase kinase 3β, mitogen activated protein kinase, nuclear factor kappa B, and reduced activity of superoxide dismutase, catalase and glutathione with aging might be correlated with the increased incidence of PD.

  3. AED Treatment Through Different Ages: As Our Brains Change, Should Our Drug Choices Also?

    Science.gov (United States)

    French, Jacqueline A; Staley, Brigid A

    2012-07-01

    Patient age can impact selection of the optimal antiepileptic drug for a number of reasons. Changes in brain physiology from neonate to elderly, as well as changes in underlying etiologies of epilepsy, could potentially affect the ability of different drugs to control seizures. Unfortunately, much of this is speculative, as good studies demonstrating differences in efficacy across age ranges do not exist. Beyond the issue of efficacy, certain drugs may be more or less appropriate at different ages because of differing pharmacokinetics, including changes in hepatic metabolism, absorption, and elimination. Lack of appropriate drug formulations (such as liquid forms) may be a barrier to using drugs in the very young. Finally, some serious adverse events are seen either exclusively or preferentially at different ages.

  4. Brain lesions, hypertension and cognitive ageing in the 1921 and 1936 Aberdeen birth cohorts.

    Science.gov (United States)

    Murray, Alison D; Staff, Roger T; McNeil, Chris J; Salarirad, Sima; Starr, John M; Deary, Ian J; Whalley, Lawrence J

    2012-04-01

    The objectives of this study are to model the relative effects of positive (childhood intelligence) and negative (magnetic resonance imaging (MRI)-derived white matter hyperintensities (WMH)) predictors of late-life intelligence in two well-characterised normal cohorts aged 68 and 78 and to measure the influence of hypertension on WMH and lifelong cognitive change. The Scottish Mental Surveys of 1932 and 1947 tested the intelligence of almost all school children at age 11. One hundred and one participants born in 1921 and 233 participants born in 1936 had brain MRI, with measurement of WMH using Scheltens' scale, and tests of late-life fluid intelligence. Structural equation models of the effect of childhood intelligence and brain WMH on the general intelligence factor 'g' in late life in the two samples were constructed using AMOS 18. Similar models were constructed to test the effect of hypertension on WMH and lifelong cognitive change. Fluid intelligence scores were lower and WMH scores were higher in the older samples. Hypertensive participants in both samples had more WMH than normotensive participants. The positive influence of childhood intelligence on 'g' was greater in the younger sample. The negative effect of WMH on 'g' was linear and greater in the older sample due to greater WMH burden. The negative effect of hypertension on lifelong cognitive ageing was all mediated via MRI-derived brain WMH. The positive relationship between childhood and late-life intelligence decreases with age. The negative relationship between WMH and late-life intelligence is linear and increases with age.

  5. Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD.

    Science.gov (United States)

    Fotenos, A F; Snyder, A Z; Girton, L E; Morris, J C; Buckner, R L

    2005-03-22

    To test the hypotheses 1) that whole-brain volume decline begins in early adulthood, 2) that cross-sectional and longitudinal atrophy estimates agree in older, nondemented individuals, and 3) that longitudinal atrophy accelerates in the earliest stages of Alzheimer disease (AD). High-resolution, high-contrast structural MRIs were obtained from 370 adults (age 18 to 97). Participants over 65 (n = 192) were characterized using the Clinical Dementia Rating (CDR) as either nondemented (CDR 0, n = 94) or with very mild to mild dementia of the Alzheimer type (DAT, CDR 0.5 and 1, n = 98). Of these older participants, 79 belonged to a longitudinal cohort and were imaged again a mean 1.8 years after baseline. Estimates of gray matter (nGM), white matter (nWM), and whole-brain volume (nWBV) normalized for head sizes were generated based on atlas registration and image segmentation. Hierarchical regression of nWBV estimates from nondemented individuals across the adult lifespan revealed a strong linear, moderate quadratic pattern of decline beginning in early adulthood, with later onset of nWM than nGM loss. Whole-brain volume differences were detected by age 30. The cross-sectional atrophy model overlapped with the rates measured longitudinally in older, nondemented individuals (mean decline of -0.45% per year). In those individuals with very mild DAT, atrophy rate more than doubled (-0.98% per year). Nondemented individuals exhibit a slow rate of whole-brain atrophy from early in adulthood with white-matter loss beginning in middle age; in older adults, the onset of dementia of the Alzheimer type is associated with a markedly accelerated atrophy rate.

  6. Vitamin E Supplementation Reduces Cellular Loss in the Brain of a Premature Aging Mouse Model.

    Science.gov (United States)

    La Fata, G; van Vliet, N; Barnhoorn, S; Brandt, R M C; Etheve, S; Chenal, E; Grunenwald, C; Seifert, N; Weber, P; Hoeijmakers, J H J; Mohajeri, M H; Vermeij, W P

    2017-01-01

    Aging is a highly complex biological process driven by multiple factors. Its progression can partially be influenced by nutritional interventions. Vitamin E is a lipid-soluble anti-oxidant that is investigated as nutritional supplement for its ability to prevent or delay the onset of specific aging pathologies, including neurodegenerative disorders. We aimed here to investigate the effect of vitamin E during aging progression in a well characterized mouse model for premature aging. Xpg-/- animals received diets with low (~2.5 mg/kg feed), medium (75 mg/kg feed) or high (375 mg/kg feed) vitamin E concentration and their phenotype was monitored during aging progression. Vitamin E content was analyzed in the feed, for stability reasons, and in mouse plasma, brain, and liver, for effectiveness of the treatment. Subsequent age-related changes were monitored for improvement by increased vitamin E or worsening by depletion in both liver and nervous system, organs sensitive to oxidative stress. Mice supplemented with high levels of vitamin E showed a delayed onset of age-related body weight decline and appearance of tremors when compared to mice with a low dietary vitamin E intake. DNA damage resulting in liver abnormalities such as changes in polyploidy, was considerably prevented by elevated amounts of vitamin E. Additionally, immunohistochemical analyses revealed that high intake of vitamin E, when compared with low and medium levels of vitamin E in the diet, reduces the number of p53-positive cells throughout the brain, indicative of a lower number of cells dying due to DNA damage accumulated over time. Our data underline a neuroprotective role of vitamin E in the premature aging animal model used in this study, likely via a reduction of oxidative stress, and implies the importance of improved nutrition to sustain health.

  7. Brain aging, cognition in youth and old age and vascular disease in the Lothian Birth Cohort 1936: rationale, design and methodology of the imaging protocol.

    Science.gov (United States)

    Wardlaw, Joanna M; Bastin, Mark E; Valdés Hernández, Maria C; Maniega, Susana Muñoz; Royle, Natalie A; Morris, Zoe; Clayden, Jonathan D; Sandeman, Elaine M; Eadie, Elizabeth; Murray, Catherine; Starr, John M; Deary, Ian J

    2011-12-01

    As the population of the world ages, age-related cognitive decline is becoming an ever-increasing problem. However, the changes in brain structure that accompany normal aging, and the role they play in cognitive decline, remain to be fully elucidated. This study aims to characterize changes in brain structure in old age, and to investigate relationships between brain aging and cognitive decline using the Lothian Birth Cohort 1936. Here, we report the rationale, design and methodology of the brain and neurovascular imaging protocol developed to study this cohort. An observational, longitudinal study of the Lothian Birth Cohort 1936, which comprises 1091 relatively healthy individuals now in their 70s and living in the Edinburgh area. They are surviving participants of the Scottish Mental Survey 1947, which involved a test of general intelligence taken at age 11 years. At age 70 years, the Lothian Birth Cohort 1936 undertook detailed cognitive, medical and genetic testing, and provided social, family, nutritional, quality of life and physical activity information. At mean age 73 years they underwent detailed brain MRI and neurovascular ultrasound imaging, repeat cognitive and other testing. The MRI protocol is designed to provide qualitative and quantitative measures of gray and white matter atrophy, severity and location of white matter lesions, enlarged perivascular spaces, brain mineral deposits, microbleeds and integrity of major white matter tracts. The neurovascular ultrasound imaging provides velocity, stenosis and intima-media thickness measurements of the carotid and vertebral arteries. This valuable imaging dataset will be used to determine which changes in brain structural parameters have the largest effects on cognitive aging. Analysis will include multimodal image analysis and multivariate techniques, such as factor analysis and structural equation modelling. Especially valuable is the ability within this sample to examine the influence that early life

  8. Structural brain differences in school-age children with and without single-suture craniosynostosis.

    Science.gov (United States)

    Aldridge, Kristina; Collett, Brent R; Wallace, Erin R; Birgfeld, Craig; Austin, Jordan R; Yeh, Regina; Feil, Madison; Kapp-Simon, Kathleen A; Aylward, Elizabeth H; Cunningham, Michael L; Speltz, Matthew L

    2017-04-01

    OBJECTIVE Single-suture craniosynostosis (SSC), the premature fusion of a cranial suture, is characterized by dysmorphology of the craniofacial skeleton. Evidence to suggest that children with SSC are at an elevated risk of mild to moderate developmental delays and neurocognitive deficits is mounting, but the associations among premature suture fusion, neuroanatomy, and neurocognition are unexplained. The goals of this study were to determine 1) whether differences in the brain are present in young children with the 2 most common forms of SSC (sagittal and metopic) several years following surgical correction, and 2) whether the pattern of differences varies by affected suture (sagittal or metopic). Examination of differences in the brains of children with SSC several years after surgery may illuminate the growth trajectory of the brain after the potential constraint of the dysmorphic cranium has been relieved. METHODS The authors compared quantitative measures of the brain acquired from MR images obtained from children with sagittal or metopic craniosynostosis (n = 36) at 7 years of age to those obtained from a group of unaffected controls (n = 27) at the same age. The authors measured the volumes of the whole brain, cerebral cortex, cerebral white matter, cerebral cortex by lobe, and ventricles. Additionally, they measured the midsagittal area of the corpus callosum and its segments and of the cerebellar vermis and its component lobules. Measurements obtained from children with SSC and controls were compared using linear regression models. RESULTS No volume measures of the cerebrum or of the whole brain differed significantly between patients with SSC and controls (p > 0.05). However, ventricle volume was significantly increased in patients with SSC (p = 0.001), particularly in those with sagittal craniosynostosis (p brain size or regional differences in the size of the lobes of the cerebrum in children with metopic and sagittal synostosis suggests that the

  9. Age dependent accumulation of N-acyl-ethanolamine phospholipids in ischemic rat brain

    DEFF Research Database (Denmark)

    Moesgaard, B.; Petersen, G.; Hansen, Harald S.

    2000-01-01

    N-acyl-ethanolamine phospholipids (NAPE) can be formed as a stress response during neuronal injury, and they are precursors for N-acyl- ethanolamines (NAE), some of which are endocannabinoids. The levels of NAPE accumulated during post-decapitative ischemia (6 h at 37°C) were studied in rat brains...... of various age (1, 6, 12, 19, 30, and ~70 days) by the use of P NMR spectroscopy of lipid extracts. This ability to accumulate NAPE was compared with the activity of N-acyltransferase and of NAPE-hydrolyzing phospholipase D (NAPE-PLD) in brain microsomes. These two enzymes are involved in the formation...... and degradation of NAPE, respectively. The results showed that 1) the ability to accumulate NAPE during post-decapitative ischemia is especially high in the youngest rats and is markedly reduced in older brains [in 1-day-old rat brains NAPE accumulated to 1.5% of total phospholipids, while in 30-day-old rat...

  10. The effects of acute ethanol exposure and ageing on rat brain glutathione metabolism.

    Science.gov (United States)

    Sommavilla, Michela; Sánchez-Villarejo, M Victoria; Almansa, Inmaculada; Sánchez-Vallejo, Violeta; Barcia, Jorge M; Romero, Francisco Javier; Miranda, María

    2012-09-01

    Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.

  11. Vitamin D deficiency reduces the benefits of progesterone treatment after brain injury in aged rats.

    Science.gov (United States)

    Cekic, Milos; Cutler, Sarah M; VanLandingham, Jacob W; Stein, Donald G

    2011-05-01

    Administration of the neurosteroid progesterone (PROG) has been shown to be beneficial in a number of brain injury models and in two recent clinical trials. Given widespread vitamin D deficiency and increasing traumatic brain injuries (TBIs) in the elderly, we investigated the interaction of vitamin D deficiency and PROG with cortical contusion injury in aged rats. Vitamin D deficient (VitD-deficient) animals showed elevated inflammatory proteins (TNFα, IL-1β, IL-6, NFκB p65) in the brain even without injury. VitD-deficient rats with TBI, whether given PROG or vehicle, showed increased inflammation and greater open-field behavioral deficits compared to VitD-normal animals. Although PROG was beneficial in injured VitD-normal animals, in VitD-deficient subjects neurosteroid treatment conferred no improvement over vehicle. A supplemental dose of 1,25-dihydroxyvitamin D(3) (VDH) given with the first PROG treatment dramatically improved results in VitD-deficient rats, but treatment with VDH alone did not. Our results suggest that VitD-deficiency can increase baseline brain inflammation, exacerbate the effects of TBI, and attenuate the benefits of PROG treatment; these effects may be reversed if the deficiency is corrected. Copyright © 2009 Elsevier Inc. All rights reserved.

  12. The developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy.

    Science.gov (United States)

    Sussman, Dafna; Leung, Rachel C; Chakravarty, M Mallar; Lerch, Jason P; Taylor, Margot J

    2016-04-01

    This study is the first to characterize normal development and sex differences across neuroanatomical structures in cortical, subcortical, and cerebellar brain regions in a single large cohort. One hundred and ninety-two magnetic resonance images were examined from 96 typically developing females and 96 age-matched typically developing males from 4 to 18 years of age. Image segmentation of the cortex was conducted with CIVET, while that of the cerebellum, hippocampi, thalamus, and basal ganglia were conducted using the MAGeT algorithm. Cortical thickness analysis revealed that most cortical regions decrease linearly, while surface area increases linearly with age. Volume relative to total cerebrum followed a quadratic trend with age, with only the left supramarginal gyrus showing sexual dimorphism. Hippocampal relative volume increased linearly, while the thalamus, caudate, and putamen decreased linearly, and the cerebellum did not change with age. The relative volumes of several subcortical subregions followed inverted U-shaped trends that peaked at ~12 years of age. Many subcortical structures were found to be larger in females than in males, independently of age, while others showed a sex-by-age interaction. This study provides a comprehensive assessment of cortical, subcortical, and cerebellar growth patterns during normal development, and draws attention to the role of sex on neuroanatomical maturation throughout childhood and adolescence.

  13. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise

    Directory of Open Access Journals (Sweden)

    Takashi eTarumi

    2014-01-01

    Full Text Available Alzheimer disease (AD and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vascular risk factors are modifiable via either pharmacological or lifestyle intervention. In this regard, habitual aerobic exercise is increasingly recognized for its benefits on brain structure and cognitive function. Considering the well-established benefits of regular aerobic exercise on vascular health, exercise-related improvements in brain structure and cognitive function may be mediated by vascular adaptations. In this review, we will present the current evidence for the physiological mechanisms by which vascular health alters the structural and functional integrity of the aging brain and how improvements in vascular health, via regular aerobic exercise, potentially benefits cognitive function.

  14. The brain map of gait variability in aging, cognitive impairment and dementia-A systematic review.

    Science.gov (United States)

    Tian, Qu; Chastan, Nathalie; Bair, Woei-Nan; Resnick, Susan M; Ferrucci, Luigi; Studenski, Stephanie A

    2017-03-01

    While gait variability may reflect subtle changes due to aging or cognitive impairment (CI), associated brain characteristics remain unclear. We summarize structural and functional neuroimaging findings associated with gait variability in older adults with and without CI and dementia. We identified 17 eligible studies; all were cross-sectional; few examined multiple brain areas. In older adults, temporal gait variability was associated with structural differences in medial areas important for lower limb coordination and balance. Both temporal and spatial gait variability were associated with structural and functional differences in hippocampus and primary sensorimotor cortex and structural differences in anterior cingulate cortex, basal ganglia, association tracts, and posterior thalamic radiation. In CI or dementia, some associations were found in primary motor cortex, hippocampus, prefrontal cortex and basal ganglia. In older adults, gait variability may be associated with areas important for sensorimotor integration and coordination. To comprehend the neural basis of gait variability with aging and CI, longitudinal studies of multiple brain areas are needed. Published by Elsevier Ltd.

  15. Microglia under psychosocial stressors along the aging trajectory: Consequences on neuronal circuits, behavior, and brain diseases.

    Science.gov (United States)

    Tian, Li; Hui, Chin Wai; Bisht, Kanchan; Tan, Yunlong; Sharma, Kaushik; Chen, Song; Zhang, Xiangyang; Tremblay, Marie-Eve

    2017-10-03

    Mounting evidence indicates the importance of microglia for proper brain development and function, as well as in complex stress-related neuropsychiatric disorders and cognitive decline along the aging trajectory. Considering that microglia are resident immune cells of the brain, a homeostatic maintenance of their effector functions that impact neuronal circuitry, such as phagocytosis and secretion of inflammatory factors, is critical to prevent the onset and progression of these pathological conditions. However, the molecular mechanisms by which microglial functions can be properly regulated under healthy and pathological conditions are still largely unknown. We aim to summarize recent progress regarding the effects of psychosocial stress and oxidative stress on microglial phenotypes, leading to neuroinflammation and impaired microglia-synapse interactions, notably through our own studies of inbred mouse strains, and most importantly, to discuss about promising therapeutic strategies that take advantage of microglial functions to tackle such brain disorders in the context of adult psychosocial stress or aging-induced oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise

    Science.gov (United States)

    Tarumi, Takashi; Zhang, Rong

    2014-01-01

    Alzheimer disease (AD) and cerebrovascular disease often coexist with advanced age. Mounting evidence indicates that the presence of vascular disease and its risk factors increase the risk of AD, suggesting a potential overlap of the underlying pathophysiological mechanisms. In particular, atherosclerosis, endothelial dysfunction, and stiffening of central elastic arteries have been shown to associate with AD. Currently, there are no effective treatments for the cure and prevention of AD. Vascular risk factors are modifiable via either pharmacological or lifestyle intervention. In this regard, habitual aerobic exercise is increasingly recognized for its benefits on brain structure and cognitive function. Considering the well-established benefits of regular aerobic exercise on vascular health, exercise-related improvements in brain structure and cognitive function may be mediated by vascular adaptations. In this review, we will present the current evidence for the physiological mechanisms by which vascular health alters the structural and functional integrity of the aging brain and how improvements in vascular health, via regular aerobic exercise, potentially benefits cognitive function. PMID:24478719

  17. Medial temporal lobe contributions to intra-item associative recognition memory in the aging brain.

    Science.gov (United States)

    Dalton, Marshall Axel; Tu, Sicong; Hornberger, Michael; Hodges, John Russel; Piguet, Olivier

    2013-01-01

    Aging is associated with a decline in episodic memory function. This is accompanied by degradation of and functional changes in the medial temporal lobe (MTL) which subserves mnemonic processing. To date no study has investigated age-related functional change in MTL substructures during specific episodic memory processes such as intra-item associative memory. The aim of this study was to characterize age-related change in the neural correlates of intra-item associative memory processing. Sixteen young and 10 older subjects participated in a compound word intra-item associative memory task comprising a measure of associative recognition memory and a measure of recognition memory. There was no difference in performance between groups on the associative memory measure but each group recruited different MTL regions while performing the task. The young group recruited the left anterior hippocampus and posterior parahippocampal gyrus whereas the older participants recruited the hippocampus bilaterally. In contrast, recognition memory was significantly worse in the older subjects. The left anterior hippocampus was recruited in the young group during successful recognition memory whereas the older group recruited a more posterior region of the left hippocampus and showed a more bilateral activation of frontal brain regions than was observed in the young group. Our results suggest a reorganization of the neural correlates of intra-item associative memory in the aging brain.

  18. Medial temporal lobe contributions to intra-item associative recognition memory in the ageing brain

    Directory of Open Access Journals (Sweden)

    Marshall Axel Dalton

    2014-01-01

    Full Text Available Ageing is associated with a decline in episodic memory function. This is accompanied by degradation of and functional changes in the medial temporal lobe (MTL which subserves mnemonic processing. To date no study has investigated age related functional change in MTL substructures during specific episodic memory processes such as intra-item associative memory. The aim of this study was to characterise age related change in the neural correlates of intra-item associative memory processing. 16 young and 10 older subjects participated in a compound word intra-item associative memory task comprising a measure of associative recognition memory and a measure of recognition memory. There was no difference in performance between groups on the associative memory measure but each group recruited different MTL regions while performing the task. The young group recruited the left anterior hippocampus and posterior parahippocampal gyrus whereas the older participants recruited the hippocampus bilaterally. In contrast, recognition memory was significantly worse in the older subjects. The left anterior hippocampus was recruited in the young group during successful recognition memory whereas the older group recruited a more posterior region of the left hippocampus and showed a more bilateral activation of frontal brain regions than was observed in the young group. Our results suggest a reorganisation of the neural correlates of intra-item associative memory in the ageing brain.

  19. Changes in Brain Network Efficiency and Working Memory Performance in Aging

    Science.gov (United States)

    Stanley, Matthew L.; Simpson, Sean L.; Dagenbach, Dale; Lyday, Robert G.; Burdette, Jonathan H.; Laurienti, Paul J.

    2015-01-01

    Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory. PMID:25875001

  20. Chronological age and its impact on associative learning proficiency and brain structure in middle adulthood.

    Science.gov (United States)

    Diwadkar, Vaibhav A; Bellani, Marcella; Ahmed, Rizwan; Dusi, Nicola; Rambaldelli, Gianluca; Perlini, Cinzia; Marinelli, Veronica; Ramaseshan, Karthik; Ruggeri, Mirella; Bambilla, Paolo

    2016-01-15

    The rate of biological change in middle-adulthood is relatively under-studied. Here, we used behavioral testing in conjunction with structural magnetic resonance imaging to examine the effects of chronological age on associative learning proficiency and on brain regions that previous functional MRI studies have closely related to the domain of associative learning. Participants (n=66) completed a previously established associative learning paradigm, and consented to be scanned using structural magnetic resonance imaging. Age-related effects were investigated both across sub-groups in the sample (younger vs. older) and across the entire sample (using regression approaches). Chronological age had substantial effects on learning proficiency (independent of IQ and Education Level), with older adults showing a decrement compared to younger adults. In addition, decreases in estimated gray matter volume were observed in multiple brain regions including the hippocampus and the dorsal prefrontal cortex, both of which are strongly implicated in associative learning. The results suggest that middle adulthood may be a more dynamic period of life-span change than previously believed. The conjunctive application of narrowly focused tasks, with conjointly acquired structural MRI data may allow us to enrich the search for, and the interpretation of, age-related changes in cross-sectional samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Oxidative Stress Is a Central Target for Physical Exercise Neuroprotection Against Pathological Brain Aging.

    Science.gov (United States)

    García-Mesa, Yoelvis; Colie, Sandra; Corpas, Rubén; Cristòfol, Rosa; Comellas, Francesc; Nebreda, Angel R; Giménez-Llort, Lydia; Sanfeliu, Coral

    2016-01-01

    Physical exercise is suggested for preventing or delaying senescence and Alzheimer's disease (AD). We have examined its therapeutic value in the advanced stage of AD-like pathology in 3xTg-AD female mice through voluntary wheel running from 12 to 15 months of age. Mice submitted to exercise showed improved body fitness, immunorejuvenation, improvement of behavior and cognition, and reduced amyloid and tau pathology. Brain tissue analysis of aged 3xTg-AD mice showed high levels of oxidative damage. However, this damage was decreased by physical exercise through regulation of redox homeostasis. Network analyses showed that oxidative stress was a central event, which correlated with AD-like pathology and the AD-related behaviors of anxiety, apathy, and cognitive loss. This study corroborates the importance of redox mechanisms in the neuroprotective effect of physical exercise, and supports the theory of the crucial role of oxidative stress in the switch from normal brain aging to pathological aging and AD. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Age-specific effects of voluntary exercise on memory and the older brain.

    Science.gov (United States)

    Siette, Joyce; Westbrook, R Frederick; Cotman, Carl; Sidhu, Kuldip; Zhu, Wanlin; Sachdev, Perminder; Valenzuela, Michael J

    2013-03-01

    Physical exercise in early adulthood and mid-life improves cognitive function and enhances brain plasticity, but the effects of commencing exercise in late adulthood are not well-understood. We investigated the effects of voluntary exercise in the restoration of place recognition memory in aged rats and examined hippocampal changes of synaptic density and neurogenesis. We found a highly selective age-related deficit in place recognition memory that is stable across retest sessions and correlates strongly with loss of hippocampal synapses. Additionally, 12 weeks of voluntary running at 20 months of age removed the deficit in the hippocampally dependent place recognition memory. Voluntary running restored presynaptic density in the dentate gyrus and CA3 hippocampal subregions in aged rats to levels beyond those observed in younger animals, in which exercise had no functional or synaptic effects. By contrast, hippocampal neurogenesis, a possible memory-related mechanism, increased in both young and aged rats after physical exercise but was not linked with performance in the place recognition task. We used graph-based network analysis based on synaptic covariance patterns to characterize efficient intrahippocampal connectivity. This analysis revealed that voluntary running completely reverses the profound degradation of hippocampal network efficiency that accompanies sedentary aging. Furthermore, at an individual animal level, both overall hippocampal presynaptic density and subregional connectivity independently contribute to prediction of successful place recognition memory performance. Our findings emphasize the unique synaptic effects of exercise on the aged brain and their specific relevance to a hippocampally based memory system for place recognition. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Comparative pathway and network analysis of brain transcriptome changes during adult aging and in Parkinson's disease.

    Science.gov (United States)

    Glaab, Enrico; Schneider, Reinhard

    2015-02-01

    Aging is considered as one of the main factors promoting the risk for Parkinson's disease (PD), and common mechanisms of dopamine neuron degeneration in aging and PD have been proposed in recent years. Here, we use a statistical meta-analysis of human brain transcriptomics data to investigate potential mechanistic relationships between adult brain aging and PD pathogenesis at the pathway and network level. The analyses identify statistically significant shared pathway and network alterations in aging and PD and an enrichment in PD-associated sequence variants from genome-wide association studies among the jointly deregulated genes. We find robust discriminative patterns for groups of functionally related genes with potential applications as combined risk biomarkers to detect aging- and PD-linked oxidative stress, e.g., a consistent over-expression of metallothioneins matching with findings in previous independent studies. Interestingly, analyzing the regulatory network and mouse knockout expression data for NR4A2, a transcription factor previously associated with rare mutations in PD and here found as the most significantly under-expressed gene in PD among the jointly altered genes, suggests that aging-related NR4A2 expression changes may increase PD risk via downstream effects similar to disease-linked mutations and to expression changes in sporadic PD. Overall, the analyses suggest mechanistic explanations for the age-dependence of PD risk and reveal significant and robust shared process alterations with potential applications in biomarker development for pre-symptomatic risk assessment or early stage diagnosis. Copyright © 2014. Published by Elsevier Inc.

  4. Age

    Science.gov (United States)

    ... distressing side effects. Do anesthesia risks increase in older adults? One concern for older patients is that the aging brain is more ... related surgery risks that are more common in older people: ... problems with memory and paying attention. It may not start until a few days ...

  5. Fall-related pediatric brain injuries: the role of race, age, and sex.

    Science.gov (United States)

    Love, Pamela F; Tepas, Joseph J; Wludyka, Peter S; Masnita-Iusan, Carmen

    2009-07-01

    Falls remain a major cause of childhood morbidity and mortality. To improve effectiveness of our prevention program, we used our electronic injury surveillance database to analyze patient variables and the incidence of fall-related brain injury. The database was queried for all injuries treated in the pediatric emergency department for which the word "fall" was listed as part of the chief complaint. Age, sex, and mechanism variables were cross tabulated for analysis with traumatic brain injury (TBI) codes. Between June 2005 and June 2008, the electronic surveillance system reported 39,718 injury-related visits to the pediatric emergency department. Falls were reported in 3,436 patients (2,107 males, 1,329 females). TBI occurred from falls in 171 patients. Although black children had a higher fall rate (69.24%) than white children (23.75%) and non-black, non-white children (7.01%), white children had the highest TBI rate from falls (9.47%). TBI from falls occurred at a lower mean age for females (5.40 +/- 4.45) than males (6.6 +/- 5.15) and for non-whites (5.98 +/- 4.88) than whites (6.21 +/- 4.93). Multiple logistic regression demonstrated a significant influence of age, race, and sex on the likelihood that a fall results in TBI. Females have a higher risk of TBI from falls than males from ages 0 to 11.5. This runs contrary to previous studies suggesting that toddler males are at highest risk for TBI. A disproportionate number of infants, toddlers, and adolescents sustain brain injury from falls. Race and sex group differences mandate enhanced focus on environmental safety and risk-taking behaviors.

  6. Phonemic fluency and brain connectivity in age-related macular degeneration: a pilot study.

    Science.gov (United States)

    Whitson, Heather E; Chou, Ying-Hui; Potter, Guy G; Diaz, Michele T; Chen, Nan-Kuei; Lad, Eleonora M; Johnson, Micah A; Cousins, Scott W; Zhuang, Jie; Madden, David J

    2015-03-01

    Age-related macular degeneration (AMD), the leading cause of blindness in developed nations, has been associated with poor performance on tests of phonemic fluency. This pilot study sought to (1) characterize the relationship between phonemic fluency and resting-state functional brain connectivity in AMD patients and (2) determine whether regional connections associated with phonemic fluency in AMD patients were similarly linked to phonemic fluency in healthy participants. Behavior-based connectivity analysis was applied to resting-state, functional magnetic resonance imaging data from seven patients (mean age=79.9±7.5 years) with bilateral AMD who completed fluency tasks prior to imaging. Phonemic fluency was inversely related to the strength of functional connectivity (FC) among six pairs of brain regions, representing eight nodes: left opercular portion of inferior frontal gyrus (which includes Broca's area), left superior temporal gyrus (which includes part of Wernicke's area), inferior parietal lobe (bilaterally), right superior parietal lobe, right supramarginal gyrus, right supplementary motor area, and right precentral gyrus. The FC of these reference links was not related to phonemic fluency among 32 healthy individuals (16 younger adults, mean age=23.5±4.6 years and 16 older adults, mean age=68.3±3.4 years). Compared with healthy individuals, AMD patients exhibited higher mean connectivity within the reference links and within the default mode network, possibly reflecting compensatory changes to support performance in the setting of reduced vision. These findings are consistent with the hypothesis that phonemic fluency deficits in AMD reflect underlying brain changes that develop in the context of AMD.

  7. Calcium dysregulation in relation to Alzheimer-type pathology in the ageing brain.

    Science.gov (United States)

    Garwood, C; Faizullabhoy, A; Wharton, S B; Ince, P G; Heath, P R; Shaw, P J; Baxter, L; Gelsthorpe, C; Forster, G; Matthews, F E; Brayne, C; Simpson, J E

    2013-12-01

    Calcium dyshomeostasis is implicated in the pathogenesis of several neurodegenerative disorders including Alzheimer's disease. However, much of the previous research has focused on changes in neuronal calcium signalling. In a recent microarray study we identified dysregulation of several key signalling pathways including the Ca(2+) signalling pathway in astrocytes as Alzheimer-type pathology developed. In this study we sought to determine the expression of calpain-10 and calcium/calmodulin-dependent kinase alpha (CamKIIα) in relation to Alzheimer-type pathology in a population-based study. Using post mortem temporal cortex samples derived from the Medical Research Council Cognitive Function and Ageing Study (MRC-CFAS) ageing brain cohort we examined calpain-10 and CamKIIα gene and protein expression using quantitative polymerase chain reaction and immunohistochemistry. We demonstrate that astrocytic expression of calpain-10 is up-regulated, and CamKIIα down-regulated with increasing Braak stage. Using immunohistochemistry we confirm protein expression of calpain-10 in astrocytes throughout the temporal cortex and demonstrate that calpain-10 immunoreactivity is correlated with both local and global measures of Alzheimer-type pathology. In addition, we identify a subpopulation of calpain-10 immunoreactive interlaminar astrocytes that extend processes deep into the cortex. CamKIIα is predominantly neuronal in localization and is associated with the presence of diffuse plaques in the ageing brain. Dysregulated expression of key calcium signalling molecules occurs with progression of Alzheimer-type pathology in the ageing brain, highlighting the need for further functional studies of astrocytic calcium signalling with respect to disease progression. © 2013 British Neuropathological Society.

  8. Age-associated changes of brain copper, iron, and zinc in Alzheimer's disease and dementia with Lewy bodies.

    Science.gov (United States)

    Graham, Stewart F; Nasaruddin, Muhammad Bin; Carey, Manus; Holscher, Christian; McGuinness, Bernadette; Kehoe, Patrick G; Love, Seth; Passmore, Peter; Elliott, Christopher T; Meharg, Andrew A; Green, Brian D

    2014-01-01

    Disease-, age-, and gender-associated changes in brain copper, iron, and zinc were assessed in postmortem neocortical tissue (Brodmann area 7) from patients with moderate Alzheimer's disease (AD) (n = 14), severe AD (n = 28), dementia with Lewy bodies (n = 15), and normal age-matched control subjects (n = 26). Copper was lower (20%; p copper and iron, suggesting gradual age-associated decline of these metals in healthy non-cognitively impaired individuals. Zinc was unaffected in any disease pathologies and no age-associated changes were apparent. Age-associated changes in brain elements warrant further investigation.

  9. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration

    Science.gov (United States)

    Pearson, Brandon L.; Simon, Jeremy M.; McCoy, Eric S.; Salazar, Gabriela; Fragola, Giulia; Zylka, Mark J.

    2016-01-01

    Environmental factors, including pesticides, have been linked to autism and neurodegeneration risk using retrospective epidemiological studies. Here we sought to prospectively identify chemicals that share transcriptomic signatures with neurological disorders, by exposing mouse cortical neuron-enriched cultures to hundreds of chemicals commonly found in the environment and on food. We find that rotenone, a pesticide associated with Parkinson's disease risk, and certain fungicides, including pyraclostrobin, trifloxystrobin, famoxadone and fenamidone, produce transcriptional changes in vitro that are similar to those seen in brain samples from humans with autism, advanced age and neurodegeneration (Alzheimer's disease and Huntington's disease). These chemicals stimulate free radical production and disrupt microtubules in neurons, effects that can be reduced by pretreating with a microtubule stabilizer, an antioxidant, or with sulforaphane. Our study provides an approach to prospectively identify environmental chemicals that transcriptionally mimic autism and other brain disorders. PMID:27029645

  10. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration.

    Science.gov (United States)

    Pearson, Brandon L; Simon, Jeremy M; McCoy, Eric S; Salazar, Gabriela; Fragola, Giulia; Zylka, Mark J

    2016-03-31

    Environmental factors, including pesticides, have been linked to autism and neurodegeneration risk using retrospective epidemiological studies. Here we sought to prospectively identify chemicals that share transcriptomic signatures with neurological disorders, by exposing mouse cortical neuron-enriched cultures to hundreds of chemicals commonly found in the environment and on food. We find that rotenone, a pesticide associated with Parkinson's disease risk, and certain fungicides, including pyraclostrobin, trifloxystrobin, famoxadone and fenamidone, produce transcriptional changes in vitro that are similar to those seen in brain samples from humans with autism, advanced age and neurodegeneration (Alzheimer's disease and Huntington's disease). These chemicals stimulate free radical production and disrupt microtubules in neurons, effects that can be reduced by pretreating with a microtubule stabilizer, an antioxidant, or with sulforaphane. Our study provides an approach to prospectively identify environmental chemicals that transcriptionally mimic autism and other brain disorders.

  11. EPA or DHA enhanced oxidative stress and aging protein expression in brain of d-galactose treated mice.

    Science.gov (United States)

    Hsu, Yuan-Man; Yin, Mei-Chin

    2016-06-01

    Effects of eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) upon fatty acid composition, oxidative and inflammatory factors and aging proteins in brain of d-galactose (DG) treated aging mice were examined. Each fatty acid at 7 mg/kg BW/week was supplied for 8 weeks. Brain aging was induced by DG treatment (100 mg/kg body weight) via daily subcutaneous injection for 8 weeks. DG, EPA and DHA treatments changed brain fatty acid composition. DG down-regulated brain Bcl-2 expression and up-regulated Bax expression. Compared with DG groups, EPA and DHA further enhanced Bax expression. DG decreased glutathione content, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production, the intake of EPA or DHA caused greater ROS and GSSG formation. DG treatments up-regulated the protein expression of p47(phox) and gp91(phox), and the intake of EPA or DHA led to greater p47(phox) and gp91(phox) expression. DG increased brain prostaglandin E2 (PGE2) levels, and cyclooxygenase (COX)-2 expression and activity, the intake of EPA or DHA reduced brain COX-2 activity and PGE2 formation. DG enhanced brain p53, p16 and p21 expression. EPA and DHA intake led to greater p21 expression, and EPA only caused greater p53 and p16 expression. These findings suggest that these two PUFAs have toxic effects toward aging brain.

  12. Visual function at 11 years of age in preterm-born children with and without fetal brain sparing

    NARCIS (Netherlands)

    Kok, Joke H.; Prick, Liesbeth; Merckel, Elly; Everhard, Yolande; Verkerk, Gijs J. Q.; Scherjon, Sicco A.

    2007-01-01

    OBJECTIVE: We have demonstrated earlier an accelerated maturation of the visual evoked potential in the first year of life in preterm infants with antenatal brain sparing. We have now assessed visual functioning at 11 years of age in the same cohort and compared the groups with and without brain

  13. Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players.

    Science.gov (United States)

    Gärtner, H; Minnerop, M; Pieperhoff, P; Schleicher, A; Zilles, K; Altenmüller, E; Amunts, K

    2013-01-01

    To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using deformation-based morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed. Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout life.

  14. Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players

    Directory of Open Access Journals (Sweden)

    Hanna eGärtner

    2013-09-01

    Full Text Available To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using Deformation Field Morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed.Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout

  15. Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players

    Science.gov (United States)

    Gärtner, H.; Minnerop, M.; Pieperhoff, P.; Schleicher, A.; Zilles, K.; Altenmüller, E.; Amunts, K.

    2013-01-01

    To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using deformation-based morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed. Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout life. PMID

  16. Mitochondrial Complex 1 Activity Measured by Spectrophotometry Is Reduced across All Brain Regions in Ageing and More Specifically in Neurodegeneration.

    Science.gov (United States)

    Pollard, Amelia Kate; Craig, Emma Louise; Chakrabarti, Lisa

    2016-01-01

    Mitochondrial function, in particular complex 1 of the electron transport chain (ETC), has been shown to decrease during normal ageing and in neurodegenerative disease. However, there is some debate concerning which area of the brain has the greatest complex 1 activity. It is important to identify the pattern of activity in order to be able to gauge the effect of age or disease related changes. We determined complex 1 activity spectrophotometrically in the cortex, brainstem and cerebellum of middle aged mice (70-71 weeks), a cerebellar ataxic neurodegeneration model (pcd5J) and young wild type controls. We share our updated protocol on the measurements of complex1 activity and find that mitochondrial fractions isolated from frozen tissues can be measured for robust activity. We show that complex 1 activity is clearly highest in the cortex when compared with brainstem and cerebellum (p<0.003). Cerebellum and brainstem mitochondria exhibit similar levels of complex 1 activity in wild type brains. In the aged brain we see similar levels of complex 1 activity in all three-brain regions. The specific activity of complex 1 measured in the aged cortex is significantly decreased when compared with controls (p<0.0001). Both the cerebellum and brainstem mitochondria also show significantly reduced activity with ageing (p<0.05). The mouse model of ataxia predictably has a lower complex 1 activity in the cerebellum, and although reductions are measured in the cortex and brain stem, the remaining activity is higher than in the aged brains. We present clear evidence that complex 1 activity decreases across the brain with age and much more specifically in the cerebellum of the pcd5j mouse. Mitochondrial impairment can be a region specific phenomenon in disease, but in ageing appears to affect the entire brain, abolishing the pattern of higher activity in cortical regions.

  17. Age-related differences in brain activity in the subsequent memory paradigm: a meta-analysis.

    Science.gov (United States)

    Maillet, David; Rajah, M Natasha

    2014-09-01

    Healthy aging is associated with declines in episodic memory. This reduction is thought to be due in part to age-related differences in encoding-related processes. In the current study, we performed an activation likelihood estimation meta-analysis of functional magnetic resonance imaging (fMRI) studies assessing age-related differences in the neural correlates of episodic encoding. Only studies using the subsequent memory paradigm were included. We found age-related under-recruitment of occipital and fusiform cortex, but over-recruitment in a set of regions including bilateral middle/superior frontal gyri, anterior medial frontal gyrus, precuneus and left inferior parietal lobe. We demonstrate that all of the regions consistently over-recruited by older adults during successful encoding exhibit either direct overlap, or occur in close vicinity to regions consistently involved in unsuccessful encoding in young adults. We discuss the possibility that this overall pattern of age-related differences represents an age-related shift in focus: away from perceptual details, and toward evaluative and personal thoughts and feelings during memory tasks. We discuss whether these age-related differences in brain activation benefit performance in older adults, and additional considerations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The Walnuts and Healthy Aging Study (WAHA): Protocol for a Nutritional Intervention Trial with Walnuts on Brain Aging

    Science.gov (United States)

    Rajaram, Sujatha; Valls-Pedret, Cinta; Cofán, Montserrat; Sabaté, Joan; Serra-Mir, Mercè; Pérez-Heras, Ana M.; Arechiga, Adam; Casaroli-Marano, Ricardo P.; Alforja, Socorro; Sala-Vila, Aleix; Doménech, Mónica; Roth, Irene; Freitas-Simoes, Tania M.; Calvo, Carlos; López-Illamola, Anna; Haddad, Ella; Bitok, Edward; Kazzi, Natalie; Huey, Lynnley; Fan, Joseph; Ros, Emilio

    2017-01-01

    Introduction: An unwanted consequence of population aging is the growing number of elderly at risk of neurodegenerative disorders, including dementia and macular degeneration. As nutritional and behavioral changes can delay disease progression, we designed the Walnuts and Healthy Aging (WAHA) study, a two-center, randomized, 2-year clinical trial conducted in free-living, cognitively healthy elderly men and women. Our interest in exploring the role of walnuts in maintaining cognitive and retinal health is based on extensive evidence supporting their cardio-protective and vascular health effects, which are linked to bioactive components, such as n-3 fatty acids and polyphenols. Methods: The primary aim of WAHA is to examine the effects of ingesting walnuts daily for 2 years on cognitive function and retinal health, assessed with a battery of neuropsychological tests and optical coherence tomography, respectively. All participants followed their habitual diet, adding walnuts at 15% of energy (≈30–60 g/day) (walnut group) or abstaining from walnuts (control group). Secondary outcomes include changes in adiposity, blood pressure, and serum and urinary biomarkers in all participants and brain magnetic resonance imaging in a subset. Results: From May 2012 to May 2014, 708 participants (mean age 69 years, 68% women) were randomized. The study ended in May 2016 with a 90% retention rate. Discussion: The results of WAHA might provide high-level evidence of the benefit of regular walnut consumption in delaying the onset of age-related cognitive impairment and retinal pathology. The findings should translate into public health policy and sound recommendations to the general population (ClinicalTrials.gov identifier NCT01634841). PMID:28119602

  19. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging.

    Science.gov (United States)

    Caplan, Jeremy B; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A

    2015-05-15

    Rhythmic brain activity at low frequencies (power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; Caplan et al., 2001; Whitten et al., 2011) avoids these problems by using the signal's own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18-25 years) and older (60-74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1-4Hz), at which rhythms are sporadic; topographies were more similar in the 8-12Hz alpha band. There was little theta-band activity meeting the BOSC method's criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In summary, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effects of long-term mindfulness meditation on brain's white matter microstructure and its aging.

    Directory of Open Access Journals (Sweden)

    Davide eLaneri

    2016-01-01

    Full Text Available Although research on the effects of mindfulness meditation (MM is increasing, still very little has been done to address its influence on the white matter (WM of the brain. We hypothesized that the practice of MM might affect the WM microstructure adjacent to five brain regions of interest associated with mindfulness. Diffusion tensor imaging was employed on samples of meditators and non-meditators (n=64 in order to investigate the effects of MM on group difference and aging. Tract-Based Spatial Statistics was used to estimate the fractional anisotrophy of the WM connected to the thalamus, insula, amygdala, hippocampus and anterior cingulate cortex. The subsequent generalized linear model analysis revealed group differences and a group-by-age interaction in all five selected regions. These data provide preliminary indications that the practice of MM might result in WM matter connectivity change and might provide evidence on its ability to help diminish age-related WM degeneration in key regions which participate in processes of mindfulness.

  1. Cognitive reserve is associated with the functional organization of brain in healthy aging: A MEG Study

    Directory of Open Access Journals (Sweden)

    Maria Eugenia eLopez

    2014-06-01

    Full Text Available The proportion of elderly people in the population has increased rapidly in the last century and consequently healthy aging is expected to become a critical area of research in neuroscience. Evidence reveals how healthy aging depends on three main behavioral factors: social lifestyle, cognitive activity and physical activity. In this study, we focused on the role of cognitive activity, concentrating specifically on educational and occupational attainment factors, which were considered two of the main pillars of cognitive reserve.21 subjects with similar rates of social lifestyle, physical and cognitive activity were selected from a sample of 55 healthy adults. These subjects were divided into two groups according to their level of cognitive reserve; one group comprised subjects with high cognitive reserve (9 members and the other contained those with low cognitive reserve (12 members. To evaluate the cortical brain connectivity network, all participants were recorded by Magnetoencephalography (MEG while they performed a memory task (modified version of the Sternberg´s Task. We then applied two algorithms (Phase Locking Value & Phase-Lag Index to study the dynamics of functional connectivity. In response to the same task, the subjects with lower cognitive reserve presented higher functional connectivity than those with higher cognitive reserve.These results may indicate that participants with low cognitive reserve needed a greater 'effort' than those with high cognitive reserve to achieve the same level of cognitive performance. Therefore, we conclude that cognitive reserve contributes to the modulation of the functional connectivity patterns of the aging brain.

  2. Shared Reading Quality and Brain Activation during Story Listening in Preschool-Age Children.

    Science.gov (United States)

    Hutton, John S; Phelan, Kieran; Horowitz-Kraus, Tzipi; Dudley, Jonathan; Altaye, Mekibib; DeWitt, Tom; Holland, Scott K

    2017-12-01

    To explore the relationship between maternal shared reading quality (verbal interactivity and engagement) and brain function during story listening in at-risk, preschool-age children, in the context of behavioral evidence and American Academy of Pediatrics, recommendations. In this cross-sectional study, 22 healthy, 4-year-old girls from low socioeconomic status households completed functional magnetic resonance imaging using an established story listening task, followed by videotaped observation of uncoached mother-daughter reading of the same, age-appropriate picture book. Shared reading quality was independently scored applying dialogic reading and other evidence-based criteria reflecting interactivity and engagement, and applied as a predictor of neural activation during the functional magnetic resonance imaging task, controlling for income and maternal education. Shared reading quality scores were generally low and negatively correlated with maternal distraction by smartphones (P emotional integration, and working memory (P emotional processing in at-risk, preschool-age children. These findings represent novel neural biomarkers of how this modifiable aspect of home reading environment may influence foundational emergent literacy skills, reinforce behavioral evidence and American Academy of Pediatrics, recommendations, and underscore the potential of dialogic reading interventions to promote healthy brain development, especially in at-risk households. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Brain white matter structure and language ability in preschool-aged children.

    Science.gov (United States)

    Walton, Matthew; Dewey, Deborah; Lebel, Catherine

    2018-01-01

    Brain alterations are associated with reading and language difficulties in older children, but little research has investigated relationships between early language skills and brain white matter structure during the preschool period. We studied 68 children aged 3.0-5.6 years who underwent diffusion tensor imaging and participated in assessments of Phonological Processing and Speeded Naming. Tract-based spatial statistics and tractography revealed relationships between Phonological Processing and diffusion parameters in bilateral ventral white matter pathways and the corpus callosum. Phonological Processing was positively correlated with fractional anisotropy and negatively correlated with mean diffusivity. The relationships observed in left ventral pathways are consistent with studies in older children, and demonstrate that structural markers for language performance are apparent as young as 3 years of age. Our findings in right hemisphere areas that are not as commonly found in adult studies suggest that young children rely on a widespread network for language processing that becomes more specialized with age. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Calcium antagonists decrease capillary wall damage in aging hypertensive rat brain.

    Science.gov (United States)

    Farkas, E; De Jong, G I; Apró, E; Keuker, J I; Luiten, P G

    2001-01-01

    Chronic hypertension during aging is a serious threat to the cerebral vasculature. The larger brain arteries can react to hypertension with an abnormal wall thickening, a loss of elasticity and a narrowed lumen. However, little is known about the hypertension-induced alterations of cerebral capillaries. The present study describes ultrastructural alterations of the cerebrocortical capillary wall, such as thickening and collagen accumulation in the basement membrane of aging spontaneously hypertensive stroke-prone rats. The ratio of cortical capillaries with such vascular pathology occurred significantly more frequently in hypertensive animals. Nimodipine and nifedipine are potential drugs to decrease blood pressure in hypertension but their beneficial effects in experimental studies reach beyond the control of blood pressure. Nimodipine and nifedipine can alleviate ischemia-related symptoms and improve cognition. These drugs differ in that nifedipine, but not nimodipine reduces blood pressure at the here-used concentration while both drugs can penetrate the blood-brain barrier. Here we show that chronic treatment of aging hypertensive stroke-prone rats with nimodipine or nifedipine could preserve microvascular integrity in the cerebral cortex.

  5. Are there roles for brain cell senescence in aging and neurodegenerative disorders?

    Science.gov (United States)

    Tan, Florence C C; Hutchison, Emmette R; Eitan, Erez; Mattson, Mark P

    2014-12-01

    The term cellular senescence was introduced more than five decades ago to describe the state of growth arrest observed in aging cells. Since this initial discovery, the phenotypes associated with cellular senescence have expanded beyond growth arrest to include alterations in cellular metabolism, secreted cytokines, epigenetic regulation and protein expression. Recently, senescence has been shown to play an important role in vivo not only in relation to aging, but also during embryonic development. Thus, cellular senescence serves different purposes and comprises a wide range of distinct phenotypes across multiple cell types. Whether all cell types, including post-mitotic neurons, are capable of entering into a senescent state remains unclear. In this review we examine recent data that suggest that cellular senescence plays a role in brain aging and, notably, may not be limited to glia but also neurons. We suggest that there is a high level of similarity between some of the pathological changes that occur in the brain in Alzheimer's and Parkinson's diseases and those phenotypes observed in cellular senescence, leading us to propose that neurons and glia can exhibit hallmarks of senescence previously documented in peripheral tissues.

  6. Taste Learning and Memory: A Window on the Study of Brain Aging

    Science.gov (United States)

    Gámiz, Fernando; Gallo, Milagros

    2011-01-01

    Taste aversion learning exhibits advantages for research on memory brain systems and its reorganization throughout life. A review of the effects of aging on taste memory abilities offers a complex picture showing preserved, impaired, and enhanced functions. Some of the age-related changes in taste memory seem to be associated with an altered temporal processing. Longer taste–illness delays can be introduced for acquisition of conditioned taste aversions and the modulation of taste learning by the temporal context is absent in naïve old rats. It is suggested that an altered hippocampal function is involved in the peculiar performance of these rats. Evidence is also presented which suggests that hippocampal-dependent taste memory can be reactivated by previous learning experiences in old rats. Results obtained after reversible inactivation of the dorsal Hippocampus by tetrodotoxin (TTX) in old rats support such a view. Therefore, the interaction between the previous experience and acute brain interventions should be taken into account when studying the effect of aging on taste memory. PMID:22073032

  7. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging

    Science.gov (United States)

    Caplan, Jeremy B.; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A.

    2015-01-01

    Rhythmic brain activity at low frequencies (power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; [10], [65]) avoids these problems by using the signal’s own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18–25 years) and older (60–74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1–4 Hz), at which rhythms are sporadic (but topographies were more similar in the 8–12 Hz alpha band). There was little theta-band activity meeting the BOSC method’s criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In sum, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. PMID:25769279

  8. Oxidative Stress and Protein Quality Control Systems in the Aged Canine Brain as a Model for Human Neurodegenerative Disorders.

    Science.gov (United States)

    Romanucci, Mariarita; Della Salda, Leonardo

    2015-01-01

    Aged dogs are considered the most suitable spontaneous animal model for studying normal aging and neurodegenerative diseases. Elderly canines naturally develop cognitive dysfunction and neuropathological hallmarks similar to those seen in humans, especially Alzheimer's disease-like pathology. Pet dogs also share similar living conditions and diets to humans. Oxidative damage accumulates in the canine brain during aging, making dogs a valid model for translational antioxidant treatment/prevention studies. Evidence suggests the presence of detective protein quality control systems, involving ubiquitin-proteasome system (UPS) and Heat Shock Proteins (HSPs), in the aged canine brain. Further studies on the canine model are needed to clarify the role of age-related changes in UPS activity and HSP expression in neurodegeneration in order to design novel treatment strategies, such as HSP-based therapies, aimed at improving chaperone defences against proteotoxic stress affecting brain during aging.

  9. [The effect of age on executive functioning after acquired brain injury in adults].

    Science.gov (United States)

    Chevignard, M; Taillefer, C; Poncet, F; Picq, C; Pradat-Diehl, P

    2008-12-01

    Executive functioning deficits have often been described in normal aging. They are also known to be a frequent sequel of traumatic brain injury, where patients may exhibit severe long-standing impairments in instrumental activities of daily living. One could therefore expect that cerebral lesions affecting executive functioning would result in more severe impairments in older patients. We previously developed an ecological assessment of executive functions, consisting of a cooking task, requiring multitasking abilities and known to be sensitive to a dysexecutive syndrome [Cortex 36 (2000) 649-669]. The aim of this study was to analyze the effect of age on the cognitive and ecological assessments of executive functions in a group of patients with acquired brain injury (ABI) resulting in a dysexecutive syndrome. Studies in this area usually focus on patients older than 60 or 65, but we chose to analyze the effect of age in a younger population. We hypothesized that older patients would have poorer performances on the cognitive and ecological tests of executive functioning, when compared to younger patients. Forty-five patients with ABI resulting in frontal lesions and a dysexecutive syndrome participated in this study. Patients underwent a comprehensive battery of cognitive tests assessing executive functioning, as well as the cooking task. We also studied a group of 12 control subjects who performed the cooking task. No effect of age was found on performance in the cooking task in the control group. Age was not related to demographic parameters or injury severity in the ABI group. Although the ABI group was relatively young (mean age: 40.3 years (S.D.=12.5), ranging from 17 to 63), results indicated a significant deleterious effect of age on the cognitive tests of executive functioning in the ABI group. We also highlighted a significant worsening of patients' performance in the cooking task with age, and this effect was found on several variables of task analysis

  10. Acetylome regulation by sirtuins in the brain: from normal physiology to aging and pathology.

    Science.gov (United States)

    Michan, Shaday

    2013-01-01

    Our understanding of the magnitude and physiological significance of proteome lysine acetylation remained incipient for five decades since it was first described. State-of-the-art methodologies, ranging from functional genomics to large-scale proteomics, have recently uncovered that this modification is more broadly represented in proteins than previously recognized, thus constituting the "acetylome." At present, it is estimated that acetylome covers only one tenth of the proteome, however, due its potential significance in physiology is capturing great attention. The first components of the cellular machinery, which finely orchestrate acetylome homeostasis, were identified by the end of last century. Since then, the majority of our growing knowledge concerning the physiological relevance of proteome reversible acetylation comes from the study of sirtuins, a unique type of lysine deacetylase that uses NAD(+). Sirtuins participate in a variety of cellular processes, ranging from transcription, DNA repair, energy balance, mitochondrial biogenesis and cell division, to apoptosis, autophagy and aging. Within the brain, besides their widespread epigenetic effects of dynamically modifying histones, sirtuins also target a variety of non-histone proteins either commonly deregulated in pathologies, or that participate in normal cerebral functions. For example, they modulate critical elements of the circadian rhythms, neurogenesis, synapses, cognition, serotonin synthesis, myelination, and proteins involved in neuropathology. Acetylome dynamics, and its regulation by sirtuins, may also help to better understand the molecular mechanisms underlying brain aging. This work reviews the pathways as orchestrated by the interplay between acetylome and sirtuins in the brain, from physiology involvement, to aging processes, and pathological settings.

  11. Healthy brain ageing assessed with 18F-FDG PET and age-dependent recovery factors after partial volume effect correction

    Energy Technology Data Exchange (ETDEWEB)

    Bonte, Stijn [IBiTech, Ghent, (Belgium); Ghent University, iMinds - Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Ghent (Belgium); University Hospital, Department of Radiology and Nuclear Medicine, Ghent (Belgium); Vandemaele, Pieter; Deblaere, Karel; Goethals, Ingeborg [University Hospital, Department of Radiology and Nuclear Medicine, Ghent (Belgium); Verleden, Stijn; Audenaert, Kurt [University Hospital, Department of Psychiatry, Ghent (Belgium); Holen, Roel van [Ghent University, iMinds - Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Ghent (Belgium)

    2017-05-15

    The mechanisms of ageing of the healthy brain are not entirely clarified to date. In recent years several authors have tried to elucidate this topic by using {sup 18}F-FDG positron emission tomography. However, when correcting for partial volume effects (PVE), divergent results were reported. Therefore, it is necessary to evaluate these methods in the presence of atrophy due to ageing. In this paper we first evaluate the performance of two PVE correction techniques with a phantom study: the Rousset method and iterative deconvolution. We show that the ability of the latter method to recover the true activity in a small region decreases with increasing age due to brain atrophy. Next, we have calculated age-dependent recovery factors to correct for this incomplete recovery. These factors were applied to PVE-corrected {sup 18}F-FDG PET scans of healthy subjects for mapping the agedependent metabolism in the brain. Many regions in the brain show a reduced metabolism with ageing, especially in grey matter in the frontal and temporal lobe. An increased metabolism is found in grey matter of the cerebellum and thalamus. Our study resulted in age-dependent recovery factors which can be applied following standard PVE correction methods. Cancelling the effect of atrophy, we found regional changes in {sup 18}F-FDG metabolism with ageing. A decreasing trend is found in the frontal and temporal lobe, whereas an increasing metabolism with ageing is observed in the thalamus and cerebellum.

  12. The Developmental Course of Sleep Disturbances Across Childhood Relates to Brain Morphology at Age 7: The Generation R Study.

    Science.gov (United States)

    Kocevska, Desana; Muetzel, Ryan L; Luik, Annemarie I; Luijk, Maartje P C M; Jaddoe, Vincent W; Verhulst, Frank C; White, Tonya; Tiemeier, Henning

    2017-01-01

    Little is known about the impact of sleep disturbances on the structural properties of the developing brain. This study explored associations between childhood sleep disturbances and brain morphology at 7 years. Mothers from the Generation R cohort reported sleep disturbances in 720 children at ages 2 months, 1.5, 2, 3, and 6 years. T1-weighted Magnetic Resonance Imaging (MRI) images were used to assess brain structure at 7 years. Associations of sleep disturbances at each age and of sleep disturbance trajectories with brain volumes (total brain volume, cortical and subcortical grey matter, white matter) were tested with linear regressions. To assess regional differences, sleep disturbance trajectories were tested as determinants for cortical thickness in whole-brain analyses. Sleep disturbances followed a declining trend from toddlerhood onwards. Infant sleep was not associated with brain morphology at age 7. Per SD sleep disturbances (one frequent symptom or two less frequent symptoms) at 2 and 3 years of age, children had -6.3 (-11.7 to -0.8) cm3 and -6.4 (-11.7 to -1.7) cm3 smaller grey matter volumes, respectively. Sleep disturbances at age 6 years were associated with global brain morphology (grey matter: -7.3 (-12.1 to -2.6), p value = .01). Consistently, trajectory analyses showed that more adverse developmental course of childhood sleep disturbances are associated with smaller grey matter volumes and thinner dorsolateral prefrontal cortex. Sleep disturbances from age 2 years onwards are associated with smaller grey matter volumes. Thinner prefrontal cortex in children with adverse sleep disturbance trajectories may reflect effects of sleep disturbances on brain maturation.

  13. The 5-Lipoxygenase as a Common Pathway for Pathological Brain and Vascular Aging

    Directory of Open Access Journals (Sweden)

    Jin Chu

    2009-01-01

    Full Text Available Epidemiological studies indicate age as a strong risk factor for developing cardiovascular and neurodegenerative diseases. During the aging process, changes in the expression of particular genes can influence the susceptibility to these diseases. 5-Lipoxygenase (5-LO by oxidizing fatty acids forms leukotrienes, potent mediators of oxidative and inflammatory reactions, two key pathogenic events in both clinical settings. This enzyme is widely distributed in the cardiovascular as well as in the central nervous system, where its expression levels increase with age, suggesting that it may be involved in their diseases of aging. The central theme of this article is that during aging, 5-LO acts as biologic link between different stressors and the development of cardiovascular and neurodegenerative diseases. We hypothesize that the age-dependent upregulation of 5-LO represents a “priming” factor in the vasculature as well as in the brain, where a subsequent exposure to triggering stimuli (i.e., infections leads to an abnormal chronic inflammatory reaction, and ultimately results in increased organ vulnerability and functional deficits.

  14. Cognitive decline and brain pathology in aging--need for a dimensional, lifespan and systems vulnerability view.

    Science.gov (United States)

    Walhovd, Kristine B; Fjell, Anders M; Espeseth, Thomas

    2014-06-01

    Changes in brain structure and activity as well as cognitive function are commonly seen in aging. However, it is not known when aging of brain and cognition starts, and how much of the changes observed in seemingly healthy older adults that can be ascribed to incipient neurodegenerative disease. Recent research has yielded evidence that the borders between development and aging sometimes can be fuzzy, as can the borders between dementing disease and normal age changes. In this review, we argue that many factors affecting cognitive decline and dementia represents quantitative rather than qualitative differences in characteristics that commonly exist in the population. Further, factors known to affect brain and cognition in aging will often do so through a life-long accumulation of impact, and does not need to be specific to aging. And finally, a host of environmental and genetic factors and their interplay determine optimal aging, leaving room for potential for environmental interventions to affect the outcome of the aging process. Together, we argue that these factors call for a dimensional rather than categorical, lifespan rather than aging, and multidimensional systems-vulnerability rather than simple "hypothetical biomarker" model of age-associated cognitive decline and dementia. This has implications for how we should view lifespan trajectories of change in brain and cognitive function, and how we can study, prevent, diagnose and treat age-associated cognitive deficits. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  15. Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months

    Directory of Open Access Journals (Sweden)

    Chiu Catherine

    2012-01-01

    Full Text Available Abstract Background Amyloid accumulation in the brain parenchyma is a hallmark of Alzheimer's disease (AD and is seen in normal aging. Alterations in cerebrospinal fluid (CSF dynamics are also associated with normal aging and AD. This study analyzed CSF volume, production and turnover rate in relation to amyloid-beta peptide (Aβ accumulation in the aging rat brain. Methods Aging Fischer 344/Brown-Norway hybrid rats at 3, 12, 20, and 30 months were studied. CSF production was measured by ventriculo-cisternal perfusion with blue dextran in artificial CSF; CSF volume by MRI; and CSF turnover rate by dividing the CSF production rate by the volume of the CSF space. Aβ40 and Aβ42 concentrations in the cortex and hippocampus were measured by ELISA. Results There was a significant linear increase in total cranial CSF volume with age: 3-20 months (p p p p -1 to 12 months (11.30 day-1 and then a decrease to 20 months (10.23 day-1 and 30 months (6.62 day-1. Aβ40 and Aβ42 concentrations in brain increased from 3-30 months (p Conclusions In young rats there is no correlation between CSF turnover and Aβ brain concentrations. After 12 months, CSF turnover decreases as brain Aβ continues to accumulate. This decrease in CSF turnover rate may be one of several clearance pathway alterations that influence age-related accumulation of brain amyloid.

  16. Retinal structure assessed by OCT as a biomarker of brain development in children born small for gestational age.

    Science.gov (United States)

    Pueyo, Victoria; Pérez, Teresa; González, Inmaculada; Altemir, Irene; Gimenez, Galadriel; Prieto, Esther; Paules, Cristina; Oros, Daniel; Lopez-Pison, Javier; Fayed, Nicolás; Garcia-Martí, Gracián; Sanz-Requena, Roberto; Marin, Miguel Angel

    2017-09-01

    To identify differences in neuronal tissue from retinal and brain structures in children born small for gestational age (SGA) with no abnormality in neonatal brain ultrasonography and no previous neurological impairment, and to evaluate the relationship between retinal structure and brain changes in school-age children born SGA. Two cohorts of children were recruited: 25 children born SGA and 25 children born with an appropriate birth weight according to gestational age. All the children underwent an ophthalmic examination, which included retinal imaging using spectral-domain optical coherence tomography, and a brain MRI. MRI images were automatically segmented and global and regional brain volumes were obtained. Although visual function did not differ between both groups, the complex ganglion cell and inner plexiform layers (GCL-IPL) was thinner in SGA children. Total intracranial volume, and global grey and white matter volumes in brain and cerebellum were correlated with birthweight centile, as were certain regional volumes (temporal and parietal lobes, hippocampus and putamen). Abnormal GCL-IPL measurements accurately identified SGA children with the most severe grey and white matter changes in the brain. SGA children, both preterm and term born, showed evidence of structural abnormalities in the retina, which may be an accurate and non-invasive biomarker of neuronal damage in brain tissue. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia

    Directory of Open Access Journals (Sweden)

    Wahl D

    2017-09-01

    Full Text Available Devin Wahl,1,2 Sean CP Coogan,1,3 Samantha M Solon-Biet,1,2 Rafael de Cabo,4 James B Haran,5 David Raubenheimer,1,6,7 Victoria C Cogger,1,2 Mark P Mattson,8 Stephen J Simpson,1,2,7 David G Le Couteur1,2 1Charles Perkins Centre, University of Sydney, Sydney, 2Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia; 3Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada; 4Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; 5Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA; 6Faculty of Veterinary Science, 7School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; 8Laboratory of Neurosciences, National Institute on Aging’s Intramural Research Program, National Institutes of Health, Baltimore, MD, USA Abstract: Evaluation of behavior and cognition in rodent models underpins mechanistic and interventional studies of brain aging and neurodegenerative diseases, especially ­dementia. Commonly used tests include Morris water maze, Barnes maze, object recognition, fear ­conditioning, radial arm water maze, and Y maze. Each of these tests reflects some aspects of human memory including episodic memory, recognition memory, semantic memory, spatial memory, and emotional memory. Although most interventional studies in rodent models of dementia have focused on pharmacological agents, there are an increasing number of studies that have evaluated nutritional interventions including caloric restriction, intermittent fasting, and manipulation of macronutrients. Dietary interventions have been shown to influence ­various cognitive and behavioral tests in rodents indicating that nutrition can influence brain aging and possibly neurodegeneration. Keywords: calorie restriction, intermittent fasting, aging, memory, macronutrients

  18. Selective vulnerabilities of N-methyl-D-aspartate (NMDA receptors during brain aging

    Directory of Open Access Journals (Sweden)

    Brenna L Brim

    2010-03-01

    Full Text Available N-methyl-D-aspartate (NMDA receptors are present in high density within the cerebral cortex and hippocampus and play an important role in learning and memory. NMDA receptors are negatively affected by aging, but these effects are not uniform in many different ways. This review discusses the selective age-related vulnerabilities of different binding sites of the NMDA receptor complex, different subunits that comprise the complex, and the expression and functions of the receptor within different brain regions. Spatial reference, passive avoidance, and working memory, as well as place field stability and expansion all involve NMDA receptors. Aged animals show deficiencies in these functions, as compared to young, and some studies have identified an association between age-associated changes in the expression of NMDA receptors and poor memory performance. A number of diet and drug interventions have shown potential for reversing or slowing the effects of aging on the NMDA receptor. On the other hand, there is mounting evidence that the NMDA receptors that remain within aged individuals are not always associated with good cognitive functioning. This may be due to a compensatory response of neurons to the decline in NMDA receptor expression or a change in the subunit composition of the remaining receptors. These studies suggest that developing treatments that are aimed at preventing or reversing the effects of aging on the NMDA receptor may aid in ameliorating the memory declines that are associated with aging. However, we need to be mindful of the possibility that there may also be negative consequences in aged individuals.

  19. The access and processing of familiar idioms by brain-damaged and normally aging adults.

    Science.gov (United States)

    Tompkins, C A; Boada, R; McGarry, K

    1992-06-01

    Idiom interpretation tasks are routinely used in the clinical evaluation of adults with brain damage, and idiom processing has received increasing attention in the psycholinguistic literature. Clinical evidence suggests that adults with unilateral right-hemisphere damage (RHD) are insensitive to nonliteral meanings conveyed by idiomatic expressions and other figurative forms. However, this portrayal is derived from their terminal responses to tasks that reflect multiple aspects of mental operations (off-line measures), obscuring the source of poor performance. This study used an on-line word-monitoring task to assess RHD, left-hemisphere-damaged, and normally aging adults' implicit knowledge of familiar idiomatic expressions. Brain-damaged subjects performed similarly to normal controls on this task, even though the clinical subjects fared poorly by comparison on an off-line idiom definition measure. These results suggest that adults with unilateral brain damage can activate and retrieve familiar idiomatic forms, and that their idiom-interpretation deficits most likely reflect impairment at some later stage of information processing. Further, error analysis of idiom-definition performance did not support the customary characterization of RHD adults as excessively literal responders. The paper discusses clinical implications of the nature and use of idiom interpretation tasks.

  20. Effects of the nootropic agents adafenoxate and meclofenoxate on brain biogenic monoamines in aged rats.

    Science.gov (United States)

    Stancheva, S L; Petkov, V D; Petkov, V V

    1988-01-01

    The effect of the nootropic agents meclofenoxate (Mf) and adafenoxate (Adf) on the content of biogenic monoamines in the frontal cerebral cortex, striatum, hypothalamus, and hippocampus of 22-month-old rats was studied. Mf and Adf were administered orally for seven days twice daily in a dose of 50 mg/kg weight. Both agents tested increased the content of serotonin (5-HT) in the cortex and striatum. Adf also raised the noradrenaline (NA) content in the cortex and hippocampus, lowering the dopamine (DA) level in the striatum. Comparison of the results obtained in the present study with the finding of earlier experiments of ours on 4-5-month-old rats revealed the following: 1. Biogenic monoamines (BMA) in the brain tend to decrease with ageing. 2. In addition to the unidirectional effects of Mf and Adf on the BMA content in the brain of both young and old rats, but in some cases there were also differences. 3. The comparison of the effects of Mf and Adf on the BMA content in the different brain regions with the changes in this content, characteristic of certain diseases, reveals prospects for selectivity in the application of these nootropic agents, which are generally rather similar in pharmacological characteristics.

  1. Cyclin A2 promotes DNA repair in the brain during both development and aging.

    Science.gov (United States)

    Gygli, Patrick E; Chang, Joshua C; Gokozan, Hamza N; Catacutan, Fay P; Schmidt, Theresa A; Kaya, Behiye; Goksel, Mustafa; Baig, Faisal S; Chen, Shannon; Griveau, Amelie; Michowski, Wojciech; Wong, Michael; Palanichamy, Kamalakannan; Sicinski, Piotr; Nelson, Randy J; Czeisler, Catherine; Otero, José J

    2016-07-01

    Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss results in compensatory forebrain growth during late embryonic development. Using unbiased measurements of the forebrain stem cell niche, we parameterized a mathematical model whereby logistic growth instructs progenitor cells as to the cell-types of their progeny. Our data was consistent with prior findings that progenitors proliferate along an auto-inhibitory growth curve. The growth retardation inCCNA2-null brains corresponded to cell cycle lengthening, imposing a developmental delay. We hypothesized that Cyclin A2 regulates DNA repair and that CCNA2-null progenitors thus experienced lengthened cell cycle. We demonstrate that CCNA2-null progenitors suffer abnormal DNA repair, and implicate Cyclin A2 in double-strand break repair. Cyclin A2's DNA repair functions are conserved among cell lines, neural progenitors, and hippocampal neurons. We further demonstrate that neuronal CCNA2 ablation results in learning and memory deficits in aged mice.

  2. Age- and gender-related regional variations of human brain cortical thickness, complexity, and gradient in the third decade.

    Science.gov (United States)

    Creze, Maud; Versheure, Leslie; Besson, Pierre; Sauvage, Chloe; Leclerc, Xavier; Jissendi-Tchofo, Patrice

    2014-06-01

    Brain functional and cytoarchitectural maturation continue until adulthood, but little is known about the evolution of the regional pattern of cortical thickness (CT), complexity (CC), and intensity or gradient (CG) in young adults. We attempted to detect global and regional age- and gender-related variations of brain CT, CC, and CG, in 28 healthy young adults (19-33 years) using a three-dimensional T1 -weighted magnetic resonance imaging sequence and surface-based methods. Whole brain interindividual variations of CT and CG were similar to that in the literature. As a new finding, age- and gender-related variations significantly affected brain complexity (P middle temporal cortices (age), and the fronto-orbital cortex (gender), all in the right hemisphere. Regions of interest analyses showed age and gender significant interaction (P middle temporal-entorrhinal cortices bilaterally, as well as left inferior parietal. In addition, we found significant inverse correlations between CT and CC and between CT and CG over the whole brain and markedly in precentral and occipital areas. Our findings differ in details from previous reports and may correlate with late brain maturation and learning plasticity in young adults' brain in the third decade. Copyright © 2013 Wiley Periodicals, Inc.

  3. Alkali metals levels in the human brain tissue: Anatomical region differences and age-related changes.

    Science.gov (United States)

    Ramos, Patrícia; Santos, Agostinho; Pinto, Edgar; Pinto, Nair Rosas; Mendes, Ricardo; Magalhães, Teresa; Almeida, Agostinho

    2016-12-01

    The link between trace elements imbalances (both "toxic" and "essential") in the human brain and neurodegenerative disease has been subject of extensive research. More recently, some studies have highlighted the potential role of the homeostasis deregulation of alkali metals in specific brain regions as key factor in the pathogenesis of neurodegenerative diseases such as multiple sclerosis and Alzheimer's disease. Using flame atomic emission spectrometry and inductively coupled plasma-mass spectrometry after microwave-assisted acid digestion of the samples, alkali metals (Na, K, Li, Rb and Cs) were determined in 14 different areas of the human brain (frontal cortex, superior and middle temporal gyri, caudate nucleus, putamen, globus pallidus, cingulated gyrus, hippocampus, inferior parietal lobule, visual cortex of the occipital lobe, midbrain, pons, medulla and cerebellum) of adult individuals (n=42; 71±12, range: 50-101 years old) with no known history and evidence of neurodegenerative, neurological or psychiatric disorder. Potassium was found as the most abundant alkali metal, followed by Na, Rb, Cs and Li. Lithium, K and Cs distribution showed to be quite heterogeneous. On the contrary, Rb and Na appeared quite homogeneously distributed within the human brain tissue. The lowest levels of Na, K, Rb and Li were found in the brainstem (midbrain, medulla and pons) and cerebellum, while the lowest levels of Cs were found in the frontal cortex. The highest levels of K (mean±sd; range 15.5±2.5; 8.9-21.8mg/g) Rb (17.2±6.1; 3.9-32.4μg/g and Cs (83.4±48.6; 17.3-220.5ng/g) were found in putamen. The highest levels of Na and Li were found in the frontal cortex (11.6±2.4; 6.6-17.1mg/g) and caudate nucleus (7.6±4.6 2.2-21.3ng/g), respectively. Although K, Cs and Li levels appear to remain largely unchanged with age, some age-related changes were observed for Na and Rb levels in particular brain regions (namely in the hippocampus). Copyright © 2016 Elsevier GmbH. All

  4. GROSS MORPHOLOGY AND ENCEPHALIZATION QUOTIENT OF BRAIN IN MALE AND FEMALE VANARAJA CHICKENS AT DIFFERENT AGES

    Directory of Open Access Journals (Sweden)

    Kuldeep Kumar Panigrahy

    2017-06-01

    Full Text Available One hundred fifty day-old sexed Vanaraja chicks (75 male + 75 female were taken as experimental birds. Dissection of cranium was performed carefully and study of gross morphology of brain was undertaken at different ages in male and female birds. The brain in situ appeared like a ‘spade’ symbol in playing card but it appeared rather wider and globular in both sexes. The cerebrum varied from pear to oval or even globular in shape in both sexes. On dorsal view, the cerebral hemispheres appeared moderately convex and smooth surfaced. On ventral surface, ill-developed olfactory lobes were observed anteriorly on either side of the median fissure in both male and female Vanaraja birds. The hippocampus was located transversely to the posterior one third parts of both cerebral hemispheres. Duncan’s EQ ranged from 5.801 ± 0.514 (T3-Male to 5.944 ± 0.451 (T1-Female on 21st day. There was significant decrease (p<0.05 in EQ from Day 21 to 42 across all the groups. On 84th day, the range of EQ was 1.346 ± 0.115 (T3-Male to 1.444 ± 0.114 (T1-Female. In case of Cuvier’s EQ, on 21st day the value ranged from 35.079 ± 0.288 (T2-Male to 36.531 ± 0.312 (T3-Female. There was significant reduction (p<0.05 in Cuvier’s EQ value from Trial-I (21st day to Trial-II (42nd day. Again, a significant decrease in EQ value was evident from Trial-III (63rd Day to Trial-IV (84th Day. On 84th day, the EQ ranged from 15.607 ± 0.123 (T3-Male to 16.038c ± 0.125 (T2-Male. Duncan’s formula had very high correlation coefficient with brain length (0.915. There was also very high degree correlation between brain weight and body weight (0.963. Brain weight and neuronal size are also highly correlated (0.902. Neuronal size and brain volume are also having a high correlation (0.902. The EQ values had medium correlation with neuronal size (0.701 for Cuvier’s Formula and 0.713 for Duncan’s formula. Duncan’s and Cuvier’s value had a very high degree of correlation

  5. Age and sex differences in the effects of the immunosuppressants cyclosporine, sirolimus and everolimus on rat brain metabolism.

    Science.gov (United States)

    Gottschalk, Sven; Cummins, Carolyn L; Leibfritz, Dieter; Christians, Uwe; Benet, Leslie Z; Serkova, Natalie J

    2011-01-01

    Application of the widely used immunosuppressant (ISS) cyclosporine (CsA) is severely limited by a number of serious side-effects such as kidney and neurotoxicity. As we have shown before, CsA exhibits metabolic toxicity in brain-models. The macrolide ISSs sirolimus (SRL) and everolimus (RAD) are capable of modulating these CsA-induced effects. It was our aim to study the age-dependent metabolic changes in the rat brain after ISS-treatment and the possible role of the blood-brain-barrier in modulation of CsA metabolic toxicity. Young and adult rats were treated orally with one ISS alone or in combination with CsA for six days. Metabolic changes were assessed by nuclear magnetic resonance (NMR) spectroscopy of brain extracts as toxicodynamic endpoints. Brain P-glycoprotein (P-gp) and ISS concentrations were determined as pharmacokinetic endpoints. Young rats were more susceptible to CsA-induced inhibition of the Krebs cycle (glutamate: 78% of controls, glutamine: 82%, GABA: 71% in young vs. 85%, 89%, 92% in adult rats). Increased glycolysis after CsA-treatment was sufficient to maintain the energy state at control levels in adult brains, but not in the young rat brains (phosphocreatine: 35%). Tissue concentrations of CsA and SRL within the brain of young rats were three-fold higher, while concentrations of P-gp were three-fold higher in adult rat brains. Our results suggest that age-dependent differences in the blood-brain barrier led to increased ISS brain concentrations and hence inhibition of brain energy metabolism. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Gene expression reversal toward pre-adult levels in the aging human brain and age-related loss of cellular identity.

    Science.gov (United States)

    Dönertaş, Handan Melike; İzgi, Hamit; Kamacıoğlu, Altuğ; He, Zhisong; Khaitovich, Philipp; Somel, Mehmet

    2017-07-19

    It was previously reported that mRNA expression levels in the prefrontal cortex at old age start to resemble pre-adult levels. Such expression reversals could imply loss of cellular identity in the aging brain, and provide a link between aging-related molecular changes and functional decline. Here we analyzed 19 brain transcriptome age-series datasets, comprising 17 diverse brain regions, to investigate the ubiquity and functional properties of expression reversal in the human brain. Across all 19 datasets, 25 genes were consistently up-regulated during postnatal development and down-regulated in aging, displaying an "up-down" pattern that was significant as determined by random permutations. In addition, 113 biological processes, including neuronal and synaptic functions, were consistently associated with genes showing an up-down tendency among all datasets. Genes up-regulated during in vitro neuronal differentiation also displayed a tendency for up-down reversal, although at levels comparable to other genes. We argue that reversals may not represent aging-related neuronal loss. Instead, expression reversals may be associated with aging-related accumulation of stochastic effects that lead to loss of functional and structural identity in neurons.

  7. Effect of advancing age on outcomes of deep brain stimulation for Parkinson disease.

    Science.gov (United States)

    DeLong, Michael R; Huang, Kevin T; Gallis, John; Lokhnygina, Yuliya; Parente, Beth; Hickey, Patrick; Turner, Dennis A; Lad, Shivanand P

    2014-10-01

    Deep brain stimulation (DBS) is a well-established modality for the treatment of advanced Parkinson disease (PD). Recent studies have found DBS plus best medical therapy to be superior to best medical therapy alone for patients with PD and early motor complications. Although no specific age cutoff has been defined, most clinical studies have excluded patients older than 75 years of age. We hypothesize that increasing age would be associated with an increased number of postoperative complications. To evaluate the stepwise effect of increasing age (in 5-year epochs) on short-term complications following DBS surgery. A large, retrospective cohort study was performed using the Thomson Reuters MarketScan national database that examined 1757 patients who underwent DBS for PD during the period from 2000 to 2009. Primary measures examined included hospital length of stay and aggregate and individual complications within 90 days following surgery. Multivariate logistic regression analysis was used to calculate complication-related odds ratios (ORs) for each 5-year age epoch after controlling for covariates. Overall, 132 of 1757 patients (7.5%) experienced at least 1 complication within 90 days, including wound infections (3.6%), pneumonia (2.3%), hemorrhage or hematoma (1.4%), or pulmonary embolism (0.6%). After adjusting for covariates, we found that increasing age (ranging from patients with PD (>75 years) who were selected to undergo DBS surgery showed a similar 90-day complication risk (including postoperative hemorrhage or infection) compared with younger counterparts. Our findings suggest that age alone should not be a primary exclusion factor for determining candidacy for DBS. Instead, a clear focus on patients with medication-refractory and difficult to control on-off fluctuations with preserved cognition, regardless of age, may allow for an expansion of the traditional therapeutic window.

  8. Revisiting Metchnikoff: Age-related alterations in microbiota-gut-brain axis in the mouse.

    Science.gov (United States)

    Scott, Karen A; Ida, Masayuki; Peterson, Veronica L; Prenderville, Jack A; Moloney, Gerard M; Izumo, Takayuki; Murphy, Kiera; Murphy, Amy; Ross, R Paul; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-10-01

    Over the last decade, there has been increased interest in the role of the gut microbiome in health including brain health. This is by no means a new theory; Elie Metchnikoff proposed over a century ago that targeting the gut by consuming lactic acid bacteria such as those in yogurt, could improve or delay the onset of cognitive decline associated with ageing. However, there is limited information characterising the relationship between the behavioural and physiological sequelae of ageing and alterations in the gut microbiome. To this end, we assessed the behavioural, physiological and caecal microbiota profile of aged male mice. Older mice (20-21months old) exhibited deficits in spatial memory and increases in anxiety-like behaviours compared to younger mice (2-3months old). They also exhibited increased gut permeability, which was directly correlated with elevations in peripheral pro-inflammatory cytokines. Furthermore, stress exacerbated the gut permeability of aged mice. Examination of the caecal microbiota revealed significant increases in phylum TM7, family Porphyromonadaceae and genus Odoribacter of aged mice. This represents a shift of aged microbiota towards a profile previously associated with inflammatory disease, particularly gastrointestinal and liver disorders. Furthermore, Porphyromonadaceae, which has also been associated with cognitive decline and affective disorders, was directly correlated with anxiety-like behaviour in aged mice. These changes suggest that changes in the gut microbiota and associated increases in gut permeability and peripheral inflammation may be important mediators of the impairments in behavioural, affective and cognitive functions seen in ageing. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Consequences of lead exposure, and it's emerging role as an epigenetic modifier in the aging brain.

    Science.gov (United States)

    Eid, Aseel; Zawia, Nasser

    2016-09-01

    Lead exposure has primarily been a concern during development in young children and little attention has been paid to exposure outcomes as these children age, or even to exposures in adulthood. Childhood exposures have long term consequences, and adults who have been exposed to lead as children show a host of cognitive deficits. Lead has also been shown to induce latent changes in the aging brain, and has been implicated in the pathogenesis of neurodegenerative diseases, particularly Alzheimer's Disease, and Parkinson's. Recent research has shown that lead has the ability to alter DNA methylation, histone modifications, and miRNA expression in experimental models, and in humans. These findings implicate epigenetics in lead induced toxicity, and long term changes in individuals. Epigenetic modification could potentially provide us a mechanism by which the environment, and toxic exposures contribute to the increased susceptibility of adult neurodegenerative disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Cognitive control, cognitive reserve, and memory in the aging bilingual brain

    Science.gov (United States)

    Grant, Angela; Dennis, Nancy A.; Li, Ping

    2014-01-01

    In recent years bilingualism has been linked to both advantages in executive control and positive impacts on aging. Such positive cognitive effects of bilingualism have been attributed to the increased need for language control during bilingual processing and increased cognitive reserve, respectively. However, a mechanistic explanation of how bilingual experience contributes to cognitive reserve is still lacking. The current paper proposes a new focus on bilingual memory as an avenue to explore the relationship between executive control and cognitive reserve. We argue that this focus will enhance our understanding of the functional and structural neural mechanisms underlying bilingualism-induced cognitive effects. With this perspective we discuss and integrate recent cognitive and neuroimaging work on bilingual advantage, and suggest an account that links cognitive control, cognitive reserve, and brain reserve in bilingual aging and memory. PMID:25520695

  11. Sex differences in Alzheimer risk: Brain imaging of endocrine vs chronologic aging.

    Science.gov (United States)

    Mosconi, Lisa; Berti, Valentina; Quinn, Crystal; McHugh, Pauline; Petrongolo, Gabriella; Varsavsky, Isabella; Osorio, Ricardo S; Pupi, Alberto; Vallabhajosula, Shankar; Isaacson, Richard S; de Leon, Mony J; Brinton, Roberta Diaz

    2017-09-26

    This observational multimodality brain imaging study investigates emergence of endophenotypes of late-onset Alzheimer disease (AD) risk during endocrine transition states in a cohort of clinically and cognitively normal women and age-matched men. Forty-two 40- to 60-year-old cognitively normal women (15 asymptomatic perimenopausal by age [CNT], 13 perimenopausal [PERI], and 14 postmenopausal [MENO]) and 18 age- and education-matched men were examined. All patients had volumetric MRI, (18)F-fluoro-2-deoxyglucose (FDG)-PET (glucose metabolism), and Pittsburgh compound B-PET scans (β-amyloid [Aβ] deposition, a hallmark of AD pathology). As expected, the MENO group was older than the PERI and CNT groups. Otherwise, groups were comparable on clinical and neuropsychological measures and APOE4 distribution. Compared to CNT women and to men, and controlling for age, PERI and MENO groups exhibited increased indicators of AD endophenotype, including hypometabolism, increased Aβ deposition, and reduced gray and white matter volumes in AD-vulnerable regions (p endocrine transition of perimenopause. These data indicate that the optimal window of opportunity for therapeutic intervention in women is early in the endocrine aging process. © 2017 American Academy of Neurology.

  12. Alzheimer's disease and amyloid beta-peptide deposition in the brain: a matter of 'aging'?

    Science.gov (United States)

    Moro, Maria Luisa; Collins, Matthew J; Cappellini, Enrico

    2010-04-01

    Biomolecules can experience aging processes that limit their long-term functionality in organisms. Typical markers of protein aging are spontaneous chemical modifications, such as AAR (amino acid racemization) and AAI (amino acid isomerization), mainly involving aspartate and asparagine residues. Since these modifications may affect folding and turnover, they reduce protein functionality over time and may be linked to pathological conditions. The present mini-review describes evidence of AAR and AAI involvement in the misfolding and brain accumulation of Abeta (amyloid beta-peptide), a central event in AD (Alzheimer's disease) synaptic dysfunctions. Structural alterations introduced by site-specific modifications linked to protein aging may affect Abeta production, polymerization and clearance, and therefore play a pivotal role in the pathogenesis of sporadic and genetic forms of AD. Early changes associated with molecular aging also have significant long-term consequences for Abeta folding and turnover. New fast, reproducible and accurate methods for the screening of protein aging markers in biological samples may contribute to improve diagnostic and therapeutic approaches in AD.

  13. Evaluation of brain ageing: a quantitative longitudinal MRI study over 7 years

    Energy Technology Data Exchange (ETDEWEB)

    Gracien, Rene-Maxime; Nuernberger, Lucas; Hof, Stephanie-Michelle; Reitz, Sarah C.; Hilker-Roggendorf, Ruediger; Baudrexel, Simon [Goethe University, Department of Neurology, Frankfurt/Main (Germany); Goethe University, Brain Imaging Center, Frankfurt/Main (Germany); Hok, Pavel [Goethe University, Department of Neurology, Frankfurt/Main (Germany); Goethe University, Brain Imaging Center, Frankfurt/Main (Germany); Palacky University, Department of Neurology, Olomouc (Czech Republic); Rueb, Udo [Goethe University, Dr. Senckenberg Chronomedical Institute, Frankfurt/Main (Germany); Steinmetz, Helmuth [Goethe University, Department of Neurology, Frankfurt/Main (Germany); Klein, Johannes C. [Goethe University, Department of Neurology, Frankfurt/Main (Germany); Goethe University, Brain Imaging Center, Frankfurt/Main (Germany); University of Oxford, Nuffield Department of Clinical Neurosciences, Oxford (United Kingdom); Deichmann, Ralf [Goethe University, Brain Imaging Center, Frankfurt/Main (Germany)

    2017-04-15

    T1 relaxometry is a promising tool for the assessment of microstructural changes during brain ageing. Previous cross-sectional studies demonstrated increasing T1 values in white and decreasing T1 values in grey matter over the lifetime. However, these findings have not yet been confirmed on the basis of a longitudinal study. In this longitudinal study over 7 years, T1 relaxometry was used to investigate the dynamics of age-related microstructural changes in older healthy subjects. T1 mapping was performed in 17 healthy subjects (range 51-77 years) at baseline and after 7 years. Advanced cortical and white matter segmentation was used to determine mean T1 values in the cortex and white matter. The analysis revealed a decrease of mean cortical T1 values over 7 years, the rate of T1 reduction being more prominent in subjects with higher age. T1 decreases were predominantly localized in the lateral frontal, parietal and temporal cortex. In contrast, mean white matter T1 values remained stable. T1 mapping is shown to be sensitive to age-related microstructural changes in healthy ageing subjects in a longitudinal setting. Data of a cohort in late adulthood and the senescence period demonstrate a decrease of cortical T1 values over 7 years, most likely reflecting decreasing water content and increased iron concentrations. (orig.)

  14. Turning down the noise: the benefit of musical training on the aging auditory brain.

    Science.gov (United States)

    Alain, Claude; Zendel, Benjamin Rich; Hutka, Stefanie; Bidelman, Gavin M

    2014-02-01

    Age-related decline in hearing abilities is a ubiquitous part of aging, and commonly impacts speech understanding, especially when there are competing sound sources. While such age effects are partially due to changes within the cochlea, difficulties typically exist beyond measurable hearing loss, suggesting that central brain processes, as opposed to simple peripheral mechanisms (e.g., hearing sensitivity), play a critical role in governing hearing abilities late into life. Current training regimens aimed to improve central auditory processing abilities have experienced limited success in promoting listening benefits. Interestingly, recent studies suggest that in young adults, musical training positively modifies neural mechanisms, providing robust, long-lasting improvements to hearing abilities as well as to non-auditory tasks that engage cognitive control. These results offer the encouraging possibility that musical training might be used to counteract age-related changes in auditory cognition commonly observed in older adults. Here, we reviewed studies that have examined the effects of age and musical experience on auditory cognition with an emphasis on auditory scene analysis. We infer that musical training may offer potential benefits to complex listening and might be utilized as a means to delay or even attenuate declines in auditory perception and cognition that often emerge later in life. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Traumatic Brain Injury in Qatar: Age Matters—Insights from a 4-Year Observational Study

    Directory of Open Access Journals (Sweden)

    Moamena El-Matbouly

    2013-01-01

    Full Text Available Background. Overall traumatic brain injury (TBI incidence and related death rates vary across different age groups. Objectives. To evaluate the incidence, causes, and outcome of TBI in adolescents and young adult population in Qatar. Method. This was a retrospective review of all TBIs admitted to the trauma center between January 2008 and December 2011. Demographics, mechanism of injury, morbidity, and mortality were analyzed in different age groups. Results. A total of 1665 patients with TBI were admitted; the majority were males (92% with a mean age of 28 ± 16 years. The common mechanism of injury was motor vehicle crashes and falls from height (51% and 35%, resp.. TBI was incidentally higher in young adults (34% and middle age group (21%. The most frequent injuries were contusion (40%, subarachnoid (25%, subdural (24%, and epidural hemorrhage (18%. The mortality rate was 11% among TBI patients. Mortality rates were 8% and 12% among adolescents and young adults, respectively. The highest mortality rate was observed in elderly patients (35%. Head AIS, ISS, and age were independent predictors for mortality. Conclusion. Adolescents and adults sustain significant portions of TBI, whereas mortality is much higher in the older group. Public awareness and injury prevention campaigns should target young population.

  16. Deciphering the histone code using mass spectrometry

    Science.gov (United States)

    Ueberheide, Beatrix M.; Mollah, Sahana

    2007-01-01

    During the past decade, studies surrounding chromatin research have grown exponentially. A major focus of chromatin biology is centered on understanding of how histone modifications alter chromatin structure at the molecular and mechanistic levels. Discoveries are being made at a rapid pace due to the advent of new and innovative techniques. Mass spectrometry has emerged as a powerful tool in the field of histone research due to its speed, sensitivity, and ease of use. This has resulted in the identification of a number of novel histone modification sites. In consequence, new roles in biological processes have been discovered and hypothetical models, such as the `histone code' have been reaffirmed or refined. One significant advantage to using mass spectrometric techniques is that the combinations of modifications on different sites can be determined which is crucial to deciphering the `histone code'. In this manuscript, the mass spectrometric approaches developed over the past decade for both qualitative and quantitative analysis of histone post-translational modifications (PTMs) are discussed.

  17. Deciphering interactions in moving animal groups.

    Directory of Open Access Journals (Sweden)

    Jacques Gautrais

    Full Text Available Collective motion phenomena in large groups of social organisms have long fascinated the observer, especially in cases, such as bird flocks or fish schools, where large-scale highly coordinated actions emerge in the absence of obvious leaders. However, the mechanisms involved in this self-organized behavior are still poorly understood, because the individual-level interactions underlying them remain elusive. Here, we demonstrate the power of a bottom-up methodology to build models for animal group motion from data gathered at the individual scale. Using video tracks of fish shoal in a tank, we show how a careful, incremental analysis at the local scale allows for the determination of the stimulus/response function governing an individual's moving decisions. We find in particular that both positional and orientational effects are present, act upon the fish turning speed, and depend on the swimming speed, yielding a novel schooling model whose parameters are all estimated from data. Our approach also leads to identify a density-dependent effect that results in a behavioral change for the largest groups considered. This suggests that, in confined environment, the behavioral state of fish and their reaction patterns change with group size. We debate the applicability, beyond the particular case studied here, of this novel framework for deciphering interactions in moving animal groups.

  18. The Feasibility and Potential Impact of Brain Training Games on Cognitive and Emotional Functioning in Middle-Aged Adults.

    Science.gov (United States)

    McLaughlin, Paula M; Curtis, Ashley F; Branscombe-Caird, Laura M; Comrie, Janna K; Murtha, Susan J E

    2017-11-30

    To investigate whether a commercially available brain training program is feasible to use with a middle-aged population and has a potential impact on cognition and emotional well-being (proof of concept). Fourteen participants (ages 46-55) completed two 6-week training conditions using a crossover (counterbalanced) design: (1) experimental brain training condition and (2) active control "find answers to trivia questions online" condition. A comprehensive neurocognitive battery and a self-report measure of depression and anxiety were administered at baseline (first time point, before training) and after completing each training condition (second time point at 6 weeks, and third time point at 12 weeks). Cognitive composite scores were calculated for participants at each time point. Study completion and protocol adherence demonstrated good feasibility of this brain training protocol in healthy middle-aged adults. Exploratory analyses suggested that brain training was associated with neurocognitive improvements related to executive attention, as well as improvements in mood. Overall, our findings suggest that brain training programs are feasible in middle-aged cohorts. We propose that brain training games may be linked to improvements in executive attention and affect by promoting cognitive self-efficacy in middle-aged adults.

  19. Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Hunter

    Full Text Available Key pathological hallmarks of Alzheimer's disease (AD, including amyloid plaques, cerebral amyloid angiopathy (CAA and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1 nonagenarians with AD and a high amyloid plaque load; 2 nonagenarians with no dementia and a high amyloid plaque load; 3 nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND group (average age 71 years with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular "dysfunction" compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD.

  20. Blood-brain barrier and cerebral blood flow: Age differences in hemorrhagic stroke

    Directory of Open Access Journals (Sweden)

    Semyachkina-Glushkovskaya Oxana

    2015-11-01

    Full Text Available Neonatal stroke is similar to the stroke that occurs in adults and produces a significant morbidity and long-term neurologic and cognitive deficits. There are important differences in the factors, clinical events and outcomes associated with the stroke in infants and adults. However, mechanisms underlying age differences in the stroke development remain largely unknown. Therefore, treatment guidelines for neonatal stroke must extrapolate from the adult data that is often not suitable for children. The new information about differences between neonatal and adult stroke is essential for identification of significant areas for future treatment and effective prevention of neonatal stroke. Here, we studied the development of stress-induced hemorrhagic stroke and possible mechanisms underlying these processes in newborn and adult rats. Using histological methods and magnetic resonance imaging, we found age differences in the type of intracranial hemorrhages. Newborn rats demonstrated small superficial bleedings in the cortex while adult rats had more severe deep bleedings in the cerebellum. Using Doppler optical coherent tomography, we found higher stress-reactivity of the sagittal sinus to deleterious effects of stress in newborn vs. adult rats suggesting that the cerebral veins are more vulnerable to negative stress factors in neonatal vs. adult brain in rats. However, adult but not newborn rats demonstrated the stroke-induced breakdown of blood brain barrier (BBB permeability. The one of possible mechanisms underlying the higher resistance to stress-related stroke injures of cerebral vessels in newborn rats compared with adult animals is the greater expression of two main tight junction proteins of BBB (occludin and claudin-5 in neonatal vs. mature brain in rats.

  1. Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain.

    Science.gov (United States)

    Dassati, Sarah; Waldner, Andreas; Schweigreiter, Rüdiger

    2014-07-01

    Apolipoprotein D (ApoD) is an ancient member of the lipocalin family with a high degree of sequence conservation from insects to mammals. It is not structurally related to other major apolipoproteins and has been known as a small, soluble carrier protein of lipophilic molecules that is mostly expressed in neurons and glial cells within the central and peripheral nervous system. Recent data indicate that ApoD not only supplies cells with lipophilic molecules, but also controls the fate of these ligands by modulating their stability and oxidation status. Of particular interest is the binding of ApoD to arachidonic acid and its derivatives, which play a central role in healthy brain function. ApoD has been shown to act as a catalyst in the reduction of peroxidized eicosanoids and to attenuate lipid peroxidation in the brain. Manipulating its expression level in fruit flies and mice has demonstrated that ApoD has a favorable effect on both stress resistance and life span. The APOD gene is the gene that is upregulated the most in the aging human brain. Furthermore, ApoD levels in the nervous system are elevated in a large number of neurologic disorders including Alzheimer's disease, schizophrenia, and stroke. There is increasing evidence for a prominent neuroprotective role of ApoD because of its antioxidant and anti-inflammatory activity. ApoD emerges as an evolutionarily conserved anti-stress protein that is induced by oxidative stress and inflammation and may prove to be an effective therapeutic agent against a variety of neuropathologies, and even against aging. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Coordinated Gene Expression of Neuroinflammatory and Cell Signaling Markers in Dorsolateral Prefrontal Cortex during Human Brain Development and Aging

    Science.gov (United States)

    Primiani, Christopher T.; Ryan, Veronica H.; Rao, Jagadeesh S.; Cam, Margaret C.; Ahn, Kwangmi; Modi, Hiren R.; Rapoport, Stanley I.

    2014-01-01

    Background Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases. Hypothesis Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes in phenotypic networks or cascades. Methods We used a large-scale microarray dataset from human prefrontal cortex, BrainCloud, to quantify age changes over the lifespan, divided into Development (0 to 21 years, 87 brains) and Aging (22 to 78 years, 144 brains) intervals, in transcription levels of 39 genes. Results Gene expression levels followed different trajectories over the lifespan. Many changes were intercorrelated within three similar groups or clusters of genes during both Development and Aging, despite different roles of the gene products in the two intervals. During Development, changes were related to reported neuronal loss, dendritic growth and pruning, and microglial events; TLR4, IL1R1, NFKB1, MOBP, PLA2G4A, and PTGS2 expression increased in the first years of life, while expression of synaptic genes GAP43 and DBN1 decreased, before reaching plateaus. During Aging, expression was upregulated for potentially pro-inflammatory genes such as NFKB1, TRAF6, TLR4, IL1R1, TSPO, and GFAP, but downregulated for neurotrophic and synaptic integrity genes such as BDNF, NGF, PDGFA, SYN, and DBN1. Conclusions Coordinated changes in gene transcription cascades underlie changes in synaptic, neurotrophic, and inflammatory phenotypic networks during brain Development and Aging. Early postnatal expression changes relate to neuronal, glial, and myelin growth and synaptic pruning events, while late Aging is associated with pro-inflammatory and synaptic loss changes. Thus, comparable

  3. Contribution of brain atrophy on CT and aging to intelligence level. A clonological study through multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Makoto (Showa Univ., Tokyo (Japan). School of Medicine)

    1984-09-01

    Decrased intellectual functions due to senility have been much discussed in connection with aging or brain atrophy alternatively. But this change should be analysed under multifactorial basis. Furthermore, variations between individuals should be taken into account in dealing with an advanced age group. In these regards, the author performed multivariate analysis on intellectual changes, aging and brain atrophy demonstrated on brain CT. Clonological study was also performed to reveal the individual variations. The objects were consisted of 72 people, including the patients of more than 65 years of age who were hospitalized to a geriatrics hospital because of senile dementia, and, as a control group residents in a home for the aged nearby the hospital. Average age was 75.4 years old. Intellectual level was measured through Hasegawa's dementia rating scale. Ventricular enlargement was measured on brain CT to determine the severity of brain atrophy. These two factors and age were processed with multivariate analysis. And chronological study was made to the deviation of intellectual level vs. the change of ventricular enlargement. As the result, firstly, this simple analysing model was able to reveal some aspects of the deteriorating phenomena of intellectual level through double factorial basis, i.e. brain atrophy on CT and age. Secondly, the group showing greater changes in the brain atrophy on CT, which included one case with rapid deterioration in dementia scale of more than 10 points, was distributed mainly around full marks or zero point in dementia scale. This result postulates that the range of the dementia scale should be expanded upwrds as well as downwards for the better explanation of the relation between intellectual deterioration and above mentioned two factors.

  4. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging

    Directory of Open Access Journals (Sweden)

    Sandra B Chapman

    2013-11-01

    Full Text Available Physical exercise, particularly aerobic exercise, is documented as providing a low cost regimen to counter well-documented cognitive declines including memory, executive function, visuospatial skills, and processing speed in normally aging adults. Prior aging studies focused largely on the effects of medium to long term (>6 months exercise training; however, the shorter term effects have not been studied. In the present study, we examined changes in brain blood flow, cognition, and fitness in 37 cognitively healthy sedentary adults (57 – 75 years of age who were randomized into physical training or a wait-list control group. The physical training group received supervised aerobic exercise for 3 sessions per week one hour each for 12 weeks. Participants’ cognitive, cardiovascular fitness and resting cerebral blood flow (CBF were assessed at baseline (T1, mid (T2 and post-training (T3. We found higher resting CBF in the anterior cingulate region in the physical training group as compared to the control group from T1 to T3. Cognitive gains were manifested in the exercise group’s improved immediate and delayed memory performance from T1 to T3 which also showed a significant positive association with increases in both left and right hippocampal CBF identified earlier in the time course at T2. Additionally, the two cardiovascular parameters, VO2 max and rating of perceived exertion showed gains, compared to the control group. These data suggest that even shorter term aerobic exercise can facilitate neuroplasticity to reduce both the biological and cognitive consequences of aging to benefit brain health in sedentary adults.

  5. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain.

    Science.gov (United States)

    Andriani, Grasiella A; Vijg, Jan; Montagna, Cristina

    2017-01-01

    Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. Copyright © 2016. Published by Elsevier B.V.

  6. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.

    2013-02-19

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.

  7. Age-related influences of prior sleep on brain activation during verbal encoding

    Directory of Open Access Journals (Sweden)

    Michelle B Jonelis

    2012-04-01

    Full Text Available Disrupted sleep is more common in older adults (OA than younger adults (YA, often co-morbid with other conditions. How these sleep disturbances affect cognitive performance is an area of active study. We examined whether brain activation during verbal encoding correlates with sleep quantity and quality the night before testing in a group of healthy OA and YA. Twenty-seven OA (ages 59-82 and twenty-seven YA (ages 19-36 underwent one night of standard polysomnography. Twelve hours post-awakening, subjects performed a verbal encoding task while undergoing functional MRI. Analyses examined the group (OA vs. YA by prior sleep quantity (Total Sleep Time (TST or quality (Sleep Efficiency (SE interaction on cerebral activation, controlling for performance. Longer TST promoted higher levels of activation in the bilateral anterior parahippocampi in OA and lower activation levels in the left anterior parahippocampus in YA. Greater SE promoted higher activation levels in the left posterior parahippocampus and right inferior frontal gyrus in YA, but not in OA. The roles of these brain regions in verbal encoding suggest, in OA, longer sleep duration may facilitate functional compensation during cognitive challenges. By contrast, in YA, shorter sleep duration may necessitate functional compensation to maintain cognitive performance, similar to what is seen following acute sleep deprivation. Additionally, in YA, better sleep quality may improve semantic retrieval processes, thereby aiding encoding.

  8. The Lateralization of Intrinsic Networks in the Aging Brain Implicates the Effects of Cognitive Training.

    Science.gov (United States)

    Luo, Cheng; Zhang, Xingxing; Cao, Xinyi; Gan, Yulong; Li, Ting; Cheng, Yan; Cao, Weifang; Jiang, Lijuan; Yao, Dezhong; Li, Chunbo

    2016-01-01

    Lateralization of function is an important organization of the human brain. The distribution of intrinsic networks in the resting brain is strongly related to cognitive function, gender and age. In this study, a longitudinal design with 1 year's duration was used to evaluate the cognitive training effects on the lateralization of intrinsic networks among healthy older adults. The subjects were divided into two groups randomly: one with multi-domain cognitive training over 3 months and the other as a wait-list control group. Resting state fMRI data were acquired before training and 1 year after training. We analyzed the functional lateralization in 10 common resting state fMRI networks. We observed statically significant training effects on the lateralization of two important RSNs related to high-level cognition: right- and left- frontoparietal networks (FPNs). The lateralization of the left-FPN was retained especially well in the training group but decreased in the control group. The increased lateralization with aging was observed in the cerebellum network (CereN), in which the lateralization was significantly increased in the control group, although the same change tendency was observed in the training group. These findings indicate that the lateralization of the high-level cognitive intrinsic networks is sensitive to multi-domain cognitive training. This study provides neuroimaging evidence to support the hypothesis that cognitive training should have an advantage in preventing cognitive decline in healthy older adults.

  9. Growth hormone, insulin-like growth factor-1 and the aging brain.

    Science.gov (United States)

    Ashpole, Nicole M; Sanders, Jessica E; Hodges, Erik L; Yan, Han; Sonntag, William E

    2015-08-01

    Growth hormone (GH) and insulin-like growth factor (IGF)-1 regulate the development and function of cells throughout the body. Several clinical diseases that result in a decline in physical and mental functions are marked by mutations that disrupt GH or IGF-1 signaling. During the lifespan there is a robust decrease in both GH and IGF-1. Because GH and IGF-1 are master regulators of cellular function, impaired GH and IGF-1 signaling in aging/disease states leads to significant alterations in tissue structure and function, especially within the brain. This review is intended to highlight the effects of the GH and IGF-1 on neuronal structure, function, and plasticity. Furthermore, we address several potential mechanisms through which the age-related reductions in GH and IGF-1 affect cognition. Together, the studies reviewed here highlight the importance of maintaining GH and IGF-1 signaling in order to sustain proper brain function throughout the lifespan. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Differences in age-related effects on brain volume in Down syndrome as compared to Williams syndrome and typical development.

    Science.gov (United States)

    Koran, Mary Ellen I; Hohman, Timothy J; Edwards, Courtney M; Vega, Jennifer N; Pryweller, Jennifer R; Slosky, Laura E; Crockett, Genea; Villa de Rey, Lynette; Meda, Shashwath A; Dankner, Nathan; Avery, Suzanne N; Blackford, Jennifer U; Dykens, Elisabeth M; Thornton-Wells, Tricia A

    2014-01-01

    Individuals with Down Syndrome (DS) are reported to experience early onset of brain aging. However, it is not well understood how pre-existing neurodevelopmental effects versus neurodegenerative processes might be contributing to the observed pattern of brain atrophy in younger adults with DS. The aims of the current study were to: (1) to confirm previous findings of age-related changes in DS compared to adults with typical development (TD), (2) to test for an effect of these age-related changes in a second neurodevelopmental disorder, Williams syndrome (WS), and (3) to identify a pattern of regional age-related effects that are unique to DS. High-resolution T1-weighted MRI of the brains of subjects with DS, WS, and TD controls were segmented, and estimates of regional brain volume were derived using FreeSurfer. A general linear model was employed to test for age-related effects on volume between groups. Secondary analyses in the DS group explored the relationship between brain volume and neuropsychological tests and APOE. Consistent with previous findings, the DS group showed significantly greater age-related effects relative to TD controls in total gray matter and in regions of the orbitofrontal cortex and the parietal cortex. Individuals with DS also showed significantly greater age-related effects on volume of the left and right inferior lateral ventricles (LILV and RILV, respectively). There were no significant differences in age-related effects on volume when comparing the WS and TD groups. In the DS group, cognitive tests scores measuring signs of dementia and APOE ϵ4 carrier status were associated with LILV and RILV volume. Individuals with DS demonstrated a unique pattern of age-related effects on gray matter and ventricular volume, the latter of which was associated with dementia rating scores in the DS group. Results may indicate that early onset of brain aging in DS is primarily due to DS-specific neurodegenerative processes, as opposed to general

  11. Gender- and region-dependent changes of redox biomarkers in the brain of successfully aging LOU/C rats.

    Science.gov (United States)

    Moyse, Emmanuel; Arseneault, Madeleine; Gaudreau, Pierrette; Ferland, Guylaine; Ramassamy, Charles

    2015-07-01

    The LOU/C (LOU) rat is an obesity resistant strain with higher longevity and healthspan than common rats. The management of oxidative stress being important to successful aging, we characterized this process in the aging LOU rat. Male/female LOU rats were euthanized at 4, 20, and 29 months. Macrodissected hippocampus, striatum, parietal cortex, cerebellum were assayed for tissue concentrations of glutathione (GSH), gamma-glutamyl-cysteine-synthetase (γ-GCS), total thiols, protein carbonyls, mRNAs of clusterin and the known protective enzymes thioredoxine-1 (TRX-1), glutaredoxine-1 (GLRX-1), superoxide dismutase-1 (SOD-1). Brain levels of GSH, γ-GCS, total thiols remained constant with age, except for GSH and γ-GCS which decreases in females. Clusterin, TRX-1, GLRX-1, SOD-1 mRNA levels were maintained or increased in the hippocampus with age. Age-dependency of the markers differed between sexes, with SOD-1 and TRX-1 decreases out of hippocampus in females. Since antioxidants were reported to decrease with age in the brain of Wistar rats, maintenance of GSH levels and of protective enzymes mRNA levels in the LOU rat brain could contribute to the preservation of cognitive functions in old age. Altogether, the successful aging of LOU rats may, at least in part, involve the conservation of functional antioxidant mechanisms in the brain, supporting the oxidative stress theory of aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Brain aging in normal Egyptians: cognition, education, personality, genetic and immunological study.

    Science.gov (United States)

    Elwan, Osamah; Madkour, Obsis; Elwan, Fadia; Mostafa, Mervat; Abbas Helmy, Azza; Abdel-Naseer, Maged; Abdel Shafy, Sanaa; El Faiuomy, Nervana

    2003-07-15

    Studying the cognitive and immunological changes that occur in old age as well as genetic function have been considered an important subject to differentiate between normal brain aging and early dementia especially Alzheimer's disease. The aim of this study is to stress on age-related neuropsychological and electrophysiological (P(300)) changes in normal Egyptian subjects, to throw light on the value of genetic (Apo-E(4) genotype) and immunological markers [interleukin-6 (IL-6) and intercellular adhesion molecules (ICAM-1) in the serum] as tools used in early detection of cognitive decline in cerebral aging. Ninety-four normal Egyptian subjects (below and above 60 years) were submitted to the following: (1) neuropsychological tests for testing memory, perception, psychomotor performance and attention, (2) Eysenck Personality Questionnaire (EPQ) for personality traits, (3) event-related potential study (P(300), latency and amplitude), (4) genetic test for detection of Apolipoprotein E genotype and (5) immunological studies including detection of the level of IL-6 and ICAM-1 in serum. There was a significant impairment of memory, psychomotor performance and perception in elderly subjects particularly males and subjects with low level of education. Regarding personality, significantly high scores were obtained in neuroticism scale of EPQ in elderly subjects. Apo-E(3)/E(3) was the most common genotype encountered in Egyptian subjects (49.1%). It was found that subjects with Apo-E(4) genotype did significantly worse in scores of intentional memory test (sensory memory) when compared with other genotypes. Statistically significant impairment in attention and sensory memory was found in subjects with high IL-6 level. This could not be detected in subjects with high ICAM-1 level. In conclusion, advancing age and lower levels of education are considered risk factors for cognitive decline in normal brain aging. Neuropsychological tests remain as the highly sensitive tools

  13. Evaluation of brain ageing: a quantitative longitudinal MRI study over 7 years.

    Science.gov (United States)

    Gracien, René-Maxime; Nürnberger, Lucas; Hok, Pavel; Hof, Stephanie-Michelle; Reitz, Sarah C; Rüb, Udo; Steinmetz, Helmuth; Hilker-Roggendorf, Rüdiger; Klein, Johannes C; Deichmann, Ralf; Baudrexel, Simon

    2017-04-01

    T1 relaxometry is a promising tool for the assessment of microstructural changes during brain ageing. Previous cross-sectional studies demonstrated increasing T1 values in white and decreasing T1 values in grey matter over the lifetime. However, these findings have not yet been confirmed on the basis of a longitudinal study. In this longitudinal study over 7 years, T1 relaxometry was used to investigate the dynamics of age-related microstructural changes in older healthy subjects. T1 mapping was performed in 17 healthy subjects (range 51-77 years) at baseline and after 7 years. Advanced cortical and white matter segmentation was used to determine mean T1 values in the cortex and white matter. The analysis revealed a decrease of mean cortical T1 values over 7 years, the rate of T1 reduction being more prominent in subjects with higher age. T1 decreases were predominantly localized in the lateral frontal, parietal and temporal cortex. In contrast, mean white matter T1 values remained stable. T1 mapping is shown to be sensitive to age-related microstructural changes in healthy ageing subjects in a longitudinal setting. Data of a cohort in late adulthood and the senescence period demonstrate a decrease of cortical T1 values over 7 years, most likely reflecting decreasing water content and increased iron concentrations. • T1 mapping is sensitive to age-related microstructural changes in a longitudinal setting. • T1 decreases were predominantly localized in the lateral frontal, parietal and temporal cortex. • The rate of T1 reduction was more prominent in subjects with higher age. • These changes most likely reflect decreasing cortical water and increasing iron concentrations.

  14. ABCC9/SUR2 in the brain: implications for hippocampal sclerosis of aging and a potential therapeutic target

    Science.gov (United States)

    Nelson, Peter T.; Jicha, Gregory A.; Wang, Wang-Xia; Ighodaro, Eseosa; Artiushin, Sergey; Nichols, Colin G.; Fardo, David W.

    2015-01-01

    The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium (“KATP”) channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The KATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is a result of ABCC9 mutations; we discuss neurologic manifestations of this genetic syndrome. More common brain disorders linked to ABCC9 gene variants include hippocampal sclerosis of aging (HS-Aging), sleep disorders, and depression. HS-Aging is a prevalent neurological disease with pathologic features of both neurodegenerative (aberrant TDP-43) and cerebrovascular (arteriolosclerosis) disease. As to potential therapeutic intervention, the human pharmacopeia features both SUR2 agonists and antagonists, so ABCC9/SUR2 may provide a “druggable target”, relevant perhaps to both HS-Aging and Alzheimer’s disease. We conclude that more work is required to better understand the roles of ABCC9/SUR2 in the human brain during health and disease conditions. PMID:26226329

  15. The construction of MRI brain/head templates for Chinese children from 7 to 16 years of age

    Directory of Open Access Journals (Sweden)

    Wanze Xie

    2015-10-01

    Full Text Available Population-specific brain templates that provide detailed brain information are beneficial to both structural and functional neuroimaging research. However, age-specific MRI templates have not been constructed for Chinese or any Asian developmental populations. This study developed novel T1-weighted average brain and head templates for Chinese children from 7 to 16 years of age in two-year increments using high quality magnetic resonance imaging (MRI and well-validated image analysis techniques. A total of 138 Chinese children (51 F/87 M were included in this study. The internally and externally validated registrations show that these Chinese age-specific templates fit Chinese children's MR images significantly better than age-specific templates created from U.S. children, or adult templates based on either Chinese or North American adults. It implies that age-inappropriate (e.g., the Chinese56 template, the US20–24 template and nationality-inappropriate brain templates (e.g., U.S. children's templates, the US20–24 template do not provide optimal reference MRIs for processing MR brain images of Chinese pediatric populations. Thus, our age-specific MRI templates are the first of the kind and should be useful in neuroimaging studies with children from Chinese or other Asian populations. These templates can also serve as the foundations for the construction of more comprehensive sets of nationality-specific templates for Asian developmental populations. These templates are available for use in our database.

  16. Unraveling the characteristics of microRNA regulation in the developmental and aging process of the human brain.

    Science.gov (United States)

    Li, Weiguo; Chen, Lina; Li, Wan; Qu, Xiaoli; He, Weiming; He, Yuehan; Feng, Chenchen; Jia, Xu; Zhou, Yanyan; Lv, Junjie; Liang, Binhua; Chen, Binbin; Jiang, Jing

    2013-12-09

    Structure and function of the human brain are subjected to dramatic changes during its development and aging. Studies have demonstrated that microRNAs (miRNAs) play an important role in the regulation of brain development and have a significant impact on brain aging and neurodegeneration. However, the underlining molecular mechanisms are not well understood. In general, development and aging are conventionally studied separately, which may not completely address the physiological mechanism over the entire lifespan. Thus, we study the regulatory effect between miRNAs and mRNAs in the developmental and aging process of the human brain by integrating miRNA and mRNA expression profiles throughout the lifetime. In this study, we integrated miRNA and mRNA expression profiles in the human brain across lifespan from the network perspective. First, we chose the age-related miRNAs by polynomial regression models. Second, we constructed the bipartite miRNA-mRNA regulatory network by pair-wise correlation coefficient analysis between miRNA and mRNA expression profiles. At last, we constructed the miRNA-miRNA synergistic network from the miRNA-mRNA network, considering not only the enrichment of target genes but also GO function enrichment of co-regulated target genes. We found that the average degree of age-related miRNAs was significantly higher than that of non age-related miRNAs in the miRNA-mRNA regulatory network. The topological features between age-related and non age-related miRNAs were significantly different, and 34 reliable age-related miRNA synergistic modules were identified using Cfinder in the miRNA-miRNA synergistic network. The synergistic regulations of module genes were verified by reviewing miRNA target databases and previous studies. Age-related miRNAs play a more important role than non age-related mrRNAs in the developmental and aging process of the human brain. The age-related miRNAs have synergism, which tend to work together as small modules. These

  17. Hippocampal Neurogenesis Levels Predict WATERMAZE Search Strategies in the Aging Brain

    Science.gov (United States)

    Choquette, Will; Gothard, Russ; Simpson, Jessica M.; Christie, Brian R.

    2013-01-01

    The hippocampus plays a crucial role in the formation of spatial memories, and it is thought that adult hippocampal neurogenesis may participate in this form of learning. To better elucidate the relationship between neurogenesis and spatial learning, we examined both across the entire life span of mice. We found that cell proliferation, neuronal differentiation, and neurogenesis significantly decrease with age, and that there is an abrupt reduction in these processes early on, between 1.5-3 months of age. After this, the neurogenic capacity continues to decline steadily. The initial abrupt decline in adult neurogenesis was paralleled by a significant reduction in Morris Water Maze performance, however overall learning and memory remained constant thereafter. Further analysis of the search strategies employed revealed that reductions in neurogenesis in the aging brain were strongly correlated with the adoption of spatially imprecise search strategies. Overall, performance measures of learning and memory in the Morris Water Maze were maintained at relatively constant levels in aging animals due to an increase in the use of spatially imprecise search strategies. PMID:24086453

  18. Changes in brain tryptophan metabolism elicited by ageing, social environment, and psychological stress in mice.

    Science.gov (United States)

    Miura, Hideki; Ozaki, Norio; Shirokawa, Tetsuya; Isobe, Kenichi

    2008-03-01

    The kynurenine (KYN) pathway, which is initiated by indoleamine 2,3-dioxygenase (IDO), is a tryptophan (TRP) metabolic pathway. It shares TRP with the serotonin (5-hydroxytryptamine, 5-HT) pathway. In major depression, activation of the KYN pathway may deplete 5-HT. In the present study we investigated the influence of various risk factors for depression, such as ageing, social isolation and psychological stress, on TRP metabolism. Male ICR mice (postnatal day, PND, 21) were divided into two housing conditions, isolation and group housing, reared for 4 weeks (young adult) or 5 months (adult) and exposed to novelty stress. We measured TRP, KYN and 5-HT contents in the prefrontal cortex, hippocampus, amygdala and dorsal raphe nuclei to investigate the balance between the KYN and 5-HT pathways. Ageing decreased TRP and KYN and increased 5-HT. Thus, ageing shifted the balance to the latter. In the younger group, social isolation decreased TRP and KYN and increased the 5-HT/TRP ratio, whereas novelty stress increased TRP and KYN and decreased the 5-HT/TRP ratio. Thus, social isolation shifted the balance to the latter, whereas novelty stress shifted it to the former. In the older group, these effects were restricted to specific brain regions. Ageing and social isolation counteracted novelty stress effects on TRP metabolism.

  19. Effect of aging and Alzheimer's disease-like pathology on brain monoamines in mice

    DEFF Research Database (Denmark)

    Von Linstow, C. U.; Severino, Maurizio; Metaxas, Athanasios

    2017-01-01

    Aging is the greatest single risk factor of the neurodegenerative disorder Alzheimer's disease (AD). The monoaminergic system, including serotonin (5-HT), dopamine (DA) and noradrenaline (NA) modulates cognition, which is affected in AD. Changes in monoamine levels have been observed in AD......, but these can both be age- and/or disease-related. We examined whether brain monoamine levels change as part of physiological aging and/or AD-like disease in APPSWE/PS1δE9 (APP/PS1) transgenic mice. The neocortex, hippocampus, striatum, brainstem and cerebellum of 6-, 12-, 18- and 24-month-old B6C3 wild......-type (WT) mice and of 18-month old APP/PS1 and WT mice were analysed for 5-HT, DA and NA contents by high pressure liquid chromatography (HPLC), along with neocortex from 14-month-old APP/PS1 and WT mice. While, we observed no aging effect in WT mice, we detected region-specific changes in the levels...

  20. Voxel-based Morphometry of Brain MRI in Normal Aging and Alzheimer's Disease.

    Science.gov (United States)

    Matsuda, Hiroshi

    2013-02-01

    Voxel-based morphometry (VBM) using structural brain MRI has been widely used for assessment of normal aging and Alzheimer's disease (AD). VBM of MRI data comprises segmentation into gray matter, white matter, and cerebrospinal fluid partitions, anatomical standardization of all the images to the same stereotactic space using linear affine transformation and further non-linear warping, smoothing, and finally performing a statistical analysis. Two techniques for VBM are commonly used, optimized VBM using statistical parametric mapping (SPM) 2 or SPM5 with non-linear warping based on discrete cosine transforms and SPM8 plus non-linear warping based on diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL). In normal aging, most cortical regions prominently in frontal and insular areas have been reported to show age-related gray matter atrophy. In contrast, specific structures such as amygdala, hippocampus, and thalamus have been reported to be preserved in normal aging. On the other hand, VBM studies have demonstrated progression of atrophy mapping upstream to Braak's stages of neurofibrillary tangle deposition in AD. The earliest atrophy takes place in medial temporal structures. Stand-alone VBM software using SPM8 plus DARTEL running on Windows has been newly developed as an adjunct to the clinical assessment of AD. This software provides a Z-score map as a consequence of comparison of a patient's MRI with a normal database.

  1. [Monoamine oxidase activity in rat pineal gland: comparison with brain areas, alteration during aging].

    Science.gov (United States)

    Razygraev, A V; Taborskaya, K I; Volovik, K Yu; Bunina, A A; Petrosyan, M A

    Using benzylamine as a substrate, the amine oxidase activity was determined in the pineal gland of adult rats and compared with the same activity in brain areas and pituitary. Two groups of rats aged 6-8 and 14-15 months were also compared on the basis of this activity. Benzylamine deaminating activity in the pineal gland was significantly higher than in the area preoptica medialis, the corpus mamillare, the tuberculum olfactorium, and the hypophysis, and lower than in the eminentia mediana. The significant increase of the activity in the pineal gland in animals of age from 6-8 to 14-15-months was revealed. Benzylamine deaminating activity in the pineal gland was totally inhibited by 0,002 mM R deprenyl, indicating the B type monoamine oxidase (MAO B) activity. Age-associated increase of MAO B activity in the pineal gland accompanied by decrease of glutathione peroxidase activity, reported earlier, can promote the oxidative damage in the pineal gland during aging.

  2. Age effects on load-dependent brain activations in working memory for novel material.

    Science.gov (United States)

    Holtzer, Roee; Rakitin, Brian C; Steffener, Jason; Flynn, Joe; Kumar, Arjun; Stern, Yaakov

    2009-01-16

    Three competing models of cognitive aging (neural compensation, capacity limitations, neural inefficiency) were examined in relation to working memory for novel non-verbal material. To accomplish this goal young (n=25) and old (n=25) participants performed a delayed item recognition (DIR) task while being scanned with bold fMRI. The stimuli in the DIR task consisted of computer-generated closed-curve shapes with each shape presented only once in the testing conditions of each participant. This ensured that both the novelty and appearance of the shapes maximized visual demands and limited the extent of phonologic processing. Behaviorally, as expected, the old participants were slower and less accurate compared to the young participants. Spatial patterns of brain activation that corresponded to load-dependent (stimulus set size ranged from 1 to 3) fMRI signal during the three phases of the DIR task (memory set presentation, retention delay, probe presentation) were evaluated in both age groups. Support for neural compensation and capacity limitation was evident in retention delay and the probe phase, respectively. Data were inconsistent with the neural inefficiency model. The process specific support for the theories we examined is consistent with a large corpus of research showing that the substrates underlying the encoding, retention and probe phases are different. That is, cognitive aging theories can be specific to the neural networks/regions underlying the different phases of working memory. Delineating how these theories work in concert can increase knowledge of age-related effects on working memory.

  3. Functional metagenomics to decipher food-microbe-host crosstalk.

    Science.gov (United States)

    Larraufie, Pierre; de Wouters, Tomas; Potocki-Veronese, Gabrielle; Blottière, Hervé M; Doré, Joël

    2015-02-01

    The recent developments of metagenomics permit an extremely high-resolution molecular scan of the intestinal microbiota giving new insights and opening perspectives for clinical applications. Beyond the unprecedented vision of the intestinal microbiota given by large-scale quantitative metagenomics studies, such as the EU MetaHIT project, functional metagenomics tools allow the exploration of fine interactions between food constituents, microbiota and host, leading to the identification of signals and intimate mechanisms of crosstalk, especially between bacteria and human cells. Cloning of large genome fragments, either from complex intestinal communities or from selected bacteria, allows the screening of these biological resources for bioactivity towards complex plant polymers or functional food such as prebiotics. This permitted identification of novel carbohydrate-active enzyme families involved in dietary fibre and host glycan breakdown, and highlighted unsuspected bacterial players at the top of the intestinal microbial food chain. Similarly, exposure of fractions from genomic and metagenomic clones onto human cells engineered with reporter systems to track modulation of immune response, cell proliferation or cell metabolism has allowed the identification of bioactive clones modulating key cell signalling pathways or the induction of specific genes. This opens the possibility to decipher mechanisms by which commensal bacteria or candidate probiotics can modulate the activity of cells in the intestinal epithelium or even in distal organs such as the liver, adipose tissue or the brain. Hence, in spite of our inability to culture many of the dominant microbes of the human intestine, functional metagenomics open a new window for the exploration of food-microbe-host crosstalk.

  4. Deciphering neuronal population codes for acute thermal pain

    Science.gov (United States)

    Chen, Zhe; Zhang, Qiaosheng; Phuong Sieu Tong, Ai; Manders, Toby R.; Wang, Jing

    2017-06-01

    Objective. Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. Current pain research mostly focuses on molecular and synaptic changes at the spinal and peripheral levels. However, a complete understanding of pain mechanisms requires the physiological study of the neocortex. Our goal is to apply a neural decoding approach to read out the onset of acute thermal pain signals, which can be used for brain-machine interface. Approach. We used micro wire arrays to record ensemble neuronal activities from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) in freely behaving rats. We further investigated neural codes for acute thermal pain at both single-cell and population levels. To detect the onset of acute thermal pain signals, we developed a novel latent state-space framework to decipher the sorted or unsorted S1 and ACC ensemble spike activities, which reveal information about the onset of pain signals. Main results. The state space analysis allows us to uncover a latent state process that drives the observed ensemble spike activity, and to further detect the ‘neuronal threshold’ for acute thermal pain on a single-trial basis. Our method achieved good detection performance in sensitivity and specificity. In addition, our results suggested that an optimal strategy for detecting the onset of acute thermal pain signals may be based on combined evidence from S1 and ACC population codes. Significance. Our study is the first to detect the onset of acute pain signals based on neuronal ensemble spike activity. It is important from a mechanistic viewpoint as it relates to the significance of S1 and ACC activities in the regulation of the acute pain onset.

  5. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration.

    Science.gov (United States)

    Dinan, Timothy G; Cryan, John F

    2017-01-15

    There is a growing realisation that the gut-brain axis and its regulation by the microbiota may play a key role in the biological and physiological basis of neurodevelopmental, age-related and neurodegenerative disorders. The routes of communication between the microbiota and brain are being unravelled and include the vagus nerve, gut hormone signalling, the immune system, tryptophan metabolism or by way of microbial metabolites such as short chain fatty acids. The importance of early life gut microbiota in shaping future health outcomes is also emerging. Disturbances of this composition by way of antibiotic exposure, lack of breastfeeding, infection, stress and the environmental influences coupled with the influence of host genetics can result in long-term effects on physiology and behaviour, at least in animal models. It is also worth noting that mode of delivery at birth influences microbiota composition with those born by Caesarean section having a distinctly different microbiota in early life to those born per vaginum. At the other extreme of life, ageing is associated with a narrowing in microbial diversity and healthy ageing correlates with a diverse microbiome. Recently, the gut microbiota has been implicated in a variety of conditions including depression, autism, schizophrenia and Parkinson's disease. There is still considerable debate as to whether or not the gut microbiota changes are core to the pathophysiology of such conditions or are merely epiphenomenal. It is plausible that such neuropsychiatric disorders might be treated in the future by targeting the microbiota either by microbiota transplantation, antibiotics or psychobiotics. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  6. Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases.

    Science.gov (United States)

    Mendelsohn, Andrew R; Larrick, James W

    2013-12-01

    Decline of cognition and increasing risk of neurodegenerative diseases are major problems associated with aging in humans. Of particular importance is how the brain removes potentially toxic biomolecules that accumulate with normal neuronal function. Recently, a biomolecule clearance system using convective flow between the cerebrospinal fluid (CSF) and interstitial fluid (ISF) to remove toxic metabolites in the brain was described. Xie and colleagues now report that in mice the clearance activity of this so-called "glymphatic system" is strongly stimulated by sleep and is associated with an increase in interstitial volume, possibly by shrinkage of astroglial cells. Moreover, anesthesia and attenuation of adrenergic signaling can activate the glymphatic system to clear potentially toxic proteins known to contribute to the pathology of Alzheimer disease (AD) such as beta-amyloid (Abeta). Clearance during sleep is as much as two-fold faster than during waking hours. These results support a new hypothesis to answer the age-old question of why sleep is necessary. Glymphatic dysfunction may pay a hitherto unsuspected role in the pathogenesis of neurodegenerative diseases as well as maintenance of cognition. Furthermore, clinical studies suggest that quality and duration of sleep may be predictive of the onset of AD, and that quality sleep may significantly reduce the risk of AD for apolipoprotein E (ApoE) ɛ4 carriers, who have significantly greater chances of developing AD. Further characterization of the glymphatic system in humans may lead to new therapies and methods of prevention of neurodegenerative diseases. A public health initiative to ensure adequate sleep among middle-aged and older people may prove useful in preventing AD, especially in apolipoprotein E (ApoE) ɛ4 carriers.

  7. Serum metabolites from walnut-fed aged rats attenuate stress-induced neurotoxicity in brain cells in vitro

    Science.gov (United States)

    The shift in equilibrium towards excess reactive oxygen or nitrogen species production from innate antioxidant defense in brain is a critical factor in the declining neural functions and cognitive deficits accompanying age. In aging, there are noticeable alterations in the membrane microenvironment,...

  8. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Veronica H Ryan

    Full Text Available The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades.AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging.The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism.Expression patterns were split into Development (0 to 20 years and Aging (21 to 78 years intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2, cyclooxygenases (COX-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA and PTGS2 (COX-2 genes at 1q25, highly inter-correlated genes were at distant chromosomal loci.Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  9. Coordination of Gene Expression of Arachidonic and Docosahexaenoic Acid Cascade Enzymes during Human Brain Development and Aging

    Science.gov (United States)

    Ryan, Veronica H.; Primiani, Christopher T.; Rao, Jagadeesh S.; Ahn, Kwangmi; Rapoport, Stanley I.; Blanchard, Helene

    2014-01-01

    Background The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. Hypothesis AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. Methods The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Results Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Conclusions Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease. PMID:24963629

  10. AGE-INDEPENDENT, GREY-MATTER-LOCALIZED, BRAIN ENHANCED OXIDATIVE STRESS IN MALE FISCHER 344 RATS,1,2

    Science.gov (United States)

    While studies showed that aging is accompanied by increased exposure of the brain to oxidative stress, others have not detected any age-correlated differences in levels of markers of oxidative stress. Use of conventional markers of oxidative damage in vivo, which may be formed ex...

  11. Dietary krill oil enhances neurocognitive functions and modulates proteomic changes in brain tissues of d-galactose induced aging mice.

    Science.gov (United States)

    Cheong, Ling-Zhi; Sun, Tingting; Li, Yanyan; Zhou, Jun; Lu, Chenyang; Li, Ye; Huang, Zhongbai; Su, Xiurong

    2017-05-24

    The effects of dietary krill oil on neurocognitive functions and proteomic changes in brain tissues of d-galactose-induced aging mice were evaluated. Dietary krill oil enhanced the neurocognitive functions of aging mice with a significant (P aging mice administered with krill oil showed significant (P changes in the serum malondialdehyde (MDA) level. In terms of proteomic changes, krill oil resulted in upregulation of the Celsr3 and Ppp1r1b gene expression, which contribute to brain development, learning and memory behavior processes. In particular, the Ppp1r1b gene is associated with the inhibition of dopamine releases, which decreases the motivation for learning.

  12. Use of brain MRI atlases to determine boundaries of age-related pathology: the importance of statistical method.

    Science.gov (United States)

    Dickie, David Alexander; Job, Dominic E; Gonzalez, David Rodriguez; Shenkin, Susan D; Wardlaw, Joanna M

    2015-01-01

    Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient's brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ± standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer's disease (AD) patients. Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55-90 years), we created: a mean ± SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients. The parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25-45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes. To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we conclude that the statistical method used for

  13. Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer's disease brains.

    Science.gov (United States)

    Kuhla, Björn; Boeck, Katharina; Schmidt, Angela; Ogunlade, Vera; Arendt, Thomas; Münch, Gerald; Lüth, Hans-Joachim

    2007-01-01

    The reaction of lysine and arginine residues of proteins with 1,2-dicarbonyl compounds result in the formation of advanced glycation end products (AGEs). Accumulation of AGEs is a characteristic feature of the aging brain and contributes to the development of neurodegenerative diseases such as Alzheimer's disease (AD). Therefore, it is of particular interest to study the cellular defense mechanisms against AGE formation and particularly the detoxification of their precursors. AGE precursor compounds such as methylglyoxal and glyoxal were cellulary detoxified by the glyoxalase system, consisting of glyoxalases I and II. Glyoxalase I levels are diminished in old aged brains but elevated in AD brains. However, it is still unknown how glyoxalase I level of AD brains changes in a disease and in an age-dependent manner. Therefore, we investigated the AD stage- and the age-dependent levels of glyoxalase I in the Brodmann area 22 of AD brains (n=25) and healthy controls (n=10). Our results obtained from RT-PCR reveal reducing glyoxalase I RNA levels with advancing stage of AD and with increasing age. Western Blot analysis indicates that in comparison to healthy controls, glyoxalase I protein amounts are 1.5-fold increased in early AD subjects and continuously decrease in middle and late stages of AD. The glyoxalase I protein amounts of AD patients also decrease with age. Results obtained from glyoxalase I activity measurement show 1.05-1.2-fold diminished levels in AD brains compared to healthy controls and no significant decrease neither with the stage of AD nor with age. The immunohistochemical investigations demonstrate an elevated number of glyoxalase I stained neurons in brains of early and middle but not in late AD subjects compared to age-matched healthy controls. In addition, the stage-dependent immunohistochemical investigation demonstrates that with reduced glyoxalase I staining AGE deposits prevail, specifically in late stage of AD. In conclusion, the decrease

  14. Brain aging, memory impairment and oxidative stress: a study in Drosophila melanogaster.

    Science.gov (United States)

    Haddadi, Mohammad; Jahromi, Samaneh Reiszadeh; Sagar, B K Chandrasekhar; Patil, Rajashekhar K; Shivanandappa, T; Ramesh, S R

    2014-02-01

    Memory impairment during aging is believed to be a consequence of decline in neuronal function and increase in neurodegeneration. Accumulation of oxidative damage and reduction of antioxidant defense system play a key role in organismal aging and functional senescence. In our study, we examined the age-related memory impairment (AMI) in relation to oxidative stress using Drosophila model. We observed a decline in cognitive function in old flies with respect to both short-lived and consolidated forms of olfactory memory. Light and electron microscopy of mushroom bodies revealed a reduction in the number of synapses and discernible architectural defects in mitochondria. An increase in neuronal apoptosis in Kenyon cells was also evident in aged flies. Biochemical investigations revealed a comparable age-associated decrease in the activity of antioxidant enzymes such as catalase and superoxide dismutase as well as the GSH level, accompanied by an increase in the level of lipid peroxidation and generation of reactive oxygen species in the brain. There was no significant difference in the activity level of AChE and BChE enzymes between different age groups while immunohistochemical studies showed a significant decrease in the level of ChAT in 50-day-old flies. RNAi-mediated silencing of cat and sod1 genes caused severe memory impairment in 15-day-old flies, whereas, over-expression of cat gene could partially rescue the memory loss in the old flies. We demonstrated that a Drosophila long-lived strain, possessing enhanced activity of antioxidant enzymes and higher rate of resistance to oxidative stress, shows lower extent of AMI compared to normal lifespan strain. Present study provides evidence for involvement of oxidative stress in AMI in Drosophila. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging.

    Science.gov (United States)

    Ahlskog, J Eric; Geda, Yonas E; Graff-Radford, Neill R; Petersen, Ronald C

    2011-09-01

    A rapidly growing literature strongly suggests that exercise, specifically aerobic exercise, may attenuate cognitive impairment and reduce dementia risk. We used PubMed (keywords exercise and cognition) and manuscript bibliographies to examine the published evidence of a cognitive neuroprotective effect of exercise. Meta-analyses of prospective studies documented a significantly reduced risk of dementia associated with midlife exercise; similarly, midlife exercise significantly reduced later risks of mild cognitive impairment in several studies. Among patients with dementia or mild cognitive impairment, randomized controlled trials (RCTs) documented better cognitive scores after 6 to 12 months of exercise compared with sedentary controls. Meta-analyses of RCTs of aerobic exercise in healthy adults were also associated with significantly improved cognitive scores. One year of aerobic exercise in a large RCT of seniors was associated with significantly larger hippocampal volumes and better spatial memory; other RCTs in seniors documented attenuation of age-related gray matter volume loss with aerobic exercise. Cross-sectional studies similarly reported significantly larger hippocampal or gray matter volumes among physically fit seniors compared with unfit seniors. Brain cognitive networks studied with functional magnetic resonance imaging display improved connectivity after 6 to 12 months of exercise. Animal studies indicate that exercise facilitates neuroplasticity via a variety of biomechanisms, with improved learning outcomes. Induction of brain neurotrophic factors by exercise has been confirmed in multiple animal studies, with indirect evidence for this process in humans. Besides a brain neuroprotective effect, physical exercise may also attenuate cognitive decline via mitigation of cerebrovascular risk, including the contribution of small vessel disease to dementia. Exercise should not be overlooked as an important therapeutic strategy.

  16. Gender and iron genes may modify associations between brain iron and memory in healthy aging.

    Science.gov (United States)

    Bartzokis, George; Lu, Po H; Tingus, Kathleen; Peters, Douglas G; Amar, Chetan P; Tishler, Todd A; Finn, J Paul; Villablanca, Pablo; Altshuler, Lori L; Mintz, Jim; Neely, Elizabeth; Connor, James R

    2011-06-01

    Brain iron increases with age and is abnormally elevated early in the disease process in several neurodegenerative disorders that impact memory including Alzheimer's disease (AD). Higher brain iron levels are associated with male gender and presence of highly prevalent allelic variants in genes encoding for iron metabolism proteins (hemochromatosis H63D (HFE H63D) and transferrin C2 (TfC2)). In this study, we examined whether in healthy older individuals memory performance is associated with increased brain iron, and whether gender and gene variant carrier (IRON+) vs noncarrier (IRON-) status (for HFE H63D/TfC2) modify the associations. Tissue iron deposited in ferritin molecules can be measured in vivo with magnetic resonance imaging utilizing the field-dependent relaxation rate increase (FDRI) method. FDRI was assessed in hippocampus, basal ganglia, and white matter, and IRON+ vs IRON- status was determined in a cohort of 63 healthy older individuals. Three cognitive domains were assessed: verbal memory (delayed recall), working memory/attention, and processing speed. Independent of gene status, worse verbal-memory performance was associated with higher hippocampal iron in men (r=-0.50, p=0.003) but not in women. Independent of gender, worse verbal working memory performance was associated with higher basal ganglia iron in IRON- group (r=-0.49, p=0.005) but not in the IRON+ group. Between-group interactions (p=0.006) were noted for both of these associations. No significant associations with white matter or processing speed were observed. The results suggest that in specific subgroups of healthy older individuals, higher accumulations of iron in vulnerable gray matter regions may adversely impact memory functions and could represent a risk factor for accelerated cognitive decline. Combining genetic and MRI biomarkers may provide opportunities to design primary prevention clinical trials that target high-risk groups.

  17. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping.

    Science.gov (United States)

    Bilgic, Berkin; Pfefferbaum, Adolf; Rohlfing, Torsten; Sullivan, Edith V; Adalsteinsson, Elfar

    2012-02-01

    versus FDRI, which again yielded perfect rank ordering of iron by brain structure. The final means of validation was to assess how well each in vivo method detected known age-related differences in regional iron concentrations measured in the same young and elderly healthy adults. Both QSM methods and FDRI were consistent in identifying higher iron concentrations in striatal and brain stem ROIs (i.e., caudate nucleus, putamen, globus pallidus, red nucleus, and substantia nigra) in the older than in the young group. The two QSM methods appeared more sensitive in detecting age differences in brain stem structures as they revealed differences of much higher statistical significance between the young and elderly groups than did FDRI. However, QSM values are influenced by factors such as the myelin content, whereas FDRI is a more specific indicator of iron content. Hence, FDRI demonstrated higher specificity to iron yet yielded noisier data despite lo