WorldWideScience

Sample records for brain activation patterns

  1. Distributed patterns of brain activity that lead to forgetting

    OpenAIRE

    Ilke eOztekin; David eBadre

    2011-01-01

    HUMAN NEUROSCIENCE Distributed patterns of brain activity that lead to forgetting Ilke Öztekin1* and David Badre2,3 1 Department of Psychology, Koç University, Istanbul, Turkey 2 Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, USA 3 Brown Institute for Brain Sciences, Brown University, Providence, RI, USA Proactive interference (PI), in which irrelevant information from prior learning disrupts memory performance, is widely...

  2. How networks communicate: propagation patterns in spontaneous brain activity.

    Science.gov (United States)

    Mitra, Anish; Raichle, Marcus E

    2016-10-05

    Initially regarded as 'noise', spontaneous (intrinsic) activity accounts for a large portion of the brain's metabolic cost. Moreover, it is now widely known that infra-slow (less than 0.1 Hz) spontaneous activity, measured using resting state functional magnetic resonance imaging of the blood oxygen level-dependent (BOLD) signal, is correlated within functionally defined resting state networks (RSNs). However, despite these advances, the temporal organization of spontaneous BOLD fluctuations has remained elusive. By studying temporal lags in the resting state BOLD signal, we have recently shown that spontaneous BOLD fluctuations consist of remarkably reproducible patterns of whole brain propagation. Embedded in these propagation patterns are unidirectional 'motifs' which, in turn, give rise to RSNs. Additionally, propagation patterns are markedly altered as a function of state, whether physiological or pathological. Understanding such propagation patterns will likely yield deeper insights into the role of spontaneous activity in brain function in health and disease.This article is part of the themed issue 'Interpreting blood oxygen level-dependent: a dialogue between cognitive and cellular neuroscience'.

  3. Retrieving binary answers using whole-brain activity pattern classification

    Directory of Open Access Journals (Sweden)

    Norberto Eiji Nawa

    2015-12-01

    Full Text Available Multivariate pattern analysis (MVPA has been successfully employed to advance our understanding of where and how information regarding different mental states is represented in the human brain, bringing new insights into how these states come to fruition, and providing a promising complement to the mass-univariate approach. Here, we employed MVPA to classify whole-brain activity patterns occurring in single fMRI scans, in order to retrieve binary answers from experiment participants. Five healthy volunteers performed two types of mental task while in the MRI scanner: counting down numbers and recalling positive autobiographical events. Data from these runs were used to train individual machine learning based classifiers that predicted which mental task was being performed based on the voxel-based brain activity patterns. On a different day, the same volunteers reentered the scanner and listened to six statements (e.g., the month you were born is an odd number, and were told to countdown numbers if the statement was true (yes or recall positive events otherwise (no. The previously trained classifiers were then used to assign labels (yes/no to the scans collected during the 24-second response periods following each one of the statements. Mean classification accuracies at the single scan level were in the range of 73.6% to 80.8%, significantly above chance for all participants. When applying a majority vote on the scans within each response period, i.e., the most frequent label (yes/no in the response period becomes the answer to the previous statement, 5.0 to 5.8 sentences, out of 6, were correctly classified in each one of the runs, on average. These results indicate that binary answers can be retrieved from whole-brain activity patterns, suggesting that MVPA provides an alternative way to establish basic communication with unresponsive patients when other techniques are not successful.

  4. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  5. Immature pattern of brain activity in Rett syndrome

    DEFF Research Database (Denmark)

    Nielsen, J B; Friberg, L; Lou, H;

    1990-01-01

    69 mL/100 g per minute), and the flows in prefrontal and temporoparietal association regions of the telencephalon were markedly reduced, whereas the primary sensorimotor regions were relatively spared. The flow distribution in Rett syndrome is very similar to the distribution of brain metabolic...... activity in infants of a few months of age. The abnormal regional cerebral blood flow distribution most likely reflects the widespread functional disturbances in the brain of patients with Rett syndrome, whereas computed tomographic and neuropathologic examination only reveal slight changes when compared...

  6. A novel pattern mining approach for identifying cognitive activity in EEG based functional brain networks.

    Science.gov (United States)

    Thilaga, M; Vijayalakshmi, R; Nadarajan, R; Nandagopal, D

    2016-06-01

    The complex nature of neuronal interactions of the human brain has posed many challenges to the research community. To explore the underlying mechanisms of neuronal activity of cohesive brain regions during different cognitive activities, many innovative mathematical and computational models are required. This paper presents a novel Common Functional Pattern Mining approach to demonstrate the similar patterns of interactions due to common behavior of certain brain regions. The electrode sites of EEG-based functional brain network are modeled as a set of transactions and node-based complex network measures as itemsets. These itemsets are transformed into a graph data structure called Functional Pattern Graph. By mining this Functional Pattern Graph, the common functional patterns due to specific brain functioning can be identified. The empirical analyses show the efficiency of the proposed approach in identifying the extent to which the electrode sites (transactions) are similar during various cognitive load states.

  7. Adaptive intesration of local resion information to detect fine-scale brain activity patterns

    Institute of Scientific and Technical Information of China (English)

    ZHEN ZongLei; TIAN Jie; ZHANG Hui

    2008-01-01

    With the rapid development of functional magnetic resonance imaging (fMRI) technology, the spatial resolution of fMRI data is continuously growing. This pro-vides us the possibility to detect the fine-scale patterns of brain activities. The es-tablished univariate and multivariate methods to analyze fMRI data mostly focus on detecting the activation blobs without considering the distributed fine-scale pat-terns within the blobs. To improve the sensitivity of the activation detection, in this paper, multivariate statistical method and univariate statistical method are com-bined to discover the fine-grained activity patterns. For one voxel in the brain, a local homogenous region is constructed. Then, time courses from the local ho-mogenous region are integrated with multivariate statistical method. Univariate statistical method is finally used to construct the interests of statistic for that voxel. The approach has explicitly taken into account the structures of both activity pat-terns and existing noise of local brain regions. Therefore, it could highlight the fine-scale activity patterns of the local regions. Experiments with simulated and real fMRI data demonstrate that the proposed method dramatically increases the sensitivity of detection of fine-scale brain activity patterns which contain the subtle information about experimental conditions.

  8. Adaptive integration of local region information to detect fine-scale brain activity patterns

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With the rapid development of functional magnetic resonance imaging (fMRI) technology, the spatial resolution of fMRI data is continuously growing. This pro- vides us the possibility to detect the fine-scale patterns of brain activities. The es- tablished univariate and multivariate methods to analyze fMRI data mostly focus on detecting the activation blobs without considering the distributed fine-scale pat- terns within the blobs. To improve the sensitivity of the activation detection, in this paper, multivariate statistical method and univariate statistical method are com- bined to discover the fine-grained activity patterns. For one voxel in the brain, a local homogenous region is constructed. Then, time courses from the local ho- mogenous region are integrated with multivariate statistical method. Univariate statistical method is finally used to construct the interests of statistic for that voxel. The approach has explicitly taken into account the structures of both activity pat- terns and existing noise of local brain regions. Therefore, it could highlight the fine-scale activity patterns of the local regions. Experiments with simulated and real fMRI data demonstrate that the proposed method dramatically increases the sensitivity of detection of fine-scale brain activity patterns which contain the subtle information about experimental conditions.

  9. Detecting stable phase structures in EEG signals to classify brain activity amplitude patterns

    Institute of Scientific and Technical Information of China (English)

    Yusely RUIZ; Guang LI; Walter J. FREEMAN; Eduardo GONZALEZ

    2009-01-01

    Obtaining an electrocorticograms (ECoG) signal requires an invasive procedure in which brain activity is recorded from the cortical surface. In contrast, obtaining electroencephalograms (EEG) recordings requires the non-invasive procedure of recording the brain activity from the scalp surface, which allows EEG recordings to be performed more easily on healthy humans. In this work, a technique previously used to study spatial-temporal patterns of brain activity on animal ECoG was adapted for use on EEG. The main issues are centered on solving the problems introduced by the increment on the interelectrode distance and the procedure to detect stable frames. The results showed that spatial patterns of beta and gamma activity can also be extracted from the EEG signal by using stable frames as time markers for feature extraction. This adapted technique makes it possible to take advantage of the cognitive and phenomenological awareness of a normal healthy subject.

  10. Distinct patterns of brain activity characterise lexical activation and competition in spoken word production.

    Directory of Open Access Journals (Sweden)

    Vitória Piai

    Full Text Available According to a prominent theory of language production, concepts activate multiple associated words in memory, which enter into competition for selection. However, only a few electrophysiological studies have identified brain responses reflecting competition. Here, we report a magnetoencephalography study in which the activation of competing words was manipulated by presenting pictures (e.g., dog with distractor words. The distractor and picture name were semantically related (cat, unrelated (pin, or identical (dog. Related distractors are stronger competitors to the picture name because they receive additional activation from the picture relative to other distractors. Picture naming times were longer with related than unrelated and identical distractors. Phase-locked and non-phase-locked activity were distinct but temporally related. Phase-locked activity in left temporal cortex, peaking at 400 ms, was larger on unrelated than related and identical trials, suggesting differential activation of alternative words by the picture-word stimuli. Non-phase-locked activity between roughly 350-650 ms (4-10 Hz in left superior frontal gyrus was larger on related than unrelated and identical trials, suggesting differential resolution of the competition among the alternatives, as reflected in the naming times. These findings characterise distinct patterns of activity associated with lexical activation and competition, supporting the theory that words are selected by competition.

  11. Brain activation patterns at exhaustion in rats that differ in inherent exercise capacity.

    Directory of Open Access Journals (Sweden)

    Teresa E Foley

    Full Text Available In order to further understand the genetic basis for variation in inherent (untrained exercise capacity, we examined the brains of 32 male rats selectively bred for high or low running capacity (HCR and LCR, respectively. The aim was to characterize the activation patterns of brain regions potentially involved in differences in inherent running capacity between HCR and LCR. Using quantitative in situ hybridization techniques, we measured messenger ribonuclease (mRNA levels of c-Fos, a marker of neuronal activation, in the brains of HCR and LCR rats after a single bout of acute treadmill running (7.5-15 minutes, 15° slope, 10 m/min or after treadmill running to exhaustion (15-51 minutes, 15° slope, initial velocity 10 m/min. During verification of trait differences, HCR rats ran six times farther and three times longer prior to exhaustion than LCR rats. Running to exhaustion significantly increased c-Fos mRNA activation of several brain areas in HCR, but LCR failed to show significant elevations of c-Fos mRNA at exhaustion in the majority of areas examined compared to acutely run controls. Results from these studies suggest that there are differences in central c-Fos mRNA expression, and potential brain activation patterns, between HCR and LCR rats during treadmill running to exhaustion and these differences could be involved in the variation in inherent running capacity between lines.

  12. Fetal functional brain age assessed from universal developmental indices obtained from neuro-vegetative activity patterns.

    Directory of Open Access Journals (Sweden)

    Dirk Hoyer

    Full Text Available Fetal brain development involves the development of the neuro-vegetative (autonomic control that is mediated by the autonomic nervous system (ANS. Disturbances of the fetal brain development have implications for diseases in later postnatal life. In that context, the fetal functional brain age can be altered. Universal principles of developmental biology applied to patterns of autonomic control may allow a functional age assessment. The work aims at the development of a fetal autonomic brain age score (fABAS based on heart rate patterns. We analysed n = 113 recordings in quiet sleep, n = 286 in active sleep, and n = 29 in active awakeness from normals. We estimated fABAS from magnetocardiographic recordings (21.4-40.3 weeks of gestation preclassified in quiet sleep (n = 113, 63 females and active sleep (n = 286, 145 females state by cross-validated multivariate linear regression models in a cross-sectional study. According to universal system developmental principles, we included indices that address increasing fluctuation range, increasing complexity, and pattern formation (skewness, power spectral ratio VLF/LF, pNN5. The resulting models constituted fABAS. fABAS explained 66/63% (coefficient of determination R(2 of training and validation set of the variance by age in quiet, while 51/50% in active sleep. By means of a logistic regression model using fluctuation range and fetal age, quiet and active sleep were automatically reclassified (94.3/93.1% correct classifications. We did not find relevant gender differences. We conclude that functional brain age can be assessed based on universal developmental indices obtained from autonomic control patterns. fABAS reflect normal complex functional brain maturation. The presented normative data are supplemented by an explorative study of 19 fetuses compromised by intrauterine growth restriction. We observed a shift in the state distribution towards active awakeness. The lower WGA

  13. Distinct Patterns of Brain Activity Characterise Lexical Activation and Competition in Spoken Word Production

    NARCIS (Netherlands)

    Piai, V.; Roelofs, A.P.A.; Jensen, O.; Schoffelen, J.M.; Bonnefond, M.

    2014-01-01

    According to a prominent theory of language production, concepts activate multiple associated words in memory, which enter into competition for selection. However, only a few electrophysiological studies have identified brain responses reflecting competition. Here, we report a magnetoencephalography

  14. Brain activation pattern depends on the strategy chosen by zebra finches to solve an orientation task.

    Science.gov (United States)

    Mayer, Uwe; Bischof, Hans-Joachim

    2012-02-01

    Zebra finches (Taeniopygia guttata) were trained to find food in one of four feeders on the floor of an aviary. This feeder was always in the same place during training and was additionally marked by a distinct pattern. In the test trial the distinctly patterned feeder was interchanged with one of the other feeders, so that the birds had to decide to use either the pattern or the original location for finding food. Half of the birds used one strategy and half used the other. According to the strategy applied, different brain areas were activated, as demonstrated by c-Fos immunohistochemistry. The hippocampus was activated when spatial cues were used, while in birds orienting using the pattern of the feeder, part of the collothalamic (tectofugal) visual system showed stronger activation. The visual wulst of the lemnothalamic (thalamofugal) visual system was activated with both strategies, indicating an involvement in both spatial and pattern-directed orientation. Because the experimental situation was the same for all zebra finches, the activation pattern was only dependent on the strategy that was voluntarily chosen by each of the birds.

  15. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.

    Science.gov (United States)

    Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P

    2016-09-01

    Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P traumatic brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and subcortical (left cerebellum crus II) areas (P's traumatic brain injury (i.e. decreased neural differentiation). In sum, our findings point towards poorer predictive control in traumatic brain injury patients in comparison to controls. Moreover, irrespective of the feedback condition, overactivations were observed in traumatically brain injured patients during movement execution, pointing to more controlled processing of motor task performance.

  16. Acute caffeine administration effect on brain activation patterns in mild cognitive impairment.

    Science.gov (United States)

    Haller, Sven; Montandon, Marie-Louise; Rodriguez, Cristelle; Moser, Dominik; Toma, Simona; Hofmeister, Jeremy; Sinanaj, Indrit; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon

    2014-01-01

    Previous studies showed that acute caffeine administration enhances task-related brain activation in elderly individuals with preserved cognition. To explore the effects of this widely used agent on cognition and brain activation in early phases of cognitive decline, we performed a double-blinded, placebo-controlled functional magnetic resonance imaging (fMRI) study during an n-back working memory task in 17 individuals with mild cognitive impairment (MCI) compared to 17 age-matched healthy controls (HC). All individuals were regular caffeine consumers with an overnight abstinence and given 200 mg caffeine versus placebo tablets 30 minutes before testing. Analyses included assessment of task-related activation (general linear model), functional connectivity (tensorial-independent component analysis, TICA), baseline perfusion (arterial spin labeling, ASL), grey matter density (voxel-based morphometry, VBM), and white matter microstructure (tract-based spatial statistics, TBSS). Acute caffeine administration induced a focal activation of the prefrontal areas in HC with a more diffuse and posteromedial activation pattern in MCI individuals. In MCI, TICA documented a significant caffeine-related enhancement in the prefrontal cortex, supplementary motor area, ventral premotor and parietal cortex as well as the basal ganglia and cerebellum. The absence of significant group differences in baseline ASL perfusion patterns supports a neuronal rather than a purely vascular origin of these differences. The VBM and TBSS analyses excluded potentially confounding differences in grey matter density and white matter microstructure between MCI and HC. The present findings suggest a posterior displacement of working memory-related brain activation patterns after caffeine administration in MCI that may represent a compensatory mechanism to counterbalance a frontal lobe dysfunction.

  17. Interacting noradrenergic and corticosteroid systems shift human brain activation patterns during encoding.

    Science.gov (United States)

    van Stegeren, Anda H; Roozendaal, Benno; Kindt, Merel; Wolf, Oliver T; Joëls, Marian

    2010-01-01

    Emotionally arousing experiences are usually well retained, an effect that depends on the release of adrenal stress hormones. Animal studies have shown that corticosterone and noradrenaline - representing the two main stress hormone systems - act in concert to enhance memory formation by actions involving the amygdala, hippocampus and prefrontal cortex (PFC). Here we test whether interactions between these two stress hormone systems also affect human memory formation as well as the associated pattern of brain activation. To this end, forty-eight male human subjects received hydrocortisone, yohimbine or both before presentation of emotional and neutral pictures. Activity in the amygdala, hippocampus and PFC was monitored with functional Magnetic Resonance Imaging (fMRI) during encoding of these stimuli, when hormonal levels were elevated. Memory performance was tested 1 week later. We investigated whether an increased level of one of the two hormone systems would lead to differential effects compared to the combined application of the drugs on brain activation and memory performance. We report that the application of cortisol led to an overall enhancing effect on recognition memory, with no significant additional effect of yohimbine. However, during encoding the brain switched from amygdala/hippocampus activation with either hormone alone, to a strong deactivation of prefrontal areas under the influence of the combination of both exogenous hormones. Although we did not find evidence that exogenous stimulation of the noradrenergic and corticosteroid systems led to significant interaction effects on memory performance in this experiment, we conclude that stress hormone levels during encoding did differentially determine the activation pattern of the brain circuits here involved.

  18. Interaction patterns of brain activity across space, time and frequency. Part I: methods

    CERN Document Server

    Pascual-Marqui, Roberto D

    2011-01-01

    We consider exploratory methods for the discovery of cortical functional connectivity. Typically, data for the i-th subject (i=1...NS) is represented as an NVxNT matrix Xi, corresponding to brain activity sampled at NT moments in time from NV cortical voxels. A widely used method of analysis first concatenates all subjects along the temporal dimension, and then performs an independent component analysis (ICA) for estimating the common cortical patterns of functional connectivity. There exist many other interesting variations of this technique, as reviewed in [Calhoun et al. 2009 Neuroimage 45: S163-172]. We present methods for the more general problem of discovering functional connectivity occurring at all possible time lags. For this purpose, brain activity is viewed as a function of space and time, which allows the use of the relatively new techniques of functional data analysis [Ramsay & Silverman 2005: Functional data analysis. New York: Springer]. In essence, our method first vectorizes the data from...

  19. Modality-independent representations of small quantities based on brain activation patterns.

    Science.gov (United States)

    Damarla, Saudamini Roy; Cherkassky, Vladimir L; Just, Marcel Adam

    2016-04-01

    Machine learning or MVPA (Multi Voxel Pattern Analysis) studies have shown that the neural representation of quantities of objects can be decoded from fMRI patterns, in cases where the quantities were visually displayed. Here we apply these techniques to investigate whether neural representations of quantities depicted in one modality (say, visual) can be decoded from brain activation patterns evoked by quantities depicted in the other modality (say, auditory). The main finding demonstrated, for the first time, that quantities of dots were decodable by a classifier that was trained on the neural patterns evoked by quantities of auditory tones, and vice-versa. The representations that were common across modalities were mainly right-lateralized in frontal and parietal regions. A second finding was that the neural patterns in parietal cortex that represent quantities were common across participants. These findings demonstrate a common neuronal foundation for the representation of quantities across sensory modalities and participants and provide insight into the role of parietal cortex in the representation of quantity information.

  20. Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains.

    Directory of Open Access Journals (Sweden)

    Hadley C Bergstrom

    Full Text Available Understanding the physical encoding of a memory (the engram is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.

  1. Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains.

    Science.gov (United States)

    Bergstrom, Hadley C; McDonald, Craig G; Johnson, Luke R

    2011-01-12

    Understanding the physical encoding of a memory (the engram) is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.

  2. The effects of aging on the brain activation pattern during a speech perception task: an fMRI study.

    Science.gov (United States)

    Manan, Hanani Abdul; Franz, Elizabeth A; Yusoff, Ahmad Nazlim; Mukari, Siti Zamratol-Mai Sarah

    2015-02-01

    In the present study, brain activation associated with speech perception processing was examined across four groups of adult participants with age ranges between 20 and 65 years, using functional MRI (fMRI). Cognitive performance demonstrates that performance accuracy declines with age. fMRI results reveal that all four groups of participants activated the same brain areas. The same brain activation pattern was found in all activated areas (except for the right superior temporal gyrus and right middle temporal gyrus); brain activity was increased from group 1 (20-29 years) to group 2 (30-39 years). However, it decreased in group 3 (40-49 years) with further decreases in group 4 participants (50-65 years). Result also reveals that three brain areas (superior temporal gyrus, Heschl's gyrus and cerebellum) showed changes in brain laterality in the older participants, akin to a shift from left-lateralized to right-lateralized activity. The onset of this change was different across brain areas. Based on these findings we suggest that, whereas all four groups of participants used the same areas in processing, the engagement and recruitment of those areas differ with age as the brain grows older. Findings are discussed in the context of corroborating evidence of neural changes with age.

  3. Distinct patterns of brain activity in progressive supranuclear palsy and Parkinson's disease.

    Science.gov (United States)

    Burciu, Roxana G; Ofori, Edward; Shukla, Priyank; Planetta, Peggy J; Snyder, Amy F; Li, Hong; Hass, Chris J; Okun, Michael S; McFarland, Nikolaus R; Vaillancourt, David E

    2015-08-01

    The basal ganglia-thalamo-cortical and cerebello-thalamo-cortical circuits are important for motor control. Whether their functioning is affected in a similar or different way by progressive supranuclear palsy (PSP) and Parkinson's disease (PD) is not clear. A functional magnetic resonance imaging (fMRI) force production paradigm and voxel-based morphometry were used to assess differences in brain activity and macrostructural volumes between PSP, PD, and healthy age-matched controls. We found that PSP and PD share reduced functional activity of the basal ganglia and cortical motor areas, but this is more pronounced in PSP than in PD. In PSP the frontal regions are underactive, whereas the posterior parietal and occipital regions are overactive as compared with controls and PD. Furthermore, lobules I through IV, V, and VI of the cerebellum are hypoactive in PSP and PD, whereas Crus I and lobule IX are hyperactive in PSP only. Reductions in gray and white matter volume are specific to PSP. Finally, the functional status of the caudate as well as the volume of the superior frontal gyrus predict clinical gait and posture measures in PSP. PSP and PD share hypoactivity of the basal ganglia, motor cortex, and anterior cerebellum. These patients also display a unique pattern, such that anterior regions of the cortex are hypoactive and posterior regions of the cortex and cerebellum are hyperactive. Together, these findings suggest that specific structures within the basal ganglia, cortex, and cerebellum are affected differently in PSP relative to PD.

  4. Human brain activity patterns beyond the isoelectric line of extreme deep coma.

    Science.gov (United States)

    Kroeger, Daniel; Florea, Bogdan; Amzica, Florin

    2013-01-01

    The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human) or by application of high doses of anesthesia (isoflurane in animals) leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes). Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region) we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma.

  5. Human brain activity patterns beyond the isoelectric line of extreme deep coma.

    Directory of Open Access Journals (Sweden)

    Daniel Kroeger

    Full Text Available The electroencephalogram (EEG reflects brain electrical activity. A flat (isoelectric EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human or by application of high doses of anesthesia (isoflurane in animals leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes. Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma.

  6. Patterns of brain activation when mothers view their own child and dog: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Luke E Stoeckel

    Full Text Available Neural substrates underlying the human-pet relationship are largely unknown. We examined fMRI brain activation patterns as mothers viewed images of their own child and dog and an unfamiliar child and dog. There was a common network of brain regions involved in emotion, reward, affiliation, visual processing and social cognition when mothers viewed images of both their child and dog. Viewing images of their child resulted in brain activity in the midbrain (ventral tegmental area/substantia nigra involved in reward/affiliation, while a more posterior cortical brain activation pattern involving fusiform gyrus (visual processing of faces and social cognition characterized a mother's response to her dog. Mothers also rated images of their child and dog as eliciting similar levels of excitement (arousal and pleasantness (valence, although the difference in the own vs. unfamiliar child comparison was larger than the own vs. unfamiliar dog comparison for arousal. Valence ratings of their dog were also positively correlated with ratings of the attachment to their dog. Although there are similarities in the perceived emotional experience and brain function associated with the mother-child and mother-dog bond, there are also key differences that may reflect variance in the evolutionary course and function of these relationships.

  7. When the future becomes the past: Differences in brain activation patterns for episodic memory and episodic future thinking.

    Science.gov (United States)

    Weiler, Julia A; Suchan, Boris; Daum, Irene

    2010-10-15

    Episodic memory and episodic future thinking activate a network of overlapping brain regions, but little is known about the mechanism with which the brain separates the two processes. It was recently suggested that differential activity for memory and future thinking may be linked to differences in the phenomenal properties (e.g., richness of detail). Using functional magnetic resonance imaging in healthy subjects and a novel experimental design, we investigated the networks involved in the imagery of future and the recall of past events for the same target occasion, i.e. the Christmas and New Year's holidays, thereby keeping temporal distance and content similar across conditions. Although ratings of phenomenal characteristics were comparable for future thoughts and memories, differential activation patterns emerged. The right posterior hippocampus exhibited stronger memory-related activity during early event recall, and stronger future thought-related activity during late event imagination. Other regions, e.g., the precuneus and lateral prefrontal cortex, showed the reverse activation pattern with early future-associated and late past-associated activation. Memories compared to future thoughts were further related to stronger activation in several visual processing regions, which accords with a reactivation of the original perceptual experience. In conclusion, the results showed for the first time unique neural signatures for both memory and future thinking even in the absence of differences in phenomenal properties and suggested different time courses of brain activation for episodic memory and future thinking.

  8. Chick embryos have the same pattern of hypoxic lower-brain activation as fetal mammals.

    Science.gov (United States)

    Landry, Jeremy P; Hawkins, Connor; Lee, Aaron; Coté, Alexandra; Balaban, Evan; Pompeiano, Maria

    2016-01-01

    cFos expression (indicating a particular kind of neuronal activation) was examined in embryonic day (E) 18 chick embryos after exposure to 4 h of either normoxia (21% O2), modest hypoxia (15% O2), or medium hypoxia (10% O2). Eight regions of the brainstem and hypothalamus were surveyed, including seven previously shown to respond to hypoxia in late-gestation mammalian fetuses (Breen et al., 1997; Nitsos and Walker, 1999b). Hypoxia-related changes in chick embryo brain activation mirrored those found in fetal mammals with the exception of the medullary Raphe, which showed decreased hypoxic activation, compared with no change in mammals. This difference may be explained by the greater anapyrexic responses of chick embryos relative to mammalian fetuses. Activation in the A1/C1 region was examined in more detail to ascertain whether an O2-sensitive subpopulation of these cells containing heme oxygenase 2 (HMOX2) may drive hypoxic brain responses before the maturation of peripheral O2-sensing. HMOX2-positive and -negative catecholaminergic cells and interdigitating noncatecholaminergic HMOX2-positive cells all showed significant changes in cFos expression to hypoxia, with larger population responses seen in the catecholaminergic cells. Hypoxia-induced activation of lower-brain regions studied here was significantly better correlated with activation of the nucleus of the solitary tract (NTS) than with that of HMOX2-containing A1/C1 neurons. Together, these observations suggest that (1) the functional circuitry controlling prenatal brain responses to hypoxia is strongly conserved between birds and mammals, and (2) NTS neurons are a more dominant driving force for prenatal hypoxic cFos brain responses than O2-sensing A1/C1 neurons.

  9. Effects of lorazepam on brain activity pattern during an anxiety symptom provocation challenge.

    Science.gov (United States)

    Schunck, T; Mathis, A; Erb, G; Namer, I J; Demazières, A; Luthringer, R

    2010-05-01

    Human models of anxiety are useful to develop new effective anxiolytics. The objective of this study was to use functional magnetic resonance imaging (fMRI) to test the hypothesis that a single dose of lorazepam modifies brain activation during an anxiety challenge. Eighteen healthy male subjects underwent fMRI associated with a challenge based on the anticipation of aversive electrical stimulations after pretreatment, either with placebo or with 1.0 mg of oral lorazepam. Anxiety was rated before fMRI and after, referring to the threat condition periods, using State Trait Anxiety Inventory (STAI) and Hamilton scales. The conditioning procedure induced anxiety, as indicated by clinical rating score changes. Lorazepam did not modify anxiety rating as compared to placebo. Lorazepam reduced cerebral activity in superior frontal gyrus, anterior insula/inferior frontal gyrus and cingulate gyrus. The current finding provides the first evidence of the modulatory effects of an established anxiolytic agent on brain activation related to anticipatory anxiety.

  10. Perspective and agency during video gaming influences spatial presence experience and brain activation patterns

    Directory of Open Access Journals (Sweden)

    Havranek Michael

    2012-07-01

    Full Text Available Abstract Background The experience of spatial presence (SP, i.e., the sense of being present in a virtual environment, emerges if an individual perceives himself as 1 if he were actually located (self-location and 2 able to act in the virtual environment (possible actions. In this study, two main media factors (perspective and agency were investigated while participants played a commercially available video game. Methods The differences in SP experience and associated brain activation were compared between the conditions of game play in first person perspective (1PP and third person perspective (3PP as well as between agency, i.e., active navigation of the video game character (active, and non-agency, i.e., mere passive observation (passive. SP was assessed using standard questionnaires, and brain activation was measured using electroencephalography (EEG and sLORETA source localisation (standard low-resolution brain electromagnetic tomography. Results Higher SP ratings were obtained in the 1PP compared with the 3PP condition and in the active compared with the passive condition. On a neural level, we observed in the 1PP compared with the 3PP condition significantly less alpha band power in the parietal, the occipital and the limbic cortex. In the active compared with the passive condition, we uncovered significantly more theta band power in frontal brain regions. Conclusion We propose that manipulating the factors perspective and agency influences SP formation by either directly or indirectly modulating the ego-centric visual processing in a fronto-parietal network. The neuroscientific results are discussed in terms of the theoretical concepts of SP.

  11. Representational similarity encoding for fMRI: Pattern-based synthesis to predict brain activity using stimulus-model-similarities.

    Science.gov (United States)

    Anderson, Andrew James; Zinszer, Benjamin D; Raizada, Rajeev D S

    2016-03-01

    Patterns of neural activity are systematically elicited as the brain experiences categorical stimuli and a major challenge is to understand what these patterns represent. Two influential approaches, hitherto treated as separate analyses, have targeted this problem by using model-representations of stimuli to interpret the corresponding neural activity patterns. Stimulus-model-based-encoding synthesizes neural activity patterns by first training weights to map between stimulus-model features and voxels. This allows novel model-stimuli to be mapped into voxel space, and hence the strength of the model to be assessed by comparing predicted against observed neural activity. Representational Similarity Analysis (RSA) assesses models by testing how well the grand structure of pattern-similarities measured between all pairs of model-stimuli aligns with the same structure computed from neural activity patterns. RSA does not require model fitting, but also does not allow synthesis of neural activity patterns, thereby limiting its applicability. We introduce a new approach, representational similarity-encoding, that builds on the strengths of RSA and robustly enables stimulus-model-based neural encoding without model fitting. The approach therefore sidesteps problems associated with overfitting that notoriously confront any approach requiring parameter estimation (and is consequently low cost computationally), and importantly enables encoding analyses to be incorporated within the wider Representational Similarity Analysis framework. We illustrate this new approach by using it to synthesize and decode fMRI patterns representing the meanings of words, and discuss its potential biological relevance to encoding in semantic memory. Our new similarity-based encoding approach unites the two previously disparate methods of encoding models and RSA, capturing the strengths of both, and enabling similarity-based synthesis of predicted fMRI patterns.

  12. Pattern of brain activation during social cognitive tasks is related to social competence in siblings discordant for schizophrenia.

    Science.gov (United States)

    Villarreal, Mirta F; Drucaroff, Lucas J; Goldschmidt, Micaela G; de Achával, Delfina; Costanzo, Elsa Y; Castro, Mariana N; Ladrón-de-Guevara, M Soledad; Busatto Filho, Geraldo; Nemeroff, Charles B; Guinjoan, Salvador M

    2014-09-01

    Measures of social competence are closely related to actual community functioning in patients with schizophrenia. However, the neurobiological mechanisms underlying competence in schizophrenia are not fully understood. We hypothesized that social deficits in schizophrenia are explained, at least in part, by abnormally lateralized patterns of brain activation in response to tasks engaging social cognition, as compared to healthy individuals. We predicted such patterns would be partly heritable, and therefore affected in patients' nonpsychotic siblings as well. We used a functional magnetic resonance image paradigm to characterize brain activation induced by theory of mind tasks, and two tests of social competence, the Test of Adaptive Behavior in Schizophrenia (TABS), and the Social Skills Performance Assessment (SSPA) in siblings discordant for schizophrenia and comparable healthy controls (n = 14 per group). Healthy individuals showed the strongest correlation between social competence and activation of right hemisphere structures involved in social cognitive processing, whereas in patients, the correlation pattern was lateralized to left hemisphere areas. Unaffected siblings of patients exhibited a pattern intermediate between the other groups. These results support the hypothesis that schizophrenia may be characterized by an abnormal functioning of nondominant hemisphere structures involved in the processing of socially salient information.

  13. Altered sensorimotor activation patterns in idiopathic dystonia-an activation likelihood estimation meta-analysis of functional brain imaging studies

    DEFF Research Database (Denmark)

    Løkkegaard, Annemette; Herz, Damian M; Haagensen, Brian N;

    2016-01-01

    . Further, study size was usually small including different types of dystonia. Here we performed an activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies in patients with primary dystonia to test for convergence of dystonia-related alterations in task-related activity....... Hum Brain Mapp 37:547-557, 2016. © 2015 Wiley Periodicals, Inc....

  14. Spatial and sustained attention in relation to smoking status: behavioural performance and brain activation patterns.

    Science.gov (United States)

    Vossel, Simone; Warbrick, Tracy; Mobascher, Arian; Winterer, Georg; Fink, Gereon R

    2011-11-01

    Nicotine enhances attentional functions. Since chronic nicotine exposure through smoking induces neuroadaptive changes in the brain at a structural and molecular level, the present functional MRI (fMRI) study aimed at investigating the neural mechanisms underlying visuospatial and sustained attention in smokers and non-smokers. Visuospatial attention was assessed with a location-cueing paradigm, while sustained attention was measured by changes in response speed over time. During invalid trials, neural activity within the basal forebrain was selectively enhanced in smokers and higher basal forebrain activity was associated with increased parietal cortex activation. Moreover, higher levels of expired carbon monoxide in smokers before scanning were associated with higher parietal cortex activation and faster responses to invalidly cued targets. Smokers showed a slowing of responses and additionally recruited an area within the right supramarginal gyrus with increasing time on task. Activity decreases over time were observed in visual areas in smokers. The data provide evidence for altered attentional functions in smokers as compared with non-smokers, which were partly modulated by residual nicotine levels and were observed at a behavioural level for sustained and at a neural level for spatial and sustained attention.

  15. Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network.

    Science.gov (United States)

    Spreng, R Nathan; Grady, Cheryl L

    2010-06-01

    The ability to rise above the present environment and reflect upon the past, the future, and the minds of others is a fundamentally defining human feature. It has been proposed that these three self-referential processes involve a highly interconnected core set of brain structures known as the default mode network (DMN). The DMN appears to be active when individuals are engaged in stimulus-independent thought. This network is a likely candidate for supporting multiple processes, but this idea has not been tested directly. We used fMRI to examine brain activity during autobiographical remembering, prospection, and theory-of-mind reasoning. Using multivariate analyses, we found a common pattern of neural activation underlying all three processes in the DMN. In addition, autobiographical remembering and prospection engaged midline DMN structures to a greater degree and theory-of-mind reasoning engaged lateral DMN areas. A functional connectivity analysis revealed that activity of a critical node in the DMN, medial prefrontal cortex, was correlated with activity in other regions in the DMN during all three tasks. We conclude that the DMN supports common aspects of these cognitive behaviors involved in simulating an internalized experience.

  16. Pattern classification of brain activation during emotional processing in subclinical depression: psychosis proneness as potential confounding factor

    Directory of Open Access Journals (Sweden)

    Gemma Modinos

    2013-02-01

    Full Text Available We used Support Vector Machine (SVM to perform multivariate pattern classification based on brain activation during emotional processing in healthy participants with subclinical depressive symptoms. Six-hundred undergraduate students completed the Beck Depression Inventory II (BDI-II. Two groups were subsequently formed: (i subclinical (mild mood disturbance (n = 17 and (ii no mood disturbance (n = 17. Participants also completed a self-report questionnaire on subclinical psychotic symptoms, the Community Assessment of Psychic Experiences Questionnaire (CAPE positive subscale. The functional magnetic resonance imaging (fMRI paradigm entailed passive viewing of negative emotional and neutral scenes. The pattern of brain activity during emotional processing allowed correct group classification with an overall accuracy of 77% (p = 0.002, within a network of regions including the amygdala, insula, anterior cingulate cortex and medial prefrontal cortex. However, further analysis suggested that the classification accuracy could also be explained by subclinical psychotic symptom scores (correlation with SVM weights r = 0.459, p = 0.006. Psychosis proneness may thus be a confounding factor for neuroimaging studies in subclinical depression.

  17. Does the reading of different orthographies produce distinct brain activity patterns? An ERP study.

    Directory of Open Access Journals (Sweden)

    Irit Bar-Kochva

    Full Text Available Orthographies vary in the degree of transparency of spelling-sound correspondence. These range from shallow orthographies with transparent grapheme-phoneme relations, to deep orthographies, in which these relations are opaque. Only a few studies have examined whether orthographic depth is reflected in brain activity. In these studies a between-language design was applied, making it difficult to isolate the aspect of orthographic depth. In the present work this question was examined using a within-subject-and-language investigation. The participants were speakers of Hebrew, as they are skilled in reading two forms of script transcribing the same oral language. One form is the shallow pointed script (with diacritics, and the other is the deep unpointed script (without diacritics. Event-related potentials (ERPs were recorded while skilled readers carried out a lexical decision task in the two forms of script. A visual non-orthographic task controlled for the visual difference between the scripts (resulting from the addition of diacritics to the pointed script only. At an early visual-perceptual stage of processing (~165 ms after target onset, the pointed script evoked larger amplitudes with longer latencies than the unpointed script at occipital-temporal sites. However, these effects were not restricted to orthographic processing, and may therefore have reflected, at least in part, the visual load imposed by the diacritics. Nevertheless, the results implied that distinct orthographic processing may have also contributed to these effects. At later stages (~340 ms after target onset the unpointed script elicited larger amplitudes than the pointed one with earlier latencies. As this latency has been linked to orthographic-linguistic processing and to the classification of stimuli, it is suggested that these differences are associated with distinct lexical processing of a shallow and a deep orthography.

  18. Changes in brain activation patterns according to cross-training effect in serial reaction time task An functional MRI study

    Institute of Scientific and Technical Information of China (English)

    Yong Hyun Kwon; Jung Won Kwon; Ji Won Park

    2013-01-01

    Cross-training is a phenomenon related to motor learning, where motor performance of the untrained limb shows improvement in strength and skill execution following unilateral training of the homologous contralateral limb. We used functional MRI to investigate whether motor performance of the untrained limb could be improved using a serial reaction time task according to motor sequential learning of the trained limb, and whether these skill acquisitions led to changes in brain activation patterns. We recruited 20 right-handed healthy subjects, who were randomly allocated into training and control groups. The training group was trained in performance of a serial reaction time task using their non-dominant left hand, 40 minutes per day, for 10 days, over a period of 2 weeks. The control group did not receive training. Measurements of response time and percentile of response accuracy were performed twice during pre- and post-training, while brain functional MRI was scanned during performance of the serial reaction time task using the untrained right hand. In the training group, prominent changes in response time and percentile of response accuracy were observed in both the untrained right hand and the trained left hand between pre- and post-training. The control group showed no significant changes in the untrained hand between pre- and post-training. In the training group, the activated volume of the cortical areas related to motor function (i.e., primary motor cortex, premotor area, posterior parietal cortex) showed a gradual decrease, and enhanced cerebellar activation of the vermis and the newly activated ipsilateral dentate nucleus were observed during performance of the serial reaction time task using the untrained right hand, accompanied by the cross-motor learning effect. However, no significant changes were observed in the control group. Our findings indicate that motor skills learned over the 2-week training using the trained limb were transferred to the

  19. Brain activation patterns resulting from learning letter forms through active self-production and passive observation in young children

    Directory of Open Access Journals (Sweden)

    Alyssa J Kersey

    2013-09-01

    Full Text Available Although previous literature suggests that writing practice facilitates neural specialization for letters, it is unclear if this facilitation is driven by the perceptual feedback from the act of writing or the actual execution of the motor act. The present study addresses this issue by measuring the change in BOLD signal in response to hand-printed letters, unlearned cursive letters, and cursive letters that 7 year-old children learned actively, by writing, and passively, by observing an experimenter write. Brain activation was assessed using fMRI while perceiving letters – in both cursive and manuscript forms. Results showed that active training led to increased recruitment of the sensori-motor network associated with letter perception as well as the insula and claustrum, but passive observation did not. This suggests that perceptual networks for newly learned cursive letters are driven by motor execution rather than by perceptual feedback.

  20. Explicit and implicit second language training differentially affect the achievement of native-like brain activation patterns.

    Science.gov (United States)

    Morgan-Short, Kara; Steinhauer, Karsten; Sanz, Cristina; Ullman, Michael T

    2012-04-01

    It is widely believed that adults cannot learn a foreign language in the same way that children learn a first language. However, recent evidence suggests that adult learners of a foreign language can come to rely on native-like language brain mechanisms. Here, we show that the type of language training crucially impacts this outcome. We used an artificial language paradigm to examine longitudinally whether explicit training (that approximates traditional grammar-focused classroom settings) and implicit training (that approximates immersion settings) differentially affect neural (electrophysiological) and behavioral (performance) measures of syntactic processing. Results showed that performance of explicitly and implicitly trained groups did not differ at either low or high proficiency. In contrast, electrophysiological (ERP) measures revealed striking differences between the groups' neural activity at both proficiency levels in response to syntactic violations. Implicit training yielded an N400 at low proficiency, whereas at high proficiency, it elicited a pattern typical of native speakers: an anterior negativity followed by a P600 accompanied by a late anterior negativity. Explicit training, by contrast, yielded no significant effects at low proficiency and only an anterior positivity followed by a P600 at high proficiency. Although the P600 is reminiscent of native-like processing, this response pattern as a whole is not. Thus, only implicit training led to an electrophysiological signature typical of native speakers. Overall, the results suggest that adult foreign language learners can come to rely on native-like language brain mechanisms, but that the conditions under which the language is learned may be crucial in attaining this goal.

  1. Pavlovian Fear Conditioning Activates a Common Pattern of Neurons in the Lateral Amygdala of Individual Brains

    Science.gov (United States)

    2011-01-12

    specific memories in the hippocampus . Our current data show the principle of a stable topography at the neuron level in the amygdala. Both the finding of...an attended novelty oddball task. Psychophysiology. 16. Veening JG, Bocker KB, Verdouw PM, Olivier B, De Jongh R, et al. (2009) Activation of the...neuronal ensembles in the human hippocampus . Curr Biol 19: 546–554. 24. Chadwick MJ, Hassabis D, Weiskopf N, Maguire EA (2010) Decoding individual episodic

  2. Patterns of brain activity distinguishing free and forced actions: contribution from sensory cortices

    Science.gov (United States)

    Kostelecki, Wojciech; Mei, Ye; Garcia Dominguez, Luis; Pérez Velázquez, José L.

    2012-01-01

    The neural basis of decision-making is extremely complex due to the large number of factors that contribute to the outcome of even the most basic actions as well as the range of appropriate responses within many behavioral contexts. To better understand the neural processes underlying basic forms of decision-making, this study utilized an experiment that required a choice about whether to press a button with the right or left hand. These instances of decision-making were compared to identical button presses that were experimentally specified rather than selected by the subject. Magnetoencephalography (MEG) was used to record neural activity during these—what are being termed—free and forced actions and differences in the MEG signal between these two conditions were attributed to the distinct forms of neural activity required to carry out the two types of actions. To produce instances of free and forced behavior, cued button-pressing experiments were performed that use visual, aural, and memorized cues to instruct experimental subjects of the expected outcome of individual trials. Classification analysis of the trials revealed that cortical regions that allowed for the most accurate classification of free and forced actions primarily handle sensory input for the modality used to cue the trials: occipital cortex for visually cued trials, temporal cortex for aurally cued trials, and minor non-localized differences in MEG activity for trials initiated from memory. The differential roles of visual and auditory sensory cortices during free and forced actions provided insight into the neural processing steps that were engaged to initiate cued actions. Specifically, it suggested that detectable differences exist in the activity of sensory cortices and their target sites when subjects performed free and forced actions in response to sensory cues. PMID:23060760

  3. Patterns of Brain Activation and Meal Reduction Induced by Abdominal Surgery in Mice and Modulation by Rikkunshito.

    Directory of Open Access Journals (Sweden)

    Lixin Wang

    Full Text Available Abdominal surgery inhibits food intake and induces c-Fos expression in the hypothalamic and medullary nuclei in rats. Rikkunshito (RKT, a Kampo medicine improves anorexia. We assessed the alterations in meal microstructure and c-Fos expression in brain nuclei induced by abdominal surgery and the modulation by RKT in mice. RKT or vehicle was gavaged daily for 1 week. On day 8 mice had no access to food for 6-7 h and were treated twice with RKT or vehicle. Abdominal surgery (laparotomy-cecum palpation was performed 1-2 h before the dark phase. The food intake and meal structures were monitored using an automated monitoring system for mice. Brain sections were processed for c-Fos immunoreactivity (ir 2-h after abdominal surgery. Abdominal surgery significantly reduced bouts, meal frequency, size and duration, and time spent on meals, and increased inter-meal interval and satiety ratio resulting in 92-86% suppression of food intake at 2-24 h post-surgery compared with control group (no surgery. RKT significantly increased bouts, meal duration and the cumulative 12-h food intake by 11%. Abdominal surgery increased c-Fos in the prelimbic, cingulate and insular cortexes, and autonomic nuclei, such as the bed nucleus of the stria terminalis, central amygdala, hypothalamic supraoptic (SON, paraventricular and arcuate nuclei, Edinger-Westphal nucleus (E-W, lateral periaqueduct gray (PAG, lateral parabrachial nucleus, locus coeruleus, ventrolateral medulla and nucleus tractus solitarius (NTS. RKT induced a small increase in c-Fos-ir neurons in the SON and E-W of control mice, and in mice with surgery there was an increase in the lateral PAG and a decrease in the NTS. These findings indicate that abdominal surgery inhibits food intake by increasing both satiation (meal duration and satiety (meal interval and activates brain circuits involved in pain, feeding behavior and stress that may underlie the alterations of meal pattern and food intake inhibition

  4. Ordering Dynamics in Neuron Activity Pattern Model: An Insight to Brain Functionality.

    Science.gov (United States)

    Gundh, Jasleen; Singh, Awaneesh; Singh, R K Brojen

    2015-01-01

    We study the domain ordering kinetics in d = 2 ferromagnets which corresponds to populated neuron activities with both long-ranged interactions, V(r) ∼ r-n and short-ranged interactions. We present the results from comprehensive Monte Carlo (MC) simulations for the nonconserved Ising model with n ≥ 2, interaction range considering near and far neighbors. Our model results could represent the long-ranged neuron kinetics (n ≤ 4) in consistent with the same dynamical behaviour of short-ranged case (n ≥ 4) at far below and near criticality. We found that emergence of fast and slow kinetics of long and short ranged case could imitate the formation of connections among near and distant neurons. The calculated characteristic length scale in long-ranged interaction is found to be n independent (L(t) ∼ t1/(n-2)), whereas short-ranged interaction follows L(t) ∼ t1/2 law and approximately preserve universality in domain kinetics. Further, we did the comparative study of phase ordering near the critical temperature which follows different behaviours of domain ordering near and far critical temperature but follows universal scaling law.

  5. Towards a physiology-based measure of pain: patterns of human brain activity distinguish painful from non-painful thermal stimulation.

    Directory of Open Access Journals (Sweden)

    Justin E Brown

    Full Text Available Pain often exists in the absence of observable injury; therefore, the gold standard for pain assessment has long been self-report. Because the inability to verbally communicate can prevent effective pain management, research efforts have focused on the development of a tool that accurately assesses pain without depending on self-report. Those previous efforts have not proven successful at substituting self-report with a clinically valid, physiology-based measure of pain. Recent neuroimaging data suggest that functional magnetic resonance imaging (fMRI and support vector machine (SVM learning can be jointly used to accurately assess cognitive states. Therefore, we hypothesized that an SVM trained on fMRI data can assess pain in the absence of self-report. In fMRI experiments, 24 individuals were presented painful and nonpainful thermal stimuli. Using eight individuals, we trained a linear SVM to distinguish these stimuli using whole-brain patterns of activity. We assessed the performance of this trained SVM model by testing it on 16 individuals whose data were not used for training. The whole-brain SVM was 81% accurate at distinguishing painful from non-painful stimuli (p<0.0000001. Using distance from the SVM hyperplane as a confidence measure, accuracy was further increased to 84%, albeit at the expense of excluding 15% of the stimuli that were the most difficult to classify. Overall performance of the SVM was primarily affected by activity in pain-processing regions of the brain including the primary somatosensory cortex, secondary somatosensory cortex, insular cortex, primary motor cortex, and cingulate cortex. Region of interest (ROI analyses revealed that whole-brain patterns of activity led to more accurate classification than localized activity from individual brain regions. Our findings demonstrate that fMRI with SVM learning can assess pain without requiring any communication from the person being tested. We outline tasks that should be

  6. Recovery of post stroke proximal arm function, driven by complex neuroplastic bilateral brain activation patterns and predicted by baseline motor dysfunction severity

    Directory of Open Access Journals (Sweden)

    Svetlana ePundik

    2015-07-01

    Full Text Available Objectives: Neuroplastic changes that drive recovery of shoulder/elbow function after stoke have been poorly understood. The purpose of this study was to determine the relationship between neuroplastic brain changes related to shoulder/elbow movement control in response to treatment and recovery of arm motor function in chronic stroke survivors. Methods: Twenty-three chronic stroke survivors were treated with 12 weeks of arm rehabilitation. Outcome measures included functional Magnetic Resonance Imaging (fMRI for the shoulder/elbow components of reach and a skilled motor function test (Arm Motor Abilities Test (AMAT, collected before and after treatment.Results: We observed two patterns of neuroplastic changes that were associated with gains in motor function: decreased or increased task-related brain activation. Those with significantly better motor function at baseline exhibited a decrease in brain activation in response to treatment, evident in the ipsilesional primary motor and contralesional supplementary motor regions; in contrast, those with greater baseline motor impairment, exhibited increased brain activation in response to treatment. There was an linear relationship between greater functional gain (AMAT and increased activation in bilateral primary motor, contralesional primary and secondary sensory regions, and contralesional lateral premotor area, after adjusting for baseline AMAT, age, and time since stroke. Conclusions: Recovery of functional reach involves recruitment of several contralesional and bilateral primary motor regions. In response to intensive therapy, the direction of functional brain change (i.e. increase or decrease in task-related brain recruitment for shoulder/elbow reach components depends on baseline level of motor function and may represent either different phases or different strategies of neuroplasticity that drive functional recovery.

  7. Analysis of brain patterns using temporal measures

    Energy Technology Data Exchange (ETDEWEB)

    Georgopoulos, Apostolos

    2015-08-11

    A set of brain data representing a time series of neurophysiologic activity acquired by spatially distributed sensors arranged to detect neural signaling of a brain (such as by the use of magnetoencephalography) is obtained. The set of brain data is processed to obtain a dynamic brain model based on a set of statistically-independent temporal measures, such as partial cross correlations, among groupings of different time series within the set of brain data. The dynamic brain model represents interactions between neural populations of the brain occurring close in time, such as with zero lag, for example. The dynamic brain model can be analyzed to obtain the neurophysiologic assessment of the brain. Data processing techniques may be used to assess structural or neurochemical brain pathologies.

  8. Brain Activation Patterns Associated with the Effects of Emotional Distracters during Working Memory Maintenance in Patients with Generalized Anxiety Disorder.

    Science.gov (United States)

    Park, Jong-Il; Kim, Gwang-Won; Jeong, Gwang-Woo; Chung, Gyung Ho; Yang, Jong-Chul

    2016-01-01

    Few studies have assessed the neural mechanisms of the effects of emotion on cognition in generalized anxiety disorder (GAD) patients. In this functional MRI (fMRI), we investigated the effects of emotional interference on working memory (WM) maintenance in GAD patients. Fifteen patients with GAD participated in this study. Event-related fMRI data were obtained while the participants performed a WM task (face recognition) with neutral and anxiety-provoking distracters. The GAD patients showed impaired performance in WM task during emotional distracters and showed greater activation on brain regions such as DLPFC, VLPFC, amygdala, hippocampus which are responsible for the active maintenance of goal relevant information in WM and emotional processing. Although our results are not conclusive, our finding cautiously suggests the cognitive-affective interaction in GAD patients which shown interfering effect of emotional distracters on WM maintenance.

  9. Changes in visual perspective influence brain activity patterns during cognitive perspective-taking of other people's pain.

    Science.gov (United States)

    Vistoli, Damien; Achim, Amélie M; Lavoie, Marie-Audrey; Jackson, Philip L

    2016-05-01

    Empathy refers to our capacity to share and understand the emotional states of others. It relies on two main processes according to existing models: an effortless affective sharing process based on neural resonance and a more effortful cognitive perspective-taking process enabling the ability to imagine and understand how others feel in specific situations. Until now, studies have focused on factors influencing the affective sharing process but little is known about those influencing the cognitive perspective-taking process and the related brain activations during vicarious pain. In the present fMRI study, we used the well-known physical pain observation task to examine whether the visual perspective can influence, in a bottom-up way, the brain regions involved in taking others' cognitive perspective to attribute their level of pain. We used a pseudo-dynamic version of this classic task which features hands in painful or neutral daily life situations while orthogonally manipulating: (1) the visual perspective with which hands were presented (first-person versus third-person conditions) and (2) the explicit instructions to imagine oneself or an unknown person in those situations (Self versus Other conditions). The cognitive perspective-taking process was investigated by comparing Other and Self conditions. When examined across both visual perspectives, this comparison showed no supra-threshold activation. Instead, the Other versus Self comparison led to a specific recruitment of the bilateral temporo-parietal junction when hands were presented according to a first-person (but not third-person) visual perspective. The present findings identify the visual perspective as a factor that modulates the neural activations related to cognitive perspective-taking during vicarious pain and show that this complex cognitive process can be influenced by perceptual stages of information processing.

  10. Differences between patterns of brain activity associated with semantics and those linked with phonological processing diminish with age.

    Science.gov (United States)

    Martins, Ruben; Simard, France; Monchi, Oury

    2014-01-01

    It is widely believed that language function tends to show little age-related performance decline. Indeed, some older individuals seem to use compensatory mechanisms to maintain a high level of performance when submitted to lexical tasks. However, how these mechanisms affect cortical and subcortical activity during semantic and phonological processing has not been extensively explored. The purpose of this study was to look at the effect of healthy aging on cortico-subcortical routes related to semantic and phonological processing using a lexical analogue of the Wisconsin Cart-Sorting Task. Our results indicate that while young adults tend to show increased activity in the ventrolateral prefrontal cortex, the dorsolateral prefrontal cortex, the fusiform gyrus, the ventral temporal lobe and the caudate nucleus during semantic decisions and in the posterior Broca's area (area 44), the temporal lobe (area 37), the temporoparietal junction (area 40) and the motor cortical regions during phonological decisions, older individuals showed increased activity in the dorsolateral prefrontal cortex and motor cortical regions during both semantic and phonological decisions. Furthermore, when semantic and phonological decisions were contrasted with each other, younger individuals showed significant brain activity differences in several regions while older individuals did not. Therefore, in older individuals, the semantic and phonological routes seem to merge into a single pathway. These findings represent most probably neural reserve/compensation mechanisms, characterized by a decrease in specificity, on which the elderly rely to maintain an adequate level of performance.

  11. Testing promotes long-term learning via stabilizing activation patterns in a large network of brain areas.

    Science.gov (United States)

    Keresztes, Attila; Kaiser, Daniel; Kovács, Gyula; Racsmány, Mihály

    2014-11-01

    The testing effect refers to the phenomenon that repeated retrieval of memories promotes better long-term retention than repeated study. To investigate the neural correlates of the testing effect, we used event-related functional magnetic resonance imaging methods while participants performed a cued recall task. Prior to the neuroimaging experiment, participants learned Swahili-German word pairs, then half of the word pairs were repeatedly studied, whereas the other half were repeatedly tested. For half of the participants, the neuroimaging experiment was performed immediately after the learning phase; a 1-week retention interval was inserted for the other half of the participants. We found that a large network of areas identified in a separate 2-back functional localizer scan were active during the final recall of the word pair associations. Importantly, the learning strategy (retest or restudy) of the word pairs determined the manner in which the retention interval affected the activations within this network. Recall of previously restudied memories was accompanied by reduced activation within this network at long retention intervals, but no reduction was observed for previously retested memories. We suggest that retrieval promotes learning via stabilizing cue-related activation patterns in a network of areas usually associated with cognitive and attentional control functions.

  12. Persistent differences in patterns of brain activation after sports-related concussion: a longitudinal functional magnetic resonance imaging study.

    Science.gov (United States)

    Dettwiler, Annegret; Murugavel, Murali; Putukian, Margot; Cubon, Valerie; Furtado, John; Osherson, Daniel

    2014-01-15

    Avoiding recurrent injury in sports-related concussion (SRC) requires understanding the neural mechanisms involved during the time of recovery after injury. The decision for return-to-play is one of the most difficult responsibilities facing the physician, and so far this decision has been based primarily on neurological examination, symptom checklists, and neuropsychological (NP) testing. Functional magnetic resonance imaging (fMRI) may be an additional, more objective tool to assess the severity and recovery of function after concussion. The purpose of this study was to define neural correlates of SRC during the 2 months after injury in varsity contact sport athletes who suffered a SRC. All athletes were scanned as they performed an n-back task, for n=1, 2, 3. Subjects were scanned within 72 hours (session one), at 2 weeks (session two), and 2 months (session three) post-injury. Compared with age and sex matched normal controls, concussed subjects demonstrated persistent, significantly increased activation for the 2 minus 1 n-back contrast in bilateral dorsolateral prefrontal cortex (DLPFC) in all three sessions and in the inferior parietal lobe in session one and two (α≤0.01 corrected). Measures of task performance revealed no significant differences between concussed versus control groups at any of the three time points with respect to any of the three n-back tasks. These findings suggest that functional brain activation differences persist at 2 months after injury in concussed athletes, despite the fact that their performance on a standard working memory task is comparable to normal controls and normalization of clinical and NP test results. These results might indicate a delay between neural and behaviorally assessed recovery after SRC.

  13. Atypical brain activation patterns during a face-to-face joint attention game in adults with autism spectrum disorder.

    Science.gov (United States)

    Redcay, Elizabeth; Dodell-Feder, David; Mavros, Penelope L; Kleiner, Mario; Pearrow, Mark J; Triantafyllou, Christina; Gabrieli, John D; Saxe, Rebecca

    2013-10-01

    Joint attention behaviors include initiating one's own and responding to another's bid for joint attention to an object, person, or topic. Joint attention abilities in autism are pervasively atypical, correlate with development of language and social abilities, and discriminate children with autism from other developmental disorders. Despite the importance of these behaviors, the neural correlates of joint attention in individuals with autism remain unclear. This paucity of data is likely due to the inherent challenge of acquiring data during a real-time social interaction. We used a novel experimental set-up in which participants engaged with an experimenter in an interactive face-to-face joint attention game during fMRI data acquisition. Both initiating and responding to joint attention behaviors were examined as well as a solo attention (SA) control condition. Participants included adults with autism spectrum disorder (ASD) (n = 13), a mean age- and sex-matched neurotypical group (n = 14), and a separate group of neurotypical adults (n = 22). Significant differences were found between groups within social-cognitive brain regions, including dorsal medial prefrontal cortex (dMPFC) and right posterior superior temporal sulcus (pSTS), during the RJA as compared to SA conditions. Region-of-interest analyses revealed a lack of signal differentiation between joint attention and control conditions within left pSTS and dMPFC in individuals with ASD. Within the pSTS, this lack of differentiation was characterized by reduced activation during joint attention and relative hyper-activation during SA. These findings suggest a possible failure of developmental neural specialization within the STS and dMPFC to joint attention in ASD.

  14. General human activity patterns

    CERN Document Server

    Mollgaard, Anders; Mathiesen, Joachim

    2016-01-01

    We investigate the dynamics and interplay between human communication, movement, and social proximity by analyzing data collected from smartphones distributed among 638 individuals. The main question we consider is: to what extent do individuals act according to patterns shared across an entire population? Based on statistics of the entire population, we successfully predict 71\\% of the activity and 85\\% of the inactivity involved in communication, movement, and social proximity. We find that individual level statistics only result in marginally better predictions, indicating a high degree of shared activity patterns across the population. Finally, we predict short-term activity patterns using a generalized linear model, which suggests that a simple linear description might be sufficient to explain a wide range of actions, whether they be of social or of physical character.

  15. Tractography patterns of subthalamic nucleus deep brain stimulation.

    Science.gov (United States)

    Vanegas-Arroyave, Nora; Lauro, Peter M; Huang, Ling; Hallett, Mark; Horovitz, Silvina G; Zaghloul, Kareem A; Lungu, Codrin

    2016-04-01

    Deep brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of deep brain stimulation are grey matter structures, axonal modulation is known to play an important role in deep brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of deep brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after deep brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral deep brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after deep brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of deep brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns observed in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical

  16. Sex differences in brain activation pattern during a visuospatial cognitive task: a functional magnetic resonance imaging study in healthy volunteers.

    Science.gov (United States)

    Weiss, E; Siedentopf, C M; Hofer, A; Deisenhammer, E A; Hoptman, M J; Kremser, C; Golaszewski, S; Felber, S; Fleischhacker, W W; Delazer, M

    2003-07-03

    Sex differences in mental rotation tasks, favoring men, have been noted in behavioral studies and functional imaging studies. In the present study ten female and ten male volunteers underwent functional magnetic resonance imaging in a conventional block design. Regions of activation were detected after performance of a mental rotation task inside the scanner. In contrast to previous studies, confounding factors such as performance differences between genders or high error rates were excluded. Men showed significantly stronger parietal activation, while women showed significantly greater right frontal activation. Our results point to gender specific differences in the neuropsychological processes involved in mental rotation tasks.

  17. Anger Style, Psychopathology, and Regional Brain Activity

    OpenAIRE

    Stewart, Jennifer L.; Levin, Rebecca L.; Sass, Sarah M.; Heller, Wendy; Gregory A. Miller

    2008-01-01

    Depression and anxiety often involve high levels of trait anger and disturbances in anger expression. Reported anger experience and outward anger expression have recently been associated with left-biased asymmetry of frontal cortical activity, assumed to reflect approach motivation. However, different styles of anger expression could presumably involve different brain mechanisms and/or interact with psychopathology to produce various patterns of brain asymmetry. The present study explored the...

  18. Discovering Patterns in Brain Signals Using Decision Trees

    Science.gov (United States)

    2016-01-01

    Even with emerging technologies, such as Brain-Computer Interfaces (BCI) systems, understanding how our brains work is a very difficult challenge. So we propose to use a data mining technique to help us in this task. As a case of study, we analyzed the brain's behaviour of blind people and sighted people in a spatial activity. There is a common belief that blind people compensate their lack of vision using the other senses. If an object is given to sighted people and we asked them to identify this object, probably the sense of vision will be the most determinant one. If the same experiment was repeated with blind people, they will have to use other senses to identify the object. In this work, we propose a methodology that uses decision trees (DT) to investigate the difference of how the brains of blind people and people with vision react against a spatial problem. We choose the DT algorithm because it can discover patterns in the brain signal, and its presentation is human interpretable. Our results show that using DT to analyze brain signals can help us to understand the brain's behaviour. PMID:27688746

  19. Growth Patterns of Microscopic Brain Tumors

    CERN Document Server

    Sander, L M; Sander, Leonard M.; Deisboeck, Thomas S.

    2002-01-01

    Highly malignant brain tumors such as Glioblastoma Multiforme (GBM) form complex growth patterns in vitro in which invasive cells organize in tenuous branches. Here, we formulate a chemotaxis model for this sort of growth. A key element controlling the pattern is homotype attraction, i.e., the tendency for invasive cells to follow pathways previously explored. We investigate this in two ways: we show that there is an intrinsic instability in the model, which leads to branch formation. We also give a discrete description for the expansion of the invasive zone, and a continuum model for the nutrient supply. The results indicate that both, strong heterotype chemotaxis and strong homotype chemo-attraction are required for branch formation within the invasive zone. Our model thus can give a way to assess the importance of the various processes, and a way to explore and analyze transitions between different growth regimes.

  20. Pattern Activation/Recognition Theory of Mind

    Directory of Open Access Journals (Sweden)

    Bertrand edu Castel

    2015-07-01

    Full Text Available In his 2012 book How to Create a Mind, Ray Kurzweil defines a Pattern Recognition Theory of Mind that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call Pattern Activation/Recognition Theory of Mind. While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.

  1. Pattern activation/recognition theory of mind.

    Science.gov (United States)

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.

  2. Finer discrimination of brain activation with local multivariate distance

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The organization of human brain function is diverse on different spatial scales.Various cognitive states are alwavs represented as distinct activity patterns across the specific brain region on fine scales.Conventional univariate analysis of functional MRI data seeks to determine how a particular cognitive state is encoded in brain activity by analyzing each voxel separately without considering the fine-scale patterns information contained in the local brain regions.In this paper,a local multivariate distance mapping(LMDM)technique is proposed to detect the brain activation and to map the fine-scale brain activity patterns.LMDM directly represents the local brain activity with the patterns across multiple voxels rather than individual voxels,and it employs the multivariate distance between different patterns to discriminate the brain state on fine scales.Experiments with simulated and real fMRI data demonstrate that LMDM technique can dramatically increase the sensitivity of the detection for the fine-scale brain activity pettems which contain the subtle information of the experimental conditions.

  3. Reproducibility and discriminability of brain patterns of semantic categories enhanced by congruent audiovisual stimuli.

    Directory of Open Access Journals (Sweden)

    Yuanqing Li

    Full Text Available One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or semantic categories through a functional magnetic resonance imaging (fMRI experiment. We used a pattern search method to extract brain patterns corresponding to two semantic categories: "old people" and "young people." These brain patterns were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG. The strength of the fMRI signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal integration.

  4. Discovering Patterns in Brain Signals Using Decision Trees

    Directory of Open Access Journals (Sweden)

    Narusci S. Bastos

    2016-01-01

    Full Text Available Even with emerging technologies, such as Brain-Computer Interfaces (BCI systems, understanding how our brains work is a very difficult challenge. So we propose to use a data mining technique to help us in this task. As a case of study, we analyzed the brain’s behaviour of blind people and sighted people in a spatial activity. There is a common belief that blind people compensate their lack of vision using the other senses. If an object is given to sighted people and we asked them to identify this object, probably the sense of vision will be the most determinant one. If the same experiment was repeated with blind people, they will have to use other senses to identify the object. In this work, we propose a methodology that uses decision trees (DT to investigate the difference of how the brains of blind people and people with vision react against a spatial problem. We choose the DT algorithm because it can discover patterns in the brain signal, and its presentation is human interpretable. Our results show that using DT to analyze brain signals can help us to understand the brain’s behaviour.

  5. Patterns of neonatal hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Centre, Department of Neonatology, KE 04.123.1, P.O. Box 85090, Utrecht (Netherlands); Groenendaal, Floris [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2010-06-15

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  6. Altered spontaneous brain activity pattern in patients with high myopia using amplitude of low-frequency fluctuation: a resting-state fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2016-11-01

    Full Text Available Xin Huang,1,2,* Fu-Qing Zhou,3,* Yu-Xiang Hu,1 Xiao-Xuan Xu,1 Xiong Zhou,4 Yu-Lin Zhong,1 Jun Wang,4 Xiao-Rong Wu1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 2Department of Ophthalmology, The First People’s Hospital of Jiujiang City, Jiujiang, 3Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, 4Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Objective: Many previous reports have demonstrated significant neural anatomy changes in the brain of high myopic (HM patients, whereas the spontaneous brain activity changes in the HM patients at rest are not well studied. Our objective was to use amplitude of low-frequency fluctuation (ALFF method to investigate the changes in spontaneous brain activity in HM patients and their relationships with clinical features. Methods: A total of 38 patients with HM (17 males and 21 females and 38 healthy controls (HCs (17 males and 21 females closely matched in age, sex, and education underwent resting-state functional magnetic resonance imaging scans. The ALFF method was used to assess local features of spontaneous brain activity. The relationship between the mean ALFF signal values in many brain regions and the clinical features in HM patients was calculated by correlation analysis. Results: Compared with HCs, the HM patients had significantly lower ALFF in the right inferior and middle temporal gyrus, left middle temporal gyrus, left inferior frontal gyrus/putamen, right inferior frontal gyrus/putamen/insula, right middle frontal gyrus, and right inferior parietal lobule and higher ALFF values in the bilateral midcingulate cortex, left postcentral gyrus, and left precuneus/inferior parietal lobule. However, no relationship was found between the mean ALFF

  7. Invisible Brain: Knowledge in Research Works and Neuron Activity

    OpenAIRE

    Aviv Segev; Dorothy Curtis; Sukhwan Jung; Suhyun Chae

    2016-01-01

    If the market has an invisible hand, does knowledge creation and representation have an “invisible brain”? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the kn...

  8. Shadows of Music-Language Interaction on Low Frequency Brain Oscillatory Patterns

    Science.gov (United States)

    Carrus, Elisa; Koelsch, Stefan; Bhattacharya, Joydeep

    2011-01-01

    Electrophysiological studies investigating similarities between music and language perception have relied exclusively on the signal averaging technique, which does not adequately represent oscillatory aspects of electrical brain activity that are relevant for higher cognition. The current study investigated the patterns of brain oscillations…

  9. Assessing brain structural associations with working memory related brain patterns in schizophrenia and healthy controls using linked independent component analysis

    Directory of Open Access Journals (Sweden)

    Christine Lycke Brandt

    2015-01-01

    Full Text Available Schizophrenia (SZ is a psychotic disorder with significant cognitive dysfunction. Abnormal brain activation during cognitive processing has been reported, both in task-positive and task-negative networks. Further, structural cortical and subcortical brain abnormalities have been documented, but little is known about how task-related brain activation is associated with brain anatomy in SZ compared to healthy controls (HC. Utilizing linked independent component analysis (LICA, a data-driven multimodal analysis approach, we investigated structure–function associations in a large sample of SZ (n = 96 and HC (n = 142. We tested for associations between task-positive (fronto-parietal and task-negative (default-mode brain networks derived from fMRI activation during an n-back working memory task, and brain structural measures of surface area, cortical thickness, and gray matter volume, and to what extent these associations differed in SZ compared to HC. A significant association (p < .05, corrected for multiple comparisons was found between a component reflecting the task-positive fronto-parietal network and another component reflecting cortical thickness in fronto-temporal brain regions in SZ, indicating increased activation with increased thickness. Other structure–function associations across, between and within groups were generally moderate and significant at a nominal p-level only, with more numerous and stronger associations in SZ compared to HC. These results indicate a complex pattern of moderate associations between brain activation during cognitive processing and brain morphometry, and extend previous findings of fronto-temporal brain abnormalities in SZ by suggesting a coupling between cortical thickness of these brain regions and working memory-related brain activation.

  10. Supervised learning for neural manifold using spatiotemporal brain activity

    Science.gov (United States)

    Kuo, Po-Chih; Chen, Yong-Sheng; Chen, Li-Fen

    2015-12-01

    Objective. Determining the means by which perceived stimuli are compactly represented in the human brain is a difficult task. This study aimed to develop techniques for the construction of the neural manifold as a representation of visual stimuli. Approach. We propose a supervised locally linear embedding method to construct the embedded manifold from brain activity, taking into account similarities between corresponding stimuli. In our experiments, photographic portraits were used as visual stimuli and brain activity was calculated from magnetoencephalographic data using a source localization method. Main results. The results of 10 × 10-fold cross-validation revealed a strong correlation between manifolds of brain activity and the orientation of faces in the presented images, suggesting that high-level information related to image content can be revealed in the brain responses represented in the manifold. Significance. Our experiments demonstrate that the proposed method is applicable to investigation into the inherent patterns of brain activity.

  11. Disturbed spontaneous brain activity pattern in patients with primary angle-closure glaucoma using amplitude of low-frequency fluctuation: a fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2015-07-01

    Full Text Available Xin Huang,1,* Yu-Lin Zhong,1,* Xian-Jun Zeng,2 Fuqing Zhou,2 Xin-Hua Liu,1 Pei-Hong Hu,1 Chong-Gang Pei,1 Yi Shao,1 Xi-Jian Dai21Department of Ophthalmology, 2Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, Jiangxi, People’s Republic of China*These authors contributed equally to this workObjective: The aim of this study is to use amplitude of low-frequency fluctuation (ALFF as a method to explore the local features of spontaneous brain activity in patients with primary angle -closure glaucoma (PACG and ALFFs relationship with the behavioral performances.Methods: A total of twenty one patients with PACG (eight males and 13 females, and twenty one healthy subjects (nine males and twelve females closely matched in age, sex, and education, each underwent a resting-state functional magnetic resonance imaging scan. The ALFF method was used to assess the local features of spontaneous brain activity. The correlation analysis was used to explore the relationships between the observed mean ALFF signal values of the different areas in PACG patients and the thickness of the retinal nerve fiber layer (RNFL. Results: Compared with the healthy subjects, patients with PACG had significant lower ALFF areas in the left precentral gyrus, bilateral middle frontal gyrus, bilateral superior frontal gyrus, right precuneus, and right angular gyrus, and higher areas in the right precentral gyrus. In the PACG group, there were significant negative correlations between the mean ALFF signal value of the right middle frontal gyrus and the left mean RNFL thickness (r=-0.487, P=0.033, and between the mean ALFF signal value of the left middle frontal gyrus and the right mean RNFL thickness (r=-0.504, P=0.020. Conclusion: PACG mainly involved in the dysfunction in the frontal lobe, which may reflect the underlying pathologic mechanism of PACG.Keywords: angle-closure glaucoma, amplitude of low-frequency fluctuation, functional

  12. Intrinsic Patterns of Human Activity

    Science.gov (United States)

    Hu, Kun; Ivanov, Plamen Ch.; Chen, Zhi; Hilton, Michael; Stanley, H. Eugene; Shea, Steven

    2003-03-01

    Activity is one of the defining features of life. Control of human activity is complex, being influenced by many factors both extrinsic and intrinsic to the body. The most obvious extrinsic factors that affect activity are the daily schedule of planned events, such as work and recreation, as well as reactions to unforeseen or random events. These extrinsic factors may account for the apparently random fluctuations in human motion observed over short time scales. The most obvious intrinsic factors are the body clocks including the circadian pacemaker that influences our sleep/wake cycle and ultradian oscillators with shorter time scales [2, 3]. These intrinsic rhythms may account for the underlying regularity in average activity level over longer periods of up to 24 h. Here we ask if the known extrinsic and intrinsic factors fully account for all complex features observed in recordings of human activity. To this end, we measure activity over two weeks from forearm motion in subjects undergoing their regular daily routine. Utilizing concepts from statistical physics, we demonstrate that during wakefulness human activity possesses previously unrecognized complex dynamic patterns. These patterns of activity are characterized by robust fractal and nonlinear dynamics including a universal probability distribution and long-range power-law correlations that are stable over a wide range of time scales (from minutes to hours). Surprisingly, we find that these dynamic patterns are unaffected by changes in the average activity level that occur within individual subjects throughout the day and on different days of the week, and between subjects. Moreover, we find that these patterns persist when the same subjects undergo time-isolation laboratory experiments designed to account for the phase of the circadian pacemaker, and control the known extrinsic factors by restricting behaviors and manipulating scheduled events including the sleep/wake cycle. We attribute these newly

  13. Is it over-respectful or disrespectful? Differential patterns of brain activity in perceiving pragmatic violation of social status information during utterance comprehension.

    Science.gov (United States)

    Jiang, Xiaoming; Li, Yi; Zhou, Xiaolin

    2013-09-01

    A critical issue in the study of language communication is how extra-linguistic information, such as the social status of the communicators, is taken into account by the online comprehension system. In Mandarin Chinese, the second-person pronoun (you/your) can be in a respectful form (nin/nin-de) when the addressee is of higher status than the speaker or in a less respectful form (ni/ni-de) when the addressee is of equal or lower status. We conducted an event-related potential (ERP) study to investigate how social status information affects pronoun resolution during utterance comprehension. Participants read simple conversational scenarios for comprehension, with each scenario including a context describing a speaker and an addressee and a directly-quoted utterance beginning with the second-person pronoun. The relative status between the speaker and the addressee was varied, creating conditions in which the second-person pronoun was either consistent or inconsistent with the relationship between conversants, or in which the two conversants were of equal status. ERP results showed that, compared with the status-consistent and status-equal conditions, the status-inconsistent condition elicited an anterior N400-like effect on nin-de (over-respectful) and a broadly distributed N400 on ni-de (disrespectful). In a later time window, both the status-reversed and the status-equal conditions elicited a sustained positivity effect on nin-de and a sustained negativity effect on ni-de. These findings suggest that the comprehender builds up expectance towards the upcoming pronoun based on the perceived social status of conversants. While the inconsistent pronoun causes semantic integration difficulty in an earlier stage of processing, the strategy to resolve the inconsistency and the corresponding brain activity vary according to the pragmatic implications of the pronoun.

  14. Perceptual similarity of visual patterns predicts dynamic neural activation patterns measured with MEG.

    Science.gov (United States)

    Wardle, Susan G; Kriegeskorte, Nikolaus; Grootswagers, Tijl; Khaligh-Razavi, Seyed-Mahdi; Carlson, Thomas A

    2016-05-15

    Perceptual similarity is a cognitive judgment that represents the end-stage of a complex cascade of hierarchical processing throughout visual cortex. Previous studies have shown a correspondence between the similarity of coarse-scale fMRI activation patterns and the perceived similarity of visual stimuli, suggesting that visual objects that appear similar also share similar underlying patterns of neural activation. Here we explore the temporal relationship between the human brain's time-varying representation of visual patterns and behavioral judgments of perceptual similarity. The visual stimuli were abstract patterns constructed from identical perceptual units (oriented Gabor patches) so that each pattern had a unique global form or perceptual 'Gestalt'. The visual stimuli were decodable from evoked neural activation patterns measured with magnetoencephalography (MEG), however, stimuli differed in the similarity of their neural representation as estimated by differences in decodability. Early after stimulus onset (from 50ms), a model based on retinotopic organization predicted the representational similarity of the visual stimuli. Following the peak correlation between the retinotopic model and neural data at 80ms, the neural representations quickly evolved so that retinotopy no longer provided a sufficient account of the brain's time-varying representation of the stimuli. Overall the strongest predictor of the brain's representation was a model based on human judgments of perceptual similarity, which reached the limits of the maximum correlation with the neural data defined by the 'noise ceiling'. Our results show that large-scale brain activation patterns contain a neural signature for the perceptual Gestalt of composite visual features, and demonstrate a strong correspondence between perception and complex patterns of brain activity.

  15. Resting state brain activity and functional brain mapping

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiaohu; Wang Peijun; Tang Xiaowei

    2007-01-01

    Functional brain imaging studies commonly use either resting or passive task states as their control conditions, and typically identify the activation brain region associated with a specific task by subtracting the resting from the active task conditions. Numerous studies now suggest, however, that the resting state may not reflect true mental "rest" conditions. The mental activity that occurs during"rest" might therefore greatly influence the functional neuroimaging observations that are collected through the usual subtracting analysis strategies. Exploring the ongoing mental processes that occur during resting conditions is thus of particular importance for deciphering functional brain mapping results and obtaining a more comprehensive understanding of human brain functions. In this review article, we will mainly focus on the discussion of the current research background of functional brain mapping at resting state and the physiological significance of the available neuroimaging data.

  16. Sleep Deprivation Reveals Altered Brain Perfusion Patterns in Somnambulism.

    Directory of Open Access Journals (Sweden)

    Thien Thanh Dang-Vu

    Full Text Available Despite its high prevalence, relatively little is known about the pathophysiology of somnambulism. Increasing evidence indicates that somnambulism is associated with functional abnormalities during wakefulness and that sleep deprivation constitutes an important drive that facilitates sleepwalking in predisposed patients. Here, we studied the neural mechanisms associated with somnambulism using Single Photon Emission Computed Tomography (SPECT with 99mTc-Ethylene Cysteinate Dimer (ECD, during wakefulness and after sleep deprivation.Ten adult sleepwalkers and twelve controls with normal sleep were scanned using 99mTc-ECD SPECT in morning wakefulness after a full night of sleep. Eight of the sleepwalkers and nine of the controls were also scanned during wakefulness after a night of total sleep deprivation. Between-group comparisons of regional cerebral blood flow (rCBF were performed to characterize brain activity patterns during wakefulness in sleepwalkers.During wakefulness following a night of total sleep deprivation, rCBF was decreased bilaterally in the inferior temporal gyrus in sleepwalkers compared to controls.Functional neural abnormalities can be observed during wakefulness in somnambulism, particularly after sleep deprivation and in the inferior temporal cortex. Sleep deprivation thus not only facilitates the occurrence of sleepwalking episodes, but also uncovers patterns of neural dysfunction that characterize sleepwalkers during wakefulness.

  17. Common Spatio-Time-Frequency Patterns for Motor Imagery-Based Brain Machine Interfaces

    Directory of Open Access Journals (Sweden)

    Hiroshi Higashi

    2013-01-01

    Full Text Available For efficient decoding of brain activities in analyzing brain function with an application to brain machine interfacing (BMI, we address a problem of how to determine spatial weights (spatial patterns, bandpass filters (frequency patterns, and time windows (time patterns by utilizing electroencephalogram (EEG recordings. To find these parameters, we develop a data-driven criterion that is a natural extension of the so-called common spatial patterns (CSP that are known to be effective features in BMI. We show that the proposed criterion can be optimized by an alternating procedure to achieve fast convergence. Experiments demonstrate that the proposed method can effectively extract discriminative features for a motor imagery-based BMI.

  18. Changes in brain tissue and behavior patterns induced by single short-term fasting in mice.

    Directory of Open Access Journals (Sweden)

    Yuko Hisatomi

    Full Text Available In humans, emaciation from long-term dietary deficiencies, such as anorexia, reportedly increases physical activity and brain atrophy. However, the effects of single short-term fasting on brain tissue or behavioral activity patterns remain unclear. To clarify the impact of malnutrition on brain function, we conducted a single short-term fasting study as an anorexia model using male adult mice and determined if changes occurred in migratory behavior as an expression of brain function and in brain tissue structure. Sixteen-week-old C57BL/6J male mice were divided into either the fasted group or the control group. Experiments were conducted in a fixed indoor environment. We examined the effects of fasting on the number of nerve cells, structural changes in the myelin and axon density, and brain atrophy. For behavior observation, the amount of food and water consumed, ingestion time, and the pattern of movement were measured using a time-recording system. The fasted mice showed a significant increase in physical activity and their rhythm of movement was disturbed. Since the brain was in an abnormal state after fasting, mice that were normally active during the night became active regardless of day or night and performed strenuous exercise at a high frequency. The brain weight did not change by a fast, and brain atrophy was not observed. Although no textural change was apparent by fasting, the neuronal neogenesis in the subventricular zone and hippocampus was inhibited, causing disorder of the brain function. A clear association between the suppression of encephalic neuropoiesis and overactivity was not established. However, it is interesting that the results of this study suggest that single short-term fasting has an effect on encephalic neuropoiesis.

  19. Phenotypic changes in the brain of SIV-infected macaques exposed to methamphetamine parallel macrophage activation patterns induced by the common gamma-chain cytokine system

    Directory of Open Access Journals (Sweden)

    Nikki eBortell

    2015-09-01

    Full Text Available One factor in the development of neuroAIDS is the increase in the migration of pro-inflammatory CD8 T cells across the Blood Brain Barrier. Typically these cells are involved with keeping the viral load down. However, the persistence of above average numbers of CD8 T cells in the brain, not necessarily specific to viral peptides, is facilitated by the upregulation of IL15 from astrocytes, in the absence of IL2, in the brain environment. Both IL15 and IL2 are common gamma chain (γc cytokines. Here, using the non-human primate model of neuroAIDS, we have demonstrated that exposure to Methamphetamine, a powerful illicit drug that has been associated with HIV exposure and neuroAIDS severity, can cause an increase in molecules of the γc system. Among these molecules, IL15, which is upregulated in astrocytes by Methamphetamine, and that induces the proliferation of T cells, may also be involved in driving an inflammatory phenotype in innate immune cells of the brain. Therefore, Methamphetamine and IL15 may be critical in the development and aggravation of Central Nervous System immune-mediated inflammatory pathology in HIV-infected drug abusers.

  20. Patterns of damage in the mature neonatal brain

    Energy Technology Data Exchange (ETDEWEB)

    Triulzi, Fabio; Parazzini, Cecilia; Righini, Andrea [Children' s Hospital ' ' Vittore Buzzi' ' , Departments of Radiology and Neuroradiology, Milan (Italy)

    2006-07-15

    Patterns of damage in the mature neonatal brain can be subdivided into focal, multifocal and diffuse. The main cause of diffuse brain damage in the term newborn is hypoxic-ischaemic encephalopathy (HIE). HIE is still the major recognized perinatal cause of neurological morbidity in full-term newborns. MRI offers today the highest sensitivity in detecting acute anoxic injury of the neonatal brain. Conventional acquisition techniques together with modern diffusion techniques can identify typical patterns of HIE injury, even in the early course of the disease. However, even though highly suggestive, these patterns cannot be considered as pathognomonic. Perinatal metabolic disease such as kernicterus and severe hypoglycaemia should be differentiated from classic HIE. Other conditions, such as infections, non-accidental injury and rarer metabolic diseases can be misinterpreted as HIE in their early course when diffuse brain swelling is still the predominant MRI feature. Diffusion techniques can help to differentiate different types of diffuse brain oedema. Typical examples of focal injuries are arterial or venous infarctions. In arterial infarction, diffusion techniques can define more precisely than conventional imaging the extent of focal infarction, even in the hyperacute phase. Moreover, diffusion techniques provide quantitative data of acute corticospinal tract injury, especially at the level of the cerebral peduncles. Venous infarction should be suspected in every case of unexplained cerebral haematoma in the full-term newborn. In the presence of spontaneous bleeding, venous structures should always be evaluated by MR angiography. (orig.)

  1. Validation of Parkinsonian Disease-Related Metabolic Brain Patterns

    NARCIS (Netherlands)

    Teune, Laura K.; Renken, Remco J.; Mudali, Deborah; De Jong, Bauke M.; Dierckx, Rudi A.; Roerdink, Jos B.T.M.; Leenders, Klaus L.

    2013-01-01

    Background: The objective of this study was to validate disease-related metabolic brain patterns for Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Methods: The study included 20 patients with Parkinson’s disease, 21 with multiple system atrophy, and 17 with progre

  2. Cortical activity in the left and right hemispheres during language-related brain functions

    DEFF Research Database (Denmark)

    Lassen, N A; Larsen, B

    1980-01-01

    The blood flow to a given brain region increases as the level of neural activity is augmented. Hence mapping of variations in regional cerebral blood flow affords a means of imaging the activity of various brain regions during various types of brain work. The paper summarizes the patterns...

  3. Altered pattern of spontaneous brain activity in the patients with end-stage renal disease: a resting-state functional MRI study with regional homogeneity analysis.

    Directory of Open Access Journals (Sweden)

    Xue Liang

    Full Text Available PURPOSE: To investigate the pattern of spontaneous neural activity in patients with end-stage renal disease (ESRD with and without neurocognitive dysfunction using resting-state functional magnetic resonance imaging (rs-fMRI with a regional homogeneity (ReHo algorithm. MATERIALS AND METHODS: rs-fMRI data were acquired in 36 ESRD patients (minimal nephro-encephalopathy [MNE], n = 19, 13 male, 37±12.07 years; non-nephro-encephalopathy [non-NE], n = 17, 11 male, 38±12.13 years and 20 healthy controls (13 male, 7 female, 36±10.27 years. Neuropsychological (number connection test type A [NCT-A], digit symbol test [DST] and laboratory tests were performed in all patients. The Kendall's coefficient of concordance (KCC was used to measure the regional homogeneity for each subject. The regional homogeneity maps were compared using ANOVA tests among MNE, non-NE, and healthy control groups and post hoc t -tests between each pair in a voxel-wise way. A multiple regression analysis was performed to evaluate the relationships between ReHo index and NCT-A, DST scores, serum creatinine and urea levels, disease and dialysis duration. RESULTS: Compared with healthy controls, both MNE and non-NE patients showed decreased ReHo in the multiple areas of bilateral frontal, parietal and temporal lobes. Compared with the non-NE, MNE patients showed decreased ReHo in the right inferior parietal lobe (IPL, medial frontal cortex (MFC and left precuneus (PCu. The NCT-A scores and serum urea levels of ESRD patients negatively correlated with ReHo values in the frontal and parietal lobes, while DST scores positively correlated with ReHo values in the bilateral PCC/precuneus, MFC and inferior parietal lobe (IPL (all P0.05, AlphaSim corrected. CONCLUSION: Diffused decreased ReHo values were found in both MNE and non-NE patients. The progressively decreased ReHo in the default mode network (DMN, frontal and parietal lobes might be trait-related in MNE. The Re

  4. Brain Activity in Response to Visual Symmetry

    Directory of Open Access Journals (Sweden)

    Marco Bertamini

    2014-12-01

    Full Text Available A number of studies have explored visual symmetry processing by measuring event related potentials and neural oscillatory activity. There is a sustained posterior negativity (SPN related to the presence of symmetry. There is also functional magnetic resonance imaging (MRI activity in extrastriate visual areas and in the lateral occipital complex. We summarise the evidence by answering six questions. (1 Is there an automatic and sustained response to symmetry in visual areas? Answer: Yes, and this suggests automatic processing of symmetry. (2 Which brain areas are involved in symmetry perception? Answer: There is an extended network from extrastriate areas to higher areas. (3 Is reflection special? Answer: Reflection is the optimal stimulus for a more general regularity-sensitive network. (4 Is the response to symmetry independent of view angle? Answer: When people classify patterns as symmetrical or random, the response to symmetry is view-invariant. When people attend to other dimensions, the network responds to residual regularity in the image. (5 How are brain rhythms in the two hemispheres altered during symmetry perception? Answer: Symmetry processing (rather than presence produces more alpha desynchronization in the right posterior regions. Finally, (6 does symmetry processing produce positive affect? Answer: Not in the strongest sense, but behavioural measures reveal implicit positive evaluation of abstract symmetry.

  5. The encoding of temporally irregular and regular visual patterns in the human brain.

    Directory of Open Access Journals (Sweden)

    Semir Zeki

    Full Text Available In the work reported here, we set out to study the neural systems that detect predictable temporal patterns and departures from them. We used functional magnetic resonance imaging (fMRI to locate activity in the brains of subjects when they viewed temporally regular and irregular patterns produced by letters, numbers, colors and luminance. Activity induced by irregular sequences was located within dorsolateral prefrontal cortex, including an area that was responsive to irregular patterns regardless of the type of visual stimuli producing them. Conversely, temporally regular arrangements resulted in activity in the right frontal lobe (medial frontal gyrus, in the left orbito-frontal cortex and in the left pallidum. The results show that there is an abstractive system in the brain for detecting temporal irregularity, regardless of the source producing it.

  6. Pattern recognition on brain magnetic resonance imaging in alpha dystroglycanopathies

    Directory of Open Access Journals (Sweden)

    Bindu Parayil

    2010-01-01

    Full Text Available Alpha dystroglycanopathies are heterogeneous group of disorders both phenotypically and genetically. A subgroup of these patients has characteristic brain imaging findings. Four patients with typical imaging findings of alpha dystroglycanopathy are reported. Phenotypic features included: global developmental delay, contractures, hypotonia and oculomotor abnormalities in all. Other manifestations were consanguinity (3, seizures (3, macrocephaly (1, microcephaly (3, retinal changes (2 and hypogenitalism (2. Magnetic resonance imaging (MRI of the brain revealed polymicrogyria, white matter changes, pontine hypoplasia, and subcortical cerebellar cysts in all the patients, ventriculomegaly, callosal abnormalities, and absent septum pellucidum in two and Dandy -Walker variant malformation in three. Magnetic resonace imaging of the first cousin of one the patient had the same characteristic imaging features. Brain imaging findings were almost identical despite heterogeneity in clinical presentation and histopathological features. Pattern recognition of MR imaging features may serve as a clue to the diagnosis of alpha dystroglycanopathy.

  7. Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Wieloch, Tadeusz; Gidö, Gunilla

    2006-01-01

    In order to identify biological processes relevant for cell death and survival in the brain following stroke, the postischemic brain transcriptome was studied by a large-scale cDNA array analysis of three peri-infarct brain regions at eight time points during the first 24 h of reperfusion following......-dehydrogenase1, and Choline kinase) or cell death-regulating genes such as mitochondrial CLIC. We conclude that a biphasic transcriptional up-regulation of the brain-derived neurotrophic factor (BDNF)-G-protein coupled receptor (GPCR)-mitogen-activated protein (MAP) kinase signaling pathways occurs in surviving...... tissue, concomitant with a progressive and persistent activation of cell proliferation signifying tissue regeneration, which provide the means for cell survival and postischemic brain plasticity....

  8. Human brain activity with functional NIR optical imager

    Science.gov (United States)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  9. Characterization of task-free and task-performance brain states via functional connectome patterns.

    Science.gov (United States)

    Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming

    2013-12-01

    Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACPs) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain.

  10. A signaling network for patterning of neuronal connectivity in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Mohammed Srahna

    2006-10-01

    Full Text Available The precise number and pattern of axonal connections generated during brain development regulates animal behavior. Therefore, understanding how developmental signals interact to regulate axonal extension and retraction to achieve precise neuronal connectivity is a fundamental goal of neurobiology. We investigated this question in the developing adult brain of Drosophila and find that it is regulated by crosstalk between Wnt, fibroblast growth factor (FGF receptor, and Jun N-terminal kinase (JNK signaling, but independent of neuronal activity. The Rac1 GTPase integrates a Wnt-Frizzled-Disheveled axon-stabilizing signal and a Branchless (FGF-Breathless (FGF receptor axon-retracting signal to modulate JNK activity. JNK activity is necessary and sufficient for axon extension, whereas the antagonistic Wnt and FGF signals act to balance the extension and retraction required for the generation of the precise wiring pattern.

  11. Staying Socially Active Nourishes the Aging Brain

    Science.gov (United States)

    ... fullstory_163679.html Staying Socially Active Nourishes the Aging Brain Researchers suggest making friends of all ages ... and Human Services. More Health News on: Healthy Aging Recent Health News Related MedlinePlus Health Topics Healthy ...

  12. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function?

    Science.gov (United States)

    Boly, M; Phillips, C; Tshibanda, L; Vanhaudenhuyse, A; Schabus, M; Dang-Vu, T T; Moonen, G; Hustinx, R; Maquet, P; Laureys, S

    2008-01-01

    Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain-behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positron emission tomography studies showed that states of extremely low or high brain activity are often associated with unconsciousness. However, this relationship is not absolute, and the precise link between global brain metabolism and awareness remains yet difficult to assert. In contrast, voxel-based analyses identified a systematic impairment of associative frontoparieto-cingulate areas in altered states of consciousness, such as sleep, anesthesia, coma, vegetative state, epileptic loss of consciousness, and somnambulism. In parallel, recent functional magnetic resonance imaging studies have identified structured patterns of slow neuronal oscillations in the resting human brain. Similar coherent blood oxygen level-dependent (BOLD) systemwide patterns can also be found, in particular in the default-mode network, in several states of unconsciousness, such as coma, anesthesia, and slow-wave sleep. The latter results suggest that slow coherent spontaneous BOLD fluctuations cannot be exclusively a reflection of conscious mental activity, but may reflect default brain connectivity shaping brain areas of most likely interactions in a way that transcends levels of consciousness, and whose functional significance remains largely in the dark.

  13. Frequency dependent topological patterns of resting-state brain networks.

    Directory of Open Access Journals (Sweden)

    Long Qian

    Full Text Available The topological organization underlying brain networks has been extensively investigated using resting-state fMRI, focusing on the low frequency band from 0.01 to 0.1 Hz. However, the frequency specificities regarding the corresponding brain networks remain largely unclear. In the current study, a data-driven method named complementary ensemble empirical mode decomposition (CEEMD was introduced to separate the time series of each voxel into several intrinsic oscillation rhythms with distinct frequency bands. Our data indicated that the whole brain BOLD signals could be automatically divided into five specific frequency bands. After applying the CEEMD method, the topological patterns of these five temporally correlated networks were analyzed. The results showed that global topological properties, including the network weighted degree, network efficiency, mean characteristic path length and clustering coefficient, were observed to be most prominent in the ultra-low frequency bands from 0 to 0.015 Hz. Moreover, the saliency of small-world architecture demonstrated frequency-density dependency. Compared to the empirical mode decomposition method (EMD, CEEMD could effectively eliminate the mode-mixing effects. Additionally, the robustness of CEEMD was validated by the similar results derived from a split-half analysis and a conventional frequency division method using the rectangular window band-pass filter. Our findings suggest that CEEMD is a more effective method for extracting the intrinsic oscillation rhythms embedded in the BOLD signals than EMD. The application of CEEMD in fMRI data analysis will provide in-depth insight in investigations of frequency specific topological patterns of the dynamic brain networks.

  14. Cortical Activity Patterns in ADHD during Arousal, Activation and Sustained Attention

    Science.gov (United States)

    Loo, Sandra K.; Hale, T. Sigi; Macion, James; Hanada, Grant; McGough, James J.; McCracken, James T.; Smalley, Susan L.

    2009-01-01

    Objective: The goal of the present study is to test whether there are Attention-Deficit Hyperactivity Disorder (ADHD)-related differences in brain electrical activity patterns across arousal, activation and vigilance states. Method: The sample consists of 80 adults (38 with ADHD and 42 non-ADHD controls) who were recruited for a family study on…

  15. Learning pattern recognition and decision making in the insect brain

    Science.gov (United States)

    Huerta, R.

    2013-01-01

    We revise the current model of learning pattern recognition in the Mushroom Bodies of the insects using current experimental knowledge about the location of learning, olfactory coding and connectivity. We show that it is possible to have an efficient pattern recognition device based on the architecture of the Mushroom Bodies, sparse code, mutual inhibition and Hebbian leaning only in the connections from the Kenyon cells to the output neurons. We also show that despite the conventional wisdom that believes that artificial neural networks are the bioinspired model of the brain, the Mushroom Bodies actually resemble very closely Support Vector Machines (SVMs). The derived SVM learning rules are situated in the Mushroom Bodies, are nearly identical to standard Hebbian rules, and require inhibition in the output. A very particular prediction of the model is that random elimination of the Kenyon cells in the Mushroom Bodies do not impair the ability to recognize odorants previously learned.

  16. Whole-brain activity mapping onto a zebrafish brain atlas.

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.

  17. Species differences in early patterning of the avian brain.

    Science.gov (United States)

    McGowan, Luke; Kuo, Eric; Martin, Arnaud; Monuki, Edwin S; Striedter, Georg

    2011-03-01

    The telencephalon is proportionately larger in parrots than in galliformes (chicken-like birds), whereas the midbrain tectum is proportionately smaller. We here test the hypothesis that the adult species difference in midbrain proportion is due to an evolutionary change in early brain patterning. In particular, we compare the size of the early embryonic midbrain between parakeets (Melopsittacus undulatus) and bobwhite quail (Colinus virgianus) by examining the expression domains of transcription factors Pax6 and Gbx2, which are expressed in the forebrain and hindbrain, respectively. Because these expression domains form rostral and caudal borders with the presumptive midbrain when this region is specified (Hamburger-Hamilton stages 9-11), they allow us to measure and compare the sizes of a molecularly defined presumptive midbrain in the two species. Based on published data from older embryos, we predicted that the molecularly defined midbrain territory is significantly larger in quail than parakeets. Indeed, our data show that normalized midbrain length is 33% greater in quail and that the midbrain to forebrain ratio is 28% greater. This is strong evidence of a significant species difference in early brain patterning.

  18. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions

    DEFF Research Database (Denmark)

    Thut, Gregor; Bergmann, Til Ole; Fröhlich, Flavio

    2017-01-01

    Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension...... of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online...... and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned...

  19. Sex hormones and expression pattern of cytoskeletal proteins in the rat brain throughout pregnancy.

    Science.gov (United States)

    González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; González-Flores, Oscar; Galván-Rosas, Agustín; Porfirio Gómora-Arrati; Camacho-Arroyo, Ignacio

    2014-01-01

    Pregnancy involves diverse changes in brain function that implicate a re-organization in neuronal cytoskeleton. In this physiological state, the brain is in contact with several hormones that it has never been exposed, as well as with very high levels of hormones that the brain has been in touch throughout life. Among the latter hormones are progesterone and estradiol which regulate several brain functions, including learning, memory, neuroprotection, and the display of sexual and maternal behavior. These functions involve changes in the structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity is regulated by estradiol and progesterone. We have found that the expression pattern of Microtubule Associated Protein 2, Tau, and Glial Fibrillary Acidic Protein changes in a tissue-specific manner in the brain of the rat throughout gestation and the start of lactation, suggesting that these proteins participate in the plastic changes observed in the brain during pregnancy. This article is part of a Special Issue entitled 'Pregnancy and Steroids'.

  20. Inferring brain-computational mechanisms with models of activity measurements.

    Science.gov (United States)

    Kriegeskorte, Nikolaus; Diedrichsen, Jörn

    2016-10-01

    High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  1. Inferring brain-computational mechanisms with models of activity measurements

    Science.gov (United States)

    Diedrichsen, Jörn

    2016-01-01

    High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574316

  2. Informational connectivity: identifying synchronized discriminability of multi-voxel patterns across the brain.

    Science.gov (United States)

    Coutanche, Marc N; Thompson-Schill, Sharon L

    2013-01-01

    The fluctuations in a brain region's activation levels over a functional magnetic resonance imaging (fMRI) time-course are used in functional connectivity (FC) to identify networks with synchronous responses. It is increasingly recognized that multi-voxel activity patterns contain information that cannot be extracted from univariate activation levels. Here we present a novel analysis method that quantifies regions' synchrony in multi-voxel activity pattern discriminability, rather than univariate activation, across a timeseries. We introduce a measure of multi-voxel pattern discriminability at each time-point, which is then used to identify regions that share synchronous time-courses of condition-specific multi-voxel information. This method has the sensitivity and access to distributed information that multi-voxel pattern analysis enjoys, allowing it to be applied to data from conditions not separable by univariate responses. We demonstrate this by analyzing data collected while people viewed four different types of man-made objects (typically not separable by univariate analyses) using both FC and informational connectivity (IC) methods. IC reveals networks of object-processing regions that are not detectable using FC. The IC results support prior findings and hypotheses about object processing. This new method allows investigators to ask questions that are not addressable through typical FC, just as multi-voxel pattern analysis (MVPA) has added new research avenues to those addressable with the general linear model (GLM).

  3. From Nose to Brain: Un-Sensed Electrical Currents Applied in the Nose Alter Activity in Deep Brain Structures

    OpenAIRE

    Weiss, Tali; Shushan, Sagit; Ravia, Aharon; Hahamy, Avital; Secundo, Lavi; Weissbrod, Aharon; Ben-Yakov, Aya; Holtzman, Yael; Cohen-Atsmoni, Smadar; Roth, Yehudah; Sobel, Noam

    2016-01-01

    Rules linking patterns of olfactory receptor neuron activation in the nose to activity patterns in the brain and ensuing odor perception remain poorly understood. Artificially stimulating olfactory neurons with electrical currents and measuring ensuing perception may uncover these rules. We therefore inserted an electrode into the nose of 50 human volunteers and applied various currents for about an hour in each case. This induced assorted non-olfactory sensations but never once the perceptio...

  4. Behavioral and brain pattern differences between acting and observing in an auditory task

    Directory of Open Access Journals (Sweden)

    Ventouras Errikos M

    2009-01-01

    Full Text Available Abstract Background Recent research has shown that errors seem to influence the patterns of brain activity. Additionally current notions support the idea that similar brain mechanisms are activated during acting and observing. The aim of the present study was to examine the patterns of brain activity of actors and observers elicited upon receiving feedback information of the actor's response. Methods The task used in the present research was an auditory identification task that included both acting and observing settings, ensuring concurrent ERP measurements of both participants. The performance of the participants was investigated in conditions of varying complexity. ERP data were analyzed with regards to the conditions of acting and observing in conjunction to correct and erroneous responses. Results The obtained results showed that the complexity induced by cue dissimilarity between trials was a demodulating factor leading to poorer performance. The electrophysiological results suggest that feedback information results in different intensities of the ERP patterns of observers and actors depending on whether the actor had made an error or not. The LORETA source localization method yielded significantly larger electrical activity in the supplementary motor area (Brodmann area 6, the posterior cingulate gyrus (Brodmann area 31/23 and the parietal lobe (Precuneus/Brodmann area 7/5. Conclusion These findings suggest that feedback information has a different effect on the intensities of the ERP patterns of actors and observers depending on whether the actor committed an error. Certain neural systems, including medial frontal area, posterior cingulate gyrus and precuneus may mediate these modulating effects. Further research is needed to elucidate in more detail the neuroanatomical and neuropsychological substrates of these systems.

  5. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    Science.gov (United States)

    McCullen, Nick; Wagenknecht, Thomas

    2016-06-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system.

  6. Patterned brain stimulation, what a framework with rhythmic and noisy components might tell us about recovery maximization

    Directory of Open Access Journals (Sweden)

    Sein eSchmidt

    2013-06-01

    Full Text Available Brain stimulation is having remarkable impact on clinical neurology. Brain stimulation can modulate neuronal activity in functionally segregated circumscribed regions of the human brain. Polarity-, frequency and noise specific stimulation can induce specific manipulations on neural activity.. In contrast to neocortical stimulation, deep-brain stimulation has become a tool that can dramatically improve the impact clinicians can possibly have on movement disorders. In contrast, neocortical brain stimulation is proving to be remarkably susceptible to intrinsic brain-states. Although evidence is accumulating that brain stimulation can facilitate recovery processes in patients with cerebral stroke, the high variability of results impedes successful clinical implementation. Interestingly, recent data in healthy subjects suggests that brain-state dependent patterned stimulation might help resolve some of the intrinsic variability found in previous studies. In parallel, other studies suggest that noisy stochastic resonance -like processes are a non-negligible component in NBS studies.The hypothesis developed in this manuscript is that stimulation patterning with noisy and oscillatory components will help patients recover from stroke related deficits more reliably. To address this hypothesis we focus on two factors common to both neural computation (intrinsic variables as well as brain stimulation (extrinsic variables: noise and oscillation. We review diverse theoretical and experimental evidence that demonstrates that subject-function specific brain-states are associated with specific oscillatory activity patterns. These states are transient and can be maintained by noisy processes. The resulting control procedures can resemble homeostatic or stochastic resonance processes. In this context we try to extend awareness for inter-individual differences and the use of individualized stimulation in the recovery maximization of stroke patients.

  7. From Nose to Brain: Un-Sensed Electrical Currents Applied in the Nose Alter Activity in Deep Brain Structures.

    Science.gov (United States)

    Weiss, Tali; Shushan, Sagit; Ravia, Aharon; Hahamy, Avital; Secundo, Lavi; Weissbrod, Aharon; Ben-Yakov, Aya; Holtzman, Yael; Cohen-Atsmoni, Smadar; Roth, Yehudah; Sobel, Noam

    2016-09-02

    Rules linking patterns of olfactory receptor neuron activation in the nose to activity patterns in the brain and ensuing odor perception remain poorly understood. Artificially stimulating olfactory neurons with electrical currents and measuring ensuing perception may uncover these rules. We therefore inserted an electrode into the nose of 50 human volunteers and applied various currents for about an hour in each case. This induced assorted non-olfactory sensations but never once the perception of odor. To validate contact with the olfactory path, we used functional magnetic resonance imaging to measure resting-state brain activity in 18 subjects before and after un-sensed stimulation. We observed stimulation-induced neural decorrelation specifically in primary olfactory cortex, implying contact with the olfactory path. These results suggest that indiscriminate olfactory activation does not equate with odor perception. Moreover, this effort serendipitously uncovered a novel path for minimally invasive brain stimulation through the nose.

  8. Primary cortical brain cells influence osteoblast activity.

    Science.gov (United States)

    Anissian, Lucas; Kirby, Michael; Stark, André

    2009-12-18

    The presence of neuropeptides and neuroreceptors in the bone have been reported in several studies. Bone turn-over seems to be controlled by the nervous system. The actual pathway or the control mechanism is still under investigation. In this study we investigate the changes in osteoblast cells if they are in co-culture with primary cortical brain cells. After seven days in co-culture with the primary fetal brain cells the osteoblast cells exhibited hypertrophic morphological changes and showed stronger ALP activity.

  9. Electromagnetic imaging of dynamic brain activity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.; Leahy, R. [University of Southern California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Lewis, P.; Lewine, J.; George, J. [Los Alamos National Lab., NM (United States); Singh, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Radiology

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  10. Task-free MRI predicts individual differences in brain activity during task performance

    NARCIS (Netherlands)

    Tavor, I.; Jones, O.P.; Mars, R.B.; Smith, S.M.; Behrens, T.E.J.; Jbabdi, S.

    2016-01-01

    When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent

  11. Managing Brain Extracellular K(+) during Neuronal Activity

    DEFF Research Database (Denmark)

    Larsen, Brian Roland; Stoica, Anca; MacAulay, Nanna

    2016-01-01

    During neuronal activity in the brain, extracellular K(+) rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K(+) is the Na(+)/K(+)-ATPase, although the relative involvement and physiological impact of the different subunit...... isoform compositions of the Na(+)/K(+)-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K(+) from neurons, whereas the neurons themselves become the primary K......(+) absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na(+)/K(+)-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic...

  12. Patterns of contrast enhancement in the brain and meninges.

    Science.gov (United States)

    Smirniotopoulos, James G; Murphy, Frances M; Rushing, Elizabeth J; Rees, John H; Schroeder, Jason W

    2007-01-01

    Contrast material enhancement for cross-sectional imaging has been used since the mid 1970s for computed tomography and the mid 1980s for magnetic resonance imaging. Knowledge of the patterns and mechanisms of contrast enhancement facilitate radiologic differential diagnosis. Brain and spinal cord enhancement is related to both intravascular and extravascular contrast material. Extraaxial enhancing lesions include primary neoplasms (meningioma), granulomatous disease (sarcoid), and metastases (which often manifest as mass lesions). Linear pachymeningeal (dura-arachnoid) enhancement occurs after surgery and with spontaneous intracranial hypotension. Leptomeningeal (pia-arachnoid) enhancement is present in meningitis and meningoencephalitis. Superficial gyral enhancement is seen after reperfusion in cerebral ischemia, during the healing phase of cerebral infarction, and with encephalitis. Nodular subcortical lesions are typical for hematogenous dissemination and may be neoplastic (metastases) or infectious (septic emboli). Deeper lesions may form rings or affect the ventricular margins. Ring enhancement that is smooth and thin is typical of an organizing abscess, whereas thick irregular rings suggest a necrotic neoplasm. Some low-grade neoplasms are "fluid-secreting," and they may form heterogeneously enhancing lesions with an incomplete ring sign as well as the classic "cyst-with-nodule" morphology. Demyelinating lesions, including both classic multiple sclerosis and tumefactive demyelination, may also create an open ring or incomplete ring sign. Thick and irregular periventricular enhancement is typical for primary central nervous system lymphoma. Thin enhancement of the ventricular margin occurs with infectious ependymitis. Understanding the classic patterns of lesion enhancement--and the radiologic-pathologic mechanisms that produce them--can improve image assessment and differential diagnosis.

  13. Clinicopathological pattern of brain tumors: A 3-year study in a tertiary care hospital in India

    OpenAIRE

    Sajeeb Mondal; Rajashree Pradhan; Subrata Pal; Biswajit Biswas; Arindam Banerjee; Debosmita Bhattacharyya

    2016-01-01

    Background: Brain tumors are heterogeneous group of neoplasms, affecting different age groups. Although some studies have been published regarding pathological pattern of brain tumors from different countries of the world and also from India, comprehensive clinicopathological studies from Eastern India is lacking. Aims: The aim of this study was to observe recent incidence of different brain tumors and to study clinical and histopathological spectrum of brain tumors in Eastern India. Material...

  14. The colorful brain: visualization of EEG background patterns.

    Science.gov (United States)

    van Putten, Michel J A M

    2008-04-01

    This article presents a method to transform routine clinical EEG recordings to an alternative visual domain. The method is intended to support the classic visual interpretation of the EEG background pattern and to facilitate communication about relevant EEG characteristics. In addition, it provides various quantitative features. The EEG features used in the transformation include color-coded time-frequency representations of two novel symmetry measures and a synchronization measure, based on a nearest-neighbor coherence estimate. This triplet captures three highly relevant aspects of the dynamics of the EEG background pattern, which correlate strongly with various neurologic conditions. In particular, it quantifies and visualizes the spatiotemporal distribution of the EEG power in the anterioposterior and lateral direction, and the short-distance coherence. The potential clinical use is illustrated by application of the proposed technique to various normal and abnormal EEGs, including seizure activity and the transition to sleep. The proposed transformation visualizes various essential elements of EEG background patterns. Quantitative analysis of clinical EEG recordings and transformation to alternative domains assists in the interpretation and contributes to an objective interpretation.

  15. Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns.

    Directory of Open Access Journals (Sweden)

    Chris eDijksterhuis

    2013-08-01

    Full Text Available A passive Brain Computer Interface (BCI is a system that responds to the spontaneously produced brain activity of its user and could be used to develop interactive task support. A human-machine system that could benefit from brain-based task support is the driver-car interaction system. To investigate the feasibility of such a system to detect changes in visuomotor workload, 34 drivers were exposed to several levels of driving demand in a driving simulator. Driving demand was manipulated by varying driving speed and by asking the drivers to comply to individually set lane keeping performance targets. Differences in the individual driver’s workload levels were classified by applying the Common Spatial Pattern (CSP and Fisher’s linear discriminant analysis to frequency filtered electroencephalogram (EEG data during an off line classification study. Several frequency ranges, EEG cap configurations, and condition pairs were explored. It was found that classifications were most accurate when based on high frequencies, larger electrode sets, and the frontal electrodes. Depending on these factors, classification accuracies across participants reached about 95% on average. The association between high accuracies and high frequencies suggests that part of the underlying information did not originate directly from neuronal activity. Nonetheless, average classification accuracies up to 75%-80% were obtained from the lower EEG ranges that are likely to reflect neuronal activity. For a system designer, this implies that a passive BCI system may use several frequency ranges for workload classifications.

  16. Neuromorphological and wiring pattern alterations effects on brain function: a mixed experimental and computational approach.

    Directory of Open Access Journals (Sweden)

    Linus Manubens-Gil

    2015-04-01

    In addition, the study of fixed intact brains (by means of the state of the art CLARITY technique brings us closer to biologically and medically relevant situations, allowing not only to confirm whether the functional links in neuronal cultures are also present in vivo, but also enabling the introduction of functional information (like behavioral studies and functional imaging and another layer of structural alterations such as brain region morphology, neuronal density, and long-range connectivity. Taking together the experimental information from these systems we want to feed self-developed computational models that allow us to understand what are the fundamental characteristics of the observed connectivity patterns and the impact of each of the alterations on neuronal network function. These models will also provide a framework able to account for the emergent properties that bridge the gap between spontaneous electrical activity arousal/transmission and higher order information processing and memory storage capacities in the brain. As an additional part of the project we are now working on the application of the clearing, labeling and imaging protocols to human biopsy samples. Our aim is to obtain neuronal architecture and connectivity information from focal cortical dysplasia microcircuits using samples from intractable temporal lobe epilepsy patients that undergo deep-brain electrode recording diagnosis and posterior surgical extraction of the tissue. Our computational models can allow us to discern the contributions of the observed abnormalities to neuronal hyperactivity and epileptic seizure generation.

  17. Morphological patterns of the collateral sulcus in the human brain.

    Science.gov (United States)

    Huntgeburth, Sonja C; Petrides, Michael

    2012-04-01

    The collateral sulcal complex is an important landmark on the medial surface of the temporal lobe. Anteriorly, it delineates the limbic regions of the parahippocampal gyrus from the visual-processing areas of the fusiform gyrus. Posteriorly, it continues into the occipital lobe, bearing no relationship to the memory-related limbic regions. Given the considerable extent of the sulcus and functional heterogeneity of the surrounding cortex, an investigation of the morphology of this sulcus was carried out to examine whether it is continuous or a series of sulcal parts, i.e. independent sulci classified together under the name collateral sulcus. We investigated the collateral sulcal complex using magnetic resonance images taking into account the three-dimensional nature of the brain. Our examination demonstrated three separate sulcal segments: (i) an anterior segment, the rhinal sulcus, delineating the uncus from the adjacent temporal neocortex, (ii) a middle segment, the collateral sulcus proper, forming the lateral border of the posterior parahippocampal cortex, and (iii) a caudal segment, the occipital extent of the collateral sulcus, within the occipital lobe. Three relationships exist between the rhinal sulcus and collateral sulcus proper, only one being clearly identifiable from the surface. Posteriorly, the collateral sulcus proper and the occipital collateral sulcus, although appearing continuous on the brain surface, can be separated in the depth of the sulcus in all cases. These results provide quantification of the location and variability within standard stereotaxic space for the three collateral sulcus segments that could be used to aid accurate identification of functional activation peaks derived from neuroimaging studies.

  18. Patterns of thermal constraint on ectotherm activity.

    Science.gov (United States)

    Gunderson, Alex R; Leal, Manuel

    2015-05-01

    Thermal activity constraints play a major role in many aspects of ectotherm ecology, including vulnerability to climate change. Therefore, there is strong interest in developing general models of the temperature dependence of activity. Several models have been put forth (explicitly or implicitly) to describe such constraints; nonetheless, tests of the predictive abilities of these models are lacking. In addition, most models consider activity as a threshold trait instead of considering continuous changes in the vigor of activity among individuals. Using field data for a tropical lizard (Anolis cristatellus) and simulations parameterized by our observations, we determine how well various threshold and continuous-activity models match observed activity patterns. No models accurately predicted activity under all of the thermal conditions that we considered. In addition, simulations showed that the performance of threshold models decreased as temperatures increased, which is a troubling finding given the threat of global climate change. We also find that activity rates are more sensitive to temperature than are the physiological traits often used as a proxy for fitness. We present a model of thermal constraint on activity that integrates aspects of both the threshold model and the continuous-activity model, the general features of which are supported by activity data from other species. Overall, our results demonstrate that greater attention should be given to fine-scale patterns of thermal constraint on activity.

  19. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    Science.gov (United States)

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing.

  20. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain.

    Science.gov (United States)

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-20

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development.

  1. Brain activation during a social attribution task in adolescents with moderate to severe traumatic brain injury.

    Science.gov (United States)

    Scheibel, Randall S; Newsome, Mary R; Wilde, Elisabeth A; McClelland, Michelle M; Hanten, Gerri; Krawczyk, Daniel C; Cook, Lori G; Chu, Zili D; Vásquez, Ana C; Yallampalli, Ragini; Lin, Xiaodi; Hunter, Jill V; Levin, Harvey S

    2011-01-01

    The ability to make accurate judgments about the mental states of others, sometimes referred to as theory of mind (ToM), is often impaired following traumatic brain injury (TBI), and this deficit may contribute to problems with interpersonal relationships. The present study used an animated social attribution task (SAT) with functional magnetic resonance imaging (fMRI) to examine structures mediating ToM in adolescents with moderate to severe TBI. The study design also included a comparison group of matched, typically developing (TD) adolescents. The TD group exhibited activation within a number of areas that are thought to be relevant to ToM, including the medial prefrontal and anterior cingulate cortex, fusiform gyrus, and posterior temporal and parietal areas. The TBI subjects had significant activation within many of these same areas, but their activation was generally more intense and excluded the medial prefrontal cortex. Exploratory regression analyses indicated a negative relation between ToM-related activation and measures of white matter integrity derived from diffusion tensor imaging, while there was also a positive relation between activation and lesion volume. These findings are consistent with alterations in the level and pattern of brain activation that may be due to the combined influence of diffuse axonal injury and focal lesions.

  2. Mapping social behavior-induced brain activation at cellular resolution in the mouse.

    Science.gov (United States)

    Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J; Rockland, Kathleen S; Seung, H Sebastian; Osten, Pavel

    2015-01-13

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here, we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate-early-gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP+ neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse.

  3. Mapping Social Behavior-Induced Brain Activation at Cellular Resolution in the Mouse

    Directory of Open Access Journals (Sweden)

    Yongsoo Kim

    2015-01-01

    Full Text Available Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here, we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate-early-gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP+ neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse.

  4. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M;

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...

  5. Accelerated Brain Aging in Schizophrenia : A Longitudinal Pattern Recognition Study

    NARCIS (Netherlands)

    Schnack, Hugo G; van Haren, Neeltje E M; Nieuwenhuis, Mireille; Hulshoff Pol, Hilleke E; Cahn, Wiepke; Kahn, René S

    2016-01-01

    OBJECTIVE: Despite the multitude of longitudinal neuroimaging studies that have been published, a basic question on the progressive brain loss in schizophrenia remains unaddressed: Does it reflect accelerated aging of the brain, or is it caused by a fundamentally different process? The authors used

  6. Accelerated brain aging in schizophrenia : A longitudinal pattern recognition study

    NARCIS (Netherlands)

    Schnack, Hugo G.; Van Haren, Neeltje E M; Nieuwenhuis, Mireille; Pol, Hilleke E Hulshoff; Cahn, Wiepke; Kahn, René S.

    2016-01-01

    OBJECTIVE: Despite the multitude of longitudinal neuroimaging studies that have been published, a basic question on the progressive brain loss in schizophrenia remains unaddressed: Does it reflect accelerated aging of the brain, or is it caused by a fundamentally different process? The authors used

  7. Typical Cerebral Metabolic Patterns in Neurodegenerative Brain Diseases

    NARCIS (Netherlands)

    Teune, Laura K.; Bartels, Anna L.; de Jong, Bauke M.; Willemsen, Antoon T. M.; Eshuis, Silvia A.; de Vries, Jeroen J.; van Oostrom, Joost C. H.; Leenders, Klaus L.

    2010-01-01

    The differential diagnosis of neurodegenerative brain diseases on clinical grounds is difficult, especially at an early disease stage. Several studies have found specific regional differences of brain metabolism applying [F-18]-fluoro-deoxyglucose positron emission tomography (FDG-PET), suggesting t

  8. Classification of types of stuttering symptoms based on brain activity.

    Science.gov (United States)

    Jiang, Jing; Lu, Chunming; Peng, Danling; Zhu, Chaozhe; Howell, Peter

    2012-01-01

    Among the non-fluencies seen in speech, some are more typical (MT) of stuttering speakers, whereas others are less typical (LT) and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT) whole-word repetitions (WWR) should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type.

  9. Classification of types of stuttering symptoms based on brain activity.

    Directory of Open Access Journals (Sweden)

    Jing Jiang

    Full Text Available Among the non-fluencies seen in speech, some are more typical (MT of stuttering speakers, whereas others are less typical (LT and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT whole-word repetitions (WWR should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type.

  10. Scale-free brain activity: past, present, and future.

    Science.gov (United States)

    He, Biyu J

    2014-09-01

    Brain activity observed at many spatiotemporal scales exhibits a 1/f-like power spectrum, including neuronal membrane potentials, neural field potentials, noninvasive electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) signals. A 1/f-like power spectrum is indicative of arrhythmic brain activity that does not contain a predominant temporal scale (hence, 'scale-free'). This characteristic of scale-free brain activity distinguishes it from brain oscillations. Although scale-free brain activity and brain oscillations coexist, our understanding of the former remains limited. Recent research has shed light on the spatiotemporal organization, functional significance, and potential generative mechanisms of scale-free brain activity, as well as its developmental and clinical relevance. A deeper understanding of this prevalent brain signal should provide new insights into, and analytical tools for, cognitive neuroscience.

  11. 正常人音乐欣赏的脑功能磁共振激活模式研究%The study of fMRI activation pattern of normal brain music appreciation

    Institute of Scientific and Technical Information of China (English)

    刘明; 赵晶; 和清源; 庞冉; 陈云翔; 王志群

    2016-01-01

    目的:采用血氧水平依赖的脑功能磁共振成像技术( BOLD-fMRI)技术,研究正常人欣赏欢快音乐时的脑功能区定位,探讨可能的神经网络调节机制。方法选择15例正常健康受试者,年龄25~50岁,在欣赏欢快音乐同时,用BOLD-fMRI技术进行脑功能磁共振成像检查,采用SPM软件对原始数据进行统计学处理,获得平均激活图,分析激活增高的脑区。结果15例受试者在欣赏欢快音乐时大脑显著激活了视觉注意网络、默认网络、运动感觉网络、认知记忆网络的相关脑区,这些脑区可能参与了音乐的感知、注意、记忆、情绪反应等过程。结论功能磁共振成像技术在音乐欣赏的功能定位方面具有独特的价值,欢快音乐欣赏可激活大脑多种功能神经网络参与处理。%Objective By using the blood oxygen level dependent functional magnetic resonance imaging ( BOLD-fMRI ) technique, to study the normal brain function localization when listening cheerful music , and then to explore the possible neural network adjustment mechanism .Methods We selected 15 volunteers with normal mental health , age between 25~50 .While listening the cheerful music , BOLD-fMRI examinations were performed and the original image data were obtained for statistical processing by using SPM software .And then, the average activation graph was analyzed to acquire the activated brain regions . Results While the subjects listening the cheerful music , several brain networks were activated including visual attention net-work, default mode network , sensorimoter network and cognitive network .These brain regions probably involved in the Music per-ception, attention, memory, and emotional reaction process .Conclusion The application of fMRI technique in music apprecia-tion has unique value in the respect of functional localization , cheerful music can activate the brain functions involved in several neural networks .

  12. Active interoceptive inference and the emotional brain

    Science.gov (United States)

    Friston, Karl J.

    2016-01-01

    We review a recent shift in conceptions of interoception and its relationship to hierarchical inference in the brain. The notion of interoceptive inference means that bodily states are regulated by autonomic reflexes that are enslaved by descending predictions from deep generative models of our internal and external milieu. This re-conceptualization illuminates several issues in cognitive and clinical neuroscience with implications for experiences of selfhood and emotion. We first contextualize interoception in terms of active (Bayesian) inference in the brain, highlighting its enactivist (embodied) aspects. We then consider the key role of uncertainty or precision and how this might translate into neuromodulation. We next examine the implications for understanding the functional anatomy of the emotional brain, surveying recent observations on agranular cortex. Finally, we turn to theoretical issues, namely, the role of interoception in shaping a sense of embodied self and feelings. We will draw links between physiological homoeostasis and allostasis, early cybernetic ideas of predictive control and hierarchical generative models in predictive processing. The explanatory scope of interoceptive inference ranges from explanations for autism and depression, through to consciousness. We offer a brief survey of these exciting developments. This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’. PMID:28080966

  13. Brain-based decoding of mentally imagined film clips and sounds reveals experience-based information patterns in film professionals.

    Science.gov (United States)

    de Borst, Aline W; Valente, Giancarlo; Jääskeläinen, Iiro P; Tikka, Pia

    2016-04-01

    In the perceptual domain, it has been shown that the human brain is strongly shaped through experience, leading to expertise in highly-skilled professionals. What has remained unclear is whether specialization also shapes brain networks underlying mental imagery. In our fMRI study, we aimed to uncover modality-specific mental imagery specialization of film experts. Using multi-voxel pattern analysis we decoded from brain activity of professional cinematographers and sound designers whether they were imagining sounds or images of particular film clips. In each expert group distinct multi-voxel patterns, specific for the modality of their expertise, were found during classification of imagery modality. These patterns were mainly localized in the occipito-temporal and parietal cortex for cinematographers and in the auditory cortex for sound designers. We also found generalized patterns across perception and imagery that were distinct for the two expert groups: they involved frontal cortex for the cinematographers and temporal cortex for the sound designers. Notably, the mental representations of film clips and sounds of cinematographers contained information that went beyond modality-specificity. We were able to successfully decode the implicit presence of film genre from brain activity during mental imagery in cinematographers. The results extend existing neuroimaging literature on expertise into the domain of mental imagery and show that experience in visual versus auditory imagery can alter the representation of information in modality-specific association cortices.

  14. Task-free MRI predicts individual differences in brain activity during task performance.

    Science.gov (United States)

    Tavor, I; Parker Jones, O; Mars, R B; Smith, S M; Behrens, T E; Jbabdi, S

    2016-04-01

    When asked to perform the same task, different individuals exhibit markedly different patterns of brain activity. This variability is often attributed to volatile factors, such as task strategy or compliance. We propose that individual differences in brain responses are, to a large degree, inherent to the brain and can be predicted from task-independent measurements collected at rest. Using a large set of task conditions, spanning several behavioral domains, we train a simple model that relates task-independent measurements to task activity and evaluate the model by predicting task activation maps for unseen subjects using magnetic resonance imaging. Our model can accurately predict individual differences in brain activity and highlights a coupling between brain connectivity and function that can be captured at the level of individual subjects.

  15. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    Science.gov (United States)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  16. Universal activity pattern in human interactive dynamics

    CERN Document Server

    Formentin, Marco; Maritan, Amos; Zanzotto, Giovanni

    2014-01-01

    We investigate the response function of human agents as demonstrated by written correspondence, uncovering a new universal pattern for how the reactive dynamics of individuals is distributed across the set of each agent's contacts. In long-term empirical data on email, we find that the set of response times considered separately for the messages to each different correspondent of a given writer, generate a family of heavy-tailed distributions, which have largely the same features for all agents, and whose characteristic times grow exponentially with the rank of each correspondent. We show this universal behavioral pattern emerges robustly by considering weighted moving averages of the priority-conditioned response-time probabilities generated by a basic prioritization model. Our findings clarify how the range of priorities in the inputs from one's environment underpin and shape the dynamics of agents embedded in a net of reactive relations. These newly revealed activity patterns constrain future models of com...

  17. Different Brain Wave Patterns and Cortical Control Abilities in Relation to Different Creative Potentials

    Science.gov (United States)

    Li, Ying-Han; Tseng, Chao-Yuan; Tsai, Arthur Chih-Hsin; Huang, Andrew Chih-Wei; Lin, Wei-Lun

    2016-01-01

    Contemporary understanding of brain functions provides a way to probe into the mystery of creativity. However, the prior evidence regarding the relationship between creativity and brain wave patterns reveals inconsistent conclusions. One possible reason might be that the means of selecting creative individuals in the past has varied in each study.…

  18. Two different gene loci related to the spatial patterning of brain ventricle in vertebrate

    Institute of Scientific and Technical Information of China (English)

    LUO Minna; LI Bingxia; TONG Ying; ZHAO Shufang; LUO Chen

    2007-01-01

    Observations on living embryonic brains and the microstructure of brain ventricle of goldfish revealed that there are two brain ventricle phenotypes in gynogenetic haploid embryos. One phenotype is as normal as that of the control inbreeding diploid embryos,which has normal differentiated forebrain, midbrain and hindbrain. Another phenotype is obviously abnormal, the brain patterning is irregular, and no distinct brain ventricle can be observed. The ratio of haploid embryos with normal brain pattern to that with abnormal brain pattern is 1:3. This ratio indicates that there are two gene loci involved in the spatial patterning of the brain ventricle. Since the possibility that deleterious recessive mutant alleles exist on both of the two gene loci had been excluded in this experiment, the phenotype represented the expressional state rather than the genotype of these two genes. Therefore, the ratio of 1∶ 3 suggests that the expressing probability for each copy of the two genes is 50%, and the regulatory mechanism of the expression is based on two sets of chromosomes, controlled by the rule of the diploid-dependent regulatory mechanism.

  19. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior.

    Science.gov (United States)

    Portugues, Ruben; Feierstein, Claudia E; Engert, Florian; Orger, Michael B

    2014-03-19

    Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain.

  20. Sow-activity classification from acceleration patterns

    DEFF Research Database (Denmark)

    Escalante, Hugo Jair; Rodriguez, Sara V.; Cordero, Jorge

    2013-01-01

    This paper describes a supervised learning approach to sow-activity classification from accelerometer measurements. In the proposed methodology, pairs of accelerometer measurements and activity types are considered as labeled instances of a usual supervised classification task. Under this scenario...... sow-activity classification can be approached with standard machine learning methods for pattern classification. Individual predictions for elements of times series of arbitrary length are combined to classify it as a whole. An extensive comparison of representative learning algorithms, including...... neural networks, support vector machines, and ensemble methods, is presented. Experimental results are reported using a data set for sow-activity classification collected in a real production herd. The data set, which has been widely used in related works, includes measurements from active (Feeding...

  1. White matter hyperintensities and imaging patterns of brain ageing in the general population.

    Science.gov (United States)

    Habes, Mohamad; Erus, Guray; Toledo, Jon B; Zhang, Tianhao; Bryan, Nick; Launer, Lenore J; Rosseel, Yves; Janowitz, Deborah; Doshi, Jimit; Van der Auwera, Sandra; von Sarnowski, Bettina; Hegenscheid, Katrin; Hosten, Norbert; Homuth, Georg; Völzke, Henry; Schminke, Ulf; Hoffmann, Wolfgang; Grabe, Hans J; Davatzikos, Christos

    2016-04-01

    White matter hyperintensities are associated with increased risk of dementia and cognitive decline. The current study investigates the relationship between white matter hyperintensities burden and patterns of brain atrophy associated with brain ageing and Alzheimer's disease in a large populatison-based sample (n = 2367) encompassing a wide age range (20-90 years), from the Study of Health in Pomerania. We quantified white matter hyperintensities using automated segmentation and summarized atrophy patterns using machine learning methods resulting in two indices: the SPARE-BA index (capturing age-related brain atrophy), and the SPARE-AD index (previously developed to capture patterns of atrophy found in patients with Alzheimer's disease). A characteristic pattern of age-related accumulation of white matter hyperintensities in both periventricular and deep white matter areas was found. Individuals with high white matter hyperintensities burden showed significantly (P brain regions typically affected by ageing and Alzheimer's disease dementia. To investigate a possibly causal role of white matter hyperintensities, structural equation modelling was used to quantify the effect of Framingham cardiovascular disease risk score and white matter hyperintensities burden on SPARE-BA, revealing a statistically significant (P brain atrophy found in beyond-normal brain ageing in the general population. White matter hyperintensities also contribute to brain atrophy patterns in regions related to Alzheimer's disease dementia, in agreement with their known additive role to the likelihood of dementia. Preventive strategies reducing the odds to develop cardiovascular disease and white matter hyperintensities could decrease the incidence or delay the onset of dementia.

  2. Early Brain Activity Relates to Subsequent Brain Growth in Premature Infants

    NARCIS (Netherlands)

    Benders, Manon J.; Palmu, Kirsi; Menache, Caroline; Borradori-Tolsa, Cristina; Lazeyras, Francois; Sizonenko, Stephane; Dubois, Jessica; Vanhatalo, Sampsa; Hüppi, Petra S.

    2015-01-01

    Recent experimental studies have shown that early brain activity is crucial for neuronal survival and the development of brain networks; however, it has been challenging to assess its role in the developing human brain. We employed serial quantitative magnetic resonance imaging to measure the rate o

  3. Pattern of Brain body Index in three West African populations

    Directory of Open Access Journals (Sweden)

    Gerald Ikechukwu Eze

    2010-06-01

    Full Text Available AIM: The usefulness of brain weight in facilitating proper identification of and in emphasizing a common origin of studied populations is far reaching. METHOD: This study involved 699 (male 361; female 338 volunteers whose age ranged 18 years and over. Respondents were selected along three ethnic groups including Urhobo (male 156; female 147, Ibo (male 141 female 145 and Edo (male 64; female 46 and it was ensured that population for the study was collected using a random stratified method. RESULTS: Measurement of Brain body index (BBI showed that the mean value was 21.99±3.44 with minimum values of 9.10 and maximum values of 39.16.Tribe and age both had a significant effect on Brain body index at 0.01 levels of significance. Gender had no effect on BBI at 0.05 levels of significance. Mean separation showed that the effect of tribe on Brain body index was mainly a result of the Urhobo tribe which had an average value of (21.39. The Ibo (22.51 and Edo (22.24 tribes had similar values. In spite of these observations, differences which enabled intracultural differentiation commonly occurred. CONCLUSION: Craniometric studies involving brain body index are most essential in the study of population dynamics especially with respect to quantitative variables. [TAF Prev Med Bull 2010; 9(3.000: 229-232

  4. Cell type-specific genes show striking and distinct patterns of spatial expression in the mouse brain.

    Science.gov (United States)

    Ko, Younhee; Ament, Seth A; Eddy, James A; Caballero, Juan; Earls, John C; Hood, Leroy; Price, Nathan D

    2013-02-19

    To characterize gene expression patterns in the regional subdivisions of the mammalian brain, we integrated spatial gene expression patterns from the Allen Brain Atlas for the adult mouse with panels of cell type-specific genes for neurons, astrocytes, and oligodendrocytes from previously published transcriptome profiling experiments. We found that the combined spatial expression patterns of 170 neuron-specific transcripts revealed strikingly clear and symmetrical signatures for most of the brain's major subdivisions. Moreover, the brain expression spatial signatures correspond to anatomical structures and may even reflect developmental ontogeny. Spatial expression profiles of astrocyte- and oligodendrocyte-specific genes also revealed regional differences; these defined fewer regions and were less distinct but still symmetrical in the coronal plane. Follow-up analysis suggested that region-based clustering of neuron-specific genes was related to (i) a combination of individual genes with restricted expression patterns, (ii) region-specific differences in the relative expression of functional groups of genes, and (iii) regional differences in neuronal density. Products from some of these neuron-specific genes are present in peripheral blood, raising the possibility that they could reflect the activities of disease- or injury-perturbed networks and collectively function as biomarkers for clinical disease diagnostics.

  5. Perception and cognition of cues used in synchronous brain-computer interfaces modify electroencephalographic patterns of control tasks

    Directory of Open Access Journals (Sweden)

    Luz Maria eAlonso Valerdi

    2015-11-01

    Full Text Available A motor imagery (MI based brain computer interface (BCI is a system that enables humans to interact with their environment by translating their brain signals into control commands for a target device. In particular, synchronous BCI systems make use of cues to trigger the motor activity of interest. So far, it has been shown that Electroencephalographic (EEG patterns before and after cue onset can reveal the user cognitive state and enhance the discrimination of MI related control tasks. However, there has been no detailed investigation of the nature of those EEG patterns. We, therefore, propose to study the cue effects on MI related control tasks by selecting EEG patterns that best discriminate such control tasks, and analysing where those patterns are coming from. The study was carried out under two methods: standard and all-embracing. The standard method was based on sources (recording sites, frequency bands and time windows, where the modulation of EEG signals due to motor activity is typically detected. The all-embracing method included a wider variety of sources, where not only motor activity is reflected. The findings of this study showed that the classification accuracy of MI related control tasks did not depend on the type of cue in use. However, EEG patterns which best differentiated those control tasks emerged from sources well defined by the perception and cognition of the cue in use. An implication of this study is the possibility of obtaining different control commands that could be detected with the same accuracy. Since different cues trigger control tasks that yield similar classification accuracies, and those control tasks produce EEG patterns differentiated by the cue nature, this leads to accelerate the brain-computer communication by having a wider variety of detectable control commands. This is an important issue for Neuroergonimcs research because neural activity could not only be used to monitor the human mental state as is

  6. Robot Control Through Brain Computer Interface For Patterns Generation

    Science.gov (United States)

    Belluomo, P.; Bucolo, M.; Fortuna, L.; Frasca, M.

    2011-09-01

    A Brain Computer Interface (BCI) system processes and translates neuronal signals, that mainly comes from EEG instruments, into commands for controlling electronic devices. This system can allow people with motor disabilities to control external devices through the real-time modulation of their brain waves. In this context an EEG-based BCI system that allows creative luminous artistic representations is here presented. The system that has been designed and realized in our laboratory interfaces the BCI2000 platform performing real-time analysis of EEG signals with a couple of moving luminescent twin robots. Experiments are also presented.

  7. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    Science.gov (United States)

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.

  8. Whole-brain mapping of neuronal activity in the learned helplessness model of depression

    Directory of Open Access Journals (Sweden)

    Yongsoo eKim

    2016-02-01

    Full Text Available Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing helpless behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing resilient behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.

  9. Pattern of Brain Weight in Three West African Populations

    Directory of Open Access Journals (Sweden)

    Clement Vhriterhire

    2010-08-01

    Full Text Available AIM: The usefulness of brain weight in facilitating proper identification of skeletal remains and in emphasizing a common origin of studied populations is far reaching. METHODS: This study involved 699 (male 361; female 338 volunteers whose age ranged 18 years and over. Respondents were selected along three ethnic groups including Urhobo (male 156; female 147, Ibo (male 141 female 145 and Edo (male 64; female 46 and it was ensured that population for the study was collected using a random stratified method. RESULTS: The brain weight was measured using standard techniques and the mean weight was observed to be 1318g±139.71g with maximum value of 1711.00g and minimum value of 958.42g. Gender had a significant effect on brain weight (p<0.05.Male and female values were significantly different (p<0.05. Mean male values were 1386.18g and mean female values were 1251.62g. Brain weight exhibited strong sexual dimorphism and was useful in differentiating inter and intra population groups. In spite of these observations, differences which enabled intracultural differentiation commonly occurred. CONCLUSION: Inevitably therefore, craniometric studies are most essential in the study of population dynamics especially with respect to quantitative variables. [TAF Prev Med Bull 2010; 9(4.000: 321-324

  10. The Alzheimer's Disease-Related Glucose Metabolic Brain Pattern

    NARCIS (Netherlands)

    Teune, Laura K.; Strijkert, Fijanne; Renken, Remco J.; Izaks, Gerbrand J.; de Vries, Jeroen J.; Segbers, Marcel; Roerdink, Jos B. T. M.; Dierckx, Rudi A. J. O.; Leenders, Klaus L.

    2014-01-01

    Purpose: [F-18] fluorodeoxyglucose (FDG) PET imaging of the brain can be used to assist in the differential diagnosis of dementia. Group differences in glucose uptake between patients with dementia and controls are well-known. However, a multivariate analysis technique called scaled subprofile model

  11. Inflammatory transcription factors as activation markers and functional readouts in immune-to-brain communication.

    Science.gov (United States)

    Rummel, Christoph

    2016-05-01

    Immune-to-brain communication pathways involve humoral mediators, including cytokines, central modulation by neuronal afferents and immune cell trafficking to the brain. During systemic inflammation these pathways contribute to mediating brain-controlled sickness symptoms including fever. Experimentally, activation of these signaling pathways can be mimicked and studied when injecting animals with pathogen associated molecular patterns (PAMPS). One central component of the brain inflammatory response, which leads, for example, to fever induction, is transcriptional activation of brain cells via cytokines and PAMPS. We and others have studied the spatiotemporal activation and the physiological significance of transcription factors for the induction of inflammation within the brain and the manifestation of fever. Evidence has revealed a role of nuclear factor (NF)κB in the initiation, signal transducer and activator of transcription (STAT)3 in the maintenance and NF-interleukin (IL)6 in the maintenance or even termination of brain-inflammation and fever. Moreover, psychological stressors, such as exposure to a novel environment, leads to increased body core temperature and genomic NF-IL6-activation, suggesting a potential use of NF-IL6-immunohistochemistry as a multimodal brain cell activation marker and a role for NF-IL6 for differential brain activity. In addition, the nutritional status, as reflected by circulating levels of the cytokine-like hormone leptin, influence immune-to-brain communication and age-dependent changes in LPS-induced fever. Overall, transcription factors remain therapeutically important targets for the treatment of brain-inflammation and fever induction during infectious/non-infectious inflammatory and psychological stress. However, the exact physiological role and significance of these transcription factors requires to be further investigated.

  12. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain

    Directory of Open Access Journals (Sweden)

    Patricia A. Broderick

    2013-06-01

    Full Text Available The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI, based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata and somatodendrites (ventral tegmentum of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs, serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of

  13. Spontaneous Plasticity of Multineuronal Activity Patterns in Activated Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Atsushi Usami

    2008-01-01

    Full Text Available Using functional multineuron imaging with single-cell resolution, we examined how hippocampal networks by themselves change the spatiotemporal patterns of spontaneous activity during the course of emitting spontaneous activity. When extracellular ionic concentrations were changed to those that mimicked in vivo conditions, spontaneous activity was increased in active cell number and activity frequency. When ionic compositions were restored to the control conditions, the activity level returned to baseline, but the weighted spatial dispersion of active cells, as assessed by entropy-based metrics, did not. Thus, the networks can modify themselves by altering the internal structure of their correlated activity, even though they as a whole maintained the same level of activity in space and time.

  14. On a Quantum Model of Brain Activities

    Science.gov (United States)

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2010-01-01

    One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.

  15. Exercise, music, and the brain: is there a central pattern generator?

    Science.gov (United States)

    Schneider, Stefan; Askew, Christopher D; Abel, Thomas; Strüder, Heiko K

    2010-10-01

    The frequency for movements along the longitudinal axis during running peaks at approximately 3 Hz. Other physiological systems (e.g. heart rate and brain cortical activity) are known to show a dominant frequency of ~3 Hz connected to exercise. As recent studies have proposed a clear correlation between musical tempo, mood, and performance output, we wished to ascertain whether peak locomotion frequency of ~3 Hz during running is synchronized with different intrinsic and extrinsic frequencies. Eighteen healthy regular runners performed three outdoor running sessions at different intensities. Oscillations along the longitudinal axis were recorded using an accelerometer (ActiBelt). Electrocortical activity was recorded using electroencephalography before and after exercise and analysed in the delta frequency range (2-4 Hz). In addition, the frequency spectra of the participants' favourite musical pieces were analysed. Data revealed a peak frequency at around 2.7 to 2.8 Hz for the vertical acceleration during running. Similar oscillation patterns were found for heart rate and musical pieces. Electroencephalographic delta activity increased after running. Results of this study give reason to speculate that a strong relationship exists between intrinsic and extrinsic oscillation patterns during exercise. A frequency of approximately 3 Hz seems to be dominant in different physiological systems and seems to be rated as pleasurable when choosing the appropriate music for exercising. This is in line with previous research showing that an adequate choice of music during exercise enhances performance output and mood.

  16. Dynamic patterns of academic forum activities

    Science.gov (United States)

    Zhao, Zhi-Dan; Gao, Ya-Chun; Cai, Shi-Min; Zhou, Tao

    2016-11-01

    A mass of traces of human activities show rich dynamic patterns. In this article, we comprehensively investigate the dynamic patterns of 50 thousands of researchers' activities in Sciencenet, the largest multi-disciplinary academic community in China. Through statistical analyses, we found that (i) there exists a power-law scaling between the frequency of visits to an academic forum and the number of corresponding visitors, with the exponent being about 1.33; (ii) the expansion process of academic forums obeys the Heaps' law, namely the number of distinct visited forums to the number of visits grows in a power-law form with exponent being about 0.54; (iii) the probability distributions of time intervals and the number of visits taken to revisit the same academic forum both follow power-laws, indicating the existence of memory effect in academic forum activities. On the basis of these empirical results, we propose a dynamic model that incorporates the exploration, preferential return with memory effect, which can well reproduce the observed scaling laws.

  17. Differential brain activity states during the perception and nonperception of illusory motion as revealed by magnetoencephalography.

    Science.gov (United States)

    Crowe, David A; Leuthold, Arthur C; Georgopoulos, Apostolos P

    2010-12-28

    We studied visual perception using an annular random-dot motion stimulus called the racetrack. We recorded neural activity using magnetoencephalography while subjects viewed variants of this stimulus that contained no inherent motion or various degrees of embedded motion. Subjects reported seeing rotary motion during viewing of all stimuli. We found that, in the absence of any motion signals, patterns of brain activity differed between states of motion perception and nonperception. Furthermore, when subjects perceived motion, activity states within the brain did not differ across stimuli of different amounts of embedded motion. In contrast, we found that during periods of nonperception brain-activity states varied with the amount of motion signal embedded in the stimulus. Taken together, these results suggest that during perception the brain may lock into a stable state in which lower-level signals are suppressed.

  18. Identification of a seasonal pattern to brain metastases

    Directory of Open Access Journals (Sweden)

    Sakellakis M

    2016-03-01

    Full Text Available Minas Sakellakis,1 Angelos Koutras,1 Maria Pittaka,2 Dimitrios Kardamakis,2 Melpomeni Kalofonou,1 Haralabos P Kalofonos,1 Despina Spyropoulou2 1Division of Oncology, Department of Medicine, 2Department of Radiation Oncology, University Hospital, Patras Medical School, Rion, Patras, GreeceWe have previously tested our hypothesis that there is a seasonality in the incidence of carcinomatous meningitis.1 Although further validation is needed in a larger cohort, we found that leptomeningeal metastasis occurred more often during warm months of the year which, in the case of Greece, is the period generally marked with the larger daytime length.1 Carcinomatous meningitis is closely related to brain metastasis, and a logical question is whether warm season is marked by a greater propensity also for brain metastasis.2 

  19. Morphological patterns of the postcentral sulcus in the human brain.

    Science.gov (United States)

    Zlatkina, Veronika; Petrides, Michael

    2010-09-15

    The morphological structure of the postcentral sulcus and its variability were investigated in 40 structural magnetic resonance images of the human brain registered to the Montreal Neurological Institute (MNI) proportional stereotaxic space. This analysis showed that the postcentral sulcus is not a single sulcus, but rather a complex of sulcal segments separated by gyri, which merge their banks at distinct locations. Most of these gyri are submerged deep within the sulcus and can be observed only by examining the depth of the sulcus, although a small proportion may be observed from the surface of the brain. In the majority of the examined cerebral hemispheres (73.75%), the postcentral sulcus is separated into two or three segments or, less frequently, into four or five segments (12.5%), or it remains continuous (13.75%). Examination of the in-depth relationship between the postcentral sulcus and the intraparietal sulcus revealed that these two sulci may appear to join on the surface of the brain but they are in fact always separated by a gyrus in the cortical depth. In 32.5% of the examined hemispheres, a dorsoventrally oriented sulcus, the transverse postcentral sulcus, is located anterior to the postcentral sulcus on the lower part of the postcentral gyrus. Systematic examination of the morphology of the postcentral sulcus in the proportional stereotaxic space that is used in functional neuroimaging studies is the first step toward the establishment of anatomical-functional correlations in the anterior parietal lobe.

  20. Brain perfusion SPECT in the mouse: normal pattern according to gender and age.

    Science.gov (United States)

    Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph

    2012-12-01

    Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1

  1. The creative brain: investigation of brain activity during creative problem solving by means of EEG and FMRI.

    Science.gov (United States)

    Fink, Andreas; Grabner, Roland H; Benedek, Mathias; Reishofer, Gernot; Hauswirth, Verena; Fally, Maria; Neuper, Christa; Ebner, Franz; Neubauer, Aljoscha C

    2009-03-01

    Cortical activity in the EEG alpha band has proven to be particularly sensitive to creativity-related demands, but its functional meaning in the context of creative cognition has not been clarified yet. Specifically, increases in alpha activity (i.e., alpha synchronisation) in response to creative thinking can be interpreted in different ways: As a functional correlate of cortical idling, as a sign of internal top-down activity or, more specifically, as selective inhibition of brain regions. We measured brain activity during creative thinking in two studies employing different neurophysiological measurement methods (EEG and fMRI). In both studies, participants worked on four verbal tasks differentially drawing on creative idea generation. The EEG study revealed that the generation of original ideas was associated with alpha synchronisation in frontal brain regions and with a diffuse and widespread pattern of alpha synchronisation over parietal cortical regions. The fMRI study revealed that task performance was associated with strong activation in frontal regions of the left hemisphere. In addition, we found task-specific effects in parietotemporal brain areas. The findings suggest that EEG alpha band synchronisation during creative thinking can be interpreted as a sign of active cognitive processes rather than cortical idling.

  2. New activity pattern in human interactive dynamics

    Science.gov (United States)

    Formentin, Marco; Lovison, Alberto; Maritan, Amos; Zanzotto, Giovanni

    2015-09-01

    We investigate the response function of human agents as demonstrated by written correspondence, uncovering a new pattern for how the reactive dynamics of individuals is distributed across the set of each agent’s contacts. In long-term empirical data on email, we find that the set of response times considered separately for the messages to each different correspondent of a given writer, generate a family of heavy-tailed distributions, which have largely the same features for all agents, and whose characteristic times grow exponentially with the rank of each correspondent. We furthermore show that this new behavioral pattern emerges robustly by considering weighted moving averages of the priority-conditioned response-time probabilities generated by a basic prioritization model. Our findings clarify how the range of priorities in the inputs from one’s environment underpin and shape the dynamics of agents embedded in a net of reactive relations. These newly revealed activity patterns might be universal, being present in other general interactive environments, and constrain future models of communication and interaction networks, affecting their architecture and evolution.

  3. Abnormal Brain Areas Common to the Focal Epilepsies: Multivariate Pattern Analysis of fMRI.

    Science.gov (United States)

    Pedersen, Mangor; Curwood, Evan K; Vaughan, David N; Omidvarnia, Amir H; Jackson, Graeme D

    2016-04-01

    Individuals with focal epilepsy have heterogeneous sites of seizure origin. However, there may be brain regions that are common to most cases of intractable focal epilepsy. In this study, we aim to identify these using multivariate analysis of task-free functional MRI. Fourteen subjects with extratemporal focal epilepsy and 14 healthy controls were included in the study. Task-free functional MRI data were used to calculate voxel-wise regional connectivity with regional homogeneity (ReHo) and weighted degree centrality (DCw), in addition to regional activity using fraction of amplitude of low-frequency fluctuations (fALFF). Multivariate pattern analysis was applied to each of these metrics to discriminate brain areas that differed between focal epilepsy subjects and healthy controls. ReHo and DCw classified focal epilepsy subjects from healthy controls with high accuracy (89.3% and 75%, respectively). However, fALFF did not significantly classify patients from controls. Increased regional network activity in epilepsy subjects was seen in the ipsilateral piriform cortex, insula, and thalamus, in addition to the dorsal anterior cingulate cortex and lateral frontal cortices. Decreased regional connectivity was observed in the ventromedial prefrontal cortex, as well as lateral temporal cortices. Patients with extratemporal focal epilepsy have common areas of abnormality (ReHo and DCw measures), including the ipsilateral piriform cortex, temporal neocortex, and ventromedial prefrontal cortex. ReHo shows additional increase in the "salience network" that includes anterior insula and anterior cingulate cortex. DCw showed additional effects in the ipsilateral thalamus and striatum. These brain areas may represent key regional network properties underlying focal epilepsy.

  4. Artifact suppression and analysis of brain activities with electroencephalography signals

    Institute of Scientific and Technical Information of China (English)

    Md. Rashed-Al-Mahfuz; Md. Rabiul Islam; Keikichi Hirose; Md. Khademul Islam Molla

    2013-01-01

    Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.

  5. The Colorful Brain: Visualization of EEG Background Patterns

    NARCIS (Netherlands)

    Putten, van Michel J.A.M

    2008-01-01

    This article presents a method to transform routine clinical EEG recordings to an alternative visual domain. The method is intended to support the classic visual interpretation of the EEG background pattern and to facilitate communication about relevant EEG characteristics. In addition, it provides

  6. Brain activity and fatigue during prolonged exercise in the heat

    DEFF Research Database (Denmark)

    Hyldig, Tino Hoffmann

    2001-01-01

    We hypothesized that fatigue due to hyperthermia during prolonged exercise in the heat is in part related to alterations in frontal cortical brain activity. The electroencephalographic activity (EEG) of the frontal cortex of the brain was measured in seven cyclists [maximal O2 uptake (VO2max) 4...... min of exercise; P

  7. Potential Moderators of Physical Activity on Brain Health

    Directory of Open Access Journals (Sweden)

    Regina L. Leckie

    2012-01-01

    Full Text Available Age-related cognitive decline is linked to numerous molecular, structural, and functional changes in the brain. However, physical activity is a promising method of reducing unfavorable age-related changes. Physical activity exerts its effects on the brain through many molecular pathways, some of which are regulated by genetic variants in humans. In this paper, we highlight genes including apolipoprotein E (APOE, brain derived neurotrophic factor (BDNF, and catechol-O-methyltransferase (COMT along with dietary omega-3 fatty acid, docosahexaenoic acid (DHA, as potential moderators of the effect of physical activity on brain health. There are a growing number of studies indicating that physical activity might mitigate the genetic risks for disease and brain dysfunction and that the combination of greater amounts of DHA intake with physical activity might promote better brain function than either treatment alone. Understanding whether genes or other lifestyles moderate the effects of physical activity on neurocognitive health is necessary for delineating the pathways by which brain health can be enhanced and for grasping the individual variation in the effectiveness of physical activity interventions on the brain and cognition. There is a need for future research to continue to assess the factors that moderate the effects of physical activity on neurocognitive function.

  8. Investigating the brain basis of facial expression perception using multi-voxel pattern analysis.

    Science.gov (United States)

    Wegrzyn, Martin; Riehle, Marcel; Labudda, Kirsten; Woermann, Friedrich; Baumgartner, Florian; Pollmann, Stefan; Bien, Christian G; Kissler, Johanna

    2015-08-01

    Humans can readily decode emotion expressions from faces and perceive them in a categorical manner. The model by Haxby and colleagues proposes a number of different brain regions with each taking over specific roles in face processing. One key question is how these regions directly compare to one another in successfully discriminating between various emotional facial expressions. To address this issue, we compared the predictive accuracy of all key regions from the Haxby model using multi-voxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data. Regions of interest were extracted using independent meta-analytical data. Participants viewed four classes of facial expressions (happy, angry, fearful and neutral) in an event-related fMRI design, while performing an orthogonal gender recognition task. Activity in all regions allowed for robust above-chance predictions. When directly comparing the regions to one another, fusiform gyrus and superior temporal sulcus (STS) showed highest accuracies. These results underscore the role of the fusiform gyrus as a key region in perception of facial expressions, alongside STS. The study suggests the need for further specification of the relative role of the various brain areas involved in the perception of facial expression. Face processing appears to rely on more interactive and functionally overlapping neural mechanisms than previously conceptualised.

  9. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  10. Plantar fibromatosis may adopt the brain gyriform pattern of a low-grade fibromyxoid sarcoma.

    Science.gov (United States)

    Touraine, Sébastien; Bousson, Valérie; Kaci, Rachid; Parlier-Cuau, Caroline; Haddad, Samuel; Laouisset, Liess; Petrover, David; Laredo, Jean-Denis

    2013-01-01

    We report the case of a 42-year-old man with histologically proven plantar fibromatosis (Ledderhose disease) demonstrating an uncommon brain gyriform pattern at MRI, so far exclusively described in the low-grade fibromyxoid sarcoma (LGFMS). An acoustic posterior enhancement at ultrasound, a high intensity on T2w and post-contrast T1wMR images were unusual and related to a high tumor cellularity at histology with no myxoid tissue. The juxtaposition of areas of high and low cellularity (with more fibrous material) in a multilobulated mass built a brain gyriform pattern at MR, similar to what was so far described exclusively in LGFMS. This case demonstrates that the brain gyriform pattern may also be observed in other soft tissue fibrous tumors with no myxoid material but with high cellularity areas alternating with fibrous zones of low cellularity.

  11. Cerebral Activity Changes in Different Traditional Chinese Medicine Patterns of Psychogenic Erectile Dysfunction Patients

    Directory of Open Access Journals (Sweden)

    Qi Liu

    2015-01-01

    Full Text Available Background. Pattern differentiation is the foundation of traditional Chinese medicine (TCM treatment for erectile dysfunction (ED. This study aims to investigate the differences in cerebral activity in ED patients with different TCM patterns. Methods. 27 psychogenic ED patients and 27 healthy subjects (HS were enrolled in this study. Each participant underwent an fMRI scan in resting state. The fractional amplitude of low-frequency fluctuation (fALFF was used to detect the brain activity changes in ED patients with different patterns. Results. Compared to HS, ED patients showed an increased cerebral activity in bilateral cerebellum, insula, globus pallidus, parahippocampal gyrus, orbitofrontal cortex (OFC, and middle cingulate cortex (MCC. Compared to the patients with liver-qi stagnation and spleen deficiency pattern (LSSDP, the patients with kidney-yang deficiency pattern (KDP showed an increased activity in bilateral brainstem, cerebellum, hippocampus, and the right insula, thalamus, MCC, and a decreased activity in bilateral putamen, medial frontal gyrus, temporal pole, and the right caudate nucleus, OFC, anterior cingulate cortex, and posterior cingulate cortex (P<0.005. Conclusions. The ED patients with different TCM patterns showed different brain activities. The differences in cerebral activity between LSSDP and KDP were mainly in the emotion-related regions, including prefrontal cortex and cingulated cortex.

  12. Let me change your mind… Frontal brain activity in a virtual T-maze

    OpenAIRE

    Rodrigues, Johannes

    2017-01-01

    Frontal asymmetry, a construct invented by Richard Davidson, linking positive and negative valence as well as approach and withdrawal motivation to lateralized frontal brain activation has been investigated for over thirty years. The frontal activation patterns described as relevant were measured via alpha-band frequency activity (8-13 Hz) as a measurement of deactivation in electroencephalography (EEG) for homologous electrode pairs, especially for the electrode position F4/ F3 to account fo...

  13. A subject-independent pattern-based Brain-Computer Interface

    Science.gov (United States)

    Ray, Andreas M.; Sitaram, Ranganatha; Rana, Mohit; Pasqualotto, Emanuele; Buyukturkoglu, Korhan; Guan, Cuntai; Ang, Kai-Keng; Tejos, Cristián; Zamorano, Francisco; Aboitiz, Francisco; Birbaumer, Niels; Ruiz, Sergio

    2015-01-01

    While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e., happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to “match” their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders. PMID:26539089

  14. Gene expression profiles in rat brain disclose CNS signature genes and regional patterns of functional specialisation

    Directory of Open Access Journals (Sweden)

    Breilid Harald

    2007-04-01

    Full Text Available Abstract Background The mammalian brain is divided into distinct regions with structural and neurophysiological differences. As a result, gene expression is likely to vary between regions in relation to their cellular composition and neuronal function. In order to improve our knowledge and understanding of regional patterns of gene expression in the CNS, we have generated a global map of gene expression in selected regions of the adult rat brain (frontomedial-, temporal- and occipital cortex, hippocampus, striatum and cerebellum; both right and left sides as well as in three major non-neural tissues (spleen, liver and kidney using the Applied Biosystems Rat Genome Survey Microarray. Results By unsupervised hierarchical clustering, we found that the transcriptome within a region was highly conserved among individual rats and that there were no systematic differences between the two hemispheres (right versus left side. Further, we identified distinct sets of genes showing significant regional enrichment. Functional annotation of each of these gene sets clearly reflected several important physiological features of the region in question, including synaptic transmission within the cortex, neurogenesis in hippocampus and G-protein-mediated signalling in striatum. In addition, we were able to reveal potentially new regional features, such as mRNA transcription- and neurogenesis-annotated activities in cerebellum and differential use of glutamate signalling between regions. Finally, we determined a set of 'CNS-signature' genes that uncover characteristics of several common neuronal processes in the CNS, with marked over-representation of specific features of synaptic transmission, ion transport and cell communication, as well as numerous novel unclassified genes. Conclusion We have generated a global map of gene expression in the rat brain and used this to determine functional processes and pathways that have a regional preference or ubiquitous

  15. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Directory of Open Access Journals (Sweden)

    Rick O Gilmore

    Full Text Available Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction at three different speeds (2, 4, and 8 deg/s. Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  16. Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation

    Directory of Open Access Journals (Sweden)

    Nicky Pirotte

    2015-01-01

    Full Text Available Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI or apocynin (APO causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS, in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes.

  17. Discriminative analysis of brain functional connectivity patterns for mental fatigue classification.

    Science.gov (United States)

    Sun, Yu; Lim, Julian; Meng, Jianjun; Kwok, Kenneth; Thakor, Nitish; Bezerianos, Anastasios

    2014-10-01

    Mental fatigue is a commonly experienced state that can be induced by placing heavy demands on cognitive systems. This often leads to lowered productivity and increased safety risks. In this study, we developed a functional-connectivity based mental fatigue monitoring method. Twenty-six subjects underwent a 20-min mentally demanding test of sustained attention with high-resolution EEG monitoring. Functional connectivity patterns were obtained on the cortical surface via source localization of cortical activities in the first and last 5-min quartiles of the experiment. Multivariate pattern analysis was then adopted to extract the highly discriminative functional connectivity information. The algorithm used in the present study demonstrated an overall accuracy of 81.5% (p fatigue classification through leave-one-out cross validation. Moreover, we found that the most discriminative connectivity features were located in or across middle frontal gyrus and several motor areas, in agreement with the important role that these cortical regions play in the maintenance of sustained attention. This work therefore demonstrates the feasibility of a functional-connectivity-based mental fatigue assessment method, opening up a new avenue for modeling natural brain dynamics under different mental states. Our method has potential applications in several domains, including traffic and industrial safety.

  18. Auditory perception and syntactic cognition: brain activity-based decoding within and across subjects.

    Science.gov (United States)

    Herrmann, Björn; Maess, Burkhard; Kalberlah, Christian; Haynes, John-Dylan; Friederici, Angela D

    2012-05-01

    The present magnetoencephalography study investigated whether the brain states of early syntactic and auditory-perceptual processes can be decoded from single-trial recordings with a multivariate pattern classification approach. In particular, it was investigated whether the early neural activation patterns in response to rule violations in basic auditory perception and in high cognitive processes (syntax) reflect a functional organization that largely generalizes across individuals or is subject-specific. On this account, subjects were auditorily presented with correct sentences, syntactically incorrect sentences, correct sentences including an interaural time difference change, and sentences containing both violations. For the analysis, brain state decoding was carried out within and across subjects with three pairwise classifications. Neural patterns elicited by each of the violation sentences were separately classified with the patterns elicited by the correct sentences. The results revealed the highest decoding accuracies over temporal cortex areas for all three classification types. Importantly, both the magnitude and the spatial distribution of decoding accuracies for the early neural patterns were very similar for within-subject and across-subject decoding. At the same time, across-subject decoding suggested a hemispheric bias, with the most consistent patterns in the left hemisphere. Thus, the present data show that not only auditory-perceptual processing brain states but also cognitive brain states of syntactic rule processing can be decoded from single-trial brain activations. Moreover, the findings indicate that the neural patterns in response to syntactic cognition and auditory perception reflect a functional organization that is highly consistent across individuals.

  19. Understanding the brain by controlling neural activity

    OpenAIRE

    Krug, Kristine; Salzman, C. Daniel; Waddell, Scott

    2015-01-01

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been...

  20. Chronic maternal morphine alters calbindin D-28k expression pattern in postnatal mouse brain.

    Science.gov (United States)

    Mithbaokar, Pratibha; Fiorito, Filomena; Della Morte, Rossella; Maharajan, Veeramani; Costagliola, Anna

    2016-01-01

    The distribution pattern of calbindin (CB)-D28k-expressing neurons results to be altered in several brain regions of chronic morphine exposed adult mice. In this study, the influence of chronic maternal exposure to morphine on the distribution pattern of CB-D28k-expressing neurons in the brain of mouse offspring was investigated. Females of CD-1 mice were daily administered with saline or morphine for 7 days before mating, during the whole gestation period, and until 21 day post-partum. Their offspring were sacrificed on postnatal day 18, and the brains were examined by histology using cresyl violet and by immunohistochemistry using a rabbit polyclonal anti-CB-D28k antibody. Histology revealed no significant differences in the distribution pattern and the number of neurons between the offspring forebrain of the control group of mice and the two groups of mice treated with different doses of morphine. However, immunohistochemical analysis revealed that the number of CB-D28k-immunoreactive neurons remarkably decreased in the cingulate cortex, in the layers II-IV of the parietal cortex and in all regions of the hippocampus, while it increased in the layers V-VI of the parietal cortex and in the subicular region of the offspring brain of morphine treated mice. Overall, our findings demonstrate that maternal exposure to morphine alters the pattern of CB-D28k-expressing neuron pattern in specific regions of murine developing brain, in a layer- and dose-dependent way, thus suggesting that these alterations might represent a mechanism by which morphine modifies the functional aspects of developing brain.

  1. Working memory-related functional brain patterns in never medicated children with ADHD.

    Science.gov (United States)

    Massat, Isabelle; Slama, Hichem; Kavec, Martin; Linotte, Sylvie; Mary, Alison; Baleriaux, Daniele; Metens, Thierry; Mendlewicz, Julien; Peigneux, Philippe

    2012-01-01

    Attention Deficit/Hyperactivity Disorder (ADHD) is a pervasive neurodevelopmental disorder characterized by 3 clusters of age-inappropriate cardinal symptoms: inattention, hyperactivity and impulsivity. These clinical/behavioural symptoms are assumed to result from disturbances within brain systems supporting executive functions including working memory (WM), which refers to the ability to transiently store and flexibly manipulate task-relevant information. Ongoing or past medications, co-morbidity and differences in task performance are potential, independent confounds in assessing the integrity of cerebral patterns in ADHD. In the present study, we recorded WM-related cerebral activity during a memory updating N-back task using functional Magnetic Resonance Imaging (fMRI) in control children and never medicated, prepubescent children with ADHD but without comorbid symptoms. Despite similar updating performance than controls, children with ADHD exhibited decreased, below baseline WM-related activation levels in a widespread cortico-subcortical network encompassing bilateral occipital and inferior parietal areas, caudate nucleus, cerebellum and functionally connected brainstem nuclei. Distinctive functional connectivity patterns were also found in the ADHD in these regions, with a tighter coupling in the updating than in the control condition with a distributed WM-related cerebral network. Especially, cerebellum showed tighter coupling with activity in an area compatible with the brainstem red nucleus. These results in children with clinical core symptoms of ADHD but without comorbid affections and never treated with medication yield evidence for a core functional neuroanatomical network subtending WM-related processes in ADHD, which may participate to the pathophysiology and expression of clinical symptoms.

  2. Working memory-related functional brain patterns in never medicated children with ADHD.

    Directory of Open Access Journals (Sweden)

    Isabelle Massat

    Full Text Available Attention Deficit/Hyperactivity Disorder (ADHD is a pervasive neurodevelopmental disorder characterized by 3 clusters of age-inappropriate cardinal symptoms: inattention, hyperactivity and impulsivity. These clinical/behavioural symptoms are assumed to result from disturbances within brain systems supporting executive functions including working memory (WM, which refers to the ability to transiently store and flexibly manipulate task-relevant information. Ongoing or past medications, co-morbidity and differences in task performance are potential, independent confounds in assessing the integrity of cerebral patterns in ADHD. In the present study, we recorded WM-related cerebral activity during a memory updating N-back task using functional Magnetic Resonance Imaging (fMRI in control children and never medicated, prepubescent children with ADHD but without comorbid symptoms. Despite similar updating performance than controls, children with ADHD exhibited decreased, below baseline WM-related activation levels in a widespread cortico-subcortical network encompassing bilateral occipital and inferior parietal areas, caudate nucleus, cerebellum and functionally connected brainstem nuclei. Distinctive functional connectivity patterns were also found in the ADHD in these regions, with a tighter coupling in the updating than in the control condition with a distributed WM-related cerebral network. Especially, cerebellum showed tighter coupling with activity in an area compatible with the brainstem red nucleus. These results in children with clinical core symptoms of ADHD but without comorbid affections and never treated with medication yield evidence for a core functional neuroanatomical network subtending WM-related processes in ADHD, which may participate to the pathophysiology and expression of clinical symptoms.

  3. Human brain basis of musical rhythm perception: common and distinct neural substrates for meter, tempo, and pattern.

    Science.gov (United States)

    Thaut, Michael H; Trimarchi, Pietro Davide; Parsons, Lawrence M

    2014-06-17

    Rhythm as the time structure of music is composed of distinct temporal components such as pattern, meter, and tempo. Each feature requires different computational processes: meter involves representing repeating cycles of strong and weak beats; pattern involves representing intervals at each local time point which vary in length across segments and are linked hierarchically; and tempo requires representing frequency rates of underlying pulse structures. We explored whether distinct rhythmic elements engage different neural mechanisms by recording brain activity of adult musicians and non-musicians with positron emission tomography (PET) as they made covert same-different discriminations of (a) pairs of rhythmic, monotonic tone sequences representing changes in pattern, tempo, and meter, and (b) pairs of isochronous melodies. Common to pattern, meter, and tempo tasks were focal activities in right, or bilateral, areas of frontal, cingulate, parietal, prefrontal, temporal, and cerebellar cortices. Meter processing alone activated areas in right prefrontal and inferior frontal cortex associated with more cognitive and abstract representations. Pattern processing alone recruited right cortical areas involved in different kinds of auditory processing. Tempo processing alone engaged mechanisms subserving somatosensory and premotor information (e.g., posterior insula, postcentral gyrus). Melody produced activity different from the rhythm conditions (e.g., right anterior insula and various cerebellar areas). These exploratory findings suggest the outlines of some distinct neural components underlying the components of rhythmic structure.

  4. Human Brain Basis of Musical Rhythm Perception: Common and Distinct Neural Substrates for Meter, Tempo, and Pattern

    Directory of Open Access Journals (Sweden)

    Michael H. Thaut

    2014-06-01

    Full Text Available Rhythm as the time structure of music is composed of distinct temporal components such as pattern, meter, and tempo. Each feature requires different computational processes: meter involves representing repeating cycles of strong and weak beats; pattern involves representing intervals at each local time point which vary in length across segments and are linked hierarchically; and tempo requires representing frequency rates of underlying pulse structures. We explored whether distinct rhythmic elements engage different neural mechanisms by recording brain activity of adult musicians and non-musicians with positron emission tomography (PET as they made covert same-different discriminations of (a pairs of rhythmic, monotonic tone sequences representing changes in pattern, tempo, and meter, and (b pairs of isochronous melodies. Common to pattern, meter, and tempo tasks were focal activities in right, or bilateral, areas of frontal, cingulate, parietal, prefrontal, temporal, and cerebellar cortices. Meter processing alone activated areas in right prefrontal and inferior frontal cortex associated with more cognitive and abstract representations. Pattern processing alone recruited right cortical areas involved in different kinds of auditory processing. Tempo processing alone engaged mechanisms subserving somatosensory and premotor information (e.g., posterior insula, postcentral gyrus. Melody produced activity different from the rhythm conditions (e.g., right anterior insula and various cerebellar areas. These exploratory findings suggest the outlines of some distinct neural components underlying the components of rhythmic structure.

  5. Formation and reverberation of sequential neural activity patterns evoked by sensory stimulation are enhanced during cortical desynchronization.

    Science.gov (United States)

    Bermudez Contreras, Edgar J; Schjetnan, Andrea Gomez Palacio; Muhammad, Arif; Bartho, Peter; McNaughton, Bruce L; Kolb, Bryan; Gruber, Aaron J; Luczak, Artur

    2013-08-07

    Memory formation is hypothesized to involve the generation of event-specific neural activity patterns during learning and the subsequent spontaneous reactivation of these patterns. Here, we present evidence that these processes can also be observed in urethane-anesthetized rats and are enhanced by desynchronized brain state evoked by tail pinch, subcortical carbachol infusion, or systemic amphetamine administration. During desynchronization, we found that repeated tactile or auditory stimulation evoked unique sequential patterns of neural firing in somatosensory and auditory cortex and that these patterns then reoccurred during subsequent spontaneous activity, similar to what we have observed in awake animals. Furthermore, the formation of these patterns was blocked by an NMDA receptor antagonist, suggesting that the phenomenon depends on synaptic plasticity. These results suggest that anesthetized animals with a desynchronized brain state could serve as a convenient model for studying stimulus-induced plasticity to improve our understanding of memory formation and replay in the brain.

  6. Gadolinium enhancement patterns of tumefactive demyelinating lesions: correlations with brain biopsy findings and pathophysiology.

    Science.gov (United States)

    Kobayashi, Masaki; Shimizu, Yuko; Shibata, Noriyuki; Uchiyama, Shinichiro

    2014-10-01

    Tumefactive demyelinating lesions (TDLs) can mimic brain tumors on radiological images. TDLs are often referred to as tumefactive multiple sclerosis (TMS), but the heterogeneous nature and monophasic course of TDLs do not fulfill clinical and magnetic resonance imaging (MRI) criteria for multiple sclerosis. Redefining TDLs, TMS and other inflammatory brain lesions is essential for the accurate clinical diagnosis of extensive demyelinating brain lesions. We retrospectively analyzed MRI from nine TDL cases that underwent brain biopsy. Patterns of gadolinium enhancement on MRI were categorized as homogenous, inhomogeneous, patchy and diffuse, open ring or irregular rim, and were compared with pathological hallmarks including demyelination, central necrosis, macrophage infiltration, angiogenesis and perivascular lymphocytic cuffing. All cases had coexistence of demyelinating features and axonal loss. Open-ring and irregular rim patterns of gadolinium enhancement were associated with macrophage infiltrations and angiogenesis at the inflammatory border. An inhomogeneous pattern of gadolinium enhancement was associated with perivascular lymphocytic cuffing. Central necrosis was seen in cases of severe multiple sclerosis and hemorrhagic leukoencephalopathy. These results suggest that the radiological features of TDLs may be related to different pathological processes, and indicate that MRI may be useful in understanding their pathophysiology. Further investigation is needed to determine the precise disease entity of these inflammatory demyelinating brain lesions.

  7. Temperament, character and serotonin activity in the human brain

    DEFF Research Database (Denmark)

    Tuominen, L; Salo, J; Hirvonen, J;

    2013-01-01

    The psychobiological model of personality by Cloninger and colleagues originally hypothesized that interindividual variability in the temperament dimension 'harm avoidance' (HA) is explained by differences in the activity of the brain serotonin system. We assessed brain serotonin transporter (5-H......-(2-amino-4-methylphenylthio)benzylamine ([11C]MADAM). In secondary analyses, 5-HTT BPND was correlated with other TCI dimensions....

  8. Understanding human activity patterns based on space-time-semantics

    Science.gov (United States)

    Huang, Wei; Li, Songnian

    2016-11-01

    Understanding human activity patterns plays a key role in various applications in an urban environment, such as transportation planning and traffic forecasting, urban planning, public health and safety, and emergency response. Most existing studies in modeling human activity patterns mainly focus on spatiotemporal dimensions, which lacks consideration of underlying semantic context. In fact, what people do and discuss at some places, inferring what is happening at the places, cannot be simple neglected because it is the root of human mobility patterns. We believe that the geo-tagged semantic context, representing what individuals do and discuss at a place and a specific time, drives a formation of specific human activity pattern. In this paper, we aim to model human activity patterns not only based on space and time but also with consideration of associated semantics, and attempt to prove a hypothesis that similar mobility patterns may have different motivations. We develop a spatiotemporal-semantic model to quantitatively express human activity patterns based on topic models, leading to an analysis of space, time and semantics. A case study is conducted using Twitter data in Toronto based on our model. Through computing the similarities between users in terms of spatiotemporal pattern, semantic pattern and spatiotemporal-semantic pattern, we find that only a small number of users (2.72%) have very similar activity patterns, while the majority (87.14%) show different activity patterns (i.e., similar spatiotemporal patterns and different semantic patterns, similar semantic patterns and different spatiotemporal patterns, or different in both). The population of users that has very similar activity patterns is decreased by 56.41% after incorporating semantic information in the corresponding spatiotemporal patterns, which can quantitatively prove the hypothesis.

  9. Delirium after a traumatic brain injury: predictors and symptom patterns

    Science.gov (United States)

    Maneewong, Jutaporn; Maneeton, Benchalak; Maneeton, Narong; Vaniyapong, Tanat; Traisathit, Patrinee; Sricharoen, Natthanidnan; Srisurapanont, Manit

    2017-01-01

    Background Delirium in traumatic brain injury (TBI) is common, may be predictable, and has a multifaceted symptom complex. This study aimed to examine: 1) the sum score of Glasgow Coma Scale (GCS) and if its component scores could predict delirium in TBI patients, and 2) the prominent symptoms and their courses over the first days after TBI. Methods TBI patients were recruited from neurosurgical ward inpatients. All participants were hospitalized within 24 hours after their TBI. Apart from the sum score of GCS, which was obtained at the emergency department (ED), the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, diagnostic criteria for delirium were applied daily. The severity of delirium symptoms was assessed daily using the Delirium Rating Scale – Revised-98 (DRS-R-98). Results The participants were 54 TBI patients with a mean GCS score of 12.7 (standard deviation [SD] =2.9). A total of 25 patients (46.3%) met the diagnosis of delirium and had a mean age of 36.7 years (SD =14.8). Compared with 29 non-delirious patients, 25 delirious patients had a significantly lower mean GCS score (P=0.04), especially a significantly lower verbal component score (P=0.03). Among 18 delirious patients, four symptoms of the DRS-R-98 cognitive domain (orientation, attention, long-term memory, and visuospatial ability) were moderate symptoms (score ≥2) at the first day of admission. After follow-up, three cognitive (orientation, attention, and visuospatial ability) and two noncognitive symptoms (lability of affect and motor agitation) rapidly resolved. Conclusion Almost half of patients with mild to moderate head injuries may develop delirium in the first 4 days after TBI. Those having a low GCS score, especially the verbal component score, at the ED were likely to have delirium in this period. Most cognitive domains of delirium described in the DRS-R-98 were prominent within the first 4 days of TBI with delirium. Three cognitive and two noncognitive

  10. Where Have They All Gone?: Classroom Attention Patterns after Acquired Brain Injury

    Science.gov (United States)

    Rees, Siân A.

    2016-01-01

    Certain groups of pupils who have sustained an Acquired Brain Injury (ABI) have a different pattern of attention within the classroom which interferes with learning and social interactions. The delineation of these groups is suggested. By looking in detail at the classroom behaviour of eight pupils, a common account for classroom behaviour…

  11. Search for patterns of functional specificity in the brain: a nonparametric hierarchical Bayesian model for group fMRI data.

    Science.gov (United States)

    Lashkari, Danial; Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina

    2012-01-16

    Functional MRI studies have uncovered a number of brain areas that demonstrate highly specific functional patterns. In the case of visual object recognition, small, focal regions have been characterized with selectivity for visual categories such as human faces. In this paper, we develop an algorithm that automatically learns patterns of functional specificity from fMRI data in a group of subjects. The method does not require spatial alignment of functional images from different subjects. The algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to learn the patterns of functional specificity shared across the group, which we call functional systems, and estimate the number of these systems. Inference based on our model enables automatic discovery and characterization of dominant and consistent functional systems. We apply the method to data from a visual fMRI study comprised of 69 distinct stimulus images. The discovered system activation profiles correspond to selectivity for a number of image categories such as faces, bodies, and scenes. Among systems found by our method, we identify new areas that are deactivated by face stimuli. In empirical comparisons with previously proposed exploratory methods, our results appear superior in capturing the structure in the space of visual categories of stimuli.

  12. Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns.

    Science.gov (United States)

    Abrams, Daniel A; Bhatara, Anjali; Ryali, Srikanth; Balaban, Evan; Levitin, Daniel J; Menon, Vinod

    2011-07-01

    Music and speech are complex sound streams with hierarchical rules of temporal organization that become elaborated over time. Here, we use functional magnetic resonance imaging to measure brain activity patterns in 20 right-handed nonmusicians as they listened to natural and temporally reordered musical and speech stimuli matched for familiarity, emotion, and valence. Heart rate variability and mean respiration rates were simultaneously measured and were found not to differ between musical and speech stimuli. Although the same manipulation of temporal structure elicited brain activation level differences of similar magnitude for both music and speech stimuli, multivariate classification analysis revealed distinct spatial patterns of brain responses in the 2 domains. Distributed neuronal populations that included the inferior frontal cortex, the posterior and anterior superior and middle temporal gyri, and the auditory brainstem classified temporal structure manipulations in music and speech with significant levels of accuracy. While agreeing with previous findings that music and speech processing share neural substrates, this work shows that temporal structure in the 2 domains is encoded differently, highlighting a fundamental dissimilarity in how the same neural resources are deployed.

  13. Brain lesion-pattern analysis in patients with olfactory dysfunctions following head trauma

    Directory of Open Access Journals (Sweden)

    Jörn Lötsch

    2016-01-01

    Full Text Available The presence of cerebral lesions in patients with neurosensory alterations provides a unique window into brain function. Using a fuzzy logic based combination of morphological information about 27 olfactory-eloquent brain regions acquired with four different brain imaging techniques, patterns of brain damage were analyzed in 127 patients who displayed anosmia, i.e., complete loss of the sense of smell (n = 81, or other and mechanistically still incompletely understood olfactory dysfunctions including parosmia, i.e., distorted perceptions of olfactory stimuli (n = 50, or phantosmia, i.e., olfactory hallucinations (n = 22. A higher prevalence of parosmia, and as a tendency also phantosmia, was observed in subjects with medium overall brain damage. Further analysis showed a lower frequency of lesions in the right temporal lobe in patients with parosmia than in patients without parosmia. This negative direction of the differences was unique for parosmia. In anosmia, and also in phantosmia, lesions were more frequent in patients displaying the respective symptoms than in those without these dysfunctions. In anosmic patients, lesions in the right olfactory bulb region were much more frequent than in patients with preserved sense of smell, whereas a higher frequency of carriers of lesions in the left frontal lobe was observed for phantosmia. We conclude that anosmia, and phantosmia, are the result of lost function in relevant brain areas whereas parosmia is more complex, requiring damaged and intact brain regions at the same time.

  14. Chemotherapy-induced amenorrhea: a prospective study of brain activation changes and neurocognitive correlates.

    Science.gov (United States)

    Conroy, Susan K; McDonald, Brenna C; Ahles, Tim A; West, John D; Saykin, Andrew J

    2013-12-01

    Chemotherapy-induced amenorrhea (CIA) often occurs in pre- and peri-menopausal BC patients, and while cancer/chemotherapy and abrupt estrogen loss have separately been shown to affect cognition and brain function, studies of the cognitive effects of CIA are equivocal, and its effects on brain function are unknown. Functional MRI (fMRI) during a working memory task was used to prospectively assess the pattern of brain activation and deactivation prior to and 1 month after chemotherapy in BC patients who experienced CIA (n = 9), post-menopausal BC patients undergoing chemotherapy (n = 9), and pre- and post-menopausal healthy controls (n = 6 each). Neurocognitive testing was also performed at both time points. Repeated measures general linear models were used to assess statistical significance, and age was a covariate in all analyses. We observed a group-by-time interaction in the combined magnitudes of brain activation and deactivation (p = 0.006): the CIA group increased in magnitude from baseline to post-treatment while other groups maintained similar levels over time. Further, the change in brain activity magnitude in CIA was strongly correlated with change in processing speed neurocognitive testing score (r = 0.837 p = 0.005), suggesting this increase in brain activity reflects effective cognitive compensation. Our results demonstrate prospectively that the pattern of change in brain activity from pre- to post-chemotherapy varies according to pre-treatment menopausal status. Cognitive correlates add to the potential clinical significance of these findings. These findings have implications for risk appraisal and development of prevention or treatment strategies for cognitive changes in CIA.

  15. Model of local temperature changes in brain upon functional activation.

    Science.gov (United States)

    Collins, Christopher M; Smith, Michael B; Turner, Robert

    2004-12-01

    Experimental results for changes in brain temperature during functional activation show large variations. It is, therefore, desirable to develop a careful numerical model for such changes. Here, a three-dimensional model of temperature in the human head using the bioheat equation, which includes effects of metabolism, perfusion, and thermal conduction, is employed to examine potential temperature changes due to functional activation in brain. It is found that, depending on location in brain and corresponding baseline temperature relative to blood temperature, temperature may increase or decrease on activation and concomitant increases in perfusion and rate of metabolism. Changes in perfusion are generally seen to have a greater effect on temperature than are changes in metabolism, and hence active brain is predicted to approach blood temperature from its initial temperature. All calculated changes in temperature for reasonable physiological parameters have magnitudes <0.12 degrees C and are well within the range reported in recent experimental studies involving human subjects.

  16. Passenger transport and household activity patterns

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Review of Danish passenger transport patterns and analysis of energy consumption, emissions and safety impacts for selected typical households' travelling......Review of Danish passenger transport patterns and analysis of energy consumption, emissions and safety impacts for selected typical households' travelling...

  17. Brain's reward circuits mediate itch relief. a functional MRI study of active scratching.

    Directory of Open Access Journals (Sweden)

    Alexandru D P Papoiu

    Full Text Available Previous brain imaging studies investigating the brain processing of scratching used an exogenous intervention mimicking scratching, performed not by the subjects themselves, but delivered by an investigator. In real life, scratching is a conscious, voluntary, controlled motor response to itching, which is directed to the perceived site of distress. In this study we aimed to visualize in real-time by brain imaging the core mechanisms of the itch-scratch cycle when scratching was performed by subjects themselves. Secondly, we aimed to assess the correlations between brain patterns of activation and psychophysical ratings of itch relief or pleasurability of scratching. We also compared the patterns of brain activity evoked by self-scratching vs. passive scratching. We used a robust tridimensional Arterial Spin Labeling fMRI technique that is less sensitive to motion artifacts: 3D gradient echo and spin echo (GRASE--Propeller. Active scratching was accompanied by a higher pleasurability and induced a more pronounced deactivation of the anterior cingulate cortex and insula, in comparison with passive scratching. A significant involvement of the reward system including the ventral tegmentum of the midbrain, coupled with a mechanism deactivating the periaqueductal gray matter (PAG, suggests that itch modulation operates in reverse to the mechanism known to suppress pain. Our findings not only confirm a role for the central networks processing reward in the pleasurable aspects of scratching, but also suggest they play a role in mediating itch relief.

  18. The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders.

    Science.gov (United States)

    Nithianantharajah, Jess; Hannan, Anthony J

    2009-12-01

    The concept of 'cognitive reserve', and a broader theory of 'brain reserve', were originally proposed to help explain epidemiological data indicating that individuals who engaged in higher levels of mental and physical activity via education, occupation and recreation, were at lower risk of developing Alzheimer's disease and other forms of dementia. Subsequently, behavioral, cellular and molecular studies in animals (predominantly mice and rats) have revealed dramatic effects of environmental enrichment, which involves enhanced levels of sensory, cognitive and motor stimulation via housing in novel, complex environments. Furthermore, increasing levels of voluntary physical exercise, via ad libitum access to running wheels, can have significant effects on brain and behavior, thus informing the relative effects of mental and physical activity. More recently, animal models of brain disorders have been compared under environmentally stimulating and standard housing conditions, and this has provided new insights into environmental modulators and gene-environment interactions involved in pathogenesis. Here, we review animal studies that have investigated the effects of modifying mental and physical activity via experimental manipulations, and discuss their relevance to brain and cognitive reserve (BCR). Recent evidence suggests that the concept of BCR is not only relevant to brain aging, neurodegenerative diseases and dementia, but also to other neurological and psychiatric disorders. Understanding the cellular and molecular mechanisms mediating BCR may not only facilitate future strategies aimed at optimising healthy brain aging, but could also identify molecular targets for novel pharmacological approaches aimed at boosting BCR in 'at risk' and symptomatic individuals with various brain disorders.

  19. Dynamic Labyrinthine Pattern in an Active Liquid Film

    CERN Document Server

    Chen, Yong-Jun; Yoshikawa, Kenichi

    2012-01-01

    We report the generation of a dynamic labyrinthine pattern in an active alcohol film. A dynamic labyrinthine pattern is formed along the contact line of air/pentanol/aqueous three phases. The contact line shows a clear time-dependent change with regard to both perimeter and area of a domain. An autocorrelation analysis of time-development of the dynamics of the perimeter and area revealed a strong geometric correlation between neighboring patterns. The pattern showed autoregressive behavior. The behavior of the dynamic pattern is strikingly different from those of stationary labyrinthine patterns. The essential aspects of the observed dynamic pattern are reproduced by a diffusion-controlled geometric model.

  20. Air pollution exposure: An activity pattern approach for active transportation

    Science.gov (United States)

    Adams, Matthew D.; Yiannakoulias, Nikolaos; Kanaroglou, Pavlos S.

    2016-09-01

    In this paper, we demonstrate the calculation of personal air pollution exposure during trips made by active transportation using activity patterns without personal monitors. We calculate exposure as the inhaled dose of particulate matter 2.5 μg or smaller. Two modes of active transportation are compared, and they include cycling and walking. Ambient conditions are calculated by combining mobile and stationary monitoring data in an artificial neural network space-time model. The model uses a land use regression framework and has a prediction accuracy of R2 = 0.78. Exposure is calculated at 10 m or shorter intervals during the trips using inhalation rates associated with both modes. The trips are children's routes between home and school. The average dose during morning cycling trips was 2.17 μg, during morning walking trips was 3.19 μg, during afternoon cycling trips was 2.19 μg and during afternoon walking trips was 3.23 μg. The cycling trip dose was significantly lower than the walking trip dose. The air pollution exposure during walking or cycling trips could not be strongly predicted by either the school or household ambient conditions, either individually or in combination. Multiple linear regression models regressing both the household and school ambient conditions against the dose were only able to account for, at most, six percent of the variance in the exposure. This paper demonstrates that incorporating activity patterns when calculating exposure can improve the estimate of exposure compared to its calculation from ambient conditions.

  1. Clinicopathological pattern of brain tumors: A 3-year study in a tertiary care hospital in India

    Directory of Open Access Journals (Sweden)

    Sajeeb Mondal

    2016-01-01

    Full Text Available Background: Brain tumors are heterogeneous group of neoplasms, affecting different age groups. Although some studies have been published regarding pathological pattern of brain tumors from different countries of the world and also from India, comprehensive clinicopathological studies from Eastern India is lacking. Aims: The aim of this study was to observe recent incidence of different brain tumors and to study clinical and histopathological spectrum of brain tumors in Eastern India. Materials and Methods: The present study was a cross-sectional observational study involving 130 cases of brain tumors which were diagnosed during the 3-year study period (January 2010–December 2012. Data regarding clinical presentation and radiological features of all cases were collected from all patients. Histopathological diagnosis was correlated with clinical and radiological diagnosis. Results: We found 130 cases of brain tumor with a male preponderance. The cases were distributed in a wide age range from 4 years to 78 years with the mean age of 42.38 years. Most common tumor type in our study was neuroepithelial tumor (92 cases, 70.76%. Among the neuroepithelial tumors, most frequent subtype was astrocytic tumor (54 cases, 41.5%. The second most frequent brain tumor was meningioma (20 cases, 15.3%. We found higher incidence of oligodendroglial tumor (8.46% and medulloblastoma (7.69% in our series. Conclusion: Males are more predispose to brain tumors in comparison to females. Astrocytic tumors are most common subtype in Eastern India. However, the WHO Grade I neoplasms are more frequent brain tumors.

  2. Effects of Great Lakes fish consumption on brain PCB pattern, concentration, and progressive-ratio performance

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, P.; Pagano, J.; Sargent, D.; Darvill, T.; Lonky, E.; Reihman, J.

    2000-01-01

    This study investigated the effects of consumption of Great Lakes fish on progressive ratio performance, and on the pattern and concentrations of brain polychlorinated biphenyls (PCBs), dichlorodiphenyldichloroethene (DDE), and mirex in the rat. Adult, male Sprague-Dawley rats were fed a 30% diet of either Lake Ontario salmon (LAKE), Pacific Ocean salmon, or lab chow control for 20 or 65 days. Following the treatment regimen, half the rats from each group were sacrificed immediately for gas chromatographic analysis of organochlorine contaminants, and the other half were tested on a multiple fixed-ratio-progressive-ratio reinforcement schedule and then sacrificed for analysis. Consumption of Lake Ontario fish resulted in significantly higher levels of brain PCBs, DDE, and mirex relative to controls, but still well within human exposure ranges. Consumption of Lake Ontario fish for 20 or 65 days produced an average brain PCB concentration of 457 and 934 ng/g fat, respectively. Consumption of laboratory rat chow or Pacific Ocean salmon for 20 or 65 days produced an average brain PCB concentration of 240, 464, and 441 ng/g fat, respectively. Moreover, both LAKE-fed groups showed a much more heavily chlorinated pattern of brain PCBs than all control groups, as evidenced by both significant increases in the most heavily chlorinated PCB congeners and significant increases in the average chlorine biphenyl.

  3. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces

    OpenAIRE

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stim...

  4. The effects of physical activity on brain structure

    Directory of Open Access Journals (Sweden)

    Adam eThomas

    2012-03-01

    Full Text Available Aerobic activity is a powerful stimulus for improving mental health and for generating structural changes in the brain. We review the literature documenting these structural changes and explore exactly where in the brain these changes occur as well as the underlying substrates of the changes including neural, glial, and vasculature components. Aerobic activity has been shown to produce different types of changes in the brain. The presence of novel experiences or learning is an especially important component in how these changes are manifest. We also discuss the distinct time courses of structural brain changes with both aerobic activity and learning as well as how these effects might differ in diseased and elderly groups.

  5. Multistability in Large Scale Models of Brain Activity.

    Directory of Open Access Journals (Sweden)

    Mathieu Golos

    2015-12-01

    Full Text Available Noise driven exploration of a brain network's dynamic repertoire has been hypothesized to be causally involved in cognitive function, aging and neurodegeneration. The dynamic repertoire crucially depends on the network's capacity to store patterns, as well as their stability. Here we systematically explore the capacity of networks derived from human connectomes to store attractor states, as well as various network mechanisms to control the brain's dynamic repertoire. Using a deterministic graded response Hopfield model with connectome-based interactions, we reconstruct the system's attractor space through a uniform sampling of the initial conditions. Large fixed-point attractor sets are obtained in the low temperature condition, with a bigger number of attractors than ever reported so far. Different variants of the initial model, including (i a uniform activation threshold or (ii a global negative feedback, produce a similarly robust multistability in a limited parameter range. A numerical analysis of the distribution of the attractors identifies spatially-segregated components, with a centro-medial core and several well-delineated regional patches. Those different modes share similarity with the fMRI independent components observed in the "resting state" condition. We demonstrate non-stationary behavior in noise-driven generalizations of the models, with different meta-stable attractors visited along the same time course. Only the model with a global dynamic density control is found to display robust and long-lasting non-stationarity with no tendency toward either overactivity or extinction. The best fit with empirical signals is observed at the edge of multistability, a parameter region that also corresponds to the highest entropy of the attractors.

  6. Ofd1 controls dorso-ventral patterning and axoneme elongation during embryonic brain development.

    Directory of Open Access Journals (Sweden)

    Anna D'Angelo

    Full Text Available Oral-facial-digital type I syndrome (OFDI is a human X-linked dominant-male-lethal developmental disorder caused by mutations in the OFD1 gene. Similar to other inherited disorders associated to ciliary dysfunction OFD type I patients display neurological abnormalities. We characterized the neuronal phenotype that results from Ofd1 inactivation in early phases of mouse embryonic development and at post-natal stages. We determined that Ofd1 plays a crucial role in forebrain development, and in particular, in the control of dorso-ventral patterning and early corticogenesis. We observed abnormal activation of Sonic hedgehog (Shh, a major pathway modulating brain development. Ultrastructural studies demonstrated that early Ofd1 inactivation results in the absence of ciliary axonemes despite the presence of mature basal bodies that are correctly orientated and docked. Ofd1 inducible-mediated inactivation at birth does not affect ciliogenesis in the cortex, suggesting a developmental stage-dependent role for a basal body protein in ciliogenesis. Moreover, we showed defects in cytoskeletal organization and apical-basal polarity in Ofd1 mutant embryos, most likely due to lack of ciliary axonemes. Thus, the present study identifies Ofd1 as a developmental disease gene that is critical for forebrain development and ciliogenesis in embryonic life, and indicates that Ofd1 functions after docking and before elaboration of the axoneme in vivo.

  7. Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment.

    Science.gov (United States)

    Tosun, Duygu; Schuff, Norbert; Mathis, Chester A; Jagust, William; Weiner, Michael W

    2011-04-01

    Amyloid-β accumulation in the brain is thought to be one of the earliest events in Alzheimer's disease, possibly leading to synaptic dysfunction, neurodegeneration and cognitive/functional decline. The earliest detectable changes seen with neuroimaging appear to be amyloid-β accumulation detected by (11)C-labelled Pittsburgh compound B positron emission tomography imaging. However, some individuals tolerate high brain amyloid-β loads without developing symptoms, while others progressively decline, suggesting that events in the brain downstream from amyloid-β deposition, such as regional brain atrophy rates, play an important role. The main purpose of this study was to understand the relationship between the regional distributions of increased amyloid-β and the regional distribution of increased brain atrophy rates in patients with mild cognitive impairment. To simultaneously capture the spatial distributions of amyloid-β and brain atrophy rates, we employed the statistical concept of parallel independent component analysis, an effective method for joint analysis of multimodal imaging data. Parallel independent component analysis identified significant relationships between two patterns of amyloid-β deposition and atrophy rates: (i) increased amyloid-β burden in the left precuneus/cuneus and medial-temporal regions was associated with increased brain atrophy rates in the left medial-temporal and parietal regions; and (ii) in contrast, increased amyloid-β burden in bilateral precuneus/cuneus and parietal regions was associated with increased brain atrophy rates in the right medial temporal regions. The spatial distribution of increased amyloid-β and the associated spatial distribution of increased brain atrophy rates embrace a characteristic pattern of brain structures known for a high vulnerability to Alzheimer's disease pathology, encouraging for the use of (11)C-labelled Pittsburgh compound B positron emission tomography measures as early indicators of

  8. Regional brain activation associated with addiction of computer games in adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y. H.; Shin, O. J.; Ko, Y. W.; Kim, H. J.; Yun, M. J.; Lee, J. D. [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-07-01

    Excessive computer game (CG) playing may cause not only behavioral addiction, but also potential negative effects on developing brain. It is necessary to reveal how brain is affected by excessive use of CG playing and behavioral addiction of it. By using PET, we address the issue seeking to identifying patterns of regional brain activation associated with behavioral addiction and excessive use of CG playing by adolescents. 6 normal control and 8 adolescents who were met by the criteria of behavioral addiction on the survey as addiction groups with an addiction of CG playing were participated. Initial screening survey which is the adapted version of DSM-IV for pathologic gambling was done. PET were performed twice in each participants both during resting state and after 20 min playing of CG. Psychological test including Youth Self Report (YSR), memory and attention test and vocabulary item from KWAIS were performed. Scores of the vocabulary item from KWAIS and social competence from YSR were significantly lower in the addiction group. On PET, addiction group showed higher resting metabolism on inferior frontal, premotor, prefrontal and superior temporal area. Adolescents with addiction of CG revealed different patterns of regional brain activation comparing to control groups. These suggest behavioral addiction and excessive use of CG may result in functional alteration of developing brain in adolescents.

  9. Brain activity modification produced by a single radioelectric asymmetric brain stimulation pulse: a new tool for neuropsychiatric treatments. Preliminary fMRI study

    Directory of Open Access Journals (Sweden)

    Castagna A

    2011-10-01

    Full Text Available Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna1 1Department of Neuro-Psycho-Physio Pathology, Rinaldi Fontani Institute, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, Italy Purpose: Radioelectric asymmetric brain stimulation technology with its treatment protocols has shown efficacy in various psychiatric disorders. The aim of this work was to highlight the mechanisms by which these positive effects are achieved. The current study was conducted to determine whether a single 500-millisecond radioelectric asymmetric conveyor (REAC brain stimulation pulse (BSP, applied to the ear, can effect a modification of brain activity that is detectable using functional magnetic resonance imaging (fMRI. Methods: Ten healthy volunteers, six females and four males, underwent fMRI during a simple finger-tapping motor task before and after receiving a single 500-millisecond REAC-BSP. Results: The fMRI results indicate that the average variation in task-induced encephalic activation patterns is lower in subjects following the single REAC pulse. Conclusion: The current report demonstrates that a single REAC-BSP is sufficient to modulate brain activity in awake subjects, able to be measured using fMRI. These initial results open new perspectives into the understanding of the effects of weak and brief radio pulses upon brain activity, and provide the basis for further indepth studies using REAC-BSP and fMRI. Keywords: fMRI, brain stimulation, brain modulation, REAC, neuropsychiatric treatments

  10. The influence of sex differences and individual task performance on brain activation during planning.

    Science.gov (United States)

    Unterrainer, J M; Ruff, C C; Rahm, B; Kaller, C P; Spreer, J; Schwarzwald, R; Halsband, U

    2005-01-15

    Several studies have attempted to identify the neuronal basis of sex differences in cognition. However, group differences in cognitive ability rather than genuine neurocognitive differences between the sexes may account for their results. Here, we compare with functional magnetic resonance imaging the relation between gender, individual task performance, and planning-related brain activation. Men and women preselected to display identical performance scores showed a strong relation between individual task performance and activation of the right dorsolateral prefrontal and right inferior parietal cortex activation during a visuospatial planning task. No gender-specific activations were found. However, a different pattern emerged when subjects had to execute the motor responses to the problems. Better performance was associated with right dorsolateral prefrontal and right parahippocampal activations, and females exhibited a stronger right hippocampal activation than males. These findings underline that an individual's performance level rather than his or her sex largely determines the neuronal activation patterns during higher-level cognition.

  11. Brain Activity Monitoring for Assessing Satisfaction

    Directory of Open Access Journals (Sweden)

    Paola Johanna Rodríguez Carrillo

    2015-06-01

    Full Text Available Satisfaction is a dimension of usability for which quantitative metrics cannot be calculated during user interactions. Measurement is subjective and depends on the ability to interpret questionnaires and on the memory of the user. This paper represents an attempt to develop an automatic quantitative metric of satisfaction, developed using a Brain Computer Interface to monitor the mental states (Attention/Meditation of users. Based on these results, we are able to establish a correlation between the state of Attention and the users' level of satisfaction.

  12. Physical Activity, Brain Plasticity, and Alzheimer’s Disease

    Science.gov (United States)

    Erickson, Kirk I; Weinstein, Andrea M; Lopez, Oscar L

    2013-01-01

    In this review we summarize the epidemiological, cross-sectional, and interventional studies examining the association between physical activity and brain volume, function, and risk for Alzheimer’s disease. The epidemiological literature provides compelling evidence that greater amounts of physical activity are associated with a reduced risk of dementia in late life. In addition, randomized interventions using neuroimaging tools have reported that participation in physical activity increases the size of prefrontal and hippocampal brain areas, which may lead to a reduction in memory impairments. Consistent with these findings, longitudinal studies using neuroimaging tools also find that the volume of prefrontal and hippocampal brain areas are larger in individuals who engaged in more physical activity earlier in life. We conclude from this review that there is convincing evidence that physical activity has a consistent and robust association with brain regions implicated in age-related cognitive decline and Alzheimer’s disease. In addition to summarizing this literature we provide recommendations for future research on physical activity and brain health. PMID:23085449

  13. The slowed brain: cortical oscillatory activity in hepatic encephalopathy.

    Science.gov (United States)

    Butz, Markus; May, Elisabeth S; Häussinger, Dieter; Schnitzler, Alfons

    2013-08-15

    Oscillatory activity of the human brain has received growing interest as a key mechanism of large-scale integration across different brain regions. Besides a crucial role of oscillatory activity in the emergence of other neurological and psychiatric diseases, recent evidence indicates a key role in the pathophysiology of hepatic encephalopathy (HE). This review summarizes the current knowledge on pathological alterations of oscillatory brain activity in association with liver dysfunction and HE in the context of spontaneous brain activity, motor symptoms, sensory processing, and attention. The existing literature demonstrates a prominent slowing of the frequency of oscillatory activity as shown for spontaneous brain activity at rest, with respect to deficits of motor behavior and motor symptoms, and in the context of visual attention processes. The observed slowing extends across different subsystems of the brain and has been confirmed across different frequency bands, providing evidence for ubiquitous changes of oscillatory activity in HE. For example, the frequency of cortico-muscular coherence in HE patients appears at the frequency of the mini-asterixis (⩽12Hz), while cirrhotics without overt signs of HE show coherence similar to healthy subjects, i.e. at 13-30Hz. Interestingly, the so-called critical flicker frequency (CFF) as a measure of the processing of an oscillating visual stimulus has emerged as a useful tool to quantify HE disease severity, correlating with behavioral and neurophysiological alterations. Moreover, the CFF reliably distinguishes patients with manifest HE from cirrhotics without any signs of HE and healthy controls using a cut-off frequency of 39Hz. In conclusion, oscillatory activity is globally slowed in HE in close association with HE symptoms and disease severity. Although the underlying causal mechanisms are not yet understood, these results indicate that pathological changes of oscillatory activity play an important role in the

  14. Somatic and vicarious pain are represented by dissociable multivariate brain patterns.

    Science.gov (United States)

    Krishnan, Anjali; Woo, Choong-Wan; Chang, Luke J; Ruzic, Luka; Gu, Xiaosi; López-Solà, Marina; Jackson, Philip L; Pujol, Jesús; Fan, Jin; Wager, Tor D

    2016-06-14

    Understanding how humans represent others' pain is critical for understanding pro-social behavior. 'Shared experience' theories propose common brain representations for somatic and vicarious pain, but other evidence suggests that specialized circuits are required to experience others' suffering. Combining functional neuroimaging with multivariate pattern analyses, we identified dissociable patterns that predicted somatic (high versus low: 100%) and vicarious (high versus low: 100%) pain intensity in out-of-sample individuals. Critically, each pattern was at chance in predicting the other experience, demonstrating separate modifiability of both patterns. Somatotopy (upper versus lower limb: 93% accuracy for both conditions) was also distinct, located in somatosensory versus mentalizing-related circuits for somatic and vicarious pain, respectively. Two additional studies demonstrated the generalizability of the somatic pain pattern (which was originally developed on thermal pain) to mechanical and electrical pain, and also demonstrated the replicability of the somatic/vicarious dissociation. These findings suggest possible mechanisms underlying limitations in feeling others' pain, and present new, more specific, brain targets for studying pain empathy.

  15. Connectivity, excitability and activity patterns in neuronal networks

    Science.gov (United States)

    le Feber, Joost; Stoyanova, Irina I.; Chiappalone, Michela

    2014-06-01

    Extremely synchronized firing patterns such as those observed in brain diseases like epilepsy may result from excessive network excitability. Although network excitability is closely related to (excitatory) connectivity, a direct measure for network excitability remains unavailable. Several methods currently exist for estimating network connectivity, most of which are related to cross-correlation. An example is the conditional firing probability (CFP) analysis which calculates the pairwise probability (CFPi,j) that electrode j records an action potential at time t = τ, given that electrode i recorded a spike at t = 0. However, electrode i often records multiple spikes within the analysis interval, and CFP values are biased by the on-going dynamic state of the network. Here we show that in a linear approximation this bias may be removed by deconvoluting CFPi,j with the autocorrelation of i (i.e. CFPi,i), to obtain the single pulse response (SPRi,j)—the average response at electrode j to a single spike at electrode i. Thus, in a linear system SPRs would be independent of the dynamic network state. Nonlinear components of synaptic transmission, such as facilitation and short term depression, will however still affect SPRs. Therefore SPRs provide a clean measure of network excitability. We used carbachol and ghrelin to moderately activate cultured cortical networks to affect their dynamic state. Both neuromodulators transformed the bursting firing patterns of the isolated networks into more dispersed firing. We show that the influence of the dynamic state on SPRs is much smaller than the effect on CFPs, but not zero. The remaining difference reflects the alteration in network excitability. We conclude that SPRs are less contaminated by the dynamic network state and that mild excitation may decrease network excitability, possibly through short term synaptic depression.

  16. Psychoacoustic tinnitus loudness and tinnitus-related distress show different associations with oscillatory brain activity.

    Directory of Open Access Journals (Sweden)

    Tobias Balkenhol

    Full Text Available BACKGROUND: The phantom auditory perception of subjective tinnitus is associated with aberrant brain activity as evidenced by magneto- and electroencephalographic studies. We tested the hypotheses (1 that psychoacoustically measured tinnitus loudness is related to gamma oscillatory band power, and (2 that tinnitus loudness and tinnitus-related distress are related to distinct brain activity patterns as suggested by the distinction between loudness and distress experienced by tinnitus patients. Furthermore, we explored (3 how hearing impairment, minimum masking level, and (4 psychological comorbidities are related to spontaneous oscillatory brain activity in tinnitus patients. METHODS AND FINDINGS: Resting state oscillatory brain activity recorded electroencephalographically from 46 male tinnitus patients showed a positive correlation between gamma band oscillations and psychoacoustic tinnitus loudness determined with the reconstructed tinnitus sound, but not with the other psychoacoustic loudness measures that were used. Tinnitus-related distress did also correlate with delta band activity, but at electrode positions different from those associated with tinnitus loudness. Furthermore, highly distressed tinnitus patients exhibited a higher level of theta band activity. Moreover, mean hearing loss between 0.125 kHz and 16 kHz was associated with a decrease in gamma activity, whereas minimum masking levels correlated positively with delta band power. In contrast, psychological comorbidities did not express significant correlations with oscillatory brain activity. CONCLUSION: Different clinically relevant tinnitus characteristics show distinctive associations with spontaneous brain oscillatory power. Results support hypothesis (1, but exclusively for the tinnitus loudness derived from matching to the reconstructed tinnitus sound. This suggests to preferably use the reconstructed tinnitus spectrum to determine psychoacoustic tinnitus loudness

  17. On Initial Brain Activity Mapping of Associative Memory Code in the Hippocampus

    Science.gov (United States)

    Tsien, Joe Z.; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Lei Wang, Phillip; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-01-01

    It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. PMID:23838072

  18. On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus.

    Science.gov (United States)

    Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-10-01

    It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination.

  19. Acupuncture inhibits cue-induced heroin craving and brain activation

    Institute of Scientific and Technical Information of China (English)

    Xinghui Cai; Xiaoge Song; Chuanfu Li; Chunsheng Xu; Xiliang Li; Qi Lu

    2012-01-01

    Previous research using functional MRI has shown that specific brain regions associated with drug dependence and cue-elicited heroin craving are activated by environmental cues.Craving is an important trigger of heroin relapse,and acupuncture may inhibit craving.In this study,we performed functional MRI in heroin addicts and control subjects.We compared differences in brain activation between the two groups during heroin cue exposure,heroin cue exposure plus acupuncture at the Zusanli point(ST36)without twirling of the needle,and heroin cue exposure plus acupuncture at the Zusanli point with twirling of the needle.Heroin cue exposure elicited significant activation in craving-related brain regions mainly in the frontal lobes and callosal gyri.Acupuncture without twirling did not significantly affect the range of brain activation induced by heroin cue exposure,but significantly changed the extent of the activation in the heroin addicts group.Acupuncture at the Zusanli.point with twirling of the needle significantly decreased both the range and extent of activation induced by heroin cue exposure compared with heroin cue exposure plus acupuncture without twirling of the needle.These experimental findings indicate that presentation of heroin cues can induce activation in craving-related brain regions,which are involved in reward,learning and memory,cognition and emotion.Acupuncture at the Zusanli point can rapidly suppress the activation of specific brain regions related to craving,supporting its potential as an intervention for drug craving.

  20. Decoding Subjective Intensity of Nociceptive Pain from Pre-stimulus and Post-stimulus Brain Activities

    Directory of Open Access Journals (Sweden)

    Yiheng eTu

    2016-04-01

    Full Text Available Pain is a highly subjective experience. Self-report is the gold standard for pain assessment in clinical practice, but it may not be available or reliable in some populations. Neuroimaging data, such as electroencephalography (EEG and functional magnetic resonance imaging (fMRI, have the potential to be used to provide physiology-based and quantitative nociceptive pain assessment tools that complements self-report. However, existing neuroimaging-based nociceptive pain assessments only rely on the information in pain-evoked brain activities, but neglect the fact that the perceived intensity of pain is also encoded by ongoing brain activities prior to painful stimulation. Here, we proposed to use machine learning algorithms to decode pain intensity from both pre-stimulus ongoing and post-stimulus evoked brain activities. Neural features that were correlated with intensity of laser-evoked nociceptive pain were extracted from high-dimensional pre- and post-stimulus EEG and fMRI activities using partial least-squares regression (PLSR. Further, we used support vector machine (SVM to predict the intensity of pain from pain-related time-frequency EEG patterns and BOLD-fMRI patterns. Results showed that combining predictive information in pre- and post-stimulus brain activities can achieve significantly better performance in classifying high-pain and low-pain and in predicting the rating of perceived pain than only using post-stimulus brain activities. Therefore, the proposed pain prediction method holds great potential in basic research and clinical applications.

  1. The burden of conscientiousness? Examining brain activation and cortisol response during social evaluative stress.

    Science.gov (United States)

    Dahm, Anne-Sophie; Schmierer, Phöbe; Veer, Ilya M; Streit, Fabian; Görgen, Anna; Kruschwitz, Johann; Wüst, Stefan; Kirsch, Peter; Walter, Henrik; Erk, Susanne

    2017-04-01

    Although conscientiousness has for a long time been considered generally adaptive, there are findings challenging this view, suggesting that conscientiousness might be less advantageous during uncontrollable stress. We here examined the impact of conscientiousness on brain activation during and the cortisol response following an uncontrollable social evaluative stress task in order to test this hypothesis. Brain activation and cortisol levels were measured during an fMRI stress task, where subjects (n=86) performed cognitive tasks containing preprogrammed failure under time pressure, while being monitored by a panel of experts inducing social-evaluative threat. The degree of conscientiousness was measured using the NEO-FFI. We observed a positive correlation between conscientiousness and salivary cortisol levels in response to the stressful task in male subjects only. In male subjects conscientiousness correlated positively with activation in right amygdala and left insula, and, moreover, mediated the influence of amygdala and insula activation on cortisol output. This pattern of brain activation can be interpreted as a disadvantageous response to uncontrollable stress to which highly conscientious individuals might be predisposed. This is the first study showing the effect of conscientiousness on physiology and brain activation to an uncontrollable psychosocial stressor. Our results provide neurobiological evidence for the hypothesis that conscientiousness should not just be seen as beneficial, but rather as a trait associated with either costs or benefits depending on the extent to which one is in control of the situation.

  2. Brain Network Activity in Monolingual and Bilingual Older Adults

    Science.gov (United States)

    Grady, Cheryl L.; Luk, Gigi; Craik, Fergus I.M.; Bialystok, Ellen

    2016-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  3. Spontaneous brain activity predicts learning ability of foreign sounds.

    Science.gov (United States)

    Ventura-Campos, Noelia; Sanjuán, Ana; González, Julio; Palomar-García, María-Ángeles; Rodríguez-Pujadas, Aina; Sebastián-Gallés, Núria; Deco, Gustavo; Ávila, César

    2013-05-29

    Can learning capacity of the human brain be predicted from initial spontaneous functional connectivity (FC) between brain areas involved in a task? We combined task-related functional magnetic resonance imaging (fMRI) and resting-state fMRI (rs-fMRI) before and after training with a Hindi dental-retroflex nonnative contrast. Previous fMRI results were replicated, demonstrating that this learning recruited the left insula/frontal operculum and the left superior parietal lobe, among other areas of the brain. Crucially, resting-state FC (rs-FC) between these two areas at pretraining predicted individual differences in learning outcomes after distributed (Experiment 1) and intensive training (Experiment 2). Furthermore, this rs-FC was reduced at posttraining, a change that may also account for learning. Finally, resting-state network analyses showed that the mechanism underlying this reduction of rs-FC was mainly a transfer in intrinsic activity of the left frontal operculum/anterior insula from the left frontoparietal network to the salience network. Thus, rs-FC may contribute to predict learning ability and to understand how learning modifies the functioning of the brain. The discovery of this correspondence between initial spontaneous brain activity in task-related areas and posttraining performance opens new avenues to find predictors of learning capacities in the brain using task-related fMRI and rs-fMRI combined.

  4. Listening to humans walking together activates the social brain circuitry.

    Science.gov (United States)

    Saarela, Miiamaaria V; Hari, Riitta

    2008-01-01

    Human footsteps carry a vast amount of social information, which is often unconsciously noted. Using functional magnetic resonance imaging, we analyzed brain networks activated by footstep sounds of one or two persons walking. Listening to two persons walking together activated brain areas previously associated with affective states and social interaction, such as the subcallosal gyrus bilaterally, the right temporal pole, and the right amygdala. These areas seem to be involved in the analysis of persons' identity and complex social stimuli on the basis of auditory cues. Single footsteps activated only the biological motion area in the posterior STS region. Thus, hearing two persons walking together involved a more widespread brain network than did hearing footsteps from a single person.

  5. Differential pattern of functional brain plasticity after compassion and empathy training.

    Science.gov (United States)

    Klimecki, Olga M; Leiberg, Susanne; Ricard, Matthieu; Singer, Tania

    2014-06-01

    Although empathy is crucial for successful social interactions, excessive sharing of others' negative emotions may be maladaptive and constitute a source of burnout. To investigate functional neural plasticity underlying the augmentation of empathy and to test the counteracting potential of compassion, one group of participants was first trained in empathic resonance and subsequently in compassion. In response to videos depicting human suffering, empathy training, but not memory training (control group), increased negative affect and brain activations in anterior insula and anterior midcingulate cortex-brain regions previously associated with empathy for pain. In contrast, subsequent compassion training could reverse the increase in negative effect and, in contrast, augment self-reports of positive affect. In addition, compassion training increased activations in a non-overlapping brain network spanning ventral striatum, pregenual anterior cingulate cortex and medial orbitofrontal cortex. We conclude that training compassion may reflect a new coping strategy to overcome empathic distress and strengthen resilience.

  6. Functional Brain Activation in Response to a Clinical Vestibular Test Correlates with Balance

    Science.gov (United States)

    Noohi, Fatemeh; Kinnaird, Catherine; DeDios, Yiri; Kofman, Igor S.; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2017-01-01

    The current study characterizes brain fMRI activation in response to two modes of vestibular stimulation: Skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either a vestibulo-spinal reflex [saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)], or an ocular muscle response [utricle-mediated ocular VEMP (oVEMP)]. Research suggests that the skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for subjects than the high decibel tones required to elicit VEMPs. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of brain activity. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that pneumatically powered skull taps would elicit a similar pattern of brain activity as shown in previous studies. Our results provide the first evidence of using pneumatically powered skull taps to elicit vestibular activity inside the MRI scanner. A conjunction analysis revealed that skull taps elicit overlapping activation with auditory tone bursts in the canonical vestibular cortical regions. Further, our postural control assessments revealed that greater amplitude of brain activation in response to vestibular stimulation was associated with better balance control for both techniques. Additionally, we found that skull taps elicit more robust vestibular activity compared to auditory tone bursts, with less reported aversive effects, highlighting the utility of this approach for future clinical and basic science research. PMID:28344549

  7. Modulation of the inter-hemispheric asymmetry of motor-related brain activity using brain-computer interfaces.

    Science.gov (United States)

    Pereira, Michael; Sobolewski, Aleksander; Millan, Jose Del R

    2015-01-01

    Non-invasive brain stimulation has shown promising results in neurorehabilitation for motor-impaired stroke patients, by rebalancing the relative involvement of each hemisphere in movement generation. Similarly, brain-computer interfaces have been used to successfully facilitate movement-related brain activity spared by the infarct. We propose to merge both approaches by using BCI to train stroke patients to rebalance their motor-related brain activity during motor tasks, through the use of online feedback. In this pilot study, we report results showing that some healthy subjects were able to learn to spontaneously up- and/or down-regulate their ipsilateral brain activity during a single session.

  8. Classifying sows' activity types from acceleration patterns

    DEFF Research Database (Denmark)

    Cornou, Cecile; Lundbye-Christensen, Søren

    2008-01-01

    -dimensional axes, plus the length of the acceleration vector) are selected for each activity. Each time series is modeled using a Dynamic Linear Model with cyclic components. The classification method, based on a Multi-Process Kalman Filter (MPKF), is applied to a total of 15 times series of 120 observations......An automated method of classifying sow activity using acceleration measurements would allow the individual sow's behavior to be monitored throughout the reproductive cycle; applications for detecting behaviors characteristic of estrus and farrowing or to monitor illness and welfare can be foreseen....... This article suggests a method of classifying five types of activity exhibited by group-housed sows. The method involves the measurement of acceleration in three dimensions. The five activities are: feeding, walking, rooting, lying laterally and lying sternally. Four time series of acceleration (the three...

  9. Sparse representation of brain aging: extracting covariance patterns from structural MRI.

    Directory of Open Access Journals (Sweden)

    Longfei Su

    Full Text Available An enhanced understanding of how normal aging alters brain structure is urgently needed for the early diagnosis and treatment of age-related mental diseases. Structural magnetic resonance imaging (MRI is a reliable technique used to detect age-related changes in the human brain. Currently, multivariate pattern analysis (MVPA enables the exploration of subtle and distributed changes of data obtained from structural MRI images. In this study, a new MVPA approach based on sparse representation has been employed to investigate the anatomical covariance patterns of normal aging. Two groups of participants (group 1:290 participants; group 2:56 participants were evaluated in this study. These two groups were scanned with two 1.5 T MRI machines. In the first group, we obtained the discriminative patterns using a t-test filter and sparse representation step. We were able to distinguish the young from old cohort with a very high accuracy using only a few voxels of the discriminative patterns (group 1:98.4%; group 2:96.4%. The experimental results showed that the selected voxels may be categorized into two components according to the two steps in the proposed method. The first component focuses on the precentral and postcentral gyri, and the caudate nucleus, which play an important role in sensorimotor tasks. The strongest volume reduction with age was observed in these clusters. The second component is mainly distributed over the cerebellum, thalamus, and right inferior frontal gyrus. These regions are not only critical nodes of the sensorimotor circuitry but also the cognitive circuitry although their volume shows a relative resilience against aging. Considering the voxels selection procedure, we suggest that the aging of the sensorimotor and cognitive brain regions identified in this study has a covarying relationship with each other.

  10. Expression pattern of thyroid hormone transporters in the postnatal mouse brain

    Directory of Open Access Journals (Sweden)

    Julia eMüller

    2014-06-01

    Full Text Available For a comprehensive description of the tissue-specific thyroidal state under normal as well as under pathophysiological conditions it is of utmost importance to include thyroid hormone (TH transporters in the analysis as well. The current knowledge of the cell-specific repertoire of TH transporters, however, is still rather limited, although several TH transporting proteins have been identified. Here, we describe the temporal and spatial distribution pattern of the most prominent TH transporters in the postnatal mouse brain. For that purpose, we performed radioactive in situ hybridization studies in order to analyze the cellular mRNA expression pattern of the monocarboxylate transporters Mct8 and Mct10, the L-type amino acid transporters Lat1 and Lat2 as well as the organic anion transporting peptide Oatp1c1 at different postnatal time points. Highest TH transporter expression levels in the CNS were observed at postnatal day 6 and 12, while hybridization signal intensities visibly declined after the second postnatal week. The only exception was Mct10 for which the strongest signals could be observed in white matter regions at postnatal day 21 indicating that this transporter is preferentially expressed in mature oligodendrocytes. Whereas Mct8 and Lat2 showed an overlapping neuronal mRNA expression pattern in the cerebral cortex, hippocampus and in the hypothalamus, Oatp1c1 and Lat1 specific signals were most prominent in capillary endothelial cells throughout the CNS. In the choroid plexus, expression of three transporters (Mct8, Lat2 and Oatp1c1 could be detected, whereas in other brain areas (e.g. striatum, thalamus, brain stem nuclei only one of the transporter candidates appeared to be present. Overall, our study revealed a distinct mRNA distribution pattern for each of the TH transporter candidates. Further studies will reveal to which extent these transporters contribute to the cell-specific TH uptake and efflux in the mouse CNS.

  11. What kind of noise is brain noise? Anomalous scaling behavior of the resting brain activity fluctuations.

    Directory of Open Access Journals (Sweden)

    Daniel eFraiman

    2012-07-01

    Full Text Available The study of spontaneous fluctuations of brain activity, often referred as brain noise, is getting increasing attention in functional magnetic resonance imaging (fMRI studies. Despite important efforts, much of the statistical properties of such fluctuations remain largely unknown. This work scrutinize these fluctuations looking at specific statistical properties which are relevant to clarify its dynamical origins. Here, three statistical features which clearly differentiate brain data from naive expectations for random processes are uncovered: First, the variance of the fMRI mean signal as a function of the number of averaged voxels remains constant across a wide range of observed clusters sizes. Second, the anomalous behavior of the variance is originated by bursts of synchronized activity across regions, regardless of their widely different sizes. Finally, the correlation length (i.e., the length at which the correlation strength between two regions vanishes as well as mutual information diverges with the cluster's size considered, such that arbitrarily large clusters exhibit the same collective dynamics than smaller ones. These three properties are known to be exclusive of complex systems exhibiting critical dynamics, where the spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings are fully consistent with previous reports of brain critical dynamics, and are relevant for the interpretation of the role of fluctuations and variability in brain function in health and disease.

  12. Neural correlates of motor dysfunction in children with traumatic brain injury: exploration of compensatory recruitment patterns.

    NARCIS (Netherlands)

    Caeyenberghs, K.; Wenderoth, N.; Smits-Engelsman, B.C.M.; Sunaert, S.; Swinnen, S.P.

    2009-01-01

    Traumatic brain injury (TBI) is a common form of disability in children. Persistent deficits in motor control have been documented following TBI but there has been less emphasis on changes in functional cerebral activity. In the present study, children with moderate to severe TBI (n = 9) and control

  13. A Framework to Support Automated Classification and Labeling of Brain Electromagnetic Patterns

    Directory of Open Access Journals (Sweden)

    Gwen A. Frishkoff

    2007-01-01

    Full Text Available This paper describes a framework for automated classification and labeling of patterns in electroencephalographic (EEG and magnetoencephalographic (MEG data. We describe recent progress on four goals: 1 specification of rules and concepts that capture expert knowledge of event-related potentials (ERP patterns in visual word recognition; 2 implementation of rules in an automated data processing and labeling stream; 3 data mining techniques that lead to refinement of rules; and 4 iterative steps towards system evaluation and optimization. This process combines top-down, or knowledge-driven, methods with bottom-up, or data-driven, methods. As illustrated here, these methods are complementary and can lead to development of tools for pattern classification and labeling that are robust and conceptually transparent to researchers. The present application focuses on patterns in averaged EEG (ERP data. We also describe efforts to extend our methods to represent patterns in MEG data, as well as EM patterns in source (anatomical space. The broader aim of this work is to design an ontology-based system to support cross-laboratory, cross-paradigm, and cross-modal integration of brain functional data. Tools developed for this project are implemented in MATLAB and are freely available on request.

  14. Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies.

    Science.gov (United States)

    Nedelska, Zuzana; Ferman, Tanis J; Boeve, Bradley F; Przybelski, Scott A; Lesnick, Timothy G; Murray, Melissa E; Gunter, Jeffrey L; Senjem, Matthew L; Vemuri, Prashanti; Smith, Glenn E; Geda, Yonas E; Graff-Radford, Jonathan; Knopman, David S; Petersen, Ronald C; Parisi, Joseph E; Dickson, Dennis W; Jack, Clifford R; Kantarci, Kejal

    2015-01-01

    Dementia with Lewy bodies (DLB) is characterized by preserved whole brain and medial temporal lobe volumes compared with Alzheimer's disease dementia (AD) on magnetic resonance imaging. However, frequently coexistent AD-type pathology may influence the pattern of regional brain atrophy rates in DLB patients. We investigated the pattern and magnitude of the atrophy rates from 2 serial MRIs in autopsy-confirmed DLB patients (n = 20) and mixed DLB/AD patients (n = 22), compared with AD (n = 30) and elderly nondemented control subjects (n = 15), followed antemortem. DLB patients without significant AD-type pathology were characterized by lower global and regional rates of atrophy, similar to control subjects. The mixed DLB/AD patients displayed greater atrophy rates in the whole brain, temporoparietal cortices, hippocampus and amygdala, and ventricle expansion, similar to AD patients. In the DLB and DLB/AD patients, the atrophy rates correlated with Braak neurofibrillary tangle stage, cognitive decline, and progression of motor symptoms. Global and regional atrophy rates are associated with AD-type pathology in DLB, and these rates can be used as biomarkers of AD progression in patients with LB pathology.

  15. Extracting salient brain patterns for imaging-based classification of neurodegenerative diseases.

    Science.gov (United States)

    Rueda, Andrea; González, Fabio A; Romero, Eduardo

    2014-06-01

    Neurodegenerative diseases comprise a wide variety of mental symptoms whose evolution is not directly related to the visual analysis made by radiologists, who can hardly quantify systematic differences. Moreover, automatic brain morphometric analyses, that do perform this quantification, contribute very little to the comprehension of the disease, i.e., many of these methods classify but they do not produce useful anatomo-functional correlations. This paper presents a new fully automatic image analysis method that reveals discriminative brain patterns associated to the presence of neurodegenerative diseases, mining systematic differences and therefore grading objectively any neurological disorder. This is accomplished by a fusion strategy that mixes together bottom-up and top-down information flows. Bottom-up information comes from a multiscale analysis of different image features, while the top-down stage includes learning and fusion strategies formulated as a max-margin multiple-kernel optimization problem. The capacity of finding discriminative anatomic patterns was evaluated using the Alzheimer's disease (AD) as the use case. The classification performance was assessed under different configurations of the proposed approach in two public brain magnetic resonance datasets (OASIS-MIRIAD) with patients diagnosed with AD, showing an improvement varying from 6.2% to 13% in the equal error rate measure, with respect to what has been reported by the feature-based morphometry strategy. In terms of the anatomical analysis, discriminant regions found by the proposed approach highly correlates to what has been reported in clinical studies of AD.

  16. Differential activation of the amygdala and the 'social brain' during fearful face-processing in Asperger Syndrome.

    Science.gov (United States)

    Ashwin, Chris; Baron-Cohen, Simon; Wheelwright, Sally; O'Riordan, Michelle; Bullmore, Edward T

    2007-01-01

    Impaired social cognition is a core feature of autism. There is much evidence showing people with autism use a different cognitive style than controls for face-processing. We tested if people with autism would show differential activation of social brain areas during a face-processing task. Thirteen adults with high-functioning autism or Asperger Syndrome (HFA/AS) and 13 matched controls. We used fMRI to investigate 'social brain' activity during perception of fearful faces. We employed stimuli known to reliably activate the amygdala and other social brain areas, and ROI analyses to investigate brain areas responding to facial threat as well as those showing a linear response to varying threat intensities. We predicted: (1) the HFA/AS group would show differential activation (as opposed to merely deficits) of the social brain compared to controls and (2) that social brain areas would respond to varied intensity of fear in the control group, but not the HFA/AS group. Both predictions were confirmed. The controls showed greater activation in the left amygdala and left orbito-frontal cortex, while the HFA/AS group showed greater activation in the anterior cingulate gyrus and superior temporal cortex. The control group also showed varying responses in social brain areas to varying intensities of fearful expression, including differential activations in the left and right amygdala. This response in the social brain was absent in the HFA/AS group. HFA/AS are associated with different patterns of activation of social brain areas during fearful emotion processing, and the absence in the HFA/AS brain of a response to varying emotional intensity.

  17. Practice induces function-specific changes in brain activity.

    Directory of Open Access Journals (Sweden)

    Tamar R van Raalten

    Full Text Available BACKGROUND: Practice can have a profound effect on performance and brain activity, especially if a task can be automated. Tasks that allow for automatization typically involve repeated encoding of information that is paired with a constant response. Much remains unknown about the effects of practice on encoding and response selection in an automated task. METHODOLOGY: To investigate function-specific effects of automatization we employed a variant of a Sternberg task with optimized separation of activity associated with encoding and response selection by means of m-sequences. This optimized randomized event-related design allows for model free measurement of BOLD signals over the course of practice. Brain activity was measured at six consecutive runs of practice and compared to brain activity in a novel task. PRINCIPAL FINDINGS: Prompt reductions were found in the entire cortical network involved in encoding after a single run of practice. Changes in the network associated with response selection were less robust and were present only after the third run of practice. CONCLUSIONS/SIGNIFICANCE: This study shows that automatization causes heterogeneous decreases in brain activity across functional regions that do not strictly track performance improvement. This suggests that cognitive performance is supported by a dynamic allocation of multiple resources in a distributed network. Our findings may bear importance in understanding the role of automatization in complex cognitive performance, as increased encoding efficiency in early stages of practice possibly increases the capacity to otherwise interfering information.

  18. Discovering anatomical patterns with pathological meaning by clustering of visual primitives in structural brain MRI

    Science.gov (United States)

    Leon, Juan; Pulido, Andrea; Romero, Eduardo

    2015-01-01

    Computational anatomy is a subdiscipline of the anatomy that studies macroscopic details of the human body structure using a set of automatic techniques. Different reference systems have been developed for brain mapping and morphometry in functional and structural studies. Several models integrate particular anatomical regions to highlight pathological patterns in structural brain MRI, a really challenging task due to the complexity, variability, and nonlinearity of the human brain anatomy. In this paper, we present a strategy that aims to find anatomical regions with pathological meaning by using a probabilistic analysis. Our method starts by extracting visual primitives from brain MRI that are partitioned into small patches and which are then softly clustered, forming different regions not necessarily connected. Each of these regions is described by a co- occurrence histogram of visual features, upon which a probabilistic semantic analysis is used to find the underlying structure of the information, i.e., separated regions by their low level similarity. The proposed approach was tested with the OASIS data set which includes 69 Alzheimer's disease (AD) patients and 65 healthy subjects (NC).

  19. The Influence of Epoch Length on Physical Activity Patterns Varies by Child's Activity Level

    Science.gov (United States)

    Nettlefold, Lindsay; Naylor, P. J.; Warburton, Darren E. R.; Bredin, Shannon S. D.; Race, Douglas; McKay, Heather A.

    2016-01-01

    Purpose: Patterns of physical activity (PA) and sedentary time, including volume of bouted activity, are important health indicators. However, the effect of accelerometer epoch length on measurement of these patterns and associations with health outcomes in children remain unknown. Method: We measured activity patterns in 308 children (52% girls,…

  20. Postnatal development of aminopeptidase (arylamidase) activity in rat brain.

    Science.gov (United States)

    de Gandarias, J M; Ramírez, M; Zulaica, J; Iribar, C; Casis, L

    1989-01-01

    Changes in the activities of Leu- and Arg-arylamidase in rat frontal and parietal cortices and the subcortical area (including thalamus, hypothalamus, and striatum) were examined in the 2nd, 4th, 8th, 12th, and 24th weeks of life. Average levels found in the subcortical region were greater than those in the cortical areas. The most marked changes in enzymatic activity in the course of brain development were found in the subcortical structure. Leu-arylamidase activity increased from the 2nd week up to the 8th week, returning to the 2nd week level at the 12th and 24th weeks. The maximum levels of Arg-arylamidase activity were found at the 4th and 8th weeks. These data suggest that proteolytic activity is involved in the postnatal development of rat brain.

  1. Graph theoretical analysis reveals the reorganization of the brain network pattern in primary open angle glaucoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jieqiong [Chinese Academy of Sciences, State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing (China); Li, Ting; Xian, Junfang [Capital Medical University, Department of Radiology, Beijing Tongren Hospital, Beijing (China); Wang, Ningli [Capital Medical University, Department of Ophthalmology, Beijing Tongren Hospital, Beijing (China); He, Huiguang [Chinese Academy of Sciences, State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing (China); Chinese Academy of Sciences, Research Center for Brain-Inspired Intelligence, Institute of Automation, Beijing (China)

    2016-11-15

    Most previous glaucoma studies with resting-state fMRI have focused on the neuronal activity in the individual structure of the brain, yet ignored the functional communication of anatomically separated structures. The purpose of this study is to investigate the efficiency of the functional communication change or not in glaucoma patients. We applied the resting-state fMRI data to construct the connectivity network of 25 normal controls and 25 age-gender-matched primary open angle glaucoma patients. Graph theoretical analysis was performed to assess brain network pattern differences between the two groups. No significant differences of the global network measures were found between the two groups. However, the local measures were radically reorganized in glaucoma patients. Comparing with the hub regions in normal controls' network, we found that six hub regions disappeared and nine hub regions appeared in the network of patients. In addition, the betweenness centralities of two altered hub regions, right fusiform gyrus and right lingual gyrus, were significantly correlated with the visual field mean deviation. Although the efficiency of functional communication is preserved in the brain network of the glaucoma at the global level, the efficiency of functional communication is altered in some specialized regions of the glaucoma. (orig.)

  2. The relationship between brain cortical activity and brain oxygenation in the prefrontal cortex during hypergravity exposure.

    Science.gov (United States)

    Smith, Craig; Goswami, Nandu; Robinson, Ryan; von der Wiesche, Melanie; Schneider, Stefan

    2013-04-01

    Artificial gravity has been proposed as a method to counteract the physiological deconditioning of long-duration spaceflight; however, the effects of hypergravity on the central nervous system has had little study. The study aims to investigate whether there is a relationship between prefrontal cortex brain activity and prefrontal cortex oxygenation during exposure to hypergravity. Twelve healthy participants were selected to undergo hypergravity exposure aboard a short-arm human centrifuge. Participants were exposed to hypergravity in the +Gz axis, starting from 0.6 +Gz for women, and 0.8 +Gz for men, and gradually increasing by 0.1 +Gz until the participant showed signs of syncope. Brain cortical activity was measured using electroencephalography (EEG) and localized to the prefrontal cortex using standard low-resolution brain electromagnetic tomography (LORETA). Prefrontal cortex oxygenation was measured using near-infrared spectroscopy (NIRS). A significant increase in prefrontal cortex activity (P Prefrontal cortex oxygenation was significantly decreased during hypergravity exposure, with a decrease in oxyhemoglobin levels (P prefrontal cortex activity and oxy-/deoxyhemoglobin. It is concluded that the increase in prefrontal cortex activity observed during hypergravity was most likely not the result of increased +Gz values resulting in a decreased oxygenation produced through hypergravity exposure. No significant relationship between prefrontal cortex activity and oxygenation measured by NIRS concludes that brain activity during exposure to hypergravity may be difficult to measure using NIRS. Instead, the increase in prefrontal cortex activity might be attributable to psychological stress, which could pose a problem for the use of a short-arm human centrifuge as a countermeasure.

  3. West African spatial patterns of economic activities

    DEFF Research Database (Denmark)

    Walther, Olivier; Howard, Allen; Retaillé, Denis

    2015-01-01

    by historians and the ‘mobile space’ approach developed by geographers view exchange centres as nodes of transnational trade networks and places in production territories, and perceive spatial dynamics as highly dependent on shifts of trade flows and production activities. The objective of this article...

  4. Muscle activation patterns in posttraumatic neck pain

    NARCIS (Netherlands)

    Nederhand, Marcus Johannes

    2003-01-01

    As an important consequence of our research, we question the relevance of the criteria of the WAD injury severity classification system. We showed that the musculoskeletal signs in WAD grade II are not characterized by muscle spasm, (i.e. increase of muscle activity), but rather by a decrease in mus

  5. The physical activity patterns of children with autism

    Directory of Open Access Journals (Sweden)

    Ulrich Dale

    2011-10-01

    Full Text Available Abstract Background Although motor deficits are gaining attention in autism research much less attention has been paid to the physical activity patterns in this group of children. The participants in this study were a group of children with autism spectrum disorder (N = 72 between the ages of 9-18 years. This cross-sectional study explored the physical activity patterns of seventy-two children with autism spectrum disorder as they aged. Findings Results indicated significant differences between the mean time spent in moderate to vigorous physical activity and the mean time spent in sedentary activity. Older children with autism spectrum disorder are significantly more physically inactive, compared to younger children. Conclusions Physical activity programs and interventions need to address this deficit, in physical activity. Children with autism have a similar trend in physical activity patterns compared to their peers without autism; associated benefits and future research will be discussed.

  6. Advanced shotgun lipidomics for characterization of altered lipid patterns in neurodegenerative diseases and brain injury

    Science.gov (United States)

    Wang, Miao; Han, Xianlin

    2016-01-01

    Summary Multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) is a powerful technology platform among current lipidomics practices due to its high efficiency, sensitivity, and reproducibility, as well as its broad coverage. This platform has been broadly used to determine the altered lipid profiles induced by diseases, injury, genetic manipulations, drug treatments, and aging, among others. Herein, we summarized the principles underlying this platform and presented a protocol for analysis of many of the lipid classes and subclasses covered by MDMS-SL directly from lipid extracts of brain samples. We believe that this protocol could aid the researchers in the field to determine the altered lipid patterns in neurodegenerative diseases and brain injury. PMID:26235081

  7. Brain activity underlying visual perception and attention as inferred from TMS-EEG: a review.

    Science.gov (United States)

    Taylor, Paul Christopher John; Thut, Gregor

    2012-04-01

    Probing brain functions by brain stimulation while simultaneously recording brain activity allows addressing major issues in cognitive neuroscience. We review recent studies where electroencephalography (EEG) has been combined with transcranial magnetic stimulation (TMS) in order to investigate possible neuronal substrates of visual perception and attention. TMS-EEG has been used to study both pre-stimulus brain activity patterns that affect upcoming perception, and also the stimulus-evoked and task-related inter-regional interactions within the extended visual-attentional network from which attention and perception emerge. Local processes in visual areas have been probed by directly stimulating occipital cortex while monitoring EEG activity and perception. Interactions within the attention network have been probed by concurrently stimulating frontal or parietal areas. The use of tasks manipulating implicit and explicit memory has revealed in addition a role for attentional processes in memory. Taken together, these studies helped to reveal that visual selection relies on spontaneous intrinsic activity in visual cortex prior to the incoming stimulus, their control by attention, and post-stimulus processes incorporating a re-entrant bias from frontal and parietal areas that depends on the task.

  8. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling.

    Science.gov (United States)

    Ponce-Alvarez, Adrián; He, Biyu J; Hagmann, Patric; Deco, Gustavo

    2015-08-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.

  9. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling.

    Directory of Open Access Journals (Sweden)

    Adrián Ponce-Alvarez

    2015-08-01

    Full Text Available How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.

  10. Early Oxygen-Utilization and Brain Activity in Preterm Infants

    NARCIS (Netherlands)

    Tataranno, ML; Alderliesten, Thomas; De Vries, Linda S.; Groenendaal, Floris; Toet, MC; Lemmers, Petra M A; van de Vosse, R.; Van Bel, Frank; Benders, Manon J N L

    2015-01-01

    The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS) and cerebral activity using amplitude-integrated EEG (aEEG) could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and qu

  11. Alcohol dependence and anxiety increase error-related brain activity.

    NARCIS (Netherlands)

    Schellekens, A.F.A.; Bruijn, E.R. de; Lankveld, C.A. van; Hulstijn, W.; Buitelaar, J.K.; Jong, C.A.J. de; Verkes, R.J.

    2010-01-01

    AIMS: Detection of errors is crucial for efficient goal-directed behaviour. The ability to monitor behaviour is found to be diminished in patients with substance dependence, as reflected in decreased error-related brain activity, i.e. error-related negativity (ERN). The ERN is also decreased in othe

  12. Smart Moves: Powering up the Brain with Physical Activity

    Science.gov (United States)

    Conyers, Marcus; Wilson, Donna

    2015-01-01

    The Common Core State Standards emphasize higher-order thinking, problem solving, and the creation, retention, and application of knowledge. Achieving these standards creates greater cognitive demands on students. Recent research suggests that active play and regular exercise have a positive effect on brain regions associated with executive…

  13. Towards a fourth spatial dimension of brain activity.

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F

    2016-06-01

    Current advances in neurosciences deal with the functional architecture of the central nervous system, paving the way for general theories that improve our understanding of brain activity. From topology, a strong concept comes into play in understanding brain functions, namely, the 4D space of a "hypersphere's torus", undetectable by observers living in a 3D world. The torus may be compared with a video game with biplanes in aerial combat: when a biplane flies off one edge of gaming display, it does not crash but rather it comes back from the opposite edge of the screen. Our thoughts exhibit similar behaviour, i.e. the unique ability to connect past, present and future events in a single, coherent picture as if we were allowed to watch the three screens of past-present-future "glued" together in a mental kaleidoscope. Here we hypothesize that brain functions are embedded in a imperceptible fourth spatial dimension and propose a method to empirically assess its presence. Neuroimaging fMRI series can be evaluated, looking for the topological hallmark of the presence of a fourth dimension. Indeed, there is a typical feature which reveal the existence of a functional hypersphere: the simultaneous activation of areas opposite each other on the 3D cortical surface. Our suggestion-substantiated by recent findings-that brain activity takes place on a closed, donut-like trajectory helps to solve long-standing mysteries concerning our psychological activities, such as mind-wandering, memory retrieval, consciousness and dreaming state.

  14. Alcohol dependence and anxiety increase error-related brain activity

    NARCIS (Netherlands)

    Schellekens, A.F.A.; Bruijn, E.R.A. de; Lankveld, C.A.A. van; Hulstijn, W.; Buitelaar, J.K.; Jong, C.A.J. de; Verkes, R.J.

    2010-01-01

    Aims Detection of errors is crucial for efficient goal-directed behaviour. The ability to monitor behaviour is found to be diminished in patients with substance dependence, as reflected in decreased error-related brain activity, i.e. error-related negativity (ERN). The ERN is also decreased in other

  15. Receptive fields of locust brain neurons are matched to polarization patterns of the sky.

    Science.gov (United States)

    Bech, Miklós; Homberg, Uwe; Pfeiffer, Keram

    2014-09-22

    Many animals, including insects, are able to use celestial cues as a reference for spatial orientation and long-distance navigation [1]. In addition to direct sunlight, the chromatic gradient of the sky and its polarization pattern are suited to serve as orientation cues [2-5]. Atmospheric scattering of sunlight causes a regular pattern of E vectors in the sky, which are arranged along concentric circles around the sun [5, 6]. Although certain insects rely predominantly on sky polarization for spatial orientation [7], it has been argued that detection of celestial E vector orientation may not suffice to differentiate between solar and antisolar directions [8, 9]. We show here that polarization-sensitive (POL) neurons in the brain of the desert locust Schistocerca gregaria can overcome this ambiguity. Extracellular recordings from POL units in the central complex and lateral accessory lobes revealed E vector tunings arranged in concentric circles within large receptive fields, matching the sky polarization pattern at certain solar positions. Modeling of neuronal responses under an idealized sky polarization pattern (Rayleigh sky) suggests that these "matched filter" properties allow locusts to unambiguously determine the solar azimuth by relying solely on the sky polarization pattern for compass navigation.

  16. Type 1 Diabetes Modifies Brain Activation in Young Patients While Performing Visuospatial Working Memory Tasks

    Science.gov (United States)

    Gallardo-Moreno, Geisa B.; González-Garrido, Andrés A.; Gudayol-Ferré, Esteban; Guàrdia-Olmos, Joan

    2015-01-01

    In recent years, increasing attention has been paid to the effects of Type 1 Diabetes (T1D) on cognitive functions. T1D onset usually occurs during childhood, so it is possible that the brain could be affected during neurodevelopment. We selected young patients of normal intelligence with T1D onset during neurodevelopment, no complications from diabetes, and adequate glycemic control. The purpose of this study was to compare the neural BOLD activation pattern in a group of patients with T1D versus healthy control subjects while performing a visuospatial working memory task. Sixteen patients and 16 matched healthy control subjects participated. There was no significant statistical difference in behavioral performance between the groups, but, in accordance with our hypothesis, results showed distinct brain activation patterns. Control subjects presented the expected activations related to the task, whereas the patients had greater activation in the prefrontal inferior cortex, basal ganglia, posterior cerebellum, and substantia nigra. These different patterns could be due to compensation mechanisms that allow them to maintain a behavioral performance similar to that of control subjects. PMID:26266268

  17. Type 1 Diabetes Modifies Brain Activation in Young Patients While Performing Visuospatial Working Memory Tasks

    Directory of Open Access Journals (Sweden)

    Geisa B. Gallardo-Moreno

    2015-01-01

    Full Text Available In recent years, increasing attention has been paid to the effects of Type 1 Diabetes (T1D on cognitive functions. T1D onset usually occurs during childhood, so it is possible that the brain could be affected during neurodevelopment. We selected young patients of normal intelligence with T1D onset during neurodevelopment, no complications from diabetes, and adequate glycemic control. The purpose of this study was to compare the neural BOLD activation pattern in a group of patients with T1D versus healthy control subjects while performing a visuospatial working memory task. Sixteen patients and 16 matched healthy control subjects participated. There was no significant statistical difference in behavioral performance between the groups, but, in accordance with our hypothesis, results showed distinct brain activation patterns. Control subjects presented the expected activations related to the task, whereas the patients had greater activation in the prefrontal inferior cortex, basal ganglia, posterior cerebellum, and substantia nigra. These different patterns could be due to compensation mechanisms that allow them to maintain a behavioral performance similar to that of control subjects.

  18. Electrical activity patterns and the functional maturation of the neocortex.

    Science.gov (United States)

    Kilb, Werner; Kirischuk, Sergei; Luhmann, Heiko J

    2011-11-01

    At the earliest developmental stages, sensory neocortical areas in various species reveal distinct patterns of spontaneous neuronal network activity. These activity patterns either propagate over large neocortical areas or synchronize local neuronal ensembles. In vitro and in vivo experiments indicate that these spontaneous activity patterns are generated from neuronal networks in the cerebral cortex, in subcortical structures or in the sensory periphery (retina, cochlea, whiskers). At early stages spontaneous periphery-driven and also sensory evoked activity is relayed to the developing cerebral cortex via the thalamus and the neocortical subplate, which amplifies the afferent sensory input. These early local and large-scale neuronal activity patterns influence a variety of developmental processes during corticogenesis, such as neurogenesis, apoptosis, neuronal migration, differentiation and network formation. The experimental data also indicate that disturbances in early neuronal patterns may have an impact on the development of cortical layers, columns and networks. In this article we review our current knowledge on the origin of early electrical activity patterns in neocortical sensory areas and their functional implications on shaping developing cortical networks.

  19. Mining continuous activity patterns from animal trajectory data

    Science.gov (United States)

    Wang, Y.; Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.

    2014-01-01

    The increasing availability of animal tracking data brings us opportunities and challenges to intuitively understand the mechanisms of animal activities. In this paper, we aim to discover animal movement patterns from animal trajectory data. In particular, we propose a notion of continuous activity pattern as the concise representation of underlying similar spatio-temporal movements, and develop an extension and refinement framework to discover the patterns. We first preprocess the trajectories into significant semantic locations with time property. Then, we apply a projection-based approach to generate candidate patterns and refine them to generate true patterns. A sequence graph structure and a simple and effective processing strategy is further developed to reduce the computational overhead. The proposed approaches are extensively validated on both real GPS datasets and large synthetic datasets.

  20. Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model

    Directory of Open Access Journals (Sweden)

    Ong John M

    2007-03-01

    Full Text Available Abstract Background The blood-brain tumor barrier (BTB impedes the delivery of therapeutic agents to brain tumors. While adequate delivery of drugs occurs in systemic tumors, the BTB limits delivery of anti-tumor agents into brain metastases. Results In this study, we examined the function and regulation of calcium-activated potassium (KCa channels in a rat metastatic brain tumor model. We showed that intravenous infusion of NS1619, a KCa channel agonist, and bradykinin selectively enhanced BTB permeability in brain tumors, but not in normal brain. Iberiotoxin, a KCa channel antagonist, significantly attenuated NS1619-induced BTB permeability increase. We found KCa channels and bradykinin type 2 receptors (B2R expressed in cultured human metastatic brain tumor cells (CRL-5904, non-small cell lung cancer, metastasized to brain, human brain microvessel endothelial cells (HBMEC and human lung cancer brain metastasis tissues. Potentiometric assays demonstrated the activity of KCa channels in metastatic brain tumor cells and HBMEC. Furthermore, we detected higher expression of KCa channels in the metastatic brain tumor tissue and tumor capillary endothelia as compared to normal brain tissue. Co-culture of metastatic brain tumor cells and brain microvessel endothelial cells showed an upregulation of KCa channels, which may contribute to the overexpression of KCa channels in tumor microvessels and selectivity of BTB opening. Conclusion These findings suggest that KCa channels in metastatic brain tumors may serve as an effective target for biochemical modulation of BTB permeability to enhance selective delivery of chemotherapeutic drugs to metastatic brain tumors.

  1. Altered brain activity for phonological manipulation in dyslexic Japanese children.

    Science.gov (United States)

    Kita, Yosuke; Yamamoto, Hisako; Oba, Kentaro; Terasawa, Yuri; Moriguchi, Yoshiya; Uchiyama, Hitoshi; Seki, Ayumi; Koeda, Tatsuya; Inagaki, Masumi

    2013-12-01

    Because of unique linguistic characteristics, the prevalence rate of developmental dyslexia is relatively low in the Japanese language. Paradoxically, Japanese children have serious difficulty analysing phonological processes when they have dyslexia. Neurobiological deficits in Japanese dyslexia remain unclear and need to be identified, and may lead to better understanding of the commonality and diversity in the disorder among different linguistic systems. The present study investigated brain activity that underlies deficits in phonological awareness in Japanese dyslexic children using functional magnetic resonance imaging. We developed and conducted a phonological manipulation task to extract phonological processing skills and to minimize the influence of auditory working memory on healthy adults, typically developing children, and dyslexic children. Current experiments revealed that several brain regions participated in manipulating the phonological information including left inferior and middle frontal gyrus, left superior temporal gyrus, and bilateral basal ganglia. Moreover, dyslexic children showed altered activity in two brain regions. They showed hyperactivity in the basal ganglia compared with the two other groups, which reflects inefficient phonological processing. Hypoactivity in the left superior temporal gyrus was also found, suggesting difficulty in composing and processing phonological information. The altered brain activity shares similarity with those of dyslexic children in countries speaking alphabetical languages, but disparity also occurs between these two populations. These are initial findings concerning the neurobiological impairments in dyslexic Japanese children.

  2. Trying to trust: Brain activity during interpersonal social attitude change.

    Science.gov (United States)

    Filkowski, Megan M; Anderson, Ian W; Haas, Brian W

    2016-04-01

    Interpersonal trust and distrust are important components of human social interaction. Although several studies have shown that brain function is associated with either trusting or distrusting others, very little is known regarding brain function during the control of social attitudes, including trust and distrust. This study was designed to investigate the neural mechanisms involved when people attempt to control their attitudes of trust or distrust toward another person. We used a novel control-of-attitudes fMRI task, which involved explicit instructions to control attitudes of interpersonal trust and distrust. Control of trust or distrust was operationally defined as changes in trustworthiness evaluations of neutral faces before and after the control-of-attitudes fMRI task. Overall, participants (n = 60) evaluated faces paired with the distrust instruction as being less trustworthy than faces paired with the trust instruction following the control-of-distrust task. Within the brain, both the control-of-trust and control-of-distrust conditions were associated with increased temporoparietal junction, precuneus (PrC), inferior frontal gyrus (IFG), and medial prefrontal cortex activity. Individual differences in the control of trust were associated with PrC activity, and individual differences in the control of distrust were associated with IFG activity. Together, these findings identify a brain network involved in the explicit control of distrust and trust and indicate that the PrC and IFG may serve to consolidate interpersonal social attitudes.

  3. The BDNF Val66Met Polymorphism Influences Reading Ability and Patterns of Neural Activation in Children.

    Science.gov (United States)

    Jasińska, Kaja K; Molfese, Peter J; Kornilov, Sergey A; Mencl, W Einar; Frost, Stephen J; Lee, Maria; Pugh, Kenneth R; Grigorenko, Elena L; Landi, Nicole

    2016-01-01

    Understanding how genes impact the brain's functional activation for learning and cognition during development remains limited. We asked whether a common genetic variant in the BDNF gene (the Val66Met polymorphism) modulates neural activation in the young brain during a critical period for the emergence and maturation of the neural circuitry for reading. In animal models, the bdnf variation has been shown to be associated with the structure and function of the developing brain and in humans it has been associated with multiple aspects of cognition, particularly memory, which are relevant for the development of skilled reading. Yet, little is known about the impact of the Val66Met polymorphism on functional brain activation in development, either in animal models or in humans. Here, we examined whether the BDNF Val66Met polymorphism (dbSNP rs6265) is associated with children's (age 6-10) neural activation patterns during a reading task (n = 81) using functional magnetic resonance imaging (fMRI), genotyping, and standardized behavioral assessments of cognitive and reading development. Children homozygous for the Val allele at the SNP rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and phonological memory, tasks that have a strong memory component. Consistent with these behavioral findings, Met allele carriers showed greater activation in reading-related brain regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal gyrus as well as greater activation in the hippocampus during a word and pseudoword reading task. Increased engagement of memory and spoken language regions for Met allele carriers relative to Val/Val homozygotes during reading suggests that Met carriers have to exert greater effort required to retrieve phonological codes.

  4. Active Lessons for Active Brains: Teaching Boys and Other Experiential Learners, Grades 3-10

    Science.gov (United States)

    James, Abigail Norfleet; Allison, Sandra Boyd; McKenzie, Caitlin Zimmerman

    2011-01-01

    If you're tired of repeating yourself to students who aren't listening, try a little less talk and a lot more action. The authors follow the best-selling "Teaching the Male Brain and Teaching the Female Brain" with this ready-to-use collection of mathematics, language arts, science, and classroom management strategies. Designed for active,…

  5. Common Spatial Pattern Ensemble Classifier and Its Application in Brain-Computer Interface

    Institute of Scientific and Technical Information of China (English)

    Xu Lei; Ping Yang; Peng Xu; Tie-Jun Liu; De-Zhong Yao

    2009-01-01

    Common spatial pattern (CSP) algorithm is a successful tool in feature estimate of brain-computer interface (BCI).However,CSP is sensitive to outlier and may result in poor outcomes since it is based on pooling the covariance matrices of trials.In this paper,we propose a simple yet effective approach,named common spatial pattern ensemble (CSPE) classifier,to improve CSP performance.Through division of recording channels,multiple CSP filters are constructed.By projection,log-operation,and subtraction on the original signal,an ensemble classifier,majority voting,is achieved and outlier contaminations are alleviated.Experiment results demonstrate that the proposed CSPE classifier is robust to various artifacts and can achieve an average accuracy of 83.02%.

  6. When the brain simulates stopping: Neural activity recorded during real and imagined stop-signal tasks.

    Science.gov (United States)

    González-Villar, Alberto J; Bonilla, F Mauricio; Carrillo-de-la-Peña, María T

    2016-10-01

    It has been suggested that mental rehearsal activates brain areas similar to those activated by real performance. Although inhibition is a key function of human behavior, there are no previous reports of brain activity during imagined response cancellation. We analyzed event-related potentials (ERPs) and time-frequency data associated with motor execution and inhibition during real and imagined performance of a stop-signal task. The ERPs characteristic of stop trials-that is, the stop-N2 and stop-P3-were also observed during covert performance of the task. Imagined stop (IS) trials yielded smaller stop-N2 amplitudes than did successful stop (SS) and unsuccessful stop (US) trials, but midfrontal theta power similar to that in SS trials. The stop-P3 amplitude for IS was intermediate between those observed for SS and US. The results may be explained by the absence of error-processing and correction processes during imagined performance. For go trials, real execution was associated with higher mu and beta desynchronization over motor areas, which confirms previous reports of lower motor activation during imagined execution and also with larger P3b amplitudes, probably indicating increased top-down attention to the real task. The similar patterns of activity observed for imagined and real performance suggest that imagination tasks may be useful for training inhibitory processes. Nevertheless, brain activation was generally weaker during mental rehearsal, probably as a result of the reduced engagement of top-down mechanisms and limited error processing.

  7. The temporal structures and functional significance of scale-free brain activity

    Science.gov (United States)

    He, Biyu J.; Zempel, John M.; Snyder, Abraham Z.; Raichle, Marcus E.

    2010-01-01

    SUMMARY Scale-free dynamics, with a power spectrum following P ∝ f-β, are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with β being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications. PMID:20471349

  8. Mapping brain activity with flexible graphene micro-transistors

    CERN Document Server

    Blaschke, Benno M; Guimerà-Brunet, Anton; Weinert, Julia; Rousseau, Lionel; Heimann, Axel; Drieschner, Simon; Kempski, Oliver; Villa, Rosa; Sanchez-Vives, Maria V; Garrido, Jose A

    2016-01-01

    Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future gene...

  9. The Associative Memory Deficit in Aging Is Related to Reduced Selectivity of Brain Activity during Encoding.

    Science.gov (United States)

    Saverino, Cristina; Fatima, Zainab; Sarraf, Saman; Oder, Anita; Strother, Stephen C; Grady, Cheryl L

    2016-09-01

    Human aging is characterized by reductions in the ability to remember associations between items, despite intact memory for single items. Older adults also show less selectivity in task-related brain activity, such that patterns of activation become less distinct across multiple experimental tasks. This reduced selectivity or dedifferentiation has been found for episodic memory, which is often reduced in older adults, but not for semantic memory, which is maintained with age. We used fMRI to investigate whether there is a specific reduction in selectivity of brain activity during associative encoding in older adults, but not during item encoding, and whether this reduction predicts associative memory performance. Healthy young and older adults were scanned while performing an incidental encoding task for pictures of objects and houses under item or associative instructions. An old/new recognition test was administered outside the scanner. We used agnostic canonical variates analysis and split-half resampling to detect whole-brain patterns of activation that predicted item versus associative encoding for stimuli that were later correctly recognized. Older adults had poorer memory for associations than did younger adults, whereas item memory was comparable across groups. Associative encoding trials, but not item encoding trials, were predicted less successfully in older compared with young adults, indicating less distinct patterns of associative-related activity in the older group. Importantly, higher probability of predicting associative encoding trials was related to better associative memory after accounting for age and performance on a battery of neuropsychological tests. These results provide evidence that neural distinctiveness at encoding supports associative memory and that a specific reduction of selectivity in neural recruitment underlies age differences in associative memory.

  10. Expression patterns of neuroligin-3 and tyrosine hydroxylase across the brain in mate choice contexts in female swordtails.

    Science.gov (United States)

    Wong, Ryan Y; Cummings, Molly E

    2014-01-01

    Choosing mates is a commonly shared behavior across many organisms, with important fitness consequences. Variations in female preferences can be due in part to differences in neural and cellular activity during mate selection. Initial studies have begun to identify putative brain regions involved in mate preference, yet the understanding of the neural processes regulating these behaviors is still nascent. In this study, we characterized the expression of a gene involved in synaptogenesis and plasticity (neuroligin-3) and one that codes for the rate-limiting enzyme in dopamine biosynthesis (tyrosine hydroxylase; TH1) in the female Xiphophorus nigrensis (northern swordtail) brain as related to mate preference behavior. We exposed females to a range of different mate choice contexts including two large courting males (LL), two small coercive males (SS), and a context that paired a large courting male with a small coercive male (LS). Neuroligin-3 expression in a mate preference context (LS) showed significant correlations with female preference in two telencephalic areas (Dm and Dl), a hypothalamic nucleus (HV), and two regions associated with sexual and social behavior (POA and Vv). We did not observe any context- or behavior-specific changes in tyrosine hydroxylase mRNA expression concomitant with female preference in any of the brain regions examined. Analysis of TH and neuroligin-3 expression across different brain regions showed that expression patterns varied with the male social environment only for neuroligin-3, where the density of correlated expression between brain regions was positively associated with mate choice contexts that involved a greater number of courting male phenotypes (LS and LL). This study identified regions showing presumed high levels of synaptic plasticity using neuroligin-3, implicating and supporting their roles in female mate preference, but we did not detect any relationship between tyrosine hydroxylase and mate preference with 30 min

  11. Pattern of traumatic brain injury treated by general surgeons in a tertiary referral hospital.

    Science.gov (United States)

    Chattopadhyay, Shankar Das; Karmakar, Nisith Chandra; Sengupta, Ritankar; SenGupta, Tamal Kanti; Ray, Debasis; Basus, Shibaji

    2013-09-01

    The number of polytrauma patient with associated brain injury or commonly referred as 'head injury' has increased tremendously in recent times courtesy to road traffic accident or other causes. This prospective observational study was conducted in patients of head injury admitted through emergency in the department of general surgery in NRS Medical College, Kolkata during the year 2011 to determine the pattern of head injury patients admitted and nature of intervention. A total number of 3861 patients were admitted in a single year. Obviously this represents the tip of the iceburg. Traumatic brain injury was the highest in the age group of 31-40 years (33.5%) followed by 21-30 years (29.1%) in the most fruitful phase of life. The traumatic brain injury death was more common in males. The maximum number of cases was from rural areas ie, farmers and labours. To minimise the morbidity and mortality resulting from head injury there is need for better maintenance of roads, improvement of road visibility and lighting, rigid enforcement of traffic rules and imparting road safety education to school children. Despite valiant efforts and advancement in medical sciences and infrastructure in the form of neurosurgery departments and trauma care units to cope with the changing world of trauma, there still remains a huge responsibility and a definite part to be played by the general surgeons to manage head injury patient even in tertiary hospitals.

  12. Atypical developmental trajectory of local spontaneous brain activity in autism spectrum disorder

    Science.gov (United States)

    Guo, Xiaonan; Chen, Heng; Long, Zhiliang; Duan, Xujun; Zhang, Youxue; Chen, Huafu

    2017-01-01

    Autism spectrum disorder (ASD) is marked by atypical trajectory of brain maturation, yet the developmental abnormalities in brain function remain unclear. The current study examined the effect of age on amplitude of low-frequency fluctuations (ALFF) in ASD and typical controls (TC) using a cross-sectional design. We classified all the participants into three age cohorts: child (<11 years, 18ASD/20TC), adolescent (11–18 years, 28ASD/26TC) and adult (≥18 years, 18ASD/18TC). Two-way analysis of variance (ANOVA) was performed to ascertain main effects and interaction effects on whole brain ALFF maps. Results exhibited significant main effect of diagnosis in ASD with decreased ALFF in the right precuneus and left middle occipital gyrus during all developmental stages. Significant diagnosis-by-age interaction was observed in the medial prefrontal cortex (mPFC) with ALFF lowered in autistic children but highered in autistic adolescents and adults. Specifically, remarkable quadratic change of ALFF with increasing age in mPFC presented in TC group was absent in ASD. Additionally, abnormal ALFF values in diagnosis-related brain regions predicted the social deficits in ASD. Our findings indicated aberrant developmental patterns of spontaneous brain activity associated with social deficits in ASD and highlight the crucial role of the default mode network in the development of disease. PMID:28057930

  13. Patterns of accentuated grey-white differentiation on diffusion-weighted imaging or the apparent diffusion coefficient maps in comatose survivors after global brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E., E-mail: xmida@hanmail.ne [Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Sohn, C.-H.; Chang, K.-H. [Department of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Chang, H.-W. [Departement of Radiology, Keimyung University Dongsan Medical Center, Daegu (Korea, Republic of); Lee, D.H. [Department of Radiology, Seoul Medical Center, Seoul (Korea, Republic of)

    2011-05-15

    Aim: To determine what disease entities show accentuated grey-white differentiation of the cerebral hemisphere on diffusion-weighted images (DWI) or apparent diffusion coefficient (ADC) maps, and whether there is a correlation between the different patterns and the cause of the brain injury. Methods and materials: The DWI and ADC maps of 19 patients with global brain injury were reviewed and evaluated to investigate whether there was a correlation between the different patterns seen on the DWI and ADC maps and the cause of global brain injury. The ADC values were measured for quantitative analysis. Results: There were three different patterns of ADC decrease: a predominant ADC decrease in only the cerebral cortex (n = 8; pattern I); an ADC decrease in both the cerebral cortex and white matter (WM) and a predominant decrease in the WM (n = 9; pattern II); and a predominant ADC decrease in only the WM (n = 3; pattern III). Conclusion: Pattern I is cerebral cortical injury, suggesting cortical laminar necrosis in hypoxic brain injury. Pattern II is cerebral cortical and WM injury, frequently seen in brain death, while pattern 3 is mainly WM injury, especially found in hypoglycaemic brain injury. It is likely that pattern I is decorticate injury and pattern II is decerebrate injury in hypoxic ischaemic encephalopathy.Patterns I and II are found in severe hypoxic brain injury, and pattern II is frequently shown in brain death, whereas pattern III was found in severe hypoglycaemic injury.

  14. Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice.

    Science.gov (United States)

    Duan, Deyi; Fu, Yuhong; Paxinos, George; Watson, Charles

    2013-03-01

    The transcription factor Pax6 has been reported to specify neural progenitor cell fates during development and maintain neuronal commitments in the adult. The spatiotemporal patterns of Pax6 expression were examined in sagittal and horizontal sections of the embryonic, postnatal, and adult brains using immunohistochemistry and double immunolabeling. The proportion of Pax6-immunopositive cells in various parts of the adult brain was estimated using the isotropic fractionator methodology. It was shown that at embryonic day 11 (E11) Pax6 was robustly expressed in the proliferative neuroepithelia of the ventricular zone in the forebrain and hindbrain, and in the floor and the mesencephalic reticular formation (mRt) in the midbrain. At E12, its expression emerged in the nucleus of the lateral lemniscus in the rhombencephalon and disappeared from the floor of the midbrain. As neurodevelopment proceeds, the expression pattern of Pax6 changes from the mitotic germinal zone in the ventricular zone to become extensively distributed in cell groups in the forebrain and hindbrain, and the expression persisted in the mRt. The majority of Pax6-positive cell groups were maintained until adult life, but the intensity of Pax6 expression became much weaker. Pax6 expression was maintained in the mitotic subventricular zone in the adult brain, but not in the germinal region dentate gyrus in the adult hippocampus. There was no obvious colocalization of Pax6 and NeuN during embryonic development, suggesting Pax6 is found primarily in developing progenitor cells. In the adult brain, however, Pax6 maintains neuronal features of some subtypes of neurons, as indicated by 97.1% of Pax6-positive cells co-expressing NeuN in the cerebellum, 40.7% in the olfactory bulb, 38.3% in the cerebrum, and 73.9% in the remaining brain except the hippocampus. Differentiated tyrosine hydroxylase (TH) neurons were observed in the floor of the E11 midbrain where Pax6 was also expressed, but no obvious

  15. Revealing time-unlocked brain activity from MEG measurements by common waveform estimation.

    Directory of Open Access Journals (Sweden)

    Yusuke Takeda

    Full Text Available Brain activities related to cognitive functions, such as attention, occur with unknown and variable delays after stimulus onsets. Recently, we proposed a method (Common Waveform Estimation, CWE that could extract such brain activities from magnetoencephalography (MEG or electroencephalography (EEG measurements. CWE estimates spatiotemporal MEG/EEG patterns occurring with unknown and variable delays, referred to here as unlocked waveforms, without hypotheses about their shapes. The purpose of this study is to demonstrate the usefulness of CWE for cognitive neuroscience. For this purpose, we show procedures to estimate unlocked waveforms using CWE and to examine their role. We applied CWE to the MEG epochs during Go trials of a visual Go/NoGo task. This revealed unlocked waveforms with interesting properties, specifically large alpha oscillations around the temporal areas. To examine the role of the unlocked waveform, we attempted to estimate the strength of the brain activity of the unlocked waveform in various conditions. We made a spatial filter to extract the component reflecting the brain activity of the unlocked waveform, applied this spatial filter to MEG data under different conditions (a passive viewing, a simple reaction time, and Go/NoGo tasks, and calculated the powers of the extracted components. Comparing the powers across these conditions suggests that the unlocked waveforms may reflect the inhibition of the task-irrelevant activities in the temporal regions while the subject attends to the visual stimulus. Our results demonstrate that CWE is a potential tool for revealing new findings of cognitive brain functions without any hypothesis in advance.

  16. Laboratory domestication changed the expression patterns of oxytocin and vasopressin in brains of rats and mice.

    Science.gov (United States)

    Ruan, Chao; Zhang, Zhibin

    2016-09-01

    The process of domestication is recognized to exert significant effects on the social behaviors of various animal species, including defensive and cognitive behaviors that are closely linked to the expression of oxytocin (OT) and vasopressin (AVP) in selected areas of the brain. However, it is still unclear whether the behavioral changes observed under domestication have resulted in differences in the neurochemical systems that regulate them. In this study, we compared the differences in distribution patterns and regional quantities of OT and/or AVP staining in the forebrains of wild and laboratory strains of rats and mice. Our results indicated that, in the anterior hypothalamus (AH), laboratory strains showed significantly higher densities of OT-ir (immunoreactive) and AVP-ir cells than wild strains, while no significant difference in the densities of those cells in the lateral hypothalamus (LH) was detected between wild and laboratory strains. Laboratory strains showed higher densities of OT-ir and AVP-ir cells than wild strains in the medial preoptic area (MPOA), and differed in almost every MPOA subnucleus. Our results suggest that domestication significantly alters the expression of OT and AVP in related brain areas of laboratory rats and mice, an observation that could explain the identified changes in behavioral patterns.

  17. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  18. Contributions of glycogen to astrocytic energetics during brain activation.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2015-02-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.

  19. Distribution of iron in the parrot brain: conserved (pallidal) and derived (nigral) labeling patterns.

    Science.gov (United States)

    Roberts, T F; Brauth, S E; Hall, W S

    2001-12-01

    The distribution of iron in the brain of a vocal learning parrot, the budgerigar (Melopsittacus undulatus), was examined using iron histochemistry. In mammals, iron is a highly specific stain for the dorsal and ventral pallidal subdivision as well as specific cell groups in the brainstem, including the substantia nigra pars reticulata [Neuroscience 11 (1984) 595-603]. The purpose of this study was to compare the distribution of iron in the mammalian and avian brain focusing on pallidal and nigral cell groups. The results show that in the avian brain, iron stains oligodendrocytes, neurons and the neuropil. Cell staining changes dramatically along the rostrocaudal axis, with neuronal labeling confined to regions caudal to the thalamus and oligodendrocyte labeling denser in regions rostral to the dorsal thalamus. Many sensory forebrain regions contain appreciable iron labeling, including telencephalic vocal control nuclei. The dorsal and ventral subdivision of the avian pallidum, along with the basal ganglia component of the vocal control circuit, the magnicellular nucleus of the lobus parolfactorius, stain heavily for iron. Several brainstem regions, including nucleus rotundus, the medial spiriform nucleus (SpM), the principle nucleus of the trigeminal nerve, nucleus laminaris and scattered cell groups throughout the isthmus and pontine reticular formation stain intensely for iron. Within SpM neuronal labeling is more intense in the medial division while oligodendrocyte labeling is more intense in the lateral division. surprisingly no nigral iron staining was observed. Our results imply that iron is a conserved marker for the pallidum in birds and mammals, but that patterns of nigral staining have diverged in birds and mammals. Differences in iron staining patterns between birds and mammals may also reflect the relatively greater importance of the collothalamic visual pathways, pretectal-cerebellar pathways and specialized vocal learning circuitry in avian sensory

  20. Differential Gene Expression Patterns in Developing Sexually Dimorphic Rat Brain Regions Exposed to Antiandrogenic, Estrogenic, or Complex Endocrine

    DEFF Research Database (Denmark)

    Lichtensteiger, Walter; Bassetti-Gaille, Catherine; Faass, Oliver

    2015-01-01

    The study addressed the question whether gene expression patterns induced by different mixtures of endocrine disrupting chemicals (EDCs) administered in a higher dose range, corresponding to 450×, 200×, and 100× high-end human exposure levels, could be characterized in developing brain with respect...... to endocrine activity of mixture components, and which developmental processes were preferentially targeted. Three EDC mixtures, A-Mix (anti-androgenic mixture) with 8 antiandrogenic chemicals (di-n-butylphthalate, diethylhexylphthalate, vinclozolin, prochloraz, procymidone, linuron, epoxiconazole, and DDE), E...... on genes encoding for components of excitatory glutamatergic synapses and genes controlling migration and pathfinding of glutamatergic and GABAergic neurons, as well as genes linked with increased risk of autism spectrum disorders. Because development of glutamatergic synapses is regulated by sex steroids...

  1. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  2. Oral Electromyography Activation Patterns for Speech Are Similar in

    Science.gov (United States)

    Walsh, Bridget; Smith, Anne

    2013-01-01

    Purpose: In this study, the authors determined whether basic patterns of muscle activation for speech were similar in preschool children who stutter and in their fluent peers. Method: Right and left lower lip muscle activity were recorded during conversational speech and sentence repetition in 64 preschool children diagnosed as stuttering (CWS)…

  3. Patterns of Children's Participation in Unorganized Physical Activity

    Science.gov (United States)

    Findlay, Leanne C.; Garner, Rochelle E.; Kohen, Dafna E.

    2010-01-01

    Children's leisure-time or unorganized physical activity is associated with positive physical and mental health, yet there is little information available on tracking and predicting participation throughout the childhood and adolescent years. The purpose of the current study was to explore patterns of unorganized physical activity participation of…

  4. Activity Patterns in a Subterranean Social Rodent, Spalacopus cyanus (Octodontidae)

    NARCIS (Netherlands)

    Begall, Sabine; Daan, S.; Burda, H.; Overkamp, G.J.F.; Tomasi, Thomas E.

    2002-01-01

    Daily patterns of activity were studied under laboratory conditions in 12 coruros, Spalacopus cyanus, subterranean social rodents originally from Chile. When able to burrow, coruros spent 90% of the total time underground, and surface activity occurred during the 1st hours of darkness. When prevente

  5. Comparison of cerebral blood flow pattern by transcranial Doppler in patients with diffuse and focal causes of brain death

    Directory of Open Access Journals (Sweden)

    Alireza Vakilian

    2012-01-01

    Full Text Available Background: This study aims to assess the cerebral vessels flow in brain death patients with different causes, including focal and diffuse lesions and comparison of flows according to the underlying causes. Materials and Methods: Two groups of 15 brain-dead patients one with focal and the other with diffuse brain lesions were compared according to their cerebral blood flow pattern 48 h passed brain death certification. Results: Bilateral absence of flow in middle cerebral artery (MCA was found in 54.5% of brain-dead patients with diffuse lesion and 50.33% of those with focal lesions. Systolic spike pattern in MCA flow was found in 46.2% of patients with focal lesion and 16.65% of patients with diffuse lesion. Diastole-systole separation pattern in MCA was seen in 16.65% of patients with the diffuse lesions. This pattern in MCA was not seen in patients with the focal lesion group. In carotid arteries, we did not find the absence of flow in any cases. Thirty percent of all patients in both groups had a normal flow pattern (36.6% of patients with focal lesions and 23.3% of patients with diffuse lesion. Patients with focal lesion had 33.3% systolic spike pattern flow and had 23.35% diastole-systole separation flow pattern. In intra-cranial vessels, systolic spike pattern was more common among patients with focal lesions than patients with diffuse lesion, however, this difference was not statistically significant (46.2% of patients with focal lesion and 16.65% of patients with diffuse lesion (P value = 0.244-0.09. Diastole-systole separation flow was more common in patients with diffuse lesions than those with the focal lesions although this could not reach the significant level as the previous pattern (20% of patients with diffuse lesion versus no case in patients with focal lesion (P value = 0.181. Conclusion: Absence of flow was the most common brain flow pattern in the focal and diffuse group lesions. There was no difference in flow pattern

  6. Subjective visual perception: from local processing to emergent phenomena of brain activity.

    Science.gov (United States)

    Panagiotaropoulos, Theofanis I; Kapoor, Vishal; Logothetis, Nikos K

    2014-05-05

    The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness, are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness.

  7. Unsupervised classification of neocortical activity patterns in neonatal and pre-juvenile rodents

    Directory of Open Access Journals (Sweden)

    Nicole eCichon

    2014-05-01

    Full Text Available Flexible communication within the brain, which relies on oscillatory activity, is not confined to adult neuronal networks. Experimental evidence has documented the presence of discontinuous patterns of oscillatory activity already during early development. Their highly variable spatial and time-frequency organization has been related to region specificity. However, it might be equally due to the absence of unitary criteria for classifying the early activity patterns, since they have been mainly characterized by visual inspection. Therefore, robust and unbiased methods for categorizing these discontinuous oscillations are needed for increasingly complex data sets from different labs. Here, we introduce an unsupervised detection and classification algorithm for the discontinuous activity patterns of rodents during early development. For this, firstly time windows with discontinuous oscillations vs. epochs of network silence were identified. In a second step, the major features of detected events were identified and processed by principal component analysis for deciding on their contribution to the classification of different oscillatory patterns. Finally, these patterns were categorized using an unsupervised cluster algorithm. The results were validated on manually characterized neonatal spindle bursts, which ubiquitously entrain neocortical areas of rats and mice, and prelimbic nested gamma spindle bursts. Moreover, the algorithm led to satisfactory results for oscillatory events that, due to increased similarity of their features, were more difficult to classify, e.g. during the pre-juvenile developmental period. Based on a linear classification, the optimal number of features to consider increased with the difficulty of detection. This algorithm allows the comparison of neonatal and pre-juvenile oscillatory patterns in their spatial and temporal organization. It might represent a first step for the unbiased elucidation of activity patterns

  8. Changes in Brain Metallome/Metabolome Pattern due to a Single i.v. Injection of Manganese in Rats

    Science.gov (United States)

    Neth, Katharina; Lucio, Marianna; Walker, Alesia; Zorn, Julia; Schmitt-Kopplin, Philippe; Michalke, Bernhard

    2015-01-01

    Exposure to high concentrations of Manganese (Mn) is known to potentially induce an accumulation in the brain, leading to a Parkinson related disease, called manganism. Versatile mechanisms of Mn-induced brain injury are discussed, with inactivation of mitochondrial defense against oxidative stress being a major one. So far, studies indicate that the main Mn-species entering the brain are low molecular mass (LMM) compounds such as Mn-citrate. Applying a single low dose MnCl2 injection in rats, we observed alterations in Mn-species pattern within the brain by analysis of aqueous brain extracts by size-exclusion chromatography—inductively coupled plasma mass spectrometry (SEC-ICP-MS). Additionally, electrospray ionization—ion cyclotron resonance-Fourier transform-mass spectrometry (ESI-ICR/FT-MS) measurement of methanolic brain extracts revealed a comprehensive analysis of changes in brain metabolisms after the single MnCl2 injection. Major alterations were observed for amino acid, fatty acid, glutathione, glucose and purine/pyrimidine metabolism. The power of this metabolomic approach is the broad and detailed overview of affected brain metabolisms. We also correlated results from the metallomic investigations (Mn concentrations and Mn-species in brain) with the findings from metabolomics. This strategy might help to unravel the role of different Mn-species during Mn-induced alterations in brain metabolism. PMID:26383269

  9. Are muscle activation patterns altered during shod and barefoot running with a forefoot footfall pattern?

    Science.gov (United States)

    Ervilha, Ulysses Fernandes; Mochizuki, Luis; Figueira, Aylton; Hamill, Joseph

    2016-09-14

    This study aimed to investigate the activation of lower limb muscles during barefoot and shod running with forefoot or rearfoot footfall patterns. Nine habitually shod runners were asked to run straight for 20 m at self-selected speed. Ground reaction forces and thigh and shank muscle surface electromyographic (EMG) were recorded. EMG outcomes (EMG intensity [iEMG], latency between muscle activation and ground reaction force, latency between muscle pairs and co-activation index between muscle pairs) were compared across condition (shod and barefoot), running cycle epochs (pre-strike, strike, propulsion) and footfall (rearfoot and forefoot) by ANOVA. Condition affected iEMG at pre-strike epoch. Forefoot and rearfoot strike patterns induced different EMG activation time patterns affecting co-activation index for pairs of thigh and shank muscles. All these timing changes suggest that wearing shoes or not is less important for muscle activation than the way runners strike the foot on the ground. In conclusion, the guidance for changing external forces applied on lower limbs should be pointed to the question of rearfoot or forefoot footfall patterns.

  10. Training of verbal creativity modulates brain activity in regions associated with language‐ and memory‐related demands

    Science.gov (United States)

    Benedek, Mathias; Koschutnig, Karl; Pirker, Eva; Berger, Elisabeth; Meister, Sabrina; Neubauer, Aljoscha C.; Papousek, Ilona; Weiss, Elisabeth M.

    2015-01-01

    Abstract This functional magnetic resonance (fMRI) study was designed to investigate changes in functional patterns of brain activity during creative ideation as a result of a computerized, 3‐week verbal creativity training. The training was composed of various verbal divergent thinking exercises requiring participants to train approximately 20 min per day. Fifty‐three participants were tested three times (psychometric tests and fMRI assessment) with an intertest‐interval of 4 weeks each. Participants were randomly assigned to two different training groups, which received the training time‐delayed: The first training group was trained between the first and the second test, while the second group accomplished the training between the second and the third test session. At the behavioral level, only one training group showed improvements in different facets of verbal creativity right after the training. Yet, functional patterns of brain activity during creative ideation were strikingly similar across both training groups. Whole‐brain voxel‐wise analyses (along with supplementary region of interest analyses) revealed that the training was associated with activity changes in well‐known creativity‐related brain regions such as the left inferior parietal cortex and the left middle temporal gyrus, which have been shown as being particularly sensitive to the originality facet of creativity in previous research. Taken together, this study demonstrates that continuous engagement in a specific complex cognitive task like divergent thinking is associated with reliable changes of activity patterns in relevant brain areas, suggesting more effective search, retrieval, and integration from internal memory representations as a result of the training. Hum Brain Mapp 36:4104–4115, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26178653

  11. Brain activity correlates with emotional perception induced by dynamic avatars.

    Science.gov (United States)

    Goldberg, Hagar; Christensen, Andrea; Flash, Tamar; Giese, Martin A; Malach, Rafael

    2015-11-15

    An accurate judgment of the emotional state of others is a prerequisite for successful social interaction and hence survival. Thus, it is not surprising that we are highly skilled at recognizing the emotions of others. Here we aimed to examine the neuronal correlates of emotion recognition from gait. To this end we created highly controlled dynamic body-movement stimuli based on real human motion-capture data (Roether et al., 2009). These animated avatars displayed gait in four emotional (happy, angry, fearful, and sad) and speed-matched neutral styles. For each emotional gait and its equivalent neutral gait, avatars were displayed at five morphing levels between the two. Subjects underwent fMRI scanning while classifying the emotions and the emotional intensity levels expressed by the avatars. Our results revealed robust brain selectivity to emotional compared to neutral gait stimuli in brain regions which are involved in emotion and biological motion processing, such as the extrastriate body area (EBA), fusiform body area (FBA), superior temporal sulcus (STS), and the amygdala (AMG). Brain activity in the amygdala reflected emotional awareness: for visually identical stimuli it showed amplified stronger response when the stimulus was perceived as emotional. Notably, in avatars gradually morphed along an emotional expression axis there was a parametric correlation between amygdala activity and emotional intensity. This study extends the mapping of emotional decoding in the human brain to the domain of highly controlled dynamic biological motion. Our results highlight an extensive level of brain processing of emotional information related to body language, which relies mostly on body kinematics.

  12. Noise in brain activity engenders perception and influences discrimination sensitivity.

    Science.gov (United States)

    Bernasconi, Fosco; De Lucia, Marzia; Tzovara, Athina; Manuel, Aurelie L; Murray, Micah M; Spierer, Lucas

    2011-12-07

    Behavioral and brain responses to identical stimuli can vary with experimental and task parameters, including the context of stimulus presentation or attention. More surprisingly, computational models suggest that noise-related random fluctuations in brain responses to stimuli would alone be sufficient to engender perceptual differences between physically identical stimuli. In two experiments combining psychophysics and EEG in healthy humans, we investigated brain mechanisms whereby identical stimuli are (erroneously) perceived as different (higher vs lower in pitch or longer vs shorter in duration) in the absence of any change in the experimental context. Even though, as expected, participants' percepts to identical stimuli varied randomly, a classification algorithm based on a mixture of Gaussians model (GMM) showed that there was sufficient information in single-trial EEG to reliably predict participants' judgments of the stimulus dimension. By contrasting electrical neuroimaging analyses of auditory evoked potentials (AEPs) to the identical stimuli as a function of participants' percepts, we identified the precise timing and neural correlates (strength vs topographic modulations) as well as intracranial sources of these erroneous perceptions. In both experiments, AEP differences first occurred ~100 ms after stimulus onset and were the result of topographic modulations following from changes in the configuration of active brain networks. Source estimations localized the origin of variations in perceived pitch of identical stimuli within right temporal and left frontal areas and of variations in perceived duration within right temporoparietal areas. We discuss our results in terms of providing neurophysiologic evidence for the contribution of random fluctuations in brain activity to conscious perception.

  13. A framework for identification of brain network dynamics using a novel binary noise modulated electrical stimulation pattern.

    Science.gov (United States)

    Yang, Yuxiao; Shanechi, Maryam M

    2015-01-01

    Modeling and identification of brain network dynamics is of great importance both for understanding brain function and for closed-loop control of brain states. In this work, we present a multi-input-multi-output (MIMO) linear state-space model (LSSM) to describe the brain network dynamics in response to electrical stimulation. The LSSM maps the parameters of electrical stimulation, such as frequency, amplitude and pulse-width to recorded brain signals such as electrocorticography (ECoG) and electroencephalography (EEG). Effective identification of the LSSM in open-loop stimulation experiments, however, is strongly dependent on the open-loop input stimulation design. We propose a novel input design to accurately identify the LSSM by integrating the concept of binary noise (BN) with practical constraints on stimulation waveforms. The designed input pattern is a pulse train modulated by stochastic BN parameters. We show that this input pattern both satisfies the necessary spectral condition for accurate system identification and can incorporate any desired pulse shape. Using numerical experiments, we show that the quality of identification depends heavily on the input signal pattern and the proposed binary noise modulated pattern achieves satisfactory identification results, reducing the relative estimation error more than 300 times compared with step sequence modulated, single-sinusoid modulated and multi-sinusoids modulated input patterns.

  14. Human brain activity with near-infrared spectroscopy

    Science.gov (United States)

    Luo, Qingming; Chance, Britton

    1999-09-01

    Human brain activity was studied with a real time functional Near-InfraRed Imager (fNIRI). The imager has 16 measurement channels and covers 4 cm by 9 cm detection area. Brain activities in occipital, motor and prefrontal area were studied with the fNIRI. In prefrontal stimulation, language cognition, analogies, forming memory for new associations, emotional thinking, and mental arithmetic were carried out. Experimental results measured with fNIRI are demonstrated in this paper. It was shown that fNIRI technique is able to reveal the occipital activity during visual stimulation, and co-register well with results of fMRI in the motor cortex activity during finger tapping. In the studies of the effects of left prefrontal lobe on forming memory for new associations, it is shown that left prefrontal lobe activated more under deep conditions than that under shallow encoding, especially the dorsal part. In the studies of emotional thinking, it was shown that the responses were different between positive- negative emotional thinking and negative-positive emotional thinking. In mental arithmetic studies, higher activation was found in the first task than in the second, regardless of the difficulty, and higher activation was measured in subtraction of 17 than in subtraction of 3.

  15. MRI Brain Activation During Instruction of Dyslexic Children

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-08-01

    Full Text Available Ten children with dyslexia and 11 normal readers performed tasks of phoneme mapping (assigning sounds to letters and morpheme mapping (relating suffixed words to their roots during fMRI scanning, before and after 28 hours of comprehensive reading instruction, in a study of the effects of reading instruction on brain activation in children with dyslexia at University of Washington, Seattle, WA.

  16. Enhancing Physical Activity and Brain Reorganization after Stroke

    OpenAIRE

    2011-01-01

    It is becoming increasingly clear that, if reorganization of brain function is to be optimal after stroke, there needs to be a reorganisation of the methods used in physical rehabilitation and the time spent in specific task practice, strength and endurance training, and aerobic exercise. Frequency and intensity of rehabilitation need to be increased so that patients can gain the energy levels and vigour necessary for participation in physical activity both during rehabilitation and after dis...

  17. Leveraging Human Brain Activity to Improve Object Classification

    OpenAIRE

    Fong, Ruth Catherine

    2015-01-01

    Today, most object detection algorithms differ drastically from how humans tackle visual problems. In this thesis, I present a new paradigm for improving machine vision algorithms by designing them to better mimic how humans approach these tasks. Specifically, I demonstrate how human brain activity from functional magnetic resonance imaging (fMRI) can be leveraged to improve object classification. Inspired by the graduated manner in which humans learn, I present a novel algorithm that sim...

  18. Brain activation to cocaine cues and motivation/treatment status.

    Science.gov (United States)

    Prisciandaro, James J; McRae-Clark, Aimee L; Myrick, Hugh; Henderson, Scott; Brady, Kathleen T

    2014-03-01

    Motivation to change is believed to be a key factor in therapeutic success in substance use disorders; however, the neurobiological mechanisms through which motivation to change impacts decreased substance use remain unclear. Existing research is conflicting, with some investigations supporting decreased and others reporting increased frontal activation to drug cues in individuals seeking treatment for substance use disorders. The present study investigated the relationship between motivation to change cocaine use and cue-elicited brain activity in cocaine-dependent individuals using two conceptualizations of 'motivation to change': (1) current treatment status (i.e. currently receiving versus not receiving outpatient treatment for cocaine dependence) and (2) self-reported motivation to change substance use, using the Stages of Change Readiness and Treatment Eagerness Scale. Thirty-eight cocaine-dependent individuals (14 currently in treatment) completed a diagnostic assessment and an fMRI cocaine cue-reactivity task. Whole-brain analyses demonstrated that both treatment-seeking and motivated participants had lower activation to cocaine cues in a wide variety of brain regions in the frontal, occipital, temporal and cingulate cortices relative to non-treatment-seeking and less motivated participants. Future research is needed to explain the mechanism by which treatment and/or motivation impacts neural cue reactivity, as such work could potentially aid in the development of more effective therapeutic techniques for substance-dependent patients.

  19. Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces.

    Science.gov (United States)

    Flores-Gutiérrez, Enrique O; Díaz, José-Luís; Barrios, Fernando A; Favila-Humara, Rafael; Guevara, Miguel Angel; del Río-Portilla, Yolanda; Corsi-Cabrera, María

    2007-07-01

    Brain correlates comparing pleasant and unpleasant states induced by three dissimilar masterpiece excerpts were obtained. Related emotional reactions to the music were studied using Principal Component Analysis of validated reports, fMRI, and EEG coherent activity. A piano selection by Bach and a symphonic passage from Mahler widely differing in musical features were used as pleasing pieces. A segment by Prodromidès was used as an unpleasing stimulus. Ten consecutive 30 s segments of each piece alternating with random static noise were played to 19 non-musician volunteers for a total of 30 min of auditory stimulation. Both brain approaches identified a left cortical network involved with pleasant feelings (Bach and Mahler vs. Prodromidès) including the left primary auditory area, posterior temporal, inferior parietal and prefrontal regions. While the primary auditory zone may provide an early affective quality, left cognitive areas may contribute to pleasant feelings when melodic sequences follow expected rules. In contrast, unpleasant emotions (Prodromidès vs. Bach and Mahler) involved the activation of the right frontopolar and paralimbic areas. Left activation with pleasant and right with unpleasant musical feelings is consistent with right supremacy in novel situations and left in predictable processes. When all musical excerpts were jointly compared to noise, in addition to bilateral auditory activation, the left temporal pole, inferior frontal gyrus, and frontopolar area were activated suggesting that cognitive and language processes were recruited in general responses to music. Sensory and cognitive integration seems required for musical emotion.

  20. Early oxygen-utilization and brain activity in preterm infants.

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno

    Full Text Available The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS and cerebral activity using amplitude-integrated EEG (aEEG could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and quantitative aEEG/EEG parameters has not yet been investigated. Our aim was to study the association between oxygen utilization during the first 6 h after birth and simultaneously continuously monitored brain activity measured by aEEG/EEG. Forty-four hemodynamically stable babies with a GA < 28 weeks, with good quality NIRS and aEEG/EEG data available and who did not receive morphine were included in the study. aEEG and NIRS monitoring started at NICU admission. The relation between regional cerebral oxygen saturation (rScO2 and cerebral fractional tissue oxygen extraction (cFTOE, and quantitative measurements of brain activity such as number of spontaneous activity transients (SAT per minute (SAT rate, the interval in seconds (i.e. time between SATs (ISI and the minimum amplitude of the EEG in μV (min aEEG were evaluated. rScO2 was negatively associated with SAT rate (β=-3.45 [CI=-5.76- -1.15], p=0.004 and positively associated with ISI (β=1.45 [CI=0.44-2.45], p=0.006. cFTOE was positively associated with SAT rate (β=0.034 [CI=0.009-0.059], p=0.008 and negatively associated with ISI (β=-0.015 [CI=-0.026- -0.004], p=0.007. Oxygen delivery and utilization, as indicated by rScO2 and cFTOE, are directly related to functional brain activity, expressed by SAT rate and ISI during the first hours after birth, showing an increase in oxygen extraction in preterm infants with increased early electro-cerebral activity. NIRS monitored oxygenation may be a useful biomarker of brain vulnerability in high-risk infants.

  1. Analyzing collaboration networks and developmental patterns of nano-enabled drug delivery (NEDD) for brain cancer.

    Science.gov (United States)

    Huang, Ying; Ma, Jing; Porter, Alan L; Kwon, Seokbeom; Zhu, Donghua

    2015-01-01

    The rapid development of new and emerging science & technologies (NESTs) brings unprecedented challenges, but also opportunities. In this paper, we use bibliometric and social network analyses, at country, institution, and individual levels, to explore the patterns of scientific networking for a key nano area - nano-enabled drug delivery (NEDD). NEDD has successfully been used clinically to modulate drug release and to target particular diseased tissues. The data for this research come from a global compilation of research publication information on NEDD directed at brain cancer. We derive a family of indicators that address multiple facets of research collaboration and knowledge transfer patterns. Results show that: (1) international cooperation is increasing, but networking characteristics change over time; (2) highly productive institutions also lead in influence, as measured by citation to their work, with American institutes leading; (3) research collaboration is dominated by local relationships, with interesting information available from authorship patterns that go well beyond journal impact factors. Results offer useful technical intelligence to help researchers identify potential collaborators and to help inform R&D management and science & innovation policy for such nanotechnologies.

  2. Analyzing collaboration networks and developmental patterns of nano-enabled drug delivery (NEDD for brain cancer

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2015-07-01

    Full Text Available The rapid development of new and emerging science & technologies (NESTs brings unprecedented challenges, but also opportunities. In this paper, we use bibliometric and social network analyses, at country, institution, and individual levels, to explore the patterns of scientific networking for a key nano area – nano-enabled drug delivery (NEDD. NEDD has successfully been used clinically to modulate drug release and to target particular diseased tissues. The data for this research come from a global compilation of research publication information on NEDD directed at brain cancer. We derive a family of indicators that address multiple facets of research collaboration and knowledge transfer patterns. Results show that: (1 international cooperation is increasing, but networking characteristics change over time; (2 highly productive institutions also lead in influence, as measured by citation to their work, with American institutes leading; (3 research collaboration is dominated by local relationships, with interesting information available from authorship patterns that go well beyond journal impact factors. Results offer useful technical intelligence to help researchers identify potential collaborators and to help inform R&D management and science & innovation policy for such nanotechnologies.

  3. Agricultural activity shapes the communication and migration patterns in Senegal

    Science.gov (United States)

    Martin-Gutierrez, S.; Borondo, J.; Morales, A. J.; Losada, J. C.; Tarquis, A. M.; Benito, R. M.

    2016-06-01

    The communication and migration patterns of a country are shaped by its socioeconomic processes. The economy of Senegal is predominantly rural, as agriculture employs over 70% of the labor force. In this paper, we use mobile phone records to explore the impact of agricultural activity on the communication and mobility patterns of the inhabitants of Senegal. We find two peaks of phone calls activity emerging during the growing season. Moreover, during the harvest period, we detect an increase in the migration flows throughout the country. However, religious holidays also shape the mobility patterns of the Senegalese people. Hence, in the light of our results, agricultural activity and religious holidays are the primary drivers of mobility inside the country.

  4. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C.; Douw, L.; Bartolomei, F.; Heimans, J.; Dijk, van B.; Postma, T.; Klein, M.; Reijneveld, J.

    2008-01-01

    Purpose: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activ

  5. The influence of low-grade glioma on resting state oscillatory brain activity : a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I; Stam, C J; Douw, L; Bartolomei, F; Heimans, J J; van Dijk, B W; Postma, T J; Klein, M; Reijneveld, J C

    2008-01-01

    PURPOSE: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activ

  6. Formal Derivation of Lotka-Volterra-Haken Amplitude Equations of Task-Related Brain Activity in Multiple, Consecutively Performed Tasks

    Science.gov (United States)

    Frank, T. D.

    The Lotka-Volterra-Haken equations have been frequently used in ecology and pattern formation. Recently, the equations have been proposed by several research groups as amplitude equations for task-related patterns of brain activity. In this theoretical study, the focus is on the circular causality aspect of pattern formation systems as formulated within the framework of synergetics. Accordingly, the stable modes of a pattern formation system inhibit the unstable modes, whereas the unstable modes excite the stable modes. Using this circular causality principle it is shown that under certain conditions the Lotka-Volterra-Haken amplitude equations can be derived from a general model of brain activity akin to the Wilson-Cowan model. The model captures the amplitude dynamics for brain activity patterns in experiments involving several consecutively performed multiple-choice tasks. This is explicitly demonstrated for two-choice tasks involving grasping and walking. A comment on the relevance of the theoretical framework for clinical psychology and schizophrenia is given as well.

  7. Muscle activity pattern dependent pain development and alleviation

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Søgaard, Karen

    2014-01-01

    development if adequate recovery is granted. However, delayed muscle soreness may develop following intensive eccentric muscle activity (e.g. down-hill skiing) with peak pain levels in thigh muscles 1-2days after the exercise bout and a total recovery within 1week. This acute pain profile is in contrast......Muscle activity is for decades considered to provide health benefits irrespectively of the muscle activity pattern performed and whether it is during e.g. sports, transportation, or occupational work tasks. Accordingly, the international recommendations for public health-promoting physical activity...... of muscle pain. Focusing on muscle activity patterns and musculoskeletal health it is pertinent to elucidate the more specific aspects regarding exposure profiles and body regional pain. Static sustained muscle contraction for prolonged periods often occurs in the neck/shoulder area during occupational...

  8. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation.

    Science.gov (United States)

    Trapp, Stefan; Cork, Simon C

    2015-10-15

    Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation.

  9. Cholinergic Enhancement of Brain Activation in Mild Cognitive Impairment (MCI during Episodic Memory Encoding

    Directory of Open Access Journals (Sweden)

    Shannon L Risacher

    2013-09-01

    Full Text Available Objective: To determine the physiological impact of treatment with donepezil (Aricept on neural circuitry supporting episodic memory encoding in patients with amnestic mild cognitive impairment (MCI using functional MRI (fMRI. Methods: 18 patients with MCI and 20 age-matched healthy controls (HC were scanned twice while performing an event-related verbal episodic encoding task. MCI participants were scanned before treatment and after approximately 3 months on donepezil; HC were untreated but rescanned at the same interval. Voxel-level analyses assessed treatment effects in activation profile relative to retest changes in non-treated HC. Changes in task-related connectivity in medial temporal circuitry were also evaluated, as were associations between brain activation pattern, task-related functional connectivity, task performance, and clinical measures of cognition.Results: At baseline, the MCI group showed reduced activation during encoding relative to HC in the right medial temporal lobe (MTL; hippocampal/parahippocampal and additional regions, as well as attenuated task-related deactivation, relative to rest, in a medial parietal lobe cluster. After treatment, the MCI group showed normalized MTL activation and improved parietal deactivation. These changes were associated with cognitive performance. After treatment, the MCI group also demonstrated increased task-related functional connectivity from the right MTL cluster seed region to a network of other sites including the basal nucleus/caudate and bilateral frontal lobes. Increased functional connectivity was associated with improved task performance.Conclusions: Pharmacologic enhancement of cholinergic function in amnestic MCI is associated with changes in brain activation pattern and functional connectivity during episodic memory processing which are in turn related to increased cognitive performance. fMRI is a promising biomarker for assessing treatment related changes in brain function.

  10. Mapping brain activity at scale with cluster computing.

    Science.gov (United States)

    Freeman, Jeremy; Vladimirov, Nikita; Kawashima, Takashi; Mu, Yu; Sofroniew, Nicholas J; Bennett, Davis V; Rosen, Joshua; Yang, Chao-Tsung; Looger, Loren L; Ahrens, Misha B

    2014-09-01

    Understanding brain function requires monitoring and interpreting the activity of large networks of neurons during behavior. Advances in recording technology are greatly increasing the size and complexity of neural data. Analyzing such data will pose a fundamental bottleneck for neuroscience. We present a library of analytical tools called Thunder built on the open-source Apache Spark platform for large-scale distributed computing. The library implements a variety of univariate and multivariate analyses with a modular, extendable structure well-suited to interactive exploration and analysis development. We demonstrate how these analyses find structure in large-scale neural data, including whole-brain light-sheet imaging data from fictively behaving larval zebrafish, and two-photon imaging data from behaving mouse. The analyses relate neuronal responses to sensory input and behavior, run in minutes or less and can be used on a private cluster or in the cloud. Our open-source framework thus holds promise for turning brain activity mapping efforts into biological insights.

  11. Model based generalization analysis of common spatial pattern in brain computer interfaces

    Science.gov (United States)

    Liu, Guangquan; Meng, Jianjun; Zhang, Dingguo; Zhu, Xiangyang

    2010-01-01

    In the motor imagery based Brain Computer Interface (BCI) research, Common Spatial Pattern (CSP) algorithm is used widely as a spatial filter on multi-channel electroencephalogram (EEG) recordings. Recently the overfitting effect of CSP has been gradually noticed, but what influence the overfitting is still unclear. In this work, the generalization of CSP is investigated by a simple linear mixing model. Several factors in this model are discussed, and the simulation results indicate that channel numbers and the correlation between signals influence the generalization of CSP significantly. A larger number of training trials and a longer time length of the trial would prevent overfitting. The experiments on real data also verify our conclusion. PMID:21886674

  12. Theoretical approaches to holistic biological features: Pattern formation, neural networks and the brain-mind relation

    Indian Academy of Sciences (India)

    Alfred Gierer

    2002-06-01

    The topic of this article is the relation between bottom-up and top-down, reductionist and ``holistic” approaches to the solution of basic biological problems. While there is no doubt that the laws of physics apply to all events in space and time, including the domains of life, understanding biology depends not only on elucidating the role of the molecules involved, but, to an increasing extent, on systems theoretical approaches in diverse fields of the life sciences. Examples discussed in this article are the generation of spatial patterns in development by the interplay of autocatalysis and lateral inhibition; the evolution of integrating capabilities of the human brain, such as cognition-based empathy; and both neurobiological and epistemological aspects of scientific theories of consciousness and the mind.

  13. Addressing reverse inference in psychiatric neuroimaging: Meta‐analyses of task‐related brain activation in common mental disorders

    Science.gov (United States)

    Sprooten, Emma; Rasgon, Alexander; Goodman, Morgan; Carlin, Ariella; Leibu, Evan; Lee, Won Hee

    2017-01-01

    Abstract Functional magnetic resonance imaging (fMRI) studies in psychiatry use various tasks to identify case‐control differences in the patterns of task‐related brain activation. Differently activated regions are often ascribed disorder‐specific functions in an attempt to link disease expression and brain function. We undertook a systematic meta‐analysis of data from task‐fMRI studies to examine the effect of diagnosis and study design on the spatial distribution and direction of case‐control differences on brain activation. We mapped to atlas regions coordinates of case‐control differences derived from 537 task‐fMRI studies in schizophrenia, bipolar disorder, major depressive disorder, anxiety disorders, and obsessive compulsive disorder comprising observations derived from 21,427 participants. The fMRI tasks were classified according to the Research Domain Criteria (RDoC). We investigated whether diagnosis, RDoC domain or construct and use of regions‐of‐interest or whole‐brain analyses influenced the neuroanatomical pattern of results. When considering all primary studies, we found an effect of diagnosis for the amygdala and caudate nucleus and an effect of RDoC domains and constructs for the amygdala, hippocampus, putamen and nucleus accumbens. In contrast, whole‐brain studies did not identify any significant effect of diagnosis or RDoC domain or construct. These results resonate with prior reports of common brain structural and genetic underpinnings across these disorders and caution against attributing undue specificity to brain functional changes when forming explanatory models of psychiatric disorders. Hum Brain Mapp 38:1846–1864, 2017. © 2017 Wiley Periodicals, Inc. PMID:28067006

  14. BDNF Methylation and Maternal Brain Activity in a Violence-Related Sample.

    Directory of Open Access Journals (Sweden)

    Dominik A Moser

    Full Text Available It is known that increased circulating glucocorticoids in the wake of excessive, chronic, repetitive stress increases anxiety and impairs Brain-Derived Neurotrophic Factor (BDNF signaling. Recent studies of BDNF gene methylation in relation to maternal care have linked high BDNF methylation levels in the blood of adults to lower quality of received maternal care measured via self-report. Yet the specific mechanisms by which these phenomena occur remain to be established. The present study examines the link between methylation of the BDNF gene promoter region and patterns of neural activity that are associated with maternal response to stressful versus non-stressful child stimuli within a sample that includes mothers with interpersonal violence-related PTSD (IPV-PTSD. 46 mothers underwent fMRI. The contrast of neural activity when watching children-including their own-was then correlated to BDNF methylation. Consistent with the existing literature, the present study found that maternal BDNF methylation was associated with higher levels of maternal anxiety and greater childhood exposure to domestic violence. fMRI results showed a positive correlation of BDNF methylation with maternal brain activity in the anterior cingulate (ACC, and ventromedial prefrontal cortex (vmPFC, regions generally credited with a regulatory function toward brain areas that are generating emotions. Furthermore we found a negative correlation of BDNF methylation with the activity of the right hippocampus. Since our stimuli focus on stressful parenting conditions, these data suggest that the correlation between vmPFC/ACC activity and BDNF methylation may be linked to mothers who are at a disadvantage with respect to emotion regulation when facing stressful parenting situations. Overall, this study provides evidence that epigenetic signatures of stress-related genes can be linked to functional brain regions regulating parenting stress, thus advancing our understanding of

  15. Source localization of brain activity using helium-free interferometer

    Science.gov (United States)

    Dammers, Jürgen; Chocholacs, Harald; Eich, Eberhard; Boers, Frank; Faley, Michael; Dunin-Borkowski, Rafal E.; Jon Shah, N.

    2014-05-01

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-Tc) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-Tc SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-Tc SQUID-based MEG systems.

  16. Source localization of brain activity using helium-free interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Dammers, Jürgen, E-mail: J.Dammers@fz-juelich.de; Chocholacs, Harald; Eich, Eberhard; Boers, Frank [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich (Germany); Faley, Michael; Dunin-Borkowski, Rafal E. [Peter Grünberg Institute (PGI-5), Forschungszentrum Jülich, Jülich (Germany); Jon Shah, N. [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich (Germany); Department of Neurology, RWTH Aachen University, Aachen (Germany); Jülich Aachen Research Alliance (JARA)—Translational Brain Medicine, Jülich (Germany)

    2014-05-26

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-T{sub c}) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-T{sub c} SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-T{sub c} SQUID-based MEG systems.

  17. Abnormal brain connectivity patterns in adults with ADHD: a coherence study.

    Directory of Open Access Journals (Sweden)

    João Ricardo Sato

    Full Text Available Studies based on functional magnetic resonance imaging (fMRI during the resting state have shown decreased functional connectivity between the dorsal anterior cingulate cortex (dACC and regions of the Default Mode Network (DMN in adult patients with Attention-Deficit/Hyperactivity Disorder (ADHD relative to subjects with typical development (TD. Most studies used Pearson correlation coefficients among the BOLD signals from different brain regions to quantify functional connectivity. Since the Pearson correlation analysis only provides a limited description of functional connectivity, we investigated functional connectivity between the dACC and the posterior cingulate cortex (PCC in three groups (adult patients with ADHD, n=21; TD age-matched subjects, n=21; young TD subjects, n=21 using a more comprehensive analytical approach - unsupervised machine learning using a one-class support vector machine (OC-SVM that quantifies an abnormality index for each individual. The median abnormality index for patients with ADHD was greater than for TD age-matched subjects (p=0.014; the ADHD and young TD indices did not differ significantly (p=0.480; the median abnormality index of young TD was greater than that of TD age-matched subjects (p=0.016. Low frequencies below 0.05 Hz and around 0.20 Hz were the most relevant for discriminating between ADHD patients and TD age-matched controls and between the older and younger TD subjects. In addition, we validated our approach using the fMRI data of children publicly released by the ADHD-200 Competition, obtaining similar results. Our findings suggest that the abnormal coherence patterns observed in patients with ADHD in this study resemble the patterns observed in young typically developing subjects, which reinforces the hypothesis that ADHD is associated with brain maturation deficits.

  18. Age-related similarities and differences in brain activity underlying reversal learning

    Directory of Open Access Journals (Sweden)

    Kaoru eNashiro

    2013-05-01

    Full Text Available The ability to update associative memory is an important aspect of episodic memory and a critical skill for social adaptation. Previous research with younger adults suggests that emotional arousal alters brain mechanisms underlying memory updating; however, it is unclear whether this applies to older adults. Given that the ability to update associative information declines with age, it is important to understand how emotion modulates the brain processes underlying memory updating in older adults. The current study investigated this question using reversal learning tasks, where younger and older participants (age ranges 19-35 and 61-78 respectively learn a stimulus–outcome association and then update their response when contingencies change. We found that younger and older adults showed similar patterns of activation in the frontopolar OFC and the amygdala during emotional reversal learning. In contrast, when reversal learning did not involve emotion, older adults showed greater parietal cortex activity than did younger adults. Thus, younger and older adults show more similarities in brain activity during memory updating involving emotional stimuli than during memory updating not involving emotional stimuli.

  19. Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities

    Science.gov (United States)

    El Houssaini, Kenza; Ivanov, Anton I.; Bernard, Christophe; Jirsa, Viktor K.

    2015-01-01

    Epilepsy, refractory status epilepticus, and depolarization block are pathological brain activities whose mechanisms are poorly understood. Using a generic mathematical model of seizure activity, we show that these activities coexist under certain conditions spanning the range of possible brain activities. We perform a detailed bifurcation analysis and predict strategies to escape from some of the pathological states. Experimental results using rodent data provide support of the model, highlighting the concept that these pathological activities belong to the endogenous repertoire of brain activities.

  20. Resting-state brain activity in adult males who stutter.

    Directory of Open Access Journals (Sweden)

    Yun Xuan

    Full Text Available Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI, few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF, region of interest (ROI-based functional connectivity (FC and independent component analysis (ICA-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN and in the connections between them.

  1. Retinal waves coordinate patterned activity throughout the developing visual system.

    Science.gov (United States)

    Ackman, James B; Burbridge, Timothy J; Crair, Michael C

    2012-10-11

    The morphological and functional development of the vertebrate nervous system is initially governed by genetic factors and subsequently refined by neuronal activity. However, fundamental features of the nervous system emerge before sensory experience is possible. Thus, activity-dependent development occurring before the onset of experience must be driven by spontaneous activity, but the origin and nature of activity in vivo remains largely untested. Here we use optical methods to show in live neonatal mice that waves of spontaneous retinal activity are present and propagate throughout the entire visual system before eye opening. This patterned activity encompassed the visual field, relied on cholinergic neurotransmission, preferentially initiated in the binocular retina and exhibited spatiotemporal correlations between the two hemispheres. Retinal waves were the primary source of activity in the midbrain and primary visual cortex, but only modulated ongoing activity in secondary visual areas. Thus, spontaneous retinal activity is transmitted through the entire visual system and carries patterned information capable of guiding the activity-dependent development of complex intra- and inter-hemispheric circuits before the onset of vision.

  2. Hippocampal activity during the transverse patterning task declines with cognitive competence but not with age

    Directory of Open Access Journals (Sweden)

    Leirer Vera M

    2010-09-01

    Full Text Available Abstract Background The hippocampus is a brain region that is particularly affected by age-related morphological changes. It is generally assumed that a loss in hippocampal volume results in functional deficits that contribute to age-related cognitive decline. In a combined cross-sectional behavioural and magnetoencephalography (MEG study we investigated whether hippocampal-associated neural current flow during a transverse patterning task - which requires learning relational associations between stimuli - correlates with age and whether it is modulated by cognitive competence. Results Better performance in several tests of verbal memory, verbal fluency and executive function was indeed associated with higher hippocampal neural activity. Age, however, was not related to the strength of hippocampal neural activity: elderly participants responded slower than younger individuals but on average produced the same neural mass activity. Conclusions Our results suggest that in non-pathological aging, hippocampal neural activity does not decrease with age but is rather related to cognitive competence.

  3. Physiological modulators of Kv3.1 channels adjust firing patterns of auditory brain stem neurons.

    Science.gov (United States)

    Brown, Maile R; El-Hassar, Lynda; Zhang, Yalan; Alvaro, Giuseppe; Large, Charles H; Kaczmarek, Leonard K

    2016-07-01

    Many rapidly firing neurons, including those in the medial nucleus of the trapezoid body (MNTB) in the auditory brain stem, express "high threshold" voltage-gated Kv3.1 potassium channels that activate only at positive potentials and are required for stimuli to generate rapid trains of actions potentials. We now describe the actions of two imidazolidinedione derivatives, AUT1 and AUT2, which modulate Kv3.1 channels. Using Chinese hamster ovary cells stably expressing rat Kv3.1 channels, we found that lower concentrations of these compounds shift the voltage of activation of Kv3.1 currents toward negative potentials, increasing currents evoked by depolarization from typical neuronal resting potentials. Single-channel recordings also showed that AUT1 shifted the open probability of Kv3.1 to more negative potentials. Higher concentrations of AUT2 also shifted inactivation to negative potentials. The effects of lower and higher concentrations could be mimicked in numerical simulations by increasing rates of activation and inactivation respectively, with no change in intrinsic voltage dependence. In brain slice recordings of mouse MNTB neurons, both AUT1 and AUT2 modulated firing rate at high rates of stimulation, a result predicted by numerical simulations. Our results suggest that pharmaceutical modulation of Kv3.1 currents represents a novel avenue for manipulation of neuronal excitability and has the potential for therapeutic benefit in the treatment of hearing disorders.

  4. Discovering urban activity patterns in cell phone data

    OpenAIRE

    Widhalm, Peter; Yang, Yingxiang; Ulm, Michael; Athavale, Shounak; Gonzalez, Marta C.

    2015-01-01

    Massive and passive data such as cell phone traces provide samples of the whereabouts and movements of individuals. These are a potential source of information for models of daily activities in a city. The main challenge is that phone traces have low spatial precision and are sparsely sampled in time, which requires a precise set of techniques for mining hidden valuable information they contain. Here we propose a method to reveal activity patterns that emerge from cell phone data by analyzing...

  5. Activity Involvement in Aging Women: Career Pattern and Retirement.

    Science.gov (United States)

    Holahan, Carole Kovalic

    Some research has found that women's retirement from the labor force produces significant changes in their lives and requires further investigation. The effects of career pattern and retirement on activity involvement and life satisfaction for women who had been in the work force was investigated. Subjects were members of the Terman Study of the…

  6. Brain Activity Associated with Emoticons: An fMRI Study

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  7. Changes in music tempo entrain movement related brain activity.

    Science.gov (United States)

    Daly, Ian; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Roesch, Etienne; Weaver, James; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2014-01-01

    The neural mechanisms of music listening and appreciation are not yet completely understood. Based on the apparent relationship between the beats per minute (tempo) of music and the desire to move (for example feet tapping) induced while listening to that music it is hypothesised that musical tempo may evoke movement related activity in the brain. Participants are instructed to listen, without moving, to a large range of musical pieces spanning a range of styles and tempos during an electroencephalogram (EEG) experiment. Event-related desynchronisation (ERD) in the EEG is observed to correlate significantly with the variance of the tempo of the musical stimuli. This suggests that the dynamics of the beat of the music may induce movement related brain activity in the motor cortex. Furthermore, significant correlations are observed between EEG activity in the alpha band over the motor cortex and the bandpower of the music in the same frequency band over time. This relationship is observed to correlate with the strength of the ERD, suggesting entrainment of motor cortical activity relates to increased ERD strength.

  8. Brain activation during cognitive planning in twins discordant or concordant for obsessive-compulsive symptoms.

    Science.gov (United States)

    den Braber, Anouk; van 't Ent, Dennis; Cath, Danielle C; Wagner, Judith; Boomsma, Dorret I; de Geus, Eco J C

    2010-10-01

    Neuroimaging studies have indicated abnormalities in cortico-striatal-thalamo-cortical circuits in patients with obsessive-compulsive disorder compared with controls. However, there are inconsistencies between studies regarding the exact set of brain structures involved and the direction of anatomical and functional changes. These inconsistencies may reflect the differential impact of environmental and genetic risk factors for obsessive-compulsive disorder on different parts of the brain. To distinguish between functional brain changes underlying environmentally and genetically mediated obsessive-compulsive disorder, we compared task performance and brain activation during a Tower of London planning paradigm in monozygotic twins discordant (n=38) or concordant (n=100) for obsessive-compulsive symptoms. Twins who score high on obsessive-compulsive symptoms can be considered at high risk for obsessive-compulsive disorder. We found that subjects at high risk for obsessive-compulsive disorder did not differ from the low-risk subjects behaviourally, but we obtained evidence that the high-risk subjects differed from the low-risk subjects in the patterns of brain activation accompanying task execution. These regions can be separated into those that were affected by mainly environmental risk (dorsolateral prefrontal cortex and lingual cortex), genetic risk (frontopolar cortex, inferior frontal cortex, globus pallidus and caudate nucleus) and regions affected by both environmental and genetic risk factors (cingulate cortex, premotor cortex and parts of the parietal cortex). Our results suggest that neurobiological changes related to obsessive-compulsive symptoms induced by environmental factors involve primarily the dorsolateral prefrontal cortex, whereas neurobiological changes induced by genetic factors involve orbitofrontal-basal ganglia structures. Regions showing similar changes in high-risk twins from discordant and concordant pairs may be part of compensatory

  9. Investigating the physiology of brain activation with MRI

    Science.gov (United States)

    Buxton, Richard B.; Uludag, Kamil; Dubowitz, David J.

    2004-04-01

    Functional magnetic resonance imaging (fMRI) has become a powerful tool for investigating the working human brain based on the blood oxygenation level dependent (BOLD) effect on the MR signal. However, despite the widespread use of fMRI techniques for mapping brain activation, the basic physiological mechanisms underlying the observed signal changes are still poorly understood. Arterial spin labeling (ASL) techniques, which measure cerebral blood flow (CBF) and the BOLD effect simultaneously, provide a useful tool for investigating these physiological questions. In this paper, recent results of studies manipulating the baseline CBF both pharmacologically and physiologically will be discussed. These data are consistent with a feed-forward mechanism of neurovascular coupling, and suggest that the CBF change itself may be a more robust reflection of neural activity changes than the BOLD effect. Consistent with these data, a new thermodynamic hypothesis is proposed for the physiological function of CBF regulation: maintenance of the [O2]/[CO2] concentration ratio at the mitochondria in order to preserve the free energy available from oxidative metabolism. A kinetic model based on this hypothesis provides a reasonable quantitative description of the CBF changes associated with neural activity and altered blood gases (CO2 and O2).

  10. Calcium imaging of infrared-stimulated activity in rodent brain.

    Science.gov (United States)

    Cayce, Jonathan Matthew; Bouchard, Matthew B; Chernov, Mykyta M; Chen, Brenda R; Grosberg, Lauren E; Jansen, E Duco; Hillman, Elizabeth M C; Mahadevan-Jansen, Anita

    2014-04-01

    Infrared neural stimulation (INS) is a promising neurostimulation technique that can activate neural tissue with high spatial precision and without the need for exogenous agents. However, little is understood about how infrared light interacts with neural tissue on a cellular level, particularly within the living brain. In this study, we use calcium sensitive dye imaging on macroscopic and microscopic scales to explore the spatiotemporal effects of INS on cortical calcium dynamics. The INS-evoked calcium signal that was observed exhibited a fast and slow component suggesting activation of multiple cellular mechanisms. The slow component of the evoked signal exhibited wave-like properties suggesting network activation, and was verified to originate from astrocytes through pharmacology and 2-photon imaging. We also provide evidence that the fast calcium signal may have been evoked through modulation of glutamate transients. This study demonstrates that pulsed infrared light can induce intracellular calcium modulations in both astrocytes and neurons, providing new insights into the mechanisms of action of INS in the brain.

  11. Investigating Irregularly Patterned Deep Brain Stimulation Signal Design Using Biophysical Models

    Directory of Open Access Journals (Sweden)

    Samantha Rose Summerson

    2015-06-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disorder which follows from cell loss of dopaminergic neurons in the substantia nigra pars compacta (SNc, a nucleus in the basal ganglia (BG. Deep brain stimulation (DBS is an electrical therapy that modulates the pathological activity to treat the motor symptoms of PD. Although this therapy is currently used in clinical practice, the sufficient conditions for therapeutic efficacy are unknown. In this work we develop a model of critical motor circuit structures in the brain using biophysical cell models as the base components and then evaluate performance of different DBS signals in this model to perform comparative studies of their efficacy. Biological models are an important tool for gaining insights into neural function and, in this case, serve as effective tools for investigating innovative new DBS paradigms. Experiments were performed using the hemi-parkinsonian rodent model to test the same set of signals, verifying the obedience of the model to physiological trends. We show that antidromic spiking from DBS of the subthalamic nucleus (STN has a significant impact on cortical neural activity, which is frequency dependent and additionally modulated by the regularity of the stimulus pulse train used. Irregular spacing between stimulus pulses, where the amount of variability added is bounded, is shown to increase diversification of response of basal ganglia neurons and reduce entropic noise in cortical neurons, which may be fundamentally important to restoration of information flow in the motor circuit.

  12. Metabolic patterns and biotransformation activities of resveratrol in human glioblastoma cells: relevance with therapeutic efficacies.

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Shu

    Full Text Available BACKGROUND: Trans-resveratrol rather than its biotransformed monosulfate metabolite exerts anti-medulloblastoma effects by suppressing STAT3 activation. Nevertheless, its effects on human glioblastoma cells are variable due to certain unknown reason(s. METHODOLOGY/PRINCIPAL FINDINGS: Citing resveratrol-sensitive UW228-3 medulloblastoma cell line and primarily cultured rat brain cells/PBCs as controls, the effect of resveratrol on LN-18 human glioblastoma cells and its relevance with metabolic pattern(s, brain-associated sulfotransferase/SULT expression and the statuses of STAT3 signaling and protein inhibitor of activated STAT3 (PIAS3 were elucidated by multiple experimental approaches. Meanwhile, the expression patterns of three SULTs (SULT1A1, 1C2 and 4A1 in human glioblastoma tumors were profiled immunohistochemically. The results revealed that 100 µM resveratrol-treated LN-18 generated the same metabolites as UW228-3 cells, while additional metabolite in molecular weight of 403.0992 in negative ion mode was found in PBCs. Neither growth arrest nor apoptosis was found in resveratrol-treated LN-18 and PBC cells. Upon resveratrol treatment, the levels of SULT1A1, 1C2 and 4A1 expression in LN-18 cells were more up-regulated than that expressed in UW228-3 cells and close to the levels in PBCs. Immunohistochemical staining showed that 42.0%, 27.1% and 19.6% of 149 glioblastoma cases produced similar SULT1A1, 1C2 and 4A1 levels as that of tumor-surrounding tissues. Unlike the situation in UW228-3 cells, STAT3 signaling remained activated and its protein inhibitor PIAS3 was restricted in the cytosol of resveratrol-treated LN-18 cells. No nuclear translocation of STAT3 and PIAS3 was observed in resveratrol-treated PBCs. Treatment with STAT3 chemical inhibitor, AG490, committed majority of LN-18 and UW228-3 cells but not PBCs to apoptosis within 48 hours. CONCLUSIONS/SIGNIFICANCE: LN-18 glioblastoma cells are insensitive to resveratrol due to the

  13. Cognitive and metacognitive activity in mathematical problem solving: prefrontal and parietal patterns.

    Science.gov (United States)

    Anderson, John R; Betts, Shawn; Ferris, Jennifer L; Fincham, Jon M

    2011-03-01

    Students were taught an algorithm for solving a new class of mathematical problems. Occasionally in the sequence of problems, they encountered exception problems that required that they extend the algorithm. Regular and exception problems were associated with different patterns of brain activation. Some regions showed a Cognitive pattern of being active only until the problem was solved and no difference between regular or exception problems. Other regions showed a Metacognitive pattern of greater activity for exception problems and activity that extended into the post-solution period, particularly when an error was made. The Cognitive regions included some of parietal and prefrontal regions associated with the triple-code theory of (Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506) and associated with algebra equation solving in the ACT-R theory (Anderson, J. R. (2005). Human symbol manipulation within an 911 integrated cognitive architecture. Cognitive science, 29, 313-342. Metacognitive regions included the superior prefrontal gyrus, the angular gyrus of the triple-code theory, and frontopolar regions.

  14. Changes in baseball batters' brain activity with increased pitch choice.

    Science.gov (United States)

    Ryu, Kwangmin; Kim, Jingu; Ali, Asif; Kim, Woojong; Radlo, Steven J

    2015-09-01

    In baseball, one factor necessary for batters to decide whether to swing or not depends on what type of pitch is thrown. Oftentimes batters will look for their pitch (i.e., waiting for a fastball). In general, when a pitcher has many types of pitches in his arsenal, batters will have greater difficulty deciding upon the pitch thrown. Little research has been investigated the psychophysiology of a batters decision-making processes. Therefore, the primary purpose of this study was to determine how brain activation changes according to an increase in the number of alternatives (NA) available. A total of 15 male college baseball players participated in this study. The stimuli used in this experiment were video clips of a right-handed pitcher throwing fastball, curve, and slider pitches. The task was to press a button after selecting the fastball as the target stimulus from two pitch choices (fastball and curve), and then from three possibilities (fastball, curve, and slider). Functional and anatomic image scanning magnetic resonance imaging (MRI) runs took 4 and 5[Formula: see text]min, respectively. According to our analysis, the right precentral gyrus, left medial frontal gyrus, and right fusiform gyrus were activated when the NA was one. The supplementary motor areas (SMA) and primary motor cortex were activated when there were two alternatives to choose from and the inferior orbitofrontal gyrus was specifically activated with three alternatives. Contrary to our expectations, the NA was not a critical factor influencing the activation of related decision making areas when the NA was compared against one another. These findings highlight that specific brain areas related to decision making were activated as the NA increased.

  15. Effects of early life adverse experiences on brain activity: Implications from maternal separation models in rodents

    Directory of Open Access Journals (Sweden)

    Mayumi eNishi

    2014-06-01

    Full Text Available During postnatal development, adverse early life experiences can affect the formation of neuronal circuits and exert long-lasting influences on neural function. Many studies have shown that daily repeated MS, an animal model of early life stress, can modulate the hypothalamic-pituitary-adrenal axis (HPA axis and can affect subsequent brain function and emotional behavior during adulthood. However, the molecular basis of the long-lasting effects of early life stress on brain function has not been completely elucidated. In this review, we introduce various cases of MS in rodents and illustrate the alterations in HPA axis activity by focusing on corticosterone (CORT, an end product of the HPA axis in rodents. We then present a characterization of the brain regions affected by various patterns of MS, including repeated MS and single time MS at various stages before weaning, by investigating c-Fos expression, a biological marker of neuronal activity. These CORT and c-Fos studies suggest that repeated early life stress may affect neuronal function in region- and temporal-specific manners, indicating a critical period for habituation to early life stress. Next, we discuss how early life stress can impact behavior, namely by inducing depression, anxiety or eating disorders. Furthermore, alterations in gene expression in adult mice exposed to MS, especially epigenetic changes of DNA methylation, are discussed.

  16. Maladaptive Plasticity in Aphasia: Brain Activation Maps Underlying Verb Retrieval Errors

    Directory of Open Access Journals (Sweden)

    Kerstin Spielmann

    2016-01-01

    Full Text Available Anomia, or impaired word retrieval, is the most widespread symptom of aphasia, an acquired language impairment secondary to brain damage. In the last decades, functional neuroimaging techniques have enabled studying the neural basis underlying anomia and its recovery. The present study aimed to explore maladaptive plasticity in persistent verb anomia, in three male participants with chronic nonfluent aphasia. Brain activation maps associated with semantic verb paraphasia occurring within an oral picture-naming task were identified with an event-related fMRI paradigm. These maps were compared with those obtained in our previous study examining adaptive plasticity (i.e., successful verb naming in the same participants. The results show that activation patterns related to semantic verb paraphasia and successful verb naming comprise a number of common areas, contributing to both maladaptive and adaptive neuroplasticity mechanisms. This finding suggests that the segregation of brain areas provides only a partial view of the neural basis of verb anomia and successful verb naming. Therefore, it indicates the importance of network approaches which may better capture the complexity of maladaptive and adaptive neuroplasticity mechanisms in anomia recovery.

  17. Maladaptive Plasticity in Aphasia: Brain Activation Maps Underlying Verb Retrieval Errors

    Science.gov (United States)

    Durand, Edith; Marcotte, Karine; Ansaldo, Ana Inés

    2016-01-01

    Anomia, or impaired word retrieval, is the most widespread symptom of aphasia, an acquired language impairment secondary to brain damage. In the last decades, functional neuroimaging techniques have enabled studying the neural basis underlying anomia and its recovery. The present study aimed to explore maladaptive plasticity in persistent verb anomia, in three male participants with chronic nonfluent aphasia. Brain activation maps associated with semantic verb paraphasia occurring within an oral picture-naming task were identified with an event-related fMRI paradigm. These maps were compared with those obtained in our previous study examining adaptive plasticity (i.e., successful verb naming) in the same participants. The results show that activation patterns related to semantic verb paraphasia and successful verb naming comprise a number of common areas, contributing to both maladaptive and adaptive neuroplasticity mechanisms. This finding suggests that the segregation of brain areas provides only a partial view of the neural basis of verb anomia and successful verb naming. Therefore, it indicates the importance of network approaches which may better capture the complexity of maladaptive and adaptive neuroplasticity mechanisms in anomia recovery. PMID:27429808

  18. The impact of initiation: Early onset marijuana smokers demonstrate altered Stroop performance and brain activation

    Directory of Open Access Journals (Sweden)

    K.A. Sagar

    2015-12-01

    Full Text Available Marijuana (MJ use is on the rise, particularly among teens and emerging adults. This poses serious public health concern, given the potential deleterious effects of MJ on the developing brain. We examined 50 chronic MJ smokers divided into early onset (regular MJ use prior to age 16; n = 24 and late onset (age 16 or later; n = 26, and 34 healthy control participants (HCs. All completed a modified Stroop Color Word Test during fMRI. Results demonstrated that MJ smokers exhibited significantly poorer performance on the Interference subtest of the Stroop, as well as altered patterns of activation in the cingulate cortex relative to HCs. Further, early onset MJ smokers exhibited significantly poorer performance relative to both HCs and late onset smokers. Additionally, earlier age of MJ onset as well as increased frequency and magnitude (grams/week of MJ use were predictive of poorer Stroop performance. fMRI results revealed that while late onset smokers demonstrated a more similar pattern of activation to the control group, a different pattern was evident in the early onset group. These findings underscore the importance of assessing age of onset and patterns of MJ use and support the need for widespread education and intervention efforts among youth.

  19. Parkinson's disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging

    Directory of Open Access Journals (Sweden)

    Laura K. Teune, MD, PhD

    2014-01-01

    Conclusion: We identified PD-related perfusion and metabolic brain patterns using PCASL and FDG-PET in the same patients which were comparable with results of existing research. In this respect, PCASL appears to be a promising addition in the early diagnosis of individual parkinsonian patients.

  20. The effect of repetition of infrequent familiar and unfamiliar visual patterns on components of the event-related brain potential.

    NARCIS (Netherlands)

    A. Kok; H. de Looren de Jong

    1980-01-01

    Examined changes in the waveforms of the event-related brain potential (ERP) during repeated presentations of infrequent-familiar and infrequent-unfamiliar visual patterns; Ss were 12 male university students. The EEG waveforms were averaged separately for each presentation of the 2 types of stimuli

  1. Variability of single trial brain activation predicts fluctuations in reaction time.

    Science.gov (United States)

    Bender, Stephan; Banaschewski, Tobias; Roessner, Veit; Klein, Christoph; Rietschel, Marcella; Feige, Bernd; Brandeis, Daniel; Laucht, Manfred

    2015-03-01

    Brain activation stability is crucial to understanding attention lapses. EEG methods could provide excellent markers to assess neuronal response variability with respect to temporal (intertrial coherence) and spatial variability (topographic consistency) as well as variations in activation intensity (low frequency variability of single trial global field power). We calculated intertrial coherence, topographic consistency and low frequency amplitude variability during target P300 in a continuous performance test in 263 15-year-olds from a cohort with psychosocial and biological risk factors. Topographic consistency and low frequency amplitude variability predicted reaction time fluctuations (RTSD) in a linear model. Higher RTSD was only associated with higher psychosocial adversity in the presence of the homozygous 6R-10R dopamine transporter haplotype. We propose that topographic variability of single trial P300 reflects noise as well as variability in evoked cortical activation patterns. Dopaminergic neuromodulation interacted with environmental and biological risk factors to predict behavioural reaction time variability.

  2. Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking.

    Science.gov (United States)

    Zorović, M; Hedwig, B

    2011-05-01

    The recognition of the male calling song is essential for phonotaxis in female crickets. We investigated the responses toward different models of song patterns by ascending, local, and descending neurons in the brain of standing and walking crickets. We describe results for two ascending, three local, and two descending interneurons. Characteristic dendritic and axonal arborizations of the local and descending neurons indicate a flow of auditory information from the ascending interneurons toward the lateral accessory lobes and point toward the relevance of this brain region for cricket phonotaxis. Two aspects of auditory processing were studied: the tuning of interneuron activity to pulse repetition rate and the precision of pattern copying. Whereas ascending neurons exhibited weak, low-pass properties, local neurons showed both low- and band-pass properties, and descending neurons represented clear band-pass filters. Accurate copying of single pulses was found at all three levels of the auditory pathway. Animals were walking on a trackball, which allowed an assessment of the effect that walking has on auditory processing. During walking, all neurons were additionally activated, and in most neurons, the spike rate was correlated to walking velocity. The number of spikes elicited by a chirp increased with walking only in ascending neurons, whereas the peak instantaneous spike rate of the auditory responses increased on all levels of the processing pathway. Extra spiking activity resulted in a somewhat degraded copying of the pulse pattern in most neurons.

  3. Circadian pattern and burstiness in human communication activity

    CERN Document Server

    Jo, Hang-Hyun; Kertész, János; Kaski, Kimmo

    2011-01-01

    The temporal pattern of human communication is inhomogeneous and bursty, as reflected by the heavy tail distribution of the inter-event times. For the origin of this behavior two main mechanisms have been suggested: a) Externally driven inhomogeneities due to the circadian and weekly activity patterns and b) intrinsic correlation based inhomogeneity rooted deeply in the task handling strategies of humans. Here we address this question by providing systematic de-seasoning methods to remove the circadian and weekly patterns from the time series of communication events. We find that the heavy tails of the inter-event time distributions are robust with respect to this procedure indicating that burstiness is mostly caused by the latter mechanism b). Moreover, we find that our de-seasoning procedure improves the scaling behavior of the distribution.

  4. Error-preceding brain activity reflects (mal-)adaptive adjustments of cognitive control: a modeling study.

    Science.gov (United States)

    Steinhauser, Marco; Eichele, Heike; Juvodden, Hilde T; Huster, Rene J; Ullsperger, Markus; Eichele, Tom

    2012-01-01

    Errors in choice tasks are preceded by gradual changes in brain activity presumably related to fluctuations in cognitive control that promote the occurrence of errors. In the present paper, we use connectionist modeling to explore the hypothesis that these fluctuations reflect (mal-)adaptive adjustments of cognitive control. We considered ERP data from a study in which the probability of conflict in an Eriksen-flanker task was manipulated in sub-blocks of trials. Errors in these data were preceded by a gradual decline of N2 amplitude. After fitting a connectionist model of conflict adaptation to the data, we analyzed simulated N2 amplitude, simulated response times (RTs), and stimulus history preceding errors in the model, and found that the model produced the same pattern as obtained in the empirical data. Moreover, this pattern is not found in alternative models in which cognitive control varies randomly or in an oscillating manner. Our simulations suggest that the decline of N2 amplitude preceding errors reflects an increasing adaptation of cognitive control to specific task demands, which leads to an error when these task demands change. Taken together, these results provide evidence that error-preceding brain activity can reflect adaptive adjustments rather than unsystematic fluctuations of cognitive control, and therefore, that these errors are actually a consequence of the adaptiveness of human cognition.

  5. Timescales of multineuronal activity patterns reflect temporal structure of visual stimuli.

    Directory of Open Access Journals (Sweden)

    Ovidiu F Jurjuţ

    Full Text Available The investigation of distributed coding across multiple neurons in the cortex remains to this date a challenge. Our current understanding of collective encoding of information and the relevant timescales is still limited. Most results are restricted to disparate timescales, focused on either very fast, e.g., spike-synchrony, or slow timescales, e.g., firing rate. Here, we investigated systematically multineuronal activity patterns evolving on different timescales, spanning the whole range from spike-synchrony to mean firing rate. Using multi-electrode recordings from cat visual cortex, we show that cortical responses can be described as trajectories in a high-dimensional pattern space. Patterns evolve on a continuum of coexisting timescales that strongly relate to the temporal properties of stimuli. Timescales consistent with the time constants of neuronal membranes and fast synaptic transmission (5-20 ms play a particularly salient role in encoding a large amount of stimulus-related information. Thus, to faithfully encode the properties of visual stimuli the brain engages multiple neurons into activity patterns evolving on multiple timescales.

  6. Implications of the dependence of neuronal activity on neural network states for the design of brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Stefano ePanzeri

    2016-04-01

    Full Text Available Brain-machine interfaces (BMIs can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brains. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  7. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces.

    Science.gov (United States)

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brain. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  8. Communities in Neuronal Complex Networks Revealed by Activation Patterns

    CERN Document Server

    Costa, Luciano da Fontoura

    2008-01-01

    Recently, it has been shown that the communities in neuronal networks of the integrate-and-fire type can be identified by considering patterns containing the beginning times for each cell to receive the first non-zero activation. The received activity was integrated in order to facilitate the spiking of each neuron and to constrain the activation inside the communities, but no time decay of such activation was considered. The present article shows that, by taking into account exponential decays of the stored activation, it is possible to identify the communities also in terms of the patterns of activation along the initial steps of the transient dynamics. The potential of this method is illustrated with respect to complex neuronal networks involving four communities, each of a different type (Erd\\H{o}s-R\\'eny, Barab\\'asi-Albert, Watts-Strogatz as well as a simple geographical model). Though the consideration of activation decay has been found to enhance the communities separation, too intense decays tend to y...

  9. Fat/carbohydrate ratio but not energy density determines snack food intake and activates brain reward areas.

    Science.gov (United States)

    Hoch, Tobias; Kreitz, Silke; Gaffling, Simone; Pischetsrieder, Monika; Hess, Andreas

    2015-05-14

    The snack food potato chips induces food intake in ad libitum fed rats, which is associated with modulation of the brain reward system and other circuits. Here, we show that food intake in satiated rats is triggered by an optimal fat/carbohydrate ratio. Like potato chips, an isocaloric fat/carbohydrate mixture influenced whole brain activity pattern of rats, affecting circuits related e.g. to reward/addiction, but the number of modulated areas and the extent of modulation was lower compared to the snack food itself.

  10. Fat/carbohydrate ratio but not energy density determines snack food intake and activates brain reward areas

    OpenAIRE

    Hoch, Tobias; Kreitz, Silke; Gaffling, Simone; Pischetsrieder, Monika; Hess, Andreas

    2015-01-01

    The snack food potato chips induces food intake in ad libitum fed rats, which is associated with modulation of the brain reward system and other circuits. Here, we show that food intake in satiated rats is triggered by an optimal fat/carbohydrate ratio. Like potato chips, an isocaloric fat/carbohydrate mixture influenced whole brain activity pattern of rats, affecting circuits related e.g. to reward/addiction, but the number of modulated areas and the extent of modulation was lower compared t...

  11. The effects of trypsin on rat brain astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Masoud Fereidoni

    2013-12-01

    Full Text Available Astrocytes are cells within the central nervous system which are activated in a wide spectrum of infections, and autoimmune and neurodegenerative diseases. In pathologic states, they produce inflammatory cytokines, chemokines, and nitric oxide (NO, and sometimes they induce apoptosis. Their protease-activated receptors (PARs can be activated by proteases, e.g. thrombin and trypsin, which are important in brain inflammation. The current study aimed to investigate the effects of different concentrations of trypsin (1 to 100U/ml on cultured astrocytes.In the present study, two-day rat infants' brains were isolated and homogenized after meninges removal, then cultivated in DMEM + 10% FBS medium. 10 days later, astrocytes were harvested and recultivated for more purification (up to 95%, using Immunocytochemistry method, in order to be employed for tests. They were affected by different concentrations of trypsin (1, 5, 10, 15, 20, 40, 60, 80, and 100 U/ml. To reveal the inflammation progress, NO concentrations (the Griess test were assessed after 24 and 48 hours.The results showed that trypsin concentration up to 20 U/ml caused a significant increase in NO, in a dose-dependent manner, on cultured astrocytes (P < 0.001. Trypsin 20 U/ml increased NO production fivefold the control group (P < 0.001. At higher concentrations than 20 U/ml, NO production diminished (P < 0.001. At 100 U/ml, NO production was less than the control group (P < 0.001.Inflammatory effects of trypsin 5-20 U/ml are probably due to the stimulation of astrocytes' PAR-2 receptors and the increasing of the activation of NF-κB, PKC, MAPKs. Stimulation of astrocytes' PAR-2 receptors causes an increase in iNOS activation which in turn leads to NO production. However, higher trypsin concentration possibly made astrocyte apoptosis; therefore, NO production diminished. These assumptions need to be further investigated.

  12. Persistent dynamic attractors in activity patterns of cultured neuronal networks

    Science.gov (United States)

    Wagenaar, Daniel A.; Nadasdy, Zoltan; Potter, Steve M.

    2006-05-01

    Three remarkable features of the nervous system—complex spatiotemporal patterns, oscillations, and persistent activity—are fundamental to such diverse functions as stereotypical motor behavior, working memory, and awareness. Here we report that cultured cortical networks spontaneously generate a hierarchical structure of periodic activity with a strongly stereotyped population-wide spatiotemporal structure demonstrating all three fundamental properties in a recurring pattern. During these “superbursts,” the firing sequence of the culture periodically converges to a dynamic attractor orbit. Precursors of oscillations and persistent activity have previously been reported as intrinsic properties of the neurons. However, complex spatiotemporal patterns that are coordinated in a large population of neurons and persist over several hours—and thus are capable of representing and preserving information—cannot be explained by known oscillatory properties of isolated neurons. Instead, the complexity of the observed spatiotemporal patterns implies large-scale self-organization of neurons interacting in a precise temporal order even in vitro, in cultures usually considered to have random connectivity.

  13. Intrinsic Brain Activity Responsible for Sex Differences in Shyness and Social Anxiety

    Science.gov (United States)

    Yang, Xun; Zhou, Ming; Lama, Sunima; Chen, Lizhou; Hu, Xinyu; Wang, Song; Chen, Taolin; Shi, Yan; Huang, Xiaoqi; Gong, Qiyong

    2017-01-01

    Male and female show significant differences in important behavioral features such as shyness, yet the neural substrates of these differences remain poorly understood. Previous neuroimaging studies have demonstrated that both shyness and social anxiety in healthy subjects are associated with increased activation in the fronto-limbic and cognitive control areas. However, it remains unknown whether these brain abnormalities would be shared by different genders. Therefore, in the current study, we used resting-state fMRI (r-fMRI) to investigate sex differences in intrinsic cerebral activity that may contribute to shyness and social anxiety. Sixty subjects (28 males, 32 females) participated in r-fMRI scans, and the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) were used to measure the spontaneous regional cerebral activity in all subjects. We first compared the differences between male and female both in the ALFF and fALFF and then we also examined the whole brain correlation between the ALFF/fALFF and the severity of shyness as well as social anxiety by genders. Referring to shyness measure, we found a significant positive correlation between shyness scores (CBSS) and ALFF/fALFF value in the frontoparietal control network and a negative correlation in the cingulo-insular network in female; while in male, there is no such correlation. For the social anxiety level, we found positive correlations between Leibowitz Social Anxiety Scale (LSAS) scores and spontaneous activity in the frontal-limbic network in male and negative correlation between the frontal-parietal network; however, such correlation was not prominent in female. This pattern suggests that shy female individuals engaged a proactive control process, driven by a positive association with activity in frontoparietal network and negative association in cingulo-insular network, whereas social anxiety males relied more on a reactive control process, driven by a positive correlation of

  14. The amount of TMJ displacement correlates with brain activity.

    Science.gov (United States)

    Greven, Markus; Otsuka, Takero; Zutz, Leander; Weber, Bernd; Elger, Christian; Sato, Sadao

    2011-10-01

    The aim of this functional magnetic resonance imaging (fMRI) study was to investigate the correlation between the severity of malocclusion and brain activation. The fMRI was used to measure blood-oxygenation- level-dependent (BOLD) signals of twelve healthy human subjects while they clenched in two different ways to simulate two types of malocclusion. In each malocclusion model, a custom-made splint forced the mandible to each of two retrusive positions (0.5 mm, 0.7 mm). A no-modification splint provided the control. We compared the BOLD signals measured at each clenching position with those measured during the corresponding resting conditions. The BOLD signals were significantly stronger in the amygdala and the prefrontal area (PFA) when subjects clenched in the two retrusive positions compared during clenching in the control position. In addition, the BOLD signal in the PFA increased as the simulated malocclusion became more severe. These results indicate that we may be able to objectively assess the severity of malocclusion via focus on the brain activity.

  15. Multi-dimensional dynamics of human electromagnetic brain activity

    Directory of Open Access Journals (Sweden)

    Tetsuo eKida

    2016-01-01

    Full Text Available Magnetoencephalography (MEG and electroencephalography (EEG are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency, which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain.

  16. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity.

    Science.gov (United States)

    Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke

    2015-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain.

  17. fMRI and brain activation after sport concussion: a tale of two cases

    Directory of Open Access Journals (Sweden)

    Michael G Hutchison

    2014-04-01

    Full Text Available Sport-related concussions are now recognized as a major public health concern: The number of participants in sport and recreation is growing, possibly playing their games faster, and there is heightened public awareness of injuries to some high-profile athletes. However, many clinicians still rely on subjective symptom reports for the clinical determination of recovery. Relying on subjective symptom reports can be dangerous, as it has been shown that some concussed athletes may downplay their symptoms. The use of neuropsychological (NP testing tools has enabled clinicians to measure the effects and extent of impairment following concussion more precisely, providing more objective metrics for determining recovery after concussion. Nevertheless, there is a remaining concern that brain abnormalities may exist beyond the point at which individuals achieve recovery in self-reported symptoms and cognition measured by NP testing. Our understanding of brain recovery after concussion is important not only from a neuroscience perspective, but also from the perspective of clinical decision making for safe return-to-play (RTP. A number of advanced neuroimaging tools, including blood oxygen level dependent (BOLD functional magnetic resonance imaging (fMRI, have independently yielded early information on these abnormal brain functions. In the two cases presented in this article, we report contrasting brain activation patterns and recovery profiles using fMRI. Importantly, fMRI was conducted using adapted versions of the most sensitive computerized NP tests administered in current clinical practice to determine impairments and recovery after sport-related concussion. One of the cases is consistent with the concept of lagging brain recovery.

  18. FMRI and brain activation after sport concussion: a tale of two cases.

    Science.gov (United States)

    Hutchison, Michael G; Schweizer, Tom A; Tam, Fred; Graham, Simon J; Comper, Paul

    2014-01-01

    Sport-related concussions are now recognized as a major public health concern: the number of participants in sport and recreation is growing, possibly playing their games faster, and there is heightened public awareness of injuries to some high-profile athletes. However, many clinicians still rely on subjective symptom reports for the clinical determination of recovery. Relying on subjective symptom reports can be problematic, as it has been shown that some concussed athletes may downplay their symptoms. The use of neuropsychological (NP) testing has enabled clinicians to measure the effects and extent of impairment following concussion more precisely, providing more objective metrics for determining recovery. Nevertheless, there is a remaining concern that brain abnormalities may exist beyond the point at which individuals achieve recovery in self-reported symptoms and cognition measured by NP testing. Our understanding of brain recovery after concussion is important, not only from a neuroscience perspective, but also from the perspective of clinical decision-making for safe return-to-play. A number of advanced neuroimaging tools, including blood oxygen level dependent functional magnetic resonance imaging (fMRI), have independently yielded early information on abnormal brain functioning. In the two cases presented in this article, we report contrasting brain activation patterns and recovery profiles using fMRI. Importantly, fMRI was conducted using adapted versions of the most sensitive computerized NP tests administered in our current clinical practice to determine impairments and recovery after sport-related concussion. One of the cases is consistent with the concept of lagging brain recovery.

  19. Lower arm electromyography (EMG) activity detection using local binary patterns.

    Science.gov (United States)

    McCool, Paul; Chatlani, Navin; Petropoulakis, Lykourgos; Soraghan, John J; Menon, Radhika; Lakany, Heba

    2014-09-01

    This paper presents a new electromyography activity detection technique in which 1-D local binary pattern histograms are used to distinguish between periods of activity and inactivity in myoelectric signals. The algorithm is tested on forearm surface myoelectric signals occurring due to hand gestures. The novel features of the presented method are that: 1) activity detection is performed across multiple channels using few parameters and without the need for majority vote mechanisms, 2) there are no per-channel thresholds to be tuned, which makes the process of activity detection easier and simpler to implement and less prone to errors, 3) it is not necessary to measure the properties of the signal during a quiescent period before using the algorithm. The algorithm is compared to other offline single- and double-threshold activity detection methods and, for the data sets tested, it is shown to have a better overall performance with greater tolerance to the noise in the real data set used.

  20. Dynamic brain architectures in local brain activity and functional network efficiency associate with efficient reading in bilinguals.

    Science.gov (United States)

    Feng, Gangyi; Chen, Hsuan-Chih; Zhu, Zude; He, Yong; Wang, Suiping

    2015-10-01

    The human brain is organized as a dynamic network, in which both regional brain activity and inter-regional connectivity support high-level cognitive processes, such as reading. However, it is still largely unknown how the functional brain network organizes to enable fast and effortless reading processing in the native language (L1) but not in a non-proficient second language (L2), and whether the mechanisms underlying local activity are associated with connectivity dynamics in large-scale brain networks. In the present study, we combined activation-based and multivariate graph-theory analysis with functional magnetic resonance imaging data to address these questions. Chinese-English unbalanced bilinguals read narratives for comprehension in Chinese (L1) and in English (L2). Compared with L2, reading in L1 evoked greater brain activation and recruited a more globally efficient but less clustered network organization. Regions with both increased network efficiency and enhanced brain activation in L1 reading were mostly located in the fronto-temporal reading-related network (RN), whereas regions with decreased global network efficiency, increased clustering, and more deactivation in L2 reading were identified in the default mode network (DMN). Moreover, functional network efficiency was closely associated with local brain activation, and such associations were also modulated by reading efficiency in the two languages. Our results demonstrate that an economical and integrative brain network topology is associated with efficient reading, and further reveal a dynamic association between network efficiency and local activation for both RN and DMN. These findings underscore the importance of considering interregional connectivity when interpreting local BOLD signal changes in bilingual reading.

  1. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    Science.gov (United States)

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  2. Differential changes of metabolic brain activity and interregional functional coupling in prefronto-limbic pathways during different stress conditions: Functional imaging in freely behaving rodent pups

    Directory of Open Access Journals (Sweden)

    Joerg eBock

    2012-05-01

    Full Text Available The trumpet-tailed rat or degu (Octodon degus is an established model to investigate the consequences of early stress on the development of emotional brain circuits and behaviour. The aim of this study was to identify brain circuits, that respond to different stress conditions and to test if acute stress alters functional coupling of brain activity among prefrontal and limbic regions. Using functional imaging (2-Fluoro-deoxyglucose method in 8 day old male degu pups the following stress conditions were compared: (A pups together with parents and siblings (control, (B separation of the litter from the parents, (C individual separation from parents and siblings, (D individual separation and presentation of maternal calls. Condition (B significantly downregulated brain activity in the prefrontal cortex, hippocampus, nucleus accumbens and sensory areas compared to controls. Activity decrease was even more pronounced during condition (C, where, in contrast to all other regions, activity in the PAG was increased. Interestingly, brain activity in stress-associated brain regions such as the amygdala and habenula was not affected. In condition (D maternal vocalizations reactivated brain activity in the cingulate and precentral medial cortex, nucleus accumbens and striatum and in sensory areas. In contrast, reduced activity was measured in the prelimbic and infralimbic cortex and in the hippocampus and amygdala. Correlation analysis revealed complex, region- and situation-specific changes of interregional functional coupling among prefrontal and limbic brain regions during stress exposure. We show here for the first time that early life stress results in a widespread reduction of brain activity in the infant brain and changes interregional functional coupling. Moreover, maternal vocalizations can partly buffer stress-induced decrease in brain activity in some regions and evoked very different functional coupling patterns compared to the three other

  3. Gestational exposure to cadmium alters crucial offspring rat brain enzyme activities: the role of cadmium-free lactation.

    Science.gov (United States)

    Liapi, Charis; Stolakis, Vasileios; Zarros, Apostolos; Zissis, Konstantinos M; Botis, John; Al-Humadi, Hussam; Tsakiris, Stylianos

    2013-11-01

    The present study aimed to shed more light on the effects of gestational (in utero) exposure to cadmium (Cd) on crucial brain enzyme activities of Wistar rat offspring, as well as to assess the potential protective/restorative role that a Cd-free lactation might have on these effects. In contrast to earlier findings of ours regarding the pattern of effects that adult-onset exposure to Cd has on brain AChE, Na(+),K(+)- and Mg(2+)-ATPase activities, as well as in contrast to similar experimental approaches implementing the sacrificing mode of anaesthesia, in utero exposure to Cd-chloride results in increased AChE and Na(+),K(+)-ATPase activities in the newborn rat brain homogenates that were ameliorated through a Cd-free lactation (as assessed in the brain of 21-day-old offspring). Mg(2+)-ATPase activity was not found to be significantly modified under the examined experimental conditions. These findings could provide the basis for a further evaluation of the herein discussed neurotoxic effects of in utero exposure to Cd, in a brain region-specific manner.

  4. Radiological Patterns of Brain Metastases in Breast Cancer Patients: A Subproject of the German Brain Metastases in Breast Cancer (BMBC Registry

    Directory of Open Access Journals (Sweden)

    Elena Laakmann

    2016-09-01

    Full Text Available Evidence about distribution patterns of brain metastases with regard to breast cancer subtypes and its influence on the prognosis of patients is insufficient. Clinical data, cranial computed tomography (CT and magnetic resonance imaging (MRI scans of 300 breast cancer patients with brain metastases (BMs were collected retrospectively in four centers participating in the Brain Metastases in Breast Cancer Registry (BMBC in Germany. Patients with positive estrogen (ER, progesterone (PR, or human epidermal growth factor receptor 2 (HER2 statuses, had a significantly lower number of BMs at diagnosis. Concerning the treatment mode, HER2-positive patients treated with trastuzumab before the diagnosis of BMs showed a lower number of intracranial metastases (p < 0.001. Patients with a HER2-positive tumor-subtype developed cerebellar metastases more often compared with HER2-negative patients (59.8% vs. 44.5%, p = 0.021, whereas patients with triple-negative primary tumors had leptomeningeal disease more often (31.4% vs. 18.3%, p = 0.038. The localization of Brain metastases (BMs was associated with prognosis: patients with leptomeningeal disease had shorter survival compared with patients without signs of leptomeningeal disease (median survival 3 vs. 5 months, p = 0.025. A shorter survival could also be observed in the patients with metastases in the occipital lobe (median survival 3 vs. 5 months, p = 0.012. Our findings suggest a different tumor cell homing to different brain regions depending on subtype and treatment.

  5. Training of verbal creativity modulates brain activity in regions associated with language- and memory-related demands.

    Science.gov (United States)

    Fink, Andreas; Benedek, Mathias; Koschutnig, Karl; Pirker, Eva; Berger, Elisabeth; Meister, Sabrina; Neubauer, Aljoscha C; Papousek, Ilona; Weiss, Elisabeth M

    2015-10-01

    This functional magnetic resonance (fMRI) study was designed to investigate changes in functional patterns of brain activity during creative ideation as a result of a computerized, 3-week verbal creativity training. The training was composed of various verbal divergent thinking exercises requiring participants to train approximately 20 min per day. Fifty-three participants were tested three times (psychometric tests and fMRI assessment) with an intertest-interval of 4 weeks each. Participants were randomly assigned to two different training groups, which received the training time-delayed: The first training group was trained between the first and the second test, while the second group accomplished the training between the second and the third test session. At the behavioral level, only one training group showed improvements in different facets of verbal creativity right after the training. Yet, functional patterns of brain activity during creative ideation were strikingly similar across both training groups. Whole-brain voxel-wise analyses (along with supplementary region of interest analyses) revealed that the training was associated with activity changes in well-known creativity-related brain regions such as the left inferior parietal cortex and the left middle temporal gyrus, which have been shown as being particularly sensitive to the originality facet of creativity in previous research. Taken together, this study demonstrates that continuous engagement in a specific complex cognitive task like divergent thinking is associated with reliable changes of activity patterns in relevant brain areas, suggesting more effective search, retrieval, and integration from internal memory representations as a result of the training.

  6. The Relationship Between Brain Oscillatory Activity and Therapeutic Effectiveness of Transcranial Magnetic Stimulation in the Treatment of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Andrew Francis Leuchter

    2013-02-01

    Full Text Available Major Depressive Disorder (MDD is marked by disturbances in brain functional connectivity. This connectivity is modulated by rhythmic oscillations of brain electrical activity, which enable coordinated functions across brain regions. Oscillatory activity plays a central role in regulating thinking and memory, mood, cerebral blood flow, and neurotransmitter levels, and restoration of normal oscillatory patterns is associated with effective treatment of MDD. Repetitive Transcranial Magnetic Stimulation (rTMS is a robust treatment for MDD, but the mechanism of action (MOA of its benefits for mood disorders remains incompletely understood. Benefits of rTMS have been tied to enhanced neuroplasticity in specific brain pathways. We summarize here the evidence that rTMS entrains and resets thalamocortical oscillators, normalizes regulation and facilitates reemergence of intrinsic cerebral rhythms, and through this mechanism restores normal brain function. This entrainment and resetting may be a critical step in engendering neuroplastic changes and the antidepressant effects of rTMS. It may be possible to modify the method of rTMS administration to enhance this mechanism of action and achieve better antidepressant effectiveness. We propose that rTMS can be administered: 1 synchronized to a patient’s individual alpha rhythm (IAF, or synchronized rTMS (sTMS; 2 as a low magnetic field strength sinusoidal wave form; and, 3 broadly to multiple brain areas simultaneously. We present here the theory and evidence indicating that these modifications could enhance the therapeutic effectiveness of rTMS for the treatment of MDD.

  7. Approach and withdrawal motivation in schizophrenia: an examination of frontal brain asymmetric activity.

    Directory of Open Access Journals (Sweden)

    William P Horan

    Full Text Available Although motivational disturbances are common in schizophrenia, their neurophysiological and psychological basis is poorly understood. This electroencephalography (EEG study examined the well-established motivational direction model of asymmetric frontal brain activity in schizophrenia. According to this model, relative left frontal activity in the resting EEG reflects enhanced approach motivation tendencies, whereas relative right frontal activity reflects enhanced withdrawal motivation tendencies. Twenty-five schizophrenia outpatients and 25 healthy controls completed resting EEG assessments of frontal asymmetry in the alpha frequency band (8-12 Hz, as well as a self-report measure of behavioral activation and inhibition system (BIS/BAS sensitivity. Patients showed an atypical pattern of differences from controls. On the EEG measure patients failed to show the left lateralized activity that was present in controls, suggesting diminished approach motivation. On the self-report measure, patients reported higher BIS sensitivity than controls, which is typically interpreted as heightened withdrawal motivation. EEG asymmetry scores did not significantly correlate with BIS/BAS scores or with clinical symptom ratings among patients. The overall pattern suggests a motivational disturbance in schizophrenia characterized by elements of both diminished approach and elevated withdrawal tendencies.

  8. Interactions between cardiac, respiratory, and brain activity in humans

    Science.gov (United States)

    Musizza, Bojan; Stefanovska, Aneta

    2005-05-01

    The electrical activity of the heart (ECG), respiratory function and electric activity of the brain (EEG) were simultaneously recorded in conscious, healthy humans. Instantaneous frequencies of the heart beat, respiration and α-waves were then determined from 30-minutes recordings. The instantaneous cardiac frequency was defined as the inverse value of the time interval between two consecutive R-peaks. The instantaneous respiratory frequency was obtained from recordings of the excursions of thorax by application of the Hilbert transform. To obtain the instantaneous frequency of α-waves, the EEG signal recorded from the forehead was first analysed using the wavelet transform. Then the frequency band corresponding to α-waves was extracted and the Hilbert transform applied. Synchronization analysis was performed and the direction of coupling was ascertained, using pairs of instantaneous frequencies in each case. It is shown that the systems are weakly bidirectionally coupled. It was confirmed that, in conscious healthy humans, respiration drives cardiac activity. We also demonstrate from these analyses that α-activity drives both respiration and cardiac activity.

  9. Motor-related brain activity during action observation: a neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jennifer L Collinger

    2014-02-01

    Full Text Available After spinal cord injury (SCI, motor commands from the brain are unable to reach peripheral nerves and muscles below the level of the lesion. Action observation, in which a person observes someone else performing an action, has been used to augment traditional rehabilitation paradigms. Similarly, action observation can be used to derive the relationship between brain activity and movement kinematics for a motor-based brain-computer interface (BCI even when the user cannot generate overt movements. BCIs use brain signals to control external devices to replace functions that have been lost due to SCI or other motor impairment. Previous studies have reported congruent motor cortical activity during observed and overt movements using magnetoencephalography (MEG and functional magnetic resonance imaging (fMRI. Recent single-unit studies using intracortical microelectrodes also demonstrated that a large number of motor cortical neurons had similar firing rate patterns between overt and observed movements. Given the increasing interest in electrocorticography (ECoG-based BCIs, our goal was to identify whether action observation-related cortical activity could be recorded using ECoG during grasping tasks. Specifically, we aimed to identify congruent neural activity during observed and executed movements in both the sensorimotor rhythm (10-40 Hz and the high-gamma band (65-115 Hz which contains significant movement-related information. We observed significant motor-related high-gamma band activity during action observation in both able-bodied individuals and one participant with a complete C4 SCI. Furthermore, in able-bodied participants, both the low and high frequency bands demonstrated congruent activity between action execution and observation. Our results suggest that action observation could be an effective and critical procedure for deriving the mapping from ECoG signals to intended movement for an ECoG-based BCI system for individuals with

  10. Human Brain Activity Related to the Tactile Perception of Stickiness.

    Science.gov (United States)

    Yeon, Jiwon; Kim, Junsuk; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    While the perception of stickiness serves as one of the fundamental dimensions for tactile sensation, little has been elucidated about the stickiness sensation and its neural correlates. The present study investigated how the human brain responds to perceived tactile sticky stimuli using functional magnetic resonance imaging (fMRI). To evoke tactile perception of stickiness with multiple intensities, we generated silicone stimuli with varying catalyst ratios. Also, an acrylic sham stimulus was prepared to present a condition with no sticky sensation. From the two psychophysics experiments-the methods of constant stimuli and the magnitude estimation-we could classify the silicone stimuli into two groups according to whether a sticky perception was evoked: the Supra-threshold group that evoked sticky perception and the Infra-threshold group that did not. In the Supra-threshold vs. Sham contrast analysis of the fMRI data using the general linear model (GLM), the contralateral primary somatosensory area (S1) and ipsilateral dorsolateral prefrontal cortex (DLPFC) showed significant activations in subjects, whereas no significant result was found in the Infra-threshold vs. Sham contrast. This result indicates that the perception of stickiness not only activates the somatosensory cortex, but also possibly induces higher cognitive processes. Also, the Supra- vs. Infra-threshold contrast analysis revealed significant activations in several subcortical regions, including the pallidum, putamen, caudate and thalamus, as well as in another region spanning the insula and temporal cortices. These brain regions, previously known to be related to tactile discrimination, may subserve the discrimination of different intensities of tactile stickiness. The present study unveils the human neural correlates of the tactile perception of stickiness and may contribute to broadening the understanding of neural mechanisms associated with tactile perception.

  11. Human Brain Activity Related to the Tactile Perception of Stickiness

    Science.gov (United States)

    Yeon, Jiwon; Kim, Junsuk; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    While the perception of stickiness serves as one of the fundamental dimensions for tactile sensation, little has been elucidated about the stickiness sensation and its neural correlates. The present study investigated how the human brain responds to perceived tactile sticky stimuli using functional magnetic resonance imaging (fMRI). To evoke tactile perception of stickiness with multiple intensities, we generated silicone stimuli with varying catalyst ratios. Also, an acrylic sham stimulus was prepared to present a condition with no sticky sensation. From the two psychophysics experiments–the methods of constant stimuli and the magnitude estimation—we could classify the silicone stimuli into two groups according to whether a sticky perception was evoked: the Supra-threshold group that evoked sticky perception and the Infra-threshold group that did not. In the Supra-threshold vs. Sham contrast analysis of the fMRI data using the general linear model (GLM), the contralateral primary somatosensory area (S1) and ipsilateral dorsolateral prefrontal cortex (DLPFC) showed significant activations in subjects, whereas no significant result was found in the Infra-threshold vs. Sham contrast. This result indicates that the perception of stickiness not only activates the somatosensory cortex, but also possibly induces higher cognitive processes. Also, the Supra- vs. Infra-threshold contrast analysis revealed significant activations in several subcortical regions, including the pallidum, putamen, caudate and thalamus, as well as in another region spanning the insula and temporal cortices. These brain regions, previously known to be related to tactile discrimination, may subserve the discrimination of different intensities of tactile stickiness. The present study unveils the human neural correlates of the tactile perception of stickiness and may contribute to broadening the understanding of neural mechanisms associated with tactile perception. PMID:28163677

  12. Automatic Camera Calibration Using Active Displays of a Virtual Pattern.

    Science.gov (United States)

    Tan, Lei; Wang, Yaonan; Yu, Hongshan; Zhu, Jiang

    2017-03-27

    Camera calibration plays a critical role in 3D computer vision tasks. The most commonly used calibration method utilizes a planar checkerboard and can be done nearly fully automatically. However, it requires the user to move either the camera or the checkerboard during the capture step. This manual operation is time consuming and makes the calibration results unstable. In order to solve the above problems caused by manual operation, this paper presents a full-automatic camera calibration method using a virtual pattern instead of a physical one. The virtual pattern is actively transformed and displayed on a screen so that the control points of the pattern can be uniformly observed in the camera view. The proposed method estimates the camera parameters from point correspondences between 2D image points and the virtual pattern. The camera and the screen are fixed during the whole process; therefore, the proposed method does not require any manual operations. Performance of the proposed method is evaluated through experiments on both synthetic and real data. Experimental results show that the proposed method can achieve stable results and its accuracy is comparable to the standard method by Zhang.

  13. Tasting calories differentially affects brain activation during hunger and satiety.

    Science.gov (United States)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance.

  14. Some Problems for Representations of Brain Organization Based on Activation in Functional Imaging

    Science.gov (United States)

    Sidtis, John J.

    2007-01-01

    Functional brain imaging has overshadowed traditional lesion studies in becoming the dominant approach to the study of brain-behavior relationships. The proponents of functional imaging studies frequently argue that this approach provides an advantage over lesion studies by observing normal brain activity in vivo without the disruptive effects of…

  15. Analysis of Brain Activation during Motor Imagery Based on fMRI

    Institute of Scientific and Technical Information of China (English)

    Qin Yang; Wen Huang; Wei Liao; Hua-Fu Chen

    2009-01-01

    Brain activation during motor imagery (MI) has been studied extensively for years.Based on studies of brain activations of MI,in present study,a complex finger tapping imagery and execution experi-ment is designed to test the brain activation during MI.The experiment results show that during MI,brain activation exists mainly in the supplementary motor area (SMA) and precentral area where the dorsal premotor area (PMd) and the primary motor area (M1) mainly located;and some activation can be also observed in the primary and secondary somatosensory cortex (S1),the inferior parietal lobule (IPL) and the superior parietal lobule (SPL).Additionally,more brain activation can be observed during left-hand MI than during right-hand MI,this difference probably is caused by asymmetry of brain.

  16. Lasting EEG/MEG aftereffects on human brain oscillations after rhythmic transcranial brain stimulation: Level of control over oscillatory network activity

    Directory of Open Access Journals (Sweden)

    Domenica eVeniero

    2015-12-01

    Full Text Available A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS in humans, including transcranial alternating current stimulation (tACS, oscillatory transcranial direct current stimulation (otDCS and repetitive (also called rhythmic transcranial magnetic stimulation (rTMS. With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity (frequency-tuning. Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e. online to stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity.

  17. Differing patterns of brain structural abnormalities between black and white patients with their first episode of psychosis.

    LENUS (Irish Health Repository)

    Morgan, K D

    2010-07-01

    African-Caribbean and black African people living in the UK are reported to have a higher incidence of diagnosed psychosis compared with white British people. It has been argued that this may be a consequence of misdiagnosis. If this is true they might be less likely to show the patterns of structural brain abnormalities reported in white British patients. The aim of this study therefore was to investigate whether there are differences in the prevalence of structural brain abnormalities in white and black first-episode psychosis patients.

  18. Control of programmed cell death by distinct electrical activity patterns.

    Science.gov (United States)

    Golbs, Antje; Nimmervoll, Birgit; Sun, Jyh-Jang; Sava, Irina E; Luhmann, Heiko J

    2011-05-01

    Electrical activity and sufficient supply with survival factors play a major role in the control of apoptosis in the developing cortex. Coherent high-frequency neuronal activity, which efficiently releases neurotrophins, is essential for the survival of immature neurons. We studied the influence of neuronal activity on apoptosis in the developing cortex. Dissociated cultures of the newborn mouse cerebral cortex were grown on multielectrode arrays to determine the activity patterns that promote neuronal survival. Cultures were transfected with a plasmid coding for a caspase-3-sensitive fluorescent protein allowing real-time analysis of caspase-3-dependent apoptosis in individual neurons. Elevated extracellular potassium concentrations (5 and 8 mM), application of 4-aminopyridine or the γ-aminobutyric acid-A receptor antagonist Gabazine induced a shift in the frequency distribution of activity toward high-frequency bursts. Under these conditions, a reduction or delay in caspase-3 activation and an overall increase in neuronal survival could be observed. This effect was dependent on the activity of phosphatidylinositol-3 kinase, as blockade of this enzyme abolished the survival-promoting effect of high extracellular potassium concentrations. Our data indicate that increased network activity can prevent apoptosis in developing cortical neurons.

  19. Distinct patterns of brain function in children with isolated spelling impairment: new insights.

    Science.gov (United States)

    Gebauer, Daniela; Enzinger, Christian; Kronbichler, Martin; Schurz, Matthias; Reishofer, Gernot; Koschutnig, Karl; Kargl, Reinhard; Purgstaller, Christian; Fazekas, Franz; Fink, Andreas

    2012-06-01

    Studies investigating reading and spelling difficulties heavily focused on the neural correlates of reading impairments, whereas spelling impairments have been largely neglected so far. Hence, the aim of the present study was to investigate brain structure and function of children with isolated spelling difficulties. Therefore, 31 children, aged ten to 15 years, were investigated by means of functional MRI and DTI. This study revealed that children with isolated spelling impairment exhibit a stronger right hemispheric activation compared to children with reading and spelling difficulties and controls, when engaged in an orthographic decision task, presumably reflecting a highly efficient serial grapheme-phoneme decoding compensation strategy. In addition, children with spelling impairment activated bilateral inferior and middle frontal gyri during processing correctly spelled words and misspelled words, whereas the other two groups showed bilateral activation only in the misspelled condition, suggesting that additional right frontal engagement could be related to generally higher task demand and effort. DTI analyses revealed stronger frontal white matter integrity (fractional anisotropy) in controls (compared to spelling and reading impaired children), whereas no structural differences between controls and spelling impaired children were observed.

  20. Patterns of Activity in the Human Frontal and Parietal Cortex Differentiate Large and Small Saccades

    Directory of Open Access Journals (Sweden)

    Marie-Helene Grosbras

    2016-10-01

    Full Text Available A vast literature indicates that small and large saccades, respectively, subserve different perceptual and cognitive strategies and may rely on different programming modes. While it is well established that in monkeys’ main oculomotor brain regions small and large eye movements are controlled by segregated neuronal populations, the representation of saccade amplitude in the human brain remains unclear. To address this question we used functional magnetic resonance imaging (fMRI to scan participants while they performed saccades towards targets at either short (4 degrees or large (30 degrees eccentricity. A regional multivoxel pattern analysis (MVPA reveals that patterns of activity in the frontal (FEF and parietal eye fields discriminate between the execution of large or small saccades. This was not the case in the supplementary eye fields nor in the inferior precentral cortex. These findings provide the first evidence of a representation of saccadic eye movement size in the fronto-parietal occulomotor circuit. They shed light on the respective roles of the different cortical oculomotor regions with respect to space perception and exploration, as well as on the homology of eye movement control between human and non-human primates.

  1. a Multidisciplinary Analytical Framework for Studying Active Mobility Patterns

    Science.gov (United States)

    Orellana, D.; Hermida, C.; Osorio, P.

    2016-06-01

    Intermediate cities are urged to change and adapt their mobility systems from a high energy-demanding motorized model to a sustainable low-motorized model. In order to accomplish such a model, city administrations need to better understand active mobility patterns and their links to socio-demographic and cultural aspects of the population. During the last decade, researchers have demonstrated the potential of geo-location technologies and mobile devices to gather massive amounts of data for mobility studies. However, the analysis and interpretation of this data has been carried out by specialized research groups with relatively narrow approaches from different disciplines. Consequently, broader questions remain less explored, mainly those relating to spatial behaviour of individuals and populations with their geographic environment and the motivations and perceptions shaping such behaviour. Understanding sustainable mobility and exploring new research paths require an interdisciplinary approach given the complex nature of mobility systems and their social, economic and environmental impacts. Here, we introduce the elements for a multidisciplinary analytical framework for studying active mobility patterns comprised of three components: a) Methodological, b) Behavioural, and c) Perceptual. We demonstrate the applicability of the framework by analysing mobility patterns of cyclists and pedestrians in an intermediate city integrating a range of techniques, including: GPS tracking, spatial analysis, auto-ethnography, and perceptual mapping. The results demonstrated the existence of non-evident spatial behaviours and how perceptual features affect mobility. This knowledge is useful for developing policies and practices for sustainable mobility planning.

  2. Habitat Selection and Activity Pattern of GPS Collared Sumateran Tigers

    Directory of Open Access Journals (Sweden)

    Dolly Priatna

    2012-12-01

    Full Text Available Although translocation has been used in mitigating human-carnivore conflict for decades, few studies have been conducted on the behavioral ecology of released animals. Such information is necessary in the context of sustainable forest management. In this study we determine the type of land cover used as main habitat and examine the activity pattern of translocated tigers. Between 2008 and 2010 we captured six conflict tigers and translocated them 74-1,350 km from their capture sites in Sumatera. All tigers were fitted with global positioning system (GPS collars. The collars were set to fix 24-48 location coordinates per day.  All translocated tigers showed a preference for a certain habitat type within their new home range, and tended to select the majority of natural land cover type within the landscape as their main habitat, but the availability of natural forest habitat within the landscape remains essensial for their survival. The activity of male translocated tigers differed significantly between the six time intervals of 24 hours, and their most active periods were in the afternoon (14:00-18:00 hours and in the evening (18:00-22:00 hours. Despite being preliminary, the findings of this study-which was the first such study conducted in Sumatera-highlight the conservation value of tiger translocation and provide valuable information for improving future management of conflict tigers.Keywords: activity pattern, GPS collars, habitat selection, sumateran tiger, translocation

  3. Acute moderate exercise enhances compensatory brain activation in older adults.

    Science.gov (United States)

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation.

  4. Brain activation in discourse comprehension: a 3t fMRI study.

    Science.gov (United States)

    Martín-Loeches, Manuel; Casado, Pilar; Hernández-Tamames, Juan A; Alvarez-Linera, Juan

    2008-06-01

    To date a very small number of functional neuroimaging studies have specifically examined the effects of story coherence on brain activation using long narratives, a procedure fundamental to the study of global coherence. These studies, however, not only yielded notably divergent results, but also featured a number of caveats. It is the purpose of the present study to try to overcome some of these limitations. A left precuneus/posterior cingulate activation related to global coherence comprehension was in consonance with a part of previous literature. However, our most important results corresponded to left parietal regions (angular gyrus, BA 39), this diverging from the previous studies. Recent developments of the situational models of narrative comprehension could explain all these apparently inconsistent results. According to these, different situation models would be created as a function of the content of the narratives, which would yield in turn different patterns of brain activity. Our data also suggest that the same content might also give place to different situation models as a function of the degree of global coherence achieved by the reader or listener.

  5. Changes in brain activity related to eating chocolate: from pleasure to aversion.

    Science.gov (United States)

    Small, D M; Zatorre, R J; Dagher, A; Evans, A C; Jones-Gotman, M

    2001-09-01

    We performed successive H(2)(15)O-PET scans on volunteers as they ate chocolate to beyond satiety. Thus, the sensory stimulus and act (eating) were held constant while the reward value of the chocolate and motivation of the subject to eat were manipulated by feeding. Non-specific effects of satiety (such as feelings of fullness and autonomic changes) were also present and probably contributed to the modulation of brain activity. After eating each piece of chocolate, subjects gave ratings of how pleasant/unpleasant the chocolate was and of how much they did or did not want another piece of chocolate. Regional cerebral blood flow was then regressed against subjects' ratings. Different groups of structures were recruited selectively depending on whether subjects were eating chocolate when they were highly motivated to eat and rated the chocolate as very pleasant [subcallosal region, caudomedial orbitofrontal cortex (OFC), insula/operculum, striatum and midbrain] or whether they ate chocolate despite being satiated (parahippocampal gyrus, caudolateral OFC and prefrontal regions). As predicted, modulation was observed in cortical chemosensory areas, including the insula and caudomedial and caudolateral OFC, suggesting that the reward value of food is represented here. Of particular interest, the medial and lateral caudal OFC showed opposite patterns of activity. This pattern of activity indicates that there may be a functional segregation of the neural representation of reward and punishment within this region. The only brain region that was active during both positive and negative compared with neutral conditions was the posterior cingulate cortex. Therefore, these results support the hypothesis that there are two separate motivational systems: one orchestrating approach and another avoidance behaviours.

  6. Selenium Distribution Pattern, Antineoplastic and Immunostimulatory Activities of a Novel Organoselenium Compound Eb

    Institute of Scientific and Technical Information of China (English)

    YANJun; DENGSheng-ju; KUANGBin; HEFei; LIUTao; ZENGHui-hui

    2004-01-01

    Aim To study the distribution pattern, antineoplastic activity and immtmocompetence of a novel organeselenium compotmd Eb and investigate its in vivo antineoplastic potential. Methods Eb was administered to Kunming mice (dosage, 0.1 g·kg-1·d-1) intragastrically for 7 successive days. The contents of selenium in heart, liver, spleen, kidneys, lungs, stomach, brain, muscle, and bone were determined by fluommetric method on the eighth day. MTT assay was used to study tumor growth inhibition of Eb in vitro, and lymphocyte transformation, hemolysin formation and phagocytosis assay were used to study its immunocompetence. Results After 7 days' administration of Eb, the tissue contents of selenium in liver, spleen, lungs, kidneys, and bone of mice increased, especially those in liver and spleen increased significantly, compared with controls; but no significant changes of such contents were fotmd in muscle, heart, brain, and stomach. Eb demonstrated inhibitory effects on human Bel-7402, BGC-823, and Calu-3 cancer cell lines in vitro. Eb also showed ability to enhance lymphocyte transformation and serum hemolysin formation in v/tro and increase the phagocytosis of macrophages. Conclusion The validated antitumor and immtmostimulatory activities of Eb suggest a hypothesis that Eb may behave as a biological response modifier when used as an antitumor agent. Eb is worthy of further study in developing a new antineoplastic and immunity enhancing agent in the light of its antitumor activity, immtmocompetenee and specific distribution in liver, lungs, kidneys, bone, and spleen.

  7. Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain

    Science.gov (United States)

    2016-01-01

    Abstract When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation. PMID:27752540

  8. Effects of motor fatigue on human brain activity, an fMRI study

    NARCIS (Netherlands)

    van Duinen, Hiske; Renken, Remco; Maurits, Natasha; Zijdewind, Inge

    2007-01-01

    The main purpose of this study was to investigate effects of motor fatigue on brain activation in humans, using fMRI. First, we assessed brain activation that correlated with muscle activity during brief contractions at different force levels (force modulation). Second, a similar analysis was done f

  9. Imaging brain neuronal activity using functionalized magnetonanoparticles and MRI.

    Science.gov (United States)

    Akhtari, Massoud; Bragin, Anatol; Moats, Rex; Frew, Andrew; Mandelkern, Mark

    2012-10-01

    This study explored the use of non-radioactive 2-deoxy glucose (2DG)-labeled magnetonanoparticles (MNP) and magnetic resonance imaging (MRI) to detect functional activity during rest, peripheral stimulation, and epileptic seizures, in animal models. Non-radioactive 2DG was covalently attached to magnetonanoparticles composed of iron oxide and dextran and intravenous (tail) injections were performed. 2DG-MNP was injected in resting and stimulated naïve rodents and the subsequent MRI was compared to published (14)C-2DG autoradiography data. Reproducibility and statistical significance was established in one studied model. Negative contrast enhancement (NCE) in acute seizures and chronic models of epilepsy were investigated. MRI NCE due to 2DG-MNP particles was compared to that of plain (unconjugated) MNP in one animal. NCE due to 2DG-MNP particles at 3 T, which is approved for human use, was also investigated. Histology showed presence of MNP (following intravenous injection) in the brain tissues of resting naïve animal. 2DG-MNP intraparenchymal uptake was visible on MRI and histology. The locations of NCE agreed with published results of 2DG autoradiography in resting and stimulated animals and epileptic rats. Localization of epileptogenicity was confirmed by subsequent depth-electrode EEG (iEEG). Non-radioactive 2DG-MNP can cross the blood-brain barrier (BBB) and may accurately localize areas of increased activity. Although, this proof-of-principle study involves only a limited number of animals, and much more research and quantification are necessary to demonstrate that 2DG-MNP, or MNPs conjugated with other ligands, could eventually be used to image localized cerebral function with MRI in humans, this MNP-MRI approach is potentially applicable to the use of many bioactive molecules as ligands for imaging normal and abnormal localized cerebral functions.

  10. The concentration of criminal victimization and patterns of routine activities.

    Science.gov (United States)

    Kuo, Shih-Ya; Cuvelier, Steven J; Sheu, Chuen-Jim; Zhao, Jihong Solomon

    2012-06-01

    Although many repeat victimization studies have focused on describing the prevalence of the phenomenon, this study attempted to explain variations in the concentration of victimization by applying routine activities as a theoretical model. A multivariate analysis of repeat victimization based on the 2005 Taiwan criminal victimization data supported the general applicability of the routine activity model developed in Western culture for predicting repeat victimization. Findings that diverged from Western patterns included family income to assault, gender to robbery, and marital status, family income, and major activity to larceny incidents. These disparities illustrated the importance of considering the broader sociocultural context in the association between risk predictors and the concentration of criminal victimization. The contradictory results and nonsignificant variance also reflected untapped information on respondents' biological features and psychological tendencies. Future victimization research would do well to integrate measurements that are sensitive to salient sociocultural elements of the society being studied and individuals' biological and psychological traits.

  11. Evidence of impaired brain activity balance after passive sensorimotor stimulation in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Nikolaos Petsas

    Full Text Available OBJECTIVES: Examination of sensorimotor activation alone in multiple sclerosis (MS patients may not yield a comprehensive view of cerebral response to task stimulation. Additional information may be obtained by examining the negative BOLD response (deactivation. Aim of this work was to characterize activation and deactivation patterns during passive hand movements in MS patients. METHODS: 13 relapsing remitting-MS patients (RRMS, 18 secondary progressive-MS patients (SPMS and 15 healthy controls (HC underwent an fMRI study during passive right-hand movements. Activation and deactivation contrasts in the three groups were entered into ANOVA, age and gender corrected. Post-hoc analysis was performed with one-sample and two-sample t-tests. For each patient we obtained lesion volume (LV from both T1- and T2-weighted images. RESULTS: Activations showed a progressive extension to the ipsilateral brain hemisphere according to the group and the clinical form (HCactivation in the contralateral sensorimotor cortex was significantly correlated with that of deactivation in the DMN in HC and RRMS, but not in SPMS. Both increased activation and decreased deactivation patterns correlated with LV. CONCLUSION: In RRMS patients, increased cortical activation was associated with increased deactivation of the posterior cortex suggesting a greater resting-state activity in the DMN, probably aimed at facilitating sensorimotor circuit engagement during task performance. In SPMS the coupling between increased sensorimotor activation/increased DMN deactivation was not observed suggesting disorganization between anticorrelated functional networks as a consequence of a higher

  12. Brain Na+, K+-ATPase Activity In Aging and Disease

    Science.gov (United States)

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-01-01

    Na+/K+ pump or sodium- and potassium-activated adenosine 5’-triphosphatase (Na+, K+-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K+ with the exit of Na+ from cells, being the responsible for Na+/K+ equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na+, K+-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na+, K+-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca2+ mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na+, K+-ATPase involvement in signaling pathways

  13. Experimental study on alteration of adrenergic receptors activity in neuronal membranes protein of cerebral cortex following brain trauma in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-wei; XU Ru-xiang; QI Yi-long; CHEN Chang-cai

    2001-01-01

    Objective: To define the course of changes taken by α1 and β adrenergic receptors (AR) activity after traumatic brain injury (TBI) and explore the approach for secondary brain injury (SBI) management. Methods: The neuronal membrane protein of cortex were extracted from the rats subject to traumatic brain injury, and the changes of α1- and β-AR activities in the neuronal membranes were examined by radio ligand binding assay (RLBA). Results: α1- and β-AR activities underwent obvious changes, reaching their peak values at 24 h after TBI. α1-AR binding density (Bmax) reduced by 22.6%while the ligand affinity increased by 66.7%, and for β-AR, however, Bmax increased by 116.9% and the ligand affinity reduced by 50.7%. Their antagonists could counteract the changes ofα1- and β-AR activity. Conclusion: The patterns of changes varies between α1- and β-AR activity after TBI, suggesting their different roles in the neuronal membranes after brain trauma, and timely administration of AR antagonists is potentially beneficial in TBI management.

  14. Brain activation regions in schizophrenia patients performing the game piece memory task

    Institute of Scientific and Technical Information of China (English)

    Daxing Wu; Huifang Yin; Lirong Yan; Changlian Tan; Dewen Hu; Shuqiao Yao

    2009-01-01

    BACKGROUND: Go, a traditional Chinese chess-like game, requires many unknown functions of the brain including attention, imaging, problem solving and processing of spatial working memory. To date, it remains uncertain whether the intellectual activities required to play Go are related to the frontal lobe.OBJECTIVE: To investigate various patterns of brain region activity while schizophrenic patients and normal subjects engaged in memorizing piece placement in the Chinese game of Go. Spatial working memory was measured in order to validate whether the prefrontal lobe participates in this memory process.DESIGN, TIME AND SETTING: Non-randomized, concurrent control trial was performed at Second Xiangya Hospital of Central South University, between May and December 2004.PARTICIPANTS: A total of nine Chinese schizophrenic patients with no brain or bodily diseases and not undergoing electroshock treatment, who were in accordance with the DSM-IV criteria for schizophrenia, as well as thirteen healthy staffs and students with matched age, sex, and education were included. Patients and control subjects had no neurological disorders or mental retardation. In addition, all participants were right-handed.METHODS: The cognitive task for functional magnetic resonance imaging was a block design experiment. Both groups were asked to remember the placement of pieces in the Chinese game of Go on a computer screen. A brain activation map was analyzed in SPM99.MAIN OUTCOME MEASURES: Brain responses were compared with regard to activation region size, volume, and asymmetry indices.RESULTS: Compared with the control group, the reaction time was significantly delayed in schizophrenics performing the working memory task (P < 0.05). When performing the tasks, normal subjects showed significant activation of the bilateral dorsolateral prefrontal lobe with left dominance; the asymmetry indices were: frontal lobe, +0.32; temporal lobe, -0.58; parietal lobe, 0.41 ; and occipital lobe, -0.34. On

  15. The Pattern of Brain-Derived Neurotrophic Factor Gene Expression in the Hippocampus of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Iraj Salehi

    2010-06-01

    Full Text Available Objective(sThe aim of this study was to evaluate the effects of regular exercise in preventing diabetes complication in the hippocampus of streptozotocin (STZ-induced diabetic rat.Materials and MethodsA total of 48 male wistar rats were divided into four groups (control, control exercise, diabetic and diabetic exercise. Diabetes was induced by injection of single dose of STZ. Exercise was performed for one hr every day, over a period of 8 weeks. The antioxidant enzymes (SOD, GPX, CAT and GR and oxidant indexes with brain-derived neurotrophic factor (BDNF protein and its mRNA and apoptosis were measured in hippocampus of rats. ResultsA significant decrease in antioxidant enzymes activities and increased malondialdehyde (MDA level were observed in diabetic rats (P= 0.004. In response to exercise, antioxidant enzymes activities increased (P= 0.004. In contrast, MDA level decreased in diabetic rats (P= 0.004. Induction of diabetes caused an increase of BDNF protein and its mRNA expression. In response to exercise, BDNF protein and its mRNA expression reduced in hippocampus of diabetic rats. ConclusionDiabetes induced oxidative stress and increased BDNF gene expression. Exercise ameliorated oxidative stress and decreased BDNF gene expression.

  16. P. falciparum isolate-specific distinct patterns of induced apoptosis in pulmonary and brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Nadine N'Dilimabaka

    Full Text Available The factors implicated in the transition from uncomplicated to severe clinical malaria such as pulmonary oedema and cerebral malaria remain unclear. It is known that alterations in vascular integrity due to endothelial cell (EC activation and death occur during severe malaria. In this study, we assessed the ability of different P. falciparum clinical isolates to induce apoptosis in ECs derived from human lung and brain. We observed that induction of EC apoptosis was sensitive to the environmental pH and required direct contact between the parasite and the cell, though it was not correlated to the ability of the parasite to cytoadhere. Moreover, the extent of induced apoptosis in the two EC types varied with the isolate. Analysis of parasite genes transcript led us to propose that the activation of different pathways, such as Plasmodium apoptosis-linked pathogenicity factors (PALPF, PALPF-2, PALPF-5 and PF11_0521, could be implied in EC death. These observations provide an experimental framework to decipher the molecular mechanism implicated in the genesis of severe malaria.

  17. Energetic trade-offs between brain size and offspring production: Marsupials confirm a general mammalian pattern.

    Science.gov (United States)

    Isler, Karin

    2011-03-01

    Recently, Weisbecker and Goswami presented the first comprehensive comparative analysis of brain size, metabolic rate, and development periods in marsupial mammals. In this paper, a strictly energetic perspective is applied to identify general mammalian correlates of brain size evolution. In both marsupials and placentals, the duration or intensity of maternal investment is a key correlate of relative brain size, but here I show that allomaternal energy subsidies may also play a role. In marsupials, an energetic constraint on brain size in adults is only revealed if we consider both metabolic and reproductive rates simultaneously, because a strong trade-off between encephalization and offspring production masks the positive correlation between basal metabolic rate and brain size in a bivariate comparison. In conclusion, starting from an energetic perspective is warranted to elucidate relations between ecology, social systems, life history, and brain size in all mammals.

  18. Active ultrasound pattern injection system (AUSPIS for interventional tool guidance.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Guo

    Full Text Available Accurate tool tracking is a crucial task that directly affects the safety and effectiveness of many interventional medical procedures. Compared to CT and MRI, ultrasound-based tool tracking has many advantages, including low cost, safety, mobility and ease of use. However, surgical tools are poorly visualized in conventional ultrasound images, thus preventing effective tool tracking and guidance. Existing tracking methods have not yet provided a solution that effectively solves the tool visualization and mid-plane localization accuracy problem and fully meets the clinical requirements. In this paper, we present an active ultrasound tracking and guiding system for interventional tools. The main principle of this system is to establish a bi-directional ultrasound communication between the interventional tool and US imaging machine within the tissue. This method enables the interventional tool to generate an active ultrasound field over the original imaging ultrasound signals. By controlling the timing and amplitude of the active ultrasound field, a virtual pattern can be directly injected into the US machine B mode display. In this work, we introduce the time and frequency modulation, mid-plane detection, and arbitrary pattern injection methods. The implementation of these methods further improves the target visualization and guiding accuracy, and expands the system application beyond simple tool tracking. We performed ex vitro and in vivo experiments, showing significant improvements of tool visualization and accurate localization using different US imaging platforms. An ultrasound image mid-plane detection accuracy of ±0.3 mm and a detectable tissue depth over 8.5 cm was achieved in the experiment. The system performance is tested under different configurations and system parameters. We also report the first experiment of arbitrary pattern injection to the B mode image and its application in accurate tool tracking.

  19. Active ultrasound pattern injection system (AUSPIS) for interventional tool guidance.

    Science.gov (United States)

    Guo, Xiaoyu; Kang, Hyun-Jae; Etienne-Cummings, Ralph; Boctor, Emad M

    2014-01-01

    Accurate tool tracking is a crucial task that directly affects the safety and effectiveness of many interventional medical procedures. Compared to CT and MRI, ultrasound-based tool tracking has many advantages, including low cost, safety, mobility and ease of use. However, surgical tools are poorly visualized in conventional ultrasound images, thus preventing effective tool tracking and guidance. Existing tracking methods have not yet provided a solution that effectively solves the tool visualization and mid-plane localization accuracy problem and fully meets the clinical requirements. In this paper, we present an active ultrasound tracking and guiding system for interventional tools. The main principle of this system is to establish a bi-directional ultrasound communication between the interventional tool and US imaging machine within the tissue. This method enables the interventional tool to generate an active ultrasound field over the original imaging ultrasound signals. By controlling the timing and amplitude of the active ultrasound field, a virtual pattern can be directly injected into the US machine B mode display. In this work, we introduce the time and frequency modulation, mid-plane detection, and arbitrary pattern injection methods. The implementation of these methods further improves the target visualization and guiding accuracy, and expands the system application beyond simple tool tracking. We performed ex vitro and in vivo experiments, showing significant improvements of tool visualization and accurate localization using different US imaging platforms. An ultrasound image mid-plane detection accuracy of ±0.3 mm and a detectable tissue depth over 8.5 cm was achieved in the experiment. The system performance is tested under different configurations and system parameters. We also report the first experiment of arbitrary pattern injection to the B mode image and its application in accurate tool tracking.

  20. Development and validation of a reliable method for studying the distribution pattern for opiates metabolites in brain.

    Science.gov (United States)

    Guerrini, Katia; Argo, Antonella; Borroni, Cristina; Catalano, Daria; Dell'acqua, Lucia; Farè, Fiorenza; Procaccianti, Paolo; Roda, Gabriella; Gambaro, Veniero

    2013-01-25

    Brain distribution pattern of "street" heroin metabolites (morphine and codeine) was investigated in two fatalities due to "acute narcotism". A suitable sample pretreatment prior to solid-phase-extraction was developed to achieve a good recovery of the analytes and to eliminate the interfering species. After derivatization with MSTFA, samples were analyzed by GC/MS. Specificity, accuracy, precision and linearity of the method were evaluated; LOD and LOQ were, respectively, 10ng/25ng for morphine and 5ng/10ng for codeine. This method was applied to the analysis of six brain areas (hippocampus, frontal lobe, occipital lobe, nuclei, bulb and pons) coming from two cases of heroin-related deaths. No evidence of accumulation of metabolites in a specific brain region was found.

  1. Pattern of Brain Injury in the Acute Setting of Human Septic Shock

    OpenAIRE

    Polito, Andrea; Eischwald, Frédéric; Maho, Anne-Laure,; Polito, Angelo; Azabou, Eric; annane, djillali; Chrétien, Fabrice; Stevens, Robert; Carlier, Robert; Sharshar, Tarek

    2013-01-01

    International audience; BackgroundSepsis-associated brain dysfunction has been linked to white matter lesions (leukoencephalopathy) and ischemic stroke. Our objective was to assess the prevalence of brain lesions in septic shock patients requiring magnetic resonance imaging (MRI) for an acute neurologic change.Method71 septic shock patients were included in a prospective observational study. Patients underwent daily neurological examination. Brain MRI was obtained in patients who developed fo...

  2. The wiring of developing sensory circuits - from patterned spontaneous activity to mechanisms of synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Alexandra Helen Leighton

    2016-09-01

    intend to outline the most recent descriptions of spontaneous activity patterns in rodent developing sensory areas, as well as the inferences we can make about the information content of those activity patterns and ideas about the plasticity rules that allow this activity to shape the young brain.

  3. Atrial natriuretic peptide and feeding activity patterns in rats

    Directory of Open Access Journals (Sweden)

    Oliveira M.H.A.

    1997-01-01

    Full Text Available This review presents historical data about atrial natriuretic peptide (ANP from its discovery as an atrial natriuretic factor (ANF to its role as an atrial natriuretic hormone (ANH. As a hormone, ANP can interact with the hypothalamic-pituitary-adrenal axis (HPA-A and is related to feeding activity patterns in the rat. Food restriction proved to be an interesting model to investigate this relationship. The role of ANP must be understood within a context of peripheral and central interactions involving different peptides and pathways

  4. Pattern matching based active optical sorting of colloids/cells

    Science.gov (United States)

    Verma, R. S.; Dasgupta, R.; Ahlawat, S.; Kumar, N.; Uppal, A.; Gupta, P. K.

    2013-08-01

    We report active optical sorting of colloids/cells by employing a cross correlation based pattern matching technique for selection of the desired objects and thereafter sorting using dynamically controllable holographic optical traps. The problem of possible collision between the different sets of objects during sorting was avoided by raising one set of particles to a different plane. We also present the results obtained on using this approach for some representative applications such as sorting of silica particles of two different sizes, of closely packed colloids and of white blood cells and red blood cells from a mixture of the two.

  5. Circadian patterns of Wikipedia editorial activity: a demographic analysis.

    Directory of Open Access Journals (Sweden)

    Taha Yasseri

    Full Text Available Wikipedia (WP as a collaborative, dynamical system of humans is an appropriate subject of social studies. Each single action of the members of this society, i.e., editors, is well recorded and accessible. Using the cumulative data of 34 Wikipedias in different languages, we try to characterize and find the universalities and differences in temporal activity patterns of editors. Based on this data, we estimate the geographical distribution of editors for each WP in the globe. Furthermore we also clarify the differences among different groups of WPs, which originate in the variance of cultural and social features of the communities of editors.

  6. Circadian patterns of Wikipedia editorial activity: A demographic analysis

    CERN Document Server

    Yasseri, Taha; Kerétsz, János

    2011-01-01

    Wikipedia (WP) as a collaborative, dynamical system of humans is an appropriate subject of social studies. Each single action of the members of this society, i.e. editors, is well recorded and accessible. Using the cumulative data of 34 Wikipedias in different languages, we try to characterize and find the universalities and differences in temporal activity patterns of editors. Based on this data, we estimate the geographical distribution of editors for each WP in the globe. Furthermore we also clarify the differences among different groups of WPs, which originate in the variance of cultural and social features of the communities of editors.

  7. Verbal fluency as a prefrontal activation probe: a validation study using {sup 99m}Tc-ECD brain SPET

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, K. [Department of Nuclear Medicine, Ghent University Hospital (Belgium); Department of Psychiatry and Medical Psychology, Ghent University Hospital and Ghent University (Belgium); Brans, B.; Laere, K. van; Versijpt, J.; Dierckx, R. [Department of Nuclear Medicine, Ghent University Hospital (Belgium); Lahorte, P. [Department of Nuclear Medicine, Ghent University Hospital (Belgium); Laboratory of Subatomic and Radiation Physics, Ghent University (Belgium); Heeringen, K. van [Department of Psychiatry and Medical Psychology, Ghent University Hospital and Ghent University (Belgium)

    2000-12-01

    This study aimed to investigate the feasibility of brain single-photon emission tomography (SPET) in the letter and category fluency paradigm of the Controlled Oral Word Association (COWA) test in healthy volunteers. Two groups each comprising ten right-handed healthy volunteers were injected twice with 370 MBq technetium-99m ethyl cysteinate dimer following a split-dose paradigm (resting and activation condition). Statistical parametric mapping (SPM96) was used to determine voxelwise significant changes. The letter fluency and the category fluency activation paradigm had a differential brain activation pattern. The posterior part of the left inferior prefrontal cortex (LIPC) was activated in both paradigms, with the category fluency task having an extra activation in the anterior LIPC. In the category fluency task, but not the letter fluency task, an activation in the right inferior prefrontal cortex was found. These findings confirm to a large extent the results of previous functional magnetic resonance imaging and positron emission tomography studies in semantic and phonological activation paradigms. The choice and validity of various methodological characteristics of the experimental design leading to these results are critically discussed. It is concluded that brain SPET activation with the letter fluency and category fluency paradigm under standard neuropsychological conditions in healthy volunteers is both technically and practically feasible. (orig.)

  8. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seok Kyun; Kim, Gwang Won; Kang, Heoung Keun; Jeong, Gwang Woo [Chonnam National University, Gwangju (Korea, Republic of); Yang, Jong Chul [Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Seok Kwun [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2012-06-15

    This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males.

  9. New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter.

    Science.gov (United States)

    Tozzi, Arturo; Zare, Marzieh; Benasich, April A

    2016-01-01

    Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such "intrinsic" brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to "mind". However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the "classical" definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and "free-energy" (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm of "variational

  10. Exercise modulates redox-sensitive small GTPase activity in the brain microvasculature in a model of brain metastasis formation.

    Science.gov (United States)

    Wolff, Gretchen; Balke, Jordan E; Andras, Ibolya E; Park, Minseon; Toborek, Michal

    2014-01-01

    Tumor cell extravasation into the brain requires passage through the blood-brain barrier (BBB). There is evidence that exercise can alter the oxidation status of the brain microvasculature and protect against tumor cell invasion into the brain, although the mechanisms are not well understood. In the current study, we focused on the role of microenvironment generated by exercise and metastasizing tumor cells at the levels of brain microvessels, influencing oxidative stress-mediated responses and activation of redox-sensitive small GTPases. Mature male mice were exercised for four weeks using a running wheel with the average voluntary running distance 9.0 ± 0.3 km/day. Mice were then infused with 1.0 × 10(6) D122 (murine Lewis lung carcinoma) cells into the brain microvasculature, and euthanized either 48 hours (in short-term studies) or 2-3 weeks (in long-term studies) post tumor cell administration. A significant increase in the level of reactive oxygen species was observed following 48 hours or 3 weeks of tumor cells growth, which was accompanied by a reduction in MnSOD expression in the exercised mice. Activation of the small GTPase Rho was negatively correlated with running distance in the tumor cell infused mice. Together, these data suggest that exercise may play a significant role during aggressive metastatic invasion, especially at higher intensities in pre-trained individuals.

  11. Exercise modulates redox-sensitive small GTPase activity in the brain microvasculature in a model of brain metastasis formation.

    Directory of Open Access Journals (Sweden)

    Gretchen Wolff

    Full Text Available Tumor cell extravasation into the brain requires passage through the blood-brain barrier (BBB. There is evidence that exercise can alter the oxidation status of the brain microvasculature and protect against tumor cell invasion into the brain, although the mechanisms are not well understood. In the current study, we focused on the role of microenvironment generated by exercise and metastasizing tumor cells at the levels of brain microvessels, influencing oxidative stress-mediated responses and activation of redox-sensitive small GTPases. Mature male mice were exercised for four weeks using a running wheel with the average voluntary running distance 9.0 ± 0.3 km/day. Mice were then infused with 1.0 × 10(6 D122 (murine Lewis lung carcinoma cells into the brain microvasculature, and euthanized either 48 hours (in short-term studies or 2-3 weeks (in long-term studies post tumor cell administration. A significant increase in the level of reactive oxygen species was observed following 48 hours or 3 weeks of tumor cells growth, which was accompanied by a reduction in MnSOD expression in the exercised mice. Activation of the small GTPase Rho was negatively correlated with running distance in the tumor cell infused mice. Together, these data suggest that exercise may play a significant role during aggressive metastatic invasion, especially at higher intensities in pre-trained individuals.

  12. Turing Patterns in Estuarine Sediments by Microbiological Activity

    Science.gov (United States)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    The use of Turing mechanisms and lattice Lotka-Volterra model (LLV), also by means of the non-extensive statistical mechanics, can mathematically describe well the phenomena of clustering and their associated boundaries with fractal dimensionality, which occurs in various natural situations, among them, biogeochemical processes via microorganisms in estuarine and marine sediments on the planet Earth. The author did an experimental analysis in field work which took into account the spatial and temporal behavior of Turing patterns, in the form of microbial activity within estuarine subsurface sediments. We show we can find the characteristics of clustering and fractallity which are present in the dynamical LLV model and Turing patterns mechanisms, and the non-extensive statistical mechanics could be used to find the q-entropy (Sq), and other non-equilibrium statistical parameters of the studied estuarine (Caraís lagoon) subsurface biogeochemical system. In this paper, the author suggests that such kinds of subsurface ecological systems are of interest to Astrobiology because if we find Turing-type clustered geomorphological patterns, below meter scale, on the near subsurface and inside rocks at the surface of planet Mars, and also find non-equilibrium statistical parameters (temperature, [F], [C], [S], etc.), displaying Turing-type mechanism, in the aquatic environments of the internal seas of planets Jupiter's moon Europa and the internal global ocean of Saturn's moon Enceladus, that could mean that possible hypothetical biogeochemical activities are present in such places. This could be a bio-indicator tool. And with further studies we could find the q-entropy Sq to establish better defined statistical mechanical parameters for such environments and to refine models for their evolution, as we do on planet Earth.

  13. Time-invariant person-specific frequency templates in human brain activity

    CERN Document Server

    Doron, I; Baruchi, I; Towle, V L; Ben-Jacob, E; Doron, Itai; Hulata, Eyal; Baruchi, Itay; Towle, Vernon L.; Ben-Jacob, Eshel

    2006-01-01

    The various human brain tasks are performed at different locations and time scales. Yet, we discovered the existence of time-invariant (above an essential time scale) partitioning of the brain activity into person-specific frequency bands. For that, we perform temporal and ensemble averaging of best wavelet packet bases from multi-electrode EEG recordings. These personal frequency-bands provide new templates for quantitative analyses of brain function, e.g., normal vs. epileptic activity.

  14. Epidermal patterning genes are active during embryogenesis in Arabidopsis.

    Science.gov (United States)

    Costa, Silvia; Dolan, Liam

    2003-07-01

    Epidermal cells in the root of Arabidopsis seedling differentiate either as hair or non-hair cells, while in the hypocotyl they become either stomatal or elongated cells. WEREWOLF (WER) and GLABRA2 (GL2) are positive regulators of non-hair and elongated cell development. CAPRICE (CPC) is a positive regulator of hair cell development in the root. We show that WER, GL2 and CPC are expressed and active during the stages of embryogenesis when the pattern of cells in the epidermis of the root-hypocotyl axis forms. GL2 is first expressed in the future epidermis in the heart stage embryo and its expression is progressively restricted to those cells that will acquire a non-hair identity in the transition between torpedo and mature stage. The expression of GL2 at the heart stage requires WER function. WER and CPC are transiently expressed throughout the root epidermal layer in the torpedo stage embryo when the cell-specific pattern of GL2 expression is being established in the epidermis. We also show that WER positively regulates CPC transcription and GL2 negatively regulates WER transcription in the mature embryo. We propose that the restriction of GL2 to the future non-hair cells in the root epidermis can be correlated with the activities of WER and CPC during torpedo stage. In the embryonic hypocotyl we show that WER controls GL2 expression. We also provide evidence indicating that CPC may also regulate GL2 expression in the hypocotyl.

  15. Enhancing Physical Activity and Brain Reorganization after Stroke

    Directory of Open Access Journals (Sweden)

    Janet H. Carr

    2011-01-01

    Full Text Available It is becoming increasingly clear that, if reorganization of brain function is to be optimal after stroke, there needs to be a reorganisation of the methods used in physical rehabilitation and the time spent in specific task practice, strength and endurance training, and aerobic exercise. Frequency and intensity of rehabilitation need to be increased so that patients can gain the energy levels and vigour necessary for participation in physical activity both during rehabilitation and after discharge. It is evident that many patients are discharged from inpatient rehabilitation severely deconditioned, meaning that their energy levels are too low for active participation in daily life. Physicians, therapists, and nursing staff responsible for rehabilitation practice should address this issue not only during inpatient rehabilitation but also after discharge by promoting and supporting community-based exercise opportunities. During inpatient rehabilitation, group sessions should be frequent and need to include specific aerobic training. Physiotherapy must take advantage of the training aids available, including exercise equipment such as treadmills, and of new developments in computerised feedback systems, robotics, and electromechanical trainers. For illustrative purposes, this paper focuses on the role of physiotherapists, but the necessary changes in practice and in attitude will require cooperation from many others.

  16. Brain Activity while Reading Sentences with Kanji Characters Expressing Emotions

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe the brain activity associated with kanji characters expressing emotion, which are places at the end of a sentence. Japanese people use a special kanji character in brackets at the end of sentences in text messages such as those sent through e-mail and messenger tools. Such kanji characters plays a role to expresses the sender's emotion (such as fun, laughter, sadness, tears), like emoticons. It is a very simple and effective way to convey the senders' emotions and his/her thoughts to the receiver. In this research, we investigate the effects of emotional kanji characters by using an fMRI study. The experimental results show that both the right and left inferior frontal gyrus, which have been implicated on verbal and nonverbal information, were activated. We found that we detect a sentence with an emotional kanji character as the verbal and nonverval information, and a sentence with emotional kanji characters enrich communication between the sender and the reciever.

  17. MEG can map short and long-term changes in brain activity following deep brain stimulation for chronic pain.

    Directory of Open Access Journals (Sweden)

    Hamid R Mohseni

    Full Text Available Deep brain stimulation (DBS has been shown to be clinically effective for some forms of treatment-resistant chronic pain, but the precise mechanisms of action are not well understood. Here, we present an analysis of magnetoencephalography (MEG data from a patient with whole-body chronic pain, in order to investigate changes in neural activity induced by DBS for pain relief over both short- and long-term. This patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC. We demonstrate that a novel method, null-beamforming, can be used to localise accurately brain activity despite the artefacts caused by the presence of DBS electrodes and stimulus pulses. The accuracy of our source localisation was verified by correlating the predicted DBS electrode positions with their actual positions. Using this beamforming method, we examined changes in whole-brain activity comparing pain relief achieved with deep brain stimulation (DBS ON and compared with pain experienced with no stimulation (DBS OFF. We found significant changes in activity in pain-related regions including the pre-supplementary motor area, brainstem (periaqueductal gray and dissociable parts of caudal and rostral ACC. In particular, when the patient reported experiencing pain, there was increased activity in different regions of ACC compared to when he experienced pain relief. We were also able to demonstrate long-term functional brain changes as a result of continuous DBS over one year, leading to specific changes in the activity in dissociable regions of caudal and rostral ACC. These results broaden our understanding of the underlying mechanisms of DBS in the human brain.

  18. Cocaine is pharmacologically active in the nonhuman primate fetal brain

    DEFF Research Database (Denmark)

    Benveniste, Helene; Fowler, Joanna S; Rooney, William D

    2010-01-01

    Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third......-trimester pregnant nonhuman primates, cocaine at doses typically used by drug abusers significantly increased brain glucose metabolism to the same extent in the mother as in the fetus (approximately 100%). Inasmuch as brain glucose metabolism is a sensitive marker of brain function, the current findings provide...... evidence that cocaine use by a pregnant mother will also affect the function of the fetal brain. We are also unique in showing that cocaine's effects in brain glucose metabolism differed in pregnant (increased) and nonpregnant (decreased) animals, which suggests that the psychoactive effects of cocaine...

  19. The relation between structural and functional connectivity patterns in complex brain networks

    NARCIS (Netherlands)

    Stam, C. J.; van Straaten, E. C W; Van Dellen, E.; Tewarie, P.; Gong, G.; Hillebrand, A.; Meier, J.; Van Mieghem, P.

    2016-01-01

    Objective An important problem in systems neuroscience is the relation between complex structural and functional brain networks. Here we use simulations of a simple dynamic process based upon the susceptible–infected–susceptible (SIS) model of infection dynamics on an empirical structural brain netw

  20. State-Dependent Changes of Connectivity Patterns and Functional Brain Network Topology in Autism Spectrum Disorder

    Science.gov (United States)

    Barttfeld, Pablo; Wicker, Bruno; Cukier, Sebastian; Navarta, Silvana; Lew, Sergio; Leiguarda, Ramon; Sigman, Mariano

    2012-01-01

    Anatomical and functional brain studies have converged to the hypothesis that autism spectrum disorders (ASD) are associated with atypical connectivity. Using a modified resting-state paradigm to drive subjects' attention, we provide evidence of a very marked interaction between ASD brain functional connectivity and cognitive state. We show that…

  1. Expertise modulates local regional homogeneity of spontaneous brain activity in the resting brain: an fMRI study using the model of skilled acupuncturists.

    Science.gov (United States)

    Dong, Minghao; Qin, Wei; Zhao, Ling; Yang, Xuejuan; Yuan, Kai; Zeng, Fang; Sun, Jinbo; Yu, Dahua; von Deneen, Karen M; Liang, Fanrong; Tian, Jie

    2014-03-01

    Studies on training/expertise-related effects on human brain in context of neuroplasticity have revealed that plastic changes modulate not only task activations but also patterns and strength of internetworks and intranetworks functional connectivity in the resting state. Much has known about plastic changes in resting state on global level; however, how training/expertise-related effect affects patterns of local spontaneous activity in resting brain remains elusive. We investigated the homogeneity of local blood oxygen level-dependent fluctuations in the resting state using a regional homogeneity (ReHo) analysis among 16 acupuncturists and 16 matched nonacupuncturists (NA). To prove acupuncturists' expertise, we used a series of psychophysical tests. Our results demonstrated that, acupuncturists significantly outperformed NA in tactile-motor and emotional regulation domain and the acupuncturist group showed increased coherence in local BOLD signal fluctuations in the left primary motor cortex (MI), the left primary somatosensory cortex (SI) and the left ventral medial prefrontal cortex/orbitofrontal cortex (VMPFC/OFC). Regression analysis displayed that, in the acupuncturists group, ReHo of VMPFC/OFC could predict behavioral outcomes, evidenced by negative correlation between unpleasantness ratings and ReHo of VMPFC/OFC and ReHo of SI and MI positively correlated with the duration of acupuncture practice. We suggest that expertise could modulate patterns of local resting state activity by increasing regional clustering strength, which is likely to contribute to advanced local information processing efficiency. Our study completes the understanding of neuroplasticity changes by adding the evidence of local resting state activity alterations, which is helpful for elucidating in what manner training effect extends beyond resting state.

  2. Evidence for predilection of macrophage infiltration patterns in the deeper midline and mesial temporal structures of the brain uniquely in patients with HIV-associated dementia

    Directory of Open Access Journals (Sweden)

    Hsu Kenneth

    2009-12-01

    Full Text Available Abstract Background HIV-1 penetrates the central nervous system, which is vital for HIV-associated dementia (HAD. But the role of cellular infiltration and activation together with HIV in the development of HAD is poorly understood. Methods To study activation and infiltration patterns of macrophages, CD8+ T cells in relation to HIV in diverse CNS areas of patients with and without dementia. 46 brain regions from two rapidly progressing severely demented patients and 53 regions from 4 HIV+ non-dementia patients were analyzed. Macrophage and CD8+ T cell infiltration of the CNS in relation to HIV was assessed using immuno-histochemical analysis with anti-HIV (P24, anti-CD8 and anti-CD68, anti-S-100A8 and granzyme B antibodies (cellular activation. Statistical analysis was performed with SPSS 12.0 with Student's t test and ANOVA. Results Overall, the patterns of infiltration of macrophages and CD8+ T cells were indiscernible between patients with and without dementia, but the co-localization of macrophages and CD8+ T cells along with HIV P24 antigen in the deeper midline and mesial temporal structures of the brain segregated the two groups. This predilection of infected macrophages and CD8+ T cells to the middle part of the brain was unique to both HAD patients, along with unique nature of provirus gag gene sequences derived from macrophages in the midline and mesial temporal structures. Conclusion Strong predilection of infected macrophages and CD8+ T cells was typical of the deeper midline and mesial temporal structures uniquely in HAD patients, which has some influence on neurocognitive impairment during HIV infection.

  3. Physical Activity Patterns in the Elderly Kashan Population

    Science.gov (United States)

    Sadrollahi, Ali; Hosseinian, Masoumeh; Masoudi Alavi, Negin; Khalili, Zahra; Esalatmanesh, Sophia

    2016-01-01

    Kashan. The pattern of physical activity in the elderly depends on their lifestyle. A promotion of active lifestyles should be a part of health care planning for the elderly. PMID:27621923

  4. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    Science.gov (United States)

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats.

  5. Targeting complement activation in brain-dead donors improves renal function after transplantation

    NARCIS (Netherlands)

    Damman, Jeffrey; Hoeger, Simone; Boneschansker, Leo; Theruvath, Ashok; Waldherr, Ruediger; Leuvenink, Henri G.; Ploeg, Rutger J.; Yard, Benito A.; Seelen, Marc A.

    2011-01-01

    Kidneys recovered from brain-dead donors have inferior outcomes after transplantation compared to kidneys from living donors. Since complement activation plays an important role in renal transplant related injury, targeting complement activation in brain-dead donors might improve renal function afte

  6. Advanced brain aging: relationship with epidemiologic and genetic risk factors, and overlap with Alzheimer disease atrophy patterns.

    Science.gov (United States)

    Habes, M; Janowitz, D; Erus, G; Toledo, J B; Resnick, S M; Doshi, J; Van der Auwera, S; Wittfeld, K; Hegenscheid, K; Hosten, N; Biffar, R; Homuth, G; Völzke, H; Grabe, H J; Hoffmann, W; Davatzikos, C

    2016-04-05

    We systematically compared structural imaging patterns of advanced brain aging (ABA) in the general-population, herein defined as significant deviation from typical BA to those found in Alzheimer disease (AD). The hypothesis that ABA would show different patterns of structural change compared with those found in AD was tested via advanced pattern analysis methods. In particular, magnetic resonance images of 2705 participants from the Study of Health in Pomerania (aged 20-90 years) were analyzed using an index that captures aging atrophy patterns (Spatial Pattern of Atrophy for Recognition of BA (SPARE-BA)), and an index previously shown to capture atrophy patterns found in clinical AD (Spatial Patterns of Abnormality for Recognition of Early Alzheimer's Disease (SPARE-AD)). We studied the association between these indices and risk factors, including an AD polygenic risk score. Finally, we compared the ABA-associated atrophy with typical AD-like patterns. We observed that SPARE-BA had significant association with: smoking (P<0.05), anti-hypertensive (P<0.05), anti-diabetic drug use (men P<0.05, women P=0.06) and waist circumference for the male cohort (P<0.05), after adjusting for age. Subjects with ABA had spatially extensive gray matter loss in the frontal, parietal and temporal lobes (false-discovery-rate-corrected q<0.001). ABA patterns of atrophy were partially overlapping with, but notably deviating from those typically found in AD. Subjects with ABA had higher SPARE-AD values; largely due to the partial spatial overlap of associated patterns in temporal regions. The AD polygenic risk score was significantly associated with SPARE-AD but not with SPARE-BA. Our findings suggest that ABA is likely characterized by pathophysiologic mechanisms that are distinct from, or only partially overlapping with those of AD.

  7. PATTERNS OF ACTIVITY IN A GLOBAL MODEL OF A SOLAR ACTIVE REGION

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Viall, N. M., E-mail: stephen.bradshaw@rice.edu, E-mail: Nicholeen.M.Viall@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-04-10

    In this work we investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of frequencies. What differs is the average frequency of the distributions. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine hydrodynamic and forward modeling codes with a magnetic field extrapolation to create a model active region and apply the time lag method to synthetic observations. Our aim is not to reproduce a particular set of observations in detail, but to recover some typical properties and patterns observed in active regions. Our key findings are the following. (1) Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. (2) Shorter coronal loops in the core cool more quickly than longer loops at the periphery. (3) All channel pairs show zero time lag when the line of sight passes through coronal loop footpoints. (4) There is strong evidence that plasma must be re-energized on a timescale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies are operating across active regions. (5) Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  8. Estimating cognitive load during self-regulation of brain activity and neurofeedback with therapeutic brain-computer interfaces

    Directory of Open Access Journals (Sweden)

    Robert eBauer

    2015-02-01

    Full Text Available Neurofeedback training with brain-computer interfaces is currently studied in a variety of neurological and neuropsychiatric conditions to reduce disorder-specific symptoms. For this purpose, a variety of classification algorithms have been explored to distinguish different brain states. These neural states, e.g. self-regulated brain activity versus rest, are separated by setting a threshold parameter. Measures such as the maximum classification accuracy have been introduced to evaluate the performance of these algorithms. Interestingly, the very same measures are often used to estimate the subject’s ability to perform brain self-regulation. This is surprising, as the goal of improving the tool that differentiates brain states is different from the aim of optimizing neurofeedback for the subject who performs brain self-regulation. For the latter, knowledge about mental resources and work load is essential to adapt the difficulty of the intervention.In this context, we apply an analytical method and provide empirical data to determine the zone of proximal development as a measure of a subject’s cognitive resources and the instructional efficacy of neurofeedback. This approach is based on a reconsideration of item-response theory and cognitive load theory for instructional design, and combines them with the classification accuracy curve as a measure of BCI performance.

  9. Melanoma brain metastases: an unmet challenge in the era of active therapy.

    Science.gov (United States)

    Gorantla, Vikram; Kirkwood, John M; Tawbi, Hussein A

    2013-10-01

    Metastatic disease to the brain is a frequent manifestation of melanoma and is associated with significant morbidity and mortality and poor prognosis. Surgery and stereotactic radiosurgery provide local control but less frequently affect the overall outcome of melanoma brain metastases (MBM). The role of systemic therapies for active brain lesions has been largely underinvestigated, and patients with active brain lesions are excluded from the vast majority of clinical trials. The advent of active systemic therapy has revolutionized the care of melanoma patients, but this benefit has not been systematically translated into intracranial activity. In this article, we review the biology and clinical outcomes of patients with MBM, and the evidence supporting the use of radiation, surgery, and systemic therapy in MBM. Prospective studies that included patients with active MBM have shown clinical intracranial activity that parallels systemic activity and support the inclusion of patients with active MBM in clinical trials involving novel agents and combination therapies.

  10. Altered baseline brain activity in experts measured by amplitude of low frequency fluctuations (ALFF): a resting state fMRI study using expertise model of acupuncturists.

    Science.gov (United States)

    Dong, Minghao; Li, Jun; Shi, Xinfa; Gao, Shudan; Fu, Shijun; Liu, Zongquan; Liang, Fanrong; Gong, Qiyong; Shi, Guangming; Tian, Jie

    2015-01-01

    It is well established that expertise modulates evoked brain activity in response to specific stimuli. Recently, researchers have begun to investigate how expertise influences the resting brain. Among these studies, most focused on the connectivity features within/across regions, i.e., connectivity patterns/strength. However, little concern has been given to a more fundamental issue whether or not expertise modulates baseline brain activity. We investigated this question using amplitude of low-frequency (expertise model, i.e., acupuncturists, due to their robust proficiency in tactile perception and emotion regulation. After the psychophysical and behavioral expertise screening procedure, 23 acupuncturists and 23 matched non-acupuncturists (NA) were enrolled. Our results explicated higher ALFF for acupuncturists in the left ventral medial prefrontal cortex (VMPFC) and the contralateral hand representation of the primary somatosensory area (SI) (corrected for multiple comparisons). Additionally, ALFF of VMPFC was negatively correlated with the outcomes of the emotion regulation task (corrected for multiple comparisons). We suggest that our study may reveal a novel connection between the neuroplasticity mechanism and resting state activity, which would upgrade our understanding of the central mechanism of learning. Furthermore, by showing that expertise can affect the baseline brain activity as indicated by ALFF, our findings may have profound implication for functional neuroimaging studies especially those involving expert models, in that difference in baseline brain activity may either smear the spatial pattern of activations for task data or introduce biased results into connectivity-based analysis for resting data.

  11. Litter environment affects behavior and brain metabolic activity of adult knockout mice

    Directory of Open Access Journals (Sweden)

    David Crews

    2009-08-01

    Full Text Available In mammals, the formative environment for social and anxiety-related behaviors is the family unit; in the case of rodents, this is the litter and the mother-young bond. A deciding factor in this environment is the sex ratio of the litter and, in the case of mice lacking functional copies of gene(s, the ratio of the various genotypes in the litter. Both Sex and Genotype ratios of the litter affect the nature and quality of the individual’s behavior later in adulthood, as well as metabolic activity in brain nuclei that underlie these behaviors. Mice were raised in litters reconstituted shortly after to birth to control for Sex ratio and Genotype ratio (wild type pups vs. pups lacking a functional estrogen receptor α. In both males and females the Sex and Genotype of siblings in the litter affected aggressive behaviors as well as patterns of metabolic activity in limbic nuclei in the social behavior network later in adulthood. Further, this pattern in males varied depending upon the Genotype of their brothers and sisters. Principal Components Analysis revealed two components comprised of several amygdalar and hypothalamic nuclei; the VMH showed strong correlations in both clusters, suggesting its pivotal nature in the organization of two neural networks.

  12. Demystifying "free will": the role of contextual information and evidence accumulation for predictive brain activity.

    Science.gov (United States)

    Bode, Stefan; Murawski, Carsten; Soon, Chun Siong; Bode, Philipp; Stahl, Jutta; Smith, Philip L

    2014-11-01

    Novel multivariate pattern classification analyses have enabled the prediction of decision outcomes from brain activity prior to decision-makers' reported awareness. These findings are often discussed in relation to the philosophical concept of "free will". We argue that these studies demonstrate the role of unconscious processes in simple free choices, but they do not inform the philosophical debate. Moreover, these findings are difficult to relate to cognitive decision-making models, due to misleading assumptions about random choices. We review evidence suggesting that sequential-sampling models, which assume accumulation of evidence towards a decision threshold, can also be applied to free decisions. If external evidence is eliminated by the task instructions, decision-makers might use alternative, subtle contextual information as evidence, such as their choice history, that is not consciously monitored and usually concealed by the experimental design. We conclude that the investigation of neural activity patterns associated with free decisions should aim to investigate how decisions are jointly a function of internal and external contexts, rather than to resolve the philosophical "free will" debate.

  13. Active pauses induce more variable electromyographic pattern of the trapezius muscle activity during computer work

    DEFF Research Database (Denmark)

    Samani, Afshin; Holtermann, Andreas; Søgaard, Karen

    2009-01-01

    The aim of this laboratory study was to evaluate effects of active and passive pauses and investigate the distribution of the trapezius surface electromyographic (SEMG) activity during computer mouse work. Twelve healthy male subjects performed four sessions of computer work for 10 min in one day...... of the trapezius (pcomputer work with active pause compared with passive one (p... with previous clinical findings, (ii) active pauses contributed to a more variable muscle activity pattern during computer work that might have functional implications with respect to work-related musculoskeletal disorders....

  14. Todd, Faraday, and the electrical basis of brain activity.

    Science.gov (United States)

    Reynolds, Edward H

    2004-09-01

    Robert Bentley Todd (1809-60) was the UK's first eminent neurologist and neuroscientist. An anatomist, physiologist, and clinical scientist with an interest in the nervous system, he was the first to confirm the electrical basis of brain activity in the 1840s. He was influenced by his contemporary, Michael Faraday at the Royal Institution, and by two colleagues at King's College, John Daniell and Charles Wheatstone, who were also working at the cutting edge of electrical science. Todd conceived of nervous polarity (force) generated in nervous centres and compared this with the polar force of voltaic electricity developed in the galvanic battery. He brilliantly foresaw each nerve vesicle (cell) and its related fibres (ie, neuron) as a distinct apparatus for the development and transmission of nervous polarity. Epilepsy was the result of periodic unnatural development of nervous force leading to the "disruptive discharge" described by Faraday. Faraday, who studied animal electricity in the Gymnotus (electric eel), and Todd saw nervous polarity as a higher form of interchangeable energy.

  15. Patterns of regional brain hypometabolism associated with knowledge of semantic features and categories in alzheimer's disease

    DEFF Research Database (Denmark)

    Zahn, R.; Garrard, P.; Talazko, J.;

    2006-01-01

    The study of semantic memory in patients with Alzheimer's disease (AD) has raised important questions about the representation of conceptual knowledge in the human brain. It is still unknown whether semantic memory impairments are caused by localized damage to specialized regions or by diffuse...... damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used...... and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas....

  16. Measures for brain connectivity analysis: nodes centrality and their invariant patterns

    Science.gov (United States)

    Silva, Laysa Mayra Uchôa da; Baltazar, Carlos Arruda; Silva, Camila Aquemi; Ribeiro, Mauricio Watanabe; Aratanha, Maria Adelia Albano de; Deolindo, Camila Sardeto; Rodrigues, Abner Cardoso; Machado, Birajara Soares

    2017-01-01

    The high dynamical complexity of the brain is related to its small-world topology, which enable both segregated and integrated information processing capabilities. Several measures of connectivity estimation have already been employed to characterize functional brain networks from multivariate electrophysiological data. However, understanding the properties of each measure that lead to a better description of the real topology and capture the complex phenomena present in the brain remains challenging. In this work we compared four nonlinear connectivity measures and show that each method characterizes distinct features of brain interactions. The results suggest an invariance of global network parameters from different behavioral states and that more complete description may be reached considering local features, independently of the connectivity measure employed. Our findings also point to future perspectives in connectivity studies that combine distinct and complementary dependence measures in assembling higher dimensions manifolds.

  17. Individual differences in epistemic motivation and brain conflict monitoring activity.

    Science.gov (United States)

    Kossowska, Małgorzata; Czarnek, Gabriela; Wronka, Eligiusz; Wyczesany, Miroslaw; Bukowski, Marcin

    2014-06-06

    It is well documented that motivation toward closure (NFC), defined as a desire for a quick and unambiguous answer to a question and an aversion to uncertainty, is linked to more structured, rigid, and persistent cognitive styles. However, the neurocognitive correlates of NFC have never been tested. Thus, using event-related potentials, we examined the hypothesis that NFC is associated with the neurocognitive process for detecting discrepancies between response tendencies and higher level intentions. We found that greater NFC is associated with lower conflict-related anterior cingulate activity, suggesting lower sensitivity to cues for altering a habitual response pattern and lower sensitivity to committing errors. This study provides evidence that high NFC acts as a bulwark against anxiety-producing uncertainty and minimizes the experience of error.

  18. Muscular activation patterns of the bow arm in recurve archery.

    Science.gov (United States)

    Ertan, Hayri

    2009-05-01

    In archery shooting, the archer should hold the bow in place using only the pressure produced through drawing back the bowstring. Most coaches discourage the archer from gripping the bow as this is believed to produce a sideways deflecting torque on the bow and arrow during the release. The purpose of this study was to compare the bow hand forearm muscular activation patterns of elite archers with beginners to define the muscular contraction-relaxation strategies in the bow hand forearm muscles during archery shooting and investigate the effects of performance level on these strategies. Electromyographic activity of the M. flexor digitorum superficialis and the M. extensor digitorum of 10 elite and 10 beginner archers were recorded together with a pulse synchronized with the clicker snap. Raw electromyographic records as 1s before and after the clicker pulse were rectified, integrated, and normalized. The data was then averaged for successive shots of each subject and later for both groups of archers. The main difference between the elite and beginner archers was that the elite archers had a greater activation of the M. extensor digitorum, which indicates that they avoid gripping the bow-handle not only relaxing the flexor muscles, but also contracting the extensor muscle groups. This muscular contraction strategy secures the archer to not interfere with the forward movement of the bow, which is the forward acceleration of the bow caused by the pushing power of the bowstring.

  19. Relative humidity and activity patterns of Ixodes scapularis (Acari: Ixodidae)

    Science.gov (United States)

    Berger, K.A.; Ginsberg, Howard S.; Gonzalez, L.; Mather, T.N.

    2014-01-01

    Laboratory studies have shown clear relationships between relative humidity (RH) and the activity and survival of Ixodes scapularis Say (blacklegged tick). However, field studies have produced conflicting results. We examined this relationship using weekly tick count totals and hourly RH observations at three field sites, stratified by latitude, within the state of Rhode Island. Records of nymphal tick abundance were compared with several RH-related variables (e.g., RH at time of sampling and mean weekly daytime RH). In total, 825 nymphs were sampled in 2009, a year of greater precipitation, with a weighted average leaf litter RH recorded at time of sampling of 85.22%. Alternatively, 649 nymphs were collected in 2010, a year of relatively low precipitation, and a weighted average RH recorded at time of sampling was 75.51%. Negative binomial regression analysis of tick count totals identified cumulative hours <82% RH threshold as a significant factor observed in both years (2009: P = 0.0037; 2010: P < 0.0001). Mean weekly daytime RH did not significantly predict tick activity in either year. However, mean weekly daytime RH recorded with 1-wk lag before sample date was a significant variable (P = 0.0016) in 2010. These results suggest a lag effect between moisture availability and patterns of tick activity and abundance. Differences in the relative importance of each RH variable between years may have been due to abnormally wet summer conditions in 2009.

  20. Trait-like brain activity during adolescence predicts anxious temperament in primates.

    Directory of Open Access Journals (Sweden)

    Andrew S Fox

    Full Text Available Early theorists (Freud and Darwin speculated that extremely shy children, or those with anxious temperament, were likely to have anxiety problems as adults. More recent studies demonstrate that these children have heightened responses to potentially threatening situations reacting with intense defensive responses that are characterized by behavioral inhibition (BI (inhibited motor behavior and decreased vocalizations and physiological arousal. Confirming the earlier impressions, data now demonstrate that children with this disposition are at increased risk to develop anxiety, depression, and comorbid substance abuse. Additional key features of anxious temperament are that it appears at a young age, it is a stable characteristic of individuals, and even in non-threatening environments it is associated with increased psychic anxiety and somatic tension. To understand the neural underpinnings of anxious temperament, we performed imaging studies with 18-fluoro-deoxyglucose (FDG high-resolution Positron Emission Tomography (PET in young rhesus monkeys. Rhesus monkeys were used because they provide a well validated model of anxious temperament for studies that cannot be performed in human children. Imaging the same animal in stressful and secure contexts, we examined the relation between regional metabolic brain activity and a trait-like measure of anxious temperament that encompasses measures of BI and pituitary-adrenal reactivity. Regardless of context, results demonstrated a trait-like pattern of brain activity (amygdala, bed nucleus of stria terminalis, hippocampus, and periaqueductal gray that is predictive of individual phenotypic differences. Importantly, individuals with extreme anxious temperament also displayed increased activity of this circuit when assessed in the security of their home environment. These findings suggest that increased activity of this circuit early in life mediates the childhood temperamental risk to develop anxiety and

  1. Microenvironmental time-activity patterns in Chongqing, China

    Institute of Scientific and Technical Information of China (English)

    Yu ZHAO; Shuxiao WANG; Gangcai CHEN; Fei WANG; Kristin AUNAN; Jiming HAO

    2009-01-01

    An investigation using recall questionnaires was conducted in winter and autumn 2006 to evaluate the time-activity patterns in Chongqing, China. The average time spent in seven microenvironments (MEs) including outdoors, transit, living room, bedroom, kitchen, classroom/office, and other indoors were found to be about 3.5,1.1, 2.5, 9.7, 1.4, 4.2, and 1.7 h per day, respectively.According to the results of a nonparametric test, the sampling period and day of week were significant for the variation of the time spent in all MEs except for transit and outdoors. The time budget was analyzed using a general linear model (GLM), which exhibited significant variability by demographic factors such as gender, age,residence, education, and household income.

  2. Guiding catalytically active particles with chemically patterned surfaces

    CERN Document Server

    Uspal, W E; Dietrich, S; Tasinkevych, M

    2016-01-01

    Catalytically active Janus particles suspended in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate "point-particle" approach, that by chemically patterning a planar substrate one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either "dock" at the chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governi...

  3. Pattern recognition analysis of proton nuclear magnetic resonance spectra of brain tissue extracts from rats anesthetized with propofol or isoflurane.

    Directory of Open Access Journals (Sweden)

    Hiroshi Kawaguchi

    Full Text Available BACKGROUND: General anesthesia is routinely used as a surgical procedure and its safety has been endorsed by clinical outcomes; however, its effects at the molecular level have not been elucidated. General anesthetics influence glucose metabolism in the brain. However, the effects of anesthetics on brain metabolites other than those related to glucose have not been well characterized. We used a pattern recognition analysis of proton nuclear magnetic resonance spectra to visualize the changes in holistic brain metabolic phenotypes in response to the widely used intravenous anesthetic propofol and the volatile anesthetic isoflurane. METHODOLOGY/PRINCIPAL FINDINGS: Rats were randomized into five groups (n = 7 each group. Propofol and isoflurane were administered to two groups each, for 2 or 6 h. The control group received no anesthesia. Brains were removed directly after anesthesia. Hydrophilic compounds were extracted from excised whole brains and measured by proton nuclear magnetic resonance spectroscopy. All spectral data were processed and analyzed by principal component analysis for comparison of the metabolite profiles. Data were visualized by plotting principal component (PC scores. In the plots, each point represents an individual sample. The propofol and isoflurane groups were clustered separately on the plots, and this separation was especially pronounced when comparing the 6-h groups. The PC scores of the propofol group were clearly distinct from those of the control group, particularly in the 6-h group, whereas the difference in PC scores was more subtle in the isoflurane group and control groups. CONCLUSIONS/SIGNIFICANCE: The results of the present study showed that propofol and isoflurane exerted differential effects on holistic brain metabolism under anesthesia.

  4. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a "hot defensive bee ball".

    Directory of Open Access Journals (Sweden)

    Atsushi Ugajin

    Full Text Available Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica. Instead of stinging the hornet, Japanese honeybees form a "hot defensive bee ball" by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica, on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing.

  5. Brain response pattern identification of fMRI data using a particle swarm optimization-based approach.

    Science.gov (United States)

    Ma, Xinpei; Chou, Chun-An; Sayama, Hiroki; Chaovalitwongse, Wanpracha Art

    2016-09-01

    Many neuroscience studies have been devoted to understand brain neural responses correlating to cognition using functional magnetic resonance imaging (fMRI). In contrast to univariate analysis to identify response patterns, it is shown that multi-voxel pattern analysis (MVPA) of fMRI data becomes a relatively effective approach using machine learning techniques in the recent literature. MVPA can be considered as a multi-objective pattern classification problem with the aim to optimize response patterns, in which informative voxels interacting with each other are selected, achieving high classification accuracy associated with cognitive stimulus conditions. To solve the problem, we propose a feature interaction detection framework, integrating hierarchical heterogeneous particle swarm optimization and support vector machines, for voxel selection in MVPA. In the proposed approach, we first select the most informative voxels and then identify a response pattern based on the connectivity of the selected voxels. The effectiveness of the proposed approach was examined for the Haxby's dataset of object-level representations. The computational results demonstrated higher classification accuracy by the extracted response patterns, compared to state-of-the-art feature selection algorithms, such as forward selection and backward selection.

  6. Lesion Activity on Brain MRI in a Chinese Population with Unilateral Optic Neuritis.

    Science.gov (United States)

    Lai, Chuntao; Chang, Qinglin; Tian, Guohong; Wang, Jiawei; Yin, Hongxia; Liu, Wu

    2015-01-01

    Longitudinal studies have shown that brain white matter lesions are strong predictors of the conversion of unilateral optic neuritis to multiple sclerosis (MS) in Caucasian populations. Consequently brain MRI criteria have been developed to improve the prediction of the development of clinically definite multiple sclerosis (CDMS). In Asian populations, optic neuritis may be the first sign of classical or optic-spinal MS. These signs add to the uncertainty regarding brain MRI changes with respect to the course of unilateral optic neuritis. The aim of this study was to examine the association between brain lesion activity and conversion to CDMS in Chinese patients with unilateral optic neuritis. A small prospective cohort study of 40 consecutive Chinese patients who presented with unilateral optic neuritis was conducted. Brain lesion activity was recorded as the incidence of Gd-enhanced lesions and new T2 lesions. Brain lesions on MRI that were characteristic of MS were defined according to the 2010 revisions of the McDonald criteria. The primary endpoint was the development of CDMS. We found that nineteen patients (48%) had brain lesions that were characteristic of MS on the initial scan. One of these patients (3%) had Gd-enhanced brain lesions. A significantly lower percentage of the patients (10%, poptic neuritis; however, these patients exhibit low lesion activity. The predictive value of brain lesion activity for CDMS requires investigation in additional patients.

  7. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Science.gov (United States)

    Xie, Kun; Kuang, Hui; Tsien, Joe Z

    2013-01-01

    There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder.

  8. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kun Xie

    Full Text Available There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder.

  9. Padrões de ativação cerebral em idosos sadios durante tarefa de memória verbal de reconhecimento: a single-photon emission computerized tomography study Brain activation patterns during verbal recognition memory in elderly healthy volunteers

    Directory of Open Access Journals (Sweden)

    Geraldo Busatto Filho

    2001-06-01

    Full Text Available INTRODUÇÃO: Estudos que utilizam as técnicas de PET, SPECT e ressonância magnética funcional têm permitido o mapeamento dos circuitos cerebrais ativados durante diversas tarefas cognitivas. O campo da memória declarativa tem sido um dos mais intensamente estudados. No presente estudo, usa-se a técnica de mapeamento do fluxo sangüíneo cerebral regional (FSCr por SPECT para investigar mudanças na atividade cerebral durante uma tarefa de memória episódica, em voluntários idosos sadios (n=15. MÉTODOS: Duas avaliações de SPECT foram realizadas na mesma sessão, usando a técnica de dose dividida do traçador 99 m-Tc-HMPAO. Medidas de FSCr foram registradas durante uma tarefa de reconhecimento de material verbal previamente aprendido e durante uma tarefa-controle mais simples. Comparações de FSCr foram realizadas automaticamente, utilizando o programa Statistical Parametric Mapping (SPM. RESULTADOS: Observou-se aumento de FSCr durante a tarefa de memória em várias regiões cerebrais, incluindo: córtex pré-frontal lateral bilateralmente (mais acentuadamente à esquerda; porções posteriores e mediais de córtex parieto-occipital à esquerda; hemisférios cerebelares bilateralmente; e córtex temporal lateral bilateralmente (pINTRODUCTION: PET, SPECT and functional magnetic resonance imaging studies have allowed the delineation of brain circuits activated during several types of cognitive tasks. The field of declarative memory has been one of the most extensively investigated. In the present study, the regional cerebral blood flow (rCBF SPECT technique was used to investigate changes in brain activity during a verbal memory task in a group of elderly healthy volunteers (n=15. METHODS:Two SPECT acquisitions were performed in the same session, using the split-dose 99mTc-HMPAO technique. Measures of rCBF were taken during a recognition memory task and a simpler control task. Between-task comparisons were performed automatically

  10. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors.

    Science.gov (United States)

    Liu, Hesheng; Stufflebeam, Steven M; Sepulcre, Jorge; Hedden, Trey; Buckner, Randy L

    2009-12-01

    Cerebral lateralization is a fundamental property of the human brain and a marker of successful development. Here we provide evidence that multiple mechanisms control asymmetry for distinct brain systems. Using intrinsic activity to measure asymmetry in 300 adults, we mapped the most strongly lateralized brain regions. Both men and women showed strong asymmetries with a significant, but small, group difference. Factor analysis on the asymmetric regions revealed 4 separate factors that each accounted for significant variation across subjects. The factors were associated with brain systems involved in vision, internal thought (the default network), attention, and language. An independent sample of right- and left-handed individuals showed that hand dominance affects brain asymmetry but differentially across the 4 factors supporting their independence. These findings show the feasibility of measuring brain asymmetry using intrinsic activity fluctuations and suggest that multiple genetic or environmental mechanisms control cerebral lateralization.

  11. The minute brain of the copepod Tigriopus californicus supports a complex ancestral ground pattern of the tetraconate cerebral nervous systems.

    Science.gov (United States)

    Andrew, David R; Brown, Sheena M; Strausfeld, Nicholas J

    2012-10-15

    Copepods are a diverse and ecologically crucial group of minute crustaceans that are relatively neglected in terms of studies on nervous system organization. Recently, morphological neural characters have helped clarify evolutionary relationships within Arthropoda, particularly among Tetraconata (i.e., crustaceans and hexapods), and indicate that copepods occupy an important phylogenetic position relating to both Malacostraca and Hexapoda. This taxon therefore provides the opportunity to evaluate those neural characters common to these two clades likely to be results of shared ancestry (homology) versus convergence (homoplasy). Here we present an anatomical characterization of the brain and central nervous system of the well-studied harpacticoid copepod species Tigriopus californicus. We show that this species is endowed with a complex brain possessing a central complex comprising a protocerebral bridge and central body. Deutocerebral glomeruli are supplied by the antennular nerves, and a lateral protocerebral olfactory neuropil corresponds to the malacostracan hemiellipsoid body. Glomeruli contain synaptic specializations comparable to the presynaptic "T-bars" typical of dipterous insects, including Drosophila melanogaster. Serotonin-like immunoreactivity pervades the brain and ventral nervous system, with distinctive deutocerebral distributions. The present observations suggest that a suite of morphological characters typifying the Tigriopus brain reflect a ground pattern organization of an ancestral Tetraconata, which possessed an elaborate and structurally differentiated nervous system.

  12. Patterns of DNA damage response in intracranial germ cell tumors versus glioblastomas reflect cell of origin rather than brain environment

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Hoei-Hansen, Christina E; Krizova, Katerina

    2014-01-01

    The DNA damage response (DDR) machinery becomes commonly activated in response to oncogenes and during early stages of development of solid malignancies, with an exception of testicular germ cell tumors (TGCTs). The active DDR signaling evokes cell death or senescence but this anti-tumor barrier...... can be breached by defects in DDR factors, such as the ATM-Chk2-p53 pathway, thereby allowing tumor progression. The DDR barrier is strongly activated in brain tumors, particularly gliomas, due to oxidative damage and replication stress. Here, we took advantage of rare human primary intracranial germ...... cell tumors (PIGCTs), to address the roles of cell-intrinsic factors including cell of origin, versus local tissue environment, in the constitutive DDR activation in vivo. Immunohistochemical analysis of 7 biomarkers on a series of 21 PIGCTs (germinomas and other subtypes), 20 normal brain specimens...

  13. Converging genetic and functional brain imaging evidence links neuronal excitability to working memory, psychiatric disease, and brain activity.

    Science.gov (United States)

    Heck, Angela; Fastenrath, Matthias; Ackermann, Sandra; Auschra, Bianca; Bickel, Horst; Coynel, David; Gschwind, Leo; Jessen, Frank; Kaduszkiewicz, Hanna; Maier, Wolfgang; Milnik, Annette; Pentzek, Michael; Riedel-Heller, Steffi G; Ripke, Stephan; Spalek, Klara; Sullivan, Patrick; Vogler, Christian; Wagner, Michael; Weyerer, Siegfried; Wolfsgruber, Steffen; de Quervain, Dominique J-F; Papassotiropoulos, Andreas

    2014-03-05

    Working memory, the capacity of actively maintaining task-relevant information during a cognitive task, is a heritable trait. Working memory deficits are characteristic for many psychiatric disorders. We performed genome-wide gene set enrichment analyses in multiple independent data sets of young and aged cognitively healthy subjects (n = 2,824) and in a large schizophrenia case-control sample (n = 32,143). The voltage-gated cation channel activity gene set, consisting of genes related to neuronal excitability, was robustly linked to performance in working memory-related tasks across ages and to schizophrenia. Functional brain imaging in 707 healthy participants linked this gene set also to working memory-related activity in the parietal cortex and the cerebellum. Gene set analyses may help to dissect the molecular underpinnings of cognitive dimensions, brain activity, and psychopathology.

  14. Physical activity, body mass index, and brain atrophy in Alzheimer's disease.

    Science.gov (United States)

    Boyle, Christina P; Raji, Cyrus A; Erickson, Kirk I; Lopez, Oscar L; Becker, James T; Gach, H Michael; Longstreth, W T; Teverovskiy, Leonid; Kuller, Lewis H; Carmichael, Owen T; Thompson, Paul M

    2015-01-01

    The purpose of this study was to use a novel imaging biomarker to assess associations between physical activity (PA), body mass index (BMI), and brain structure in normal aging, mild cognitive impairment, and Alzheimer's dementia. We studied 963 participants (mean age: 74.1 ± 4.4 years) from the multisite Cardiovascular Health Study including healthy controls (n = 724), Alzheimer's dementia patients (n = 104), and people with mild cognitive impairment (n = 135). Volumetric brain images were processed using tensor-based morphometry to analyze regional brain volumes. We regressed the local brain tissue volume on reported PA and computed BMI, and performed conjunction analyses using both variables. Covariates included age, sex, and study site. PA was independently associated with greater whole brain and regional brain volumes and reduced ventricular dilation. People with higher BMI had lower whole brain and regional brain volumes. A PA-BMI conjunction analysis showed brain preservation with PA and volume loss with increased BMI in overlapping brain regions. In one of the largest voxel-based cross-sectional studies to date, PA and lower BMI may be beneficial to the brain across the spectrum of aging and neurodegeneration.

  15. Single subject pharmacological-MRI (phMRI study: Modulation of brain activity of psoriatic arthritis pain by cyclooxygenase-2 inhibitor

    Directory of Open Access Journals (Sweden)

    Chialvo DR

    2005-11-01

    Full Text Available Abstract We use fMRI to examine brain activity for pain elicited by palpating joints in a single patient suffering from psoriatic arthritis. Changes in these responses are documented when the patient ingested a single dose of a selective cyclooxygenase-2 inhibitor (COX-2i. We show that mechanical stimulation of the painful joints exhibited a cortical activity pattern similar to that reported for acute pain, with activity primarily localized to the thalamus, insular, primary and secondary somatosensory cortices and the mid anterior cingulum. COX-2i resulted in significant decreased in reported pain intensity and in brain activity after 1 hour of administration. The anterior insula and SII correlated with pain intensity, however no central activation site for the drug was detected. We demonstrate the similarity of the activation pattern for palpating painful joints to brain activity in normal subjects in response to thermal painful stimuli, by performing a spatial conjunction analysis between these maps, where overlap is observed in the insula, thalamus, secondary somatosensory cortex, and anterior cingulate. The results demonstrate that one can study effects of pharmacological manipulations in a single subject where the brain activity for a clinical condition is delineated and its modulation by COX-2i demonstrated. This approach may have diagnostic and prognostic utility.

  16. Patterns of adolescents' participation in organized activities: are sports best when combined with other activities?

    Science.gov (United States)

    Linver, Miriam R; Roth, Jodie L; Brooks-Gunn, Jeanne

    2009-03-01

    Although many adolescents participate in sports and other types of organized activities, little extant research explores how youth development outcomes may vary for youth involved in different combinations of activities. The present study uses the Child Development Supplement of the Panel Study of Income Dynamics, a large, nationally representative sample, to compare activity patterns of adolescents ages 10-18 years (n = 1,711). A cluster analytic technique revealed 5 activity clusters: sports-focused, sports plus other activities, primarily school-based activities, primarily religious youth groups, and low activity involvement. Activity patterns were examined in conjunction with 5 categories of youth development outcomes, including competence (e.g., academic ability), confidence (e.g., self-concept of ability), connections (e.g., talking with friends), character (e.g., externalizing behavior problems), and caring (e.g., prosocial behavior). Results showed that those who participated only in sports had more positive outcomes compared with those who had little or no involvement in organized activities, but less positive outcomes compared with those who participated in sports plus other activities.

  17. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-05-09

    The structure and chemical ordering of PtAu nanoclusters of 79, 135, and 201 atoms are studied via a combination of a basin hopping atom-exchange technique (to locate the lowest energy homotops at fixed composition), a symmetry orbit technique (to find the high symmetry isomers), and density functional theory local reoptimization (for determining the most stable homotop). The interatomic interactions between Pt and Au are derived from the empirical Gupta potential. The lowest energy structures show a marked tendency toward PtcoreAushell chemical ordering by enrichment of the more cohesive Pt in the core region and of Au in the shell region. We observe a preferential segregation of Pt atoms to (111) facets and Au atoms to (100) facets of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active sites. © 2013 American Chemical Society.

  18. Pain Measurement and Brain Activity: Will Neuroimages Replace Pain Ratings?

    OpenAIRE

    Robinson, Michael E; Staud, Roland; Price, Donald D.

    2013-01-01

    Arguments made for the advantages of replacing pain ratings with brain imaging data include assumptions that pain ratings are less reliable and objective and that