WorldWideScience

Sample records for brachytherapy seed reconstruction

  1. Detection and correction of patient movement in prostate brachytherapy seed reconstruction

    Science.gov (United States)

    Lam, Steve T.; Cho, Paul S.; Marks, Robert J., II; Narayanan, Sreeram

    2005-05-01

    Intraoperative dosimetry of prostate brachytherapy can help optimize the dose distribution and potentially improve clinical outcome. Evaluation of dose distribution during the seed implant procedure requires the knowledge of 3D seed coordinates. Fluoroscopy-based seed localization is a viable option. From three x-ray projections obtained at different gantry angles, 3D seed positions can be determined. However, when local anaesthesia is used for prostate brachytherapy, the patient movement during fluoroscopy image capture becomes a practical problem. If uncorrected, the errors introduced by patient motion between image captures would cause seed mismatches. Subsequently, the seed reconstruction algorithm would either fail to reconstruct or yield erroneous results. We have developed an algorithm that permits detection and correction of patient movement that may occur between fluoroscopy image captures. The patient movement is decomposed into translational shifts along the tabletop and rotation about an axis perpendicular to the tabletop. The property of spatial invariance of the co-planar imaging geometry is used for lateral movement correction. Cranio-caudal movement is corrected by analysing the perspective invariance along the x-ray axis. Rotation is estimated by an iterative method. The method can detect and correct for the range of patient movement commonly seen in the clinical environment. The algorithm has been implemented for routine clinical use as the preprocessing step for seed reconstruction.

  2. Fast cross-projection algorithm for reconstruction of seeds in prostate brachytherapy

    International Nuclear Information System (INIS)

    Narayanan, Sreeram; Cho, Paul S.; Marks, Robert J. II

    2002-01-01

    A fast method of seed matching and reconstruction in prostrate brachytherapy is proposed. Previous approaches have required all seeds to be matched with all other seeds in other projections. The fast cross-projection algorithm for the reconstruction of seeds (Fast-CARS) allows for matching of a given seed with a subset of seeds in other projections. This subset lies in a proximal region centered about the projection of a line, connecting the seed to its source, onto other projection planes. The proposed technique permits a significant reduction in computational overhead, as measured by the required number of matching tests. The number of multiplications and additions is also vastly reduced at no trade-off in accuracy. Because of its speed, Fast-CARS can be used in applications requiring real-time performance such as intraoperative dosimetry of prostate brachytherapy. Furthermore, the proposed method makes practical the use of a larger number of views as opposed to previous techniques limited to a maximum use of three views

  3. Three-dimensional seed reconstruction from an incomplete data set for prostate brachytherapy

    International Nuclear Information System (INIS)

    Narayanan, Sreeram; Cho, Paul S; MarksII, Robert J

    2004-01-01

    Intra-operative dosimetry in prostate brachytherapy requires 3D coordinates of the implanted, radioactive seeds. Since CT is not readily available during the implant operation, projection x-rays are commonly used for intra-operative seed localization. Three x-ray projections are usually used. The requirement of the current seed reconstruction algorithms is that the seeds must be identified on all three projections. However, in practice this is often difficult to accomplish due to the problem of heavily clustered and overlapping seeds. We have developed an algorithm that permits seed reconstruction from an incomplete data set. Instead of all three projections, the new algorithm requires only one of the three projections to be complete. Furthermore, even if all three projections are incomplete, it can reconstruct 100% of the implanted seeds depending on how the undetected seeds are distributed among the projections. The method utilizes the principles of epipolar imaging geometry and pseudo-matching of the undetected seeds. The algorithm was successfully applied to a large number of clinical cases where seeds imperceptibly overlap in some projections

  4. A study on image reconstruction for seed localization for permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Hong, Ju Young; Rah, Jeong Eun; Suh, Tae Suk

    2007-01-01

    This study was to design and fabricate a phantom for prostate cancer brachytherapy to validate a developed program applying a 3-film technique, and to compare it with the conventional 2-film technique for determining the location of an implanted seed. The images were obtained from overlapped seeds by randomly placing a maximum of 63 seeds in the interior-posterior (AP) position and at -30 .deg. to 30 .deg. at 15 .deg. intervals. Images obtained by use of the phantom were applied to the image processing procedure, and were then processed into the development program for seed localization. In this study, cases were set where one seed overlapped, where two seeds overlapped and where none of the three views resolved all seeds. The distance between the centers of each seed to the reference seed was calculated in a prescribed region. This distance determined the location of each seed in a given band. The location of the overlapped seeds was compared with that of the 2-film technique. With this program, the detection rate was 92.2% (at ± 15 .deg. ), 94.1% (at ± 30 .deg.) and 70.6% (compared to the use of the 2-film technique). The overlaps were caused by one or more than two seeds that overlapped; the developed program can identify the location of each seed perfectly. However, for the third case the program was not able to resolve the overlap of the seeds. This program can be used to improve treatment outcome for the brachytherapy of prostate cancer by reducing the number of errors in the process of reconstructing the locations of perfectly overlapped seeds

  5. Demonstration of a forward iterative method to reconstruct brachytherapy seed configurations from x-ray projections

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Martin J; Todor, Dorin A [Department of Radiation Oncology, Virginia Commonwealth University, Richmond VA 23298 (United States)

    2005-06-07

    By monitoring brachytherapy seed placement and determining the actual configuration of the seeds in vivo, one can optimize the treatment plan during the process of implantation. Two or more radiographic images from different viewpoints can in principle allow one to reconstruct the configuration of implanted seeds uniquely. However, the reconstruction problem is complicated by several factors: (1) the seeds can overlap and cluster in the images; (2) the images can have distortion that varies with viewpoint when a C-arm fluoroscope is used; (3) there can be uncertainty in the imaging viewpoints; (4) the angular separation of the imaging viewpoints can be small owing to physical space constraints; (5) there can be inconsistency in the number of seeds detected in the images; and (6) the patient can move while being imaged. We propose and conceptually demonstrate a novel reconstruction method that handles all of these complications and uncertainties in a unified process. The method represents the three-dimensional seed and camera configurations as parametrized models that are adjusted iteratively to conform to the observed radiographic images. The morphed model seed configuration that best reproduces the appearance of the seeds in the radiographs is the best estimate of the actual seed configuration. All of the information needed to establish both the seed configuration and the camera model is derived from the seed images without resort to external calibration fixtures. Furthermore, by comparing overall image content rather than individual seed coordinates, the process avoids the need to establish correspondence between seed identities in the several images. The method has been shown to work robustly in simulation tests that simultaneously allow for unknown individual seed positions, uncertainties in the imaging viewpoints and variable image distortion.

  6. Operator-free, film-based 3D seed reconstruction in brachytherapy

    International Nuclear Information System (INIS)

    Todor, D.A.; Cohen, G.N.; Amols, H.I.; Zaider, M.

    2002-01-01

    In brachytherapy implants, the accuracy of dose calculation depends on the ability to localize radioactive sources correctly. If performed manually using planar images, this is a time-consuming and often error-prone process - primarily because each seed must be identified on (at least) two films. In principle, three films should allow automatic seed identification and position reconstruction; however, practical implementation of the numerous algorithms proposed so far appears to have only limited reliability. The motivation behind this work is to create a fast and reliable system for real-time implant evaluation using digital planar images obtained from radiotherapy simulators, or mobile x-ray/fluoroscopy systems. We have developed algorithms and code for 3D seed coordinate reconstruction. The input consists of projections of seed positions in each of three isocentric images taken at arbitrary angles. The method proposed here consists of a set of heuristic rules (in a sense, a learning algorithm) that attempts to minimize seed misclassifications. In the clinic, this means that the system must be impervious to errors resulting from patient motion as well as from finite tolerances accepted in equipment settings. The software program was tested with simulated data, a pelvic phantom and patient data. One hundred and twenty permanent prostate implants were examined (105 125 I and 15 103 Pd) with the number of seeds ranging from 35 to 138 (average 79). The mean distance between actual and reconstructed seed positions is in the range 0.03-0.11 cm. On a Pentium III computer at 600 MHz the reconstruction process takes 10-30 s. The total number of seeds is independently validated. The process is robust and able to account for errors introduced in the clinic. (author)

  7. Operator-free, film-based 3D seed reconstruction in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Todor, D.A.; Cohen, G.N.; Amols, H.I.; Zaider, M. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2002-06-21

    In brachytherapy implants, the accuracy of dose calculation depends on the ability to localize radioactive sources correctly. If performed manually using planar images, this is a time-consuming and often error-prone process - primarily because each seed must be identified on (at least) two films. In principle, three films should allow automatic seed identification and position reconstruction; however, practical implementation of the numerous algorithms proposed so far appears to have only limited reliability. The motivation behind this work is to create a fast and reliable system for real-time implant evaluation using digital planar images obtained from radiotherapy simulators, or mobile x-ray/fluoroscopy systems. We have developed algorithms and code for 3D seed coordinate reconstruction. The input consists of projections of seed positions in each of three isocentric images taken at arbitrary angles. The method proposed here consists of a set of heuristic rules (in a sense, a learning algorithm) that attempts to minimize seed misclassifications. In the clinic, this means that the system must be impervious to errors resulting from patient motion as well as from finite tolerances accepted in equipment settings. The software program was tested with simulated data, a pelvic phantom and patient data. One hundred and twenty permanent prostate implants were examined (105{sup 125}I and 15{sup 103}Pd) with the number of seeds ranging from 35 to 138 (average 79). The mean distance between actual and reconstructed seed positions is in the range 0.03-0.11 cm. On a Pentium III computer at 600 MHz the reconstruction process takes 10-30 s. The total number of seeds is independently validated. The process is robust and able to account for errors introduced in the clinic. (author)

  8. Sci-Sat AM(2): Brachy-07: Tomosynthesis-based seed reconstruction in LDR prostate brachytherapy: A clinical study.

    Science.gov (United States)

    Brunet-Benkhoucha, M; Verhaegen, F; Lassalle, S; Béliveau-Nadeau, D; Reniers, B; Donath, D; Taussky, D; Carrier, J-F

    2008-07-01

    To develop a tomosynthesis-based dose assessment procedure that can be performed after an I-125 prostate seed implantation, while the patient is still under anaesthesia on the treatment table. Our seed detection procedure involves the reconstruction of a volume of interest based on the backprojection of 7 seed-only binary images acquired over an angle of 60° with an isocentric imaging system. A binary seed-only volume is generated by a simple thresholding of the volume of interest. Seeds positions are extracted from this volume with a 3D connected component analysis and a statistical classifier that determines the number of seeds in each cluster of connected voxels. A graphical user interface (GUI) allows to visualize the result and to introduce corrections, if needed. A phantom and a clinical study (24 patients) were carried out to validate the technique. A phantom study demonstrated a very good localization accuracy of (0.4+/-0.4) mm when compared to CT-based reconstruction. This leads to dosimetric error on D90 and V100 of respectively 0.5% and 0.1%. In a patient study with an average of 56 seeds per implant, the automatic tomosynthesis-based reconstruction yields a detection rate of 96% of the seeds and less than 1.5% of false-positives. With the help of the GUI, the user can achieve a 100% detection rate in an average of 3 minutes. This technique would allow to identify possible underdosage and to correct it by potentially reimplanting additional seeds. A more uniform dose coverage could then be achieved in LDR prostate brachytherapy. © 2008 American Association of Physicists in Medicine.

  9. Reconstruction of brachytherapy seed positions and orientations from cone-beam CT x-ray projections via a novel iterative forward projection matching method.

    Science.gov (United States)

    Pokhrel, Damodar; Murphy, Martin J; Todor, Dorin A; Weiss, Elisabeth; Williamson, Jeffrey F

    2011-01-01

    To generalize and experimentally validate a novel algorithm for reconstructing the 3D pose (position and orientation) of implanted brachytherapy seeds from a set of a few measured 2D cone-beam CT (CBCT) x-ray projections. The iterative forward projection matching (IFPM) algorithm was generalized to reconstruct the 3D pose, as well as the centroid, of brachytherapy seeds from three to ten measured 2D projections. The gIFPM algorithm finds the set of seed poses that minimizes the sum-of-squared-difference of the pixel-by-pixel intensities between computed and measured autosegmented radiographic projections of the implant. Numerical simulations of clinically realistic brachytherapy seed configurations were performed to demonstrate the proof of principle. An in-house machined brachytherapy phantom, which supports precise specification of seed position and orientation at known values for simulated implant geometries, was used to experimentally validate this algorithm. The phantom was scanned on an ACUITY CBCT digital simulator over a full 660 sinogram projections. Three to ten x-ray images were selected from the full set of CBCT sinogram projections and postprocessed to create binary seed-only images. In the numerical simulations, seed reconstruction position and orientation errors were approximately 0.6 mm and 5 degrees, respectively. The physical phantom measurements demonstrated an absolute positional accuracy of (0.78 +/- 0.57) mm or less. The theta and phi angle errors were found to be (5.7 +/- 4.9) degrees and (6.0 +/- 4.1) degrees, respectively, or less when using three projections; with six projections, results were slightly better. The mean registration error was better than 1 mm/6 degrees compared to the measured seed projections. Each test trial converged in 10-20 iterations with computation time of 12-18 min/iteration on a 1 GHz processor. This work describes a novel, accurate, and completely automatic method for reconstructing seed orientations, as well as

  10. Reconstruction of brachytherapy seed positions and orientations from cone-beam CT x-ray projections via a novel iterative forward projection matching method

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F. [Department of Radiation Oncology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2011-01-15

    Purpose: To generalize and experimentally validate a novel algorithm for reconstructing the 3D pose (position and orientation) of implanted brachytherapy seeds from a set of a few measured 2D cone-beam CT (CBCT) x-ray projections. Methods: The iterative forward projection matching (IFPM) algorithm was generalized to reconstruct the 3D pose, as well as the centroid, of brachytherapy seeds from three to ten measured 2D projections. The gIFPM algorithm finds the set of seed poses that minimizes the sum-of-squared-difference of the pixel-by-pixel intensities between computed and measured autosegmented radiographic projections of the implant. Numerical simulations of clinically realistic brachytherapy seed configurations were performed to demonstrate the proof of principle. An in-house machined brachytherapy phantom, which supports precise specification of seed position and orientation at known values for simulated implant geometries, was used to experimentally validate this algorithm. The phantom was scanned on an ACUITY CBCT digital simulator over a full 660 sinogram projections. Three to ten x-ray images were selected from the full set of CBCT sinogram projections and postprocessed to create binary seed-only images. Results: In the numerical simulations, seed reconstruction position and orientation errors were approximately 0.6 mm and 5 deg., respectively. The physical phantom measurements demonstrated an absolute positional accuracy of (0.78{+-}0.57) mm or less. The {theta} and {phi} angle errors were found to be (5.7{+-}4.9) deg. and (6.0{+-}4.1) deg., respectively, or less when using three projections; with six projections, results were slightly better. The mean registration error was better than 1 mm/6 deg. compared to the measured seed projections. Each test trial converged in 10-20 iterations with computation time of 12-18 min/iteration on a 1 GHz processor. Conclusions: This work describes a novel, accurate, and completely automatic method for reconstructing

  11. Radioactive seed immobilization techniques for interstitial brachytherapy

    International Nuclear Information System (INIS)

    Yan, K.; Podder, T.; Buzurovic, I.; Hu, Y.; Dicker, A.; Valicenti, R.; Yu, Y.; Messing, E.; Rubens, D.; Sarkar, N.; Ng, W.

    2008-01-01

    In prostate brachytherapy, seeds can detach from their deposited sites and move locally in the pelvis or migrate to distant sites including the pulmonary and cardiac regions. Undesirable consequences of seed migration include inadequate dose coverage of the prostate and tissue irradiation effects at the site of migration. Thus, it is clinically important to develop seed immobilization techniques. We first analyze the possible causes for seed movement, and propose three potential techniques for seed immobilization: (1) surgical glue, (2) laser coagulation and (3) diathermy coagulation. The feasibility of each method is explored. Experiments were carried out using fresh bovine livers to investigate the efficacy of seed immobilization using surgical glue. Results have shown that the surgical glue can effectively immobilize the seeds. Evaluation of the radiation dose distribution revealed that the non-immobilized seed movement would change the planned isodose distribution considerably; while by using surgical glue method to immobilize the seeds, the changes were negligible. Prostate brachytherapy seed immobilization is necessary and three alternative mechanisms are promising for addressing this issue. Experiments for exploring the efficacy of the other two proposed methods are ongoing. Devices compatible with the brachytherapy procedure will be designed in future. (orig.)

  12. Optimal matching for prostate brachytherapy seed localization with dimension reduction.

    Science.gov (United States)

    Lee, Junghoon; Labat, Christian; Jain, Ameet K; Song, Danny Y; Burdette, Everette C; Fichtinger, Gabor; Prince, Jerry L

    2009-01-01

    In prostate brachytherapy, x-ray fluoroscopy has been used for intra-operative dosimetry to provide qualitative assessment of implant quality. More recent developments have made possible 3D localization of the implanted radioactive seeds. This is usually modeled as an assignment problem and solved by resolving the correspondence of seeds. It is, however, NP-hard, and the problem is even harder in practice due to the significant number of hidden seeds. In this paper, we propose an algorithm that can find an optimal solution from multiple projection images with hidden seeds. It solves an equivalent problem with reduced dimensional complexity, thus allowing us to find an optimal solution in polynomial time. Simulation results show the robustness of the algorithm. It was validated on 5 phantom and 18 patient datasets, successfully localizing the seeds with detection rate of > or = 97.6% and reconstruction error of < or = 1.2 mm. This is considered to be clinically excellent performance.

  13. Epoxy resins used to seal brachytherapy seed

    International Nuclear Information System (INIS)

    Ferreira, Natalia Carolina Camargos; Ferraz, Wilmar Barbosa; Reis, Sergio Carneiro dos; Santos, Ana Maria Matildes dos

    2013-01-01

    Prostate cancer treatment with brachytherapy is recommended for patients with cancer at an early stage. In this treatment, small radioactive seeds are implanted directly in the prostate gland. These seeds are composed at least of one radionuclide carrier and an X-ray marker enclosed within a metallic tube usually sealed by laser process. This process is expensive and, furthermore, it can provoke a partial volatilization of the radionuclide and change the isotropy in dose distribution around the seed. In this paper, we present a new sealing process using epoxy resin. Three kinds of resins were utilized and characterized by scanning electron microscopy (SEM), energy dispersive X ray (EDS) and by differential scanning calorimetry (DSC) after immersion in simulated body fluid (SBF) and in sodium iodine solution (NaI). The sealing process showed excellent potential to replace the sealing laser usually employed. (author)

  14. On the question of 3D seed reconstruction in prostate brachytherapy: the determination of x-ray source and film locations

    International Nuclear Information System (INIS)

    Zhang Mutian; Zaider, Marco; Worman, Michael; Cohen, Gilad

    2004-01-01

    Inaccuracy in seed placement during permanent prostate implants may lead to significant dosimetric deviations from the intended plan. In two recent publications (Todor et al 2002 Phys. Med. Biol. 47 2031-48, Todor et al 2003 Phys. Med. Biol. 48 1153-71), methodology was described for identifying intraoperatively the positions of seeds already implanted, thus allowing re-optimization of the treatment plan and correcting for such seed misplacement. Seed reconstruction is performed using fluoroscopic images and an important (and non-trivial) component of this approach is the ability to accurately determine the position of the gantry relative to the treatment volume. We describe the methodology for acquiring this information, based on the known geometry of six markers attached to the ultrasound probe. This method does not require the C-arm unit to be isocentric and films can be taken with the gantry set at any arbitrary position. This is significant because the patient positioning on the operating table (in the lithotomy position) restricts the range of angles at which films can be taken to a quite narrow (typically ±10 0 ) interval and, as a general rule, the closer the angles the larger the uncertainty in the seed location reconstruction along the direction from the x-ray source to the film. (note)

  15. Methodology of quality control for brachytherapy {sup 125}I seeds

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Eduardo S.; Zeituni, Carlos A.; Manzoli, Jose E.; Rostelato, Maria Elisa C.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: esmoura@ipen.br

    2007-07-01

    This paper presents the methodology of quality control of {sup 125}I seeds used for brachytherapy. The {sup 125}I seeds are millimeter titanium capsules widely used in permanent implants of prostate cancer, allowing a high dose within the tumour and a low dose on the surrounding tissues, with very low harm to the other tissues. Besides, with this procedure, the patients have a low impotence rate and a small incidence of urinary incontinence. To meet the medical standards, an efficient quality control is necessary, showing values with the minimum uncertainness possible, concerning the seeds dimensions and their respective activities. The medical needles are used to insert the seeds inside the prostate. The needles used in brachytherapy have an internal diameter of 1.0 mm, so it is necessary {sup 125}I seeds with an external maximum diameter of 0.85 mm. For the seeds and the spacer positioning on the planning sheet, the seeds must have a length between 4.5 and 5.0 mm. The activities must not vary more than 5% in each batch of {sup 125}I seeds. For this methodology, we used two ionization chamber detectors and one caliper. In this paper, the methodology using one control batch with 75 seeds manufactured by GE Health care Ltd is presented. (author)

  16. Automated treatment planning engine for prostate seed implant brachytherapy

    International Nuclear Information System (INIS)

    Yu Yan; Zhang, J.B.Y.; Brasacchio, Ralph A.; Okunieff, Paul G.; Rubens, Deborah J.; Strang, John G.; Soni, Arvind; Messing, Edward M.

    1999-01-01

    Purpose: To develop a computer-intelligent planning engine for automated treatment planning and optimization of ultrasound- and template-guided prostate seed implants. Methods and Materials: The genetic algorithm was modified to reflect the 2D nature of the implantation template. A multi-objective decision scheme was used to rank competing solutions, taking into account dose uniformity and conformity to the planning target volume (PTV), dose-sparing of the urethra and the rectum, and the sensitivity of the resulting dosimetry to seed misplacement. Optimized treatment plans were evaluated using selected dosimetric quantifiers, dose-volume histogram (DVH), and sensitivity analysis based on simulated seed placement errors. These dosimetric planning components were integrated into the Prostate Implant Planning Engine for Radiotherapy (PIPER). Results: PIPER has been used to produce a variety of plans for prostate seed implants. In general, maximization of the minimum peripheral dose (mPD) for given implanted total source strength tended to produce peripherally weighted seed patterns. Minimization of the urethral dose further reduced the loading in the central region of the PTV. Isodose conformity to the PTV was achieved when the set of objectives did not reflect seed positioning uncertainties; the corresponding optimal plan generally required fewer seeds and higher source strength per seed compared to the manual planning experience. When seed placement uncertainties were introduced into the set of treatment planning objectives, the optimal plan tended to reach a compromise between the preplanned outcome and the likelihood of retaining the preferred outcome after implantation. The reduction in the volatility of such seed configurations optimized under uncertainty was verified by sensitivity studies. Conclusion: An automated treatment planning engine incorporating real-time sensitivity analysis was found to be a useful tool in dosimetric planning for prostate

  17. Brachytherapy reconstruction using orthogonal scout views from the CT

    International Nuclear Information System (INIS)

    Perez, J.; Lliso, F.; Carmona, V.; Bea, J.; Tormo, A.; Petschen, I.

    1996-01-01

    Introduction: CT assisted brachytherapy planning is demonstrating to have great advantages as external RT planning does. One of the problems we have found in this approach with the conventional gynecological Fletcher applicators is the high amount of artefacts (ovoids with rectal and vessical protections) in the CT slice. We have introduced a reconstruction method based on scout views in order to avoid this problem, allowing us to perform brachytherapy reconstruction completely CT assisted. We use a virtual simulation chain by General Electric Medical Systems. Method and discussion: Two orthogonal scout views (0 and 90 tube positions) are performed. The reconstruction method takes into account the virtual position of the focus and the fact that there is only divergence in the transverse plane. Algorithms developed for sources as well as for reference points localisation (A, B, lymphatic Fletcher trapezoid, pelvic wall, etc.) are presented. This method has the following practical advantages: the porte-cassette is not necessary, the image quality can be improved (it is very helpful in pelvic lateral views that are critical in conventional radiographs), the total time to get the data is smaller than for conventional radiographs (reduction of patient motion effects) and problems that appear in CT-slice based reconstruction in the case of strongly curved intrauterine applicators are avoided. Even though the resolution is smaller than in conventional radiographs it is good enough for brachytherapy. Regarding the CT planning this method presents the interesting feature that the co-ordinate system is the same for the reconstruction process that for the CT-slices set. As the application can be reconstructed from scout views and the doses can be evaluated on CT slices it is easier to correlate the dose values obtained for the traditional points with those provided by the CT information

  18. Deterministic calculations of radiation doses from brachytherapy seeds

    International Nuclear Information System (INIS)

    Reis, Sergio Carneiro dos; Vasconcelos, Vanderley de; Santos, Ana Maria Matildes dos

    2009-01-01

    Brachytherapy is used for treating certain types of cancer by inserting radioactive sources into tumours. CDTN/CNEN is developing brachytherapy seeds to be used mainly in prostate cancer treatment. Dose calculations play a very significant role in the characterization of the developed seeds. The current state-of-the-art of computation dosimetry relies on Monte Carlo methods using, for instance, MCNP codes. However, deterministic calculations have some advantages, as, for example, short computer time to find solutions. This paper presents a software developed to calculate doses in a two-dimensional space surrounding the seed, using a deterministic algorithm. The analysed seeds consist of capsules similar to IMC6711 (OncoSeed), that are commercially available. The exposure rates and absorbed doses are computed using the Sievert integral and the Meisberger third order polynomial, respectively. The software also allows the isodose visualization at the surface plan. The user can choose between four different radionuclides ( 192 Ir, 198 Au, 137 Cs and 60 Co). He also have to enter as input data: the exposure rate constant; the source activity; the active length of the source; the number of segments in which the source will be divided; the total source length; the source diameter; and the actual and effective source thickness. The computed results were benchmarked against results from literature and developed software will be used to support the characterization process of the source that is being developed at CDTN. The software was implemented using Borland Delphi in Windows environment and is an alternative to Monte Carlo based codes. (author)

  19. Seed Placement in Permanent Breast Seed Implant Brachytherapy: Are Concerns Over Accuracy Valid?

    Energy Technology Data Exchange (ETDEWEB)

    Morton, Daniel, E-mail: dmorton@bccancer.bc.ca [Department of Medical Physics, BC Cancer Agency, Centre for the Southern Interior, Kelowna, British Columbia (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia (Canada); Hilts, Michelle [Department of Medical Physics, BC Cancer Agency, Centre for the Southern Interior, Kelowna, British Columbia (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia (Canada); Batchelar, Deidre [Department of Medical Physics, BC Cancer Agency, Centre for the Southern Interior, Kelowna, British Columbia (Canada); Crook, Juanita [Department of Radiation Oncology, BC Cancer Agency, Centre for the Southern Interior, Kelowna, British Columbia (Canada)

    2016-07-01

    Purpose: To evaluate seed placement accuracy in permanent breast seed implant brachytherapy (PBSI), to identify any systematic errors and evaluate their effect on dosimetry. Methods and Materials: Treatment plans and postimplant computed tomography scans for 20 PBSI patients were spatially registered and used to evaluate differences between planned and implanted seed positions, termed seed displacements. For each patient, the mean total and directional seed displacements were determined in both standard room coordinates and in needle coordinates relative to needle insertion angle. Seeds were labeled according to their proximity to the anatomy within the breast, to evaluate the influence of anatomic regions on seed placement. Dosimetry within an evaluative target volume (seroma + 5 mm), skin, breast, and ribs was evaluated to determine the impact of seed placement on the treatment. Results: The overall mean (±SD) difference between implanted and planned positions was 9 ± 5 mm for the aggregate seed population. No significant systematic directional displacements were observed for this whole population. However, for individual patients, systematic displacements were observed, implying that intrapatient offsets occur during the procedure. Mean displacements for seeds in the different anatomic areas were not found to be significantly different from the mean for the entire seed population. However, small directional trends were observed within the anatomy, potentially indicating some bias in the delivery. Despite observed differences between the planned and implanted seed positions, the median (range) V{sub 90} for the 20 patients was 97% (66%-100%), and acceptable dosimetry was achieved for critical structures. Conclusions: No significant trends or systematic errors were observed in the placement of seeds in PBSI, including seeds implanted directly into the seroma. Recorded seed displacements may be related to intrapatient setup adjustments. Despite observed seed

  20. Clinical application and validation of an iterative forward projection matching algorithm for permanent brachytherapy seed localization from conebeam-CT x-ray projections

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F. [Department of Radiation Oncology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2010-09-15

    Purpose: To experimentally validate a new algorithm for reconstructing the 3D positions of implanted brachytherapy seeds from postoperatively acquired 2D conebeam-CT (CBCT) projection images. Methods: The iterative forward projection matching (IFPM) algorithm finds the 3D seed geometry that minimizes the sum of the squared intensity differences between computed projections of an initial estimate of the seed configuration and radiographic projections of the implant. In-house machined phantoms, containing arrays of 12 and 72 seeds, respectively, are used to validate this method. Also, four {sup 103}Pd postimplant patients are scanned using an ACUITY digital simulator. Three to ten x-ray images are selected from the CBCT projection set and processed to create binary seed-only images. To quantify IFPM accuracy, the reconstructed seed positions are forward projected and overlaid on the measured seed images to find the nearest-neighbor distance between measured and computed seed positions for each image pair. Also, the estimated 3D seed coordinates are compared to known seed positions in the phantom and clinically obtained VariSeed planning coordinates for the patient data. Results: For the phantom study, seed localization error is (0.58{+-}0.33) mm. For all four patient cases, the mean registration error is better than 1 mm while compared against the measured seed projections. IFPM converges in 20-28 iterations, with a computation time of about 1.9-2.8 min/iteration on a 1 GHz processor. Conclusions: The IFPM algorithm avoids the need to match corresponding seeds in each projection as required by standard back-projection methods. The authors' results demonstrate {approx}1 mm accuracy in reconstructing the 3D positions of brachytherapy seeds from the measured 2D projections. This algorithm also successfully localizes overlapping clustered and highly migrated seeds in the implant.

  1. Clinical application and validation of an iterative forward projection matching algorithm for permanent brachytherapy seed localization from conebeam-CT x-ray projections.

    Science.gov (United States)

    Pokhrel, Damodar; Murphy, Martin J; Todor, Dorin A; Weiss, Elisabeth; Williamson, Jeffrey F

    2010-09-01

    To experimentally validate a new algorithm for reconstructing the 3D positions of implanted brachytherapy seeds from postoperatively acquired 2D conebeam-CT (CBCT) projection images. The iterative forward projection matching (IFPM) algorithm finds the 3D seed geometry that minimizes the sum of the squared intensity differences between computed projections of an initial estimate of the seed configuration and radiographic projections of the implant. In-house machined phantoms, containing arrays of 12 and 72 seeds, respectively, are used to validate this method. Also, four 103Pd postimplant patients are scanned using an ACUITY digital simulator. Three to ten x-ray images are selected from the CBCT projection set and processed to create binary seed-only images. To quantify IFPM accuracy, the reconstructed seed positions are forward projected and overlaid on the measured seed images to find the nearest-neighbor distance between measured and computed seed positions for each image pair. Also, the estimated 3D seed coordinates are compared to known seed positions in the phantom and clinically obtained VariSeed planning coordinates for the patient data. For the phantom study, seed localization error is (0.58 +/- 0.33) mm. For all four patient cases, the mean registration error is better than 1 mm while compared against the measured seed projections. IFPM converges in 20-28 iterations, with a computation time of about 1.9-2.8 min/ iteration on a 1 GHz processor. The IFPM algorithm avoids the need to match corresponding seeds in each projection as required by standard back-projection methods. The authors' results demonstrate approximately 1 mm accuracy in reconstructing the 3D positions of brachytherapy seeds from the measured 2D projections. This algorithm also successfully localizes overlapping clustered and highly migrated seeds in the implant.

  2. Dosimetric study in iodine-125 seeds for brachytherapy application

    International Nuclear Information System (INIS)

    Zeituni, Carlos Alberto

    2008-01-01

    The demand for iodine-125 seeds for use in brachytherapy treatments has experienced an increase along recent years in Brazil and all over the world. All iodine-125 seed must have its operational parameters measured and/or calculated every time changes in the production process are carried out. A complete dosimetric measurement is very expensive, and it is recommended that this procedure must be repeated at least once a year. Thus, this work developed a methodology for the entire dosimetric process. This methodology is based on the scarce information available in the literature, once almost all the methodology used in large industrial laboratories is commercial secret. The proposed methodology was tested using seeds of Amersham-Oncura-Ge Healthcare, which is the largest seed manufactory in the world. In this new methodology, an automatic reader was employed in order to reduce the time required in the selection process of the TLD-100 dosimeters used and a postprocessing of the obtained spectra was carried out. A total of 142 dosimeters were used and only 29 have been selected using the new methodology. Measurements were performed using slabs of Solid Water RW1 to simulate measuring in the 'water', using three different experimental apparatus and each measurement was repeated at least three times. The TLD-100 calibration was performed using a Dermopan II - Siemens. The measured values showed a good agreement with the ones available in the literature. Finally, these measured values were compared with calculated ones obtained by a semiempirical simulation program, showing a good agreement and, therefore, demonstrating the validity of the proposed methodology regarding dosimetric calculations. (author)

  3. Development of irradiation support devices for production of brachytherapy seeds

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Fabio R.; Rostelato, Maria Elisa C.M.; Zeituni, Carlos A.; Souza, Carla D.; Moura, Joao A.; Peleias Junior, Fernando S.; Karan Junior, Dib; Feher, Anselmo; Oliveira, Tiago B.; Benega, Marcos A.G., E-mail: tiagooliveira298@gmail.com, E-mail: mattos.fr@gmail.com, E-mail: elisaros@ipen.br, E-mail: czeituni@ipen.br, E-mail: carladdsouza@yahoo.com.br, E-mail: jamoura@ipen.br, E-mail: ernandopeleias@gmail.com, E-mail: s, E-mail: dib.karan@usp.br, E-mail: afeher@ipen.br, E-mail: marcosagbenega@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Ophthalmic tumors treatment with brachytherapy sources has been widely used as a primary or secondary therapy for non-malignant or malignant tumors, for example, choroid melanoma, and retinoblastoma. Ruthenium-106, Iodine-125, Palladium -103, Gold-198 and Iridium-192, are some radionuclides that can be applied for treatment of ocular tumors. These sources are in small sizes (a few millimeters) and different shapes (rods, wires, disks). To ensure high accuracy during treatment, they are positioned in eye applicators, specially designed to fit on the surface of tumor. The Nuclear and Energy Research Institute (IPEN/CNEN) in a partnership with Paulista Medicine School (UNIFESP) created a project that aims to develop a prototype of Iridium-192 seeds for treatment of eye cancer. This seed consists in a core of Ir -Pt alloy (20%-80%) with a length of 3 mm, to be activated in IPEN's IEA-R1 Reactor, and a titanium capsule sealing the core. It was imperative to develop a sustainer device for irradiation. This piece is used to avoid overlapping of one cores and, therefore, avoiding the 'shadow effect' that does not allow full activation of each core due to the high density. (author)

  4. Development of irradiation support devices for production of brachytherapy seeds

    International Nuclear Information System (INIS)

    Mattos, Fabio R.; Rostelato, Maria Elisa C.M.; Zeituni, Carlos A.; Souza, Carla D.; Moura, Joao A.; Peleias Junior, Fernando S.; Karan Junior, Dib; Feher, Anselmo; Oliveira, Tiago B.; Benega, Marcos A.G.

    2013-01-01

    Ophthalmic tumors treatment with brachytherapy sources has been widely used as a primary or secondary therapy for non-malignant or malignant tumors, for example, choroid melanoma, and retinoblastoma. Ruthenium-106, Iodine-125, Palladium -103, Gold-198 and Iridium-192, are some radionuclides that can be applied for treatment of ocular tumors. These sources are in small sizes (a few millimeters) and different shapes (rods, wires, disks). To ensure high accuracy during treatment, they are positioned in eye applicators, specially designed to fit on the surface of tumor. The Nuclear and Energy Research Institute (IPEN/CNEN) in a partnership with Paulista Medicine School (UNIFESP) created a project that aims to develop a prototype of Iridium-192 seeds for treatment of eye cancer. This seed consists in a core of Ir -Pt alloy (20%-80%) with a length of 3 mm, to be activated in IPEN's IEA-R1 Reactor, and a titanium capsule sealing the core. It was imperative to develop a sustainer device for irradiation. This piece is used to avoid overlapping of one cores and, therefore, avoiding the 'shadow effect' that does not allow full activation of each core due to the high density. (author)

  5. Incidence of seed migration to the chest, abdomen, and pelvis after transperineal interstitial prostate brachytherapy with loose 125I seeds

    International Nuclear Information System (INIS)

    Sugawara, Akitomo; Shigematsu, Naoyuki; Nakashima, Jun; Kunieda, Etsuo; Nagata, Hirohiko; Mizuno, Ryuichi; Seki, Satoshi; Shiraishi, Yutaka; Kouta, Ryuichi; Oya, Mototsugu

    2011-01-01

    The aim was to determine the incidence of seed migration not only to the chest, but also to the abdomen and pelvis after transperineal interstitial prostate brachytherapy with loose 125 I seeds. We reviewed the records of 267 patients who underwent prostate brachytherapy with loose 125 I seeds. After seed implantation, orthogonal chest radiographs, an abdominal radiograph, and a pelvic radiograph were undertaken routinely to document the occurrence and sites of seed migration. The incidence of seed migration to the chest, abdomen, and pelvis was calculated. All patients who had seed migration to the abdomen and pelvis subsequently underwent a computed tomography scan to identify the exact location of the migrated seeds. Postimplant dosimetric analysis was undertaken, and dosimetric results were compared between patients with and without seed migration. A total of 19,236 seeds were implanted in 267 patients. Overall, 91 of 19,236 (0.47%) seeds migrated in 66 of 267 (24.7%) patients. Sixty-nine (0.36%) seeds migrated to the chest in 54 (20.2%) patients. Seven (0.036%) seeds migrated to the abdomen in six (2.2%) patients. Fifteen (0.078%) seeds migrated to the pelvis in 15 (5.6%) patients. Seed migration occurred predominantly within two weeks after seed implantation. None of the 66 patients had symptoms related to the migrated seeds. Postimplant prostate D90 was not significantly different between patients with and without seed migration. We showed the incidence of seed migration to the chest, abdomen and pelvis. Seed migration did not have a significant effect on postimplant prostate D90

  6. WE-A-17A-11: Implanted Brachytherapy Seed Movement Due to Transrectal Ultrasound Probe-Induced Prostate Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D; Usmani, N; Sloboda, R [Cross Cancer Institute, Edmonton, Alberta (Canada); University of Alberta, Edmonton, Alberta (Canada); Meyer, T; Husain, S; Angyalfi, S [Tom Baker Cancer Centre, Calgary, Alberta (Canada); University of Calgary, Calgary, Alberta (Canada); Kay, I [Canterbury District Health Board, Christchurch (New Zealand)

    2014-06-15

    Purpose: To characterize the movement of implanted brachytherapy seeds due to transrectal ultrasound probe-induced prostate deformation and to estimate the effects on prostate dosimetry. Methods: Implanted probe-in and probe-removed seed distributions were reconstructed for 10 patients using C-arm fluoroscopy imaging. The prostate was delineated on ultrasound and registered to the fluoroscopy seeds using a visible subset of seeds and residual needle tracks. A linear tensor and shearing model correlated the seed movement with position. The seed movement model was used to infer the underlying prostate deformation and to simulate the prostate contour without probe compression. Changes in prostate and surrogate urethra dosimetry were calculated. Results: Seed movement patterns reflecting elastic decompression, lateral shearing, and rectal bending were observed. Elastic decompression was characterized by anterior-posterior expansion and superior-inferior and lateral contractions. For lateral shearing, anterior movement up to 6 mm was observed for extraprostatic seeds in the lateral peripheral region. The average intra-prostatic seed movement was 1.3 mm, and the residual after linear modeling was 0.6 mm. Prostate D90 increased by 4 Gy on average (8 Gy max) and was correlated with elastic decompression. For selected patients, lateral shearing resulted in differential change in D90 of 7 Gy between anterior and posterior quadrants, and increase in whole prostate D90 of 4 Gy. Urethra D10 increased by 4 Gy. Conclusion: Seed movement upon probe removal was characterized. The proposed model captured the linear correlation between seed movement and position. Whole prostate dose coverage increased slightly, due to the small but systematic seed movement associated with elastic decompression. Lateral shearing movement increased dose coverage in the anterior-lateral region, at the expense of the posterior-lateral region. The effect on whole prostate D90 was smaller due to the subset

  7. Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds

    OpenAIRE

    Lediju Bell, Muyinatu A.; Kuo, Nathanael; Song, Danny Y.; Boctor, Emad M.

    2013-01-01

    Prostate brachytherapy, administered by implanting tiny radioactive seeds to treat prostate cancer, currently relies on transrectal ultrasound imaging for intraoperative visualization of the metallic seeds. Photoacoustic (PA) imaging has been suggested as a feasible alternative to ultrasound imaging due to its superior sensitivity to metal surrounded by tissue. However, PA images suffer from poor contrast when seeds are distant from the light source. We propose a transperineal light delivery ...

  8. On-line implant reconstruction in HDR brachytherapy

    International Nuclear Information System (INIS)

    Kolkman-Deurloo, Inger-Karine K.; Kruijf, Wilhelmus J.M. de; Levendag, Peter C.

    2006-01-01

    Background and purpose: To evaluate the accuracy of on-line planning in an Integrated Brachytherapy Unit (IBU) using dedicated image distortion correction algorithms, correcting the geometric distortion and magnetic distortion separately, and to determine the effect of the reconstruction accuracy on clinical treatment plans in terms of deviations in treatment time and dose. Patients and methods: The reconstruction accuracy has been measured using 20 markers, positioned at well known locations in a QA phantom. Treatment plans of two phantoms representing clinical implant geometries, have been compared with reference plans to determine the effect of the reconstruction accuracy on the treatment plan. Before clinical introduction, treatment plans of three representative patients, based on on-line reconstruction, have been compared with reference plans. Results: The average reconstruction error for 10 in. images reduces from -0.6 mm (range -2.6 to +1.0 mm) to -0.2 mm (range -1.2 to +0.6 mm) after image distortion correction and for 15 in. images from 0.8 mm (range -0.5 to +3.0 mm) to 0.0 mm (range -0.8 to +0.8 mm). The error in case of eccentric positioning of the phantom, i.e. 0.8 mm (range -1.0 to +3.3 mm), reduces to 0.1 mm (range -0.5 to +0.9 mm). Correction of the image distortions reduces the deviation in the calculated treatment time of maximally 2.7% to less than 0.8% in case of eccentrically positioned clinical phantoms. The deviation in the treatment time or reference dose in the plans based on on-line reconstruction with image distortion correction of the three patient examples is smaller than 0.3%. Conclusions: Accurate on-line implant reconstruction using the IBU localiser and dedicated correction algorithms separating the geometric distortion and the magnetic distortion is possible. The results fulfill the minimum requirements as imposed by the Netherlands Commission on Radiation Dosimetry (NCS) without limitations regarding the usable range of the field

  9. Prostate brachytherapy seed migration to the heart seen on cardiovascular computed tomographic angiography

    Directory of Open Access Journals (Sweden)

    Shilpa Sachdeva, MD

    2017-03-01

    Full Text Available Brachytherapy consists of placing radioactive sources into or adjacent to tumors, to deliver conformal radiation treatment. The technique is used for treatment of primary malignancies and for salvage in recurrent disease. Permanent prostate brachytherapy seeds are small metal implants containing radioactive sources of I-125, Pd-103, or Cs-131 encased in a titanium shell. They can embolize through the venous system to the lungs or heart and subsequently be detected by cardiovascular computed tomography. Cardiovascular imagers should be aware of the appearance of migrated seeds, as their presence in the chest is generally benign, so that unnecessary worry and testing are avoided. We report a case of a patient who underwent brachytherapy for prostate cancer and developed a therapeutic seeds embolus to the right ventricle.

  10. Iodine-125 thin seeds decrease prostate swelling during transperineal interstitial permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Beydoun, Nadine; Bucci, Joseph A.; Chin, Yaw S.; Malouf, David

    2014-01-01

    Prostate swelling following seed implantation is a well-recognised phenomenon. The purpose of this intervention was to assess whether using thinner seeds reduces post-implant swelling with permanent prostate brachytherapy. Eighteen consecutive patients eligible for prostate seed brachytherapy underwent seed implantation using iodine-125 (I-125) thin seeds. Operative time, dosimetry, prostate swelling and toxicity were assessed and compared with standard I-125 stranded seed controls, sourced from the department's brachytherapy database. A learning curve was noted with the thin seeds in terms of greater bending and deviation of needles from their intended path. This translated into significantly longer total operative time (88 vs 103 minutes; P=0.009, 95% confidence interval (CI) 4.1-24.3) and time per needle insertion (2.6 vs 3.7 minutes; P<0.001, 95% CI 0.5-1.3) for the thin seeds. Day 30 prostate volumes were significantly smaller in the thin seed group compared with standard seeds (40.9cc vs 46.8cc; P=0.001, 95% CI 1.5-5.6). The ratio of preoperative transrectal ultrasound to day 30 post-implant CT volume was also smaller in the thin seed group (1.2±0.1 for standard seeds vs 1.1±0.1 for thin seeds). Post-implant dosimetric parameters were comparable for both groups. No significant differences were seen in acute urinary morbidity or quality of life between the two groups. I-125 thin seeds are associated with an initial learning curve, with longer operative time, even for experienced brachytherapists. The significant reduction in day 30 prostate volumes with the thin seeds has useful implications in terms of optimising dose coverage to the prostate in the early period post-implantation, as well as improving the accuracy of post-implant dosimetric assessments.

  11. Production of Pd 103 seed from Rh targets for brachytherapy

    International Nuclear Information System (INIS)

    Afarideh, H.; Ardaneh, K.; Sadeghi, M.

    2000-01-01

    The suitability of a given radionuclide for brachytherapy is determined by its half-life, the type of energy, and abundance (number per decay) of its emission. The half-life of a radionuclide must be long enough to permit shipping and implant preparation with an acceptable loss of source strength due to decay, but it must also be short enough to permit source sizes sufficiently small for the intended application. Pd-103 is a low energy photon emitter available for permanent interstitial implantation. Pd-103 has energy and safety characteristics similar to I-125, but its initial peripheral dose rate is approximately three times greater. This may provide improved control of rapidly proliferating tumours. Although Pd-103 has been used for various kinds of cancers, it is almost exclusively used for prostate cancer, the most common cancer, and the death rate from this cancer is the highest. There are two cyclotron production routes for Pd-103, Ag (p,xn) 103 Pd and Rh (p,n) 103 Pd. For a cyclotron with low energy (such as 30Mev that we have in Iran, Karaj, NRCAM) only Rh target can be used. The target material should be deposited on a special designed Cu substrate and the separation process should isolate the desired radionuclide from target material as well as Cu. Our work plan for production of Pd 103 in Karaj, Iran, is as follows: In the first year of the CRP we are going to complete the literature survey of Pd production and perform the relevant experiments as described later. In the second year of the CRP we will construct suitable hot cells for Pd production and also do research for development of Pd seeds. In the last year of the CRP we are going to finalise all the work done during the last two years and propose the automation system for routine production

  12. Effect of permanent 103Pd radioactive seed implantation on brachytherapy of malignant tumor

    International Nuclear Information System (INIS)

    Chen Ping; Wei Xianzhong; Liu Yanmin; Wu Kaijun; Liang Jianxin; Chen Hanzhang

    2003-01-01

    Objective: To investigate and assess the brachytherapeutic effectiveness of 103 Pd radioactive seeds in malignant tumor therapy. Methods: 196.1-2127.5 MBq 103 Pd seeds were implanted in 21 confirmed malignant tumor patients. The seeds were evenly scattered in 15/21 patients' tumors and peripherally in the remaining 6 cases' tumors. The size and shape, local recurrence and remote metastasis of the tumors were observed. Results: The brachytherapy of 103 Pd seeds in tumor patients resulted in obvious efficacy. No local recurrence and remote metastasis were observed. 19/21 (90.5%) patients scored 0 and 2/21 (9.5%) of them scored 1 in skin acute radiation morbidity scoring criteria within the observation period. Conclusion: The 103 Pd seeds can be safely used in brachytherapy of malignant tumors with lower or medium sensitivity to radiation therapy

  13. Prostate brachytherapy postimplant dosimetry: Seed orientation and the impact of dosimetric anisotropy in stranded implants

    International Nuclear Information System (INIS)

    Chng, Nicholas; Spadinger, Ingrid; Rasoda, Rosey; Morris, W. James; Salcudean, Septimiu

    2012-01-01

    Purpose: In postimplant dosimetry for prostate brachytherapy, dose is commonly calculated using the TG-43 1D formalism, because seed orientations are difficult to determine from CT images, the current standard for the procedure. However, the orientation of stranded seeds soon after implantation is predictable, as these seeds tend to maintain their relative spacing, and orient themselves along the implant trajectory. The aim of this study was to develop a method for determining seed orientations from reconstructed strand trajectories, and to use this information to investigate the dosimetric impact of applying the TG-43 2D formalism to clinical postimplant analysis. Methods: Using in-house software, the preplan to postimplant seed correspondence was determined for a cohort of 30 patients during routine day-0 CT-based postimplant dosimetry. All patients were implanted with stranded-seed trains. Spline curves were fit to each set of seeds composing a strand, with the requirement that the distance along the spline between seeds be equal to the seed spacing within the strand. The orientations of the seeds were estimated by the tangents to the spline at each seed centroid. Dose distributions were then determined using the 1D and 2D TG-43 formalisms. These were compared using the TG-137 recommended dose metrics for the prostate, prostatic urethra, and rectum. Results: Seven hundred and sixty one strands were analyzed in total. Defining the z-axis to be cranial-positive and the x-axis to be left-lateral positive in the CT coordinate system, the average seed had an inclination of 21 deg. ± 10 deg. and an azimuth of -81 deg. ± 57 deg. These values correspond to the average strand rising anteriorly from apex to base, approximately parallel to the midsagittal plane. Clinically minor but statistically significant differences in dose metrics were noted. Compared to the 2D calculation, the 1D calculation underestimated prostate V100 by 1.1% and D90 by 2.3 Gy, while

  14. Study on interstitial brachytherapy using 103Pd seeds on tumor-bearing rats

    International Nuclear Information System (INIS)

    Feng Huiru; Zhang Jingming; Tian Jiahe; Ding Weimin; Bai Hongsheng; Jin Xiaohai

    2003-01-01

    The effects of low-dose-rate brachytherapy are investigated in tumor-bearing rat. Walker 256 cells are transplanted subcutaneously with a trocar in the left leg of rats (Wistar). Two weeks later, rats with a tumor of 10 mm in mean diameter are divided into three groups (10 per group). Two groups are given 1 seed and 2 seeds implantation of 103 Pd, respectively, the third group is as an untreated control. Tumor size is measured twice a week until the 25th day when the rats are killed. Tumor is monitored either by palpation or further confirmed by histopathology. Kaplan-Meier statistic method is performed for survival analysis. The results show that the average weight of rats in untreated group is lower than in radiation groups (P 0.05). Tumor volumes in all treatment groups increase more obviously than in control till 16 days post-implantation. Tumor regression rate in 1 seed group is higher than in control group and in 2 seeds group. Although survival analysis show that the median survival time in 1 seed, 2 seeds and control groups are 24±0, 21±2 and 19±2 days with survival rate of 80%, 60% and 50% respectively, no significant differences are seen in all groups. So, brachytherapy with 103 Pd seed is effective on tumor-bearing rats. The implantation of seed can cause tumor edema in a self-limited way. A reasonable doses chosen for brachytherapy may play a role in treatment success

  15. Investigation of palladium-103 production and IR07-103Pd brachytherapy seed preparation

    International Nuclear Information System (INIS)

    Saidi, Pooneh; Sadeghi, Mahdi; Enferadi, Milad; Aslani, Gholamreza

    2011-01-01

    Highlights: → We report the cyclotron production of 103-palladium via 103 Rh(p,n) 103 Pd reaction. → 103 Pd was absorbed on resin beads for brachytherapy seed preparation. → The optimum absorption of 103 Pd in resin was achieved at 0.5 M HCl. → Version 5 of MCNP code was employed to model a new 103 Pd brachytherapy seed. - Abstract: In this study, design and fabrication of 103 Pd brachytherapy seed was investigated. The excitation functions of 103 Rh(p,n) 103 Pd and 103 Rh(d,2n) 103 Pd reactions were calculated using EMPIRE (version 3.1 Rivoli), ALICE/ASH and TALYS-1.2 codes, the TENDL-2010 database and compared with the published data. Production of 103 Pd was done via 103 Rh(p,n) 103 Pd nuclear reaction. The target was bombarded with 18 MeV protons at 200 μA beam current for 15 h. After irradiation and radiochemical separation of the electroplated rhodium target, the optimum condition for absorption of 103 Pd into Amberlite (registered) IR-93 resin was achieved at 0.5 M HCl. Version 5 of the (MCNP) Monte Carlo radiation transport code was employed to calculate the dosimetric parameters around the 103 Pd brachytherapy seed. Finally the calculated results were compared with published results for other commercial sources.

  16. Iodine-125 seed implantation (permanent brachytherapy) for clinically localized prostate cancer

    International Nuclear Information System (INIS)

    Ebara, Shin; Katayama, Yoshihisa; Tanimoto, Ryuta

    2008-01-01

    From January 2004 to March 2007, 308 patients with clinically localized prostate cancer were treated using iodine-125 ( 125 I) seed implantation (permanent brachytherapy) at Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences. We evaluated the treatment's efficacy and morbidity in 300 prostate cancer patients who were followed up for more than 1 month after brachytherapy. Based on the National Comprehensive Cancer Network (NCCN) guidelines, patients with a prostate volume of less than 40 ml in transrectal ultrasound imaging were classified as low or intermediate risk. The median patient age was 67 years (range 50 to 79 years), the median prostate-specific antigen (PSA) value before biopsy was 6.95 ng/ml (range 1.13 to 24.7 ng/ml), and the median prostate volume was 24.33 ml (range 9.3 to 41.76 ml). The median follow-up was 18 months (range 1 to 36 months) and the PSA levels decreased in almost all patients after brachytherapy. Although 194 of 300 patients (64.7%) complained of difficulty in urination, pollakisuria/urgency, miction pain, and/or urinary incontinence, all of which might be associated with radiation prostatitis during the first month after brachytherapy, these symptoms gradually improved. 125 I seed implantation brachytherapy is safe and effective for localized prostate cancer within short-term follow up. (author)

  17. Dosimetric intercomparison of permanent Ho-166 seed's implants and HDR Ir-192 brachytherapy in breast cancer.

    Science.gov (United States)

    de Campos, Tarcisio Passos Ribeiro; Nogueira, Luciana Batista; Trindade, Bruno; Cuperschmid, Ethel Mizrahy

    2016-01-01

    To provide a comparative dosimetric analysis of permanent implants of Ho(166)-seeds and temporary HDR Ir(192)-brachytherapy through computational simulation. Brachytherapy with Ir(192)-HDR or LDR based on temporary wires or permanent radioactive seed implants can be used as dose reinforcement for breast radiation therapy. Permanent breast implants have not been a practical clinical routine; although, I(125) and Pd(103)-seeds have already been reported. Biodegradable Ho(166)-ceramic-seeds have been addressed recently. Simulations of implants of nine Ho(166)-seeds and equivalent with HDR Ir(192)-brachytherapy were elaborated in MCNP5, shaped in a computational multivoxel simulator which reproduced a female thorax phantom. Spatial dose rate distributions and dose-volume histograms were generated. Protocol's analysis involving exposure time, seed's activities and dose were performed. Permanent Ho(166)-seed implants presented a maximum dose rate per unit of contained activity (MDR) of 1.1601 μGy h(-1) Bq(-1); and, a normalized MDR in standard points (8 mm, equidistant to 03-seeds - SP1, 10 mm - SP2) of 1.0% (SP1) and 0.5% (SP2), respectively. Ir(192)-brachytherapy presented MDR of 4.3945 × 10(-3) μGy h(-1) Bq(-1); and, 30% (SP1), and 20% (SP2). Therefore, seed's implant activities of 333 MBq (Ho(166)) and 259 GBq (Ir(192)) produced prescribed doses of 58 Gy (SP1; 5d) and 56 Gy (SP1, 5 fractions, 6 min), respectively. Breast Ho(166)-implants of 37-111 MBq are attractive due to the high dose rate near 6-10 mm from seeds, equivalent to Ir(192)-brachytherapy of 259 GBq (3 fractions, 6 min) providing similar dose in standard points at a week; however, with spatial dose distribution better confined. The seed positioning can be adjusted for controlling the breast tumor, in stages I and II, in flat and deep tumors, without any breast volumetric limitation.

  18. Automatic seed picking for brachytherapy postimplant validation with 3D CT images.

    Science.gov (United States)

    Zhang, Guobin; Sun, Qiyuan; Jiang, Shan; Yang, Zhiyong; Ma, Xiaodong; Jiang, Haisong

    2017-11-01

    Postimplant validation is an indispensable part in the brachytherapy technique. It provides the necessary feedback to ensure the quality of operation. The ability to pick implanted seed relates directly to the accuracy of validation. To address it, an automatic approach is proposed for picking implanted brachytherapy seeds in 3D CT images. In order to pick seed configuration (location and orientation) efficiently, the approach starts with the segmentation of seed from CT images using a thresholding filter which based on gray-level histogram. Through the process of filtering and denoising, the touching seed and single seed are classified. The true novelty of this approach is found in the application of the canny edge detection and improved concave points matching algorithm to separate touching seeds. Through the computation of image moments, the seed configuration can be determined efficiently. Finally, two different experiments are designed to verify the performance of the proposed approach: (1) physical phantom with 60 model seeds, and (2) patient data with 16 cases. Through assessment of validated results by a medical physicist, the proposed method exhibited promising results. Experiment on phantom demonstrates that the error of seed location and orientation is within ([Formula: see text]) mm and ([Formula: see text])[Formula: see text], respectively. In addition, the most seed location and orientation error is controlled within 0.8 mm and 3.5[Formula: see text] in all cases, respectively. The average process time of seed picking is 8.7 s per 100 seeds. In this paper, an automatic, efficient and robust approach, performed on CT images, is proposed to determine the implanted seed location as well as orientation in a 3D workspace. Through the experiments with phantom and patient data, this approach also successfully exhibits good performance.

  19. Brachytherapy

    Science.gov (United States)

    ... the use of a type of energy, called ionizing radiation, to kill cancer cells and shrink tumors. External ... In all cases of brachytherapy, the source of radiation is encapsulated ... non-radioactive metallic capsule. This prevents the radioactive materials ...

  20. Iodine 125 seed migration after prostate brachytherapy: a study of 170 patients

    International Nuclear Information System (INIS)

    Chauveinc, L.; Osseili, A.; Rosenwald, J.C.; Cosset, J.M.; Flam, T.; Thiounn, N.; Savignoni, A.

    2004-01-01

    Purpose. To study the number of migrating seeds, the anatomical site of migration and possible predictive parameters of migration, after prostate cancer brachytherapy using a loose-seed (I125) implantation technique. Patients and methods. The charts of the 170 patients consecutively treated by the Institut Curie/Hospital Cochin/Hospital Necker Group between September 1, 2001 and August 31, 2002, were analysed. All seeds having migrated to the lungs and seen on the chest X-ray systematically performed at 2 months, have been recorded, as well as the seeds lost by the urines (after sieving) or in the sperm (condom). Results. Among 12,179 implanted seeds, 44 were found to have migrated (0.36%). Most of the migrating seeds (32/44; 73%), were found in the lungs. Overall, one or several seed migrations were observed in 35 patients (21% of the total number of patients in this series). In the majority of cases (77< r i. only one seed migrated. A significant relationship (P = 0.04) vs as found between the number of migrating seeds and the number of implanted ones (or with the prostate volume, but those two parameters were closely linked in our series). More specifically, a significant relationship (P = 0.02) could be demonstrated between the number of seeds implanted at the periphery of the prostate and the number of seeds migrating to the lungs. Conclusion. The percentage of migrating seeds observed in this series is low. actually one of the lowest found in the literature when using the loose-seed technique. There was no clinical consequences and the loss of-usually only one seed is very unlikely to alter the quality of the dose distribution. However, the predominance of pulmonary migrations in our series led us to slightly modify our implantation technique. We now try to avoid too 'peripheral' seed implantations, due to the risk of migration towards the peri-prostatic veins, and subsequently to the lungs. (author)

  1. Monte Carlo-aided dosimetry of the new Bebig IsoSeed registered 103Pd Interstitial Brachytherapy Seed

    International Nuclear Information System (INIS)

    Daskalov, George M.; Williamson, J.F.

    2001-01-01

    A new model 103 Pd interstitial brachytherapy source, the IsoSeed registered 103 Pd, was recently introduced by Bebig Isotopentechnik und Umweltdiagnostik GmbH for permanent implant applications. This study presents the first quantitative theoretical study of the seed's dosimetric quantities. Monte Carlo photon transport (MCPT) simulation techniques have been used to evaluate the dose-rate distributions around the model IsoSeed registered 103 Pd source in liquid water and air phantoms. These results have been used to calculate and tabulate the anisotropy function, F(r,θ), radial dose function, g(r), and anisotropy factors, φ(r), and dose-rate constant as defined by AAPM Task Group 43 (TG-43) Report. Cartesian 'away' and 'along' tables, giving the dose rates per unit air-kerma strength in water in the range 0.1-3 cm distance around the seed have also been tabulated. The dose-rate constant, Λ, was evaluated by simulating the wide-angle, free-air chamber (WAFAC) calibration geometry recently implemented by NIST (National Institute of Standards and Technology) to realize the primary standard of air-kerma strength (S K,N99 ) for low-energy photon-emitting brachytherapy sources. The dose-rate constant has been found to be Λ=0.660±0.017 in units of dose-rate per unit air-kerma strength (cGy·h-1·U-1)

  2. SU-E-T-378: Evaluation of An Analytical Model for the Inter-Seed Attenuation Effect in 103-Pd Multi-Seed Implant Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, H; Soliman, A; Song, W [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, Nevada (United States); Han, D [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); University of California, San Diego, La Jolla, CA (United States)

    2015-06-15

    Purpose: Brachytherapy treatment planning systems based on TG-43 protocol calculate the dose in water and neglects the heterogeneity effect of seeds in multi-seed implant brachytherapy. In this research, the accuracy of a novel analytical model that we propose for the inter-seed attenuation effect (ISA) for 103-Pd seed model is evaluated. Methods: In the analytical model, dose perturbation due to the ISA effect for each seed in an LDR multi-seed implant for 103-Pd is calculated by assuming that the seed of interest is active and the other surrounding seeds are inactive. The cumulative dosimetric effect of all seeds is then summed using the superposition principle. The model is based on pre Monte Carlo (MC) simulated 3D kernels of the dose perturbations caused by the ISA effect. The cumulative ISA effect due to multiple surrounding seeds is obtained by a simple multiplication of the individual ISA effect by each seed, the effect of which is determined by the distance from the seed of interest. This novel algorithm is then compared with full MC water-based simulations (FMCW). Results: The results show that the dose perturbation model we propose is in excellent agreement with the FMCW values for a case with three seeds separated by 1 cm. The average difference of the model and the FMCW simulations was less than 8%±2%. Conclusion: Using the proposed novel analytical ISA effect model, one could expedite the corrections due to the ISA dose perturbation effects during permanent seed 103-Pd brachytherapy planning with minimal increase in time since the model is based on multiplications and superposition. This model can be applied, in principle, to any other brachytherapy seeds. Further work is necessary to validate this model on a more complicated geometry as well.

  3. Ropes eye plaque brachytherapy dosimetry for two models of 103Pd seeds

    International Nuclear Information System (INIS)

    Saidi, P.; Sadeghi, M.; Shirazi, A.; Tenreiro, C.

    2011-01-01

    Full text: Brachytherapy dose distributions are calculated for I5 m m ROPES eye plaque loaded with model Theragenics200 and IR06-103Pd seeds. The effects of stainless steel backing and Acrylic insert on dose distribution along the central axis of the eye plaque and at critical ocular structure are investigated. Monte Carlo simulation was carried out with the Version 5 of the MCNP. The dose at critical ocular structure by considering the eye composition was calculated. Results are compared with the calculated data for CaMS eye plaque loaded with Theragenics200 palladium-103 seeds and model 6711 iodine-125 seed. The air kerma strength of the IR06- 103Pd seed to deliver 85 Gy in apex of tumor in water medium was calculated to be 4.10 U/seed. Along the central axis of stainless steel plaque loaded with new 103Pd seeds in Acrylic insert, the dose reduction relative to water is 6.9% at 5 mm (apex). Removal of the Acrylic insert from the plaque (replacing with water) did not make significantly difference in dose reduction results (O.2%). The presence of the stainless steel backing results in dose enhancement near the plaque relative to water. Doses at points of interest are higher for ROPES eye plaque when compared to CaMS eye plaque. The dosimetric parameters calculated in this work for the new palladium seed, showed that in dosimetry point of view, the IR06-103Pd seed is suitable for use in brachytherapy. The effect of Acrylic insert on dose distribution is negligible and the main effect on dose reduction is due to the presence of stainless steel plaque backing. (author)

  4. Impact of catheter reconstruction error on dose distribution in high dose rate intracavitary brachytherapy and evaluation of OAR doses

    International Nuclear Information System (INIS)

    Thaper, Deepak; Shukla, Arvind; Rathore, Narendra; Oinam, Arun S.

    2016-01-01

    In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this study is to evaluate the impact of catheter reconstruction error on dose distribution in CT based intracavitary brachytherapy planning and evaluation of its effect on organ at risk (OAR) like bladder, rectum and sigmoid and target volume High risk clinical target volume (HR-CTV)

  5. Seed loss in prostate brachytherapy. Operator dependency and impact on dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    El-Bared, Nancy; Sebbag, Natanel; Beliveau-Nadeau, Dominic; Hervieux, Yannick; Larouche, Renee; Taussky, Daniel; Delouya, Guila [Centre hospitalier de l' Universite de Montreal - Hopital Notre-Dame, Departement de Radio-Oncologie, Montreal, QC (Canada)

    2016-05-15

    The aim of our study was to review seed loss and its impact on dosimetry as well as the influence of the treating physician on seed loss and dosimetry in patients treated with prostate brachytherapy using permanent loose {sup 125}I implant. We analyzed 1087 consecutive patients treated by two physicians between July 2005 and April 2015 at a single institution. Pelvic fluoroscopic imaging was done 30 days post implant and a chest X-ray when seed loss was observed. Seed loss occurred in 19.4 % of patients: in 20.0 % of implants done by the most experienced physician and in 17.2 % by the less experienced physician (p = 0.4) and migration to the thorax occurred in 5.9 % (6.9 vs. 2.2 %, p = 0.004). The mean seed loss rate was 0.57 % [standard deviation (SD) 1.39] and the mean rate of seeds in the thorax was 0.14 % (SD 0.65). The most experienced physician had a higher mean number of seeds lost: 0.36 versus 0.25 (p = 0.055), and a higher mean number of seed migration to the thorax: 0.1 versus 0.02 (p < 0.001). When at least one seed was lost, a decrease of 4.2 Gy (p < 0.001) in the D90 and a decrease of 3.5 % (p = 0.002) in the V150 was observed. We found a significant decrease in V150 and D90 with the occurrence of seed loss. Furthermore, we found a difference in seed migration among the physicians demonstrating that seed loss is operator dependant. (orig.) [German] Wir analysierten den Prozentsatz des Seed-Verlusts sowie den Einfluss von Arzterfahrung und Seed-Abgang auf die Dosimetrie bei Patienten, die mit einer Prostata-Brachytherapie mit permanent beweglichen {sup 125}I-Implantaten behandelt wurden. Eingeschlossen in diese Studie wurden alle zwischen Juli 2005 und April 2015 an unserem Krankenhaus von zwei Aerzten konsekutiv behandelten 1087 Patienten. Anhand fluoroskopischer Bilder wurden noch vorhandene Seeds 30 Tage nach dem Eingriff gezaehlt. Bei unvollstaendiger Seed-Anzahl wurde ein Thorax-Roentgenbild angefertigt. In 19% der Patienten ging mindestens ein

  6. Dosimetric study of permanent prostate brachytherapy utilizing 131Cs, 125I and 103Pd seeds

    International Nuclear Information System (INIS)

    Yang Ruijie; Wang Junjie; Zhang Hongzhi

    2009-01-01

    Objective: To compare the dosimetric differences of permanent prostate brachytherapy utilizing 131 Cs, 125 I and 103 Pd seeds. Methods: Twenty-five patients with T 1 -T 2 c prostate cancer who had previously implanted with 125 I seeds were randomly selected in our study. The patients were re-planned with 131 Cs, 125 I and 103 Pd seeds by using the Prowess Brachytherapy 3.1 planning system to the prescription doses of 115 Gy, 145 Gy and 125 Gy, respectively. The seed strengths were 1.8 U,0.5 U and 1.8 U, respectively. The prostate, prostatic urethra and anterior wall of the rectum were contoured on trans-rectal ultrasound images. PTV was outlined based on the prostate volume with no margin applied. The attempted planning goals were that V 100 (the percentage volume of the prostate receiving at least 100% of the prescription doses)= 95%, D 90 (the minimum percentage dose covering 90% of the prostate volume) ≥100%, and prostatic urethra UD 10 (the maximum percentage dose receiving by 10% of the contoured urethra) ≤150%. For the plan comparison, we also computed prostate V 150 , prostatic urethra UV 120 , rectum RV 100 , and the number of implanted seeds and needles. The significance of the differences was tested using one way analysis of variance. Results: The average V 200 in the 103 Pd, 125 I and 131 Cs plans were 28.7%, 20.9% and 19.6% (F=42.50, P=0.000); the average V 150 were 51.9%, 42.1% and 39.4% (F=26.15, P=0.000); the average UV 120 were 26.9%, 29.5% and 23.8% (F=0.37, P=0.691); and the average rectum RV 100 were 0.31 cm 3 , 0.22 cm 3 and 0.19 cm 3 (F=0.43, P=0.652). For 103 Pd, 125 I and 131 Cs, the average number of implanted seeds per cm 3 prostate were 2.02, 2.01 and 1.87 (F=1.92, P=0.154), and the average number of needles were 33.6, 32.9 and 31.6 (F=0.26,P=0.772). Conclusions: Comparing to 125 I and 103 Pd seeds used in permanent prostate brachytherapy, 131 Cs seeds has better dose homogeneity, and possible better sparing of the urethra and rectum

  7. Correlation of conventional simulation x-ray films and CT images for HDR-brachytherapy catheters reconstruction

    International Nuclear Information System (INIS)

    Rajendran, M.; Reddy, K.D.; Reddy, R.M.; Reddy, J.M.; Reddy, B.V.N.; Kiran Kumar; Gopi, S.; Dharaniraj; Janardhanan

    2002-01-01

    In order to plan a brachytherapy implant, it is imperative that implant reconstruction is done accurately. The purpose of this paper is to evaluate whether implant reconstruction done with transverse CT images is comparable to reconstruction done with conventional x-ray films

  8. Seed displacements after permanent brachytherapy for prostate cancer in dependence on the prostate level

    International Nuclear Information System (INIS)

    Pinkawa, M.; Gagel, B.; Asadpour, B.; Piroth, M.D.; Klotz, J.; Eble, M.J.; Borchers, H.; Jakse, G.

    2008-01-01

    Purpose: to evaluate seed displacements after permanent prostate brachytherapy considering different prostate levels. Patients and methods: in 61 patients, postimplant CT scans were performed 1 day and 1 month after an implant with stranded seeds. Seed and prostate surface displacements were determined relative to pelvic bones. Four groups of seed locations were selected: seeds at the base (n = 305; B), at the apex (n = 305; A), close to the urethra (n = 306; U), and close to the rectal wall (n = 204; R). The length of two strands (always containing four seeds) per patient was measured in all CT scans and compared. Results: the largest inferior seed displacements were found at the base: mean 5.3 mm (B), 2.2 mm (A), 2.7 mm (U), 3.3 mm (R; p 3 vs. 41 cm 3 ; p < 0.001), a mean caudal prostate base displacement of 3.9 mm was found, whereas the mean inward displacement ranged from 1.2 to 1.6 mm at the remaining borders (lateral, anterior, posterior, apical). The analysis of the strand lengths revealed an implant compression between day 1 and 30 (mean 1.7 mm; p < 0.001). Conclusion: the largest prostate tissue and seed displacements were observed at the prostate base, associated with an implant compression. Predominantly inferior and posterior displacements implicate consequential smaller preplanning margins at the apex and the posterior prostate. (orig.)

  9. Sequential evaluation of prostate edema after permanent seed prostate brachytherapy using CT-MRI fusion

    International Nuclear Information System (INIS)

    Taussky, Daniel; Austen, Lyn; Toi, Ants; Yeung, Ivan; Williams, Theresa; Pearson, Shannon; McLean, Michael; Pond, Gregory; Crook, Juanita

    2005-01-01

    Purpose: To analyze the extent and time course of prostate edema and its effect on dosimetry after permanent seed prostate brachytherapy. Methods and Materials: Twenty patients scheduled for permanent seed 125 I prostate brachytherapy agreed to a prospective study on postimplant edema. Implants were preplanned using transrectal ultrasonography. Postimplant dosimetry was calculated using computed tomography-magnetic resonance imaging (CT-MRI) fusion on the day of the implant (Day 1) and Days 8 and 30. The prostate was contoured on MRI, and the seeds were located on CT. Factors investigated for an influence on edema were the number of seeds and needles, preimplant prostate volume, transitional zone index (transition zone volume divided by prostate volume), age, and prostate-specific antigen level. Prostate dosimetry was evaluated by the percentage of the prostate volume receiving 100% of the prescribed dose (V 100 ) and percentage of prescribed dose received by 90% of the prostate volume (D 90 ). Results: Prostate edema was maximal on Day 1, with the median prostate volume 31% greater than preimplant transrectal ultrasound volume (range, 0.93-1.72; p 100 on Day 1 was 93.6% (range, 86.0-98.2%) and was 96.3% (range, 85.7-99.5%) on Day 30 (p = 0.079). Patients with a Day 1 V 100 >93% were less affected by edema resolution, showing a median increase in V 100 of 0.67% on Day 30 compared with 2.77% for patients with a V 100 100 >93%)

  10. Development of an Iridium-192 seed for use in ophthalmic brachytherapy

    International Nuclear Information System (INIS)

    Mattos, Fabio R.; Rostelato, Maria Elisa C.M.; Zeituni, Carlos; Moura, Joao A.; Costa, Osvaldo L.; Feher, Anselmo; Moura, Eduardo S.; Souza, Carla D.; Peleias Junior, Fernando S.

    2011-01-01

    The Institute for Energy and Nuclear Research (IPEN), in partnership with the School or Medicine (UNIFESP), created a project that aims to develop and implement an ophthalmic therapeutic treatment for cancer with Iridium-192 seeds. The School of Medicine treats many cancer cases in the SUS (Brazilian Public Health System), and brachytherapy group of IPEN has extensive experience in prototype sources. The seed to be manufactured will perform as follows: a core of Iridium-192 is packaged inside small cylindrical seeds consist of a titanium capsule of 0.8 mm outer diameter, 0.05 mm wall thickness and 4 5 mm in length. The core is an alloy of platinum-iridium (20/80) of 3.0 mm in length and 0.3 mm in diameter. Material analysis, neutron activation and activity measurements were carried out. (author)

  11. Radioactive ceramic seeds with Ho-166 and Sm-153 with perspective of use in brachytherapy

    International Nuclear Information System (INIS)

    Valente, Eduardo Sarmento

    2010-01-01

    rates calculated at a distance of one meter ranged between 0.081 and 0.159.μS/h.seed. The results showed that the ceramic seeds produced have physical and chemical characteristics suitable for the proposed use in brachytherapy as small dimensions, appropriate concentration of target atoms of samarium and holmium or no dispersal of radioactive material in body fluid during the first ten days of immersion. The experiments also showed that the concentration of these elements in the ceramic matrix is sufficient to be activated in low neutron flux reactors, generating sufficient radioactivity for brachytherapy in high dose rates. The results obtained in vitro experiments were encouraging and demonstrated the ability that seeds, with β-emitting elements, have to eliminate tumor cells. The range of β radiation in biological experiments in vitro was consistent with the theoretical value and may be used as reference for the seed spacing when implanted in vivo. The solubility characteristics of radioactive nuclides in simulated body fluid in the short and long term, demonstrated that in the early days, there is no measurable solubilization. Indications were obtained that the seed dissolves measurably after a few months immersed in simulated body fluid. Finally it could be seen that the radioactive ceramic seeds with β emitters have favorable perspectives for use in high dose rate brachytherapy. (author)

  12. Influence of 125I seed interstitial brachytherapy on recovery of facial nerve function

    International Nuclear Information System (INIS)

    Song Tieli; Zheng Lei; Zhang Jie; Cai Zhigang; Yang Zhaohui; Yu Guangyan; Zhang Jianguo

    2010-01-01

    Objective: To study the influence of 125 I seed interstitial brachytherapy in parotid region on the recovery of facial nerve function. Methods: A total of the data of 21 patients with primary parotid carcinoma were treated with resection and 125 I interstitial brachytherapy. All the patients had no facial palsy before operation and the prescribed dose was 60 Gy. During 4 years of follow-up, the House-Brackmann grading scales and ENoG were used to evaluate the function of facial nerve. According to the modified regional House-Brackmann grading scales, the facial nerve branches of patients in affected side were divided into normal and abnormal groups, and were compared with those in contra-lateral side. Results: Post-operation facial palsy occurred in all the patients, but the facial palsy recovered within 6 months. The latency time differences between affected side and contralateral side were statistically significant in abnormal group from 1 week to 6 months after treatment (t=2.362, P=0.028), and were also different in normal group 1 week after treatment (t=2.522, P=0.027). Conclusions: 125 I interstitital brachytherapy has no influence on recovery of facial nerve function after tumor resection and no delayed facial nerve damage. (authors)

  13. Computational and Experimental Evaluations of a Novel Thermo-Brachytherapy Seed for Treatment of Solid Tumors

    Science.gov (United States)

    Warrell, Gregory R.

    Hyperthermia has long been known as a radiation therapy sensitizer of high potential; however successful delivery of this modality and integrating it with radiation have often proved technically difficult. We present the dual-modality thermobrachytherapy (TB) seed, based on the ubiquitous low dose-rate (LDR) brachytherapy permanent implant, as a simple and effective combination of hyperthermia and radiation therapy. Heat is generated from a ferromagnetic or ferrimagnetic core within the seed, which produces Joule heating by eddy currents. A strategically-selected Curie temperature provides thermal self-regulation. In order to obtain a uniform and sufficiently high temperature distribution, additional hyperthermia-only (HT-only) seeds are proposed to be used in vacant spots within the needles used to implant the TB seeds; this permits a high seed density without the use of additional needles. Experimental and computational studies were done both to optimize the design of the TB and HT-only seeds and to quantitatively assess their ability to heat and irradiate defined, patient-specific targets. Experiments were performed with seed-sized ferromagnetic samples in tissue-mimicking phantoms heated by an industrial induction heater. The magnetic and thermal properties of the seeds were studied computationally in the finite element analysis (FEA) solver COMSOL Multiphysics, modelling realistic patient-specific seed distributions. These distributions were derived from LDR permanent prostate implants previously conducted at our institution; various modifications of the seeds' design were studied. The calculated temperature distributions were analyzed by generating temperature-volume histograms, which were used to quantify coverage and temperature homogeneity for a range of blood perfusion rates, as well as for a range of seed Curie temperatures and thermal power production rates. The impact of the interseed attenuation and scatter (ISA) effect on radiation dose distributions

  14. Spectral CT with monochromatic imaging and metal artifacts reduction software for artifacts reduction of ¹²⁵I radioactive seeds in liver brachytherapy.

    Science.gov (United States)

    Yang, Qiuxia; Peng, Sheng; Wu, Jing; Ban, Xiaohua; He, Mingyan; Xie, Chuanmiao; Zhang, Rong

    2015-11-01

    To investigate the optimal monochromatic energy for artifacts reduction from (125)I seeds as well as image improvement in the vicinity of seeds on monochromatic images with and without metal artifacts reduction software (MARS) and to compare this with traditional 120-kVp images, so as to evaluate the application value of gemstone spectral imaging for reducing artifacts from (125)I seeds in liver brachytherapy. A total of 45 tumors from 25 patients treated with (125)I seed brachytherapy in the liver were enrolled in this study. Multiphasic spectral computed tomography (CT) scanning was performed for each patient. After a delay time of 15 s of portal vein phase, a traditional 120-kVp scan was performed, focusing on several planes of (125)I seeds only. The artifact index (AI) in the vicinity of seeds and the standard deviation (SD) of the CT density of region of interest in the outside liver parenchyma were calculated. Artifact appearance was evaluated and classified on reconstructed monochromatic S and 120-kVp images. Image quality in the vicinity of seeds of three data sets were evaluated using a 1-5 scale scoring method. The Friedman rank-sum test was used to estimate the scoring results of image quality. The greatest noise in monochromatic images was found at 40 keV (SD = 27.38, AI = 206.40). The optimal monochromatic energy was found at 75 keV, which provided almost the least image noise (SD = 10.01) and good performance in artifact reduction (AI = 102.73). Image noise and AI reduction at 75 keV was decreased by 63.44 and 50.23%, compared with at 40 keV. Near-field thick artifacts were obvious in all 45 lesions, in 120-kVp images, and 75-keV images, but basically reduced in 75 keV MARS images and artifacts completely invisible in 7 lesions. The number of diagnosable images (score ≥3) was significantly more in the 75-keV MARS group (28/45), and the 75-keV group (22/45) than in the 120-kVp group (11/45) (p improve image quality, even to a state of being

  15. WE-DE-201-12: Thermal and Dosimetric Properties of a Ferrite-Based Thermo-Brachytherapy Seed

    International Nuclear Information System (INIS)

    Warrell, G; Shvydka, D; Parsai, E I

    2016-01-01

    Purpose: The novel thermo-brachytherapy (TB) seed provides a simple means of adding hyperthermia to LDR prostate permanent implant brachytherapy. The high blood perfusion rate (BPR) within the prostate motivates the use of the ferrite and conductive outer layer design for the seed cores. We describe the results of computational analyses of the thermal properties of this ferrite-based TB seed in modelled patient-specific anatomy, as well as studies of the interseed and scatter (ISA) effect. Methods: The anatomies (including the thermophysical properties of the main tissue types) and seed distributions of 6 prostate patients who had been treated with LDR brachytherapy seeds were modelled in the finite element analysis software COMSOL, using ferrite-based TB and additional hyperthermia-only (HT-only) seeds. The resulting temperature distributions were compared to those computed for patient-specific seed distributions, but in uniform anatomy with a constant blood perfusion rate. The ISA effect was quantified in the Monte Carlo software package MCNP5. Results: Compared with temperature distributions calculated in modelled uniform tissue, temperature distributions in the patient-specific anatomy were higher and more heterogeneous. Moreover, the maximum temperature to the rectal wall was typically ∼1 °C greater for patient-specific anatomy than for uniform anatomy. The ISA effect of the TB and HT-only seeds caused a reduction in D90 similar to that found for previously-investigated NiCu-based seeds, but of a slightly smaller magnitude. Conclusion: The differences between temperature distributions computed for uniform and patient-specific anatomy for ferrite-based seeds are significant enough that heterogeneous anatomy should be considered. Both types of modelling indicate that ferrite-based seeds provide sufficiently high and uniform hyperthermia to the prostate, without excessively heating surrounding tissues. The ISA effect of these seeds is slightly less than that

  16. WE-DE-201-12: Thermal and Dosimetric Properties of a Ferrite-Based Thermo-Brachytherapy Seed

    Energy Technology Data Exchange (ETDEWEB)

    Warrell, G; Shvydka, D; Parsai, E I [University of Toledo Medical Center, Toledo, OH (United States)

    2016-06-15

    Purpose: The novel thermo-brachytherapy (TB) seed provides a simple means of adding hyperthermia to LDR prostate permanent implant brachytherapy. The high blood perfusion rate (BPR) within the prostate motivates the use of the ferrite and conductive outer layer design for the seed cores. We describe the results of computational analyses of the thermal properties of this ferrite-based TB seed in modelled patient-specific anatomy, as well as studies of the interseed and scatter (ISA) effect. Methods: The anatomies (including the thermophysical properties of the main tissue types) and seed distributions of 6 prostate patients who had been treated with LDR brachytherapy seeds were modelled in the finite element analysis software COMSOL, using ferrite-based TB and additional hyperthermia-only (HT-only) seeds. The resulting temperature distributions were compared to those computed for patient-specific seed distributions, but in uniform anatomy with a constant blood perfusion rate. The ISA effect was quantified in the Monte Carlo software package MCNP5. Results: Compared with temperature distributions calculated in modelled uniform tissue, temperature distributions in the patient-specific anatomy were higher and more heterogeneous. Moreover, the maximum temperature to the rectal wall was typically ∼1 °C greater for patient-specific anatomy than for uniform anatomy. The ISA effect of the TB and HT-only seeds caused a reduction in D90 similar to that found for previously-investigated NiCu-based seeds, but of a slightly smaller magnitude. Conclusion: The differences between temperature distributions computed for uniform and patient-specific anatomy for ferrite-based seeds are significant enough that heterogeneous anatomy should be considered. Both types of modelling indicate that ferrite-based seeds provide sufficiently high and uniform hyperthermia to the prostate, without excessively heating surrounding tissues. The ISA effect of these seeds is slightly less than that

  17. Seed Implant Retention Score Predicts the Risk of Prolonged Urinary Retention After Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Lee, Hoon K.; Adams, Marc T.; Shi, Qiuhu; Basillote, Jay; LaMonica, Joanne; Miranda, Luis; Motta, Joseph

    2010-01-01

    Purpose: To risk-stratify patients for urinary retention after prostate brachytherapy according to a novel seed implant retention score (SIRS). Patients and Methods: A total of 835 patients underwent transperineal prostate seed implant from March 1993 to January 2007; 197 patients had 125 I and 638 patients had 103 Pd brachytherapy. Four hundred ninety-four patients had supplemental external-beam radiation. The final downsized prostate volume was used for the 424 patients who had neoadjuvant hormone therapy. Retention was defined as reinsertion of a Foley catheter after the implant. Results: Retention developed in 7.4% of patients, with an average duration of 6.7 weeks. On univariate analysis, implant without supplemental external-beam radiation (10% vs. 5.6%; p = 0.02), neoadjuvant hormone therapy (9.4% vs. 5.4%; p = 0.02), baseline α-blocker use (12.5% vs. 6.3%; p = 0.008), and increased prostate volume (13.4% vs. 6.9% vs. 2.9%, >45 cm 3 , 25-45 cm 3 , 3 ; p = 0.0008) were significantly correlated with increased rates of retention. On multivariate analysis, implant without supplemental external-beam radiation, neoadjuvant hormone therapy, baseline α-blocker use, and increased prostate volume were correlated with retention. A novel SIRS was modeled as the combined score of these factors, ranging from 0 to 5. There was a significant correlation between the SIRS and retention (p < 0.0001). The rates of retention were 0, 4%, 5.6%, 9%, 20.9%, and 36.4% for SIRS of 0 to 5, respectively. Conclusions: The SIRS may identify patients who are at high risk for prolonged retention after prostate brachytherapy. A prospective validation study of the SIRS is planned.

  18. Dosimetry on ocular brachytherapy with ROPES plaque with Iodine-125 and Palladium-103 seeds

    International Nuclear Information System (INIS)

    Mourao, Arnaldo P.; Campos, Tarcisio P.R.

    2010-01-01

    Radiotherapy is an alternative to ocular enucleation. However, the irradiation of ocular region can bring deleterious effects due to the high doses, mainly in the lens, retina and in the bone structures in growth phase. Brachytherapy instead of teletherapy looks for departuring absorbed doses in tumor minimizing doses in the lens and the adjacent tissues of the eyeball (orbital region), avoiding deleterious effects. Thus, a three-dimensional computational model of ocular area was developed to simulate orbital irradiation with ROPES ophthalmologic plaque placed on the sclera surface filled to ten iodine-125 seeds, and palladium-103 seeds. Simulations are performed on the MCNP5 code. The computational simulation allows evaluating how the dose rates are spatially distributed in the orbital volume. The results are normalized to 100% at the maximum dose on the tumor base, and by the applied source activity. The maximum dose is found onto the eyeball, in the vitreous. The present model represents an advance in simulating and predicting absorbed dose on ocular brachytherapy. (author)

  19. Investigation on curative efficacy for malignant tumor by implantation '125I permanent brachytherapy seeds

    International Nuclear Information System (INIS)

    Hu Shu; Gao Zhou; Jia Shaowei; Cheng Xianyi; Chen Junhui; Yin Weihua; Sun Desheng

    2011-01-01

    Twenty inpatients suffered from malignant tumors with twenty-four lesions were treated with 125 I permanent brachytherapy seed in Peking University Shenzhen Hospital, and the feasibility, curative effect and adverse effect of the treatment were observed. Before 125 I seeds implantation, the three-dimensional treatment planning was preconcerted. There were two methods to implant 125 I seeds. One was to insert the seeds in the location of residual focus and metastatic lesions of the tumors directly in ordinary operations or through laparoscopy under general anesthesia. The other w as to implant the seeds into the tumors through percutaneous needles by the guidance of CT scanning or color doppler ultrasonography under local anesthesia. The implantations for all of the 20 patients (24 lesions) were performed successfully. During and one week after the implantation, the distributions of the planted seeds were approximately the same as the scheduled three-dimensional treatment planning, and no seed migration was found. Adverse reactions during and after the operation were slight and recovered after correlative treatments. Clinical symptoms were palliated and ser um tumor marker decreased to a different extent among most patients. The complete remission (CR) rate is 20.00% (4/20 patients ), the partial emission (PR) rate is 35.00% (7/20 patients), the stable disease (SD) rate is 30.00% (6/20 patients), the progressive disease (PD) rate is 15.00% (3/20 patients), and the overall response rate (CR + PR) is 53.33% (8 patients). 125 I seeds implantation for targeted therapy is convenient, safe and effective on malignant tumor, and is well worth advanced application. (authors)

  20. Seed displacements after permanent brachytherapy for prostate cancer in dependence on the prostate level

    Energy Technology Data Exchange (ETDEWEB)

    Pinkawa, M.; Gagel, B.; Asadpour, B.; Piroth, M.D.; Klotz, J.; Eble, M.J. [Dept. of Radiotherapy, RWTH Aachen (Germany); Borchers, H.; Jakse, G. [Dept. of Urology, RWTH Aachen (Germany)

    2008-10-15

    Purpose: to evaluate seed displacements after permanent prostate brachytherapy considering different prostate levels. Patients and methods: in 61 patients, postimplant CT scans were performed 1 day and 1 month after an implant with stranded seeds. Seed and prostate surface displacements were determined relative to pelvic bones. Four groups of seed locations were selected: seeds at the base (n = 305; B), at the apex (n = 305; A), close to the urethra (n = 306; U), and close to the rectal wall (n = 204; R). The length of two strands (always containing four seeds) per patient was measured in all CT scans and compared. Results: the largest inferior seed displacements were found at the base: mean 5.3 mm (B), 2.2 mm (A), 2.7 mm (U), 3.3 mm (R; p < 0.001). Posterior displacements predominated both at the base and the central region: mean 2.2 mm (B), 2.0 mm (U), 0.8 mm (A), -0.6 mm (R; p < 0.001). With a decreasing edema between day 1 and 30 (mean prostate volume of 51 cm{sup 3} vs. 41 cm{sup 3}; p < 0.001), a mean caudal prostate base displacement of 3.9 mm was found, whereas the mean inward displacement ranged from 1.2 to 1.6 mm at the remaining borders (lateral, anterior, posterior, apical). The analysis of the strand lengths revealed an implant compression between day 1 and 30 (mean 1.7 mm; p < 0.001). Conclusion: the largest prostate tissue and seed displacements were observed at the prostate base, associated with an implant compression. Predominantly inferior and posterior displacements implicate consequential smaller preplanning margins at the apex and the posterior prostate. (orig.)

  1. The EQUAL-ESTRO audit on geometric reconstruction techniques in brachytherapy

    International Nuclear Information System (INIS)

    Roue, Amelie; Ferreira, Ivaldo H.; Dam, Jan Van; Svensson, Hans; Venselaar, Jack L.M.

    2006-01-01

    Background and purpose: A geometric check procedure of the reconstruction techniques used in brachytherapy treatment planning systems was developed by the EQUAL (European Quality Laboratory) Laboratory in the framework of the ESTRO's (European Society for Therapeutic Radiology and Oncology) project 'ESQUIRE' (Education Science and QUality assurance In Radiotherapy in Europe [Baumann M, Brada M. Towards equity in turbulent Europe ESTRO, European cooperation and the European Commission. Radiother Oncol 2005;75:251-2. Heeren G. The bright but ephemeral life of a rainbow. A chronical of seventeen years of intensive ESTRO-EU cooperation. Radiother Oncol 2005;75:253-7]) by the task group Braphyqs (Brachytherapy physics quality system). Patients and methods: The check is performed by using the so-called 'Baltas' phantom, mailed to the participating centres in order to check the local technique of geometric reconstruction used in dose calculation. Results: To validate the procedures, the check was first tested among the members of the Braphyqs Network. Since November 2002, the system is open to other centres. Until now 152 reconstructions have been checked. Eighty-six percent of the results were within an acceptance level after the first check. For the remaining 14%, a second check has been proposed. The results of the re-checks are in most cases within an acceptance level, except for 2% of the reconstructions. Conclusions: The geometric check is available from the EQUAL Laboratory for all the brachytherapy centres. The decrease of the deviations observed between the two checks demonstrates the importance of this kind of external audit as some errors were revealed, which were not discovered before with techniques used in clinical quality control routines

  2. Seed-migration detector for embolized seeds to the lung in the context of permanent iodine-125 prostate brachytherapy

    International Nuclear Information System (INIS)

    Morrier, J.; Chretien, M.; Beaulieu, L.

    2008-01-01

    Full text: Purpose: To evaluate the efficacy of a seed-migration detector for embolized seeds to the lung in the context of permanent iodine-125 prostate brachytherapy and to compare its performance to fluoroscopy and to the postoperative chest radiographs generally recommended. Materials and Methods: A low energy gamma scintillation survey meter, Victoreen Model 425-110 was used together with a Victoreen count rate meter (model 190). It was converted to a seed-migration detector by adding a shield on the scintillation probe detection window, following the method proposed by Chen and Blair in 2003 [Med Phys 2003;30:785790]. The detector response to three seeds activities of iodine 125 (0.42, 0.22 and 0.06 mCi) was measured for different source-to-detector distances in air and in water. The detector was used to perform a chest evaluation on 579 patients at their first postoperative visit, for a total of 31 826 seeds. When the detector showed activity around a patients chest, it was confirmed by taking an antero-posterior chest radiograph and by looking at the region with fluoroscopy. Results: 79 patients (13.6%) present at least one embolized seed in the chest area. This account for 94 of the 31 826 seeds, that is a 0.30% seed migration rate. Sixty-eight, seven and four patients had respectively a single, two and three seeds embolization. In three cases, a seed had migrated in the kidney, which was confirmed with a CT scan. Of the 94 seeds, 67 (71%) were visible under fluoroscopy and 55 (59%) appeared on the chest radiograph. Rapid movement of the seeds in the chest area, due to breathing or to a location close to the heart or the diaphragm, makes nine seeds to be visible with fluoroscopy but not on the radiograph. This also explains why twenty-seven seeds were not visible with fluoroscopy neither with radiograph. In comparison to the seed-migration detector, detection based on fluoroscopy would have led to twenty-seven false-negative detections while the radiograph

  3. SU-E-T-123: Anomalous Altitude Effect in Permanent Implant Brachytherapy Seeds

    International Nuclear Information System (INIS)

    Watt, E; Spencer, DP; Meyer, T

    2015-01-01

    Purpose: Permanent seed implant brachytherapy procedures require the measurement of the air kerma strength of seeds prior to implant. This is typically accomplished using a well-type ionization chamber. Previous measurements (Griffin et al., 2005; Bohm et al., 2005) of several low-energy seeds using the air-communicating HDR 1000 Plus chamber have demonstrated that the standard temperature-pressure correction factor, P TP , may overcompensate for air density changes induced by altitude variations by up to 18%. The purpose of this work is to present empirical correction factors for two clinically-used seeds (IsoAid ADVANTAGE™ 103 Pd and Nucletron selectSeed 125 I) for which empirical altitude correction factors do not yet exist in the literature when measured with the HDR 1000 Plus chamber. Methods: An in-house constructed pressure vessel containing the HDR 1000 Plus well chamber and a digital barometer/thermometer was pumped or evacuated, as appropriate, to a variety of pressures from 725 to 1075 mbar. Current measurements, corrected with P TP , were acquired for each seed at these pressures and normalized to the reading at ‘standard’ pressure (1013.25 mbar). Results: Measurements in this study have shown that utilization of P TP can overcompensate in the corrected current reading by up to 20% and 17% for the IsoAid Pd-103 and the Nucletron I-125 seed respectively. Compared to literature correction factors for other seed models, the correction factors in this study diverge by up to 2.6% and 3.0% for iodine (with silver) and palladium respectively, indicating the need for seed-specific factors. Conclusion: The use of seed specific altitude correction factors can reduce uncertainty in the determination of air kerma strength. The empirical correction factors determined in this work can be applied in clinical quality assurance measurements of air kerma strength for two previously unpublished seed designs (IsoAid ADVANTAGE™ 103 Pd and Nucletron selectSeed 125 I

  4. SU-E-T-123: Anomalous Altitude Effect in Permanent Implant Brachytherapy Seeds

    Energy Technology Data Exchange (ETDEWEB)

    Watt, E; Spencer, DP; Meyer, T [University of Calgary and Tom Baker Cancer Centre, Calgary, AB (Canada)

    2015-06-15

    Purpose: Permanent seed implant brachytherapy procedures require the measurement of the air kerma strength of seeds prior to implant. This is typically accomplished using a well-type ionization chamber. Previous measurements (Griffin et al., 2005; Bohm et al., 2005) of several low-energy seeds using the air-communicating HDR 1000 Plus chamber have demonstrated that the standard temperature-pressure correction factor, P{sub TP}, may overcompensate for air density changes induced by altitude variations by up to 18%. The purpose of this work is to present empirical correction factors for two clinically-used seeds (IsoAid ADVANTAGE™ {sup 103}Pd and Nucletron selectSeed {sup 125}I) for which empirical altitude correction factors do not yet exist in the literature when measured with the HDR 1000 Plus chamber. Methods: An in-house constructed pressure vessel containing the HDR 1000 Plus well chamber and a digital barometer/thermometer was pumped or evacuated, as appropriate, to a variety of pressures from 725 to 1075 mbar. Current measurements, corrected with P{sub TP}, were acquired for each seed at these pressures and normalized to the reading at ‘standard’ pressure (1013.25 mbar). Results: Measurements in this study have shown that utilization of P{sub TP} can overcompensate in the corrected current reading by up to 20% and 17% for the IsoAid Pd-103 and the Nucletron I-125 seed respectively. Compared to literature correction factors for other seed models, the correction factors in this study diverge by up to 2.6% and 3.0% for iodine (with silver) and palladium respectively, indicating the need for seed-specific factors. Conclusion: The use of seed specific altitude correction factors can reduce uncertainty in the determination of air kerma strength. The empirical correction factors determined in this work can be applied in clinical quality assurance measurements of air kerma strength for two previously unpublished seed designs (IsoAid ADVANTAGE™ {sup 103}Pd and

  5. SU-E-J-233: Effect of Brachytherapy Seed Artifacts in T2 and Proton Density Maps in MR Images

    Energy Technology Data Exchange (ETDEWEB)

    Mashouf, S [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); University of Toronto, Dept of Radiation Oncology, Toronto, Ontario (Canada); Fatemi-Ardekani, A [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Sunnybrook Research Institute, Toronto, Ontario (Canada); Song, W [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); University of Toronto, Dept of Radiation Oncology, Toronto, Ontario (Canada); Sunnybrook Research Institute, Toronto, Ontario (Canada)

    2015-06-15

    Purpose: This study aims at investigating the influence of brachytherapy seeds on T2 and proton density (PD) maps generated from MR images. Proton density maps can be used to extract water content. Since dose absorbed in tissue surrounding low energy brachytherapy seeds are highly influenced by tissue composition, knowing the water content is a first step towards implementing a heterogeneity correction algorithm using MR images. Methods: An LDR brachytherapy (IsoAid Advantage Pd-103) seed was placed in the middle of an agar-based gel phantom and imaged using a 3T Philips MR scanner with a 168-channel head coil. A multiple echo sequence with TE=20, 40, 60, 80, 100 (ms) with large repetition time (TR=6259ms) was used to extract T2 and PD maps. Results: Seed artifacts were considerably reduced on T2 maps compared to PD maps. The variation of PD around the mean was obtained as −97% to 125% (±1%) while for T2 it was recorded as −71% to 24% (±1%). Conclusion: PD maps which are required for heterogeneity corrections are susceptible to artifacts from seeds. Seed artifacts on T2 maps, however, are significantly reduced due to not being sensitive to B0 field variation.

  6. Monte Carlo study of LDR seed dosimetry with an application in a clinical brachytherapy breast implant.

    Science.gov (United States)

    Furstoss, C; Reniers, B; Bertrand, M J; Poon, E; Carrier, J-F; Keller, B M; Pignol, J P; Beaulieu, L; Verhaegen, F

    2009-05-01

    A Monte Carlo (MC) study was carried out to evaluate the effects of the interseed attenuation and the tissue composition for two models of 125I low dose rate (LDR) brachytherapy seeds (Medi-Physics 6711, IBt InterSource) in a permanent breast implant. The effect of the tissue composition was investigated because the breast localization presents heterogeneities such as glandular and adipose tissue surrounded by air, lungs, and ribs. The absolute MC dose calculations were benchmarked by comparison to the absolute dose obtained from experimental results. Before modeling a clinical case of an implant in heterogeneous breast, the effects of the tissue composition and the interseed attenuation were studied in homogeneous phantoms. To investigate the tissue composition effect, the dose along the transverse axis of the two seed models were calculated and compared in different materials. For each seed model, three seeds sharing the same transverse axis were simulated to evaluate the interseed effect in water as a function of the distance from the seed. A clinical study of a permanent breast 125I implant for a single patient was carried out using four dose calculation techniques: (1) A TG-43 based calculation, (2) a full MC simulation with realistic tissues and seed models, (3) a MC simulation in water and modeled seeds, and (4) a MC simulation without modeling the seed geometry but with realistic tissues. In the latter, a phase space file corresponding to the particles emitted from the external surface of the seed is used at each seed location. The results were compared by calculating the relevant clinical metrics V85, V100, and V200 for this kind of treatment in the target. D90 and D50 were also determined to evaluate the differences in dose and compare the results to the studies published for permanent prostate seed implants in literature. The experimental results are in agreement with the MC absolute doses (within 5% for EBT Gafchromic film and within 7% for TLD-100

  7. Effects of seed migration on post-implant dosimetry of prostate brachytherapy

    International Nuclear Information System (INIS)

    Gao, M.; Wang, J. Z.; Nag, S.; Gupta, N.

    2007-01-01

    Brachytherapy using permanent seed implants has been an effective treatment for prostate cancer. However, seeds will migrate after implant, thus making the evaluation of post-implant dosimetry difficult. In this study, we developed a computer program to simulate seed migration and analyzed dosimetric changes due to seed migration at various migration amounts. The study was based on 14 patients treated with Pd-103 at the James Cancer Hospital. Modeling of seed migration, including direction, distance as well as day of migration, was based on clinical observations. Changes of commonly used dosimetric parameters as a function of migration amount (2, 4, 6 mm respectively), prostate size (from 20 to 90 cc), and prostate region (central vs peripheral) were studied. Change of biological outcome (tumor control probability) due to migration was also estimated. Migration reduced prostate D90 to 99±2% of original value in 2 mm migration, and the reduction increased to 94±6% in 6 mm migration. The reduction of prostate dose led to a 14% (40%) drop in the tumor control probability for 2 mm (6 mm) migration, assuming radiosensitive tumors. However, migration has less effect on a prostate implanted with a larger number of seeds. Prostate V100 was less sensitive to migration than D90 since its mean value was still 99% of original value even in 6 mm migration. Migration also showed a different effect in the peripheral region vs the central region of the prostate, where the peripheral mean dose tended to drop more significantly. Therefore, extra activity implanted in the peripheral region during pre-plan can be considered. The detrimental effects of migration were more severe in terms of increasing the dose to normal structures, as rectum V50 may be 70% higher and urethra V100 may be 50% higher in the case of 6 mm migration. Quantitative knowledge of these effects is helpful in treatment planning and post-implant evaluation

  8. Prostate-specific antigen density is predictive of outcome in suboptimal prostate seed brachytherapy.

    Science.gov (United States)

    Benzaquen, David; Delouya, Guila; Ménard, Cynthia; Barkati, Maroie; Taussky, Daniel

    In prostate seed brachytherapy, a D 90 of prostate-specific antigen + 2). Univariate and multivariate analyses were performed, adjusting for known prognostic factors such as D 90 and prostate-specific antigen density (PSAD) of ≥0.15 ng/mL/cm 3 , to evaluate their ability to predict BF. Median followup for patients without BF was 72 months (interquartile range 56-96). BF-free recurrence rate at 5 years was 95% and at 8 years 88%. In univariate analysis, PSAD and cancer of the prostate risk assessment score were predictive of BF. On multivariate analysis, none of the factors remained significant. The best prognosis had patients with a low PSAD (<0.15 ng/mL/cm 3 ) and an optimal implant at 30 days after implantation (as defined by D 90  ≥ 130 Gy) compared to patients with both factors unfavorable (p = 0.006). A favorable PSAD was associate with a good prognosis, independently of the D 90 (<130 Gy vs. ≥130 Gy, p = 0.7). Patients with a PSAD of <0.15 ng/mL/cm 3 have little risk of BF, even in the case of a suboptimal implant. These results need to be validated in other patients' cohorts. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  9. Studies on the preparation of 103Pd inner core of seed sources for brachytherapy applications

    International Nuclear Information System (INIS)

    Saha, Sujata; Manolkar, R.B.; Vimalnath, K.V.; Dash, A.; Venkatesh, Meera

    2007-01-01

    103 Pd seed sources are used widely world over for brachytherapy applications. 103 Pd available in-house was used to study its deposition on silver wire using electro-deposition and electroless deposition techniques with an aim to developing the inner core preparation of sealed radiation sources for treatment of prostate and ocular melanoma. Various parameters such as radioactive concentration of the feed solution, current density, time, temperature and pH of the solution were optimized to achieve maximum 103 Pd deposition on Ag wire. In electroless technique, the deposited amount of Pd was found to be nearly triple compared to electro-deposition in two hours time period. Both the methods gave nonleachable and well adherent sources. (author)

  10. COMP report: CPQR technical quality control guidelines for low-dose-rate permanent seed brachytherapy.

    Science.gov (United States)

    Beaulieu, Luc; Radford, Dee-Ann; Eduardo Villarreal-Barajas, J

    2018-03-14

    The Canadian Organization of Medical Physicists (COMP), in close partnership with the Canadian Partnership for Quality Radiotherapy (CPQR) has developed a series of Technical Quality Control (TQC) guidelines for radiation treatment equipment. These guidelines outline the performance objectives that equipment should meet in order to ensure an acceptable level of radiation treatment quality. The TQC guidelines have been rigorously reviewed and field tested in a variety of Canadian radiation treatment facilities. The development process enables rapid review and update to keep the guidelines current with changes in technology. This article contains detailed performance objectives and safety criteria for low-dose-rate (LDR) permanent seed brachytherapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. Development of an encapsulation method using plasma arc welding to produce iodine-125 seeds for brachytherapy

    International Nuclear Information System (INIS)

    Feher, Anselmo; Calvo, Wilson A.P.; Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Somessari, Samir L.; Costa, Osvaldo L.; Moura, Joao A.; Moura, Eduardo S.; Souza, Carla D.; Rela, Paulo R.

    2011-01-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer is public health problem in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing Iodine-125 radioisotope are implanted into the prostate gland. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed Iodine-125. The Plasma Arc Welding (PAW) is one of the viable techniques for sealing process. The equipment used in this technique is less costly than in other processes, such as, Laser Beam Welding (LBW). The main purpose of this work was the development of an encapsulation method using PAW. The development of this work has presented the following phases: cutting and cleaning titanium tube, determination of the welding parameters, development of a titanium tube holding device for PAW, sealed sources validation according to ISO 2919 - Sealed Radioactive Sources - General Requirements and Classification, and metallographic assays. The developed procedure to seal Iodine-125 seeds using PAW has shown high efficiency, satisfying all the established requirements of ISO 2919. The results obtained in this work will give the possibility to establish a routine production process according to the orientations presented in resolution RDC 17 - Good Manufacturing Practices to Medical Products defined by the ANVISA - National Agency of Sanitary Surveillance. (author)

  12. Development and characterisation of iridium-192 seeds for brachytherapy treatment of ocular tumors

    International Nuclear Information System (INIS)

    Peleias Jr, F.S.; Zeituni, C.A.; Souza, C.D.; Rostelato, M.E.CM.; Mattos, F.R.; Banega, M.A.G.; Rodrigues, B.T.; Tiezzi, R.; Oliveira, T.B.; Feher, A.; Moura, J.A.; Costa, O.L.

    2014-01-01

    Even ocular tumors are not amongst the cases with a high incidence, they affect the population, particularly children. The Institute of Energy and Nuclear Research (IPEN-CNEN/SP) in partnership with Escola Paulista de Medicina (UNIFESP), created a project to develop an alternative treatment for ophthalmic cancer that uses iridium-192 seeds in brachytherapy. This work aims to study and develop a seed of iridium-192 from a platinum-iridium alloy The prototype seed has a 3.0 mm long core sealed by a titanium capsule of 0.8 mm of outer diameter, 0.05 mm of wall thickness and 4.5 mm long. We developed a methodology that covered: characterisation of the material used in the core, creation of a device for neutron activation of the cores and leakage tests. The results show that this methodology is feasible. As a suggestion for future work, studies regarding metrology and dosimetry of these sources should be carried out. (authors)

  13. Comparative dosimetry of prostate brachytherapy with I-125 and Pd-103 seeds via SISCODES/MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, Bruno Machado; Falcao, Patricia Lima, E-mail: bmtrindade@yahoo.com [Nucleo de Radiacoes Ionizantes - Universidade Federal de Minas Gerais (NRI/UFMG), Belo Horizonte, MG (Brazil); Christovao, Marilia Tavares [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Trindade, Daniela de Fatima Maia [Centro Universitario Una, Belo Horizonte, MG (Brazil); Campos, Tarcisio Passos Ribeiro de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2012-09-15

    Objective: The present paper is aimed at presenting a comparative dosimetric study of prostate brachytherapy with I-125 and Pd-103 seeds. Materials and Methods: A protocol for both implants with 148 seeds was simulated on a heterogeneous three-dimensional pelvic phantom by means of the SISCODES/MCNP5 codes. Dose-volume histograms on prostate, rectum and bladder, dose indexes D10, D30, D90, D0.5cc, D2cc and D7cc, and representations of the spatial dose distribution were evaluated. Results: For a D90 index equivalent to the prescription dose, the initial activity of each I-125 seed was calculated as 0.42 mCi and of Pd-103 as 0.94 mCi. The maximum dose on the urethra was 90% and 108% of the prescription dose for I-125 and Pd-103, respectively. The D2cc for I-125 was 30 Gy on the rectum and 127 Gy on the bladder; for Pd-103 was 29 Gy on the rectum and 189 Gy on the bladder. The D10 on the pubic bone was 144 Gy for I-125 and 66 Gy for Pd-103. Conclusion: The results indicate that Pd-103 and I-125 implants could deposit the prescribed dose on the target volume. Among the findings of the present study, there is an excessive radiation exposure of the pelvic bones, particularly with the I-125 protocol. (author)

  14. Development of an encapsulation method using plasma arc welding to produce iodine-125 seeds for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Feher, Anselmo; Calvo, Wilson A.P.; Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Somessari, Samir L.; Costa, Osvaldo L.; Moura, Joao A.; Moura, Eduardo S.; Souza, Carla D.; Rela, Paulo R., E-mail: afeher@ipen.b, E-mail: wapcalvo@ipen.b, E-mail: elisaros@ipen.b, E-mail: somessar@ipen.b, E-mail: olcosta@ipen.b, E-mail: esmoura@ipen.b, E-mail: cdsouza@ipen.b, E-mail: prela@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer is public health problem in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing Iodine-125 radioisotope are implanted into the prostate gland. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed Iodine-125. The Plasma Arc Welding (PAW) is one of the viable techniques for sealing process. The equipment used in this technique is less costly than in other processes, such as, Laser Beam Welding (LBW). The main purpose of this work was the development of an encapsulation method using PAW. The development of this work has presented the following phases: cutting and cleaning titanium tube, determination of the welding parameters, development of a titanium tube holding device for PAW, sealed sources validation according to ISO 2919 - Sealed Radioactive Sources - General Requirements and Classification, and metallographic assays. The developed procedure to seal Iodine-125 seeds using PAW has shown high efficiency, satisfying all the established requirements of ISO 2919. The results obtained in this work will give the possibility to establish a routine production process according to the orientations presented in resolution RDC 17 - Good Manufacturing Practices to Medical Products defined by the ANVISA - National Agency of Sanitary Surveillance. (author)

  15. SU-E-T-362: Automatic Catheter Reconstruction of Flap Applicators in HDR Surface Brachytherapy

    International Nuclear Information System (INIS)

    Buzurovic, I; Devlin, P; Hansen, J; O'Farrell, D; Bhagwat, M; Friesen, S; Damato, A; Lewis, J; Cormack, R

    2014-01-01

    Purpose: Catheter reconstruction is crucial for the accurate delivery of radiation dose in HDR brachytherapy. The process becomes complicated and time-consuming for large superficial clinical targets with a complex topology. A novel method for the automatic catheter reconstruction of flap applicators is proposed in this study. Methods: We have developed a program package capable of image manipulation, using C++class libraries of The-Visualization-Toolkit(VTK) software system. The workflow for automatic catheter reconstruction is: a)an anchor point is placed in 3D or in the axial view of the first slice at the tip of the first, last and middle points for the curved surface; b)similar points are placed on the last slice of the image set; c)the surface detection algorithm automatically registers the points to the images and applies the surface reconstruction filter; d)then a structured grid surface is generated through the center of the treatment catheters placed at a distance of 5mm from the patient's skin. As a result, a mesh-style plane is generated with the reconstructed catheters placed 10mm apart. To demonstrate automatic catheter reconstruction, we used CT images of patients diagnosed with cutaneous T-cell-lymphoma and imaged with Freiburg-Flap-Applicators (Nucletron™-Elekta, Netherlands). The coordinates for each catheter were generated and compared to the control points selected during the manual reconstruction for 16catheters and 368control point Results: The variation of the catheter tip positions between the automatically and manually reconstructed catheters was 0.17mm(SD=0.23mm). The position difference between the manually selected catheter control points and the corresponding points obtained automatically was 0.17mm in the x-direction (SD=0.23mm), 0.13mm in the y-direction (SD=0.22mm), and 0.14mm in the z-direction (SD=0.24mm). Conclusion: This study shows the feasibility of the automatic catheter reconstruction of flap applicators with a high

  16. Clinical Investigations of a CT-based reconstruction and 3D-Treatment planning system in interstitial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kolotas, C; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany)

    1999-12-31

    Purpose: Development, application and evaluation of a CT-guided implantation technique and a fully CT based treatment planning procedure for brachytherapy. Methods and Materials : A brachytherapy procedure based on CT-guided implantation technique and CT based treatment planning has been developed and clinically evaluated. For this purpose a software system (PROMETHEUS) for the 3D reconstruction of brachytherapy catheters and patient anatomy using only CT scans has been developed. An interface for the Nucletron Plato BPS treatment planning system for the optimisation and calculation of dose distribution has been devised. The planning target volume(s) are defined as sets of points using contouring tools and are for optimisation of the 3D dose distribution. Dose-volume histogram-based analysis of the dose distribution enables a clinically realistic evaluation of the brachytherapy application to be made. The CT-guided implantation of catheters and the CT-based treatment planning procedure has been performed for interstitial brachytherapy and for different tumour and anatomical localizations in 197 patients between 1996 and 1997. Results : The accuracy of the CT reconstruction was tested using a quality assurance phantom an an interstitial implant of 12 needles and compared with the results of reconstruction using radiographs[hs. Both methods give comparable results with regard to accuracy. The CT based reconstruction was faster. Clinical feasibility has been proven in pre-irradiated recurrences of brain tumour, in pre-treated recurrences or metastatic disease, and in breast carcinomas. The tumour volume treated ranged from 5.1 - 2741 cm3. Analysis of the implant quality showed a slight significant lower COIN value for the bone implants, but no differences in respect to the planning target volume. Conclusions : With the integration of CT imaging in the treatment planning and documentation of brachytherapy, we have a new CT based quality assurance method to evaluate

  17. Clinical Investigations of a CT-based reconstruction and 3D-Treatment planning system in interstitial brachytherapy

    International Nuclear Information System (INIS)

    Kolotas, C.; Zamboglou, N.

    1998-01-01

    Purpose: Development, application and evaluation of a CT-guided implantation technique and a fully CT based treatment planning procedure for brachytherapy. Methods and Materials : A brachytherapy procedure based on CT-guided implantation technique and CT based treatment planning has been developed and clinically evaluated. For this purpose a software system (PROMETHEUS) for the 3D reconstruction of brachytherapy catheters and patient anatomy using only CT scans has been developed. An interface for the Nucletron Plato BPS treatment planning system for the optimisation and calculation of dose distribution has been devised. The planning target volume(s) are defined as sets of points using contouring tools and are for optimisation of the 3D dose distribution. Dose-volume histogram-based analysis of the dose distribution enables a clinically realistic evaluation of the brachytherapy application to be made. The CT-guided implantation of catheters and the CT-based treatment planning procedure has been performed for interstitial brachytherapy and for different tumour and anatomical localizations in 197 patients between 1996 and 1997. Results : The accuracy of the CT reconstruction was tested using a quality assurance phantom an an interstitial implant of 12 needles and compared with the results of reconstruction using radiographs[hs. Both methods give comparable results with regard to accuracy. The CT based reconstruction was faster. Clinical feasibility has been proven in pre-irradiated recurrences of brain tumour, in pre-treated recurrences or metastatic disease, and in breast carcinomas. The tumour volume treated ranged from 5.1 - 2741 cm3. Analysis of the implant quality showed a slight significant lower COIN value for the bone implants, but no differences in respect to the planning target volume. Conclusions : With the integration of CT imaging in the treatment planning and documentation of brachytherapy, we have a new CT based quality assurance method to evaluate

  18. Efficacy and safety of iodine-125 radioactive seeds brachytherapy for advanced non-small cell lung cancer-A meta-analysis.

    Science.gov (United States)

    Zhang, Wenchao; Li, Jiawei; Li, Ran; Zhang, Ying; Han, Mingyong; Ma, Wei

    This meta-analysis was conducted to investigate the efficacy and safety of 125 I brachytherapy for locally advanced non-small cell lung cancer (NSCLC). Trials comparing 125 I brachytherapy with chemotherapy in NSCLC were identified. Meta-analysis was performed to obtain pooled risk ratios for an overall response rate (ORR), disease control rate (DCR) and complications, and pooled hazard ratio for overall survival (OS). Fifteen studies including 1188 cases were included. The pooled result indicated that there were significant differences in ORR, DCR, and OS between 125 I brachytherapy combined with chemotherapy and chemotherapy alone, but no statistic differences in gastrointestinal symptoms, leukopenia, myelosuppression, and hemoglobin reduction. Patients treated with 125 I brachytherapy combined with chemotherapy have a higher relative risk of pneumothorax, bloody sputum, and pneumorrhagia compared with chemotherapy alone. Seeds migration only occurred in the group treated with 125 I brachytherapy. There were significant differences in ORR, DCR, and myelosuppression between 125 I brachytherapy alone and chemotherapy. 125 I brachytherapy combined with chemotherapy can significantly enhance the clinical efficacy and improve the OS of patients with advanced NSCLC without increasing the incidence of complications of chemotherapy. 125 I brachytherapy alone can significantly enhance the clinical efficacy and reduce the incidence of myelosuppression compared with chemotherapy. However, 125 I brachytherapy may cause lung injury. Large sample and higher-quality randomized controlled trials are needed to confirm the pooled results of complications. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  19. Sci-Thur PM – Brachytherapy 02: Positional accuracy in Pd-103 permanent breast seed implant (PBSI) brachytherapy at the Tom Baker Cancer Centre (TBCC)

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Amy; Watt, Elizabeth; Peacock, Michael; Husain, Siraj; Meyer, Tyler; Roumeliotis, Michael [University of Calgary, Tom Baker Cancer Centre (Canada)

    2016-08-15

    Purpose: This retrospective study aims to quantify the positional accuracy of seed delivery in permanent breast seed implant (PBSI) brachytherapy at the Tom Baker Cancer Centre (TBCC). Methods: Treatment planning and post-implant CT scans for 5 patients were rigidly registered using the MIM Symphony™ software (MIM Software, Cleveland, OH) and used to evaluate differences between planned and implanted seed positions. Total and directional seed displacements were calculated for each patient in a clinically relevant ‘needle coordinate system’, defined relative to the angle of fiducial needle insertion. Results: The overall average total seed displacement was 10±8 mm. Systematic seed displacements were observed in individual patients and the magnitude and direction of these offsets varied among patients. One patient showed a significant directional seed displacement in the shallow-deep direction compared with the other four patients. With the exception of this one patient outlier, no significant systematic directional displacements in the needle coordinate system were observed for this cohort; the average directional displacements were −1±5 mm, 2±3 mm, and −2±4 mm in the shallow-deep, up-down, and right-left directions respectively. Conclusion: With the exception of one patient outlier, the magnitude of seed displacements were relatively consistent among patients. The results indicate that the shallow-deep direction possesses the largest uncertainty for the seed delivery method used at the TBCC. The relatively large uncertainty in seed placement in this direction is expected, as this is the direction of needle insertion. Further work will involve evaluating deflections of delivered needle tracks from their planned positions.

  20. On the use of Kodak CR film for quality assurance of needle loading in I-125 seed prostate brachytherapy.

    Science.gov (United States)

    Fog, L S; Nicholls, R; van Doom, T

    2007-09-01

    Low dose rate brachytherapy using implanted I-125 seeds as a monotherapy for prostate cancer is now in use in many hospitals. In contrast to fractionated brachytherapy treatments, where the effect of incorrect positioning of the source in one treatment fraction can be diminished by correcting the position in subsequent fractions, the I-125 seed implant is permanent, making correct positioning of the seeds in the prostate essential. The seeds are inserted into the prostate using needles. Correct configuration of seeds in the needles is essential in order to deliver the planned treatment. A comparison of an autoradiograph obtained by exposing film to the seed-loaded needles with the patient treatment plan is a valuable quality assurance tool. However, the time required to sufficiently expose Kodak XOMAT V film, currently used in this department is significant. This technical note presents the use of Kodak CR film for acquisition of the radiograph. The digital radiograph can be acquired significantly faster, has superior signal-to-noise ratio and contrast and has the usual benefits of digital film, e.g. a processing time which is shorter than that required for non-digital film, the possibility of image manipulation, possibility of paper printing and electronic storage.

  1. Dosimetric studies, spectrometric, radiographic, metallographic of a new argentinean seed of 125 I used in brachytherapy

    International Nuclear Information System (INIS)

    Pirchio, R.; Saravi, M.; Banchik, D.; Munoz, C.

    2006-01-01

    A new source of 125 I model Braquibac TM has been developed in Argentina for applications in interstitial brachytherapy. The AAPM Task Group 43 (TG-43) recommends that dosimetric characteristics of new sources of brachytherapy of Iodine-125 have been theoretically and experimentally determined before its clinical use. The objectives outlined in this work were the study of the design of the new seed, the calculation of dosimetric parameters and the photons spectra analysis. Its were carried out radiographic and metallographic studies to determine the physical characteristics of the source. For the realization of the dosimetric calculations it was used the Monte Carlo code MCNP5. Values of the radial dose function, g(r), of the constant of dose rate, Λ, of the function of anisotropy of two dimensions, F(r, θ), of the factor and constant of anisotropy its were obtained simulating the source in water according to the recommended methodology in TG-43. The constant of dose rate is similar to 0,880 ± 0,080 c Gy h -1 U -1 . The kerma in air rate of reference, S K , was calculated as 1,036 c Gy cm 2 h -1 mCi -1 simulating the seed in dry air. Its were carried out spectrometric studies using a semiconductor planar detector of HPGe (high purity germanium). Photons spectra showed characteristic x-rays of 125 I with energies of 27,20 keV, 27,47 keV, 31 keV and 31,70 keV gamma photons of 35,5 keV, and x-ray fluorescent coming from the silver nucleus of 22,10 keV, 24,94 keV and 25,45 keV. The angular dependence of the intensity of photons around the seed and in air it was analyzed with the planar detector. This was carried out to study the anisotropy in the photons flow due to variation in the thickness of the titanium wall and of the welding, movements of the silver tube inside the source and deposition of the radioactive material on the silver tube. (Author)

  2. Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Hali, E-mail: hamorris@ualberta.ca; Menon, Geetha; Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-07-15

    Purpose: Radiochromic film dosimetry is typically performed for high energy photons and moderate doses characterizing external beam radiotherapy (XRT). The purpose of this study was to investigate the accuracy of previously established film calibration procedures used in XRT when applied to low-energy, seed-based brachytherapy at higher doses, and to determine necessary modifications to achieve similar accuracy in absolute dose measurements. Methods: Gafchromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 75 kVp, 200 kVp, 6 MV, and (∼28 keV) I-125 photon sources. For the latter irradiations a custom phantom was built to hold a single I-125 seed. Film pieces were scanned with an Epson 10000XL flatbed scanner and the resulting 48-bit RGB TIFF images were analyzed using both FilmQA Pro software andMATLAB. Calibration curves relating dose and optical density via a rational functional form for all three color channels at each irradiation energy were determined with and without the inclusion of uncertainties in the measured optical densities and dose values. The accuracy of calibration curve variations obtained using piecewise fitting, a reduced film measurement area for I-125 irradiation, and a reduced number of dose levels was also investigated. The energy dependence of the film lot used was also analyzed by calculating normalized optical density values. Results: Slight differences were found in the resulting calibration curves for the various fitting methods used. The accuracy of the calibration curves was found to improve at low doses and worsen at high doses when including uncertainties in optical densities and doses, which may better represent the variability that could be seen in film optical density measurements. When exposing the films to doses > 8 Gy, two-segment piecewise fitting was found to be necessary to achieve similar accuracies in absolute dose measurements as when using smaller dose ranges. When reducing the film measurement

  3. Long-term erectile function following permanent seed brachytherapy treatment for localized prostate cancer

    International Nuclear Information System (INIS)

    Ong, Wee Loon; Hindson, Benjamin R.; Beaufort, Catherine; Pharoah, Paul; Millar, Jeremy L.

    2014-01-01

    Background and purpose: Erectile function (EF) is commonly affected following prostate cancer treatment. We aim to evaluate the long-term EF following seed brachytherapy (BT) treatment. Materials and methods: The study consisted of 366 patients treated with BT at our institution, who completed the IIEF-5 questionnaire and reported no or mild erectile dysfunction (ED) pre-BT. The probability of EF preservation post-BT was estimated using the Kaplan–Meier methods. The difference in EF preservation by patient-, tumour- and treatment-related factors was assessed using the log-rank test. Multivariate Cox regression was used to estimate the effect of each factor on EF preservation. Results: Of the 366 patients, 277 (76%) reported normal EF, and 89 (24%) reported mild ED. The patients were followed-up for a median of 41 months (range: 3–124), and the 5-year actuarial rate of EF preservation was 59%. Age at BT seed implant, presence of medical comorbidities, Gleason score and the biologically effective dose (BED) are associated with EF preservation (P < 0.005). The association for these four factors remains statistically significant in multivariate analysis, with Gleason score having the strongest effect (HR = 3.7; 95% CI = 2.6–5.4). Conclusion: The 5-year actuarial rate of EF preservation post-BT in our cohort is 59%, and is influenced by multiple factors

  4. Determination of dosimetric characteristics of OptiSeedTM a plastic brachytherapy 103Pd source

    International Nuclear Information System (INIS)

    Wang Zhonglu; Hertel, Nolan E.

    2005-01-01

    A new 103 Pd plastic brachytherapy source, OptiSeed TM Model 1032P, is being introduced by International Brachytherapy sa (IBt). Measurements of the dose distributions about the source were performed using LiF thermoluminescent dosimeters (TLD-100) in Virtual Water TM . MCNP5 calculations were performed to determine the dose distributions in Virtual Water TM and liquid water. The source dose rate constant, radial dose function, anisotropy function and anisotropy factor have been determined following the updated AAPM TG-43 recommendations. The measured dose rate constant in the Virtual Water TM phantom was determined to be 0.727±6.9% cGy h -1 U -1 , and the computed value is 0.716±2.1% cGy h -1 U -1 . The Monte-Carlo simulation yielded a dose rate constant of 0.665±2.1% cGy h -1 U -1 in water. The measured dose rate constant in water is 0.675±7.5% cGy h -1 U -1 . It is determined by multiplying the dose rate constant measured in the Virtual Water TM phantom with the ratio of the value calculated in water to that in Virtual Water TM . The average of the measured and calculated dose rate constant is 0.670±5.5% cGy h -1 U -1 . The radial dose functions of the new source were measured for distances ranging from 1 to 7 cm in a Virtual Water TM phantom. The anisotropy functions in Virtual Water TM phantom were measured for distances of 2, 3, 5, and 7 cm. The Monte-Carlo computed radial dose functions, anisotropy functions, and anisotropy factors in both Virtual Water TM phantom and water are reported

  5. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca [Département de physique, de génie physique et d’optique et Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie et Axe Oncologie du Centre de recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Binnekamp, Dirk [Integrated Clinical Solutions and Marketing, Philips Healthcare, Veenpluis 4-6, Best 5680 DA (Netherlands)

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  6. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    International Nuclear Information System (INIS)

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc; Binnekamp, Dirk

    2015-01-01

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora ® Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators

  7. Iodine-125 seed brachytherapy for early stage prostate cancer: a single-institution review

    International Nuclear Information System (INIS)

    Zuber, Simon; Weiß, Susan; Baaske, Dieter; Schöpe, Michael; Stevens, Simon; Bodis, Stephan; Zwahlen, Daniel R

    2015-01-01

    We are reporting the five-year biochemical control, toxicity profile and dosimetric parameters using iodine-125 low dose rate brachytherapy (BT) as monotherapy for early stage prostate cancer at a single institution. Between April 2006 and December 2010, 169 men with early stage prostate cancer were treated with BT. Biochemical failure was defined using the Phoenix definition (nadir + 2 ng/mL). Treatment-related morbidities, including urinary, rectal and sexual function, were measured, applying the International Prostate Symptom Score (IPSS), the 7-grade Quality of Life Scale (QoL) and medical status, the International Consultation on Incontinence Modular Questionnaire (ICIQ), the International Index of Erectile Function (IIEF-5) and the Common Terminology Criteria for Adverse Events (CTCAE v4.03). Seed migration and loss, dosimetric parameters and learning effects were also analyzed. Medium follow-up time was 50 months (range, 1–85 months). The five-year biochemical failure rate was 7%. Acute proctitis rates were 19% (grade 1) and 1% (grade 2), respectively. The overall incidence of incontinence was 19% (mild), 16% (moderate) and < 1% (severe). An increase in IPSS ≥ 5 points was detected in 59% of patients, with 38% regaining their baseline. Seed dislocation was found in 24% of patients and correlated with D90 and V100. A learning curve was found for seed migration, D90 and V100. QoL correlated with the general health condition of patient, incontinence symptoms and IPSS. BT for early stage prostate cancer offers excellent five-year biochemical control with low toxicities. QoL aspects are favorable. A learning curve was detected for procedural aspects but its impact on patient relevant endpoints remains inconclusive

  8. Prostate brachytherapy - discharge

    Science.gov (United States)

    Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge ... You had a procedure called brachytherapy to treat prostate cancer. Your treatment lasted 30 minutes or more, ...

  9. Improved electromagnetic tracking for catheter path reconstruction with application in high-dose-rate brachytherapy.

    Science.gov (United States)

    Lugez, Elodie; Sadjadi, Hossein; Joshi, Chandra P; Akl, Selim G; Fichtinger, Gabor

    2017-04-01

    measurements (3.5 mm) by 46%. Similarly, with a path reconstruction precision of 0.8 mm, the nonholonomic EKF surpassed the performance of the manufacturer's filters (1.0 mm) by 20% and the raw EM measurements (1.7 mm) by 53%. Path reconstruction accuracies did not follow an apparent trend when varying the path curvature and sensor velocity; instead, reconstruction accuracies were predominantly impacted by the position of the EM field transmitter ([Formula: see text]). The advanced nonholonomic EKF is effective in reducing EM measurement errors when reconstructing catheter paths, is robust to path curvature and sensor speed, and runs in real time. Our approach is promising for a plurality of clinical procedures requiring catheter reconstructions, such as cardiovascular interventions, pulmonary applications (Bender et al. in medical image computing and computer-assisted intervention-MICCAI 99. Springer, Berlin, pp 981-989, 1999), and brachytherapy.

  10. A proteomics analysis for certain signature proteins of rabbit lacrimal passages after 125I seeds brachytherapy

    International Nuclear Information System (INIS)

    Li Dandan; Liu Lin; Gao Shi; Qi Liangchen; Ma Qingjie; Jin Longyun

    2010-01-01

    To search for certain signature proteins and the expression profiles in lacrimal passage stenosis, rabbit models of lacrimal passage stenosis were treated by 125 I seed brachytherapy. All the signature proteins were separated by two-dimensional electrophoresis, and identified by mass spectrometry. The results show that the up-regulated proteins are peptidyl-prolyl cis-trans isomerase A (PPIase A), and epidermal fatty acid-binding protein (E-FABP), while the down-regulated proteins are myosin light chain 1 (isomer of skeletal muscle), myosin light polypeptide 6 (isomer 1 of smooth muscle and non-muscle), myosin light chain 1 (isomer of slow-twitch muscle A), isomer 2 of ERC protein 2, and α-crystalline family protein. The proteins may play a role in healing the wound and regulating synaptic active zone of neurons due to correlation to cell apoptosis, proliferation and migration of smooth muscle cell. These provide molecular mechanism for preventing stenosis and restenosis of lacrimal passage. (authors)

  11. Conventional Versus Automated Implantation of Loose Seeds in Prostate Brachytherapy: Analysis of Dosimetric and Clinical Results

    International Nuclear Information System (INIS)

    Genebes, Caroline; Filleron, Thomas; Graff, Pierre; Jonca, Frédéric; Huyghe, Eric; Thoulouzan, Matthieu; Soulie, Michel; Malavaud, Bernard; Aziza, Richard; Brun, Thomas; Delannes, Martine; Bachaud, Jean-Marc

    2013-01-01

    Purpose: To review the clinical outcome of I-125 permanent prostate brachytherapy (PPB) for low-risk and intermediate-risk prostate cancer and to compare 2 techniques of loose-seed implantation. Methods and Materials: 574 consecutive patients underwent I-125 PPB for low-risk and intermediate-risk prostate cancer between 2000 and 2008. Two successive techniques were used: conventional implantation from 2000 to 2004 and automated implantation (Nucletron, FIRST system) from 2004 to 2008. Dosimetric and biochemical recurrence-free (bNED) survival results were reported and compared for the 2 techniques. Univariate and multivariate analysis researched independent predictors for bNED survival. Results: 419 (73%) and 155 (27%) patients with low-risk and intermediate-risk disease, respectively, were treated (median follow-up time, 69.3 months). The 60-month bNED survival rates were 95.2% and 85.7%, respectively, for patients with low-risk and intermediate-risk disease (P=.04). In univariate analysis, patients treated with automated implantation had worse bNED survival rates than did those treated with conventional implantation (P<.0001). By day 30, patients treated with automated implantation showed lower values of dose delivered to 90% of prostate volume (D90) and volume of prostate receiving 100% of prescribed dose (V100). In multivariate analysis, implantation technique, Gleason score, and V100 on day 30 were independent predictors of recurrence-free status. Grade 3 urethritis and urinary incontinence were observed in 2.6% and 1.6% of the cohort, respectively, with no significant differences between the 2 techniques. No grade 3 proctitis was observed. Conclusion: Satisfactory 60-month bNED survival rates (93.1%) and acceptable toxicity (grade 3 urethritis <3%) were achieved by loose-seed implantation. Automated implantation was associated with worse dosimetric and bNED survival outcomes

  12. Conventional Versus Automated Implantation of Loose Seeds in Prostate Brachytherapy: Analysis of Dosimetric and Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Genebes, Caroline, E-mail: genebes.caroline@claudiusregaud.fr [Radiation Oncology Department, Institut Claudius Regaud, Toulouse (France); Filleron, Thomas; Graff, Pierre [Radiation Oncology Department, Institut Claudius Regaud, Toulouse (France); Jonca, Frédéric [Department of Urology, Clinique Ambroise Paré, Toulouse (France); Huyghe, Eric; Thoulouzan, Matthieu; Soulie, Michel; Malavaud, Bernard [Department of Urology and Andrology, CHU Rangueil, Toulouse (France); Aziza, Richard; Brun, Thomas; Delannes, Martine; Bachaud, Jean-Marc [Radiation Oncology Department, Institut Claudius Regaud, Toulouse (France)

    2013-11-15

    Purpose: To review the clinical outcome of I-125 permanent prostate brachytherapy (PPB) for low-risk and intermediate-risk prostate cancer and to compare 2 techniques of loose-seed implantation. Methods and Materials: 574 consecutive patients underwent I-125 PPB for low-risk and intermediate-risk prostate cancer between 2000 and 2008. Two successive techniques were used: conventional implantation from 2000 to 2004 and automated implantation (Nucletron, FIRST system) from 2004 to 2008. Dosimetric and biochemical recurrence-free (bNED) survival results were reported and compared for the 2 techniques. Univariate and multivariate analysis researched independent predictors for bNED survival. Results: 419 (73%) and 155 (27%) patients with low-risk and intermediate-risk disease, respectively, were treated (median follow-up time, 69.3 months). The 60-month bNED survival rates were 95.2% and 85.7%, respectively, for patients with low-risk and intermediate-risk disease (P=.04). In univariate analysis, patients treated with automated implantation had worse bNED survival rates than did those treated with conventional implantation (P<.0001). By day 30, patients treated with automated implantation showed lower values of dose delivered to 90% of prostate volume (D90) and volume of prostate receiving 100% of prescribed dose (V100). In multivariate analysis, implantation technique, Gleason score, and V100 on day 30 were independent predictors of recurrence-free status. Grade 3 urethritis and urinary incontinence were observed in 2.6% and 1.6% of the cohort, respectively, with no significant differences between the 2 techniques. No grade 3 proctitis was observed. Conclusion: Satisfactory 60-month bNED survival rates (93.1%) and acceptable toxicity (grade 3 urethritis <3%) were achieved by loose-seed implantation. Automated implantation was associated with worse dosimetric and bNED survival outcomes.

  13. Clinical Significance of Accounting for Tissue Heterogeneity in Permanent Breast Seed Implant Brachytherapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Mashouf, Shahram [Medical Biophysics Department, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Fleury, Emmanuelle [Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Lai, Priscilla [Medical Biophysics Department, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Merino, Tomas [Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Radiotherapy Unit, School of Medicine, Departamento de Hemato-oncologia, Pontificia Universidad Católica de Chile, Santiago (Chile); Lechtman, Eli [Medical Biophysics Department, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Kiss, Alex [Sunnybrook Research Institute, Toronto, Ontario (Canada); McCann, Claire [Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Pignol, Jean-Philippe, E-mail: j.p.pignol@erasmusmc.nl [Medical Biophysics Department, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Radiation Oncology Department, Erasmus Medical Center, Cancer Institute, Rotterdam (Netherlands)

    2016-03-15

    Purpose: The inhomogeneity correction factor (ICF) method provides heterogeneity correction for the fast calculation TG43 formalism in seed brachytherapy. This study compared ICF-corrected plans to their standard TG43 counterparts, looking at their capacity to assess inadequate coverage and/or risk of any skin toxicities for patients who received permanent breast seed implant (PBSI). Methods and Materials: Two-month postimplant computed tomography scans and plans of 140 PBSI patients were used to calculate dose distributions by using the TG43 and the ICF methods. Multiple dose-volume histogram (DVH) parameters of clinical target volume (CTV) and skin were extracted and compared for both ICF and TG43 dose distributions. Short-term (desquamation and erythema) and long-term (telangiectasia) skin toxicity data were available on 125 and 110 of the patients, respectively, at the time of the study. The predictive value of each DVH parameter of skin was evaluated using the area under the receiver operating characteristic (ROC) curve for each toxicity endpoint. Results: Dose-volume histogram parameters of CTV, calculated using the ICF method, showed an overall decrease compared to TG43, whereas those of skin showed an increase, confirming previously reported findings of the impact of heterogeneity with low-energy sources. The ICF methodology enabled us to distinguish patients for whom the CTV V{sub 100} and V{sub 90} are up to 19% lower compared to TG43, which could present a risk of recurrence not detected when heterogeneity are not accounted for. The ICF method also led to an increase in the prediction of desquamation, erythema, and telangiectasia for 91% of skin DVH parameters studied. Conclusions: The ICF methodology has the advantage of distinguishing any inadequate dose coverage of CTV due to breast heterogeneity, which can be missed by TG43. Use of ICF correction also led to an increase in prediction accuracy of skin toxicities in most cases.

  14. Truth Seeded Reconstruction for Fast Simulation in the ATLAS Experiment

    CERN Document Server

    Jansky, Roland; Salzburger, Andreas

    The huge success of the ATLAS experiment for particle physics during Run 1 of the LHC would not have been possible without the production of vast amounts of simulated Monte Carlo data. However, the very detailed detector simulation is a highly CPU intensive task and thus resource shortages occurred. Motivated by this, great effort has been put into speeding up the simulation. As a result, other timeconsuming parts became visible. One of which is the track reconstruction. This thesis describes one potential solution to the CPU intensive reconstruction of simulated data: a newly designed truth seeded reconstruction. At its basics is the idea to skip the pattern recognition altogether, instead utilizing the available (truth) information from simulation to directly fit particle trajectories without searching for them. At the same time tracking effects of the standard reconstruction need to be emulated. This approach is validated thoroughly and no critical deviations of the results compared to the standard reconst...

  15. Permanent 125I-seed prostate brachytherapy: early prostate specific antigen value as a predictor of PSA bounce occurrence

    Directory of Open Access Journals (Sweden)

    Mazeron Renaud

    2012-03-01

    Full Text Available Abstract Purpose To evaluate predictive factors for PSA bounce after 125I permanent seed prostate brachytherapy and identify criteria that distinguish between benign bounces and biochemical relapses. Materials and methods Men treated with exclusive permanent 125I seed brachytherapy from November 1999, with at least a 36 months follow-up were included. Bounce was defined as an increase ≥ 0.2 ng/ml above the nadir, followed by a spontaneous return to the nadir. Biochemical failure (BF was defined using the criteria of the Phoenix conference: nadir +2 ng/ml. Results 198 men were included. After a median follow-up of 63.9 months, 21 patients experienced a BF, and 35.9% had at least one bounce which occurred after a median period of 17 months after implantation (4-50. Bounce amplitude was 0.6 ng/ml (0.2-5.1, and duration was 13.6 months (4.0-44.9. In 12.5%, bounce magnitude exceeded the threshold defining BF. Age at the time of treatment and high PSA level assessed at 6 weeks were significantly correlated with bounce but not with BF. Bounce patients had a higher BF free survival than the others (100% versus 92%, p = 0,007. In case of PSA increase, PSA doubling time and velocity were not significantly different between bounce and BF patients. Bounces occurred significantly earlier than relapses and than nadir + 0.2 ng/ml in BF patients (17 vs 27.8 months, p Conclusion High PSA value assessed 6 weeks after brachytherapy and young age were significantly associated to a higher risk of bounces but not to BF. Long delays between brachytherapy and PSA increase are more indicative of BF.

  16. Reconstruction and navigation system for intraoperative brachytherapy using the flab technique for colorectal tumor bed irradiation

    International Nuclear Information System (INIS)

    Strassmann, Gerd; Walter, Stefan; Kolotas, Christos; Heyd, Reinhard; Baltas, Dimos; Debertshaeuser, Detlef; Nier, Helmut; Tonus, Carolin; Sakas, George; Zamboglou, Nikolaos

    2000-01-01

    Purpose: To present the development of a new navigation and reconstruction system based on an electromagnetic free-hand tracker and on CT imaging for treatment planning of intraoperative high-dose-rate brachytherapy (IORT-HDRB) in the sacral region. Our aim is to improve accuracy and to enable individualized treatment planning and dose documentation to be performed for IORT-HDRB using a flab technique. Methods and Materials: The material consists of an electromagnetic 3D tracker system, a PC workstation with Microsoft Windows NT 4.0 operating system, and a recognition program for continuous speech. In addition, we designed an external reference system constructed of titanium and Perspex, which is positioned in the pelvis, and a special digitizer pen for reconstruction of the flab geometry. The flab design incorporates a series of silicon 10-mm-diameter spherical pellets. Measurements were made with a pelvic phantom in order to study the accuracy of the system. The reconstruction results are stored and can be exported via network or floppy to our different treatment planning systems. Results: Our results for the reconstruction of a flab with six catheters and a total of 100 spherical pellets give mean errors in the range (2.5 ± 0.6) mm to (3.5 ± 0.8) mm depending on the positions of the pelvic phantom and transmitter relative to the operation table. These errors are calculated by comparing the reconstruction results of our system with those using a CT-based reconstruction of the flab geometry. For the accuracy of the navigation system for the pelvic phantom, we obtained mean errors in the range (2.2 ± 0.7) mm to (3.1 ± 1.0) mm. Conclusions: The new system we have developed enables navigation and reconstruction within the surgical environment with a clinically acceptable level of accuracy. It offers the possibility of individualized treatment planning and effective documentation of the 3D dose distribution in IORT-HDRB using a flab technique

  17. An innovative seeding technique for photon conversion reconstruction at CMS

    International Nuclear Information System (INIS)

    Giordano, D; Sguazzoni, G

    2012-01-01

    The conversion of photons into electron-positron pairs in the detector material is a nuisance in the event reconstruction of high energy physics experiments, since the measurement of the electromagnetic component of interaction products results degraded. Nonetheless this unavoidable detector effect can also be extremely useful. The reconstruction of photon conversions can be used to probe the detector material and to accurately measure soft photons that come from radiative decays in heavy flavor physics. In fact a converted photon can be measured with very high momentum resolution by exploiting the excellent reconstruction of charged tracks of a tracking detector as the one of CMS at LHC. The main issue is that photon conversion tracks are difficult to reconstruct for standard reconstruction algorithms. They are typically soft and very displaced from the primary interaction vertex. An innovative seeding technique that exploits the peculiar photon conversion topology, successfully applied in the CMS track reconstruction sequence, is presented. The performances of this technique and the substantial enhancement of photon conversion reconstruction efficiency are discussed. Application examples are given.

  18. Development of computational models for the simulation of isodose curves on dosimetry films generated by iodine-125 brachytherapy seeds

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano M.; Meira-Belo, Luiz C.; Reis, Sergio C.; Grynberg, Suely E., E-mail: amsantos@cdtn.b [Center for Development of Nuclear Technology (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The interstitial brachytherapy is one modality of radiotherapy in which radioactive sources are placed directly in the region to be treated or close to it. The seeds that are used in the treatment of prostate cancer are generally cylindrical radioactive sources, consisting of a ceramic or metal matrix, which acts as the carrier of the radionuclide and as the X-ray marker, encapsulated in a sealed titanium tube. This study aimed to develop a computational model to reproduce the film-seed geometry, in order to obtain the spatial regions of the isodose curves produced by the seed when it is put over the film surface. The seed modeled in this work was the OncoSeed 6711, a sealed source of iodine-125, which its isodose curves were obtained experimentally in previous work with the use of dosimetric films. For the films modeling, compositions and densities of the two types of dosimetric films were used: Agfa Personal Monitoring photographic film 2/10, manufactured by Agfa-Geavaert; and the model EBT radiochromic film, by International Specialty Products. The film-seed models were coupled to the Monte Carlo code MCNP5. The results obtained by simulations showed to be in good agreement with experimental results performed in a previous work. This indicates that the computational model can be used in future studies for other seeds models. (author)

  19. Development of computational models for the simulation of isodose curves on dosimetry films generated by iodine-125 brachytherapy seeds

    International Nuclear Information System (INIS)

    Santos, Adriano M.; Meira-Belo, Luiz C.; Reis, Sergio C.; Grynberg, Suely E.

    2011-01-01

    The interstitial brachytherapy is one modality of radiotherapy in which radioactive sources are placed directly in the region to be treated or close to it. The seeds that are used in the treatment of prostate cancer are generally cylindrical radioactive sources, consisting of a ceramic or metal matrix, which acts as the carrier of the radionuclide and as the X-ray marker, encapsulated in a sealed titanium tube. This study aimed to develop a computational model to reproduce the film-seed geometry, in order to obtain the spatial regions of the isodose curves produced by the seed when it is put over the film surface. The seed modeled in this work was the OncoSeed 6711, a sealed source of iodine-125, which its isodose curves were obtained experimentally in previous work with the use of dosimetric films. For the films modeling, compositions and densities of the two types of dosimetric films were used: Agfa Personal Monitoring photographic film 2/10, manufactured by Agfa-Geavaert; and the model EBT radiochromic film, by International Specialty Products. The film-seed models were coupled to the Monte Carlo code MCNP5. The results obtained by simulations showed to be in good agreement with experimental results performed in a previous work. This indicates that the computational model can be used in future studies for other seeds models. (author)

  20. Seed loss through the urinary tract after prostate brachytherapy: examining the role of cystoscopy and urine straining post implant

    International Nuclear Information System (INIS)

    Stutz, Michael; Petrikas, James; Raslowsky, Michael; Lee, Plato; Gurel, Michelle; Moran, Brian

    2003-01-01

    This study describes one institution's experience with seed retrieval through the urinary tract and makes recommendations for cystoscopy and urine straining post prostate brachytherapy (PB). 1794 patients from two separate cohorts covering different time periods (early versus late) were analyzed. All patients were preplanned with a modified peripheral loading technique and implanted with preloaded needles ( 125 I or 103 Pd) under ultrasound guidance. A catheter was used to delineate the urethra during the volume study but was not used during the implant. All patients underwent post implant cystoscopy. All patients were instructed to strain their urine for seven days post implant and return any seeds to our center. In our experience, seed loss through the urinary tract is a common event after PB, occurring in 29.7% of patients and was more common in patients from the early cohort, those implanted with 125 I seeds or those patients with prior transurethral resection of the prostate. Average seed loss per case, however, represents only 0.58% of total activity. We continue to recommend routine post implant cystoscopy for seed retrieval and periprocedural management. We no longer recommend that patients strain their urine at home after documenting a low rate of seed loss after discharge

  1. Permanent Seed Implant Dosimetry (PSID)TM 4.5 version as isodose and Treatment Planning System (TPS) programme for brachytherapy

    International Nuclear Information System (INIS)

    Indra Saptiama; Moch Subechi; Anung Pujiyanto; Hotman Lubis; Herlan Setiawan

    2014-01-01

    The medical treatment using radiation therapy for cancer diseases is increasingly developed. One of the method used in radiotherapy is brachytherapy. Brachytherapy is radiation therapy method in which a radiation source is implanted in cancer cell directly so the dose accepted by cancer cell is the highest dose and the dose accepted by normal cell is the lowest dose. I-125 Seed have been made successfully in domestic. To support the implant of I-125 seed for brachytherapy needs computer programme for the isodose calculation and Treatment Planning System (TPS). Permanent Seed Implant Dosimetry (PSID) 4.5 is one of the isodose calculation and Treatment Planning System (TPS) programme that is owned by Center for Radioisotope and Radiopharmaceutical-BATAN. In isodose calculation, PSID 4.5 uses 1D formalism and 2D formalism based on AAPM-TG43 (Association of American Physicist in Medicine- Task Group No.43). Anisotropic function on 1D formalism depend on distance function while on 2D formalism count on distance and angle function therefore 2D formalism has isodose calculation better than 1D formalism usage. PSID 4.5 can display the isodose contour of the seed I-125 radiation source in 2 dimension (2D) and 3 dimension (3D). The computer programme of isodose calculation and TPS uses PSID 4.5 is expected able to help planning for seed I-125 implantation process for brachytherapy that used by paramedics and to support the usage of seed I-125 as domestic product. (author)

  2. {sup 125}I seed implant brachytherapy for the treatment of parotid gland cancers in children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Zhang, J.; Song, T.; Zhang, J.; Yu, G.; Zhang, Y. [Peking University School and Hospital of Stomatology, Beijing (China). Dept. of Oral and Maxillofacial Surgery

    2013-05-15

    Background and purpose: There is a lack of optimal treatment strategies for managing salivary gland cancers in children and adolescents. This study is aimed at assessing the effect of {sup 125}I seed implantation for the treatment of parotid cancers in children and adolescents. Patients and methods: A total of 12 patients younger than 16 years with parotid gland malignant tumors underwent {sup 125}I seed implant brachytherapy between October 2003 and November 2008. All patients were assessed after treatment and at the local tumor control appointments. Facial nerve function, maxillofacial development, and radioactive side-effects were assessed. Results: The follow-up period ranged from 41-104 months. One patient with T4b died of pulmonary metastasis. The other patients were alive during the follow-up period. There were no serious radiation-related complications. The treatment did not affect facial nerve function and dentofacial growth in any of the children. Conclusion: For parotid gland cancers in children, {sup 125}I seed implant brachytherapy may be an acceptable treatment without serious complications and with satisfactory short-term effects. (orig.)

  3. Is intraoperative real-time dosimetry in prostate seed brachytherapy predictive of biochemical outcome?

    Directory of Open Access Journals (Sweden)

    Daniel Taussky

    2017-06-01

    Full Text Available Purpose : To analyze intraoperative (IO dosimetry using transrectal ultrasound (TRUS, performed before and after prostate low-dose-rate brachytherapy (LDR-BT, and compare it to dosimetry performed 30 days following the LDR-BT implant (Day 30. Material and methods : A total of 236 patients underwent prostate LDR-BT using 125 I that was performed with a three-dimensional TRUS-guided interactive inverse preplanning system (preimplant dosimetry. After the implant procedure, the TRUS was repeated in the operating room, and the dosimetry was recalculated (postimplant dosimetry and compared to dosimetry on Day 30 computed tomography (CT scans. Area under curve (AUC statistics was used for models predictive of dosimetric parameters at Day 30. Results : The median follow-up for patients without BF was 96 months, the 5-year and 8-year biochemical recurrence (BR-free rate was 96% and 90%, respectively. The postimplant median D 90 was 3.8 Gy lower (interquartile range [IQR], 12.4-0.9, and the V 100 only 1% less (IQR, 2.9-0.2% than the preimplant dosimetry. When comparing the postimplant and the Day 30 dosimetries, the postimplant median D 90 was 9.6 Gy higher (IQR [–] 9.5-30.3 Gy, and the V 100 was 3.2% greater (0.2-8.9% than Day 30 postimplant dosimetry. The variables that best predicted the D 90 of Day 30 was the postimplant D 90 (AUC = 0.62, p = 0.038. None of the analyzed values for IO or Day 30 dosimetry showed any predictive value for BR. Conclusions : Although improving the IO preimplant and postimplant dosimetry improved dosimetry on Day 30, the BR-free rate was not dependent on any dosimetric parameter. Unpredictable factors such as intraprostatic seed migration and IO factors, prevented the accurate prediction of Day 30 dosimetry.

  4. Dosimetric comparison of interactive planned and dynamic dose calculated prostate seed brachytherapy.

    Science.gov (United States)

    Meijer, Gert J; van den Berg, Hetty A; Hurkmans, Coen W; Stijns, Pascal E; Weterings, Jan H

    2006-09-01

    To compare the dosimetrical results of an interactive planning procedure and a procedure based on dynamic dose calculation for permanent prostate brachytherapy. Between 6/2000 and 11/2005, 510 patients underwent (125)I implants for T1-T2 prostate cancer. Before 4/2003, 187 patients were treated using an interactive technique that included needle updating. After that period, 323 patients were treated with a more refined dynamic technique that included constant updating of the deposited seed position. The comparison is based on postimplant dose - volume parameters such as the V(100) and d(90) for the target, V(100)(r) for the rectum and d(10)(u) for the urethra. Furthermore, the target volume ratios (TVR identical with V(100)(body)/V(100)), and the homogeneity indices (HI identical with [V(100)-V(150)]/V(100)) were calculated as additional quality parameters. The dose outside the target volume was significantly reduced, the V(100)(r) decreased from 1.4 cm(3) for the interactive technique to 0.6 cm(3) for the dynamic technique. Similarly the mean TVR reduced from 1.66 to 1.44. In addition, the mean V(100) increased from 92% for the interactive procedure to 95% for the dynamic procedure. More importantly, the percentage of patients with a V(100) < 80% reduced from 5% to 1%. A slight decline was observed with regard to the d(10)(u) (136% vs. 140%) and the HI (0.58 vs. 0.51). The dynamic implant procedure resulted in improved implants. Almost ideal dose coverage was achieved, while minimizing the dose outside the prostate.

  5. Dosimetric comparison of interactive planned and dynamic dose calculated prostate seed brachytherapy

    International Nuclear Information System (INIS)

    Meijer, Gert J.; Berg, Hetty A. van den; Hurkmans, Coen W.; Stijns, Pascal E.; Weterings, Jan H.

    2006-01-01

    Purpose: To compare the dosimetrical results of an interactive planning procedure and a procedure based on dynamic dose calculation for permanent prostate brachytherapy. Materials and methods: Between 6/2000 and 11/2005, 510 patients underwent 125 I implants for T1-T2 prostate cancer. Before 4/2003, 187 patients were treated using an interactive technique that included needle updating. After that period, 323 patients were treated with a more refined dynamic technique that included constant updating of the deposited seed position. The comparison is based on postimplant dose-volume parameters such as the V 100 and d 90 for the target, V 100 r for the rectum and d 10 u for the urethra. Furthermore, the target volume ratios (TVR=V 100 body /V 100 ), and the homogeneity indices (HI=[V 100 -V 150 ]/V 100 ) were calculated as additional quality parameters. Results: The dose outside the target volume was significantly reduced, the V 100 r decreased from 1.4cm 3 for the interactive technique to 0.6cm 3 for the dynamic technique. Similarly the mean TVR reduced from 1.66 to 1.44. In addition, the mean V 100 increased from 92% for the interactive procedure to 95% for the dynamic procedure. More importantly, the percentage of patients with a V 100 10 u (136% vs. 140%) and the HI (0.58 vs. 0.51). Conclusion: The dynamic implant procedure resulted in improved implants. Almost ideal dose coverage was achieved, while minimizing the dose outside the prostate

  6. The Quadrella: A novel approach to analyzing optimal outcomes after permanent seed prostate brachytherapy

    International Nuclear Information System (INIS)

    Tétreault-Laflamme, Audrey; Zilli, Thomas; Meissner, Aliza; Larrivée, Sandra; Sylvestre, Marie-Pierre; Delouya, Guila

    2014-01-01

    Background and purpose: To study a four-point combined analysis (Quadrella) of optimal outcome among patients treated with exclusive permanent seed prostate brachytherapy (PB), as defined by the likelihood of achieving disease control and preserving normal urinary, gastro-intestinal (GI) and sexual function. Materials and methods: 384 patients with localized prostate cancer underwent PB at our institution with 125 I at a dose level of 144 Gy. Subjects with erectile dysfunction who did not respond to medication were excluded. 281 patients with minimum 3-year follow-up were evaluated. Patients with concurrent biochemical progression-free survival (bPFS), absent urinary and GI toxicities (grade 0 toxicities according to CTCAE v 3.0) and preserved sexual potency (with our without medication) were classified as the Quadrella group. Results: Among the 281 patients analyzed, the Quadrella was achieved in 49.1%, 48.0%, 50.4%, 41.7% and 65.2% in years 3–7, respectively. bPFS rates were 82.6–96.1%, corresponding potency rates were 63.6–82.3%, and normal urinary and GI function rates were 64.8–82.6% and 95–100%, respectively. By multivariate analysis, significant predictors of Quadrella were age (p = 0.015), baseline IPSS (p = 0.03) and time since PB (p = 0.02). Conclusion: Urinary and sexual toxicity remained the most common reasons for excluding patients from a perfect outcome (Quadrella), defined by strict criteria. This analysis can be useful for subsequent comparison between treatment modalities

  7. Effect of improved TLD dosimetry on the determination of dose rate constants for 125I and 103Pd brachytherapy seeds

    International Nuclear Information System (INIS)

    Rodriguez, M.; Rogers, D. W. O.

    2014-01-01

    Purpose: To more accurately account for the relative intrinsic energy dependence and relative absorbed-dose energy dependence of TLDs when used to measure dose rate constants (DRCs) for 125 I and 103 Pd brachytherapy seeds, to thereby establish revised “measured values” for all seeds and compare the revised values with Monte Carlo and consensus values. Methods: The relative absorbed-dose energy dependence, f rel , for TLDs and the phantom correction, P phant , are calculated for 125 I and 103 Pd seeds using the EGSnrc BrachyDose and DOSXYZnrc codes. The original energy dependence and phantom corrections applied to DRC measurements are replaced by calculated (f rel ) −1 and P phant values for 24 different seed models. By comparing the modified measured DRCs to the MC values, an appropriate relative intrinsic energy dependence, k bq rel , is determined. The new P phant values and relative absorbed-dose sensitivities, S AD rel , calculated as the product of (f rel ) −1 and (k bq rel ) −1 , are used to individually revise the measured DRCs for comparison with Monte Carlo calculated values and TG-43U1 or TG-43U1S1 consensus values. Results: In general, f rel is sensitive to the energy spectra and models of the brachytherapy seeds. Values may vary up to 8.4% among 125 I and 103 Pd seed models and common TLD shapes. P phant values depend primarily on the isotope used. Deduced (k bq rel ) −1 values are 1.074 ± 0.015 and 1.084 ± 0.026 for 125 I and 103 Pd seeds, respectively. For (1 mm) 3 chips, this implies an overall absorbed-dose sensitivity relative to 60 Co or 6 MV calibrations of 1.51 ± 1% and 1.47 ± 2% for 125 I and 103 Pd seeds, respectively, as opposed to the widely used value of 1.41. Values of P phant calculated here have much lower statistical uncertainties than literature values, but systematic uncertainties from density and composition uncertainties are significant. Using these revised values with the literature’s DRC measurements, the

  8. Urethra-Sparing, Intraoperative, Real-Time Planned, Permanent-Seed Prostate Brachytherapy: Toxicity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zilli, Thomas [Department of Radiation Oncology, Centre hospitalier de l' Universite de Montreal-Hopital Notre-Dame, Montreal, QC (Canada); Taussky, Daniel, E-mail: daniel.taussky.chum@ssss.gouv.qc.ca [Department of Radiation Oncology, Centre hospitalier de l' Universite de Montreal-Hopital Notre-Dame, Montreal, QC (Canada); Donath, David; Le, Hoa Phong; Larouche, Renee-Xaviere; Beliveau-Nadeau, Dominique; Hervieux, Yannick; Delouya, Guila [Department of Radiation Oncology, Centre hospitalier de l' Universite de Montreal-Hopital Notre-Dame, Montreal, QC (Canada)

    2011-11-15

    Purpose: To report the toxicity outcome in patients with localized prostate cancer undergoing {sup 125}I permanent-seed brachytherapy (BT) according to a urethra-sparing, intraoperative (IO), real-time planned conformal technique. Methods and Materials: Data were analyzed on 250 patients treated consecutively for low- or intermediate-risk prostate cancer between 2005 and 2009. The planned goal was urethral V{sub 150} = 0. Acute and late genitourinary (GU), gastrointestinal (GI), and erectile toxicities were scored with the International Prostate Symptom Score (IPSS) questionnaire and Common Terminology Criteria for Adverse Events (version 3.0). Median follow-up time for patients with at least 2 years of follow-up (n = 130) was 34.4 months (range, 24-56.9 months). Results: Mean IO urethra V{sub 150} was 0.018% {+-} 0.08%. Mean prostate D{sub 90} and V{sub 100} on day-30 computed tomography scan were 158.0 {+-} 27.0 Gy and 92.1% {+-} 7.2%, respectively. Mean IPSS peak was 9.5 {+-} 6.3 1 month after BT (mean difference from baseline IPSS, 5.3). No acute GI toxicity was observed in 86.8% of patients. The 3-year probability of Grade {>=}2 late GU toxicity-free survival was 77.4% {+-} 4.0%, with Grade 3 late GU toxicity encountered in only 3 patients. Three-year Grade 1 late GI toxicity-free survival was 86.1% {+-} 3.2%. No patient presented Grade {>=}2 late GI toxicity. Of patients with normal sexual status at baseline, 20.7% manifested Grade {>=}2 erectile dysfunction after BT. On multivariate analysis, elevated baseline IPSS (p = 0.016) and high-activity sources (median 0.61 mCi) (p = 0.033) predicted increased Grade {>=}2 late GU toxicity. Conclusions: Urethra-sparing IO BT results in low acute and late GU toxicity compared with the literature. High seed activity and elevated IPSS at baseline increased long-term GU toxicity.

  9. Obtention of brachytherapy seeds by sealing process using polymer; Obtencao de sementes de braquiterapia pelo processo de selagem com polimero

    Energy Technology Data Exchange (ETDEWEB)

    Lana, Diogo Alberto P.D.; Ferraz, Wilmar B.; Santos, Ana Maria M., E-mail: amms@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Carvalho, Luiz Claudio F.M. Garcia [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2012-08-15

    Brachytherapy is an advanced cancer treatment where radioactive seeds or sources are placed near or directly into the tumor thus reducing the radiation exposure in the surrounding healthy tissues. Several kinds of seeds have been developed in order to obtain a better dose distribution around them and with a lower cost manufacturing. These seeds consist of an encapsulation (titanium or stainless steel tube), a radionuclide carrier, and X-ray marker. The usual sealing process of the seeds is done with laser welding, but this process can promote radionuclide volatilization. In this paper, we present a new sealing process using epoxy resin and characterizations of two epoxy resins. These resins were characterized by Fourier transform infrared spectroscopic (FTIR), ultraviolet-visible spectroscopy (UV-vis) and differential scanning calorimetry (DSC). Interactions of the resins and of the sealed seeds in a simulated body fluid (SBF) were evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and by a counting gamma-rays. (author)

  10. Aspects of an automatic system of implants of radioactive seeds and anatomic object simulator for tests in prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo S.M.; Braga, Viviane V.B.; Campos, Tarcísio P. R. de, E-mail: leonardosantiago.lsms@gmail.com, E-mail: vitoriabraga06@gmail.com, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (PCTN/UFMG), Belo Horizonte (Brazil). Pós-Graduação em Ciências e Técnicas Nucleares. Departamento de Engenharia Nuclear

    2017-07-01

    This work presents the state of the art of the research and development of an automatic radioactive seed implantation system (PSIS). PSIS may assist in the procedure of testing permanent implants in the prostate. These tests will be important in measurements of absorbed doses in the pelvic structures, involving the organs and tissues at risk to improve planning, seed positioning and dosimetry. The automated Prostate Seed Implant System (PSIS) has been designed to meet operational needs, which offers the freedom of positioning of the brachytherapy needle within the treatment area and ensures repeatability and fidelity to the planned treatment. Both the ultrasound probe and the seed implant needle are driven by step motors, Atmega microcontroller, bearings, aluminum shafts and a GUI (Graphical User Interface). Movement of both the probe and the needle holder was performed by fixed spindle on a threaded rod rushing to the step motors by a coupling. The step motors used to move the system consist of step motors used in CNC (Computer Numeric Control) machine. The choice of these engines occurred due to the precision in the movements that can be obtained with these types of motors. The ultrasound probe serves to help, through the images acquired during the longitudinal movement, to monitor the application of the seeds. The parts that make up the system infrastructure were made of aluminum and translucent acrylic and cylindrical aluminum bars of different diameters. All these pieces were fixed and adjusted trough screws, washers, nuts and adhesive to metal, composing the final prototype of the PSIS. The project was developed and the PSIS prototype was assembled. The prototype presented acceptable operating characteristics for prostate implants. The advantage of this system is the automation of the application that provides an accurate positioning and movement of both probe and seed application. In addition to this study, seeds implantation tests will be performed, and

  11. Histology study on the dorsal root ganglia of rats with 125I seed brachytherapy at intervertebral foramen

    International Nuclear Information System (INIS)

    Zhang Wenyi; Wang Huixing; Ding Yanqiu; Qu Ximei; Wang Liqin; Liu Zhongchao; Cui Songye; Jiao Ling

    2012-01-01

    Objective: To investigate the effect of the histological changes on rat dorsal root ganglia (DRG) after 125 I seed brachytherapy.Methods Twelve adult male Sprague-Dawley rats (150-180 g each) were randomly divided into 6 groups, 125 I seeds with different activities of 0 (Titanium shell), 14.8, 18.5, 22.2, 25.9 and 29.6 MBq were implanted to 6 groups of rats respectively and the behavioral changes of rats were observed. The rats were killed in different periods after implantation,the morphological changes in DRG and surrounding muscle tissue were observed with an Olympus BX51 optical microscope and then the irradiation doses were estimated. Results: After 125 I seed implantation, the movement function of rats was not affected and the weight of rats gained after 7 days. After the titanium shell implantation, very few mild swelling was induced in neuroganglion cells that still had clear nucleolus and normal cytoplasm. At 14 days after 18.5 MBq seed implantation, cell swelling was more serious and cell dehydrating, nuclear condensation and nuclear fragmentation appeared after 30 days. At 60 days after 29.6 MBq of seed implantation, nuclear dissolution and cytoplasmic shrinkage were induced in a large number of cells.In general, the severity of fibrosis was aggravated with the time post-irradiation and the dose in the muscles around the ganglion. Conclusions: After 125 I seed implantation,the injury degree of DRG tissue is dose-dependent, and the 125 I seed irradiation would have analgesic effect on releasing intractable pain. (authors)

  12. Development of an automation system for Iodine-125 brachytherapy seed encapsulated by Nd:YAG laser welding

    International Nuclear Information System (INIS)

    Somessari, S.L.; Feher, A.; Sprenger, F.E.; Rostelato, M.E.C.M.; Costa, F.E. da; Calvo, W.A.P.

    2011-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by Nd:YAG laser welding, which has been used successfully in low dose rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8 mm in diameter and 4.5 mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at Institute for Nuclear and Energy Research, Sao Paulo, Brazil (IPEN-CNEN/SP) imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources became a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a larger number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with good manufacturing practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing a programmable logic controller (PLC), a stepper motor, an Nd:YAG laser welding machine and a supervisory. The statistical repeatability of correctly encapsulated sealed sources with this automation system is greater than 95%. (authors)

  13. Development of an automation system for iodine-125 brachytherapy seed production by ND:YAG laser welding

    International Nuclear Information System (INIS)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria Elisa C.M.; Costa, Fabio E.; Calvo, Wilson A.P.

    2009-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by Nd:YAG laser welding, which has been used successfully in low dose rate brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8 mm in diameter and 4.5 mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources became a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a larger number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with good manufacturing practices. The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing a Programmable Logic Controller, a stepper motor, an Nd:YAG laser welding machine and a supervisory. (author)

  14. Development of an automation system for iodine-125 brachytherapy seed production by (Nd:YAG) laser welding

    International Nuclear Information System (INIS)

    Somessari, Samir Luiz

    2010-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by (Nd:YAG) laser welding, which has been used successfully in Low Dose Rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8mm in diameter and 4.5mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources becomes a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a largest number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with Good Manufacturing Practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing Programmable Logic Controller (PLC), stepper motors, drivers, (Nd:YAG) laser welding machine, photoelectric sensors and supervisory. (author)

  15. Aspects of an automatic system of implants of radioactive seeds and anatomic object simulator for tests in prostate brachytherapy

    International Nuclear Information System (INIS)

    Silva, Leonardo S.M.; Braga, Viviane V.B.; Campos, Tarcísio P. R. de

    2017-01-01

    This work presents the state of the art of the research and development of an automatic radioactive seed implantation system (PSIS). PSIS may assist in the procedure of testing permanent implants in the prostate. These tests will be important in measurements of absorbed doses in the pelvic structures, involving the organs and tissues at risk to improve planning, seed positioning and dosimetry. The automated Prostate Seed Implant System (PSIS) has been designed to meet operational needs, which offers the freedom of positioning of the brachytherapy needle within the treatment area and ensures repeatability and fidelity to the planned treatment. Both the ultrasound probe and the seed implant needle are driven by step motors, Atmega microcontroller, bearings, aluminum shafts and a GUI (Graphical User Interface). Movement of both the probe and the needle holder was performed by fixed spindle on a threaded rod rushing to the step motors by a coupling. The step motors used to move the system consist of step motors used in CNC (Computer Numeric Control) machine. The choice of these engines occurred due to the precision in the movements that can be obtained with these types of motors. The ultrasound probe serves to help, through the images acquired during the longitudinal movement, to monitor the application of the seeds. The parts that make up the system infrastructure were made of aluminum and translucent acrylic and cylindrical aluminum bars of different diameters. All these pieces were fixed and adjusted trough screws, washers, nuts and adhesive to metal, composing the final prototype of the PSIS. The project was developed and the PSIS prototype was assembled. The prototype presented acceptable operating characteristics for prostate implants. The advantage of this system is the automation of the application that provides an accurate positioning and movement of both probe and seed application. In addition to this study, seeds implantation tests will be performed, and

  16. Postoperative [{sup 125}I] seed brachytherapy in the treatment of acinic cell carcinoma of the parotid gland. With associated risk factors

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Ming-hui; Zhang, Jian-Guo; Zhang, Jie; Zheng, Lei; Liu, Shu-ming; Huang, Ming-wei; Shi, Yan [Peking Univ. School and Hospital of Stomatology, Beijing (China). Dept. of Oral and Maxillofacial Surgery

    2014-11-15

    This retrospective study was undertaken to analyze data from patients receiving iodine-125 ([{sup 125}I]) seed brachytherapy postoperatively for the treatment of acinic cell carcinoma (ACC) of the parotid gland along with the following risk factors: residual tumor, recurrent tumor, facial nerve invasion, positive resection margins, advanced tumor stage, or tumor spillage. Twenty-nine patients with ACC (17 females, 12 males; age range, 13-73 years; median age, 37.3 years) were included. Median follow-up was 58.2 months (range, 14-122 months). Patients received [{sup 125}I] seed brachytherapy (median actuarial D90, 177 Gy) 3-41 days (median, 14 days) following surgery. Radioactivity was 18.5-33.3 MBq per seed, and the prescription dose was 80-120 Gy. The 3-, 5-, and 10-year rates of local control were 93.1, 88.7, and 88.7 %, respectively; overall survival was 96.6, 92, and 92 %; disease-free survival was 93.1, 88.4, and 88.4 %; and freedom from distant metastasis was 96.6, 91.2, and 91.2 %. Lymph node metastases were absent in all patients, although two patients died with distant metastases. Facial nerve recovery was quick, and no severe radiotherapy-related complications were noted. Recurrence history, local recurrence, and distant metastasis significantly affected overall survival. Postoperative [{sup 125}I] seed brachytherapy is effective in treating ACC and has minor complications. Patients with a history of recurrence showed poor prognosis and were more likely to experience disease recurrence and develop metastases. (orig.) [German] Diese retrospektive Studie wurde durchgefuehrt, um die Daten von Patienten zu analysieren, die postoperativ eine Seed-Brachytherapie mit Iod-125 ([{sup 125}I]) zur Behandlung von Azinuszellkarzinomen der Ohrspeicheldruese mit begleitenden Risikofaktoren, wie Residualtumor, Rezidivtumor, Invasion in den N. facialis, positive (= nicht tumorfreie) Resektionsraender, fortgeschrittenes Tumorstadium oder lokale Verbreitung von Tumorzellen

  17. SU-E-J-215: Towards MR-Only Image Guided Identification of Calcifications and Brachytherapy Seeds: Application to Prostate and Breast LDR Implant Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Elzibak, A; Fatemi-Ardekani, A; Soliman, A; Mashouf, S; Safigholi, H; Ravi, A; Morton, G; Song, WY [Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Han, D [Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); University of California, San Diego, La Jolla, CA (United States)

    2015-06-15

    Purpose: To identify and analyze the appearance of calcifications and brachytherapy seeds on magnitude and phase MRI images and to investigate whether they can be distinguished from each other on corrected phase images for application to prostate and breast low dose rate (LDR) implant dosimetry. Methods: An agar-based gel phantom containing two LDR brachytherapy seeds (Advantage Pd-103, IsoAid, 0.8mm diameter, 4.5mm length) and two spherical calcifications (large: 7mm diameter and small: 4mm diameter) was constructed and imaged on a 3T Philips MR scanner using a 16-channel head coil and a susceptibility weighted imaging (SWI) sequence (2mm slices, 320mm FOV, TR/ TE= 26.5/5.3ms, 15 degree flip angle). The phase images were unwrapped and corrected using a 32×32, 2D Hanning high pass filter to remove background phase noise. Appearance of the seeds and calcifications was assessed visually and quantitatively using Osirix (http://www.osirix-viewer.com/). Results: As expected, calcifications and brachytherapy seeds appeared dark (hypointense) relative to the surrounding gel on the magnitude MRI images. The diameter of each seed without the surrounding artifact was measured to be 0.1 cm on the magnitude image, while diameters of 0.79 and 0.37 cm were measured for the larger and smaller calcifications, respectively. On the corrected phase images, the brachytherapy seeds and the calcifications appeared bright (hyperintense). The diameter of the seeds was larger on the phase images (0.17 cm) likely due to the dipole effect. Conclusion: MRI has the best soft tissue contrast for accurate organ delineation leading to most accurate implant dosimetry. This work demonstrated that phase images can potentially be useful in identifying brachytherapy seeds and calcifications in the prostate and breast due to their bright appearance, which helps in their visualization and quantification for accurate dosimetry using MR-only. Future work includes optimizing phase filters to best identify

  18. Prostate cancer brachytherapy

    International Nuclear Information System (INIS)

    Abreu, Carlos Eduardo Vita; Silva, Joao L. F.; Srougi, Miguel; Nesrallah, Adriano

    1999-01-01

    The transperineal brachytherapy with 125 I/Pd 103 seed implantation guided by transurethral ultrasound must be presented as therapeutical option of low urinary morbidity in patients with localized prostate cancer. The combined clinical staging - including Gleason and initial PSA - must be encouraged, for definition of a group of low risk and indication of exclusive brachytherapy. Random prospective studies are necessary in order to define the best role of brachytherapy, surgery and external beam radiation therapy

  19. WE-AB-BRA-11: Improved Imaging of Permanent Prostate Brachytherapy Seed Implants by Combining an Endorectal X-Ray Sensor with a CT Scanner

    International Nuclear Information System (INIS)

    Steiner, J; Matthews, K; Jia, G

    2016-01-01

    Purpose: To test feasibility of the use of a digital endorectal x-ray sensor for improved image resolution of permanent brachytherapy seed implants compared to conventional CT. Methods: Two phantoms simulating the male pelvic region were used to test the capabilities of a digital endorectal x-ray sensor for imaging permanent brachytherapy seed implants. Phantom 1 was constructed from acrylic plastic with cavities milled in the locations of the prostate and the rectum. The prostate cavity was filled a Styrofoam plug implanted with 10 training seeds. Phantom 2 was constructed from tissue-equivalent gelatins and contained a prostate phantom implanted with 18 strands of training seeds. For both phantoms, an intraoral digital dental x-ray sensor was placed in the rectum within 2 cm of the seed implants. Scout scans were taken of the phantoms over a limited arc angle using a CT scanner (80 kV, 120–200 mA). The dental sensor was removed from the phantoms and normal helical CT and scout (0 degree) scans using typical parameters for pelvic CT (120 kV, auto-mA) were collected. A shift-and add tomosynthesis algorithm was developed to localize seed plane location normal to detector face. Results: The endorectal sensor produced images with improved resolution compared to CT scans. Seed clusters and individual seed geometry were more discernable using the endorectal sensor. Seed 3D locations, including seeds that were not located in every projection image, were discernable using the shift and add algorithm. Conclusion: This work shows that digital endorectal x-ray sensors are a feasible method for improving imaging of permanent brachytherapy seed implants. Future work will consist of optimizing the tomosynthesis technique to produce higher resolution, lower dose images of 1) permanent brachytherapy seed implants for post-implant dosimetry and 2) fine anatomic details for imaging and managing prostatic disease compared to CT images. Funding: LSU Faculty Start-up Funding

  20. WE-AB-BRA-11: Improved Imaging of Permanent Prostate Brachytherapy Seed Implants by Combining an Endorectal X-Ray Sensor with a CT Scanner

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, J; Matthews, K; Jia, G [Louisiana State University, Baton Rouge, LA (United States)

    2016-06-15

    Purpose: To test feasibility of the use of a digital endorectal x-ray sensor for improved image resolution of permanent brachytherapy seed implants compared to conventional CT. Methods: Two phantoms simulating the male pelvic region were used to test the capabilities of a digital endorectal x-ray sensor for imaging permanent brachytherapy seed implants. Phantom 1 was constructed from acrylic plastic with cavities milled in the locations of the prostate and the rectum. The prostate cavity was filled a Styrofoam plug implanted with 10 training seeds. Phantom 2 was constructed from tissue-equivalent gelatins and contained a prostate phantom implanted with 18 strands of training seeds. For both phantoms, an intraoral digital dental x-ray sensor was placed in the rectum within 2 cm of the seed implants. Scout scans were taken of the phantoms over a limited arc angle using a CT scanner (80 kV, 120–200 mA). The dental sensor was removed from the phantoms and normal helical CT and scout (0 degree) scans using typical parameters for pelvic CT (120 kV, auto-mA) were collected. A shift-and add tomosynthesis algorithm was developed to localize seed plane location normal to detector face. Results: The endorectal sensor produced images with improved resolution compared to CT scans. Seed clusters and individual seed geometry were more discernable using the endorectal sensor. Seed 3D locations, including seeds that were not located in every projection image, were discernable using the shift and add algorithm. Conclusion: This work shows that digital endorectal x-ray sensors are a feasible method for improving imaging of permanent brachytherapy seed implants. Future work will consist of optimizing the tomosynthesis technique to produce higher resolution, lower dose images of 1) permanent brachytherapy seed implants for post-implant dosimetry and 2) fine anatomic details for imaging and managing prostatic disease compared to CT images. Funding: LSU Faculty Start-up Funding

  1. Accuracy of applicator tip reconstruction in MRI-guided interstitial 192Ir-high-dose-rate brachytherapy of liver tumors

    International Nuclear Information System (INIS)

    Wybranski, Christian; Eberhardt, Benjamin; Fischbach, Katharina; Fischbach, Frank; Walke, Mathias; Hass, Peter; Röhl, Friedrich-Wilhelm; Kosiek, Ortrud; Kaiser, Mandy; Pech, Maciej; Lüdemann, Lutz; Ricke, Jens

    2015-01-01

    Background and purpose: To evaluate the reconstruction accuracy of brachytherapy (BT) applicators tips in vitro and in vivo in MRI-guided 192 Ir-high-dose-rate (HDR)-BT of inoperable liver tumors. Materials and methods: Reconstruction accuracy of plastic BT applicators, visualized by nitinol inserts, was assessed in MRI phantom measurements and in MRI 192 Ir-HDR-BT treatment planning datasets of 45 patients employing CT co-registration and vector decomposition. Conspicuity, short-term dislocation, and reconstruction errors were assessed in the clinical data. The clinical effect of applicator reconstruction accuracy was determined in follow-up MRI data. Results: Applicator reconstruction accuracy was 1.6 ± 0.5 mm in the phantom measurements. In the clinical MRI datasets applicator conspicuity was rated good/optimal in ⩾72% of cases. 16/129 applicators showed not time dependent deviation in between MRI/CT acquisition (p > 0.1). Reconstruction accuracy was 5.5 ± 2.8 mm, and the average image co-registration error was 3.1 ± 0.9 mm. Vector decomposition revealed no preferred direction of reconstruction errors. In the follow-up data deviation of planned dose distribution and irradiation effect was 6.9 ± 3.3 mm matching the mean co-registration error (6.5 ± 2.5 mm; p > 0.1). Conclusion: Applicator reconstruction accuracy in vitro conforms to AAPM TG 56 standard. Nitinol-inserts are feasible for applicator visualization and yield good conspicuity in MRI treatment planning data. No preferred direction of reconstruction errors were found in vivo

  2. On the feasibility of polyurethane based 3D dosimeters with optical CT for dosimetric verification of low energy photon brachytherapy seeds

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Justus, E-mail: justus.adamson@duke.edu; Yang, Yun; Juang, Titania; Chisholm, Kelsey; Rankine, Leith; Yin, Fang Fang; Oldham, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Adamovics, John [Department of Chemistry, Rider University, Lawrenceville, New Jersey 08648 (United States)

    2014-07-15

    Purpose: To investigate the feasibility of and challenges yet to be addressed to measure dose from low energy (effective energy <50 keV) brachytherapy sources (Pd-103, Cs-131, and I-125) using polyurethane based 3D dosimeters with optical CT. Methods: The authors' evaluation used the following sources: models 200 (Pd-103), CS-1 Rev2 (Cs-131), and 6711 (I-125). The authors used the Monte Carlo radiation transport code MCNP5, simulations with the ScanSim optical tomography simulation software, and experimental measurements with PRESAGE{sup ®} dosimeters/optical CT to investigate the following: (1) the water equivalency of conventional (density = 1.065 g/cm{sup 3}) and deformable (density = 1.02 g/cm{sup 3}) formulations of polyurethane dosimeters, (2) the scatter conditions necessary to achieve accurate dosimetry for low energy photon seeds, (3) the change in photon energy spectrum within the dosimeter as a function of distance from the source in order to determine potential energy sensitivity effects, (4) the optimal delivered dose to balance optical transmission (per projection) with signal to noise ratio in the reconstructed dose distribution, and (5) the magnitude and characteristics of artifacts due to the presence of a channel in the dosimeter. Monte Carlo simulations were performed using both conventional and deformable dosimeter formulations. For verification, 2.8 Gy at 1 cm was delivered in 92 h using an I-125 source to a PRESAGE{sup ®} dosimeter with conventional formulation and a central channel with 0.0425 cm radius for source placement. The dose distribution was reconstructed with 0.02 and 0.04 cm{sup 3} voxel size using the Duke midsized optical CT scanner (DMOS). Results: While the conventional formulation overattenuates dose from all three sources compared to water, the current deformable formulation has nearly water equivalent attenuation properties for Cs-131 and I-125, while underattenuating for Pd-103. The energy spectrum of each source is

  3. Three dimensional implementation of anisotropy corrected fast fourier transform dose calculation around brachytherapy seeds

    International Nuclear Information System (INIS)

    Kyeremeh, P.O.

    2011-01-01

    Current-available brachytherapy dose computation algorithms ignore heterogeneities such as tissue-air interfaces, shielded gynaecological colpostats, and tissue-composition variations in source implants despite dose computation errors as large as 40%. A convolution kernel, which takes into consideration anisotropy of the dose distribution around a brachytherapy source, and to compute dose in the presence of tissue and applicator heterogeneities, has been established. Resulting from the convolution kernel are functions with polynomial and exponential terms. the solution to the convolution integral was represented by the Fast Fourier transform. The Fast Fourier transform has shown enough potency in accounting for errors due to these heterogeneities and the versatility of this Fast Fourier transform is evident from its capability of switching in between fields. Thus successful procedures in external beam could be adopted in brachytherapy to a yield similar effect. A dose deposition kernel was developed for a 64x64x64 matrix size with wrap around ordering and convoluted with the distribution of the sources in 3D. With MatLab's inverse Fast Fourier transform, dose rate distribution for a given array of interstitial sources, typical of brachytherapy was calculated. The shape of the dose rate distribution peaks appeared comparable with the output expected from computerized treatment planning systems for brachytherapy. Subsequently, the study confirmed the speed and accuracy of dose computation using the FFT convolution as well juxtaposed. Although, dose rate peaks from both the FFT convolution and the TPS(TG43) did not compare quantitatively, which was mainly due to the TPS(TG43) initiation computations from the origin (0,0,0) unlike the FFT convolution which uses sampling points; N=1,2,3..., there is a strong basis for establishing parity since the dose rate peaks compared qualitatively. With both modes compared, the discrepancies in the dose rates ranged between 3.6% to

  4. WE-A-17A-09: Exploiting Electromagnetic Technologies for Real-Time Seed Drop Position Validation in Permanent Implant Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Racine, E [Departement de Radio-Oncologie et Centre de Recherche du CHU de Quebec, Quebec, QC (Canada); Hautvast, G [Biomedical Systems, Philips Group Innovation, Eindhoven, North Brabant (Netherlands); Binnekamp, D [Integrated Clinical Solutions and Marketing, Philips Healthcare, Best, DA (Netherlands); Beaulieu, L [Centre Hospitalier University de Quebec, Quebec, QC (Canada)

    2014-06-15

    Purpose: To report on preliminary results validating the performance of a specially designed LDR brachytherapy needle prototype possessing both electromagnetic (EM) tracking and seed drop detection abilities. Methods: An EM hollow needle prototype has been designed and constructed in collaboration with research partner Philips Healthcare. The needle possesses conventional 3D tracking capabilities, along with a novel seed drop detection mechanism exploiting local changes of electromagnetic properties generated by the passage of seeds in the needle's embedded sensor coils. These two capabilities are exploited by proprietary engineering and signal processing techniques to generate seed drop position estimates in real-time treatment delivery. The electromagnetic tracking system (EMTS) used for the experiment is the NDI Aurora Planar Field Generator. The experiment consisted of dropping a total of 35 seeds in a prismatic agarose phantom, and comparing the 3D seed drop positions of the EMTS to those obtained by an image analysis of subsequent micro-CT scans. Drop position error computations and statistical analysis were performed after a 3D registration of the two seed distributions. Results: Of the 35 seeds dropped in the phantom, 32 were properly detected by the needle prototype. Absolute drop position errors among the detected seeds ranged from 0.5 to 4.8 mm with mean and standard deviation values of 1.6 and 0.9 mm, respectively. Error measurements also include undesirable and uncontrollable effects such as seed motion upon deposition. The true accuracy performance of the needle prototype is therefore underestimated. Conclusion: This preliminary study demonstrates the potential benefits of EM technologies in detecting the passage of seeds in a hollow needle as a means of generating drop position estimates in real-time treatment delivery. Such tools could therefore represent a potentially interesting addition to existing brachytherapy protocols for rapid dosimetry

  5. WE-A-17A-09: Exploiting Electromagnetic Technologies for Real-Time Seed Drop Position Validation in Permanent Implant Brachytherapy

    International Nuclear Information System (INIS)

    Racine, E; Hautvast, G; Binnekamp, D; Beaulieu, L

    2014-01-01

    Purpose: To report on preliminary results validating the performance of a specially designed LDR brachytherapy needle prototype possessing both electromagnetic (EM) tracking and seed drop detection abilities. Methods: An EM hollow needle prototype has been designed and constructed in collaboration with research partner Philips Healthcare. The needle possesses conventional 3D tracking capabilities, along with a novel seed drop detection mechanism exploiting local changes of electromagnetic properties generated by the passage of seeds in the needle's embedded sensor coils. These two capabilities are exploited by proprietary engineering and signal processing techniques to generate seed drop position estimates in real-time treatment delivery. The electromagnetic tracking system (EMTS) used for the experiment is the NDI Aurora Planar Field Generator. The experiment consisted of dropping a total of 35 seeds in a prismatic agarose phantom, and comparing the 3D seed drop positions of the EMTS to those obtained by an image analysis of subsequent micro-CT scans. Drop position error computations and statistical analysis were performed after a 3D registration of the two seed distributions. Results: Of the 35 seeds dropped in the phantom, 32 were properly detected by the needle prototype. Absolute drop position errors among the detected seeds ranged from 0.5 to 4.8 mm with mean and standard deviation values of 1.6 and 0.9 mm, respectively. Error measurements also include undesirable and uncontrollable effects such as seed motion upon deposition. The true accuracy performance of the needle prototype is therefore underestimated. Conclusion: This preliminary study demonstrates the potential benefits of EM technologies in detecting the passage of seeds in a hollow needle as a means of generating drop position estimates in real-time treatment delivery. Such tools could therefore represent a potentially interesting addition to existing brachytherapy protocols for rapid dosimetry

  6. Reconstruction of MRI/CT compatible ring and tandem applicators in CT or MRI images used for treatment planning in brachytherapy

    International Nuclear Information System (INIS)

    Surendran, N.; Kim, Hayeon; Beriwal, Sushil; Saiful Huq, M.

    2008-01-01

    Brachytherapy (BT) plays a crucial role in the management of invasive cervix cancer from stage I to IV. Intracavitary techniques are based on afterloading devices, with different types of applicators. CT and/or MRI compatible applicators allow a sectional image based approach with a better assessment of gross tumour volume (GTV) and definition and delineation of target volume (CTV) compared to traditional approaches. To evaluate reconstruction of MRI/CT compatible ring and tandem applicators in 3D CT or MRI images used for treatment planning in Brachytherapy

  7. Dosimetric comparison of different dose prescription systems with CT based intracavitary brachytherapy and manual back projection technique to reconstruct the applicator

    International Nuclear Information System (INIS)

    Oinam, A.S.; Dubey, S.; Kehwar, T.S.; Rout, Sanjaya K.; Patel, F.D.; Sharma, S.C.; Goyal, D.R.; Narayan, P.

    2002-01-01

    Intracavitary brachytherapy is one of the well-established techniques for the treatment of carcinoma of cervix. The prediction of late effect of normal tissue like rectum and bladder needs the defining of the volume of the bladder and rectum in situ. In the normal planning of intracavitary and interstitial implants, simulated radiograph films are used to reconstruct the applicator geometry and dose points to represent the dose to critical organs. CT based brachytherapy can define such volume instead of defining dose points, which represent the dose to these critical organs

  8. Electroless Sliver-Plating Process in the Preparation of 103Pd-125I Hybrid Brachytherapy Seed Cores

    Directory of Open Access Journals (Sweden)

    LI Zhong-yong1,2;CHEN Bin-da1;Lv Xiao-zhou1;LU Jin-hui1;CUI Hai-ping1,2

    2014-02-01

    Full Text Available Electroless 103Pd plating and electroless Ag plating and chemical 125I depositing were took place on the surface of carbon rods in turn, which was a reliable method for the preparation of 103Pd-125I hybrid brachytherapy seed cores. 103Pd and 125I were deposited on the same substrate effectively through silver coating as a bridge. The process of electroless Ag plating was a novel and important step in the preparation of 103Pd-125I hybrid seed. In this work, the process of electroless Ag plating was studied using 0.5×3.0 mm carbon rods with palladium coating as substrate, silver-ammino complex as precursor, 110mAg as radioactive tracer, and hydrazine as reductant. The optimum conditions were AgNO3 2g/L,Na2EDTA 40 g/L,NH3•H2O 16.25%,H4N2•H2O 5‰,pH=10,t=60 min,and T=35 ℃. Sliver deposited on each carbon rod was uniform, and sliver-coating was white and smooth.

  9. Towards a determination of the absorbed dose to water in water for low-energy photon-emitting brachytherapy seeds

    International Nuclear Information System (INIS)

    Schneider, T.; Lange, B.; Selbach, H.J.

    2007-01-01

    An accurate determination of the dose produced by brachytherapy seeds emitting low-energy photons is an important component of the radiotherapeutic process. As yet, the output of these seeds has usually been specified in terms of the air kerma rate. The desired quantity in radiation therapy is, however, the absorbed dose to water inside a water phantom, for which primary standards are not available. For this reason, developments are under way in the Physikalisch - Technische Bundesanstalt to establish a primary standard to determine the absorbed dose to water within a phantom. As a fundamental step towards this aim, a method will be introduced in this publication to determine the water kerma inside a graphite phantom housing an extrapolation chamber. Experimental results will be presented and compared with water kerma values obtained from air kerma measurements in free air and applying a conversion factor to water kerma for the conditions of the experiment. First estimates indicate that the relative uncertainty is of the order of 1% (k 1). (authors)

  10. Comparison of Intraoperatively Built Custom Linked Seeds Versus Loose Seed Gun Applicator Technique Using Real-Time Intraoperative Planning for Permanent Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zauls, A. Jason; Ashenafi, Michael S. [Department of Radiation Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC (United States); Onicescu, Georgiana [Department of Biostatistics and Epidemiology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC (United States); Clarke, Harry S. [Department of Urology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC (United States); Marshall, David T., E-mail: marshadt@musc.edu [Department of Radiation Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC (United States)

    2011-11-15

    Purpose: To report our dosimetric results using a novel push-button seed delivery system that constructs custom links of seeds intraoperatively. Methods and Materials: From 2005 to 2007, 43 patients underwent implantation using a gun applicator (GA), and from 2007 to 2008, 48 patientsunderwent implantation with a novel technique allowing creation of intraoperatively built custom links of seeds (IBCL). Specific endpoint analyses were prostate D90% (pD90%), rV100% > 1.3 cc, and overall time under anesthesia. Results: Final analyses included 91 patients, 43 GA and 48 IBCL. Absolute change in pD90% ({Delta}pD90%) between intraoperative and postoperative plans was evaluated. Using GA method, the {Delta}pD90% was -8.1Gy and -12.8Gy for I-125 and Pd-103 implants, respectively. Similarly, the IBCL technique resulted in a {Delta}pD90% of -8.7Gy and -9.8Gy for I-125 and Pd-103 implants, respectively. No statistically significant difference in {Delta}pD90% was found comparing methods. The GA method had two intraoperative and 10 postoperative rV100% >1.3 cc. For IBCL, five intraoperative and eight postoperative plans had rV100% >1.3 cc. For GA, the mean time under anesthesia was 75 min and 87 min for Pd-103 and I-125 implants, respectively. For IBCL, the mean time was 86 and 98 min for Pd-103 and I-125. There was a statistical difference between the methods when comparing mean time under anesthesia. Conclusions: Dosimetrically relevant endpoints were equivalent between the two methods. Currently, time under anesthesia is longer using the IBCL technique but has decreased over time. IBCL is a straightforward brachytherapy technique that can be implemented into clinical practice as an alternative to gun applicators.

  11. Computational system to create an entry file for replicating I-125 seeds simulating brachytherapy case studies using the MCNPX code

    Directory of Open Access Journals (Sweden)

    Leonardo da Silva Boia

    2014-03-01

    decline for short distances.------------------------------Cite this article as: Boia LS, Junior J, Menezes AF, Silva AX. Computational system to create an entry file for replicating I-125 seeds simulating brachytherapy case studies using the MCNPX code. Int J Cancer Ther Oncol 2014; 2(2:02023.DOI: http://dx.doi.org/10.14319/ijcto.0202.3

  12. Simulation of measurement absorbed dose on prostate brachytherapy with radius of prostate 2 cm using MCNP5 with seed implant model isoaid AdvantageTM IAPd-103A

    International Nuclear Information System (INIS)

    Poundra Setiawan; Suharyana; Riyatun

    2015-01-01

    Simulation of measurement absorbed dose on prostate brachytherapy with radius of prostate 2 cm using MCNP5 with seed implant model IsoAid Advantage TM IAPd-103A has been conducted. 103 Pd used as a radioactive source in the seed implant and it has energy gamma emission 20,8 keV with half live 16,9 days and has activity 4 mCi. The prostate cancer is modeled with spherical and it has radius 3 cm, after planting the seed implant 103 Pdover 24,4 days, prostate cancer has absorbed dose 2,172Gy. Lethal dose maximum use 103 Pd is 125 Gy and it was reached with 59 seeds. (author)

  13. SU-F-T-46: The Effect of Inter-Seed Attenuation and Tissue Composition in Prostate 125I Brachytherapy Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, K; Araki, F; Ohno, T [Kumamoto University, Kumamoto, Kumamoto (Japan)

    2016-06-15

    Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photon and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.

  14. Enhanced ULtrasound Visualization of Brachytherapy Seeds by a Novel Magnetically Induced Motion Image Method

    National Research Council Canada - National Science Library

    McAleavey, Stephen A

    2006-01-01

    ... to determine the sensitivity of torque to geometry. We have created a finite element model of a prototype coil configuration for seed vibration and demonstrated the ability of this coil configuration to steer the magnetic field in a manner suitable...

  15. SU-F-I-19: MRI Positive Contrast Visualization of Prostate Brachytherapy Seeds Using An Integrated Laplacian-Based Phase Processing

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A; Safigholi, H [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Center, Toronto, ON (Canada); Nosrati, R [Sunnybrook Health Sciences Center, Toronto, ON (Canada); Ryerson University, Toronto, ON (Canada); Owrangi, A; Morton, G [Sunnybrook Health Sciences Center, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada); Song, W [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Center, Toronto, ON (Canada); Ryerson University, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada)

    2016-06-15

    Purpose: To propose a new method that provides a positive contrast visualization of the prostate brachytherapy seeds using the phase information from MR images. Additionally, the feasibility of using the processed phase information to distinguish seeds from calcifications is explored. Methods: A gel phantom was constructed using 2% agar dissolved in 1 L of distilled water. Contrast agents were added to adjust the relaxation times. Four iodine-125 (Eckert & Ziegler SML86999) dummy seeds were placed at different orientations with respect to the main magnetic field (B0). Calcifications were obtained from a sheep femur cortical bone due to its close similarity to human bone tissue composition. Five samples of calcifications were shaped into different dimensions with lengths ranging between 1.2 – 6.1 mm.MR imaging was performed on a 3T Philips Achieva using an 8-channel head coil. Eight images were acquired at eight echo-times using a multi-gradient echo sequence. Spatial resolution was 0.7 × 0.7 × 2 mm, TR/TE/dTE = 20.0/2.3/2.3 ms and BW = 541 Hz/pixel. Complex images were acquired and fed into a two-step processing pipeline: the first includes phase unwrapping and background phase removal using Laplacian operator (Wei et al. 2013). The second step applies a specific phase mask on the resulting tissue phase from the first step to provide the desired positive contrast of the seeds and to, potentially, differentiate them from the calcifications. Results: The phase-processing was performed in less than 30 seconds. The proposed method has successfully resulted in a positive contrast of the brachytherapy seeds. Additionally, the final processed phase image showed difference between the appearance of seeds and calcifications. However, the shape of the seeds was slightly distorted compared to the original dimensions. Conclusion: It is feasible to provide a positive contrast of the seeds from MR images using Laplacian operator-based phase processing.

  16. Assessment of I-125 seed implant accuracy when using the live-planning technique for low dose rate prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Moorrees Joshua

    2012-11-01

    Full Text Available Abstract Background Low risk prostate cancers are commonly treated with low dose rate (LDR brachytherapy involving I-125 seeds. The implementation of a ‘live-planning’ technique at the Royal Adelaide Hospital (RAH in 2007 enabled the completion of the whole procedure (i.e. scanning, planning and implant in one sitting. ‘Live-planning’ has the advantage of a more reliable delivery of the planned treatment compared to the ‘traditional pre-plan’ technique (where patient is scanned and planned in the weeks prior to implant. During live planning, the actual implanted needle positions are updated real-time on the treatment planning system and the dosimetry is automatically recalculated. The aim of this investigation was to assess the differences and clinical relevance between the planned dosimetry and the updated real-time implant dosimetry. Methods A number of 162 patients were included in this dosimetric study. A paired t-test was performed on the D90, V100, V150 and V200 target parameters and the differences between the planned and implanted dose distributions were analysed. Similarly, dosimetric differences for the organs at risk (OAR were also evaluated. Results Small differences between the primary dosimetric parameters for the target were found. Still, the incidence of hotspots was increased with approximately 20% for V200. Statistically significant increases were observed in the doses delivered to the OAR between the planned and implanted data; however, these increases were consistently below 3% thus probably without clinical consequences. Conclusions The current study assessed the accuracy of prostate implants with I-125 seeds when compared to initial plans. The results confirmed the precision of the implant technique which RAH has in place. Nevertheless, geographical misses, anatomical restrictions and needle displacements during implant can have repercussions for centres without live-planning option if dosimetric changes are not

  17. The Effect of Scattering from Leg Region on Organ Doses in Prostate Brachytherapy for 103Pd, 125I and 131Cs Seeds

    Directory of Open Access Journals (Sweden)

    Seyed Milad Vahabi

    2016-09-01

    Full Text Available Introduction Dose calculation of tumor and surrounding tissues is essential during prostate brachytherapy. Three radioisotopes, namely, 125I, 103Pd, and 131Cs, are extensively used in this method. In this study, we aimed to calculate the received doses by the prostate and critical organs using the aforementioned radioactive seeds and to investigate the effect of scattering contribution for the legs on dose calculations. Materials and Methods The doses to organs of interest were calculated using MCNPX code and ORNL (Oak Ridge National Laboratory phantom. Results Doses to the prostate as a source of radiation for 125I, 103Pd, and 131Cs were approximately 108.9, 97.7, and 81.5 Gy, respectively. Bladder, sigmoid colon, and testes received higher doses than other organs due to proximity to the prostate. Differences between the doses when tallying with the legs intact and with the legs voided were significant for testes, sigmoid colon contents, and sigmoid colon wall because of their proximity to the prostate. There was also a good consistency between our results and the data published by Montefiore Medical Center and Albert Einstein College of Medicine for the prostate. Conclusion Scattering from leg region had a significant effect on doses to testes, sigmoid colon contents, and sigmoid colon wall in the pelvic region, and prostate and the other organs were unaffected. Brachytherapy treatment plans using 131Cs seeds allow for better sparing of critical tissues, with a comparable number of, or fewer, seeds required, compared to 125I seeds.

  18. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer

    International Nuclear Information System (INIS)

    Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-01-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D 90 of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD 2 ) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D mean (EQD 2 ) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D mean (EQD 2 ) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD 2 ) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.

  19. An analysis of brachytherapy with computed tomography-guided permanent implantation of Iodine-125 seeds for recurrent nonkeratin nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Shen X

    2015-05-01

    Full Text Available Xinying Shen,1,2 Yong Li,2 Yanfang Zhang,2 Jian Kong,2 Yanhao Li1 1Department of Interventional Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, 2Department of Interventional Radiology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, People’s Republic of China Background: 125I seed implantation is a new method in treatment of nasopharyngeal carcinoma (NPC, and it is worthwhile to evaluate its feasibility. In this study, we performed brachytherapy with computed tomography (CT-guided permanent implantation of 125I seeds in the treatment of patients with the recurrence of NPC.Methods: A total 30 patients (20 male and ten female at the median age of 55 (range 25–80 years were diagnosed with recurrent nonkeratin NPC, with a total 38 lesions and a short disease-free interval (median ~11 months after primary radiotherapy alone or combined with chemotherapy. Patients received CT scan, starting from 2 months after the treatment. Follow-up was conducted for ~2–38 months to observe the local control rate and overall survival rate. We also analyzed the possible correlation between survival periods and the status of recurrent tumors.Results: The local control rates at 6, 12, 24, 30, and 36 months after the procedure of 125I seed implantation were 86.8%, 73.7%, 26.3%, 15.8%, and 5.3%, respectively. The overall 1-, 2-, and 3-year survival rates were 80.0% (24/30, 30.0% (9/30, and 6.7% (2/30, respectively, with a median survival period of 18 months (17.6±8.6 months. Interestingly, the survival periods of the patients who had primary radiotherapy with or without chemotherapy were 15.8±7.9 and 24.3±7.9 months, respectively. Kaplan–Meier survival analysis demonstrated that χ2 (log rank was 7.555, with very significant difference (P<0.01. The survival periods of patients in tumor stages I, II, III, and IV were 25.4±8.7, 19.8±9.4, 16.1±4.5, and 12.8±7.8 months, respectively, with

  20. Poster — Thur Eve — 42: Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H; Menon, G; Sloboda, R [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-08-15

    The purpose of this study was to investigate the accuracy of radiochromic film calibration procedures used in external beam radiotherapy when applied to I-125 brachytherapy sources delivering higher doses, and to determine any necessary modifications to achieve similar accuracy in absolute dose measurements. GafChromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 6 MV, 75 kVp and (∼28 keV) I-125 photon sources. A custom phantom was used for the I-125 irradiations to obtain a larger film area with nearly constant dose to reduce the effects of film heterogeneities on the optical density (OD) measurements. RGB transmission images were obtained with an Epson 10000XL flatbed scanner, and calibration curves relating OD and dose using a rational function were determined for each colour channel and at each energy using a non-linear least square minimization method. Differences found between the 6 MV calibration curve and those for the lower energy sources are large enough that 6 MV beams should not be used to calibrate film for low-energy sources. However, differences between the 75 kVp and I-125 calibration curves were quite small; indicating that 75 kVp is a good choice. Compared with I-125 irradiation, this gives the advantages of lower type B uncertainties and markedly reduced irradiation time. To obtain high accuracy calibration for the dose range up to 35 Gy, two-segment piece-wise fitting was required. This yielded absolute dose measurement accuracy above 1 Gy of ∼2% for 75 kVp and ∼5% for I-125 seed exposures.

  1. MR guided applicator reconstruction for brachytherapy of cervical cancer using the novel titanium Rotterdam applicator

    International Nuclear Information System (INIS)

    Petit, Steven; Wielopolski, Piotr; Rijnsdorp, Reneé; Mens, Jan-Willem; Kolkman-Deurloo, Inger-Karine

    2013-01-01

    A novel model of the titanium Rotterdam tandem and ovoid applicator is presented. As titanium produces artefacts in MR images, an MR sequence was sought and optimised for visualisation and accurate applicator reconstruction. The mean inter-observer (8 observers) variability for four patients was only 0.7 mm (maximum 1.7 mm)

  2. Poster - Thur Eve - 06: Comparison of an open source genetic algorithm to the commercially used IPSA for generation of seed distributions in LDR prostate brachytherapy.

    Science.gov (United States)

    McGeachy, P; Khan, R

    2012-07-01

    In early stage prostate cancer, low dose rate (LDR) prostate brachytherapy is a favorable treatment modality, where small radioactive seeds are permanently implanted throughout the prostate. Treatment centres currently rely on a commercial optimization algorithm, IPSA, to generate seed distributions for treatment plans. However, commercial software does not allow the user access to the source code, thus reducing the flexibility for treatment planning and impeding any implementation of new and, perhaps, improved clinical techniques. An open source genetic algorithm (GA) has been encoded in MATLAB to generate seed distributions for a simplified prostate and urethra model. To assess the quality of the seed distributions created by the GA, both the GA and IPSA were used to generate seed distributions for two clinically relevant scenarios and the quality of the GA distributions relative to IPSA distributions and clinically accepted standards for seed distributions was investigated. The first clinically relevant scenario involved generating seed distributions for three different prostate volumes (19.2 cc, 32.4 cc, and 54.7 cc). The second scenario involved generating distributions for three separate seed activities (0.397 mCi, 0.455 mCi, and 0.5 mCi). Both GA and IPSA met the clinically accepted criteria for the two scenarios, where distributions produced by the GA were comparable to IPSA in terms of full coverage of the prostate by the prescribed dose, and minimized dose to the urethra, which passed straight through the prostate. Further, the GA offered improved reduction of high dose regions (i.e hot spots) within the planned target volume. © 2012 American Association of Physicists in Medicine.

  3. SU-F-T-61: Treatment Planning Observations for the CivaSheet Directional Brachytherapy Device Using VariSeed 9.0

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, MJ [Tufts University School of Medicine, Boston, MA (United States); Rothley, DJ [Cancer Treatment Centers of America, Newnan, GA (United States)

    2016-06-15

    Purpose: The VariSeed 9.0 brachytherapy TPS is recently available and has new features such as ability to rotate a brachytherapy source away from normal to the imaging plane. Consequently, a dosimetric analysis was performed for a directional brachytherapy source (CivaSheet) with tests of this functionality and experiences from clinical treatment planning were documented. These observations contribute to safe, practical, and accurate use of such new software features. Methods: Several tests were established to evaluate the new rotational feature, specific to the CivaSheet for the first patients treated using this new brachytherapy device. These included suitability of imaging slice-thickness and in-plane resolution, window/level adjustments for brachytherapy source visualization, commissioning the source physical length for performing rotations, and using different planar and 3D window views to identify source orientation. Additional CivaSheet-specific tests were performed to determine the dosimetric influence on target coverage: changing the source tilt angle, source positioning in the treatment plan based on the CivaSheet rectangular array of CivaDots, and influence of prescription depth on the necessary treatment margin for adequate target coverage. Results: Higher imaging-resolution produced better accuracy for source orientation and positioning, with sub-millimeter CT slice-thickness and in-plane resolution preferred. Source rotation was possible only in sagittal or coronal views. The process for validating source orientation required iteratively altering rotations then checking them in the 3D view, which was cumbersome given the absence of quantitative plan documentation to indicate orientation. Given the small Pd-103 source size, influence of source tilt within 30° was negligible for <1.0 cm. Influence of source position was important when the source was positioned in/out of the adjacent source plane, causing changes of 15%, 7%, and 3% at depths of 0.5, 0

  4. Twelve-Month Prostate-Specific Antigen Values and Perineural Invasion as Strong Independent Prognostic Variables of Long-Term Biochemical Outcome After Prostate Seed Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, William, E-mail: billyding888@gmail.com [Department of Radiation Oncology, California Pacific Medical Center, San Francisco, California (United States); Lee, John [Department of Radiation Oncology, California Pacific Medical Center, San Francisco, California (United States); Chamberlain, David [Department of Radiation Oncology, St. Mary' s Regional Medical Center, Reno, Nevada (United States); Cunningham, James [Carson Urology, Carson City, Nevada (United States); Yang Lixi [Department of Radiation Oncology, California Pacific Medical Center, San Francisco, California (United States); Tay, Jonathan [Department of Radiation Oncology, St. Mary' s Regional Medical Center, Reno, Nevada (United States)

    2012-11-15

    Purpose: To determine whether post-treatment prostate-specific antigen (ptPSA) values at 12 months and other clinical parameters predict long-term PSA relapse-free survival (PRFS) following prostate seed brachytherapy. Methods and Materials: Records of 204 hormone-naieve patients with localized adenocarcinoma of the prostate treated at St. Mary's Regional Medical Center in Reno, NV, and at Carson Tahoe Regional Medical Center in Carson City, NV, between 1998 and 2003, using I-125 or Pd-103 seed brachytherapy, were retrospectively analyzed. Treatment planning was done using a preplanned, modified peripheral loading technique. A total of 185 of 204 patients had PSA records at 12 months after implant. Variables included were age, initial pretreatment PSA, Gleason score, T stage, National Comprehensive Cancer Network (NCCN) risk group (RG), perineural invasion (PNI), external beam boost, dose, and ptPSA levels at 12 months with cutpoints at {<=}1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml. Results: Median follow-up was 80 months, and median age was 69 years. The numbers of patients stratified by NCCN low, intermediate, and high RG were 110:65:10, respectively. Monotherapy and boost prescription doses were 145 Gy and 110 Gy for I-125, and 125 Gy and 100 Gy for Pd-103 seeds, respectively. The median dose (D90) was 95.4% of the prescribed dose. The 5-year PRFS at the 12-months ptPSA levels of {<=}1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml were 98.5%, 85.7%, 61.5%, and 22.2%, respectively. The 10-year PRFS at the 12-months ptPSA levels of {<=}1 and 1.01 to 2.00 ng/ml were 90.5% and 85.7%, respectively. In multivariate analysis, both ptPSA and PNI were significant independent predictors of PRFS. Hazard ratios (HR) for ptPSA levels at {<=}1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml at 12 months were 1, 4.96, 27.57, and 65.10, respectively. PNI had an HR of 6.1 (p = 0.009). Conclusions: Presence of PNI and ptPSA values at 12 months are strong prognostic

  5. Twelve-Month Prostate-Specific Antigen Values and Perineural Invasion as Strong Independent Prognostic Variables of Long-Term Biochemical Outcome After Prostate Seed Brachytherapy

    International Nuclear Information System (INIS)

    Ding, William; Lee, John; Chamberlain, David; Cunningham, James; Yang Lixi; Tay, Jonathan

    2012-01-01

    Purpose: To determine whether post-treatment prostate-specific antigen (ptPSA) values at 12 months and other clinical parameters predict long-term PSA relapse-free survival (PRFS) following prostate seed brachytherapy. Methods and Materials: Records of 204 hormone-naïve patients with localized adenocarcinoma of the prostate treated at St. Mary’s Regional Medical Center in Reno, NV, and at Carson Tahoe Regional Medical Center in Carson City, NV, between 1998 and 2003, using I-125 or Pd-103 seed brachytherapy, were retrospectively analyzed. Treatment planning was done using a preplanned, modified peripheral loading technique. A total of 185 of 204 patients had PSA records at 12 months after implant. Variables included were age, initial pretreatment PSA, Gleason score, T stage, National Comprehensive Cancer Network (NCCN) risk group (RG), perineural invasion (PNI), external beam boost, dose, and ptPSA levels at 12 months with cutpoints at ≤1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml. Results: Median follow-up was 80 months, and median age was 69 years. The numbers of patients stratified by NCCN low, intermediate, and high RG were 110:65:10, respectively. Monotherapy and boost prescription doses were 145 Gy and 110 Gy for I-125, and 125 Gy and 100 Gy for Pd-103 seeds, respectively. The median dose (D90) was 95.4% of the prescribed dose. The 5-year PRFS at the 12-months ptPSA levels of ≤1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml were 98.5%, 85.7%, 61.5%, and 22.2%, respectively. The 10-year PRFS at the 12-months ptPSA levels of ≤1 and 1.01 to 2.00 ng/ml were 90.5% and 85.7%, respectively. In multivariate analysis, both ptPSA and PNI were significant independent predictors of PRFS. Hazard ratios (HR) for ptPSA levels at ≤1, 1.01 to 2.00, 2.01 to 3.00, and >3.00 ng/ml at 12 months were 1, 4.96, 27.57, and 65.10, respectively. PNI had an HR of 6.1 (p = 0.009). Conclusions: Presence of PNI and ptPSA values at 12 months are strong prognostic variables for

  6. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ruijie, E-mail: ruijyang@yahoo.com; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-10-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D{sub 90} of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD{sub 2}) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D{sub mean} (EQD{sub 2}) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D{sub mean} (EQD{sub 2}) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD{sub 2}) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.

  7. SU-F-J-157: Effect of Contouring Uncertainty in Post Implant Dosimetry of Low-Dose-Rate Prostate Permanent Seed Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mashouf, S; Merino, T; Ravi, A; Morton, G; Song, W [Sunnybrook Health Sciences Center, Odette Cancer Centre, Toronto, ON (Canada); University of Toronto, Dept. of Radiation Oncology, Toronto, ON (Canada); Safigholi, H; Soliman, A [Sunnybrook Research Institute, Toronto, ON (Canada)

    2016-06-15

    Purpose: There is strong evidence relating post-implant dosimetry for low-dose-rate (LDR) prostate seed brachytherapy to local control rates. The delineation of the prostate on CT images, however, represents a challenge due to the lack of soft tissue contrast in order to identify the prostate borders. This study aims at quantifying the sensitivity of clinically relevant dosimetric parameters to uncertainty in the contouring of prostate. Methods: CT images, post-op plans and contours of a cohort of patients (n=43) (low risk=55.8%, intermediate risk=39.5%, high risk=4.7%), who had received prostate seed brachytherapy, were imported into MIM Symphony treatment planning system. The prostate contours in post-implant CT images were expanded/contracted uniformly for margins of ±1.00 mm, ±2.00 mm, ±3.00 mm, ±4.00 mm and ±5.00 mm. The values for V100 and D90 were extracted from Dose Volume Histograms for each contour and compared. Results: Significant changes were observed in the values of D90 and V100 as well as the number of suboptimal plans for expansion or contraction margins of only few millimeters. Evaluation of coverage based on D90 was found to be less sensitive to expansion errors compared to V100. D90 led to a lower number of implants incorrectly identified with insufficient coverage for expanded contours which increases the accuracy of post-implant QA using CT images compared to V100. Conclusion: In order to establish a successful post implant QA for LDR prostate seed brachytherapy, it is necessary to identify the low and high thresholds of important dose metrics of the target volume such as D90 and V100. Since these parameters are sensitive to target volume definition, accurate identification of prostate borders would help to improve accuracy and predictive value of the post-implant QA process. In this respect, use of imaging modalities such as MRI where prostate is well delineated should prove useful.

  8. SU-F-J-157: Effect of Contouring Uncertainty in Post Implant Dosimetry of Low-Dose-Rate Prostate Permanent Seed Brachytherapy

    International Nuclear Information System (INIS)

    Mashouf, S; Merino, T; Ravi, A; Morton, G; Song, W; Safigholi, H; Soliman, A

    2016-01-01

    Purpose: There is strong evidence relating post-implant dosimetry for low-dose-rate (LDR) prostate seed brachytherapy to local control rates. The delineation of the prostate on CT images, however, represents a challenge due to the lack of soft tissue contrast in order to identify the prostate borders. This study aims at quantifying the sensitivity of clinically relevant dosimetric parameters to uncertainty in the contouring of prostate. Methods: CT images, post-op plans and contours of a cohort of patients (n=43) (low risk=55.8%, intermediate risk=39.5%, high risk=4.7%), who had received prostate seed brachytherapy, were imported into MIM Symphony treatment planning system. The prostate contours in post-implant CT images were expanded/contracted uniformly for margins of ±1.00 mm, ±2.00 mm, ±3.00 mm, ±4.00 mm and ±5.00 mm. The values for V100 and D90 were extracted from Dose Volume Histograms for each contour and compared. Results: Significant changes were observed in the values of D90 and V100 as well as the number of suboptimal plans for expansion or contraction margins of only few millimeters. Evaluation of coverage based on D90 was found to be less sensitive to expansion errors compared to V100. D90 led to a lower number of implants incorrectly identified with insufficient coverage for expanded contours which increases the accuracy of post-implant QA using CT images compared to V100. Conclusion: In order to establish a successful post implant QA for LDR prostate seed brachytherapy, it is necessary to identify the low and high thresholds of important dose metrics of the target volume such as D90 and V100. Since these parameters are sensitive to target volume definition, accurate identification of prostate borders would help to improve accuracy and predictive value of the post-implant QA process. In this respect, use of imaging modalities such as MRI where prostate is well delineated should prove useful.

  9. Monte Carlo investigation of I-125 interseed attenuation for standard and thinner seeds in prostate brachytherapy with phantom validation using a MOSFET.

    Science.gov (United States)

    Mason, J; Al-Qaisieh, B; Bownes, P; Henry, A; Thwaites, D

    2013-03-01

    In permanent seed implant prostate brachytherapy the actual dose delivered to the patient may be less than that calculated by TG-43U1 due to interseed attenuation (ISA) and differences between prostate tissue composition and water. In this study the magnitude of the ISA effect is assessed in a phantom and in clinical prostate postimplant cases. Results are compared for seed models 6711 and 9011 with 0.8 and 0.5 mm diameters, respectively. A polymethyl methacrylate (PMMA) phantom was designed to perform ISA measurements in a simple eight-seed arrangement and at the center of an implant of 36 seeds. Monte Carlo (MC) simulation and experimental measurements using a MOSFET dosimeter were used to measure dose rate and the ISA effect. MC simulations of 15 CT-based postimplant prostate treatment plans were performed to compare the clinical impact of ISA on dose to prostate, urethra, rectum, and the volume enclosed by the 100% isodose, for 6711 and 9011 seed models. In the phantom, ISA reduced the dose rate at the MOSFET position by 8.6%-18.3% (6711) and 7.8%-16.7% (9011) depending on the measurement configuration. MOSFET measured dose rates agreed with MC simulation predictions within the MOSFET measurement uncertainty, which ranged from 5.5% to 7.2% depending on the measurement configuration (k = 1, for the mean of four measurements). For 15 clinical implants, the mean ISA effect for 6711 was to reduce prostate D90 by 4.2 Gy (3%), prostate V100 by 0.5 cc (1.4%), urethra D10 by 11.3 Gy (4.4%), rectal D2cc by 5.5 Gy (4.6%), and the 100% isodose volume by 2.3 cc. For the 9011 seed the mean ISA effect reduced prostate D90 by 2.2 Gy (1.6%), prostate V100 by 0.3 cc (0.7%), urethra D10 by 8.0 Gy (3.2%), rectal D2cc by 3.1 Gy (2.7%), and the 100% isodose volume by 1.2 cc. Differences between the MC simulation and TG-43U1 consensus data for the 6711 seed model had a similar impact, reducing mean prostate D90 by 6 Gy (4.2%) and V100 by 0.6 cc (1.8%). ISA causes the delivered dose

  10. Comparison of seed brachytherapy or external beam radiotherapy (70 Gy or 74 Gy) in 919 low-risk prostate cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Goldner, G.; Poetter, R.; Schmid, M.P.; Kirisits, C. [University Hospital of Vienna (Austria). Dept. of Radiotherapy and Radiobiology; Battermann, J.J.; Sljivic, S.; Vulpen, M. van [University Medical Center Utrecht (Netherlands). Dept. of Radiation Oncology

    2012-04-15

    The aim of this analysis was to compare the biochemical no evidence of disease (bNED) rates in low-risk prostate cancer patients treated at two centers of excellence using different approaches: seed brachytherapy (BT) and external beam radiotherapy (EBRT). Materials and methods: A total of 919 low-risk prostate cancer patients, treated from 1998-2008, were identified in the two databases. In Utrecht, 667 patients received I-125 BT applying a dose of 144 Gy. In Vienna, 252 patients were treated with EBRT, applying a local dose of 70 Gy in 82 patients and 74 Gy in 170 patients. bNED rates (Phoenix definition) were assessed. Results: The median follow-up was 46 months (range 1-148 months). The 5-year actuarial bNED rates were 94% for BT patients and 88% for EBRT patients (p = 0.002) - 84% for patients receiving 70 Gy and 91% for patients receiving 74 Gy, respectively. In the univariate analysis, patients receiving 70 Gy showed significantly worse outcome compared to BT (p = 0.001) and a difference close to significance compared to 74 Gy (p = 0.06). In the multivariate analysis including tumor stage, Gleason score, initial PSA, hormonal therapy, and dose, patients receiving 70 Gy EBRT showed significantly worse bNED rates compared to BT patients. Conclusion: Low-risk prostate cancer patients receiving 74 Gy by EBRT show comparable biochemical control rates to patients receiving seed brachytherapy, whereas patients receiving 70 Gy show significantly worse outcome. (orig.)

  11. SU-G-JeP2-14: MRI-Based HDR Prostate Brachytherapy: A Phantom Study for Interstitial Catheter Reconstruction with 0.35T MRI Images

    International Nuclear Information System (INIS)

    Park, S; Kamrava, M; Yang, Y

    2016-01-01

    Purpose: To evaluate the accuracy of interstitial catheter reconstruction with 0.35T MRI images for MRI-based HDR prostate brachytherapy. Methods: Recently, a real-time MRI-guided radiotherapy system combining a 0.35T MRI system and three cobalt 60 heads (MRIdian System, ViewRay, Cleveland, OH, USA) was installed in our department. A TrueFISP sequence for MRI acquisition at lower field on Viewray was chosen due to its fast speed and high signal-to-noise efficiency. Interstitial FlexiGuide needles were implanted into a tissue equivalent ultrasound prostate phantom (CIRS, Norfolk, Virginia, USA). After an initial 15s pilot MRI to confirm the location of the phantom, planning MRI was acquired with a 172s TrueFISP sequence. The pulse sequence parameters included: flip angle = 60 degree, echo time (TE) =1.45 ms, repetition time (TR) = 3.37 ms, slice thickness = 1.5 mm, field of view (FOV) =500 × 450mm. For a reference image, a CT scan was followed. The CT and MR scans were then fused with the MIM Maestro (MIM software Inc., Cleveland, OH, USA) and sent to the Oncentra Brachy planning system (Elekta, Veenendaal, Netherlands). Automatic catheter reconstruction using CT and MR image intensities followed by manual reconstruction was used to digitize catheters. The accuracy of catheter reconstruction was evaluated from the catheter tip location. Results: The average difference between the catheter tip locations reconstructed from the CT and MR in the transverse, anteroposterior, and craniocaudal directions was −0.1 ± 0.1 mm (left), 0.2 ± 0.2 mm (anterior), and −2.3 ± 0.5 mm (cranio). The average distance in 3D was 2.3 mm ± 0.5 mm. Conclusion: This feasibility study proved that interstitial catheters can be reconstructed with 0.35T MRI images. For more accurate catheter reconstruction which can affect final dose distribution, a systematic shift should be applied to the MR based catheter reconstruction in HDR prostate brachytherapy.

  12. Long-Term Results of Brachytherapy With Temporary Iodine-125 Seeds in Children With Low-Grade Gliomas

    International Nuclear Information System (INIS)

    Korinthenberg, Rudolf; Neuburger, Daniela; Trippel, Michael; Ostertag, Christoph; Nikkhah, Guido

    2011-01-01

    Purpose: To retrospectively review the results of temporary I-125 brachytherapy in 94 children and adolescents with low-grade glioma. Methods and Materials: Treatment was performed in progressive tumors roughly spherical in shape with a diameter of up to 5 cm, including 79 astrocytomas, 5 oligodendrogliomas, 4 oligoastrocytomas, 1 ependymoma, and 5 other tumors. Location was suprasellar/chiasmal in 44, thalamic/basal ganglia in 18, hemispheric in 15, midbrain/pineal region in 13, and lower brainstem in 3. Initially, 8% of patients were free of symptoms, 47% were symptomatic but not disabled, and 30% were slightly, 6% moderately, and 3% severely disabled. Results: 5- and 10-year survival was 97% and 92%. The response to I-125 brachytherapy over the long term was estimated after a median observation period of 38.4 (range, 6.4-171.0) months. At that time, 4 patients were in complete, 27 in partial, and 18 in objective remission; 15 showed stable and 30 progressive tumors. Treatment results did not correlate with age, sex, histology, tumor size, location, or demarcation of the tumor. Secondary treatment became necessary in 36 patients, including 19 who underwent repeated I-125 brachytherapy. At final follow-up, the number of symptom-free patients had risen to 21%. Thirty-eight percent showed symptoms without functional impairment, 19% were slightly and 11% moderately disabled, and only 4% were severely disabled. Conclusions: Response rates similar to those of conventional radiotherapy or chemotherapy can be anticipated with I-125 brachytherapy in tumors of the appropriate size and shape. We believe it to be a useful contribution to the treatment of low-grade gliomas in children.

  13. High-resolution 3D dose distribution measured for two low-energy x-ray brachytherapy seeds: 125I and 103Pd

    International Nuclear Information System (INIS)

    Massillon-JL, G.; Minniti, R.; Mitch, M.G.; Soares, C.G.; Hearn, R.A.

    2011-01-01

    In this work, we have investigated the 3D absorbed dose distribution around 125 I and 103 Pd low-energy photon brachytherapy seeds using a high-spatial-resolution gel scanning system to address the current difficulty in measuring absorbed dose at close distances to these sources as a consequence of high dose rate gradient. A new version of BANG-gel coupled with a small format laser CT scanner has been used. Measurements were performed with 100 μm resolution in all dimensions. In particular, radial dose function and absorbed dose rate in the plane parallel to the sources longitudinal-axis were derived at radial distances smaller than or equal to 1 cm. In addition, the energy dependence was evaluated, finding that, within measurement uncertainties, the gel response is independent of the energy for energy photon values between 20 keV and 1250 keV. We have observed that at distances larger than 1.4 mm from the source, the delivered dose is similar to predictions from published Monte Carlo calculations (MC) for the 125 I seed. For distances between 1 mm and 3 mm, differences in magnitude and shape are significant for the 103 Pd seed, where an enhancement is observed. In the enhancement region, a difference of up to 70% in the radial dose function was obtained. Such observation suggests a contribution from other radionuclides emitting beta-particles or electrons, and not considered by MC. To understand the effect, spectrometry measurements were performed. A small contribution of 102 Rh/ 102m Rh radionuclide relative to 103 Pd was observed and its importance on the absorbed dose measured at close distances to the seed is time dependent and consequently, avoids reproducible measurements. Finally, the results obtained in this work underscore the importance of using high-spatial-resolution and water-equivalent detectors for measuring absorbed dose in low-energy photon radiation fields.

  14. The effectiveness of 125I seed interstitial brachytherapy for transplantation tumor of human pancreatic carcinoma in nude mice: an experiment in vivo

    International Nuclear Information System (INIS)

    Song Qi; Liu Yu; Wang Zhongmin; Huang Wei; Lu Jian; Chen Kemin

    2010-01-01

    Objective: To discuss the effectiveness and therapeutic mechanism of 125 I interstitial brachytherapy for transplantation tumor of human pancreatic carcinoma in nude mice. Methods: The human pancreatic cell line Sw1990 was subcutaneously injected into the right lower limb partially dorsal area next to the groin of the immunodeficient BABL /c nude mice. The tumor was removed and cut into small pieces after it was formed,then the tumor pieces were inoculated in nude mice. The tumor developed to 8-10 mm in size after six weeks. A total of 16 nude mice with the suitable tumor size were used in this study. The 16 experimental mice were randomly and equally divided into two groups. The mice in study group (n = 8) were implanted with 125 I seeds, while the mice in control group (n = 8) were implanted with ghost seeds. After the implantation both the long and short diameter of the tumors as well as the mouse body weight were measured every 4 days. The tumor weight was measured when the mouse was sacrificed. The paraffin-embedded samples were sent for histopathological examination. Apoptotic cells were checked with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. Expression of proliferating cell nuclear antigen (PCNA) was detected with immuno-histochemical staining. Results: The tumor grew slowly in the study group, but rapidly in the control group. The tumor weight in the study group and the control group was (2.68 ± 0.70)g and (4.68 ± 1.45)g, respectively, the difference between two groups was statistically significant (P = 0.021). The tumor inhibition rate was about 42.66%. No significant difference in body weight of nude mice existed between two groups both before and after the treatment (P > 0.05). Marked tumor necrosis was seen in study group, but no obvious, or only a little, tumor necrosis could be observed in the control group. The apoptotic index checked with the TUENL method in the study group and control group was (23.2 ± 1.9)% and

  15. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, E; Racine, E; Beaulieu, L [CHU de Quebec - Universite Laval, Quebec, Quebec (Canada); Binnekamp, D [Integrated Clinical Solutions and Marketing, Philips Healthcare, Best, DA (Netherlands)

    2014-06-15

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.

  16. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    International Nuclear Information System (INIS)

    Poulin, E; Racine, E; Beaulieu, L; Binnekamp, D

    2014-01-01

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical

  17. Simplified quality control of radioactive seeds in sterile cartridge for prostate brachytherapy using an imaging plate and a collimator

    International Nuclear Information System (INIS)

    Saze, T.; Miyoshi, H.; Maezawa, H.; Kubota, M.; Furutani, S.; Nishitani, H.; Kawaguchi, Y.; Nakayama, S.; Ito, S.; Nishizawa, K.

    2008-01-01

    Image analyzer system and collimator has been successfully applied to calibrate simultaneously multiple 125 I seeds in a sterile cartridge. Seeds within the cartridge were placed on an imaging plate, and the imaging plate irradiated. To remove scatter radiation, and improve spatial resolution of seed images, this study used a specially designed collimator. The irradiated imaging plate was scanned using an image analyzer system, and radioactivity intensities of seed images were given in counts. Counts could be translated to profiles, and each seed within the cartridge was analyzed. It is observed that a good correlation between counts and total radioactivity of the seeds within the cartridge. Thus, using a least-squares line, it was possible to calibrate a seed with unknown apparent activity. By analyzing the profiles, it was possible not only to detect a mis calibrated seed in the cartridge from its relative difference in counts, but also to identify its position in the cartridge. Using an imaging analyzer system, all seeds in a cartridge could be calibrated in a sterile environment. (author)

  18. Exposure of treating physician to radiation during prostate brachytherapy using iodine-125 seeds. Dose measurements on both hands with thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Schiefer, Hans; Seelentag, Wolf; Plasswilm, Ludwig; Ries, Gerhard; Toggenburg, Friedrich von; Lenggenhager, Cornelius; Schmid, Hans-Peter; Leippold, Thomas; Engeler, Daniel; Prikler, Ladislav; Krusche, Bernd; Roth, Jakob

    2009-01-01

    Background and purpose: only sparse reports have been made about radiation exposure of the treating physician during prostate seed implantation. Therefore, thermoluminescence dosimeter (TLD) measurements on the index fingers and the backs of both hands were conducted. Material and methods: stranded iodine-125 seeds with a mean apparent activity of 27.4 MBq per seed were used. During application, the treating physician manipulated the loaded needle with the index fingers, partially under fluoroscopic control. Four physicians with varying experience treated 24 patients. The radiation exposure was determined with TLD-100 chips attached to the index fingertips and the backs of hands. Radiation exposure was correlated with the physician's experience. Results: the average brachytherapy duration by the most experienced physician was 19.2 min (standard deviation σ = 1.2 min; novices: 34.8 min [σ = 10.2 min]). The mean activity was 1,703 MBq (σ = 123 MBq), applied with 16.3 needles (σ = 2.5 needles; novices: 1,469 MBq [σ = 229 MBq]; 16.8 needles [σ = 2.3 needles ]). The exposure of the finger of the ''active hand'' and the back of the hand amounted to 1.31 mSv (σ = 0.54 mSv) and 0.61 mSv (σ = 0.23 mSv), respectively (novices: 2.07 mSv [σ = 0.86 mSv] and 1.05 mSv [σ = 0.53 mSv]). Conclusion: if no other radiation exposure needs to be considered, an experienced physician can perform about 400 applications per year without exceeding the limit of 500 mSv/year; for novices, the corresponding figure is about 200. (orig.)

  19. Comparative studies on permanent prostate brachytherapy: pre-plan and real-time transrectal ultrasound guided iodine-125 seed implants at Korle-Bu Teaching Hospital, Ghana

    International Nuclear Information System (INIS)

    Kalolo, L.T.

    2013-06-01

    This research was carried out to investigate and compare the real-time and pre-plan implant at the Radiotherapy Department of the Korle Bu Teaching Hospital, Ghana. Prowess Panther 4.5 treatment planning system and variseed 7.2 software were used for pre-plan and real-time implant respectively. The study was conducted for eighty three (83) patients treated for prostate cancer through real-time implant brachytherapy between september, 2008 to April, 2013. Thirty one patients (31) patients whose ultrasound images were available were selected for the pre-plan study. The slices of ultrasound images were re-drawn on transparent A-4 sheets and later on scanned, contoured and registered in the treatment planning system (prowess 4.5). After planning, the volume to be implanted, total number of needles, seeds and the total activity of the source were displayed. Comparison was done withe the pre-plan and real-time implant. In both cases the variation was below 5% as recommended in dosimetry. About 30% - 40% of the imported seeds were left un-used due to over-estimation of seeds ordered from the manufacturer (BARD Company-USA). Hence this work (pre-plan) aims to solve this problem. The comparison for dosimetric parameters was assessed for prostate, urethra and rectum as (V 95%, V 100%, V 150%, D90Gy, D90%), (D90Gy, D90%, D30Gy, D30% ) and (V 100%, D30Gy and D30%) respectively and the variation were within the limit of ± 5%. Comparison of dosimetric values for this work were done with other institutions, like Karolinska university hospital, Sweden, The institute of Curie/ hospital Cochin Group Paris-France and European recommendations. The values reported at Korle - Bu teaching hospital (this work) were in good agreement with the international guidelines. (au)

  20. The incidence of radioepidermitis and the dose-response relationship in parotid gland cancer patients treated with 125I seed brachytherapy. Incidence of radioepidermitis and the dose-response relationship

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Ming-Hui; Zheng, Lei; Gao, Hong; Zhang, Jie; Liu, Shu-ming; Huang, Ming-wei; Shi, Yan [Peking University School and Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Beijing (China); Zhang, Jian-Guo [Peking University School and Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Beijing (China); Fujian Provincial Hospital, Fujian (China)

    2014-09-09

    We studied the incidence and dose-response relationship of radioepidermitis in parotid gland carcinoma patients treated with [{sup 125}I] seed brachytherapy in the hopes of designing an optimized pre-implant treatment plan that would reduce the incidence and severity of radioepidermitis in patients receiving this therapy. Between January 2007 and May 2010, 100 parotid gland cancer patients were treated postoperatively with [{sup 125}I] seed brachytherapy. The matched peripheral dose (MPD) was 80-140 Gy, and [{sup 125}I] seed activity was 0.7-0.8 mCi. The mean dose delivered to the skin was calculated in the post-implant CT on day 0 following implantation. Grades of acute and late dermatitis were evaluated at 2, 6, 12, and 18 months post-implantation. Most patients experienced grade 0-2 acute and late skin side effects (86 and 97 %, respectively), though a small subset developed severe complications. Most grade 1-3 effects resolved within 6 months of implantation, though some grade 1-3 effects and all grade 4 effects remained unchanged throughout the 18-month follow-up period. Grade 3 and 4 effects were most prominent (75 and 25 %, respectively) with doses of 110-140 Gy; doses higher than 140 Gy produced only grade 4 effects. [{sup 125}I] seed brachytherapy produced acceptable levels of acute and late radioepidermitis with a good clinical outcome. A mean dose under 100 Gy delivered to the skin was safe, though doses of 110-140 Gy should be given with caution and extra monitoring; doses greater than 140 Gy are dangerous and likely to produce grade 4-5 effects. (orig.) [German] Wir untersuchten die Inzidenz und die Dosis-Wirkung-Beziehung bei Patienten mit Ohrspeicheldruesenkrebs, die mit [{sup 125}I]-Seed-Brachytherapie behandelt wurden, in der Hoffnung, eine optimierte praeimplantologische Behandlung zu entwickeln, welche die Inzidenz und Schwere der Radioepidermitis bei Patienten, die diese Therapie erhalten haben, reduziert. Zwischen Januar 2007 und Mai 2010

  1. Rice and foxtail millet cultivation reconstructed from weed seed assemblages in the Chengtoushan site, central China

    International Nuclear Information System (INIS)

    Nasu, H.; Yasuda, Y.; Momohara, A.; Jiejun, H.

    2005-01-01

    Full text: Crop weeds have been successfully used for evaluation of farming practices in archaeological sites and reconstruction of the environmental condition. In rice agricultural sites in East Asia, however, a few studies of crop remains have been attempted. We evaluated the crop husbandry based on plant macrofossils including crop grains and weed seeds in the Chengtoushan site, Hunan Province, central China, which is one of the oldest rice agricultural site around the Yangtze River Basin. In the moat surrounding the site that is located on a loess plateau that juts out into the alluvial plain, we recognized three cultural layers during the Daxi Culture. Plant macrofossils in silty clay deposits in the moat consist of abundant rice and foxtail millet grains with many weed seeds. Radiocarbon age of these fossils shows that rice and foxtail millet cultivation dated back to 6400 cal. years B.P. The weed seed composition characterizes farmland and ruderal environments in the site surrounded by the moat. We assumed foxtail millet and rice cultivation practiced within the site on loess plateau, along with a paddy style rice cultivation in the alluvial lowland outside of the site. (author)

  2. Results of a dummy run of postimplant dosimetry between multi-institutional centers in prostate brachytherapy with 125I seeds

    International Nuclear Information System (INIS)

    Aoki, Manabu; Yorozu, Atsunori; Dokiya, Takushi

    2009-01-01

    The purpose of this study was to determine the reproducibility and precision of postimplant dosimetry following 125 I prostate brachytherapy (PB) and to evaluate the effects of learning and experience in CT-based postimplant dosimetry. One-month postimplant CT data from two patients who underwent PB alone or combined therapy (PB+external beam radiation therapy (EBRT)) were sent to 28 institutions for postimplant dosimetry and analyzed in 2006 (study 1). Similarly, 1-month postimplant CT data from two other patients were also analyzed in 2008 (study 2; 23 institutions). For both modalities in studies 1 and 2, the variance of the difference between CT-based D90 at each institution and CT/MRI fusion-based D90 was estimated. In monotherapy, F test and Mann-Whitney U test revealed no significant difference in the variance in studies 1 and 2 (P=0.72, 0.46). In combined therapy, the variance significantly converged in study 2 compared with study 1 (P<0.05). Even in the two studies, however, the difference between the median CT-based D90 and fusion-based D90 was at least 20-30 Gy. Marked interobserver variability was seen in the prostate volume and D90 with CT alone. The precision of postimplant dosimetry based on CT alone was revealed to be limited. (author)

  3. Monte Carlo study of a new I‐125 brachytherapy prototype seed with a ceramic radionuclide carrier and radiographic marker

    Science.gov (United States)

    Paixão, Lucas; Santos, Ana Maria M.; dos Santos, Adriano Márcio; Grynberg, Suely Epsztein

    2012-01-01

    In prostate cancer treatment, there is an increasing interest in the permanent radioactive seeds implant technique. Currently, in Brazil, the seeds are imported with high prices, which prohibit their use in public hospitals. A ceramic matrix that can be used as a radioisotope carrier and radiographic marker was developed at our institution. The ceramic matrix is distinguished by the characteristic of maintaining the radioactive material uniformly distributed in its surface. In this work, Monte Carlo simulations were performed in order to assess the dose distributions generated by this prototype seed model, with the ceramic matrix encapsulated in titanium, in the same way as the commercial 6711 seed. The obtained data was assessed, as described in the TG‐43U1 report by the American Association of Physicists in Medicine, for two seed models: (1) the most used model 6711 source — for validation and comparison, and (2) for the prototype model with the ceramic matrix. The dosimetric parameters dose rate constant, Λ, radial dose function, gL(r), and anisotropy function, F(r,θ), were derived from simulations by the Monte Carlo method using the MCNP5 code. A Λ 0.992 (±2.33%) cGyh−1U−1 was found for the prototype model. In comparison with the 6711 model, a lower dose fall‐off on transverse axis was found, as well as a lower dose anisotropy for the radius r= 0.25 cm. In general, for all distances, the prototype seed model presents a slightly larger anisotropy between 0° ≤ Θ < 50° and anisotropy similar to the 6711 model for Θ ≥ 50°. The dosimetric characteristics of the prototype model presented in this study suggest that its use is feasible. Because of the model's characteristics, seeds of lower specific activity iodine might be necessary which, on the other hand, would help to reduce costs. However, it has to be emphasized that the proposed source is a prototype, and the required (AAPM prerequisites) experimental study and tolerance

  4. Three-dimensional tomosynthetic image restoration for brachytherapy source localization

    International Nuclear Information System (INIS)

    Persons, Timothy M.

    2001-01-01

    Tomosynthetic image reconstruction allows for the production of a virtually infinite number of slices from a finite number of projection views of a subject. If the reconstructed image volume is viewed in toto, and the three-dimensional (3D) impulse response is accurately known, then it is possible to solve the inverse problem (deconvolution) using canonical image restoration methods (such as Wiener filtering or solution by conjugate gradient least squares iteration) by extension to three dimensions in either the spatial or the frequency domains. This dissertation presents modified direct and iterative restoration methods for solving the inverse tomosynthetic imaging problem in 3D. The significant blur artifact that is common to tomosynthetic reconstructions is deconvolved by solving for the entire 3D image at once. The 3D impulse response is computed analytically using a fiducial reference schema as realized in a robust, self-calibrating solution to generalized tomosynthesis. 3D modulation transfer function analysis is used to characterize the tomosynthetic resolution of the 3D reconstructions. The relevant clinical application of these methods is 3D imaging for brachytherapy source localization. Conventional localization schemes for brachytherapy implants using orthogonal or stereoscopic projection radiographs suffer from scaling distortions and poor visibility of implanted seeds, resulting in compromised source tracking (reported errors: 2-4 mm) and dosimetric inaccuracy. 3D image reconstruction (using a well-chosen projection sampling scheme) and restoration of a prostate brachytherapy phantom is used for testing. The approaches presented in this work localize source centroids with submillimeter error in two Cartesian dimensions and just over one millimeter error in the third

  5. Comparison of CT- and radiograph-based post-implant dosimetry for transperineal 125I prostate brachytherapy using single seeds and a commercial treatment-planning software

    International Nuclear Information System (INIS)

    Siebert, F.A.; Kohr, P.; Kovacs, G.

    2006-01-01

    Background and purpose: the objective of this investigation was a direct comparison of the dosimetry of CT-based and radiograph-based postplanning procedures for seed implants. Patients and methods: CT- and radiograph-based postplans were carried out for eight iodine-125 ( 125 I) seed implant patients with a commercial treatment-planning system (TPS). To assess a direct comparison of the dosimetric indices (D90, V100, V400), the radiograph-based seed coordinates were transformed to the coordinate system of the CT postplan. Afterwards, the CT-based seed positions were replaced by the radiograph-based coordinates in the TPS and the dose distribution was recalculated. Results: the computations demonstrated that the radiograph-based dosimetric values for the prostate (D p 90, V p 100, and V p 400) were on average lower than the values of the CT postplan. Normalized to the CT postplan the following mean values were found: D p 90: 90.6% (standard deviation [SD]: 9.0%), V p 100: 86.1% (SD: 14.7%), and V p 400: 79.4% (SD: 14.4%). For three out of the eight patients the D p 90 decreased to 90% of the initial CT postplan values. The reason for this dosimetric difference is supposed to be evoked by an error of the reconstruction software used. It was detected that the TPS algorithm assigned some sources to wrong coordinates, partly out of the prostate gland. Conclusion: the radiograph-based postplanning technique of the investigated TPS should only be used in combination with CT postplanning. Furthermore, complex testing procedures of reconstruction algorithms are recommended to minimize calculation errors. (orig.)

  6. Statistical differences and systematic effect on measurement procedure in thermoluminescent dosimetry of the Iodine-125 brachytherapy seed

    International Nuclear Information System (INIS)

    Zeituni, Carlos A.; Moura, Eduardo S.; Rostelato, Maria Elisa C.M.; Manzoli, Jose E.; Moura, Joao Augusto; Feher, Anselmo; Karam, Dib

    2009-01-01

    In order to provide the dosimetry for Iodine-125 seed production in Brazil, Harshaw thermoluminescent dosimeters (TLD-100) will be used. Even if measurements with TLD-100 of the same batch of fabrication are performed, the response will not be the same. As a consequence, they must be measured one by one. These dosimeters are LiF type with a micro-cube (1 mm x 1 mm x 1 mm) shape. Irradiations were performed using Iodine-125 seeds to guarantee the same absorbed dose of 5 Gy in each dosimeter. It has been used a Solid Water Phantom with three concentrically circle with 20 mm, 50 mm and 70 mm diameters. The angle of positions used was 0 deg, 30 deg, 60 deg and 90 deg. Of course there are 2 positions in 0 deg and 90 deg and 4 positions in 30 deg and 60 deg. These complete procedures were carried out five times in order to compare the data and minimize the systematic error. The iodine-125 seed used in the experiment was take off in each measure and put again turning his position 180 deg to guarantee the systematic error was minimized. This paper presents also a little discussion about the statistical difference in the measurement and the calculation procedure to determine the systematic error in these measurements. (author)

  7. Statistical differences and systematic effect on measurement procedure in thermoluminescent dosimetry of the Iodine-125 brachytherapy seed

    Energy Technology Data Exchange (ETDEWEB)

    Zeituni, Carlos A.; Moura, Eduardo S.; Rostelato, Maria Elisa C.M.; Manzoli, Jose E.; Moura, Joao Augusto; Feher, Anselmo, E-mail: czeituni@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil); Karam, Dib [Universidade de Sao Paulo (USP Leste), Sao Paulo, SP (Brazil). Escola de Artes, Ciencias e Humanidades

    2009-07-01

    In order to provide the dosimetry for Iodine-125 seed production in Brazil, Harshaw thermoluminescent dosimeters (TLD-100) will be used. Even if measurements with TLD-100 of the same batch of fabrication are performed, the response will not be the same. As a consequence, they must be measured one by one. These dosimeters are LiF type with a micro-cube (1 mm x 1 mm x 1 mm) shape. Irradiations were performed using Iodine-125 seeds to guarantee the same absorbed dose of 5 Gy in each dosimeter. It has been used a Solid Water Phantom with three concentrically circle with 20 mm, 50 mm and 70 mm diameters. The angle of positions used was 0 deg, 30 deg, 60 deg and 90 deg. Of course there are 2 positions in 0 deg and 90 deg and 4 positions in 30 deg and 60 deg. These complete procedures were carried out five times in order to compare the data and minimize the systematic error. The iodine-125 seed used in the experiment was take off in each measure and put again turning his position 180 deg to guarantee the systematic error was minimized. This paper presents also a little discussion about the statistical difference in the measurement and the calculation procedure to determine the systematic error in these measurements. (author)

  8. Reconstructing the pollinator community and predicting seed set from hydrocarbon footprints on flowers.

    Science.gov (United States)

    Witjes, Sebastian; Witsch, Kristian; Eltz, Thomas

    2011-05-01

    The measurement of insect visits to flowers is essential in basic and applied pollination ecology studies but often fraught with difficulty. Floral visitation is highly variable, and observational studies are limited in scope due to the considerable time necessary to acquire reliable data. The aim of our study was to investigate whether the analysis of hydrocarbon residues (footprints) deposited by insects during flower visits would allow reconstruction of the visitor community and prediction of seed set for large numbers of plants. In 3 consecutive years, we recorded bumblebee visitation to wild plants of comfrey, Symphytum officinale, and later used gas chromatography/mass spectrometry (GC/MS) to quantify bumblebee-derived unsaturated hydrocarbons (UHCs) extracted from flowers. We found that the UHCs washed from corollas were most similar to the tarsal UHC profile of the most abundant bumblebee species, Bombus pascuorum, in all 3 years. The species composition of the bumblebee communities estimated from UHCs on flowers were also similar to those actually observed. There was a significant positive correlation between the observed number of visits by each of three bumblebee species (contributing 3-68% of flower visits) and the estimated number of visits based on UHC profiles. Furthermore, significant correlations were obtained separately for workers and drones of two of the study species. Seed set of comfrey plants was positively correlated to overall bumblebee visitation and the total amount of UHCs on flowers, suggesting the potential for pollen limitation. We suggest that quantifying cumulative footprint hydrocarbons provides a novel way to assess floral visitation by insects and can be used to predict seed set in pollen-limited plants.

  9. Intra-operative pubic arch interference during prostate seed brachytherapy in patients with CT-based pubic arch interference of ≤1 cm

    International Nuclear Information System (INIS)

    Sejpal, Samir V.; Sathiaseelan, Vythialingam; Helenowski, Irene B.; Kozlowski, James M.; Carter, Michael F.; Nadler, Robert B.; Dalton, Daniel P.; McVary, Kevin T.; Lin, William W.; Garnett, John E.; Kalapurakal, John A.

    2009-01-01

    Purpose: There are only a few reports on the frequency of intra-operative pubic arch interference (I-PAI) during prostate seed brachytherapy (PB). Materials and methods: Two hundred and forty-three patients with a CT-based pubic arch interference (PAI) of ≤1 cm and a prostate volume of ≤50-60 cc underwent PB. Those patients requiring needle repositioning by ≥0.5 cm on the template were scored as having I-PAI. The incidence of I-PAI and its impact on biochemical control were analyzed. Results: Intra-operative PAI was encountered in 47 (19.3%) patients. Forty two patients (17.3%) had I-PAI in 1-2 needles, two (0.8%) had I-PAI in four needles and three patients (1.2%) had I-PAI in six needles. Overall, 1.4% of needles required repositioning due to I-PAI. BMI > 27 kg/m 2 and wider (>75 mm) pubic bone separation at mid ramus (PS-ML) were associated with a lower incidence of I-PAI. At a median follow-up of 50.1 months, the 3- and 5-year bPFS was 97.3% and 95.2%, respectively. The 5-year bPFS rates for patients with and without I-PAI were 95.6% and 95%, respectively (p = 0.28). Conclusions: The use of CT-based PAI of ≤1 cm as a selection criterion for PB is a simple and reliable method for minimizing the incidence of I-PAI and maintaining excellent biochemical control rates.

  10. EchoSeed Model 6733 Iodine-125 brachytherapy source: Improved dosimetric characterization using the MCNP5 Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Mosleh-Shirazi, M. A.; Hadad, K.; Faghihi, R.; Baradaran-Ghahfarokhi, M.; Naghshnezhad, Z.; Meigooni, A. S. [Center for Research in Medical Physics and Biomedical Engineering and Physics Unit, Radiotherapy Department, Shiraz University of Medical Sciences, Shiraz 71936-13311 (Iran, Islamic Republic of); Radiation Research Center and Medical Radiation Department, School of Engineering, Shiraz University, Shiraz 71936-13311 (Iran, Islamic Republic of); Comprehensive Cancer Center of Nevada, Las Vegas, Nevada 89169 (United States)

    2012-08-15

    This study primarily aimed to obtain the dosimetric characteristics of the Model 6733 {sup 125}I seed (EchoSeed) with improved precision and accuracy using a more up-to-date Monte-Carlo code and data (MCNP5) compared to previously published results, including an uncertainty analysis. Its secondary aim was to compare the results obtained using the MCNP5, MCNP4c2, and PTRAN codes for simulation of this low-energy photon-emitting source. The EchoSeed geometry and chemical compositions together with a published {sup 125}I spectrum were used to perform dosimetric characterization of this source as per the updated AAPM TG-43 protocol. These simulations were performed in liquid water material in order to obtain the clinically applicable dosimetric parameters for this source model. Dose rate constants in liquid water, derived from MCNP4c2 and MCNP5 simulations, were found to be 0.993 cGyh{sup -1} U{sup -1} ({+-}1.73%) and 0.965 cGyh{sup -1} U{sup -1} ({+-}1.68%), respectively. Overall, the MCNP5 derived radial dose and 2D anisotropy functions results were generally closer to the measured data (within {+-}4%) than MCNP4c and the published data for PTRAN code (Version 7.43), while the opposite was seen for dose rate constant. The generally improved MCNP5 Monte Carlo simulation may be attributed to a more recent and accurate cross-section library. However, some of the data points in the results obtained from the above-mentioned Monte Carlo codes showed no statistically significant differences. Derived dosimetric characteristics in liquid water are provided for clinical applications of this source model.

  11. Radiation exposure to operating room staff during prostate brachytherapy using iodine-125 seeds; Exposition radiologique de l'equipe operatoire au cours de curietherapies de prostate par implants permanents d'iode-125

    Energy Technology Data Exchange (ETDEWEB)

    Gagna, G.; Amabile, J.C.; Laroche, P. [Service de protection radiologique des armees (SPRA), 1 bis rue du Lieutenant Raoul Batany, 92141 Clamart Cedex (France); Gauron, C. [Institut national de recherche et de securite (INRS), Departement Etudes et Assistance Medicales, 30 rue Olivier Noyer, 75680 Paris Cedex 14 (France)

    2011-04-15

    The French defense radiation protection service (SPRA) and the French national institute for research and safety (INRS) conducted a joint study to assess the radiation exposure to operating room staff during prostate brachytherapy using iodine-125 seeds at the Val-de-Grace military hospital. The purpose of the study was the assessment of the effective doses, the equivalent doses to the extremities and lens received by a novice team, the different ambient dose equivalent rates measurements and the delineation of areas. After six brachy-therapies, all the recorded doses with whole-body InLight{sup R} OSL and nanoDot{sup R} dosimeters remained below the detection limit for the whole staff. The dose rate measured at the end of implantation by an AT1123{sup R} survey meter is about 170 {mu}Sv/h at the perineum of the patient. The controlled area limit is estimated to be about 20 cm from the patient perineum. From these results, the authors propose recommendations for the categorization of workers, the delineation of areas and the dose monitoring procedures. This study demonstrates that real-time ultrasound-guided trans-perineal prostate brachytherapy delivers low dose to the operators because of the radioactive source characteristics and the instrumentation providing an effective radiation protection for the surgical team. (authors)

  12. Dosimetry on ocular brachytherapy with ROPES plaque with Iodine-125 and Palladium-103 seeds; Dosimetria em braquiterapia ocular com placa ROPES contendo sementes de iodo-125 e paladium-103

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Arnaldo P. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET/MG), Belo Horizonte, MG (Brazil). Nucleo de Engenharia Hospitalar], e-mail: aprata@des.cefetmg.br; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares

    2010-03-15

    Radiotherapy is an alternative to ocular enucleation. However, the irradiation of ocular region can bring deleterious effects due to the high doses, mainly in the lens, retina and in the bone structures in growth phase. Brachytherapy instead of teletherapy looks for departuring absorbed doses in tumor minimizing doses in the lens and the adjacent tissues of the eyeball (orbital region), avoiding deleterious effects. Thus, a three-dimensional computational model of ocular area was developed to simulate orbital irradiation with ROPES ophthalmologic plaque placed on the sclera surface filled to ten iodine-125 seeds, and palladium-103 seeds. Simulations are performed on the MCNP5 code. The computational simulation allows evaluating how the dose rates are spatially distributed in the orbital volume. The results are normalized to 100% at the maximum dose on the tumor base, and by the applied source activity. The maximum dose is found onto the eyeball, in the vitreous. The present model represents an advance in simulating and predicting absorbed dose on ocular brachytherapy. (author)

  13. Evolution of brachytherapy for prostate carcinoma

    International Nuclear Information System (INIS)

    Qin Lan

    2005-01-01

    Brachytherapy is one of the most main management to prostate carcinoma. This method has been rapidly accepted in clinical application since it is a convenient, little-traumatic, and outpatient therapy. With the development of techniques of production of radio-seeds, imaging modality and three-dimensional radiotherapy plan system, brachytherapy has been made a virtually progress in improving curative-effect and reducing damage to surrounding normal tissue. (authors)

  14. Direct reconstruction and associated uncertainties of 192Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of HDR brachytherapy cervix patients

    Science.gov (United States)

    Awunor, O. A.; Dixon, B.; Walker, C.

    2013-05-01

    This paper details a practical method for the direct reconstruction of high dose rate 192Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of brachytherapy cervix patients. It also details the uncertainties associated with such a process. Eight Nucletron interstitial ring applicators—Ø26 mm (×4), Ø30 mm (×3) and Ø34 mm (×1), and one 60 mm intrauterine tube were used in this study. RTQA2 and XRQA2 gafchromic films were irradiated at pre-programmed dwell positions with three successive 192Ir sources and used to derive the coordinates of the source dwell positions. The source was observed to deviate significantly from its expected position by up to 6.1 mm in all ring sizes. Significant inter applicator differences of up to 2.6 mm were observed between a subset of ring applicators. Also, the measured data were observed to differ significantly from commercially available source path models provided by Nucletron with differences of up to 3.7 mm across all ring applicator sizes. The total expanded uncertainty (k = 2) averaged over all measured dwell positions in the rings was observed to be 1.1 ± 0.1 mm (Ø26 mm and Ø30 mm rings) and 1.0 ± 0.3 mm (Ø34 mm ring) respectively, and when transferred to the treatment planning system, equated to maximum %dose changes of 1.9%, 13.2% and 1.5% at regions representative of the parametrium, lateral fornix and organs at risk respectively.

  15. Sci-Thur AM: YIS – 03: Combining sagittally-reconstructed 3D and live-2D ultrasound for high-dose-rate prostate brachytherapy needle segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Hrinivich, Thomas; Hoover, Douglas; Surry, Kathleen; Edirisinghe, Chandima; D’Souza, David; Fenster, Aaron; Wong, Eugene [University of Western Ontario, London Regional Cancer Program/LHSC, London Regional Cancer Program/LHSC, Robarts Research Institute, London Regional Cancer Program/LHSC, Robarts Research Institute, University of Western Ontario (Canada)

    2016-08-15

    Ultrasound-guided high-dose-rate prostate brachytherapy (HDR-BT) needle segmentation is performed clinically using live-2D sagittal images. Organ segmentation is then performed using axial images, introducing a source of geometric uncertainty. Sagittally-reconstructed 3D (SR3D) ultrasound enables both needle and organ segmentation, but suffers from shadow artifacts. We present a needle segmentation technique augmenting SR3D with live-2D sagittal images using mechanical probe tracking to mitigate image artifacts and compare it to the clinical standard. Seven prostate cancer patients underwent TRUS-guided HDR-BT during which the clinical and proposed segmentation techniques were completed in parallel using dual ultrasound video outputs. Calibrated needle end-length measurements were used to calculate insertion depth errors (IDEs), and the dosimetric impact of IDEs was evaluated by perturbing clinical treatment plan source positions. The proposed technique provided smaller IDEs than the clinical approach, with mean±SD of −0.3±2.2 mm and −0.5±3.7mm respectively. The proposed and clinical techniques resulted in 84% and 43% of needles with IDEs within ±3mm, and IDE ranges across all needles of [−7.7mm, 5.9mm] and [−9.3mm, 7.7mm] respectively. The proposed and clinical IDEs lead to mean±SD changes in the volume of the prostate receiving the prescription dose of −0.6±0.9% and −2.0±5.3% respectively. The proposed technique provides improved HDR-BT needle segmentation accuracy over the clinical technique leading to decreased dosimetric uncertainty by eliminating the axial-to-sagittal registration, and mitigates the effect of shadow artifacts by incorporating mechanically registered live-2D sagittal images.

  16. Development of an automation system for iodine-125 brachytherapy seed production by (Nd:YAG) laser welding; Automacao do processo de soldagem a laser (Nd:YAG) para confeccao das sementes de iodo-125 utilizadas em braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir Luiz

    2010-07-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by (Nd:YAG) laser welding, which has been used successfully in Low Dose Rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8mm in diameter and 4.5mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources becomes a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a largest number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with Good Manufacturing Practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing Programmable Logic Controller (PLC), stepper motors, drivers, (Nd:YAG) laser welding machine, photoelectric sensors and supervisory. (author)

  17. Prostate brachytherapy

    Science.gov (United States)

    Implant therapy - prostate cancer; Radioactive seed placement; Internal radiation therapy - prostate; High dose radiation (HDR) ... place the seeds that deliver radiation into your prostate. The seeds are placed with needles or special ...

  18. SU-G-IeP1-01: A Novel MRI Post-Processing Algorithm for Visualization of the Prostate LDR Brachytherapy Seeds and Calcifications Based On B0 Field Inhomogeneity Correction and Hough Transform

    Energy Technology Data Exchange (ETDEWEB)

    Nosrati, R [Reyrson University, Toronto, Ontario (Canada); Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Soliman, A; Owrangi, A [Sunnybrook Research Institute, Toronto, Ontario (Canada); Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Ghugre, N [Sunnybrook Research Institute, Toronto, Ontario (Canada); University of Toronto, Toronto, ON (Canada); Morton, G [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); University of Toronto, Toronto, ON (Canada); Pejovic-Milic, A [Reyrson University, Toronto, Ontario (Canada); Song, W [Reyrson University, Toronto, Ontario (Canada); Sunnybrook Research Institute, Toronto, Ontario (Canada); Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); University of Toronto, Toronto, ON (Canada)

    2016-06-15

    Purpose: This study aims at developing an MRI-only workflow for post-implant dosimetry of the prostate LDR brachytherapy seeds. The specific goal here is to develop a post-processing algorithm to produce positive contrast for the seeds and prostatic calcifications and differentiate between them on MR images. Methods: An agar-based phantom incorporating four dummy seeds (I-125) and five calcifications of different sizes (from sheep cortical bone) was constructed. Seeds were placed arbitrarily in the coronal plane. The phantom was scanned with 3T Philips Achieva MR scanner using an 8-channel head coil array. Multi-echo turbo spin echo (ME-TSE) and multi-echo gradient recalled echo (ME-GRE) sequences were acquired. Due to minimal susceptibility artifacts around seeds, ME-GRE sequence (flip angle=15; TR/TE=20/2.3/2.3; resolution=0.7×0.7×2mm3) was further processed.The induced field inhomogeneity due to the presence of titaniumencapsulated seeds was corrected using a B0 field map. B0 map was calculated using the ME-GRE sequence by calculating the phase difference at two different echo times. Initially, the product of the first echo and B0 map was calculated. The features corresponding to the seeds were then extracted in three steps: 1) the edge pixels were isolated using “Prewitt” operator; 2) the Hough transform was employed to detect ellipses approximately matching the dimensions of the seeds and 3) at the position and orientation of the detected ellipses an ellipse was drawn on the B0-corrected image. Results: The proposed B0-correction process produced positive contrast for the seeds and calcifications. The Hough transform based on Prewitt edge operator successfully identified all the seeds according to their ellipsoidal shape and dimensions in the edge image. Conclusion: The proposed post-processing algorithm successfully visualized the seeds and calcifications with positive contrast and differentiates between them according to their shapes. Further

  19. Computed tomography in brachytherapy

    International Nuclear Information System (INIS)

    Mansfield, C.M.; Lee, K.R.; Dwyer, S.; Zellmer, D.; Cook, P.

    1983-01-01

    CT scanning adds to the ability to evaluate brachytherapy techniques. It provides an additional method in the assessment of patients who are candidates for or who are being treated by brachytherapy. The CT scan can give information regarding the position of the sources and their relation to the tumor and normal structures with greater ease than do orthogonal views. This makes it possible to accurately calculate areas of high or low dose. Potential areas of overdose can be recognized, thereby decreasing the chances of postbrachytherapy complications. CT scanning can be used at various levels of complexity in dosimetry evaluation. Adequate brachytherapy dosimetry information is obtainable from CT slices through one or more levels of the implanted volume. In some instances it is possible to obtain additional information by reconstructing the scans in other planes, e.g., coronal or sagittal. Three-dimensional viewing of the implant is desirable, but it should be pointed out that this approach is time-consuming and beyond the capabilities of most institutions at present. It will be necessary to continue work on three-dimensional treatment planning to make it readily available

  20. Rectourethral fistula following LDR brachytherapy.

    Science.gov (United States)

    Borchers, Holger; Pinkawa, Michael; Donner, Andreas; Wolter, Timm P; Pallua, Norbert; Eble, Michael J; Jakse, Gerhard

    2009-01-01

    Modern LDR brachytherapy has drastically reduced rectal toxicity and decreased the occurrence of rectourethral fistulas to <0.5% of patients. Therefore, symptoms of late-onset sequelae are often ignored initially. These fistulas cause severe patient morbidity and require interdisciplinary treatment. We report on the occurrence and management of a rectourethral fistula which occurred 4 years after (125)I seed implantation. Copyright 2009 S. Karger AG, Basel.

  1. Three-dimensional verification of 125I seed stability after permanent implantation in the parotid gland and periparotid region

    International Nuclear Information System (INIS)

    Fan, Yi; Huang, Ming-Wei; Zheng, Lei; Zhao, Yi-Jiao; Zhang, Jian-Guo

    2015-01-01

    To evaluate seed stability after permanent implantation in the parotid gland and periparotid region via a three-dimensional reconstruction of CT data. Fifteen patients treated from June 2008 to June 2012 at Peking University School and Hospital of Stomatology for parotid gland tumors with postoperative adjunctive 125 I interstitial brachytherapy were retrospectively reviewed in this study. Serial CT data were obtained during follow-up. Mimics and Geomagic Studio software were used for seed reconstruction and stability analysis, respectively. Seed loss and/or migration outside of the treated area were absent in all patients during follow-up (23–71 months). Total seed cluster volume was maximized on day 1 post-implantation due to edema and decreased significantly by an average of 13.5 % (SD = 9.80 %; 95 % CI, 6.82–17.68 %) during the first two months and an average of 4.5 % (SD = 3.60 %; 95 % CI, 2.29–6.29 %) during the next four months. Volume stabilized over the subsequent six months. 125 I seed number and location were stable with a general volumetric shrinkage tendency in the parotid gland and periparotid region. Three-dimensional seed reconstruction of CT images is feasible for visualization and verification of implanted seeds in parotid brachytherapy

  2. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction.

    Science.gov (United States)

    Pires, Mathias M; Galetti, Mauro; Donatti, Camila I; Pizo, Marco A; Dirzo, Rodolfo; Guimarães, Paulo R

    2014-08-01

    The late Quaternary megafaunal extinction impacted ecological communities worldwide, and affected key ecological processes such as seed dispersal. The traits of several species of large-seeded plants are thought to have evolved in response to interactions with extinct megafauna, but how these extinctions affected the organization of interactions in seed-dispersal systems is poorly understood. Here, we combined ecological and paleontological data and network analyses to investigate how the structure of a species-rich seed-dispersal network could have changed from the Pleistocene to the present and examine the possible consequences of such changes. Our results indicate that the seed-dispersal network was organized into modules across the different time periods but has been reconfigured in different ways over time. The episode of megafaunal extinction and the arrival of humans changed how seed dispersers were distributed among network modules. However, the recent introduction of livestock into the seed-dispersal system partially restored the original network organization by strengthening the modular configuration. Moreover, after megafaunal extinctions, introduced species and some smaller native mammals became key components for the structure of the seed-dispersal network. We hypothesize that such changes in network structure affected both animal and plant assemblages, potentially contributing to the shaping of modern ecological communities. The ongoing extinction of key large vertebrates will lead to a variety of context-dependent rearranged ecological networks, most certainly affecting ecological and evolutionary processes.

  3. seeds

    African Journals Online (AJOL)

    Owner

    peptidohydrolase (8.0%) from mung bean seedlings. (Baumgartner and Chrispeels, 1977), EP-HG (4.5%) from horse gram seedlings ( Rajeswari, 1997), acidic protease (15%) from germinating winged-bean seeds. (Usha and Singh, 1996) and EP-1 (1.6%) from barley seedlings and GA3-induced cysteine protease (3.38%).

  4. BrachyView: Proof-of-principle of a novel in-body gamma camera for low dose-rate prostate brachytherapy

    International Nuclear Information System (INIS)

    Petasecca, M.; Loo, K. J.; Safavi-Naeini, M.; Han, Z.; Metcalfe, P. E.; Lerch, M. L. F.; Qi, Y.; Rosenfeld, A. B.; Meikle, S.; Pospisil, S.; Jakubek, J.; Bucci, J. A.; Zaider, M.

    2013-01-01

    Purpose: The conformity of the achieved dose distribution to the treatment plan strongly correlates with the accuracy of seed implantation in a prostate brachytherapy treatment procedure. Incorrect seed placement leads to both short and long term complications, including urethral and rectal toxicity. The authors present BrachyView, a novel concept of a fast intraoperative treatment planning system, to provide real-time seed placement information based on in-body gamma camera data. BrachyView combines the high spatial resolution of a pixellated silicon detector (Medipix2) with the volumetric information acquired by a transrectal ultrasound (TRUS). The two systems will be embedded in the same probe so as to provide anatomically correct seed positions for intraoperative planning and postimplant dosimetry. Dosimetric calculations are based on the TG-43 method using the real position of the seeds. The purpose of this paper is to demonstrate the feasibility of BrachyView using the Medipix2 pixel detector and a pinhole collimator to reconstruct the real-time 3D position of low dose-rate brachytherapy seeds in a phantom. Methods: BrachyView incorporates three Medipix2 detectors coupled to a multipinhole collimator. Three-dimensionally triangulated seed positions from multiple planar images are used to determine the seed placement in a PMMA prostate phantom in real time. MATLAB codes were used to test the reconstruction method and to optimize the device geometry. Results: The results presented in this paper show a 3D position reconstruction accuracy of the seed in the range of 0.5–3 mm for a 10–60 mm seed-to-detector distance interval (Z direction), respectively. The BrachyView system also demonstrates a spatial resolution of 0.25 mm in the XY plane for sources at 10 mm distance from Medipix2 detector plane, comparable to the theoretical value calculated for an equivalent gamma camera arrangement. The authors successfully demonstrated the capability of BrachyView for

  5. BrachyView: proof-of-principle of a novel in-body gamma camera for low dose-rate prostate brachytherapy.

    Science.gov (United States)

    Petasecca, M; Loo, K J; Safavi-Naeini, M; Han, Z; Metcalfe, P E; Meikle, S; Pospisil, S; Jakubek, J; Bucci, J A; Zaider, M; Lerch, M L F; Qi, Y; Rosenfeld, A B

    2013-04-01

    The conformity of the achieved dose distribution to the treatment plan strongly correlates with the accuracy of seed implantation in a prostate brachytherapy treatment procedure. Incorrect seed placement leads to both short and long term complications, including urethral and rectal toxicity. The authors present BrachyView, a novel concept of a fast intraoperative treatment planning system, to provide real-time seed placement information based on in-body gamma camera data. BrachyView combines the high spatial resolution of a pixellated silicon detector (Medipix2) with the volumetric information acquired by a transrectal ultrasound (TRUS). The two systems will be embedded in the same probe so as to provide anatomically correct seed positions for intraoperative planning and postimplant dosimetry. Dosimetric calculations are based on the TG-43 method using the real position of the seeds. The purpose of this paper is to demonstrate the feasibility of BrachyView using the Medipix2 pixel detector and a pinhole collimator to reconstruct the real-time 3D position of low dose-rate brachytherapy seeds in a phantom. BrachyView incorporates three Medipix2 detectors coupled to a multipinhole collimator. Three-dimensionally triangulated seed positions from multiple planar images are used to determine the seed placement in a PMMA prostate phantom in real time. MATLAB codes were used to test the reconstruction method and to optimize the device geometry. The results presented in this paper show a 3D position reconstruction accuracy of the seed in the range of 0.5-3 mm for a 10-60 mm seed-to-detector distance interval (Z direction), respectively. The BrachyView system also demonstrates a spatial resolution of 0.25 mm in the XY plane for sources at 10 mm distance from Medipix2 detector plane, comparable to the theoretical value calculated for an equivalent gamma camera arrangement. The authors successfully demonstrated the capability of BrachyView for real-time imaging (using a 3 s

  6. Monte Carlo calculation of dosimetric parameters of a {sup 125}I brachytherapy seed encapsulation with biocompatible polymer and a ceramic matrix as radiographic marker

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Lucas P.; Santos, Adriano M.; Grynberg, Suely E., E-mail: lpr@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Dosimetria e Simulacao Computacional; Facure, Alessandro, E-mail: facure@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    For prostate cancer treatments, there is an increasing interest in the permanent radioactive seeds implant technique. Currently, in Brazil, the seeds are imported at high prices, which prohibit their use in public hospitals. One of the seed models that have been developed at CDTN has a ceramic matrix as a radioisotope carrier and a radiographic marker; the seed is encapsulated with biocompatible polymer. In this work, Monte Carlo simulations were performed in order to assess the dose distributions generated by the prototype seed model. The obtained data was assessed as described in the TG-43U1 report by the AAPM. The dosimetric parameters dose rate constant, {Lambda}, radial dose function, g{sub L}(r), and anisotropy function, F(r,{theta}), were derived from simulations using the MCNP5 code. The function g(r) shows that the seed has a lower decrease in dose rate on its transverse axis when compared to the 6711 model (one of the most used seeds in permanent prostate implants). F(r,{theta}) shows that CDTN's seed anisotropy curves are smoother than the 6711 model curves for {theta}{<=}20 deg and 0.25{<=}r{<=}1 cm. As well, the {Lambda} value is 15% lower than the {Lambda} value of 6711. The results show that CDTN's seed model can deposit a more isotropic dose. Because of the model's characteristics, the seeds can be impregnated with iodine of lower specific activity which would help reducing costs. (author)

  7. Dosimetric studies, spectrometric, radiographic, metallographic of a new argentinean seed of {sup 125} I used in brachytherapy; Estudios dosimetricos, espectrometricos, radiograficos, metalograficos de una nueva semilla argentina de {sup 125}I empleada en braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Pirchio, R.; Saravi, M.; Banchik, D.; Munoz, C. [CNEA, Pbro. J. Gonzalez y Aragon No. 15 (B1802AYA), Ezeiza, Buenos Aires (Argentina)]. e-mail: pirchio@cae.cnea.gov.ar

    2006-07-01

    A new source of {sup 125} I model Braquibac{sup TM} has been developed in Argentina for applications in interstitial brachytherapy. The AAPM Task Group 43 (TG-43) recommends that dosimetric characteristics of new sources of brachytherapy of Iodine-125 have been theoretically and experimentally determined before its clinical use. The objectives outlined in this work were the study of the design of the new seed, the calculation of dosimetric parameters and the photons spectra analysis. Its were carried out radiographic and metallographic studies to determine the physical characteristics of the source. For the realization of the dosimetric calculations it was used the Monte Carlo code MCNP5. Values of the radial dose function, g(r), of the constant of dose rate, {lambda}, of the function of anisotropy of two dimensions, F(r, {theta}), of the factor and constant of anisotropy its were obtained simulating the source in water according to the recommended methodology in TG-43. The constant of dose rate is similar to 0,880 {+-} 0,080 c Gy h{sup -1} U{sup -1}. The kerma in air rate of reference, S{sub K}, was calculated as 1,036 c Gy cm{sup 2}h{sup -1} mCi{sup -1} simulating the seed in dry air. Its were carried out spectrometric studies using a semiconductor planar detector of HPGe (high purity germanium). Photons spectra showed characteristic x-rays of {sup 125} I with energies of 27,20 keV, 27,47 keV, 31 keV and 31,70 keV gamma photons of 35,5 keV, and x-ray fluorescent coming from the silver nucleus of 22,10 keV, 24,94 keV and 25,45 keV. The angular dependence of the intensity of photons around the seed and in air it was analyzed with the planar detector. This was carried out to study the anisotropy in the photons flow due to variation in the thickness of the titanium wall and of the welding, movements of the silver tube inside the source and deposition of the radioactive material on the silver tube. (Author)

  8. Sci—Fri PM: Topics — 08: The Role and Benefits of Electromagnetic Needle-Tracking Technologies in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, L.; Racine, E.; Boutaleb, S.; Filion, O. [Département de Radio-Oncologie et Centre de Recherche du CHU de Québec, CHU de Québec, Québec (Québec), and Département de Physique, de Génie Physique et d' Optique et Centre de recherche en sur le Cancer, Université Laval, Québec (Québec) (Canada); Poulin, E.; Hautvast, G. [Biomedical Systems, Philips Group Innovation, High Tech Campus 34 (HTC 34), Eindhoven (Netherlands); Binnekamp, D. [Integrated Clinical Solutions and Marketing, Philips Healthcare, Veenpluis 4-6, Best (Netherlands)

    2014-08-15

    In modern brachytherapy, application of large doses of ionizing radiation in a limited number of fractions is frequent. Furthermore, as with any surgical procedures, brachytherapy is subject to learning curve effects. In this context, there could be advantages of integrating real-time tracking of needles/catheters to existing protocols given the recent prominent advances in tracking technologies. In this work, we review the use of an electromagnetic tracking system (EMTS) based on the second generation Aurora® Planar Field Generator (Northern Digital Inc) and custom design needles (Philips Healthcare) for brachytherapy applications. The position and orientation information is obtained from 5 degrees of freedom sensors. Basic system performance characterization is performed in well-controlled conditions to establish accuracy and reproducibility as well as potential interference from standard brachytherapy equipment. The results show that sensor locations can be tracked to within 0.04mm (la) when located within 26cm of the generator. Orientation accuracy of the needle remained within ±1° in the same region, but rose quickly at larger distances. The errors on position and orientation strongly dependent the sensor position in the characterization volume (500×500×500mm{sup 3}). The presence of an ultrasound probe was shown to have negligible effects on tracking accuracy. The use of EMTS for automatic catheter/applicator reconstruction was also explored. Reconstruction time was less than 10 sec/channel and tips identification was within 0.69±0.29mm of the reference values. Finally, we demonstrate that hollow needle designs with special EM adaptation also allow for real-time seed drop position estimation. In phantom experiments showed that drop positions were on average within 1.6±0.9mm of the reference position measured from μCT. Altogether, EMTS offer promising benefits in a wide range of brachytherapy applications.

  9. Sci—Fri PM: Topics — 08: The Role and Benefits of Electromagnetic Needle-Tracking Technologies in Brachytherapy

    International Nuclear Information System (INIS)

    Beaulieu, L.; Racine, E.; Boutaleb, S.; Filion, O.; Poulin, E.; Hautvast, G.; Binnekamp, D.

    2014-01-01

    In modern brachytherapy, application of large doses of ionizing radiation in a limited number of fractions is frequent. Furthermore, as with any surgical procedures, brachytherapy is subject to learning curve effects. In this context, there could be advantages of integrating real-time tracking of needles/catheters to existing protocols given the recent prominent advances in tracking technologies. In this work, we review the use of an electromagnetic tracking system (EMTS) based on the second generation Aurora® Planar Field Generator (Northern Digital Inc) and custom design needles (Philips Healthcare) for brachytherapy applications. The position and orientation information is obtained from 5 degrees of freedom sensors. Basic system performance characterization is performed in well-controlled conditions to establish accuracy and reproducibility as well as potential interference from standard brachytherapy equipment. The results show that sensor locations can be tracked to within 0.04mm (la) when located within 26cm of the generator. Orientation accuracy of the needle remained within ±1° in the same region, but rose quickly at larger distances. The errors on position and orientation strongly dependent the sensor position in the characterization volume (500×500×500mm 3 ). The presence of an ultrasound probe was shown to have negligible effects on tracking accuracy. The use of EMTS for automatic catheter/applicator reconstruction was also explored. Reconstruction time was less than 10 sec/channel and tips identification was within 0.69±0.29mm of the reference values. Finally, we demonstrate that hollow needle designs with special EM adaptation also allow for real-time seed drop position estimation. In phantom experiments showed that drop positions were on average within 1.6±0.9mm of the reference position measured from μCT. Altogether, EMTS offer promising benefits in a wide range of brachytherapy applications

  10. Dosimetric results in implant and post-implant and low rate in brachytherapy prostate cancer with loose seeds and attached; Resultados dosimetricos en el implante y post-impante en braquiterapia de baja tasa en cancer de prostata con semillas sueltas y unidas

    Energy Technology Data Exchange (ETDEWEB)

    Juan-Senabre, X. J.; Albert Antequera, M.; Lopez-Tarjuelo, J.; Santos Serra, A.; Perez-Mestre, M.; Sanchez Iglesias, A. L.; Conde Moreno, A. J.; Gonzalez Vidal, V.; Beltran Persiva, J.; Muelas Soria, R.; Ferrer Albiach, C.

    2015-07-01

    The objective is determine differences dosimetry statistics on the dosimetry of the implant and post-implant in brachytherapy of low rate with implants permanent in prostate using seed of 125-I loose and attached Both in lives and in the post-prostatic plans dosimetric coverage is good and restrictions in urethra and rectum for both groups of patients are met. Not migrating with joined is evident, as well as better dosimetric homogeneity. (Author)

  11. Direct determination of the absorbed dose to water from 125I low dose-rate brachytherapy seeds using the new absorbed dose primary standard developed at ENEA-INMRI

    International Nuclear Information System (INIS)

    Toni, M.P.; Pimpinella, M.; Pinto, M.; Quini, M.; Cappadozzi, G.; Silvestri, C.; Bottauscio, O.

    2012-01-01

    Low-intensity radioactive sources emitting low-energy photons are used in the clinic for low dose-rate brachytherapy treatments of tumours. The dosimetry of these sources is based on reference air kerma rate measurements. The absorbed dose rate to water at the reference depth d 0 = 1 cm, D w , 1 cm, is then obtained by a conversion procedure with a large relative standard uncertainty of about 5%. This paper describes a primary standard developed at ENEA-INMRI to directly measure D w , 1 cm due to LDR sources. The standard is based on a large-angle and variable-volume ionization chamber, embedded in a graphite phantom and operating under 'wall-less air chamber' conditions. A set of correction and conversion factors, based on experiments and Monte Carlo simulations, are determined to obtain the value of D w , 1 cm from measurements of increment of ionization current with increasing chamber volume. The relative standard uncertainty on D w , 1 cm is 2.6%, which is appreciably lower than the current uncertainty. Characteristics of the standard, its associated uncertainty budget, and some experimental results are given for 125 I BEBIG I25.S16.C brachytherapy seeds. Finally, results of the experimental determination of the dose-rate constant 1 cm, traceable to the D w , 1 cm and the low-energy air kerma ENEA-INMRI standards, are given. The relative standard uncertainty on 1 cm is 2.9%, appreciably lower than the typical uncertainty (4.8%) of the values available in the literature. (authors)

  12. Oncentra brachytherapy planning system.

    Science.gov (United States)

    Yang, Jack

    2018-03-27

    In modern cancer management, treatment planning has progressed as a contemporary tool with all the advances in computing power in recent years. One of the advanced planning tools uses 3-dimensional (3D) data sets for accurate dose distributions in patient prescription. Among these planning processes, brachytherapy has been a very important part of a successful cancer management program, offering clinical benefits with specific or combined treatments with external beam therapy. In this chapter, we mainly discussed the Elekta Oncentra planning system, which is the main treatment planning tool for high-dose rate (HDR) modality in our facility and in many other facilities in the United States. HDR is a technically advanced form of brachytherapy; a high-intensity radiation source (3.6 mm in length) is delivered with step motor in submillimeter precision under computer guidance directly into the tumor areas while minimizing injury to surrounding normal healthy tissue. Oncentra planning is the key component to generate a deliverable brachytherapy procedure, which is executed on the microSelectron V3 remote afterloader treatment system. Creating a highly conformal plan can be a time-consuming task. The development of Oncentra software (version 4.5.3) offers a variety of useful tools that facilitate many of the clinical challenging tasks for planning, such as contouring and image reconstruction, as well as rapid planning calculations with dose and dose volume histogram analysis. Oncentra Brachy module creates workflow and optimizes the planning accuracy for wide varieties of clinical HDR treatments, such as skin, gynecologic (GYN), breast, prostate, and many other applications. The treatment file can also be transferred to the afterloader control station for speedy delivery. The design concept, calculation algorithms, and optimization modules presented some key characteristics to plan and treat the patients effectively and accurately. The dose distribution and accuracy of

  13. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model

    International Nuclear Information System (INIS)

    Huang, Jian-Wen; Lv, Xiang-Guo; Song, Lu-Jie; Feng, Chao; Xie, Min-Kai; Li, Chao; Li, Hong-Bin; Wang, Ji-Hong; Zhu, Wei-Dong; Xu, Yue-Min; Li, Zhe; Chen, Shi-Yan; Wang, Hua-Ping

    2015-01-01

    The goal of this study was to evaluate the effects of urethral reconstruction with a three-dimensional (3D) porous bacterial cellulose (BC) scaffold seeded with lingual keratinocytes in a rabbit model. A novel 3D porous BC scaffold was prepared by gelatin sponge interfering in the BC fermentation process. Rabbit lingual keratinocytes were isolated, expanded, and seeded onto 3D porous BC. BC alone (group 1, N  =  10), 3D porous BC alone (group 2, N  =  10), and 3D porous BC seeded with lingual keratinocytes (group 3, N  =  10) were used to repair rabbit ventral urethral defects (2.0   ×   0.8 cm). Scanning electron microscopy revealed that BC consisted of a compact laminate while 3D porous BC was composed of a porous sheet buttressed by a dense outer layer. The average pore diameter and porosity of the 3D porous BC were 4.23   ±   1.14 μm and 67.00   ±   6.80%, respectively. At 3 months postoperatively, macroscopic examinations and retrograde urethrograms of urethras revealed that all urethras maintained wide calibers in group 3. Strictures were found in all rabbits in groups 1 and 2. Histologically, at 1 month postoperatively, intact epithelium occurred in group 3, and discontinued epithelium was found in groups 1 and 2. However, groups 2 and 3 exhibited similar epithelial regeneration, which was superior to that of group 1 at 3 months (p  <  0.05). Comparisons of smooth muscle content and endothelia density among the three groups revealed a significant increase at each time point (p  <  0.05). Our results demonstrated that 3D porous BC seeded with lingual keratinocytes enhanced urethral tissue regeneration. 3D porous BC could potentially be used as an optimized scaffold for urethral reconstruction. (paper)

  14. Brachytherapy needle deflection evaluation and correction

    International Nuclear Information System (INIS)

    Wan Gang; Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-01-01

    In prostate brachytherapy, an 18-gauge needle is used to implant radioactive seeds. This thin needle can be deflected from the preplanned trajectory in the prostate, potentially resulting in a suboptimum dose pattern and at times requiring repeated needle insertion to achieve optimal dosimetry. In this paper, we report on the evaluation of brachytherapy needle deflection and bending in test phantoms and two approaches to overcome the problem. First we tested the relationship between needle deflection and insertion depth as well as whether needle bending occurred. Targeting accuracy was tested by inserting a brachytherapy needle to target 16 points in chicken tissue phantoms. By implanting dummy seeds into chicken tissue phantoms under 3D ultrasound guidance, the overall accuracy of seed implantation was determined. We evaluated methods to overcome brachytherapy needle deflection with three different insertion methods: constant orientation, constant rotation, and orientation reversal at half of the insertion depth. Our results showed that needle deflection is linear with needle insertion depth, and that no noticeable bending occurs with needle insertion into the tissue and agar phantoms. A 3D principal component analysis was performed to obtain the population distribution of needle tip and seed position relative to the target positions. Our results showed that with the constant orientation insertion method, the mean needle targeting error was 2.8 mm and the mean seed implantation error was 2.9 mm. Using the constant rotation and orientation reversal at half insertion depth methods, the deflection error was reduced. The mean needle targeting errors were 0.8 and 1.2 mm for the constant rotation and orientation reversal methods, respectively, and the seed implantation errors were 0.9 and 1.5 mm for constant rotation insertion and orientation reversal methods, respectively

  15. Factors influencing upon the incidence of seed migration in I-125 seed transperineal prostate implantation

    International Nuclear Information System (INIS)

    Itami, Jun; Onishi, Kayoko; Kanemura, Mikio

    2005-01-01

    Transperineal I-125 seed brachytherapy for prostate cancer is rapidly expanding in Japan. Seed migrations to lung and abdomen are well known complication in the seed brachytherapy. The rate of incidence and the predisposing factors were studied. From April 2004 through January 2005, 36 patients underwent transperineal I-125 seed brachytherapy for prostate cancer. In all patients loose I-125 seeds were inserted with Mick applicator according to modified peripheral loading pattern. One day, 1 week, and 1 month after the procedure, posteroanterior and lateral chest X-rays and abdominal X-ray were performed. Abdominal and chest seed migrations were seen in 11 (30.6%) and 14 (38.9%) patients, respectively. In total, 20 patients (55.6%) showed seed migrations. Forty-two I-125 seeds migrated out of 2,508 implanted seeds. Most of the migrations were seen until 1 month after the procedure. The preplanned number of the extraprostatic seeds had a statistically significant influence upon the incidence of seed migration. Seed migration is not a rare phenomenon in transperineal I-125 seed brachytherapy for prostate cancer. To confirm seed migration, X-ray examinations 1 month after the procedure are suited. At the preplanning, the number of extraprostatic seeds should be limited to minimal to decrease the incidence of seed migration. In future, the introduction of linked I-125 seeds is preferred. (author)

  16. Sci-Sat AM(2): Brachy-05: Dosimetry effects of the TG-43 approximations for two iodine seeds in LDR brachytherapy.

    Science.gov (United States)

    Furstoss, C; Bertrand, M J; Poon, E; Reniers, B; Pignol, J P; Carrier, J F; Beaulieu, L; Verhaegen, F

    2008-07-01

    This work consists of studying the interseed and tissue composition effects for two model iodine seeds: the IBt Interseed-125 and the 6711 model seed. Three seeds were modeled with the MCNP MC code in a water sphere to evaluate the interseed effect. The dose calculated at different distances from the centre was compared to the dose summed when the seeds were simulated separately. The tissue composition effect was studied calculating the radial dose function for different tissues. Before carrying out post-implant studies, the absolute dose calculated by MC was compared to experiment results: with LiF TLDs in an acrylic breast phantom and with an EBT Gafchromic film placed in a water tank. Afterwards, the TG-43 approximation effects were studied for a prostate and breast post-implant. The interseed effect study shows that this effect is more important for model 6711 (15%) than for IBt (10%) due to the silver rod in 6711. For both seed models the variations of the radial dose function as a function of the tissue composition are quasi similar. The absolute dose comparisons between MC calculations and experiments give good agreement (inferior to 3% in general). For the prostate and breast post-implant studies, a 10% difference between MC calculations and the TG-43 is found for both models of seeds. This study shows that the differences in dose distributions between TG43 and MC are quite similar for the two models of seeds and are about 10% for the studied post-implant treatments. © 2008 American Association of Physicists in Medicine.

  17. Nucleation barrier reconstruction via the seeding method in a lattice model with competing nucleation pathways.

    Science.gov (United States)

    Lifanov, Yuri; Vorselaars, Bart; Quigley, David

    2016-12-07

    We study a three-species analogue of the Potts lattice gas model of nucleation from solution in a regime where partially disordered solute is a viable thermodynamic phase. Using a multicanonical sampling protocol, we compute phase diagrams for the system, from which we determine a parameter regime where the partially disordered phase is metastable almost everywhere in the temperature-fugacity plane. The resulting model shows non-trivial nucleation and growth behaviour, which we examine via multidimensional free energy calculations. We consider the applicability of the model in capturing the multi-stage nucleation mechanisms of polymorphic biominerals (e.g., CaCO 3 ). We then quantitatively explore the kinetics of nucleation in our model using the increasingly popular "seeding" method. We compare the resulting free energy barrier heights to those obtained via explicit free energy calculations over a wide range of temperatures and fugacities, carefully considering the propagation of statistical error. We find that the ability of the "seeding" method to reproduce accurate free energy barriers is dependent on the degree of supersaturation, and severely limited by the use of a nucleation driving force Δμ computed for bulk phases. We discuss possible reasons for this in terms of underlying kinetic assumptions, and those of classical nucleation theory.

  18. Impact of target area selection in 125 Iodine seed brachytherapy on locoregional recurrence in patients with non-small cell lung cancer.

    Science.gov (United States)

    Yan, Wei-Liang; Lv, Jin-Shuang; Guan, Zhi-Yu; Wang, Li-Yang; Yang, Jing-Kui; Liang, Ji-Xiang

    2017-05-01

    Computed tomography (CT)-guided percutaneous implantation of 125 Iodine radioactive seeds requires the precise arrangement of seeds by tumor shape. We tested whether selecting target areas, including subclinical areas around tumors, can influence locoregional recurrence in patients with non-small cell lung cancer (NSCLC). We divided 82 patients with NSCLC into two groups. Target areas in group 1 (n = 40) were defined along tumor margins based on lung-window CT. Target areas in group 2 (n = 42) were extended by 0.5 cm in all dimensions outside tumor margins. Preoperative plans for both groups were based on a treatment plan system, which guided 125 I seed implantation. Six months later, patients underwent chest CT to evaluate treatment efficacy (per Response Evaluation Criteria in Solid Tumors version 1). We compared locoregional recurrences between the groups after a year of follow-up. We then used the treatment plan system to extend target areas for group 1 patients by 0.5 cm (defined as group 3 data) and compared these hypothetical group 3 planned seeds with the actual seed numbers used in group 1 patients. All patients successfully underwent implantation; none died during the follow-up period. Recurrence was significantly lower in group 2 than in group 1 ( P  area for 125 I seeds can decrease recurrence risk by eradicating cancerous lymph-duct blockades within the extended areas. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  19. The role of brachytherapy in the definitive management of prostate cancer; Place de la curietherapie dans le traitement du cancer prostatique localise

    Energy Technology Data Exchange (ETDEWEB)

    Crook, J. [British Columbia Cancer Agency, Center for the Southern Interior, 399, Royal Avenue, Kelowna, British Columbia, V1Y 5L33 (Canada)

    2011-06-15

    Over the past two decades, brachytherapy has played an ever expanding role in the definitive radiotherapy of prostate cancer. Brachytherapy surpasses external beam radiotherapy in its ability to deliver intense intra-prostatic dose escalation. Although initially low dose rate permanent seed brachytherapy was favored for favorable risk prostate cancers, and high dose rate temporary brachytherapy for intermediate and advanced disease, both types of brachytherapy now have a place across all the risk groups of localized prostate cancer. This article will review indications and patient selection, planning and technical aspects, toxicity and efficacy for both low and high dose rate prostate brachytherapy. (author)

  20. SU-G-JeP1-10: Feasibility of CyberKnife Tracking Using the Previously-Implanted Permanent Brachytherapy Seed Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, J; Cunha, J; Sudhyadhom, A; McGuinness, C; Roach, M; Descovich, M [University of California San Francisco, San Francisco, CA (United States)

    2016-06-15

    Purpose: Robotic radiosurgery is a salvage treatment option for patients with recurrent prostate cancer. We explored the feasibility of tracking the bolus of permanent prostate implants (PPI) using image recognition software optimized to track spinal anatomy. Methods: Forty-five inert iodine seeds were implanted into a gelatin-based prostate phantom. Four superficial gold seeds were inserted to provide ground-truth alignment. A CT scan of the phantom (120 kVp, 1 mm slice thickness) was acquired and a single-energy iterative metal artifact reduction (MAR) algorithm was used to enhance the quality of the DRR used for tracking. CyberKnife treatment plans were generated from the MAR CT and regular CT (no-MAR) using spine tracking. The spine-tracking grid was centered on the bolus of seeds and resized to encompass the full seed cloud. A third plan was created from the regular CT scan, using fiducial tracking based on the 4 superficial gold seeds with identical align-center coordinates. The phantom was initially aligned using the fiducial-tracking plan. Then the MAR and no-MAR spine-tracking plans were loaded without moving the phantom. Differences in couch correction parameters were recorded in the case of perfect alignment and after the application of known rotations and translations (roll/pitch of 2 degrees; translations XYZ of 2 cm). Results: The spine tracking software was able to lock on to the bolus of seeds and provide couch corrections both in the MAR and no-MAR plans. In all cases, differences in the couch correction parameters from fiducial alignment were <0.5 mm in translations and <1 degree in rotations. Conclusion: We were able to successfully track the bolus of seeds with the spine-tracking grid in phantom experiments. For clinical applications, further investigation and developments to adapt the spine-tracking algorithm to optimize for PPI seed cloud tracking is needed to provide reliable tracking in patients. One of the authors (MD) has received research

  1. SU-G-JeP1-10: Feasibility of CyberKnife Tracking Using the Previously-Implanted Permanent Brachytherapy Seed Cloud

    International Nuclear Information System (INIS)

    Cheung, J; Cunha, J; Sudhyadhom, A; McGuinness, C; Roach, M; Descovich, M

    2016-01-01

    Purpose: Robotic radiosurgery is a salvage treatment option for patients with recurrent prostate cancer. We explored the feasibility of tracking the bolus of permanent prostate implants (PPI) using image recognition software optimized to track spinal anatomy. Methods: Forty-five inert iodine seeds were implanted into a gelatin-based prostate phantom. Four superficial gold seeds were inserted to provide ground-truth alignment. A CT scan of the phantom (120 kVp, 1 mm slice thickness) was acquired and a single-energy iterative metal artifact reduction (MAR) algorithm was used to enhance the quality of the DRR used for tracking. CyberKnife treatment plans were generated from the MAR CT and regular CT (no-MAR) using spine tracking. The spine-tracking grid was centered on the bolus of seeds and resized to encompass the full seed cloud. A third plan was created from the regular CT scan, using fiducial tracking based on the 4 superficial gold seeds with identical align-center coordinates. The phantom was initially aligned using the fiducial-tracking plan. Then the MAR and no-MAR spine-tracking plans were loaded without moving the phantom. Differences in couch correction parameters were recorded in the case of perfect alignment and after the application of known rotations and translations (roll/pitch of 2 degrees; translations XYZ of 2 cm). Results: The spine tracking software was able to lock on to the bolus of seeds and provide couch corrections both in the MAR and no-MAR plans. In all cases, differences in the couch correction parameters from fiducial alignment were <0.5 mm in translations and <1 degree in rotations. Conclusion: We were able to successfully track the bolus of seeds with the spine-tracking grid in phantom experiments. For clinical applications, further investigation and developments to adapt the spine-tracking algorithm to optimize for PPI seed cloud tracking is needed to provide reliable tracking in patients. One of the authors (MD) has received research

  2. A survey of current clinical practice in permanent and temporary prostate brachytherapy: 2010 update.

    Science.gov (United States)

    Buyyounouski, Mark K; Davis, Brian J; Prestidge, Bradley R; Shanahan, Thomas G; Stock, Richard G; Grimm, Peter D; Demanes, D Jeffrey; Zaider, Marco; Horwitz, Eric M

    2012-01-01

    To help establish patterns of care and standards of care of interstitial permanent low-dose-rate (LDR) and temporary high-dose-rate brachytherapy for prostate cancer and to compare the results with a similar 1998 American Brachytherapy Society (ABS) survey. A comprehensive questionnaire intended to survey specific details of current clinical brachytherapy practice was provided to the participants of the seventh ABS Prostate Brachytherapy School. Responses were tabulated and descriptive statistics are reported. Sixty-five brachytherapy practitioners responded to the survey. Eighty-nine percent (89%) of respondents performed LDR and 49% perform high-dose-rate brachytherapy. The median number of years of experience for LDR brachytherapists increased from 5 to 10 years over the course of the 12 years since the preceding survey. Compared with the first ABS, a smaller proportion of respondents received formal brachytherapy residency training (43% vs. 56%) or formal "hands-on" brachytherapy training (15% vs. 63%). There has been a marked decline in the utilization of the Mick applicator (Mick Radio-Nuclear Instruments, Inc., Mount Vernon, NY, USA) (60% vs. 28%) and an increase in the use of stranded seeds (40% vs. 11%). Compliance with postimplant dosimetry was higher in the 2010 survey. This survey does suggest an evolution in the practice of LDR brachytherapy since 1998 and aids in identifying aspects that require further progress or investigation. ABS guidelines and other practice recommendations appear to impact the practice of brachytherapy. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    OpenAIRE

    Zhou J; Zamdborg L; Sebastian E

    2015-01-01

    Jun Zhou,1,2 Leonid Zamdborg,1 Evelyn Sebastian1 1Department of Radiation Oncology, Beaumont Health System, 2Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA Abstract: The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy ...

  4. Impact of systematic errors on DVH parameters of different OAR and target volumes in Intracavitary Brachytherapy (ICBT)

    International Nuclear Information System (INIS)

    Mourya, Ankur; Singh, Gaganpreet; Kumar, Vivek; Oinam, Arun S.

    2016-01-01

    Aim of this study is to analyze the impact of systematic errors on DVH parameters of different OAR and Target volumes in intracavitary brachytherapy (ICBT). To quantify the changes in dose-volume histogram parameters due to systematic errors in applicator reconstruction of brachytherapy planning, known errors in catheter reconstructions have to be introduced in applicator coordinate system

  5. Methods for prostate stabilization during transperineal LDR brachytherapy

    International Nuclear Information System (INIS)

    Podder, Tarun; Yu Yan; Sherman, Jason; Rubens, Deborah; Strang, John; Messing, Edward; Ng, Wan-Sing

    2008-01-01

    In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and

  6. Methods for prostate stabilization during transperineal LDR brachytherapy.

    Science.gov (United States)

    Podder, Tarun; Sherman, Jason; Rubens, Deborah; Messing, Edward; Strang, John; Ng, Wan-Sing; Yu, Yan

    2008-03-21

    In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and

  7. Complementary method of analyzing the quality of the implant I-125 seeds for prostate brachytherapy using ultrasound imaging post-implant

    International Nuclear Information System (INIS)

    Jimenez Dominguez, M.; Carrasco Herrera, M.; Baeza Trujillo, M.; Herrador Cordoba, M.

    2011-01-01

    In this paper we propose a complementary method based on Longitudinal mode ultrasound images acquired the same day of surgery, at the end of the implant. This option will allow us to evaluate the dosimetry end of treatment with the patient in the same position he was planning and to the rectum and bladder just as full. This will permit the identification of bodies and the seeds of interest more easily and will have a reference with which to compare one month later, when the CT images can also detect whether there has been some migration.

  8. BrachyView: Combining LDR seed positions with transrectal ultrasound imaging in a prostate gel phantom.

    Science.gov (United States)

    Alnaghy, S; Cutajar, D L; Bucci, J A; Enari, K; Safavi-Naeini, M; Favoino, M; Tartaglia, M; Carriero, F; Jakubek, J; Pospisil, S; Lerch, M; Rosenfeld, A B; Petasecca, M

    2017-02-01

    BrachyView is a novel in-body imaging system which aims to provide LDR brachytherapy seeds position reconstruction within the prostate in real-time. The first prototype is presented in this study: the probe consists of a gamma camera featuring three single cone pinhole collimators embedded in a tungsten tube, above three, high resolution pixelated detectors (Timepix). The prostate was imaged with a TRUS system using a sagittal crystal with a 2.5mm slice thickness. Eleven needles containing a total of thirty 0.508U 125 I seeds were implanted under ultrasound guidance. A CT scan was used to localise the seed positions, as well as provide a reference when performing the image co-registration between the BrachyView coordinate system and the TRUS coordinate system. An in-house visualisation software interface was developed to provide a quantitative 3D reconstructed prostate based on the TRUS images and co-registered with the LDR seeds in situ. A rigid body image registration was performed between the BrachyView and TRUS systems, with the BrachyView and CT-derived source locations compared. The reconstructed seed positions determined by the BrachyView probe showed a maximum discrepancy of 1.78mm, with 75% of the seeds reconstructed within 1mm of their nominal location. An accurate co-registration between the BrachyView and TRUS coordinate system was established. The BrachyView system has shown its ability to reconstruct all implanted LDR seeds within a tissue equivalent prostate gel phantom, providing both anatomical and seed position information in a single interface. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    Science.gov (United States)

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  10. Evaluation of resins for use in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luiz Claudio F.M. Garcia; Ferraz, Wilmar Barbosa; Chrcanovic, Bruno Ramos; Santos, Ana Maria M., E-mail: ferrazw@cdtn.b, E-mail: amms@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Brachytherapy is an advanced cancer treatment where radioactive seeds or sources are placed near or directly into the tumor thus reducing the radiation exposure in the surrounding healthy tissues. Prostate cancer can be treated with interstitial brachytherapy in initial stage of the disease in which tiny radioactive seeds with cylindrical geometry are used. Several kinds of seeds have been developed in order to obtain a better dose distribution around them and with a lower cost manufacturing. These seeds consist of an encapsulation, a radionuclide carrier, and X-ray marker. Among the materials that have potential for innovation in the construction of seeds, biocompatible resins appear as an important option. In this paper, we present some characterization results with Fourier transform infrared spectroscopic (FTIR) and ultraviolet-visible spectroscopy (UV-vis) performed on two types of resins in which curing temperatures for each one were varied as also the results of coatings with these resins under titanium substrates. Interactions of these resins in contact with the simulated body fluid were evaluated by atomic force microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. (author)

  11. Advancements in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Ménard, Cynthia; Polgar, Csaba

    2017-01-01

    Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherap...

  12. Automated intraoperative calibration for prostate cancer brachytherapy

    International Nuclear Information System (INIS)

    Kuiran Chen, Thomas; Heffter, Tamas; Lasso, Andras; Pinter, Csaba; Abolmaesumi, Purang; Burdette, E. Clif; Fichtinger, Gabor

    2011-01-01

    Purpose: Prostate cancer brachytherapy relies on an accurate spatial registration between the implant needles and the TRUS image, called ''calibration''. The authors propose a new device and a fast, automatic method to calibrate the brachytherapy system in the operating room, with instant error feedback. Methods: A device was CAD-designed and precision-engineered, which mechanically couples a calibration phantom with an exact replica of the standard brachytherapy template. From real-time TRUS images acquired from the calibration device and processed by the calibration system, the coordinate transformation between the brachytherapy template and the TRUS images was computed automatically. The system instantly generated a report of the target reconstruction accuracy based on the current calibration outcome. Results: Four types of validation tests were conducted. First, 50 independent, real-time calibration trials yielded an average of 0.57 ± 0.13 mm line reconstruction error (LRE) relative to ground truth. Second, the averaged LRE was 0.37 ± 0.25 mm relative to ground truth in tests with six different commercial TRUS scanners operating at similar imaging settings. Furthermore, testing with five different commercial stepper systems yielded an average of 0.29 ± 0.16 mm LRE relative to ground truth. Finally, the system achieved an average of 0.56 ± 0.27 mm target registration error (TRE) relative to ground truth in needle insertion tests through the template in a water tank. Conclusions: The proposed automatic, intraoperative calibration system for prostate cancer brachytherapy has achieved high accuracy, precision, and robustness.

  13. Dose rate constant and energy spectrum of interstitial brachytherapy sources

    International Nuclear Information System (INIS)

    Chen Zhe; Nath, Ravinder

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125 I and 103 Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S K ) standard for 125 I seeds and has also established an S K standard for 103 Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (Λ) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of Λ and to develop a simple method for a quick and accurate estimation of Λ. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that Λ may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S K and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for Λ was derived for point sources with known photon energy spectra. This approach enabled a systematic study of Λ as a function of energy. Using the measured energy spectra, the calculated Λ for 125 I model 6711 and 6702 seeds and for 192 Ir seed agreed with the AAPM recommended values within ±1%. For the 103 Pd model 200 seed, the agreement was 5% with a recently measured value (within the ±7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for Λ proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known

  14. Synthetic virus seeds for improved vaccine safety: Genetic reconstruction of poliovirus seeds for a PER.C6 cell based inactivated poliovirus vaccine.

    Science.gov (United States)

    Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V

    2015-10-13

    Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. WE-AB-BRA-12: Post-Implant Dosimetry in Prostate Brachytherapy by X-Ray and MRI Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Park, S; Song, D; Lee, J [Johns Hopkins University, Baltimore, MD (United States); Le, Y [Indiana University, Indianapolis, IN (United States)

    2016-06-15

    Purpose: For post-implant dosimetric assessment after prostate brachytherapy, CT-MR fusion approach has been advocated due to the superior accuracy on both seeds localization and soft tissue delineation. However, CT deposits additional radiation to the patient, and seed identification in CT requires manual review and correction. In this study, we propose an accurate, low-dose, and cost-effective post-implant dosimetry approach based on X-ray and MRI. Methods: Implanted seeds are reconstructed using only three X-ray fluoroscopy images by solving a combinatorial optimization problem. The reconstructed seeds are then registered to MR images using an intensity-based points-to-volume registration. MR images are first pre-processed by geometric and Gaussian filtering, yielding smooth candidate seed-only images. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine followed by local deformable registrations. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. Results: We tested our algorithm on twenty patient data sets. For quantitative evaluation, we obtained ground truth seed positions by fusing the post-implant CT-MR images. Seeds were semi-automatically extracted from CT and manually corrected and then registered to the MR images. Target registration error (TRE) was computed by measuring the Euclidean distances from the ground truth to the closest registered X-ray seeds. The overall TREs (mean±standard deviation in mm) are 1.6±1.1 (affine) and 1.3±0.8 (affine+deformable). The overall computation takes less than 1 minute. Conclusion: It has been reported that the CT-based seed localization error is ∼1.6mm and the seed localization uncertainty of 2mm results in less than 5% deviation of prostate D

  16. WE-AB-BRA-12: Post-Implant Dosimetry in Prostate Brachytherapy by X-Ray and MRI Fusion

    International Nuclear Information System (INIS)

    Park, S; Song, D; Lee, J; Le, Y

    2016-01-01

    Purpose: For post-implant dosimetric assessment after prostate brachytherapy, CT-MR fusion approach has been advocated due to the superior accuracy on both seeds localization and soft tissue delineation. However, CT deposits additional radiation to the patient, and seed identification in CT requires manual review and correction. In this study, we propose an accurate, low-dose, and cost-effective post-implant dosimetry approach based on X-ray and MRI. Methods: Implanted seeds are reconstructed using only three X-ray fluoroscopy images by solving a combinatorial optimization problem. The reconstructed seeds are then registered to MR images using an intensity-based points-to-volume registration. MR images are first pre-processed by geometric and Gaussian filtering, yielding smooth candidate seed-only images. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine followed by local deformable registrations. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. Results: We tested our algorithm on twenty patient data sets. For quantitative evaluation, we obtained ground truth seed positions by fusing the post-implant CT-MR images. Seeds were semi-automatically extracted from CT and manually corrected and then registered to the MR images. Target registration error (TRE) was computed by measuring the Euclidean distances from the ground truth to the closest registered X-ray seeds. The overall TREs (mean±standard deviation in mm) are 1.6±1.1 (affine) and 1.3±0.8 (affine+deformable). The overall computation takes less than 1 minute. Conclusion: It has been reported that the CT-based seed localization error is ∼1.6mm and the seed localization uncertainty of 2mm results in less than 5% deviation of prostate D

  17. Severe rectal complications after prostate brachytherapy

    International Nuclear Information System (INIS)

    Wallner, Kent; Sutlief, Stephen; Bergsagel, Carl; Merrick, Gregory S.

    2015-01-01

    Purpose: Some investigators have reported severe rectal complications after brachytherapy. Due to the low number of such events, their relationship to dosimetric parameters has not been well characterized. Methods and materials: A total of 3126 patients were treated with low dose rate brachytherapy from 1998 through 2010. 2464 had implant alone, and 313 had implant preceded by 44–46 Gy supplemental external beam radiation (EBRT). Post-implant dosimetry was based on a CT scan obtained on the day of implant, generally within 30 min of the procedure. Every patient’s record was reviewed for occurrence of rectal complications. Results: Eight of 2464 patients (0.32%) treated with brachytherapy alone developed a radiation-related rectal fistula. Average prostatic and rectal dose parameters were moderately higher for fistula patients than for patients without a severe rectal complication. For instance, the average R100 was 1.2 ± 0.75 cc for fistula patients, versus 0.37 ± 0.88 cc for non-fistula patients. However, the fistula patients’ values were well within the range of values for patients without a rectal complication. Four patients had some attempt at repair or reconstruction, but long-term functional outcomes were not favorable. Conclusions: Rectal fistulas are a very uncommon potential complication of prostate brachytherapy, which can occur even in the setting of acceptable day 0 rectal doses. Their occurrence is not easily explained by standard dosimetric or clinical factors

  18. Prostate brachytherapy in Ghana: our initial experience

    Directory of Open Access Journals (Sweden)

    James Edward Mensah

    2016-10-01

    Full Text Available Purpose: This study presents the experience of a brachytherapy team in Ghana with a focus on technology transfer and outcome. The team was initially proctored by experienced physicians from Europe and South Africa. Material and methods : A total of 90 consecutive patients underwent either brachytherapy alone or brachytherapy in combination with external beam radiotherapy for prostate carcinoma between July 2008 and February 2014 at Korle Bu Teaching Hospital, Accra, Ghana. Patients were classified as low-risk, intermediate, and high-risk according to the National Comprehensive Cancer Network (NCCN criteria. All low-risk and some intermediate risk group patients were treated with seed implantation alone. Some intermediate and all high-risk group patients received brachytherapy combined with external beam radiotherapy. Results: The median patient age was 64.0 years (range 46-78 years. The median follow-up was 58 months (range 18-74 months. Twelve patients experienced biochemical failure including one patient who had evidence of metastatic disease and died of prostate cancer. Freedom from biochemical failure rates for low, intermediate, and high-risk cases were 95.4%, 90.9%, and 70.8%, respectively. Clinical parameters predictive of biochemical outcome included: clinical stage, Gleason score, and risk group. Pre-treatment prostate specific antigen (PSA was not a statistically significant predictor of biochemical failure. Sixty-nine patients (76.6% experienced grade 1 urinary symptoms in the form of frequency, urgency, and poor stream. These symptoms were mostly self-limiting. Four patients needed catheterization for urinary retention (grade 2. One patient developed a recto urethral fistula (grade 3 following banding for hemorrhoids. Conclusions : Our results compare favorably with those reported by other institutions with more extensive experience. We believe therefore that, interstitial permanent brachytherapy can be safely and effectively

  19. The american brachytherapy society recommendations for permanent prostate brachytherapy postimplant dosimetric analysis

    International Nuclear Information System (INIS)

    Nag, Subir; Bice, William; Wyngaert, Keith de; Prestidge, Bradley; Stock, Richard; Yu Yan

    2000-01-01

    Purpose: The purpose of this report is to establish guidelines for postimplant dosimetric analysis of permanent prostate brachytherapy. Methods: Members of the American Brachytherapy Society (ABS) with expertise in prostate dosimetry evaluation performed a literature review and supplemented with their clinical experience formulated guidelines for performing and analyzing postimplant dosimetry of permanent prostate brachytherapy. Results: The ABS recommends that postimplant dosimetry should be performed on all patients undergoing permanent prostate brachytherapy for optimal patient care. At present, computed tomography (CT)-based dosimetry is recommended, based on availability cost and the ability to image the prostate as well as the seeds. Additional plane radiographs should be obtained to verify the seed count. Until the ideal postoperative interval for CT scanning has been determined, each center should perform dosimetric evaluation of prostate implants at a consistent postoperative interval. This interval should be reported. Isodose displays should be obtained at 50%, 80%, 90%, 100%, 150%, and 200% of the prescription dose and displayed on multiple cross-sectional images of the prostate. A dose-volume histogram (DVH) of the prostate should be performed and the D 90 (dose to 90% of the prostate gland) reported by all centers. Additionally, the D 80, D 100, the fractional V 80, V 90, V 100, V 150, and V 200, (i.e., the percentage of prostate volume receiving 80%, 90%, 100%, 150%, and 200% of the prescribed dose, respectively), the rectal, and urethral doses should be reported and ultimately correlated with clinical outcome in the research environment. On-line real-time dosimetry, the effects of dose heterogeneity, and the effects of tissue heterogeneity need further investigation. Conclusion: It is essential that postimplant dosimetry should be performed on all patients undergoing permanent prostate brachytherapy. Guidelines were established for the performance

  20. Radiation protection in brachytherapy

    International Nuclear Information System (INIS)

    Benitez, Manuel

    1996-02-01

    It covers technical procedures in medical applications for cancer treatment. Radiation protection principles in brachytherapy. Medical uses in therapy for Sr-90, Cs-137, Co-60, Ra-226, Ir-192, Au-198, Bi-214, Pb-214. (The author)

  1. Radioactive sources in brachytherapy:

    OpenAIRE

    Burger, Janez

    2003-01-01

    Background. In modern brachytherapy, a greast step forward was made in the 1960s in France with the introduction of new radioactive isotopes and new techniques. These innovations spread rapidly across Europe, though no single dosimetry standard had been set by then. In the new millennium, the advances in brachytherapy are further stimulated by the introduction of 3-D imaging techniques and the latest after loading irradiation equipment that use point sources. The international organiyation IC...

  2. Urethral toxicity after LDR brachytherapy: experience in Japan.

    Science.gov (United States)

    Tanaka, Nobumichi; Asakawa, Isao; Hasegawa, Masatoshi; Fujimoto, Kiyohide

    2015-01-01

    Urinary toxicity is common after low-dose-rate (LDR) brachytherapy, and the resolution of urinary toxicity is a concern. In particular, urinary frequency is the most common adverse event among the urinary toxicities. We have previously reported that approximately 70% of patients experience urinary frequency during the first 6 months after seed implantation. Most urinary adverse events were classified as Grade 1, and Grade 2 or higher adverse events were rare. The incidence of urinary retention was approximately 2-4%. A high International Prostate Symptom Score before seed implantation was an independent predictor of acute urinary toxicity of Grade 2 or higher. Several previous reports from the United States also supported this trend. In Japan, LDR brachytherapy was legally approved in 2003. A nationwide prospective cohort study entitled Japanese Prostate Cancer Outcome Study of Permanent Iodine-125 Seed Implantation was initiated in July 2005. It is an important issue to limit urinary toxicities in patients who undergo LDR brachytherapy. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. Electromagnetic tracking for treatment verification in interstitial brachytherapy

    DEFF Research Database (Denmark)

    Bert, Christoph; Kellermeier, Markus; Tanderup, Kari

    2016-01-01

    Electromagnetic tracking (EMT) is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes...

  4. Brazilian demand for Iodine-125 seeds in cancer treatment after a decade of medical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Osvaldo L. da; Souza, Daiane C.B. de; Feher, Anselmo; Moura, João A.; Souza, Carla D.; Oliveira, Henrique B. de; Peleiras Junior, Fernando S.; Zeituni, CArlos A.; Rostelaro, Maria E.C.M., E-mail: olcosta@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Iodine-125 and palladium-103 are radionuclides employed to made medical devices used in cancer treatment known as brachytherapy seeds. These radioactive sealed sources are applied in brain and ophthalmic cancer as a temporary implant to irradiate the tumor and in permanent implants to prostatic cancer. Brazilian Nuclear Energy Commission (CNEN) has the monopoly in Brazil of iodine-125 brachytherapy seeds distribution which is executed for Nuclear and Energy Research Institute (IPEN-CNEN/SP). Along a decade of use in Brazil more than 240 thousand seeds were implanted in patients or used to treat cancer tumors. In this article the Brazilian demand for iodine-125 brachytherapy seeds is analyzed. The demand behavior along a decade of using loose, strand, ophthalmic and brain brachytherapy seeds are shown. The annual quantity of seeds demanded by Brazil has dropped since 2012. The loose seeds which represented until 30% from total brachytherapy seeds used in Brazil decreased to less than 3%. The brain brachytherapy seeds had low demand along the decade and presented zero demand in several years. Concurrent treatment techniques are listed and main trends are discussed. The influence of Brazilian economic crisis and the demand behavior of the main hospitals and clinics that use Iodine-125 brachytherapy are shown. (author)

  5. Brazilian demand for Iodine-125 seeds in cancer treatment after a decade of medical procedures

    International Nuclear Information System (INIS)

    Costa, Osvaldo L. da; Souza, Daiane C.B. de; Feher, Anselmo; Moura, João A.; Souza, Carla D.; Oliveira, Henrique B. de; Peleiras Junior, Fernando S.; Zeituni, CArlos A.; Rostelaro, Maria E.C.M.

    2017-01-01

    Iodine-125 and palladium-103 are radionuclides employed to made medical devices used in cancer treatment known as brachytherapy seeds. These radioactive sealed sources are applied in brain and ophthalmic cancer as a temporary implant to irradiate the tumor and in permanent implants to prostatic cancer. Brazilian Nuclear Energy Commission (CNEN) has the monopoly in Brazil of iodine-125 brachytherapy seeds distribution which is executed for Nuclear and Energy Research Institute (IPEN-CNEN/SP). Along a decade of use in Brazil more than 240 thousand seeds were implanted in patients or used to treat cancer tumors. In this article the Brazilian demand for iodine-125 brachytherapy seeds is analyzed. The demand behavior along a decade of using loose, strand, ophthalmic and brain brachytherapy seeds are shown. The annual quantity of seeds demanded by Brazil has dropped since 2012. The loose seeds which represented until 30% from total brachytherapy seeds used in Brazil decreased to less than 3%. The brain brachytherapy seeds had low demand along the decade and presented zero demand in several years. Concurrent treatment techniques are listed and main trends are discussed. The influence of Brazilian economic crisis and the demand behavior of the main hospitals and clinics that use Iodine-125 brachytherapy are shown. (author)

  6. Role of TPS in 125I brachytherapy for orbital tumors

    International Nuclear Information System (INIS)

    Ren Ling; Dai Haojie; Li Quan

    2012-01-01

    Objective: To investigate the role of TPS in 125 I brachytherapy for orbital tumors. Methods: Sixty-six patients with orbital tumor treated with 125 I seeds from 2005 to 2009 were retrospectively analyzed. Forty-three patients were treated using TPS guided brachytherapy and the prescribed dose was 140 Gy. Other 23 patients were treated without TPS but simply implanted with 125 I seeds at 1 cm intervals in parallel with each other intraoperatively. CT and TPS quality verification were performed postoperatively in all patients. Also, CT and (or) MRI examination were performed at 3, 6, 12 and 24 months after brachytherapy for follow-up. χ 2 test and Kaplan-Meier survival analysis with log-rank significance test were used with SPSS 17.0. Results: A total of 1070 125 I seeds were implanted in 66 cases, on average, (16.2 ± 7.3) seeds for each patient. The satisfaction rates of postoperative quality verification in patients with and without TPS pre-plans were 79.07% (34/43) and 43.48% (10/23) respectively (χ 2 =8.542, P=0.003). Ten patients were lost in follow-up. Local recurrence rates in patients with favorable postoperative quality verification were 0 (0/37) in 3 months, 6.25% (2/32) in 6 months, 13.64% (3/22) in 12 months and 3/9 in 24 months respectively, which were significantly different from those (5.26% (1/19), 16.67% (3/18), 30.77% (4/13), 6/6) in the patients with inferior postoperative quality verification (χ 2 =9.017, P=0.0003). Conclusions: TPS plays an important role in 125 I brachytherapy for orbital tumors. Also, postoperative quality verification by TPS may help predict the local recurrence after brachytherapy. (authors)

  7. Brachytherapy of endometrial cancers

    International Nuclear Information System (INIS)

    Peiffert, D.; Hoffstetter, S.; Charra-Brunaud, C.

    2003-01-01

    Endometrial adenocarcinomas rank third as tumoral sites en France. The tumors are confined to the uterus in 80% of the cases. Brachytherapy has a large place in the therapeutic strategy. The gold standard treatment remains extra-fascial hysterectomy with bilateral annexiectomy and bilateral internal iliac lymph node dissection. However, after surgery alone, the rate of locoregional relapses reaches 4-20%, which is reduced to 0-5% after postoperative brachytherapy of the vaginal cuff. This postoperative brachytherapy is delivered as outpatients treatment, by 3 or 4 fractions, at high dose rate. The utero-vaginal preoperative brachytherapy remains well adapted to the tumors which involve the uterine cervix. Patients presenting a localized tumor but not operable for general reasons (< 10%) can be treated with success by exclusive irradiation, which associates a pelvic irradiation followed by an utero-vaginal brachytherapy. A high local control of about 80-90% is obtained, a little lower than surgery, with a higher risk of late complications. Last but not least, local relapses in the vaginal cuff, or in the perimeatic area, can be treated by interstitial salvage brachytherapy, associated if possible with external beam irradiation. The local control is reached in half of the patients, but metastatic dissemination is frequent. We conclude that brachytherapy has a major role in the treatment of endometrial adenocarcinomas, in combination with surgery, or with external beam irradiation for not operable patients or in case of local relapses. It should use new technologies now available including computerized after-loaders and 3D dose calculation. (authors)

  8. Novel prostate brachytherapy technique: Improved dosimetric and clinical outcome

    International Nuclear Information System (INIS)

    Nobes, Jenny P.; Khaksar, Sara J.; Hawkins, Maria A.; Cunningham, Melanie J.; Langley, Stephen E.M.; Laing, Robert W.

    2008-01-01

    Purpose: Erectile dysfunction following prostate brachytherapy is reported to be related to dose received by the penile bulb. To minimise this, whilst preserving prostate dosimetry, we have developed a technique for I-125 seed brachytherapy using both stranded seeds and loose seeds delivered with a Mick applicator, and implanted via the sagittal plane on trans-rectal ultrasound. Materials and methods: Post-implant dosimetry and potency rates were compared in 120 potent patients. In Group 1, 60 patients were treated using a conventional technique of seeds implanted in a modified-uniform distribution. From January 2005, a novel technique was developed using stranded seeds peripherally and centrally distributed loose seeds implanted via a Mick applicator (Group 2). The latter technique allows greater flexibility when implanting the seeds at the apex. Each patient was prescribed a minimum peripheral dose of 145 Gy. No patients received external beam radiotherapy or hormone treatment. There was no significant difference in age or pre-implant potency score (mean IIEF-5 score 22.4 vs. 22.6, p = 0.074) between the two groups. Results: The new technique delivers lower penile bulb doses (D 25 as %mPD - Group 1: 61.2 ± 35.7, Group 2: 29.7 ± 16.0, p 50 as %mPD - Group 1: 45.8 ± 26.9, Group 2: 21.4 ± 11.7, p 90 - Group 1: 147 Gy ± 21.1, Group 2: 155 Gy ± 16.7, p = 0.03). At 2 years, the potency rate was also improved: Group 1: 61.7%; Group 2: 83.3% (p = 0.008). Conclusions: In this study, the novel brachytherapy technique using both peripheral stranded seeds and central loose seeds delivered via a Mick applicator results in a lower penile bulb dose whilst improving prostate dosimetry, and may achieve higher potency rates

  9. Deformable registration of x-ray to MRI for post-implant dosimetry in prostate brachytherapy

    Science.gov (United States)

    Park, Seyoun; Song, Danny Y.; Lee, Junghoon

    2016-03-01

    Post-implant dosimetric assessment in prostate brachytherapy is typically performed using CT as the standard imaging modality. However, poor soft tissue contrast in CT causes significant variability in target contouring, resulting in incorrect dose calculations for organs of interest. CT-MR fusion-based approach has been advocated taking advantage of the complementary capabilities of CT (seed identification) and MRI (soft tissue visibility), and has proved to provide more accurate dosimetry calculations. However, seed segmentation in CT requires manual review, and the accuracy is limited by the reconstructed voxel resolution. In addition, CT deposits considerable amount of radiation to the patient. In this paper, we propose an X-ray and MRI based post-implant dosimetry approach. Implanted seeds are localized using three X-ray images by solving a combinatorial optimization problem, and the identified seeds are registered to MR images by an intensity-based points-to-volume registration. We pre-process the MR images using geometric and Gaussian filtering. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine transformation and local deformable registration. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. We tested our algorithm on six patient data sets, achieving registration error of (1.2+/-0.8) mm in < 30 sec. Our proposed approach has the potential to be a fast and cost-effective solution for post-implant dosimetry with equivalent accuracy as the CT-MR fusion-based approach.

  10. Design and optimization of a brachytherapy robot

    Science.gov (United States)

    Meltsner, Michael A.

    Trans-rectal ultrasound guided (TRUS) low dose rate (LDR) interstitial brachytherapy has become a popular procedure for the treatment of prostate cancer, the most common type of non-skin cancer among men. The current TRUS technique of LDR implantation may result in less than ideal coverage of the tumor with increased risk of negative response such as rectal toxicity and urinary retention. This technique is limited by the skill of the physician performing the implant, the accuracy of needle localization, and the inherent weaknesses of the procedure itself. The treatment may require 100 or more sources and 25 needles, compounding the inaccuracy of the needle localization procedure. A robot designed for prostate brachytherapy may increase the accuracy of needle placement while minimizing the effect of physician technique in the TRUS procedure. Furthermore, a robot may improve associated toxicities by utilizing angled insertions and freeing implantations from constraints applied by the 0.5 cm-spaced template used in the TRUS method. Within our group, Lin et al. have designed a new type of LDR source. The "directional" source is a seed designed to be partially shielded. Thus, a directional, or anisotropic, source does not emit radiation in all directions. The source can be oriented to irradiate cancerous tissues while sparing normal ones. This type of source necessitates a new, highly accurate method for localization in 6 degrees of freedom. A robot is the best way to accomplish this task accurately. The following presentation of work describes the invention and optimization of a new prostate brachytherapy robot that fulfills these goals. Furthermore, some research has been dedicated to the use of the robot to perform needle insertion tasks (brachytherapy, biopsy, RF ablation, etc.) in nearly any other soft tissue in the body. This can be accomplished with the robot combined with automatic, magnetic tracking.

  11. Navigation system for interstitial brachytherapy

    International Nuclear Information System (INIS)

    Strassmann, G.; Kolotas, C.; Heyd, R.

    2000-01-01

    The purpose of the stud was to develop a computed tomography (CT) based electromagnetic navigation system for interstitial brachytherapy. This is especially designed for situations when needles have to be positioned adjacent to or within critical anatomical structures. In such instances interactive 3D visualisation of the needle positions is essential. The material consisted of a Polhemus electromagnetic 3D digitizer, a Pentium 200 MHz laptop and a voice recognition for continuous speech. In addition, we developed an external reference system constructed of Perspex which could be positioned above the tumour region and attached to the patient using a non-invasive fixation method. A specially designed needle holder and patient bed were also developed. Measurements were made on a series of phantoms in order to study the efficacy and accuracy of the navigation system. The mean navigation accuracy of positioning the 20.0 cm length metallic needles within the phantoms was in the range 2.0-4.1 mm with a maximum of 5.4 mm. This is an improvement on the accuracy of a CT-guided technique which was in the range 6.1-11.3 mm with a maximum of 19.4 mm. The mean reconstruction accuracy of the implant geometry was 3.2 mm within a non-ferromagnetic environment. We found that although the needles were metallic this did not have a significant influence. We also found for our experimental setups that the CT table and operation table non-ferromagnetic parts had no significant influence on the navigation accuracy. This navigation system will be a very useful clinical tool for interstitial brachytherapy applications, particularly when critical structures have to be avoided. It also should provide a significant improvement on our existing technique

  12. Fully automated MRI-guided robotics for prostate brachytherapy

    International Nuclear Information System (INIS)

    Stoianovici, D.; Vigaru, B.; Petrisor, D.; Muntener, M.; Patriciu, A.; Song, D.

    2008-01-01

    The uncertainties encountered in the deployment of brachytherapy seeds are related to the commonly used ultrasound imager and the basic instrumentation used for the implant. An alternative solution is under development in which a fully automated robot is used to place the seeds according to the dosimetry plan under direct MRI-guidance. Incorporation of MRI-guidance creates potential for physiological and molecular image-guided therapies. Moreover, MRI-guided brachytherapy is also enabling for re-estimating dosimetry during the procedure, because with the MRI the seeds already implanted can be localised. An MRI compatible robot (MrBot) was developed. The robot is designed for transperineal percutaneous prostate interventions, and customised for fully automated MRI-guided brachytherapy. With different end-effectors, the robot applies to other image-guided interventions of the prostate. The robot is constructed of non-magnetic and dielectric materials and is electricity free using pneumatic actuation and optic sensing. A new motor (PneuStep) was purposely developed to set this robot in motion. The robot fits alongside the patient in closed-bore MRI scanners. It is able to stay fully operational during MR imaging without deteriorating the quality of the scan. In vitro, cadaver, and animal tests showed millimetre needle targeting accuracy, and very precise seed placement. The robot tested without any interference up to 7T. The robot is the first fully automated robot to function in MRI scanners. Its first application is MRI-guided seed brachytherapy. It is capable of automated, highly accurate needle placement. Extensive testing is in progress prior to clinical trials. Preliminary results show that the robot may become a useful image-guided intervention instrument. (author)

  13. Characterization and Schwann Cell Seeding of up to 15.0 cm Long Spider Silk Nerve Conduits for Reconstruction of Peripheral Nerve Defects

    Directory of Open Access Journals (Sweden)

    Tim Kornfeld

    2016-11-01

    Full Text Available Nerve reconstruction of extended nerve defect injuries still remains challenging with respect to therapeutic options. The gold standard in nerve surgery is the autologous nerve graft. Due to the limitation of adequate donor nerves, surgical alternatives are needed. Nerve grafts made out of either natural or artificial materials represent this alternative. Several biomaterials are being explored and preclinical and clinical applications are ongoing. Unfortunately, nerve conduits with successful enhancement of axonal regeneration for nerve defects measuring over 4.0 cm are sparse and no conduits are available for nerve defects extending to 10.0 cm. In this study, spider silk nerve conduits seeded with Schwann cells were investigated for in vitro regeneration on defects measuring 4.0 cm, 10.0 cm and 15.0 cm in length. Schwann cells (SCs were isolated, cultured and purified. Cell purity was determined by immunofluorescence. Nerve grafts were constructed out of spider silk from Nephila edulis and decellularized ovine vessels. Finally, spider silk implants were seeded with purified Schwann cells. Cell attachment was observed within the first hour. After 7 and 21 days of culture, immunofluorescence for viability and determination of Schwann cell proliferation and migration throughout the conduits was performed. Analyses revealed that SCs maintained viable (>95% throughout the conduits independent of construct length. SC proliferation on the spider silk was determined from day 7 to day 21 with a proliferation index of 49.42% arithmetically averaged over all conduits. This indicates that spider silk nerve conduits represent a favorable environment for SC attachment, proliferation and distribution over a distance of least 15.0 cm in vitro. Thus spider silk nerve implants are a highly adequate biomaterial for nerve reconstruction.

  14. Afterloading techniques in brachytherapy

    International Nuclear Information System (INIS)

    Kirsch, M.; Orban, R.; Lorenz, B.

    1981-01-01

    The advantages of applying modern afterloading methods in brachytherapie of malignant diseases are outlined. They include, among other things, a considerable reduction in radiation exposure to staff involved. Furthermore, the radiation protection requirements imposed by the licensing authority on the construction, equipment and operation of remote controlled afterloading installations with gamma sources of up to 4 TBq (108 Ci) have been compiled. (author)

  15. Brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Monzen, Yoshio; Ajimu, Akira; Morikawa, Minoru; Hayashi, Nobuyuki; Yoshida, Shintarou; Ashizawa, Kazuto; Hayashi, Kuniaki; Ikenaga, Kouji; Sakamoto, Ichirou.

    1988-01-01

    13 cases with oral cancer were treated using brachytherapy at the Department of Radiology, Nagasaki University Hospital from September 1985 to February 1988. Among 11 cases of tongue cancer, T1 and T2 cases were well controlled by radiation therapy using 226 Ra needles. Cancer of oral floor and buccal mucosa were controlled by the use of 192 Au grains. (author)

  16. [Brachytherapy of brainstem tumors].

    Science.gov (United States)

    Julow, Jenö; Viola, Arpád; Major, Tibor; Valálik, István; Sági, Sarolta; Mangel, László; Kovács, Rita Beáta; Repa, Imre; Bajzik, Gábor; Németh, György

    2004-01-20

    The optimal therapy of brain stem tumours of different histopathology determines the expected length of survival. Authors report 125Iodine interstitial irradiation of brain stem tumours with stereotactic brachytherapy. Two patients having brain stem tumours were suffering from glioma or from metastases of a carcinoma. In Case 1 the tumour volume was 1.98 cm3 at the time of planning interstitial irradiation. The control MRI examination performed at 42 months post-op showed a postirradiation cyst size of 5.73 cm3 indicating 65.5% shrinkage. In Case 2 the shrinkage was more apparent as the tumour volume measured on the control MRI at 8 months post-op was only 0.16 cm3 indicating 97.4% shrinkage of the 6.05 cm3 target volume at the time of brachytherapy with the metastasis practically disappearing. Quick access to histopathological results of the stereotactic intraoperative biopsy made it possible to carry out the 125Iodine stereotactic brachytherapy immediately after the biopsy, resulting in less inconvenience for patients of a second possible intervention. The control MRI scans show significant shrinkage of tumours in both patients. The procedure can be performed as a biopsy. The CT and image fusion guided 125Iodine stereotactic brachytherapy can be well planned dosimetrically and is surgically precise.

  17. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qaisieh, Bashar [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Mason, Josh, E-mail: joshua.mason@nhs.net [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Bownes, Peter; Henry, Ann [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Dickinson, Louise [Division of Surgery and Interventional Science, University College London, London (United Kingdom); Department of Radiology, Northwick Park Hospital, London North West NHS Trust, London (United Kingdom); Ahmed, Hashim U. [Division of Surgery and Interventional Science, University College London, London (United Kingdom); University College London Hospital, London (United Kingdom); Emberton, Mark [University College London Hospital, London (United Kingdom); Langley, Stephen [St Luke' s Cancer Centre, Guildford (United Kingdom)

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  18. SU-G-IeP4-14: Prostate Brachytherapy Activity Measurement and Source Localization by Using a Dual Photon Emission Computed Tomography System: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C; Lin, H; Chuang, K; Chiang, C [National Tsing Hua University, Hsinchu, Taiwan (China); Tsai, Y [National Taiwan University Hospital, Taipei City, Taiwan (China)

    2016-06-15

    Purpose: To monitor the activity distribution and needle position during and after implantation in operating rooms. Methods: Simulation studies were conducted to assess the feasibility of measurement activity distribution and seed localization using the DuPECT system. The system consists of a LaBr3-based probe and planar detection heads, a collimation system, and a coincidence circuit. The two heads can be manipulated independently. Simplified Yb-169 brachytherapy seeds were used. A water-filled cylindrical phantom with a 40-mm diameter and 40-mm length was used to model a simplified prostate of the Asian man. Two simplified seeds were placed at a radial distance of 10 mm and tangential distance of 10 mm from the center of the phantom. The probe head was arranged perpendicular to the planar head. Results of various imaging durations were analyzed and the accuracy of the seed localization was assessed by calculating the centroid of the seed. Results: The reconstructed images indicate that the DuPECT can measure the activity distribution and locate the seeds dwelt in different positions intraoperatively. The calculated centroid on average turned out to be accurate within the pixel size of 0.5 mm. The two sources were identified when the duration is longer than 15 s. The sensitivity measured in water was merely 0.07 cps/MBq. Conclusion: Preliminary results show that the measurement of the activity distribution and seed localization are feasible using the DuPECT system intraoperatively. It indicates the DuPECT system has potential to be an approach for dose-distribution-validation. The efficacy of acvtivity distribution measurement and source localization using the DuPECT system will evaluated in more realistic phantom studies (e.g., various attenuation materials and greater number of seeds) in the future investigation.

  19. Penile brachytherapy: Results for 49 patients

    International Nuclear Information System (INIS)

    Crook, Juanita M.; Jezioranski, John; Grimard, Laval; Esche, Bernd; Pond, G.

    2005-01-01

    Purpose: To report results for 49 men with squamous cell carcinoma (SCC) of the penis treated with primary penile interstitial brachytherapy at one of two institutions: the Ottawa Regional Cancer Center, Ottawa, and the Princess Margaret Hospital, Toronto, Ontario, Canada. Methods and Materials: From September 1989 to September 2003, 49 men (mean age, 58 years; range, 22-93 years) had brachytherapy for penile SCC. Fifty-one percent of tumors were T1, 33% T2, and 8% T3; 4% were in situ and 4% Tx. Grade was well differentiated in 31%, moderate in 45%, and poor in 2%; grade was unspecified for 20%. One tumor was verrucous. All tumors in Toronto had pulsed dose rate (PDR) brachytherapy (n = 23), whereas those in Ottawa had either Iridium wire (n 22) or seeds (n = 4). Four patients had a single plane implant with a plastic tube technique, and all others had a volume implant with predrilled acrylic templates and two or three parallel planes of needles (median, six needles). Mean needle spacing was 13.5 mm (range, 10-18 mm), mean dose rate was 65 cGy/h (range, 33-160 cGy/h), and mean duration was 98.8 h (range, 36-188 h). Dose rates for PDR brachytherapy were 50-61.2 cGy/h, with no correction in total dose, which was 60 Gy in all cases. Results: Median follow-up was 33.4 months (range, 4-140 months). At 5 years, actuarial overall survival was 78.3% and cause-specific survival 90.0%. Four men died of penile cancer, and 6 died of other causes with no evidence of recurrence. The cumulative incidence rate for never having experienced any type of failure at 5 years was 64.4% and for local failure was 85.3%. All 5 patients with local failure were successfully salvaged by surgery; 2 other men required penectomy for necrosis. The soft tissue necrosis rate was 16% and the urethral stenosis rate 12%. Of 8 men with regional failure, 5 were salvaged by lymph node dissection with or without external radiation. All 4 men with distant failure died of disease. Of 49 men, 42 had an intact

  20. Does combination therapy with tamsulosin and trospium chloride improve lower urinary tract symptoms after SEEDS brachytherapy for prostate cancer compared with tamsulosin alone? : A prospective, randomized, controlled trial.

    Science.gov (United States)

    Yan, Miao; Xue, Peng; Wang, Kunpeng; Gao, Guojun; Zhang, Wei; Sun, Fanghu

    2017-09-01

    To compare the efficacy of combination therapy with an alpha-blocker and an anticholinergic to monotherapy with an alpha blocker on lower urinary tract symptoms (LUTS) following brachytherapy in prostate cancer patients. A total of 124 patients that had been clinically diagnosed with localized prostate cancer and underwent prostate brachytherapy were enrolled in the present study. Patients were randomized and allocated to two groups, including 60 to the combination group (tamsulosin 0.2 mg/day and trospium chloride 20 mg twice daily) and 64 to the monotherapy group (tamsulosin 0.2 mg/day). Treatment began 1 day after brachytherapy and continued for 6 months. LUTS were compared between the two groups using the total International Prostate Symptom Score (IPSS), storage and voiding IPSS subscores, quality of life (QoL) scores, maximum flow rate (Qmax), and postvoid residual (PVR) urine volume at 1, 3, 6, and 12 months after implantation. In all, 111 patients were ultimately analyzed in the study. Compared with pretreatment scores, a significant increase in total IPSS was found at 1, 3, and 6 months in both groups, but no statistically significant differences were observed between the two groups. The combination therapy group showed a greater decrease in the IPSS storage score compared with the monotherapy group at 1, 3, and 6 months (p = 0.031, 0.030 and 0.042, respectively). Patients receiving tamsulosin plus trospium chloride also showed significant improvements in QoL at 1 and 3 months compared with tamsulosin alone (P = 0.039, P = 0.047). Between the two groups, there was no significant difference in IPSS voiding score, Qmax, and PVR from baseline to each point of the study period. Combination therapy with tamsulosin and trospium chloride helped to improve IPSS storage symptoms and Qol scores in prostate brachytherapy patients with LUTS compared with tamsulosin monotherapy.

  1. A study of Brachytherapy for Intraocular Tumor

    International Nuclear Information System (INIS)

    Ji, Kwang Soo; Yoo, Dae Hyun; Lee, Sung Goo; Kim, Jae Hu; Ji, Young Hun

    1996-01-01

    The eye enucleation or external-beam radiation therapy that has been commonly used for the treatment of intraocular tumor have demerits of visual loss and in deficiency of effective tumor dose. Recently, brachytherapy using the plaques containing radioisotope-now treatment method that decrease the demerits of the above mentioned treatment methods and increase the treatment effect-is introduced and performed in the countries, Our purpose of this research is to design suitable shape of plaque for the ophthalmic brachytherapy, and to measure absorbed doses of Ir-192 ophthalmic plaque and thereby calculate the exact radiation dose of tumor and it's adjacent normal tissue. In order to brachytherapy for intraocular tumor, 1. to determine the eye model and selected suitable radioisotope 2. to design the suitable shape of plaque 3. to measure transmission factor and dose distribution for custom made plaques 4. to compare with the these data and results of computer dose calculation models. The result were as followed. 1. Eye model was determined as a 25 mm diameter sphere, Ir-192 was considered the most appropriate as radioisotope for brachytherapy, because of the size, half, energy and availability. 2. Considering the biological response with human tissue and protection of exposed dose, we made the plaques with gold, of which size were 15 mm, 17 mm and 20 mm in diameter, and 1.5 mm in thickness. 3. Transmission factor of plaques are all 0.71 with TLD and film dosimetry at the surface of plaques and 0.45, 0.49 at 1.5 mm distance of surface, respectively. 4. As compared the measured data for the plaque with Ir-192 seeds to results of computer dose calculation model by Gary Luxton et al. and CAP-PLAN (Radiation Treatment Planning System), absorbed doses are within ±10% and distance deviations are within 0.4 mm Maximum error is -11.3% and 0.8 mm, respectively. As a result of it, we can treat the intraocular tumor more effectively by using custom made gold plaque and Ir-192

  2. Glass microspheres for brachytherapy

    International Nuclear Information System (INIS)

    Prado, Miguel O.; Prastalo, Simon; Blaumann, Herman; Longhino, Juan M.; Repetto Llamazares, A.H.V.

    2007-01-01

    We developed the capacity to produce glass microspheres containing in their structure one or more radioactive isotopes useful for brachytherapy. We studied the various facts related with their production: (Rare earth) alumino silicate glass making, glass characterization, microspheres production, nuclear activation through (n,γ) nuclear reactions, mechanical characterization before and after irradiation. Corrosion tests in simulated human plasma and mechanical properties characterization were done before and after irradiation. (author) [es

  3. A comparison study on various low energy sources in interstitial prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Mahdi Bakhshabadi

    2016-02-01

    Full Text Available Purpose: Low energy sources are routinely used in prostate brachytherapy. 125 I is one of the most commonly used sources. Low energy 131 Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of 125 I, 103 Pd, and 131 Cs sources in interstitial brachytherapy of prostate. Material and methods: ProstaSeed 125 I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of 103 Pd and 131 Cs were simulated with the same geometry as the ProstaSeed 125 I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Results : Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, 131 Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the 103 Pd source. Conclusions : The higher initial absolute dose in cGy/(h.U of 131 Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the 103 Pd source are advantages of this later brachytherapy source. Based on the total dose the 125 I source has advantage over the others due to its longer half-life.

  4. A comparison study on various low energy sources in interstitial prostate brachytherapy.

    Science.gov (United States)

    Bakhshabadi, Mahdi; Ghorbani, Mahdi; Khosroabadi, Mohsen; Knaup, Courtney; Meigooni, Ali S

    2016-02-01

    Low energy sources are routinely used in prostate brachytherapy. (125)I is one of the most commonly used sources. Low energy (131)Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of (125)I, (103)Pd, and (131)Cs sources in interstitial brachytherapy of prostate. ProstaSeed (125)I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of (103)Pd and (131)Cs were simulated with the same geometry as the ProstaSeed (125)I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, (131)Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the (103)Pd source. The higher initial absolute dose in cGy/(h.U) of (131)Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the (103)Pd source are advantages of this later brachytherapy source. Based on the total dose the (125)I source has advantage over the others due to its longer half-life.

  5. Feasibility of salvage interstitial microwave thermal therapy for prostate carcinoma following failed brachytherapy: studies in a tissue equivalent phantom

    International Nuclear Information System (INIS)

    McCann, Claire; Kumaradas, J Carl; Gertner, Mark R; Davidson, Sean R H; Dolan, Alfred M; Sherar, Michael D

    2003-01-01

    Thermal therapy is an experimental treatment to destroy solid tumours by heating them to temperatures ranging from 55 deg C to 90 deg C, inducing thermal coagulation and necrosis of the tumour. We are investigating the feasibility of interstitial microwave thermal therapy as a salvage treatment for prostate cancer patients with local recurrence following failed brachytherapy. Due to the electrical and thermal conductivity of the brachytherapy seeds, we hypothesized that the seeds could scatter the microwave energy and cause unpredictable heating. To investigate this, a 915 MHz helical antenna was inserted into a muscle-equivalent phantom with and without brachytherapy seeds. Following a 10 W, 5 s input to the antenna, the temperature rise was used to calculate absorbed power, also referred to as specific absorption rate (SAR). Plane wave models based on Maxwell's equations were also used to characterize the electromagnetic scattering effect of the seeds. In addition, the phantom was heated with 8 W for 5 min to quantify the effect of the seeds on the temperature distribution during extended heating. SAR measurements indicated that the seeds had no significant effect on the shape and size of the SAR pattern of the antenna. However, the plane wave simulations indicated that the seeds could scatter the microwave energy resulting in hot spots at the seed edges. Lack of experimental evidence of these hot spots was probably due to the complex polarization of the microwaves emitted by the helical antenna. Extended heating experiments also demonstrated that the seeds had no significant effect on the temperature distributions and rates of temperature rise measured in the phantom. The results indicate that brachytherapy seeds are not a technical impediment to interstitial microwave thermal therapy as a salvage treatment following failed brachytherapy

  6. Pulsed dose rate brachytherapy – is it the right way?

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2010-10-01

    Full Text Available Pulsed dose rate (PDR-BT treatment is a brachytherapy modality that combines physical advantages of high-doserate (HDR-BT technology (isodose optimization, radiation safety with the radiobiological advantages of low-dose-rate (LDR-BT brachytherapy. Pulsed brachytherapy consists of using stronger radiation source than for LDR-BT and producing series of short exposures of 10 to 30 minutes in every hour to approximately the same total dose in the sameoverall time as with the LDR-BT. Modern afterloading equipment offers certain advantages over interstitial or intracavitaryinsertion of separate needles, tubes, seeds or wires. Isodose volumes in tissues can be created flexibly by a combinationof careful placement of the catheter and the adjustment of the dwell times of the computerized stepping source.Automatic removal of the radiation sources into a shielded safe eliminates radiation exposures to staff and visitors.Radiation exposure is also eliminated to the staff who formerly loaded and unloaded multiplicity of radioactive sources into the catheters, ovoids, tubes etc. This review based on summarized clinical investigations, analyses the feasibility and the background to introduce this brachytherapy technique and chosen clinical applications of PDR-BT.

  7. A study of brachytherapy for intraocular tumor

    International Nuclear Information System (INIS)

    Ji, Yung Hoon; Lee, Dong Han; Ko, Kyung Hwan; Lee, Tae Won; Lee, Sung Koo; Choi, Moon Sik

    1994-12-01

    Our purpose of this study is to perform brachytherapy for intraocular tumor. The result were as followed. 1. Eye model was determined as a 25 mm diameter sphere. Ir-192 was considered the most appropriate as radioisotope for brachytherapy, because of the size, half, energy and availability. 2. Considering the biological response with human tissue and protection of exposed dose, we made the plaques with gold, of which size were 15 mm, 17 mm and 20 mm in diameter, and 1.5 mm in thickness. 3. Transmission factor of plaques are all 0.71 with TLD and film dosimetry at the surface of plaques and 0.45, 0.49 at 1.5 mm distance of surface, respectively. 4. As compared the measured data for the plaque with Ir-192 seeds to results of computer dose calculation model by Gary Luxton et al. and CAP-PLAN (Radiation Treatment Planning System), absorbed doses are within ±10% and distance deviations are within 0.4 mm. Maximum error is -11.3% and 0.8 mm, respectively. 7 figs, 2 tabs, 28 refs. (Author)

  8. Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers.

    Science.gov (United States)

    Landry, Guillaume; Reniers, Brigitte; Lutgens, Ludy; Murrer, Lars; Afsharpour, Hossein; de Haas-Kock, Danielle; Visser, Peter; van Gils, Francis; Verhaegen, Frank

    2012-03-01

    The dosimetric impact of gold fiducial markers (FM) implanted prior to external beam radiotherapy of prostate cancer on low dose rate (LDR) brachytherapy seed implants performed in the context of combined therapy was investigated. A virtual water phantom was designed containing a single FM. Single and multi source scenarios were investigated by performing Monte Carlo dose calculations, along with the influence of varying orientation and distance of the FM with respect to the sources. Three prostate cancer patients treated with LDR brachytherapy for a recurrence following external beam radiotherapy with implanted FM were studied as surrogate cases to combined therapy. FM and brachytherapy seeds were identified on post implant CT scans and Monte Carlo dose calculations were performed with and without FM. The dosimetric impact of the FM was evaluated by quantifying the amplitude of dose shadows and the volume of cold spots. D(90) was reported based on the post implant CT prostate contour. Large shadows are observed in the single source-FM scenarios. As expected from geometric considerations, the shadows are dependent on source-FM distance and orientation. Large dose reductions are observed at the distal side of FM, while at the proximal side a dose enhancement is observed. In multisource scenarios, the importance of shadows appears mitigated, although FM at the periphery of the seed distribution caused underdosage (LDR brachytherapy seed implant dose distributions. Therefore, reduced tumor control could be expected from FM implanted in tumors, although our results are too limited to draw conclusions regarding clinical significance.

  9. An overview of interstitial brachytherapy and hyperthermia

    International Nuclear Information System (INIS)

    Brandt, B.B.; Harney, J.

    1989-01-01

    Interstitial thermoradiotherapy, an experimental cancer treatment that combines interstitial radiation implants (brachytherapy) and interstitial hyperthermia, is in the early stages of investigation. In accordance with the procedure used in a current national trial protocol, a 60-minute hyperthermia treatment is administered after catheters are placed into the tumor area while the patient is under general anesthesia. This is immediately followed by loading of radioactive Iridium-192 seeds into the catheters for a defined period of time. Once the prescribed radiation dose is delivered, the radioactive sources are removed and a second, 60-minute hyperthermia treatment is administered. Clinical trials with hyperthermia in combination with radiation have increased in recent years. Nurses caring for these patients need to become more knowledgeable about this investigational therapy. This paper provides an overview of the biologic rationale for this therapy, as well as a description of the delivery method and clinical application. Specific related nursing interventions are defined in a nursing protocol.23 references

  10. The effects of metallic implants on electroporation therapies: feasibility of irreversible electroporation for brachytherapy salvage.

    Science.gov (United States)

    Neal, Robert E; Smith, Ryan L; Kavnoudias, Helen; Rosenfeldt, Franklin; Ou, Ruchong; Mclean, Catriona A; Davalos, Rafael V; Thomson, Kenneth R

    2013-12-01

    Electroporation-based therapies deliver brief electric pulses into a targeted volume to destabilize cellular membranes. Nonthermal irreversible electroporation (IRE) provides focal ablation with effects dependent on the electric field distribution, which changes in heterogeneous environments. It should be determined if highly conductive metallic implants in targeted regions, such as radiotherapy brachytherapy seeds in prostate tissue, will alter treatment outcomes. Theoretical and experimental models determine the impact of prostate brachytherapy seeds on IRE treatments. This study delivered IRE pulses in nonanimal, as well as in ex vivo and in vivo tissue, with and in the absence of expired radiotherapy seeds. Electrical current was measured and lesion dimensions were examined macroscopically and with magnetic resonance imaging. Finite-element treatment simulations predicted the effects of brachytherapy seeds in the targeted region on electrical current, electric field, and temperature distributions. There was no significant difference in electrical behavior in tissue containing a grid of expired radiotherapy seeds relative to those without seeds for nonanimal, ex vivo, and in vivo experiments (all p > 0.1). Numerical simulations predict no significant alteration of electric field or thermal effects (all p > 0.1). Histology showed cellular necrosis in the region near the electrodes and seeds within the ablation region; however, there were no seeds beyond the ablation margins. This study suggests that electroporation therapies can be implemented in regions containing small metallic implants without significant changes to electrical and thermal effects relative to use in tissue without the implants. This supports the ability to use IRE as a salvage therapy option for brachytherapy.

  11. Clinical efficacy of CT-guided 125I seed implantation therapy for advanced pancreatic cancer

    International Nuclear Information System (INIS)

    Wang Zhongmin; Lu Jian; Gong Ju; Zheng Yunfeng; Zhang Liyun; Huang Gang; Chen Kemin

    2009-01-01

    Objective: To discuss the clinical efficacy of CT-guided radioactive 125 I seed implantation treatment for unresectable pancreatic cancer. Methods: Forty patients with inoperable pancreatic cancer were enrolled in this study, including 25 males and 15 females with an median age of 69 years (38-89 years). Treatment planning system (TPS) was used to reconstruct 3-dimensional images of pancreatic tumor and to define the quantity and distribution of 125 I seeds. The radioactivity of 125 I seeds was 0.5 - 0.8 mCi / seed. The seeds were implanted into pancreatic tumor under CT guidance at intervals of 1 cm and were kept away from vessels, pancreatic duct and other adjacent important organs. The tumor matched peripheral dose (MPD) was 60-140 Gy. The median amount of implanted 125 I seeds was 36 (18-68) in number. CT scan was performed immediately after the procedure to check the quality of the seeds. In addition, 10 patients received concurrent chemotherapy with arterial infusion of gemcitabin and 5-fluororacil (5-Fu) for 3 to 4 therapeutic courses. Results: The median diameter of the tumors was 4.9 cm. The follow-up period was 2 to 28 months. After the treatment the refractory pain was significantly relieved (P 125 I seed implantation is a safe, effective and minimally-invasive brachytherapy for unresectable pancreatic cancer with reliable short-term efficacy. It has an excellent anti-pain effect. The curative results can be further improved when chemotherapy is employed together. However, its long-term efficacy needs to be observed. (authors)

  12. Intra coronary brachytherapy

    International Nuclear Information System (INIS)

    Ghofourian, H.; Ghahremani, A.; Oliaie, A.; Taghizadeh Asl, M.

    2002-01-01

    Despite the initial promise of vasculopathy intervention restenosis- a consequence of the (normal) would healing process-has emerged as a major problem. Angiographic restenosis has been reported in 40-60% of patients after successful P TCA. The basic mechanism of restenosis, (acute recoil, negative remodeling and neo intimal hyperplasia), are only partially counteracted by endovascular prosthetic devices (s tents). The rate of in-s tent restenosis, which is primarily caused by neo intimal hyperplasia due to the (micro) trauma of the arterial wall by the s tent struts, has been reduced to 18-32%. Ionizing (beta or gamma) radiations has been established as a potent treatment for malignant disorders. In recent years, there has also been increasing interest among clinicians in the management of benign lesions with radiation. Over the past several years, there has been a growing body of evidence that endovascular brachytherapy has a major impact on the biology of the restenosis. It must be underlined that understanding the biology and pathophysiology of restenosis and assessing various treatment options should preferably be a team effort, with the three g races b eing interventional cardiologist, nuclear oncologist, and industrial partners. The vast amount of data in over 20000 patients from a wide range of randomized controlled trials, has shown that brachytherapy is the only effective treatment for in-s tent restenosis. We are learning more and more about how to improve brachytherapy. While the new coated s tents that we heard about today is fascinating and extremely promising, brachytherapy still has a very important place in difficult patients, such as those with total occlusions, osti al lesions, left main lesions, multivessel disease and diabetes. Regarding to above mentioned tips, we (a research team work, in the Nuclear Research Center Of the Atomic Energy Organization Of Iran), focused on synthesis and preparation of radioactive materials for use in I c-B T. We

  13. Development of brachytherapy medium doserate

    International Nuclear Information System (INIS)

    Atang Susila; Ari Satmoko; Ahmad Rifai; Kristiyanti

    2010-01-01

    Brachytherapy has proven to be an effective treatment for different types of cancers and it become a common treatment modality in most radiotherapy clinics. PRPN has had experience in development of Low Dose Rate Brachytherapy for cervix cancer treatment. However the treatment process using LDR device needs 5 hours in time that the patient feel uncomfort. Therefore PRPN develops Medium Dose Rate Brachytherapy with radiation activity not more than 5 Currie. The project is divided into two stages. Purchasing of TPS software and TDS design are held in 2010, and the construction will be in 2011. (author)

  14. [Developments in brachytherapy].

    Science.gov (United States)

    Ikeda, H

    1995-09-01

    Brachytherapy is one of the ideal methods of radiotherapy because of the concentration of a high dose on the target. Recent developments, including induction of afterloading method, utilization of small-sized high-activity sources such as Iridium-192, and induction of high technology and computerization, have made for shortening of irradiation time and source handling, which has led to easier management of the patient during treatment. Dose distribution at high dose rate (HDR) is at least as good as that of low dose rate (LDR), and selection of fractionation and treatment time assures even greater biological effects on hypoxic tumor cells than LDR. Experience with HDR brachytherapy in uterine cervix cancer using Cobalt-60 during the past 20 years in this country has gradually been evaluated in U.S. and Europe. The indications for HDR treatment have extended to esophagus, bronchus, bile duct, brain, intraoperative placement of source guide, and perineal region using templates, as well as the conventional use for uterus, tongue and so on.

  15. Predictive factors for acute and late urinary toxicity after permanent interstitial brachytherapy in Japanese patients

    International Nuclear Information System (INIS)

    Tanimoto, Ryuta; Bekku, Kensuke; Katayama, Norihisa

    2013-01-01

    The objectives of this study were to describe the frequency of and to determine predictive factors associated with Radiation Therapy Oncology Group urinary toxicity in prostate brachytherapy patients. From January 2004 to April 2011, 466 consecutive Japanese patients underwent permanent iodine-125-seed brachytherapy (median follow up 48 months). International Prostate Symptom Score and Radiation Therapy Oncology Group toxicity data were prospectively collected. Prostate volume, International Prostate Symptom Score before and after brachytherapy, and postimplant analysis were examined for an association with urinary toxicity, defined as Radiation Therapy Oncology Group urinary toxicity of Grade 1 or higher. Logistic regression analysis was used to examine the factors associated with urinary toxicity. The rate of Radiation Therapy Oncology Group urinary toxicity grade 1 or higher at 1, 6, 12, 24, 36 and 48 months was 67%, 40%, 21%, 31%, 27% and 28%, respectively. Grade 2 or higher urinary toxicity was less than 1% at each time-point. International Prostate Symptom Score was highest at 3 months and returned to normal 12 months after brachytherapy. On multivariate analysis, patients with a larger prostate size, greater baseline International Prostate Symptom Score, higher prostate V100, higher prostate V150, higher prostate D90 and a greater number of seeds had more acute urinary toxicities at 1 month and 12 months after brachytherapy. On multivariate analysis, significant predictors for urinary toxicity at 1 month and 12 months were a greater baseline International Prostate Symptom Score and prostate V100. Most urinary symptoms are tolerated and resolved within 12 months after prostate brachytherapy. Acute and late urinary toxicity after brachytherapy is strongly related to the baseline International Prostate Symptom Score and prostate V100. (author)

  16. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    International Nuclear Information System (INIS)

    Lemaréchal, Yannick; Bert, Julien; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris; Falconnet, Claire; Després, Philippe; Valeri, Antoine

    2015-01-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125 I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10 −6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications. (paper)

  17. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    Science.gov (United States)

    Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris

    2015-07-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.

  18. Photon energy-fluence correction factor in low energy brachytherapy

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Yoriyaz, Hélio; Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D tis ) and dose-to-water (D w ). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the 125 I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  19. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  20. Applicability and dosimetric impact of ultrasound-based preplanning in high-dose-rate brachytherapy of prostate cancer

    International Nuclear Information System (INIS)

    Aebersold, D.M.; Isaak, B.; Behrensmeier, F.; Kolotas, C.; Mini, R.; Greiner, R.H.; Thalmann, G.; Kranzbuehler, H.

    2004-01-01

    Background and purpose: analyses of permanent brachytherapy seed implants of the prostate have demonstrated that the use of a preplan may lead to a considerable decrease of dosimetric implant quality. The authors aimed to determine whether the same drawbacks of preplanning also apply to high-dose-rate (HDR) brachytherapy. Patients and methods: 15 patients who underwent two separate HDR brachytherapy implants in addition to external-beam radiation therapy for advanced prostate cancer were analyzed. A pretherapeutic transrectal ultrasound was performed in all patients to generate a preplan for the first brachytherapy implant. For the second brachytherapy, a subset of patients were treated by preplans based on the ultrasound from the first brachytherapy implant. Preplans were compared with the respective postplans assessing the following parameters: coverage index, minimum target dose, homogeneity index, and dose exposure of organs at risk. The prostate geometries (volume, width, height, length) were compared as well. Results: at the first brachytherapy, the matching between the preplan and actual implant geometry was sufficient in 47% of the patients, and the preplan could be applied. The dosimetric implant quality decreased considerably: the mean coverage differed by -0.11, the mean minimum target dose by -0.15, the mean homogeneity index by -0.09. The exposure of organs at risk was not substantially altered. At the second brachytherapy, all patients could be treated by the preplan; the differences between the implant quality parameters were less pronounced. The changes of prostate geometry between preplans and postplans were considerable, the differences in volume ranging from -8.0 to 13.8 cm 3 and in dimensions (width, height, length) from -1.1 to 1.0 cm. Conclusion: preplanning in HDR brachytherapy of the prostate is associated with a substantial decrease of dosimetric implant quality, when the preplan is based on a pretherapeutic ultrasound. The implant quality

  1. Measure of the uncertainty associated with the reconstruction of applicators in adaptive guided brachytherapy by resonance; Medida de la incertidumbre asociada a la reconstruccion de aplicadores en braquiterapia adaptativa guiada por resonancia

    Energy Technology Data Exchange (ETDEWEB)

    Torres Pozas, S.; Federico, M.; Perez Molina, J. L.; Marti Asenjo, J.; Sanchez Carrascal, M.; Macias verde, D.; Ruiz Egea, E.; Lara Jimenez, P.; Martin Oliva, R.

    2013-07-01

    The objective of this study is to assess the uncertainty introduced in the process to rebuild the catheters using three methods, manual reconstruction from a template elaborate service, auto-rebuild with the software included in the TPS and reconstruction from radiopaque mannequins in CT and subsequent merger. (Author)

  2. Inverse planning in brachytherapy from radium to high rate 192 iridium afterloading

    International Nuclear Information System (INIS)

    Lahanas, M.; Mould, R.F.; Baltas, D.; Karauzakis, K.; Giannouli, S.; Baltas, D.

    2004-01-01

    We consider the inverse planning problem in brachytherapy, i.e. the problem to determine an optimal number of catheters, number of sources for low-dose rate brachytherapy (LDR) and the optimal dwell times for high-dose rate brachytherapy (HDR) necessary to obtain an optimal as possible dose distribution. Starting from the 1930s, inverse planning for LDR brachytherapy used geometrically derived rules to determine the optimal placement of sources in order to achieve a uniform dose distribution of a specific level in planes, spheres and cylinders. Rules and nomograms were derived which still are widely used. With the rapid development of 3D imaging technologies and the rapidly increasing computer power we have now entered the new era of computer-based inverse planning in brachytherapy. The inverse planning is now an optimisation process adapted to the individual geometry of the patient. New inverse planning optimisation algorithms are anatomy-based that consider the real anatomy of the tumour and the organs at risk (OAR). Computer-based inverse planning considers various effects such as stability of solutions for seed misplacements which cannot ever be solved analytically without gross simplifications. In the last few years multiobjective (MO) inverse planning algorithms have been developed which recognise the MO optimisation problem which is inherent in inverse planning in brachytherapy. Previous methods used a trial and error method to obtain a satisfactory solution. MO optimisation replaces this trial and error process by presenting a representative set of dose distributions that can be obtained. With MO optimisation it is possible to obtain information that can be used to obtain the optimum number of catheters, their position and the optimum distribution of dwell times for HDR brachytherapy. For LDR brachytherapy also the stability of solutions due to seed migration can also be improved. A spectrum of alternative solutions is available and the treatment planner

  3. Brachytherapy in childhood rhabdomyosarcoma treatment

    International Nuclear Information System (INIS)

    Novaes, Paulo Eduardo Ribeiro dos Santos

    1995-01-01

    A retrospective study of 21 children with rhabdomyosarcoma treated by brachytherapy to the primary site of the tumor at the Radiotherapy Department of the A.C.Camargo Hospital between january/1980 to june/1993 was undertaken. The main objectives were to comprove the utility of brachytherapy in childhood rhabdomyosarcoma, to evaluate the local control and survival, in association with chemotherapy, to analyze the late effects of the treatment and to determinate the preferential technique to each clinical situation. All patients received brachytherapy to the tumor site. The radioactive isotopes employed were Gold 198 , Cesium 137 and Iridium 192 . The brachytherapy techniques depended on the tumor site, period of treatment, availability of the radioactive material and stage of the disease. Patients treated exclusively by brachytherapy received 40 Gy to 60 Gy. When brachytherapy was associated with external radiotherapy the dose ranged from 20 Gy to 40 Gy. Local control was achieved in 18 of 20 patients (90%). The global survival and local control survival rates were 61.9% (13/21 patients) and 72,2% (13/18 patients) respectively. (author)

  4. American brachytherapy society (ABS) guidelines for brachytherapy of esophageal cancer

    International Nuclear Information System (INIS)

    Nag, Subir; Gaspar, Laurie; Herskovic, Arnold; Mantravadi, Prasad; Speiser, Burton

    1996-01-01

    Introduction: There is wide variation in the indications, techniques, treatment regimens and dosimetry being used to treat cancer of the esophagus and no guidelines exist for optimal therapy. Methods: The Clinical Research Committee of the ABS met to formulate consensus guidelines for brachytherapy in esophageal cancer. Results: Good candidates for brachytherapy include patients with unifocal disease, with thoracic tumor 10 cm primary regional lymph adenopathy or tumor located in the gastro-esophageal junction or cervical esophagus. Contraindications include tracheo-esophageal fistula or stenosis that cannot be by-passed. The esophageal or nasogastric tube inserted should have a diameter of 6-10 mm whenever possible. If 5FU-based chemotherapy and 50 Gy external beam (EBRT) are used, it is suggested that the low dose rate brachytherapy (LDR) dose be 20 Gy at 0.4-1 Gy/hr, prescribed at 1 cm from the source. If high dose rate (HDR) is used, the dose recommended is 10 Gy in 2 weekly fractions of 5 Gy each, given after EBRT. Chemotherapy is not usually given concurrently with brachytherapy, and when it is, the brachytherapy dose is reduced. The length of esophagus treated by brachytherapy includes the post-EBRT involved area and a 1-2 cm margin proximally and distally. Supportive care, given during EBRT includes an antifungal agent (e.g., diflucan) and carafate. Gradual dilatation of the esophagus is required post-treatment for esophageal strictures. Conclusion: Guidelines were developed for brachytherapy in esophageal cancer. As more clinical data becomes available, these guidelines will be updated by the ABS

  5. Development of prostate voxel models for brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano M.; Reis, Lucas P.; Grynberg, Suely E., E-mail: amsantos@cdtn.b [Center for Development of Nuclear Technology (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The tools developed recently in the areas of computer graphics and animation movies to computer games allow the creation of new voxel anthropomorphic phantoms with better resolution and thus, more anatomical details. These phantoms can be used in nuclear applications, especially in radiation protection for estimating doses in cases of occupational or accidental radioactive incidents, and in medical and biological applications. For dose estimates, the phantoms are coupled to a Monte Carlo code, which will be responsible for the transport of radiation in this environment. This study aimed to develop a computational tool to estimate the isodose curves in the prostate after brachytherapy seed implants. For this, we have created a model called FANTPROST in the shape of a 48 mm side cube, with a standard prostate inserted in the center of this cube with different distributions of brachytherapy seeds in this volume. The prostate, according to this model, was obtained from the phantom voxels MASH2 developed by Numerical Dosimetry Group, Department of Nuclear Energy - Federal University of Pernambuco. The modeling of the seeds, added to FANTPROST, was done through the use of geometric information of Iodine-125 Amersham 6711 commercial seed. The simulations were performed by the code MCNP5 for spatial distributions containing different amounts of seeds within the FANTPROST. The obtained curves allowed an estimation of the behavior of the maximum dose that decreases with distance, showing that this tool can be used for a more accurate analysis of the effects produced by the presence of such seeds in the prostate and its vicinity. (author)

  6. 1251 seed calibration using afterloading equipment SeedSelectron. Practical solution to meet the recommendations of the AAPM

    International Nuclear Information System (INIS)

    Perez-Calatayud, J.; Richart, J.; Perez-Garcia, J.; Guirado, D.; Ballester, F.; Rodriguez, S.; Santos, M.; Depiaggio, M.; Carmona, V.; Lliso, F.; Camacho, C.; Pujades, M. C.

    2011-01-01

    SeedSelectron is a system used in the afterloader permanent implant brachytherapy seeds 1-125 interstitial prostate. Two aspects are critical when you can meet the recommendations of the AAPM: a practical difficulty to check the quantity of seed required, and the great uncertainty of all measured diodes. The purpose of this paper is to present a practical solution that has been adopted to implement the recommendations of the AAPM

  7. Medical physics aspects of ophthalmic brachytherapy

    International Nuclear Information System (INIS)

    Sharma, S.D.; Shanta, A.; Palani Selvam, T.; Tripathi, U.B.; Bhatt, B.C.

    2004-11-01

    Intraocular melanoma is the most common primary malignancy of the eye. Radiation therapy using ophthalmic plaque has proved successful in the management of various ocular lesions. Although a few centres were using 90 Sr/ 90 Y plaques for shallow turtlours some years ago, eye plaque therapy was not a common practice in India. A revived interest in the use of eye plaque therapy and very high cost of imported sources has led to the development and production of 125 I seed sources by the Radiopharmaceuticals Division, BARC. This report presents a brief description on the clinical, dosimetry and radiation safety aspects of 90 Sr/ 90 Y and 106 Ru/ 106 Rh beta ray and 125 I gamma ray eye plaque applicators. This report has been divided in five Sections. Section I presents general introduction of ophthalmic brachytherapy including the structure of a human eye, types of ophthalmic plaques and characteristics of radioisotopes commonly used in such applications. A brief review of sources, applicators and dosimetry of 90 Sr/ 90 Y and 106 Ru/ 106 Rh beta and 125 I gamma ophthalmic plaques are given in Section II and Section III, respectively. Section IV contains the single seed dosimetry data of BARC OcuProsta 125 I seed as well as dosimetry data of typical eye plaques loaded with BARC OcuProsta 125 I seed. Quality assurance and radiation safety aspects of these eye applicators are described in Section V. A proforma of the application required to be filled in by the user institution for obtaining regulatory consent to start eye plaque therapy has also been appended to this report. (author)

  8. The value of MRI three-dimensional reconstruction in diagnosis and therapy of prostate cancer

    International Nuclear Information System (INIS)

    Li Feiyu; Wang Xiaoying; Xu Yufeng; Xiao Jiangxi; Jiang Xuexiang

    2006-01-01

    Objective: To evaluate three-dimensional reconstruction of MRI images in diagnosis and therapy of prostate cancer. Methods: Twenty-eight patients with proven prostate cancers were recruited in this study. Seventeen of them were diagnosed as having prostate cancer according to the ultrasound guided systemic biopsy. Their MR examinations showed fourteen lesions in the peripheral zone and three in the central gland of the prostate. The other eleven patients underwent MR examination after a period of treatment, including endocrinetherapy and brachytherapy. Using endorectal coil, a series of T 2 -weighted images were acquired on the axial plane. These source images were processed by 3D-Doctor software to reconstruct into three-dimensional images. Results: In the fourteen patients with peripheral zone cancer, reconstruction images could display the 3D regions of cancer and the involvement of capsular. The outspread of central gland and the compression of peripheral zone in patients with central gland cancer could be revealed in the same way. The volumetric changes of the lesion and the prostate after endocrinetherapy could also be perceived through these 3 D images. Similarly, radioactive seeds were revealed in a spatial manner that could be easily evaluated. Conclusion: Three-dimensional reconstruction images were obtained in all patients. They were able to provide stereotyped information about the lesions and their surrounding tissues. MRI three-dimensional reconstruction can be an adjunctive tool in the evaluation of prostate lesions. (authors)

  9. Specification of brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    BCRU recommends that the following specification of gamma-ray brachytherapy sources be adopted. Unless otherwise stated, the output of a cylindrical source should be specified in air kerma rate at a point in free space at a distance of 1 m from the source on the radial plane of symmetry, i.e. the plane bisecting the active length and perpendicular to the cylindrical axis of the source. For a wire source the output should be specified for a 1 cm length. For any other construction of source, the point at which the output is specified should be stated. It is also recommended that the units in which the air kerma rate is expressed should be micrograys per hour (..mu..Gy/h).

  10. Radiotherapy and brachytherapy

    International Nuclear Information System (INIS)

    2007-02-01

    This presentation first defines the radiotherapy and brachytherapy techniques, indicates the used ionizing radiations (electromagnetic and particles), describes the mechanisms and processes of action of ionizing radiations: they can be physical by photon-matter interactions (Compton effect and photoelectric effect) or due to electron-matter interactions (excitation, ionization), physical-chemical by direct or indirect action (DNA damage), cellular (mitotic or apoptotic death), tissue (sane and tumorous tissues and differential effect). It discusses the biological efficiency of these treatments which depends on different parameters: intrinsic radio-sensitivity, time (session fractioning and organisation in time), oxygen, radiation quality, cellular cycle, dose rate, temperature. It presents the different types of radiotherapy: external radiotherapy (general sequence, delineation, dosimetry, protection of critical organs, treatment session, quality control, monitoring consultation) and briefly presents some specific techniques (total body irradiation, total cutaneous electron therapy, pre-operation radiotherapy, radio-surgery, hadron-therapy). It proposes an overview of the main indications for this treatment: brain tumours, upper aero digestive tract tumours, bronchial tumours, oesophagus, stomach and pancreas tumours, breast tumours, cervix cancer, rectum tumour, and so on, and indicates the possible associated treatments. The next part addresses brachytherapy. It presents the principles and comments the differences with radiotherapy. It indicates the used radio-elements (Caesium 137, Iridium 192, Iodine 125), describes the implementation techniques (plastic tubes, use of iodine 125, intracavitary and endo-luminal radiation therapy). It proposes an overview of the different treated tumours (skin, breast, prostates, bronchial, oesophagus, ENT) and indicates possible early and late secondary effects for different organs

  11. Embolization of an iodine-125 radioactive seed from the prostate gland into the right ventricle: An unusual pattern of seed migration

    International Nuclear Information System (INIS)

    Schild, Michael H.; Wong, William W.; Vora, Sujay A.; Ward, Lynn D.; Nguyen, Ba D.

    2009-01-01

    Transperineal permanent brachytherapy using iodine-125 or palladium-103 seeds is a standard treatment modality for localized prostate cancer. Migration of seeds to the lungs is a common phenomenon, whereas migration of seeds to the right ventricle is a rare event. We report a case of iodine-125 seed migration to the right ventricle as demonstrated by chest CT scan and add to the very few published reports on this finding. These rare patients did not suffer adverse effects from such event.

  12. Iodine-125 orbital brachytherapy with a prosthetic implant in situ

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, Clare [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Radiation Oncology; Maree, Gert; Munro, Roger [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Medical Physics; Lecuona, Karin [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Ophthalmology; Sauerwein, Wolfgang [Universitaetsklinikum Essen (Germany). Strahlenklinik, NCTeam

    2011-05-15

    Purpose: Brachytherapy is one method of irradiating the orbit after enucleation of an eye with a malignant tumor that has a potential to recur. It consists of 6 trains of I-125 seeds placed around the periphery of the orbit, a shorter central train, and a metal disc, loaded with seeds, placed beneath the eyelids. The presence of a prosthetic orbital implant requires omission of the central train and adjustment of the activity of the seeds in the anterior orbit around the prosthesis. Patients and Methods: This is a retrospective review of the technical modifications and outcome of 12 patients treated in this manner: 6 with retinoblastoma, 5 with malignant melanoma, and 1 with an intraocular rhabdomyosarcoma. The median dose was 35.5 Gy in 73 hours for retinoblastoma and 56 Gy in 141 hours for malignant melanoma. Patients with retinoblastoma and rhabdomyosarcoma also received chemotherapy. Results: The tubes can be placed satisfactorily around the prosthesis. The increased activity in the anterior half of the tubes produced comparable dose distributions. There have been no orbital recurrences, no extrusion of the prosthesis, and cosmesis is good. Conclusion: Insertion of a prosthetic implant at the time of enucleation greatly enhances the subsequent cosmetic appearance. This should be encouraged unless there is frank tumor in the orbit. Orbital brachytherapy without the central train continues to give excellent local control. The short treatment time and good cosmesis are added advantages. The patient is spared the expense and inconvenience of removing and replacing the prosthetic implant. (orig.)

  13. Surface coating for prevention of metallic seed migration in tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunseok; Park, Jong In [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Won Seok; Park, Min [Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 151-742 (Korea, Republic of); Son, Kwang-Jae [Hanaro Applications Research, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bang, Young-bong [Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Choy, Young Bin, E-mail: ybchoy@snu.ac.kr, E-mail: sye@snu.ac.kr [Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 110-744 (Korea, Republic of); Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Ye, Sung-Joon, E-mail: ybchoy@snu.ac.kr, E-mail: sye@snu.ac.kr [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-06-15

    Purpose: In radiotherapy, metallic implants often detach from their deposited sites and migrate to other locations. This undesirable migration could cause inadequate dose coverage for permanent brachytherapy and difficulties in image-guided radiation delivery for patients. To prevent migration of implanted seeds, the authors propose a potential strategy to use a biocompatible and tissue-adhesive material called polydopamine. Methods: In this study, nonradioactive dummy seeds that have the same geometry and composition as commercial I-125 seeds were coated in polydopamine. Using scanning electron microscopy and x-ray photoelectron spectroscopy, the surface of the polydopamine-coated and noncoated seeds was characterized. The detachment stress between the two types of seeds and the tissue was measured. The efficacy of polydopamine-coated seed was investigated through in vitro migration tests by tracing the seed location after tissue implantation and shaking for given times. The cytotoxicity of the polydopamine coating was also evaluated. Results: The results of the coating characterization have shown that polydopamine was successfully coated on the surface of the seeds. In the adhesion test, the polydopamine-coated seeds had 2.1-fold greater detachment stress than noncoated seeds. From the in vitro test, it was determined that the polydopamine-coated seed migrated shorter distances than the noncoated seed. This difference was increased with a greater length of time after implantation. Conclusions: The authors suggest that polydopamine coating is an effective technique to prevent migration of implanted seeds, especially for permanent prostate brachytherapy.

  14. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: Report of Task Group 192

    Energy Technology Data Exchange (ETDEWEB)

    Podder, Tarun K., E-mail: tarun.podder@uhhospitals.org [Department of Radiation Oncology, University Hospitals, Case Western Reserve University, Cleveland, Ohio 44122 (United States); Beaulieu, Luc [Department of Radiation Oncology, Centre Hospitalier Univ de Quebec, Quebec G1R 2J6 (Canada); Caldwell, Barrett [Schools of Industrial Engineering and Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Cormack, Robert A. [Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Crass, Jostin B. [Department of Radiation Oncology, Vanderbilt University, Nashville, Tennessee 37232 (United States); Dicker, Adam P.; Yu, Yan [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States); Fenster, Aaron [Department of Imaging Research, Robarts Research Institute, London, Ontario N6A 5K8 (Canada); Fichtinger, Gabor [School of Computer Science, Queen’s University, Kingston, Ontario K7L 3N6 (Canada); Meltsner, Michael A. [Philips Radiation Oncology Systems, Fitchburg, Wisconsin 53711 (United States); Moerland, Marinus A. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht, 3508 GA (Netherlands); Nath, Ravinder [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520 (United States); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Salcudean, Tim [Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada); Song, Danny Y. [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Thomadsen, Bruce R. [Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 (United States)

    2014-10-15

    In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicists in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3–6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These tests

  15. AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: Report of Task Group 192

    International Nuclear Information System (INIS)

    Podder, Tarun K.; Beaulieu, Luc; Caldwell, Barrett; Cormack, Robert A.; Crass, Jostin B.; Dicker, Adam P.; Yu, Yan; Fenster, Aaron; Fichtinger, Gabor; Meltsner, Michael A.; Moerland, Marinus A.; Nath, Ravinder; Rivard, Mark J.; Salcudean, Tim; Song, Danny Y.; Thomadsen, Bruce R.

    2014-01-01

    In the last decade, there have been significant developments into integration of robots and automation tools with brachytherapy delivery systems. These systems aim to improve the current paradigm by executing higher precision and accuracy in seed placement, improving calculation of optimal seed locations, minimizing surgical trauma, and reducing radiation exposure to medical staff. Most of the applications of this technology have been in the implantation of seeds in patients with early-stage prostate cancer. Nevertheless, the techniques apply to any clinical site where interstitial brachytherapy is appropriate. In consideration of the rapid developments in this area, the American Association of Physicists in Medicine (AAPM) commissioned Task Group 192 to review the state-of-the-art in the field of robotic interstitial brachytherapy. This is a joint Task Group with the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO). All developed and reported robotic brachytherapy systems were reviewed. Commissioning and quality assurance procedures for the safe and consistent use of these systems are also provided. Manual seed placement techniques with a rigid template have an estimated in vivo accuracy of 3–6 mm. In addition to the placement accuracy, factors such as tissue deformation, needle deviation, and edema may result in a delivered dose distribution that differs from the preimplant or intraoperative plan. However, real-time needle tracking and seed identification for dynamic updating of dosimetry may improve the quality of seed implantation. The AAPM and GEC-ESTRO recommend that robotic systems should demonstrate a spatial accuracy of seed placement ≤1.0 mm in a phantom. This recommendation is based on the current performance of existing robotic brachytherapy systems and propagation of uncertainties. During clinical commissioning, tests should be conducted to ensure that this level of accuracy is achieved. These tests

  16. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for 125I and 103Pd brachytherapy sources relative to 60Co

    International Nuclear Information System (INIS)

    Reed, J. L.; Micka, J. A.; Culberson, W. S.; DeWerd, L. A.; Rasmussen, B. E.; Davis, S. D.

    2014-01-01

    Purpose: To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for 125 I and 103 Pd brachytherapy sources relative to 60 Co. Methods: LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a 60 Co teletherapy source. The brachytherapy sources measured were the Best 2301 125 I seed, the OncoSeed 6711 125 I seed, and the Best 2335 103 Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the 60 Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the 60 Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for 125 I and 103 Pd relative to 60 Co. Results: The relative TLD intrinsic energy dependences (relative to 60 Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. Conclusions: The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%–15% for 125 I and 103 Pd sources relative to 60 Co. TLD measurements of absolute dose around 125 I and 103 Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy

  17. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for 125I and 103Pd brachytherapy sources relative to 60Co.

    Science.gov (United States)

    Reed, J L; Rasmussen, B E; Davis, S D; Micka, J A; Culberson, W S; DeWerd, L A

    2014-12-01

    To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for (125)I and (103)Pd brachytherapy sources relative to (60)Co. LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a (60)Co teletherapy source. The brachytherapy sources measured were the Best 2301 (125)I seed, the OncoSeed 6711 (125)I seed, and the Best 2335 (103)Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the (60)Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the (60)Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for (125)I and (103)Pd relative to (60)Co. The relative TLD intrinsic energy dependences (relative to (60)Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%-15% for (125)I and (103)Pd sources relative to (60)Co. TLD measurements of absolute dose around (125)I and (103)Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.

  18. Halo's production in vitro on brachytherapy experiments

    International Nuclear Information System (INIS)

    Cuperschmid, Ethel M.; Sarmento, Eduardo V.; Campos, Tarcisio P.R.

    2011-01-01

    Since earlier of 1960, one of the most significant contributions of radiation biology has been the theory of cell killing as a function of increasing doses of a cytotoxic agent, as well as the demonstration of repair of sublethal or potentially lethal damage after irradiation. The impact of cellular and molecular radiobiology, by exploitation of cellular mechanisms related to apoptosis, may be the cell killing with irradiation by including changes other than unrepaired DNA damage. Based on the understanding of the tumor microenvironment and how growth factors and proteins produced by irradiated cells may alter cellular processes, improved combined-modality strategies may emerge. This effect was show since 1960's, but here we propose to demonstrate this phenomenon in Brachytherapy. The present goal is to verify the macroscopic response through the production and analysis of clonogenic control based on halos generation by radioactive seeds of Ho-165 and Sm-153, aiming to study the effect of this type of irradiation. Confluent cell culture flasks with HeLa cell line were subjected to radiation in a period up to five half-lives of radionuclide, respectively. Devices were introduced which set the polymer-ceramic Ho-165 and Sm-153 seeds in the vials. After a period of exposure, the flasks were stained with violet Gensiana. The results showed the formation of halos control of confluent cancer cells. This paper will describe these experiments in the current stage of the research and report the implications of this new way of therapy for cancer treatment. (author)

  19. Spectroscopic characterization of low dose rate brachytherapy sources

    Science.gov (United States)

    Beach, Stephen M.

    The low dose rate (LDR) brachytherapy seeds employed in permanent radioactive-source implant treatments usually use one of two radionuclides, 125I or 103Pd. The theoretically expected source spectroscopic output from these sources can be obtained via Monte Carlo calculation based upon seed dimensions and materials as well as the bare-source photon emissions for that specific radionuclide. However the discrepancies resulting from inconsistent manufacturing of sources in comparison to each other within model groups and simplified Monte Carlo calculational geometries ultimately result in undesirably large uncertainties in the Monte Carlo calculated values. This dissertation describes experimentally attained spectroscopic outputs of the clinically used brachytherapy sources in air and in liquid water. Such knowledge can then be applied to characterize these sources by a more fundamental and metro logically-pure classification, that of energy-based dosimetry. The spectroscopic results contained within this dissertation can be utilized in the verification and benchmarking of Monte Carlo calculational models of these brachytherapy sources. This body of work was undertaken to establish a usable spectroscopy system and analysis methods for the meaningful study of LDR brachytherapy seeds. The development of a correction algorithm and the analysis of the resultant spectroscopic measurements are presented. The characterization of the spectrometer and the subsequent deconvolution of the measured spectrum to obtain the true spectrum free of any perturbations caused by the spectrometer itself is an important contribution of this work. The approach of spectroscopic deconvolution that was applied in this work is derived in detail and it is applied to the physical measurements. In addition, the spectroscopically based analogs to the LDR dosimetry parameters that are currently employed are detailed, as well as the development of the theory and measurement methods to arrive at these

  20. Poster — Thur Eve — 77: Implanted Brachythearpy Seed Movement due to Transrectal Ultrasound Probe-Induced Prostate Deformation

    International Nuclear Information System (INIS)

    Liu, D; Usmani, N; Sloboda, R; Meyer, T; Husain, S; Angyalfi, S; Kay, I

    2014-01-01

    The study investigated the movement of implanted brachytherapy seeds upon transrectal US probe removal, providing insight into the underlying prostate deformation and an estimate of the impact on prostate dosimetry. Implanted seed distributions, one obtained with the prostate under probe compression and another with the probe removed, were reconstructed using C-arm fluoroscopy imaging. The prostate, delineated on ultrasound images, was registered to the fluoroscopy images using seeds and needle tracks identified on ultrasound. A deformation tensor and shearing model was developed to correlate probe-induced seed movement with position. Changes in prostate TG-43 dosimetry were calculated. The model was used to infer the underlying prostate deformation and to estimate the location of the prostate surface in the absence of probe compression. Seed movement patterns upon probe removal reflected elastic decompression, lateral shearing, and rectal bending. Elastic decompression was characterized by expansion in the anterior-posterior direction and contraction in the superior-inferior and lateral directions. Lateral shearing resulted in large anterior movement for extra-prostatic seeds in the lateral peripheral region. Whole prostate D90 increased up to 8 Gy, mainly due to the small but systematic seed movement associated with elastic decompression. For selected patients, lateral shearing movement increased prostate D90 by 4 Gy, due to increased dose coverage in the anterior-lateral region at the expense of the posterior-lateral region. The effect of shearing movement on whole prostate D90 was small compared to elastic decompression due to the subset of peripheral seeds involved, but is expected to have greater consequences for local dose coverage

  1. Erectile function after prostate brachytherapy

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Butler, Wayne M.; Wallner, Kent E.; Galbreath, Robert W.; Anderson, Richard L.; Kurko, Brian S.; Lief, Jonathan H.; Allen, Zachariah A.

    2005-01-01

    Purpose: To evaluate erectile function after permanent prostate brachytherapy using a validated patient-administered questionnaire and to determine the effect of multiple clinical, treatment, and dosimetric parameters on penile erectile function. Methods and materials: A total of 226 patients with preimplant erectile function determined by the International Index of Erectile Function (IIEF) questionnaire underwent permanent prostate brachytherapy in two prospective randomized trials between February 2001 and January 2003 for clinical Stage T1c-T2c (2002 American Joint Committee on Cancer) prostate cancer. Of the 226 patients, 132 were potent before treatment and, of those, 128 (97%) completed and returned the IIEF questionnaire after brachytherapy. The median follow-up was 29.1 months. Potency was defined as an IIEF score of ≥13. The clinical, treatment, and dosimetric parameters evaluated included patient age; preimplant IIEF score; clinical T stage; pretreatment prostate-specific antigen level; Gleason score; elapsed time after implantation; preimplant nocturnal erections; body mass index; presence of hypertension or diabetes mellitus; tobacco consumption; the volume of the prostate gland receiving 100%, 150%, and 200% of the prescribed dose (V 100/150/200 ); the dose delivered to 90% of the prostate gland (D 90 ); androgen deprivation therapy; supplemental external beam radiotherapy (EBRT); isotope; prostate volume; planning volume; and radiation dose to the proximal penis. Results: The 3-year actuarial rate of potency preservation was 50.5%. For patients who maintained adequate posttreatment erectile function, the preimplant IIEF score was 29, and in patients with brachytherapy-related ED, the preimplant IIEF score was 25. The median time to the onset of ED was 5.4 months. After brachytherapy, the median IIEF score was 20 in potent patients and 3 in impotent patients. On univariate analysis, the preimplant IIEF score, patient age, presence of nocturnal

  2. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment.

    Science.gov (United States)

    Miksys, N; Xu, C; Beaulieu, L; Thomson, R M

    2015-08-07

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose

  3. Calibration of Photon Sources for Brachytherapy

    Science.gov (United States)

    Rijnders, Alex

    Source calibration has to be considered an essential part of the quality assurance program in a brachytherapy department. Not only it will ensure that the source strength value used for dose calculation agrees within some predetermined limits to the value stated on the source certificate, but also it will ensure traceability to international standards. At present calibration is most often still given in terms of reference air kerma rate, although calibration in terms of absorbed dose to water would be closer to the users interest. It can be expected that in a near future several standard laboratories will be able to offer this latter service, and dosimetry protocols will have to be adapted in this way. In-air measurement using ionization chambers (e.g. a Baldwin—Farmer ionization chamber for 192Ir high dose rate HDR or pulsed dose rate PDR sources) is still considered the method of choice for high energy source calibration, but because of their ease of use and reliability well type chambers are becoming more popular and are nowadays often recommended as the standard equipment. For low energy sources well type chambers are in practice the only equipment available for calibration. Care should be taken that the chamber is calibrated at the standard laboratory for the same source type and model as used in the clinic, and using the same measurement conditions and setup. Several standard laboratories have difficulties to provide these calibration facilities, especially for the low energy seed sources (125I and 103Pd). Should a user not be able to obtain properly calibrated equipment to verify the brachytherapy sources used in his department, then at least for sources that are replaced on a regular basis, a consistency check program should be set up to ensure a minimal level of quality control before these sources are used for patient treatment.

  4. Preliminary results of interstitial [sup 192]Ir brachytherapy for malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Kengo; Nakagawa, Minoru; Higashi, Hisato [Okayama Univ. (Japan). School of Medicine; and others

    1992-09-01

    Twenty-six patients with recurrent or unremovable malignant gliomas were treated by interstitial brachytherapy with iridium-192 seeds. Stereotactic implantation of the afterloading catheters using the Brown-Roberts-Wells computed tomography (CT)-guided stereotactic system was performed in 24 patients and surgical CT, magnetic resonance imaging, and clinical examination. Tumor regression was seen in 17 patients 1-3 months after implantation. Tumor progression was seen in only three patients. After interstitial brachytherapy, the most commonly observed CT finding was central low density. Median survival time was 18 months after implantation. Autopsies in five patients revealed the delayed effects of radiation injury such as typical vascular changes, microcalcification, and coagulative necrosis in the implant area and tumor recurrence at the periphery. The results suggest that brachytherapy is not curative but prolonged the median survival time by 6 months. (author).

  5. Intracavitary mould brachytherapy in malignant tumors of the maxilla

    International Nuclear Information System (INIS)

    Rosenblatt, Edward; Blumenfeld, Israel; Cederbaum, Martin; Kuten, Abraham

    1996-01-01

    Purpose: To integrate brachytherapy in the combined modality management of malignant tumors of the maxilla, as a means of increasing the radiotherapy dose to the tumor bed while avoiding high doses to the orbital contents. Materials and methods: Following a partial or total maxillectomy, a duplication of the interim surgical obturator was created using a wash of vinyl polysiloxane. This mould was used as a carrier for afterloading nylon catheters through which 192-Iridium seed-ribbons were inserted. Following brachytherapy, selected patients also received external beam irradiation. Results and discussion: After a median follow-up of 36 months, 9 out of 11 patients are alive and disease-free; 1 developed a local recurrence and another relapsed at another site in the oral cavity. Transient grade 1 - 2 mucositis at the implant site was observed in all patients. The review of computer isodose distributions showed that the average dose received by the homolateral eyeball was 10% (range 9,2 - 10.0) of the prescribed surface dose to the surgical cavity. Conclusions: Brachytherapy can be integrated in the management of patients with malignant tumors of the maxilla in the form of a custom-made intracavitary mould carrying 192-Iridium sources. We found this technique particularly useful in cases with close or positive surgical margins

  6. The role of long half-life isotopes for use in LDR brachytherapy. Report of the advisory group meeting (325-E3-AG-1086)

    International Nuclear Information System (INIS)

    2000-08-01

    Brachytherapy is a growing activity in the management of cancer. Where indications exist for brachytherapy, LDR still retains a significant but decreasingly important role in the overall management. It remains the preferred form of brachytherapy in a few sites such as the nose, lip, vagina and penis. It is well tested in the paediatric population where long-term sequelae are highly significant and have not yet been evaluated for mHDR. Prostatic cancer permanent seed implant boosts is currently the only application where LDR is receiving increasing clinical support. LDR still can play an equally effective role when brachytherapy is required in gynaecological, breast and head and neck cancer and soft tissue sarcomas. The meeting recognised the growing role of mHDR as the major modality in brachytherapy administration. It is further noted that changing circumstances and opinions regarding mHDR may exert a major influence on the continued future of LDR as a treatment modality. LDR brachytherapy special techniques are becoming less widely distributed and less frequently performed. Only a few centres remain where sufficient procedures are performed to give adequate training in a period of a few months. The meeting recommended that the Agency should promote the creation of regional training centres of excellence where the practice of LDR brachytherapy should be available. The meeting recommended that the Member States should continue support for LDR brachytherapy techniques beyond gynaecological techniques until such time as clear evidence is presented for discontinuation

  7. First symposium seed implant 125I and high rate of prostate

    International Nuclear Information System (INIS)

    2012-01-01

    The First symposium seed implant 125 I and high rate of prostate, was organized by the Marie Curie Foundation, between the 12 to april 2012, in the Cordoba city of Argentina. In this event were presented several documents in different topics: patients selection for impacts of 125 I seeds; high doses radiation in radiotherapy; brachytherapy for prostate cancer; prostate implant technique with 125 I seeds; implant dosimetric aspects; radioprotection of 125 I seeds.

  8. Study of two different radioactive sources for prostate brachytherapy treatment

    International Nuclear Information System (INIS)

    Pereira Neves, Lucio; Perini, Ana Paula; Souza Santos, William de; Caldas, Linda V.E.; Belinato, Walmir

    2015-01-01

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a 192 Ir and a 125 I radioactive sources. The 192 Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The 125 I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of an adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of 125 I and one of 192 Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the 192 Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the 125 I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)

  9. Study of two different radioactive sources for prostate brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Neves, Lucio; Perini, Ana Paula [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, 38400-902, Uberlandia, MG (Brazil); Souza Santos, William de; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, IPENCNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo, SP (Brazil); Belinato, Walmir [Departamento de Ensino, Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia, Campus Vitoria da Conquista, Zabele, Av. Amazonas 3150, 45030-220 Vitoria da Conquista, BA (Brazil)

    2015-07-01

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a {sup 192}Ir and a {sup 125}I radioactive sources. The {sup 192}Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The {sup 125}I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of an adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of {sup 125}I and one of {sup 192}Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the {sup 192}Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the {sup 125}I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)

  10. DuraSeal® as a spacer to reduce rectal doses in low-dose rate brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Heikkilä, Vesa-Pekka; Kärnä, Aarno; Vaarala, Markku H.

    2014-01-01

    The purpose of this study was to evaluate the utility of off-label use of DuraSeal® polyethylene glycol (PEG) gel in low-dose rate (LDR) prostate brachytherapy seed implantation to reduce rectal doses. Diluted DuraSeal® was easy to use and, in spite of a clearance effect, useful in decreasing D 2cc rectal doses

  11. Salvage/Adjuvant Brachytherapy After Ophthalmic Artery Chemosurgery for Intraocular Retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Jasmine H., E-mail: francij1@mskcc.org [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Barker, Christopher A.; Wolden, Suzanne L.; McCormick, Beryl; Segal, Kira; Cohen, Gil [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Gobin, Y. Pierre; Marr, Brian P. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Weill-Cornell Medical College, New York-Presbyterian Hospital, New York, New York (United States); Brodie, Scott E. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Mount Sinai School of Medicine, New York, New York (United States); Dunkel, Ira J.; Abramson, David H. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Weill-Cornell Medical College, New York-Presbyterian Hospital, New York, New York (United States)

    2013-11-01

    Purpose: To evaluate the efficacy and toxicity of brachytherapy after ophthalmic artery chemosurgery (OAC) for retinoblastoma. Methods and Materials: This was a single-arm, retrospective study of 15 eyes in 15 patients treated with OAC followed by brachytherapy at (blinded institution) between May 1, 2006, and December 31, 2012, with a median 19 months' follow-up from plaque insertion. Outcome measurements included patient and ocular survival, visual function, and retinal toxicity measured by electroretinogram (ERG). Results: Brachytherapy was used as adjuvant treatment in 2 eyes and as salvage therapy in 13 eyes of which 12 had localized vitreous seeding. No patients developed metastasis or died of retinoblastoma. The Kaplan-Meier estimate of ocular survival was 79.4% (95% confidence interval 48.7%-92.8%) at 18 months. Three eyes were enucleated, and an additional 6 eyes developed out-of-target volume recurrences, which were controlled with additional treatments. Patients with an ocular complication had a mean interval between last OAC and plaque of 2.5 months (SD 2.3 months), which was statistically less (P=.045) than patients without ocular complication who had a mean interval between last OAC and plaque of 6.5 months (SD 4.4 months). ERG responses from pre- versus postplaque were unchanged or improved in more than half the eyes. Conclusions: Brachytherapy following OAC is effective, even in the presence of vitreous seeding; the majority of eyes maintained stable or improved retinal function following treatment, as assessed by ERG.

  12. Salvage/Adjuvant Brachytherapy After Ophthalmic Artery Chemosurgery for Intraocular Retinoblastoma

    International Nuclear Information System (INIS)

    Francis, Jasmine H.; Barker, Christopher A.; Wolden, Suzanne L.; McCormick, Beryl; Segal, Kira; Cohen, Gil; Gobin, Y. Pierre; Marr, Brian P.; Brodie, Scott E.; Dunkel, Ira J.; Abramson, David H.

    2013-01-01

    Purpose: To evaluate the efficacy and toxicity of brachytherapy after ophthalmic artery chemosurgery (OAC) for retinoblastoma. Methods and Materials: This was a single-arm, retrospective study of 15 eyes in 15 patients treated with OAC followed by brachytherapy at (blinded institution) between May 1, 2006, and December 31, 2012, with a median 19 months' follow-up from plaque insertion. Outcome measurements included patient and ocular survival, visual function, and retinal toxicity measured by electroretinogram (ERG). Results: Brachytherapy was used as adjuvant treatment in 2 eyes and as salvage therapy in 13 eyes of which 12 had localized vitreous seeding. No patients developed metastasis or died of retinoblastoma. The Kaplan-Meier estimate of ocular survival was 79.4% (95% confidence interval 48.7%-92.8%) at 18 months. Three eyes were enucleated, and an additional 6 eyes developed out-of-target volume recurrences, which were controlled with additional treatments. Patients with an ocular complication had a mean interval between last OAC and plaque of 2.5 months (SD 2.3 months), which was statistically less (P=.045) than patients without ocular complication who had a mean interval between last OAC and plaque of 6.5 months (SD 4.4 months). ERG responses from pre- versus postplaque were unchanged or improved in more than half the eyes. Conclusions: Brachytherapy following OAC is effective, even in the presence of vitreous seeding; the majority of eyes maintained stable or improved retinal function following treatment, as assessed by ERG

  13. Dose optimization in simulated permanent interstitial implant of prostate brachytherapy

    International Nuclear Information System (INIS)

    Faria, Fernando Pereira de

    2006-01-01

    Any treatment of cancer that uses some modality of radiotherapy is planned before being executed. In general the goal in radiotherapy is to irradiate the target to be treated minimizing the incidence of radiation in healthy surrounding tissues. The planning differ among themselves according to the modality of radiotherapy, the type of cancer and where it is located. This work approaches the problem of dose optimization for the planning of prostate cancer treatment through the modality of low dose-rate brachytherapy with Iodine 125 or Palladium 103 seeds. An algorithm for dose calculation and optimization was constructed to find the seeds configuration that better fits the relevant clinical criteria such as as the tolerated dose by the urethra and rectum and the desired dose for prostate. The algorithm automatically finds this configuration from the prostate geometry established in two or three dimensions by using images of ultrasound, magnetic resonance or tomography and from the establishment of minimum restrictions to the positions of the seeds in the prostate and needles in a template. Six patterns of seeds distribution based on clinical criteria were suggested and tested in this work. Each one of these patterns generated a space of possible seeds configurations for the prostate tested by the dose calculation and optimization algorithm. The configurations that satisfied the clinical criteria were submitted to a test according to an optimization function suggested in this work. The configuration that produced maximum value for this function was considered the optimized one. (author)

  14. Dosimetry in intravascular brachytherapy

    International Nuclear Information System (INIS)

    Campos, Laelia Pumilla Botelho

    2000-03-01

    Among the cardiovascular diseases responsible for deaths in the adult population in almost all countries of the world, the most common is acute myocardial infarction, which generally occurs because of the occlusion of one or more coronary arteries. Several diagnostic techniques and therapies are being tested for the treatment of coronary artery disease. Balloon angioplasty has been a popular treatment which is less invasive than traditional surgeries involving revascularization of the myocardium, thus promising a better quality of life for patients. Unfortunately, the rate of restenosis (re-closing of the vessel) after balloon angioplasty is high (approximately 30-50% within the first year after treatment).Recently, the idea of delivering high radiation doses to coronary arteries to avoid or delay restenosis has been suggested. Known as intravascular brachytherapy, the technique has been used with several radiation sources, and researchers have obtained success in decreasing the rate of restenosis in some patient populations. In order to study the radiation dosimetry in the patient and radiological protection for the attending staff for this therapy, radiation dose distributions for monoenergetic electrons and photons (at nine discrete energies) were calculated for blood vessels of diameter 0.15, o,30 and 0.45 cm with balloon and wire sources using the radiation transport code MCNP4B. Specific calculations were carried out for several candidate radionuclides as well. Two s tent sources (metallic prosthesis that put inside of patient's artery through angioplasty) employing 32 P are also simulated. Advantages and disadvantages of the various radionuclides and source geometries are discussed. The dosimetry developed here will aid in the realization of the benefits obtained in patients for this promising new technology. (author)

  15. Radiological protection of patients in brachytherapy

    International Nuclear Information System (INIS)

    Sacc, Ricardo; Herrero, Flavia

    2008-01-01

    Full text: The prefix 'brachy' means short-range, so brachytherapy is the administration of radiation therapy using small radioactive sources in the form of needles, tubes, wires or seeds, which are placed within the tumor -interstitial form- or very near of it, superficially or in an endo-cavity form. This technique, which was limited by the size of the primary tumor, has the advantage, that the radiation, can be adjusted to the size and shape of the tumor volume and the radioisotope used, - short range -, is selected with the criteria of getting the dose in the organs at risk, as low as possible, making what it is known as conformal radiotherapy. Radioactive sources may be permanent or temporary implants. The application of radioactive material, can be manually or automatically. In the first case, a major breakthrough from the radioprotection point of view, was the use of afterloading devices, methodology highly recommended to reduce the radiation exposure to staff. With the development of technology, remotely controlled afterloading devices were introduced, which in addition to complying with the above requirement, allow the source to move in different positions along catheters housed in one or more channels, making therapeutic brachytherapy treatments in tumor volumes possible, that due to its length, decades ago would have been an unthinkable deal. In all cases, sources, which may vary from the 3 mm in length, 125 Iodine or 198 Gold seeds, to extensive wires of 192 Iridium, are encapsulated for two main purposes: preventing leakage of radioactive material and absorption of unwanted radiation, alpha and beta, produced by the radioactive decay. Consequently, it should be highly unlikely that the radioactive material, could be lost or located in the patient, in a different place of the one that was planned. However, history shows us the opposite. Its is known the kind of deterministic effect that radiation is going to produce in the tumor, where the severity of

  16. About brachytherapy for the handling of cancer

    International Nuclear Information System (INIS)

    Campos, Tarcisio P.R.; Silva, Nilton O.; Damaso, Renato S.; Costa, Helder R.; Borges, Paulo H.R.; Mendes, Bruno M.

    2000-01-01

    The technique of brachytherapy is argued in this article. The 'hardware' and 'necessary software' for the handling are summarily presented. Being the macro-dosimetry an important stage in the radiation therapy procedure, a simplified method of doses evaluation in conventional brachytherapy is presented. In an illustrative form, isodoses of a three-dimensional distribution of linear sources are drawn on a digitalized X-ray picture, exemplifying the handling of breast brachytherapy by sources of iridium

  17. SU-E-T-279: Realization of Three-Dimensional Conformal Dose Planning in Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Jiang, S; Yang, Z [Tianjin University, Tianjin (China); Bai, H; Zhang, X [Seeds biological Pharmacy Ltd, Tianjin (China)

    2014-06-01

    Purpose: Successful clinical treatment in prostate brachytherapy is largely dependent on the effectiveness of pre-surgery dose planning. Conventional dose planning method could hardly arrive at a satisfy result. In this abstract, a three-dimensional conformal localized dose planning method is put forward to ensure the accuracy and effectiveness of pre-implantation dose planning. Methods: Using Monte Carlo method, the pre-calculated 3-D dose map for single source is obtained. As for multiple seeds dose distribution, the maps are combined linearly to acquire the 3-D distribution. The 3-D dose distribution is exhibited in the form of isodose surface together with reconstructed 3-D organs group real-timely. Then it is possible to observe the dose exposure to target volume and normal tissues intuitively, thus achieving maximum dose irradiation to treatment target and minimum healthy tissues damage. In addition, the exfoliation display of different isodose surfaces can be realized applying multi-values contour extraction algorithm based on voxels. The needles could be displayed in the system by tracking the position of the implanted seeds in real time to conduct block research in optimizing insertion trajectory. Results: This study extends dose planning from two-dimensional to three-dimensional, realizing the three-dimensional conformal irradiation, which could eliminate the limitations of 2-D images and two-dimensional dose planning. A software platform is developed using VC++ and Visualization Toolkit (VTK) to perform dose planning. The 3-D model reconstruction time is within three seconds (on a Intel Core i5 PC). Block research could be conducted to avoid inaccurate insertion into sensitive organs or internal obstructions. Experiments on eight prostate cancer cases prove that this study could make the dose planning results more reasonable. Conclusion: The three-dimensional conformal dose planning method could improve the rationality of dose planning by safely reducing

  18. Archaeobotanical reconstructions of vegetation and report of mummified apple seeds found in the cellar of a first-century Roman villa on Elba Island.

    Science.gov (United States)

    Milanesi, Claudio; Scali, Monica; Vignani, Rita; Cambi, Franco; Dugerdil, Lucas; Faleri, Claudia; Cresti, Mauro

    In the late Roman Republic period (2nd-1st century BC), in the area of San Giovanni on Elba Island, previously subject to intense extraction of iron ore, a rustic villa was established by Marco Valerio Messalla, a supreme Roman magistrate. The foundations of the walls were discovered and excavated by an archaeological mission. Palaeobotanical analysis of a set of stratigraphic layers was performed. Palynological slides showed remains of palynomorphic and non-pollen objects, while data combined with anthracological investigations confirmed the hypothesis that in the 1st century AD the villa was destroyed by a fire that created a compact crust under which were discovered four broken Roman amphorae containing about five hundred apple seeds. Comparisons of archaeological and fresh seeds from reference collections showed discontinuous morphology except for one group of archaeological samples. DNA was isolated from seeds that had well-preserved embryos in all groups. DNA extracts from archaeological, wild and modern domestic seeds (controls) were amplified by PCR and tested with SSR molecular markers, followed by genome analysis. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  19. SU-F-BRA-04: Prostate HDR Brachytherapy with Multichannel Robotic System

    International Nuclear Information System (INIS)

    Joseph, F Maria; Podder, T; Yu, Y

    2015-01-01

    Purpose: High-dose-rate (HDR) brachytherapy is gradually becoming popular in treating patients with prostate cancers. However, placement of the HDR needles at desired locations into the patient is challenging. Application of robotic system may improve the accuracy of the clinical procedure. This experimental study is to evaluate the feasibility of using a multichannel robotic system for prostate HDR brachytherapy. Methods: In this experimental study, the robotic system employed was a 6-DOF Multichannel Image-guided Robotic Assistant for Brachytherapy (MIRAB), which was designed and fabricated for prostate seed implantation. The MIRAB has the provision of rotating 16 needles while inserting them. Ten prostate HDR brachytherapy needles were simultaneously inserted using MIRAB into a commercially available prostate phantom. After inserting the needles into the prostate phantom at desired locations, 2mm thick CT slices were obtained for dosimetric planning. HDR plan was generated using Oncetra planning system with a total prescription dose of 34Gy in 4 fractions. Plan quality was evaluated considering dose coverage to prostate and planning target volume (PTV), with 3mm margin around prostate, as well as the dose limit to the organs at risk (OARs) following the American Brachytherapy Society (ABS) guidelines. Results: From the CT scan, it is observed that the needles were inserted straight into the desired locations and they were adequately spaced and distributed for a clinically acceptable HDR plan. Coverage to PTV and prostate were about 91% (V100= 91%) and 96% (V100=96%), respectively. Dose to 1cc of urethra, rectum, and bladder were within the ABS specified limits. Conclusion: The MIRAB was able to insert multiple needles simultaneously into the prostate precisely. By controlling the MIRAB to insert all the ten utilized needles into the prostate phantom, we could achieve the robotic HDR brachytherapy successfully. Further study for assessing the system

  20. I-125 seed dose estimates in heterogeneous phantom

    International Nuclear Information System (INIS)

    Branco, Isabela S.L.; Antunes, Paula C.G.; Cavalieri, Tassio A.; Moura, Eduardo S.; Zeituni, Carlos A.; Yoriyaz, Helio

    2015-01-01

    Brachytherapy plays an important role in the healing process involving tumors in a variety of diseases. Several studies are currently conducted to examine the heterogeneity effects of different tissues and organs in brachytherapy clinical situations and a great effort has been made to incorporate new methodologies to estimate doses with greater accuracy. The objective of this study is to contribute to the assessment of heterogeneous effects on dose due to I-125 brachytherapy source in the presence of different materials with different densities and chemical compositions. The study was performed in heterogeneous phantoms using materials that simulate human tissues. Among these is quoted: breast, fat, muscle, lungs (exhaled and inhaled) and bones with different densities. Monte Carlo simulations for dose calculation in these phantoms were held and subsequently validated. The model 6711 I-125 seed was considered because it is widely used as a brachytherapy permanent implant and the one used in clinics and hospitals in Brazil. Thermoluminescent dosimeters TLD-700 (LiF: Mg, Ti) were simulated for dose assess. Several tissue configurations and positioning of I-125 sources were studied by simulations for future dose measurements. The methodology of this study so far shall be suitable for accurate dosimetric evaluation for different types of brachytherapy treatments, contributing to brachytherapy planning systems complementation allowing a better assessment of the dose actually delivered to the patient. (author)

  1. I-125 seed dose estimates in heterogeneous phantom

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Isabela S.L.; Antunes, Paula C.G.; Cavalieri, Tassio A.; Moura, Eduardo S.; Zeituni, Carlos A.; Yoriyaz, Helio, E-mail: isabela.slbranco@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Brachytherapy plays an important role in the healing process involving tumors in a variety of diseases. Several studies are currently conducted to examine the heterogeneity effects of different tissues and organs in brachytherapy clinical situations and a great effort has been made to incorporate new methodologies to estimate doses with greater accuracy. The objective of this study is to contribute to the assessment of heterogeneous effects on dose due to I-125 brachytherapy source in the presence of different materials with different densities and chemical compositions. The study was performed in heterogeneous phantoms using materials that simulate human tissues. Among these is quoted: breast, fat, muscle, lungs (exhaled and inhaled) and bones with different densities. Monte Carlo simulations for dose calculation in these phantoms were held and subsequently validated. The model 6711 I-125 seed was considered because it is widely used as a brachytherapy permanent implant and the one used in clinics and hospitals in Brazil. Thermoluminescent dosimeters TLD-700 (LiF: Mg, Ti) were simulated for dose assess. Several tissue configurations and positioning of I-125 sources were studied by simulations for future dose measurements. The methodology of this study so far shall be suitable for accurate dosimetric evaluation for different types of brachytherapy treatments, contributing to brachytherapy planning systems complementation allowing a better assessment of the dose actually delivered to the patient. (author)

  2. Brachytherapy in early prostate cancer--early experience.

    Science.gov (United States)

    Jose, B O; Bailen, J L; Albrink, F H; Steinbock, G S; Cornett, M S; Benson, D C; Schmied, W K; Medley, R N; Spanos, W J; Paris, K J; Koerner, P D; Gatenby, R A; Wilson, D L; Meyer, R

    1999-01-01

    Use of brachytherapy with radioactive seeds in the management of early prostate cancer is commonly used in the United States. The early experience has been reported from the prostate treatment centers in Seattle for the last 10 years. In this manuscript we are reporting our early experience of 150 radioactive seed implantations in early stage prostate cancer using either Iodine 125 or Palladium 103 seeds. The average age of the patient is 66 years and the median Gleason score is 5.4 with a median PSA of 6. A brief description of the evolution of the treatment of prostate cancer as well as the preparation for the seed implantation using the volume study with ultrasound of the prostate, pubic arch study using CT scan of the pelvis and the complete planning using the treatment planning computers are discussed. We also have described the current technique which is used in our experience based on the Seattle guidelines. We plan a follow-up report with the results of the studies with longer follow-up.

  3. (Heckel) seeds

    African Journals Online (AJOL)

    UTILISATEUR

    Garcinia kola seeds to six different hormonal pre-germination treatments. This consisted of ... Thus, seed dormancy in this case is not a coat- imposed .... development of the cultivation of the species. The cause .... Hormonal regulation of seed ...

  4. Physical aspects of radioisotope brachytherapy

    International Nuclear Information System (INIS)

    1967-01-01

    The present report represents an attempt to provide, within a necessarily limited compass, an authoritative guide to all important physical aspects of the use of sealed gamma sources in radiotherapy. Within the report, reference is made wherever necessary to the more extensive but scattered literature on this subject. While this report attempts to cover all the physical aspects of radioisotope 'brachytherapy' it does not, of course, deal exhaustively with any one part of the subject. 384 refs, 3 figs, 6 tabs

  5. Radiation safety and gynaecological brachytherapy

    International Nuclear Information System (INIS)

    Crawford, L.

    1985-01-01

    In 1983, the Radiation Control Section of the South Australian Health Commission conducted an investigation into radiation safety practices in gynaecological brachytherapy. Part of the investigation included a study of the transportation of radioactive sources between hospitals. Several deficiences in radiation safety were found in the way these sources were being transported. New transport regulations came into force in South Australia in July 1984 and since then there have been many changes in the transportation procedure

  6. Intravascular brachytherapy for peripheral vascular disease

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2008-09-01

    Full Text Available Scientific background: Percutaneous transluminal angioplasties (PTA through balloon dilatation with or without stenting, i.e. vessel expansion through balloons with or without of implantation of small tubes, called stents, are used in the treatment of peripheral artery occlusive disease (PAOD. The intravascular vessel irradiation, called intravascular brachytherapy, promises a reduction in the rate of repeated stenosis (rate of restenosis after PTA. Research questions: The evaluation addresses questions on medical efficacy, cost-effectiveness as well as ethic, social and legal implications in the use of brachytherapy in PAOD patients. Methods: A systematic literature search was conducted in August 2007 in the most important medical electronic databases for publications beginning from 2002. The medical evaluation included randomized controlled trials (RCT. The information synthesis was performed using meta-analysis. Health economic modeling was performed with clinical assumptions derived from the meta-analysis and economical assumptions derived from the German Diagnosis Related Groups (G-DRG-2007. Results: Medical evaluation: Twelve publications about seven RCT on brachytherapy vs. no brachytherapy were included in the medical evaluation. Two RCT showed a significant reduction in the rate of restenosis at six and/or twelve months for brachytherapy vs. no brachytherapy after successful balloon dilatation, the relative risk in the meta-analysis was 0.62 (95% CI: 0.46 to 0.84. At five years, time to recurrence of restenosis was significantly delayed after brachytherapy. One RCT showed a significant reduction in the rate of restenosis at six months for brachytherapy vs. no brachytherapy after PTA with optional stenting, the relative risk in the meta-analysis was 0.76 (95% CI: 0.61 to 0.95. One RCT observed a significantly higher rate of late thrombotic occlusions after brachytherapy in the subgroup of stented patients. A single RCT for brachytherapy

  7. Risk analysis of brachytherapy events

    International Nuclear Information System (INIS)

    Buricova, P.; Zackova, H.; Hobzova, L.; Novotny, J.; Kindlova, A.

    2005-01-01

    For prevention radiological events it is necessary to identify hazardous situation and to analyse the nature of committed errors. Though the recommendation on the classification and prevention of radiological events: Radiological accidents has been prepared in the framework of Czech Society of Radiation Oncology, Biology and Physics and it was approved by Czech regulatory body (SONS) in 1999, only a few reports have been submitted up to now from brachytherapy practice. At the radiotherapy departments attention has been paid more likely to the problems of dominant teletherapy treatments. But in the two last decades the usage of brachytherapy methods has gradually increased because .nature of this treatment well as the possibilities of operating facility have been completely changed: new radionuclides of high activity are introduced and sophisticate afterloading systems controlled by computers are used. Consequently also the nature of errors, which can occurred in the clinical practice, has been changing. To determine the potentially hazardous parts of procedure the so-called 'process tree', which follows the flow of entire treatment process, has been created for most frequent type of applications. Marking the location of errors on the process tree indicates where failures occurred and accumulation of marks along branches show weak points in the process. Analysed data provide useful information to prevent medical events in brachytherapy .The results strength the requirements given in Recommendations of SONS and revealed the need for its amendment. They call especially for systematic registration of the events. (authors)

  8. Definitive Brachytherapy for Kaposi's Sarcoma

    International Nuclear Information System (INIS)

    Williams, A.; Ezzell, G.; Zalupski, M.; Fontanesi, J.

    1996-01-01

    Purpose: To assess the efficacy and possible complications in patients diagnosed with Kaposi's sarcoma and treated with definitive brachytherapy. Methods and Materials: Between January, 1995 and December, 1995, four patients with Kaposi's sarcoma (KS) were treated with brachytherapy. Three patients, all with positive HIV status were treated using Iridium 192 (Ir-192) sources via a high-dose rate remote afterloader. One patient with endemic KS was treated using the application of catheters loaded with Californium 252. Eight sites were treated and included scalp, feet, nose, penis, hand, neck, and back. Dose rate for Ir-192 was 330cGy/fx to a total dose of 990cGy. The Californium was delivered as 100nGy/b.i.d. to a total dose of 900nGy. Follow-up as ranged from 2-6 months. Results: All four patients remain alive. Seven of eight sites have had complete clinical response and each patient has reported durable pain relief that has not subsided through last follow-up of 1/96. Two of eight sites, both treated with surface mold technique with Californium 252 developed moist desquamation. The remaining six sites did not demonstrate significant toxicity. Conclusion: Brachytherapy can offer Kaposi's sarcoma patients results that are equivalent to external beam radiation therapy, with minimal complications, a shorter treatment time and potential cost effectiveness

  9. Interstitial prostate brachytherapy. LDR-PDR-HDR

    International Nuclear Information System (INIS)

    Kovacs, Gyoergy; Hoskin, Peter

    2013-01-01

    The first comprehensive overview of interstitial brachytherapy for the management of local or locally advanced prostate cancer. Written by an interdisciplinary team who have been responsible for the successful GEC-ESTRO/EAU Teaching Course. Discusses in detail patient selection, the results of different methods, the role of imaging, and medical physics issues. Prostate brachytherapy has been the subject of heated debate among surgeons and the proponents of the various brachytherapy methods. This very first interdisciplinary book on the subject provides a comprehensive overview of innovations in low dose rate (LDR), high dose rate (HDR), and pulsed dose rate (PDR) interstitial brachytherapy for the management of local or locally advanced prostate cancer. In addition to detailed chapters on patient selection and the use of imaging in diagnostics, treatment guidance, and implantation control, background chapters are included on related medical physics issues such as treatment planning and quality assurance. The results obtained with the different treatment options and the difficult task of salvage treatment are fully discussed. All chapters have been written by internationally recognized experts in their fields who for more than a decade have formed the teaching staff responsible for the successful GEC-ESTRO/EAU Prostate Brachytherapy Teaching Course. This book will be invaluable in informing residents and others of the scientific background and potential of modern prostate brachytherapy. It will also prove a useful source of up-to-date information for those who specialize in prostate brachytherapy or intend to start an interstitial brachytherapy service.

  10. Comparison of Combined X-Ray Radiography and Magnetic Resonance (XMR) Imaging-Versus Computed Tomography-Based Dosimetry for the Evaluation of Permanent Prostate Brachytherapy Implants

    International Nuclear Information System (INIS)

    Acher, Peter; Rhode, Kawal; Morris, Stephen; Gaya, Andrew; Miquel, Marc; Popert, Rick; Tham, Ivan; Nichol, Janette; McLeish, Kate; Deehan, Charles; Dasgupta, Prokar; Beaney, Ronald; Keevil, Stephen F.

    2008-01-01

    Purpose: To present a method for the dosimetric analysis of permanent prostate brachytherapy implants using a combination of stereoscopic X-ray radiography and magnetic resonance (MR) imaging (XMR) in an XMR facility, and to compare the clinical results between XMR- and computed tomography (CT)-based dosimetry. Methods and Materials: Patients who had received nonstranded iodine-125 permanent prostate brachytherapy implants underwent XMR and CT imaging 4 weeks later. Four observers outlined the prostate gland on both sets of images. Dose-volume histograms (DVHs) were derived, and agreement was compared among the observers and between the modalities. Results: A total of 30 patients were evaluated. Inherent XMR registration based on prior calibration and optical tracking required a further automatic seed registration step that revealed a median root mean square registration error of 4.2 mm (range, 1.6-11.4). The observers agreed significantly more closely on prostate base and apex positions as well as outlining contours on the MR images than on those from CT. Coefficients of variation were significantly higher for observed prostate volumes, D90, and V100 parameters on CT-based dosimetry as opposed to XMR. The XMR-based dosimetry showed little agreement with that from CT for all observers, with D90 95% limits of agreement ranges of 65, 118, 79, and 73 Gy for Observers 1, 2, 3, and 4, respectively. Conclusions: The study results showed that XMR-based dosimetry offers an alternative to other imaging modalities and registration methods with the advantages of MR-based prostate delineation and confident three-dimensional reconstruction of the implant. The XMR-derived dose-volume histograms differ from the CT-derived values and demonstrate less interobserver variability

  11. Study and methodologies for fixing epoxy resin in radioactive sources used for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Bruna T.; Rostelato, Maria E.C.M.; Souza, Carla D.; Tozetti, Cíntia A.; Zeituni, Carlos A.; Nogueira, Beatriz R.; Silva, José T.; Júnior, Dib K.; Fernandes, Vagner; Souza, Raquel V.; Abreu, Rodrigo T., E-mail: bteigarodrigues@gmail.com, E-mail: elisaros@ipen.br, E-mail: carladdsouza@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil)

    2017-07-01

    The World Health Organization (WHO) estimates that the number of new cancer cases worldwide will reach 15 million by 2020. The disease is already the second leading cause of death worldwide, being behind only cardiovascular disease. It is unquestionable that it is a public health problem, especially among developing countries. Prostate cancer is the most common among men, approximately 28.6%. The choice of type of treatment for prostate cancer should consider several factors such as: tumor size and extent, apparent aggressiveness (pathological characteristics), age, health. Among the methods applied, brachytherapy has been used in the initial and intermediate stages of the disease. Brachytherapy is a safe and effective treatment for localized prostate cancer. Brachytherapy is a form of radiotherapy in which radioactive seeds are placed in contact with or within the organ being treated. This technique allows a large dose of radiation to be released only on the target tumor that protects healthy surrounding tissues. Sources may have different shapes and sizes, but the one used for prostate cancer is usually 4.5 mm in length and 0.8 mm in diameter. About 80 to 120 seeds can be used per patient. Iodine-125 is the radioisotope most used in brachytherapy of the prostate, it emits 35,49keV X-rays in 100% of the decays, with average energy of 29 keV. The treatment of prostate cancer with permanent implantation of iodine-125 seeds has grown dramatically in the world in recent years. Most patients can return to normal life within three days with little or no pain. (author)

  12. Study and methodologies for fixing epoxy resin in radioactive sources used for brachytherapy

    International Nuclear Information System (INIS)

    Rodrigues, Bruna T.; Rostelato, Maria E.C.M.; Souza, Carla D.; Tozetti, Cíntia A.; Zeituni, Carlos A.; Nogueira, Beatriz R.; Silva, José T.; Júnior, Dib K.; Fernandes, Vagner; Souza, Raquel V.; Abreu, Rodrigo T.

    2017-01-01

    The World Health Organization (WHO) estimates that the number of new cancer cases worldwide will reach 15 million by 2020. The disease is already the second leading cause of death worldwide, being behind only cardiovascular disease. It is unquestionable that it is a public health problem, especially among developing countries. Prostate cancer is the most common among men, approximately 28.6%. The choice of type of treatment for prostate cancer should consider several factors such as: tumor size and extent, apparent aggressiveness (pathological characteristics), age, health. Among the methods applied, brachytherapy has been used in the initial and intermediate stages of the disease. Brachytherapy is a safe and effective treatment for localized prostate cancer. Brachytherapy is a form of radiotherapy in which radioactive seeds are placed in contact with or within the organ being treated. This technique allows a large dose of radiation to be released only on the target tumor that protects healthy surrounding tissues. Sources may have different shapes and sizes, but the one used for prostate cancer is usually 4.5 mm in length and 0.8 mm in diameter. About 80 to 120 seeds can be used per patient. Iodine-125 is the radioisotope most used in brachytherapy of the prostate, it emits 35,49keV X-rays in 100% of the decays, with average energy of 29 keV. The treatment of prostate cancer with permanent implantation of iodine-125 seeds has grown dramatically in the world in recent years. Most patients can return to normal life within three days with little or no pain. (author)

  13. A Fully Actuated Robotic Assistant for MRI-Guided Prostate Biopsy and Brachytherapy

    Science.gov (United States)

    Li, Gang; Su, Hao; Shang, Weijian; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fischer, Gregory S.

    2014-01-01

    Intra-operative medical imaging enables incorporation of human experience and intelligence in a controlled, closed-loop fashion. Magnetic resonance imaging (MRI) is an ideal modality for surgical guidance of diagnostic and therapeutic procedures, with its ability to perform high resolution, real-time, high soft tissue contrast imaging without ionizing radiation. However, for most current image-guided approaches only static pre-operative images are accessible for guidance, which are unable to provide updated information during a surgical procedure. The high magnetic field, electrical interference, and limited access of closed-bore MRI render great challenges to developing robotic systems that can perform inside a diagnostic high-field MRI while obtaining interactively updated MR images. To overcome these limitations, we are developing a piezoelectrically actuated robotic assistant for actuated percutaneous prostate interventions under real-time MRI guidance. Utilizing a modular design, the system enables coherent and straight forward workflow for various percutaneous interventions, including prostate biopsy sampling and brachytherapy seed placement, using various needle driver configurations. The unified workflow compromises: 1) system hardware and software initialization, 2) fiducial frame registration, 3) target selection and motion planning, 4) moving to the target and performing the intervention (e.g. taking a biopsy sample) under live imaging, and 5) visualization and verification. Phantom experiments of prostate biopsy and brachytherapy were executed under MRI-guidance to evaluate the feasibility of the workflow. The robot successfully performed fully actuated biopsy sampling and delivery of simulated brachytherapy seeds under live MR imaging, as well as precise delivery of a prostate brachytherapy seed distribution with an RMS accuracy of 0.98mm. PMID:25076821

  14. Is there any place for LDR brachytherapy for head and neck carcinomas in HDR era?

    OpenAIRE

    Fijuth, Jacek

    2009-01-01

    In Poland, the classical LDR brachytherapy for head and neck carcinomas with Ir-192 wires or hairpins has completely disappeared some time ago after 30 years of successful clinical use. Can this technique be fully and safely replaced by HDR or PDR application? This option seems attractive because of new possibilities of 3D reconstruction and computer real-time treatment planning and optimization. However, in my opinion, long time is needed to get a clinical and scientific experience that has ...

  15. High dose rate brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Koizumi, Masahiko; Ogawa, Kazuhiko; Furukawa, Souhei

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. (author)

  16. High dose rate brachytherapy for oral cancer.

    Science.gov (United States)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer.

  17. Permanent interstitial implantation of 125Iodine seed for thoracic malignant tumors

    International Nuclear Information System (INIS)

    Xu Zhongheng; Qian Yongyue; Wu Jinchang; Liu Zengli

    2002-01-01

    Objective: To observe effect of 125 Iodine sed on interstitial brachytherapy of patient with thoracic malignant tumor. Methods: 125 Iodine seed were inserted into the target tissue and permanent left there for brachytherapy in 6 cases of thoracic malignant tumors, which including lung cancer, Pancoast's tumour, mediastinal malignant schwannoma. Results: All cases were rehabilitated shortly after operation. The implanted lesions remained controlled now and in dead patients. No radiation-related and 125 Iodine seed-related complications occurred. Conclusion: Brachytherapy by implantation of 125 Iodine seeds of remained tumor tissue in patients with thoracic malignant tumor after operation has a satisfactory outcome. This therapy can control local recurrent of thoracic malignant tumor. But the results in long term should be studied further

  18. [Technique of intraoperative planning in prostatic brachytherapy with permanent implants of 125I or 103Pd].

    Science.gov (United States)

    Prada Gómez, Pedro José; Juan Rijo, Germán; Hevia Suarez, Miguel; Abascal García, José María; Abascal García, Ramón

    2002-12-01

    Prostatic brachytherapy with permanent 125I or 123Pd seeds implantation is a therapeutic option for organ-confined prostate cancer. We analyze the technique based on previous planning, our current intraoperative planning procedure and the reasons that moved us to introduce this change. Changes in prostate volume and spatial localization observed between previous planning and intraoperative images, and possible difficulties for seed implantation due to pubic arch interference are some of the reasons that induce us to change technique. Before the operation, we calculate the prostatic volume by transrectal ultrasound; with this information we determine the total implant activity following Wu's nomogram, and per-seed activity; therefore, it is an individual process for each patient. We perform a peripheral implant, placing 75-80% of the seeds within the peripheral prostatic zone, generally through 12-15 needles, the rest of the seeds are placed in the central prostatic zone using a maximum of 3-4 needles in high volume prostates. The day of intervention, after positioning and catheter insertion, volumetry is re-checked. Ultrasound images (from base to apex every 5 mm) are transferred to the planner were a suitable seed distribution is determined. Implantation is then performed placing all needles unloaded, and then intraoperative post-planning to allow us to check implant precision is performed after cistoscopically check that there is no urethral or bladder penetration by any needle. We finish with the insertion of seeds into the prostate. Total time for the procedure is around 90 minutes. Intraoperative planning is an additional step for the treatment of prostate cancer with permanent seeds brachytherapy, which avoids the disadvantages of previous planning and improves tumor inclusion in the ideal irradiation dose area, which will translate into better local disease control.

  19. Observations on rotating needle insertions using a brachytherapy robot

    International Nuclear Information System (INIS)

    Meltsner, M A; Ferrier, N J; Thomadsen, B R

    2007-01-01

    A robot designed for prostate brachytherapy implantations has the potential to greatly improve treatment success. Much of the research in robotic surgery focuses on measuring accuracy. However, there exist many factors that must be optimized before an analysis of needle placement accuracy can be determined. Some of these parameters include choice of the needle type, insertion velocity, usefulness of the rotating needle and rotation speed. These parameters may affect the force at which the needle interacts with the tissue. A reduction in force has been shown to decrease the compression of the prostate and potentially increase the accuracy of seed position. Rotating the needle as it is inserted may reduce frictional forces while increasing accuracy. However, needle rotations are considered to increase tissue damage due to the drilling nature of the insertion. We explore many of the factors involved in optimizing a brachytherapy robot, and the potential effects each parameter may have on the procedure. We also investigate the interaction of rotating needles in gel and suggest the rotate-cannula-only method of conical needle insertion to minimize any tissue damage while still maintaining the benefits of reduced force and increased accuracy

  20. American Brachytherapy Society recommendations for reporting morbidity after prostate brachytherapy

    International Nuclear Information System (INIS)

    Nag, Subir; Ellis, Rodney J.; Merrick, Gregory S.; Bahnson, Robert; Wallner, Kent; Stock, Richard

    2002-01-01

    Purpose: To standardize the reporting of brachytherapy-related prostate morbidity to guide ongoing clinical practice and future investigations. Methods: Members of the American Brachytherapy Society (ABS) with expertise in prostate brachytherapy performed a literature review and, guided by their clinical experience, formulated specific recommendations for reporting on morbidity related to prostate brachytherapy. Results: The ABS recommends using validated, patient-administered health-related quality-of-life instruments for the determination of baseline and follow-up data regarding bowel, urinary, and sexual function. Both actuarial and crude incidences should be reported, along with the temporal resolution of specific complications, and correlated with the doses to the normal tissues. The International Prostate Symptom Score is recommended to assess urinary morbidity, and any dysuria, gross hematuria, urinary retention, incontinence, or medication use should be quantified. Likewise, the ''Sexual Health Inventory for Men,'' which includes the specific erectile questions of the International Index of Erectile Function, is the preferred instrument for reporting sexual function, and the loss of sexual desire, incidence of hematospermia, painful orgasm (orgasmalgia), altered orgasm intensity, decreased ejaculatory volume, use of erectile aids, and use of hormones for androgen deprivation should be quantified. The ABS recommends adoption of the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer acute and late radiation morbidity scoring scheme for reporting rectal morbidity and noting the incidence of rectal steroid, laser, or antidiarrheal use. Conclusion: It is important to focus on health-related quality-of-life issues in the treatment of prostate cancer, because the control rates are very similar between appropriate treatment modalities. The ABS recommends using the International Prostate Symptom Score, International Index of

  1. Radiation exposure after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Cattani, Federica; Vavassori, Andrea; Polo, Alfredo; Rondi, Elena; Cambria, Raffaella; Orecchia, Roberto; Tosi, Giampiero

    2006-01-01

    Background and purpose: Limited information is available on the true radiation exposure and associated risks for the relatives of the patients submitted to prostate brachytherapy with permanent implant of radioactive sources and for any other people coming into contact with them. In order to provide appropriate information, we analyzed the radiation exposure data from 216 prostate cancer patients who underwent 125 I or 103 Pd implants at the European Institute of Oncology of Milan, Italy. Patients and methods: Between October 1999 and October 2004, 216 patients with low risk prostate carcinoma were treated with 125 I (200 patients) or 103 Pd (16 patients) permanent seed implantation. One day after the procedure, radiation exposure measurements around the patients were performed using an ionization chamber survey meter (Victoreen RPO-50) calibrated in dose rate at an accredited calibration center (calibration Centre SIT 104). Results: The mean dose rate at the posterior skin surface (gluteal region) following 125 I implants was 41.3 μSv/h (range: 6.2-99.4 μSv/h) and following 103 Pd implants was 18.9 μSv/h (range 5.0-37.3 μSv/h). The dose rate at 50 cm from the skin decreased to the mean value of 6.4 μSv/h for the 125 I implants and to the mean value of 1.7 μSv/h for the 103 Pd implants. Total times required to reach the annual dose limit (1 mSv/year) recommended for the general population by the European Directive 96/29/Euratom and by the Italian law (Decreto Legislativo 241/2000) at a distance of 50 cm from the posterior skin surface of the implanted patient would be 7.7 and 21.6 days for 125 I and for 103 Pd. Good correlation between the measured dose rates and both the total implanted activity and the distance between the most posteriorly implanted seed and the skin surface of the patients was found. Conclusions: Our data show that the dose rates at 50 cm away from the prostate brachytherapy patients are very low and that the doses possibly absorbed by the

  2. The PROSPER robot for prostate brachytherapy: design, development and preclinical evaluation

    International Nuclear Information System (INIS)

    Long, J.A.

    2012-01-01

    Objectives: reporting the design, development and experiments of a new robotic system for prostate brachytherapy including prostate tracking and MRI to Ultrasound registration. Material and methods: a robot for trans-perineal needle insertion has been developed. It includes the ability to track the prostate position and shape. Experiments on 90 targets inside 9 deformable phantoms have been conducted. A feasibility on 2 cadavers has also been performed. The robot had to place glass seeds simulating brachytherapy seeds as close as possible to physical targets included into the phantom or inside the prostates. A post-operative CT scan of the phantom or prostate was performed in order to measure the accuracy of the system. Results: the median accuracy was 2.73 mm with a median prostate motion of 5.46 mm. The accuracy in the base region was superior to the accuracy in the apex region (2.28 mm vs 3.83 mm, p≤0.01) and was not significantly different for horizontal or oblique needles (2.7 vs 2.82 mm, p=0.18). Cadaver experiments demonstrated that the approach was feasible and that the robot could be used in a real clinical environment. Conclusion: the robot for prostate brachytherapy is the first system enabling prostate tracking. Targets can be accurately reached despite prostate motion and deformation. It could be applied to focal therapy for prostate cancer. (author)

  3. Optical fibre luminescence sensor for real-time LDR brachytherapy dosimetry

    Science.gov (United States)

    Woulfe, P.; O'Keeffe, S.; Sullivan, F. J.

    2018-02-01

    An optical fibre sensor for monitoring low dose radiation is presented. The sensor is based on a scintillation material embedded within the optical fibre core, which emits visible light when exposed to low level ionising radiation. The incident level of ionising radiation can be determined by analysing the optical emission. An optical fibre sensor is developed, based on radioluminescence whereby radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 700μm of a 1mm plastic optical fibre. The sensor is designed for in-vivo monitoring of the radiation dose during radio-active seed implantation for low dose rate (LDR) brachytherapy, in prostate cancer treatment, providing radiation oncologists with real-time information of the radiation dose to the target area and/or nearby organs at risk (OARs). The radiation from the brachytherapy seeds causes emission of visible light from the scintillation material through the process of radioluminescence, which penetrates the fibre, propagating along the optical fibre for remote detection using a multi-pixel photon counter. The sensor demonstrates a high sensitivity to 0.397mCi of Iodine125, the radioactive source most commonly used in brachytherapy for treating prostate cancer.

  4. A new human eye model for ophthalmic brachytherapy dosimetry

    International Nuclear Information System (INIS)

    Yoriyaz, H.; Sanchez, A.; Dos Santos, A.

    2005-01-01

    The present work proposes a new mathematical eye model for ophthalmic brachytherapy dosimetry. This new model includes detailed description of internal structures that were not treated in previous works, allowing dose determination in different regions of the eye for a more adequate clinical analysis. Dose calculations were determined with the MCNP-4C Monte Carlo particle transport code running n parallel environment using PVM. The Amersham CKA4 ophthalmic applicator has been chosen and the depth dose distribution has been determined and compared to those provide by the manufacturer. The results have shown excellent agreement. Besides, absorbed dose values due to both 125 I seeds and 60 Co plaques were obtained for each one of the different structures which compose the eye model and can give relevant information in eventual clinical analyses. (authors)

  5. Radiological response of ceramic and polymeric devices for breast brachytherapy

    International Nuclear Information System (INIS)

    Batista Nogueira, Luciana; Passos Ribeiro de Campos, Tarcisio

    2012-01-01

    In the present study, the radiological visibility of ceramic and polymeric devices implanted in breast phantom was investigated for future applications in brachytherapy. The main goal was to determine the radiological viability of ceramic and polymeric devices in vitro by performing simple radiological diagnostic methods such as conventional X-ray analysis and mammography due to its easy access to the population. The radiological response of ceramic and polymeric devices implanted in breast phantom was determined using conventional X-ray, mammography and CT analysis. - Highlights: ► Radiological visibility of ceramic and polymeric devices implanted in breast phantom. ► The barium incorporation in the seed improves the radiological contrast. ► Radiological monitoring shows the position, orientation and degradation of devices. ► Simple radiological methods such as X-ray and mammography were used for radiological monitoring.

  6. Physical aspects of endovascular brachytherapy

    International Nuclear Information System (INIS)

    Kirisits, C.

    2001-11-01

    Restenosis is severely limiting the outcome of vascular interventions. In several clinical trials endovascular brachytherapy has shown to reduce the restenosis rate. Local radiotherapy to the injured vessel wall is a promising new type of treatment in order to inhibit a complex wound healing process resulting in cell proliferation and re-obstruction of the treated vessel. Treatment planning has to be based on the dose distribution in the vicinity of the sources used. Source strength was determined in terms of air kerma rate for gamma nuclides (Iridium-192) and absorbed dose to water at reference distance of 2 mm for beta nuclides (Strontium-90/Yttrium-90, Phosphor-32), respectively. Radial dose profiles and the Reference Isodose Length (RIL) were determined using the EGSnrc code and GafChromic film. Good agreement was found between both methods. In order to treat the entire clinical target length, the (RIL) is an essential value during treatment planning. Examples are described for different levels of treatment planing including recommendations for optimal choice and positioning of the radioactive devices inside the artery. IVUS based treatment planning is illustrated with superposition of isodoses on cross-sectional images. A calculation model for radioactive stents is presented in order to determine dose volume histograms in a retrospective analysis. Radiation protection issues for endovascular brachytherapy are discussed in detail. Personal dose for the involved personnel is estimated based on calculations and measurements. Beta ray dosimetry is performed with suitable detectors. In order to estimate the exposure to the patient the dose to organs at risk is calculated and compared to the dose from angiography. There is an additional radiation exposure to patients and personnel caused by endovascular brachytherapy, but the values are much smaller than those caused by diagnostic angiography. (author)

  7. Performance profiling for brachytherapy applications

    Science.gov (United States)

    Choi, Wonqook; Cho, Kihyeon; Yeo, Insung

    2018-05-01

    In many physics applications, a significant amount of software (e.g. R, ROOT and Geant4) is developed on novel computing architectures, and much effort is expended to ensure the software is efficient in terms of central processing unit (CPU) time and memory usage. Profiling tools are used during the evaluation process to evaluate the efficiency; however, few such tools are able to accommodate low-energy physics regions. To address this limitation, we developed a low-energy physics profiling system in Geant4 to profile the CPU time and memory of software applications in brachytherapy applications. This paper describes and evaluates specific models that are applied to brachytherapy applications in Geant4, such as QGSP_BIC_LIV, QGSP_BIC_EMZ, and QGSP_BIC_EMY. The physics range in this tool allows it to be used to generate low energy profiles in brachytherapy applications. This was a limitation in previous studies, which caused us to develop a new profiling tool that supports profiling in the MeV range, in contrast to the TeV range that is supported by existing high-energy profiling tools. In order to easily compare the profiling results between low-energy and high-energy modes, we employed the same software architecture as that in the SimpliCarlo tool developed at the Fermilab National Accelerator Laboratory (FNAL) for the Large Hadron Collider (LHC). The results show that the newly developed profiling system for low-energy physics (less than MeV) complements the current profiling system used for high-energy physics (greater than TeV) applications.

  8. SU-E-T-397: Include Organ Deformation Into Dose Calculation of Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Shao, Y; Shen, D; Chen, R; Wang, A; Lian, J

    2014-01-01

    Purpose: Prostate brachytherapy is an important curative treatment for patients with localized prostate cancer. In brachytherapy, rectal balloon is generally needed to adjust for unfavorable prostate position for seed placement. However, rectal balloon causes prostate deformation, which is not accounted for in dosimetric planning. Therefore, it is possible that brachytherapy dosimetry deviates significantly from initial plan when prostate returns to its non-deformed state (after procedure). The goal of this study is to develop a method to include prostate deformation into the treatment planning of brachytherapy dosimetry. Methods: We prospectively collected ultrasound images of prostate pre- and post- rectal balloon inflation from thirty five consecutive patients undergoing I-125 brachytherapy. Based on the cylinder coordinate systems, we learned the initial coordinate transformation parameters between the manual segmentations of both deformed and non-deformed prostates of each patient in training set. With the nearest-neighbor interpolation, we searched the best transformation between two coordinate systems to maximum the mutual information of deformed and non-deformed images. We then mapped the implanted seeds of five selected patients from the deformed prostate into non-deformed prostate. The seed position is marked on original pre-inflation US image and it is imported into VariSeed software for dose calculation. Results: The accuracy of image registration is 87.5% as quantified by Dice Index. The prostate coverage V100% dropped from 96.5±0.5% of prostate deformed plan to 91.9±2.6% (p<0.05) of non-deformed plan. The rectum V100% decreased from 0.44±0.26 cc to 0.10±0.18 cc (p<0.05). The dosimetry of the urethra showed mild change but not significant: V150% changed from 0.05±0.10 cc to 0.14±0.15 cc (p>0.05) and D1% changed from 212.9±37.3 Gy to 248.4±42.8 Gy (p>0.05). Conclusion: We have developed a deformable image registration method that allows

  9. Brachytherapy with 125-Iodine sources: transport and radiation protection

    International Nuclear Information System (INIS)

    Souza, Carla D.; Zeituni, Carlos A.; Moura, Joao A.; Moura, Eduardo S.; Nagatomi, Helio R.; Feher, Anselmo; Hilario, Katia F.; Rostelato, Maria Elisa C.M.

    2009-01-01

    The estimates for the year 2009 show that 466,730 new cancer cases will occur in Brazil. Prostate cancer is the second most incident type. Brachytherapy, a type of radiotherapy, with Iodine-125 sources are an important form of treatment for this kind of cancer. The Instituto de Pesquisas Energeticas e Nucleares (IPEN) created a project to develop a national prototype of these sources and is implementing a facility for local production. The seeds manufacture in Brazil will allow to diminish the treatment cost and make it possible for a larger number of patients. While the laboratory is not ready, the IPEN import and it distributes seeds. This work aim is to present and evaluate the transport procedures and the radiological protection applied to imported sources in order to assist the procedures for the new laboratory implementation. Before sending to hospitals, the seeds are packed by a radioprotector supervisor, in accordance with CNEN NE 5.01 standard 'Radioactive Material Transport'. Despite Iodine-125 presents low energy photons, around 29 keV, local and personal dosimeters are used during the transport process, as described in CNEN NN 3.01 standard 'Radiological Protection Basic Guideline'. All the results show no contamination and very low exposure, proving the method to be valid. The transport procedure used is correct, according to the regulations. As an result of this work, a new dosimeter should be installed and evaluate in future study. (author)

  10. Adjoint current-based approaches to prostate brachytherapy optimization

    International Nuclear Information System (INIS)

    Roberts, J. A.; Henderson, D. L.

    2009-01-01

    This paper builds on previous work done at the Univ. of Wisconsin - Madison to employ the adjoint concept of nuclear reactor physics in the so-called greedy heuristic of brachytherapy optimization. Whereas that previous work focused on the adjoint flux, i.e. the importance, this work has included use of the adjoint current to increase the amount of information available in optimizing. Two current-based approaches were developed for 2-D problems, and each was compared to the most recent form of the flux-based methodology. The first method aimed to take a treatment plan from the flux-based greedy heuristic and adjust via application of the current-displacement, or a vector displacement based on a combination of tissue (adjoint) and seed (forward) currents acting as forces on a seed. This method showed promise in improving key urethral and rectal dosimetric quantities. The second method uses the normed current-displacement as the greedy criterion such that seeds are placed in regions of least force. This method, coupled with the dose-update scheme, generated treatment plans with better target irradiation and sparing of the urethra and normal tissues than the flux-based approach. Tables of these parameters are given for both approaches. In summary, these preliminary results indicate adjoint current methods are useful in optimization and further work in 3-D should be performed. (authors)

  11. Guidelines for comprehensive quality assurance in brachytherapy

    International Nuclear Information System (INIS)

    Goldson, A.L.; Nibhanupudy, J.R.

    1984-01-01

    Brachytherapy treatment techniques can provide significant improvement in local control and overall survival, but only when quality assurance can be guaranteed. To establish brachytherapy quality assurance, basic requirements for three predetermined subdivisions of clinical institutions will be forwarded. These are: (1) centers having minimum requirements to provide brachytherapy, (2) intermediate centers such as regional or community hospitals, and (3) optimal centers such as university hospital and cancer centers. This presentation will highlight personnel needs, equipment requirements, academic activities, clinical experience with these systems and proposed quality assurance guidelines

  12. The development of a human eye model for ophthalmic iodine-125 brachytherapy dosimetry

    International Nuclear Information System (INIS)

    Mourao, A.P.; Campos, T.P.R.

    2008-01-01

    Full text: Radiotherapy is used to treat malign tumors. Radiotherapy is an alternative to enucleation in ocular tumors. However, the irradiation of ocular region can bring damages due high doses, mainly in the crystalline lens and in the bone tissue in growth phase. Brachytherapy instead of teletherapy looks for reducing doses in the crystalline lens and the adjacent tissues of the ocular globe (orbital region), minimizing side effects. Herein, some encapsulated radioisotopes in radioactive seeds applied to the ocular brachytherapy are available. Thus, a three-dimensional computational voxel model of the ocular region with its heterogeneous tissues, globe and adjacent tissues is developed. This computational model is used to simulate orbital irradiation with radioactive seeds positioned on the sclera surface through the MCNP5 code. The computational simulation allows evaluating how doses are spatially distributed in the orbital volume in treatments with the radioactive seeds of iodine-125. Therefore, the results allow comparing the spatial doses distribution obtained through the MCNP5 simulation for those two distinct types of radioactive seeds. Bench markets from literature validates the proposed simulations. (author)

  13. The use of nomograms in LDR-HDR prostate brachytherapy.

    Science.gov (United States)

    Pujades, Ma Carmen; Camacho, Cristina; Perez-Calatayud, Jose; Richart, José; Gimeno, Jose; Lliso, Françoise; Carmona, Vicente; Ballester, Facundo; Crispín, Vicente; Rodríguez, Silvia; Tormo, Alejandro

    2011-09-01

    The common use of nomograms in Low Dose Rate (LDR) permanent prostate brachytherapy (BT) allows to estimate the number of seeds required for an implant. Independent dosimetry verification is recommended for each clinical dosimetry in BT. Also, nomograms can be useful for dose calculation quality assurance and they could be adapted to High Dose Rate (HDR). This work sets nomograms for LDR and HDR prostate-BT implants, which are applied to three different institutions that use different implant techniques. Patients treated throughout 2010 till April 2011 were considered for this study. This example was chosen to be the representative of the latest implant techniques and to ensure consistency in the planning. A sufficient number of cases for both BT modalities, prescription dose and different work methodology (depending on the institution) were taken into account. The specific nomograms were built using the correlation between the prostate volume and some characteristic parameters of each BT modality, such as the source Air Kerma Strength, number of implanted seeds in LDR or total radiation time in HDR. For each institution and BT modality, nomograms normalized to the prescribed dose were obtained and fitted to a linear function. The parameters of the adjustment show a good agreement between data and the fitting. It should be noted that for each institution these linear function parameters are different, indicating that each centre should construct its own nomograms. Nomograms for LDR and HDR prostate brachytherapy are simple quality assurance tools, specific for each institution. Nevertheless, their use should be complementary to the necessary independent verification.

  14. The use of nomograms in LDR-HDR prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Ma Carmen Pujades

    2011-09-01

    Full Text Available Purpose: The common use of nomograms in Low Dose Rate (LDR permanent prostate brachytherapy (BT allowsto estimate the number of seeds required for an implant. Independent dosimetry verification is recommended for eachclinical dosimetry in BT. Also, nomograms can be useful for dose calculation quality assurance and they could be adaptedto High Dose Rate (HDR. This work sets nomograms for LDR and HDR prostate-BT implants, which are applied tothree different institutions that use different implant techniques. Material and methods: Patients treated throughout 2010 till April 2011 were considered for this study. This examplewas chosen to be the representative of the latest implant techniques and to ensure consistency in the planning. A sufficientnumber of cases for both BT modalities, prescription dose and different work methodology (depending on theinstitution were taken into account. The specific nomograms were built using the correlation between the prostatevo lume and some characteristic parameters of each BT modality, such as the source Air Kerma Strength, numberof implanted seeds in LDR or total radiation time in HDR. Results: For each institution and BT modality, nomograms normalized to the prescribed dose were obtained andfitted to a linear function. The parameters of the adjustment show a good agreement between data and the fitting.It should be noted that for each institution these linear function parameters are different, indicating that each centreshould construct its own nomograms. Conclusions: Nomograms for LDR and HDR prostate brachytherapy are simple quality assurance tools, specific foreach institution. Nevertheless, their use should be complementary to the necessary independent verification.

  15. Study of dosimetric parameters for iodine-125 brachytherapy sources development from IPEN-CNEN/SP using Monte Carlo method

    International Nuclear Information System (INIS)

    Oliveira, Tiago Batista de

    2016-01-01

    Expectations of the World Health Organization for the year 2030 are that the number of cancer deaths is approximately 13.2 million, reflecting the high proportion of this disease in global health issue. With respect to prostate cancer, according to the National Cancer Institute, the number of cases diagnosed worldwide in 2012 was approximately 1.1 million, while in Brazil the data demonstrated the incidence of 68,000 new cases. The treatment of cancer can be performed with surgery (prostatectomy) or radiation therapy. Among radiotherapy, we can highlight the brachytherapy technique, which consists in the introduction of small radioactive sources (seeds) within the prostate, which is delivered a high dose value in the treatment volume and low dose in the surrounding tissues. In Brazil, the medical profession estimates a demand of approximately 8000 seeds / month, and the unit cost of each seed at least US $ 26.00. The AAPM protocol TG-43 recommend the dose-rate constant, radial dose function and anisotropy function for dosimetric analysis LDR brachytherapy seeds. In this work, Monte Carlo simulations were performed in order to assess the dosimetric parameters of the OncoSeed-6711, manufactured by Oncura-GEHealthcare, and a seed developed by Radiation Technology Center, using the MCNP5 code. A 6711 seed, an IPEN seed and the 30 x 30 x 30cm 3 phantom filled with water were modeled to simulate the dose distribution. The 6711 seed parameters were compared with literature, and the results presented relative error less than 0.1% for Λ. In comparison with the 6711 seed, the IPEN model seed dosimetric parameters were similar, account the statistical uncertainty. (author)

  16. Iodine-125 seeds for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Feher, Anselmo; Moura, Joao A.; Moura, Eduardo S.; Nagatomi, Helio R.; Manzoli, Jose E.; Souza, Carla D., E-mail: elisaros@ipen.b, E-mail: czeituni@pobox.co, E-mail: afeher@ipen.b, E-mail: jmoura31@yahoo.com.b, E-mail: esmoura@ipen.b, E-mail: hrnagato@ipen.b, E-mail: jemanzoli@ipen.b, E-mail: cdsouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Karam, Dib, E-mail: dib.karan@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Artes, Ciencias e Humanidades

    2009-07-01

    In Brazil, cancer has become one of the major public health problems. An estimate by the Health Ministry showed that 466,430 people had the disease in the country in 2008. The prostate cancer is the second largest death cause among men. The National Institute of Cancer estimated the occurrence of 50,000 new cases for 2009. Some of these patients are treated with Brachytherapy, using Iodine-125 seeds. By this technique, small seeds with Iodine-125, a radioactive material, are implanted in the prostate. The advantages of radioactive seed implants are the preservation of healthy tissues and organs near the prostate, besides the low rate of impotence and urinary incontinence. The Energy and Nuclear Research Institute - IPEN, which belongs to the Nuclear Energy National Commission - CNEN, established a program for the development of the technique and production of Iodine-125 seeds in Brazil. The estimate for the 125-Iodine seeds demand is of 8,000 seeds/month and the laboratory to be implanted will need this production capacity. The purpose of this paper is to explain the project status and show some data about the seeds used in the country. The project will be divided in two phases: technological development of a prototype and a laboratory implementation for the seeds production. (author)

  17. Pulmonary embolization of permanently implanted radioactive palladium-103 seeds for carcinoma of the prostate

    International Nuclear Information System (INIS)

    Nag, Subir; Vivekanandam, Singhavajhala; Martinez-Monge, Rafael

    1997-01-01

    Purpose: It has been reported that permanently implanted iodine-125 seeds can embolize to the lungs. There is little data on the embolization of palladium-103 seeds. The purpose of this study is to collect and evaluate data on the embolization of Pd-103 seeds. Methods and Materials: The records of 112 patients implanted with Pd-103 for carcinoma of the prostate were reviewed to systemically study the incidence and dynamics of pulmonary embolism of Pd-103 seeds. Five patients had no postoperative chest radiograph and were thus excluded, leaving 107 patients for review. Results: Chest radiographs of 19 of the 107 patients showed embolized seeds in the lungs (18%). Two patients had three seeds each, nine patients had two seeds each; and in the remaining eight patients, a single seed migrated to the lungs. The seeds migrated mainly (84%) to the lower lobes. None of the eight patients who had their first postoperative chest radiograph on the day of the implant showed any embolized seeds. The embolized seed appeared only on subsequent chest radiographs taken 27 to 40 days later. Ten of the other 11 patients who had their first radiograph 1 to 97 days after brachytherapy had embolized seeds on their first chest radiograph. In the other patient, the embolized seed appeared only on a subsequent chest radiograph taken after 127 days. There were no clinical pulmonary or cardiac effects evident on routine follow-up of these patients with pulmonary embolized seeds. Conclusion: Embolization of Pd-103 seeds to the lungs after implantation for carcinoma of the prostate is an unusual event. In this study only 0.3% of the seeds implanted migrated to the lungs. Although it was previously thought that pulmonary seed migration mainly occurred on the day of brachytherapy, our experience shows that seeds usually migrated to the lungs after the day of the implant. There were no clinical pulmonary or cardiac effects attributable to embolized seeds in the lungs on routine follow-up

  18. The need for international standardization in clinical beta dosimetry for brachytherapy

    International Nuclear Information System (INIS)

    Quast, U.; Boehm, J.; Kaulich, T.W.

    2002-01-01

    Beta radiation has found increasing interest in radiotherapy. Besides the curative treatment of small and medium-sized intraocular tumors by means of ophthalmic beta radiation plaques, intravascular brachytherapy has proven to successfully overcome the severe problem of restenosis after interventional treatment of arterial stenosis in coronaries and peripheral vessels in many clinical trials with a large number of patients. Prior to initiating procedures applying beta radiation in radiotherapy, however, there is a common need to specify methods for the determination and specification of the absorbed dose to water or tissue and their spatial distributions. The IAEA-TECDOC-1274 Calibration of photon and beta ray sources used in brachytherapy (2002) is a help for photon brachytherapy calibration. But, for beta seed and line sources, IAEA recommends well type ionization chambers as working standards which are far from measuring absorbed dose to water of the radiation clinically used. Although the application of such working standards seems to be more precise, large errors can occur when the medical physicist has to convert the calibration data to absorbed dose to water of the beta radiation emitted. The user must believe that the source is equally activated and that the manufacturer did not change the design and construction of the source encapsulation. With the DGMP Report 16 (2001) Guidelines for medical physical aspects of intravascular brachytherapy a very detailed code of practice is given, especially for the calibration and clinical dosimetry of intravascular beta radiation sources. As there is a global need for standardization in clinical dosimetry for intravascular brachytherapy utilizing beta radiation, the DIN-NAR, the German committee on standardization in radiology, task group dosimetry, has initiated an international adhoc working group for a new ISO work item proposal on the standardization of procedures in clinical dosimetry to guarantee reliable

  19. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    International Nuclear Information System (INIS)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell; Knutsen, Bjoern Helge; Roeislien, Jo; Olsen, Dag Rune

    2007-01-01

    The purpose of this study is to investigate whether the method of applicator reconstruction and/or the applicator orientation influence the dose calculation to points around the applicator for brachytherapy of cervical cancer with CT-based treatment planning. A phantom, containing a fixed ring applicator set and six lead pellets representing dose points, was used. The phantom was CT scanned with the ring applicator at four different angles related to the image plane. In each scan the applicator was reconstructed by three methods: (1) direct reconstruction in each image (DR) (2) reconstruction in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method was significantly lower (p < 0.05) than for the DR and MPR methods for all but two points. All applicator orientations had similar dose calculation reproducibility. Using library plans for applicator reconstruction gives the most reproducible dose calculation. However, with restrictive guidelines for applicator reconstruction the uncertainties for all methods are low compared to other factors influencing the accuracy of brachytherapy

  20. Standards, options and recommendations for brachytherapy of prostate cancer: efficacy and toxicity

    International Nuclear Information System (INIS)

    Pommier, P.; Villers, A.; Bataillard, A.

    2001-01-01

    Context. - The 'Standards, Options and Recommendations' (SOR) collaborative project was initiated in 1993 by the Federation of the French Cancer Centres (FNCLCC), with the 20 French Regional Cancer Centres, several French public university and general hospitals, as well as private clinics and medical specialty societies. Its main objective is the development of serviceable clinical practice guidelines in order to improve the quality of health care and the outcome of cancer patients. The methodology is based on a literature review, followed by a critical appraisal by a multidisciplinary group of experts. Draft guidelines are produced, then validated by specialists in cancer care delivery. Objectives. - Produce technical practice guidelines for the brachytherapy of prostate cancer using the methodology developed by the Standards, Options and Recommendations project. Methods. - The FNCLCC and the French Urology Association (AFU) first designated the multidisciplinary group of experts. Available data were collected by a search of Medline and lists selected by experts in the group. A first draft of the guidelines was written, they validated by independent reviewers. Results. - The main recommendations are: 1/ Brachytherapy with permanent seeds alone is a possible curative treatment for prostate cancer patients with the following prognosis factors: tumour stage T1 or T2a (TNM 1992), Gleason score ≤ 6 and PSA 7 and/or PSA > 10. 3/ Combination of brachytherapy and external beam radiation therapy can be proposed to prostate cancer patients with intermediate prognosis. 4/ Before and after seed implantation, risks of infection must be prevented by appropriate antibiotic therapy (recommendation). 5/ Brachytherapy must not be performed within 2 months of trans-urethral prostate resection. 6/The height of the urethra receiving more than 200 of the prescribed dose must be reported. The portion of the rectum receiving 100 and 120 % of the prescribed dose must be limited to 10

  1. Concomitant chemoradiotherapy with high dose rate brachytherapy ...

    African Journals Online (AJOL)

    Concomitant chemoradiotherapy with high dose rate brachytherapy as a definitive treatment modality for locally advanced cervical cancer. T Refaat, A Elsaid, N Lotfy, K Kiel, W Small Jr, P Nickers, E Lartigau ...

  2. Comprehensive brachytherapy physical and clinical aspects

    CERN Document Server

    Baltas, Dimos; Meigooni, Ali S; Hoskin, Peter J

    2013-01-01

    Modern brachytherapy is one of the most important oncological treatment modalities requiring an integrated approach that utilizes new technologies, advanced clinical imaging facilities, and a thorough understanding of the radiobiological effects on different tissues, the principles of physics, dosimetry techniques and protocols, and clinical expertise. A complete overview of the field, Comprehensive Brachytherapy: Physical and Clinical Aspects is a landmark publication, presenting a detailed account of the underlying physics, design, and implementation of the techniques, along with practical guidance for practitioners. Bridging the gap between research and application, this single source brings together the technological basis, radiation dosimetry, quality assurance, and fundamentals of brachytherapy. In addition, it presents discussion of the most recent clinical practice in brachytherapy including prostate, gynecology, breast, and other clinical treatment sites. Along with exploring new clinical protocols, ...

  3. Vertex Reconstruction in ATLAS Run II

    CERN Document Server

    Zhang, Matt; The ATLAS collaboration

    2016-01-01

    Vertex reconstruction is the process of taking reconstructed tracks and using them to determine the locations of proton collisions. In this poster we present the performance of our current vertex reconstruction algorithm, and look at investigations into potential improvements from a new seed finding method.

  4. Definition of medical event is to be based on the total source strength for evaluation of permanent prostate brachytherapy: A report from the American Society for Radiation Oncology.

    Science.gov (United States)

    Nag, Subir; Demanes, D Jeffrey; Hagan, Michael; Rivard, Mark J; Thomadsen, Bruce R; Welsh, James S; Williamson, Jeffrey F

    2011-10-01

    The Nuclear Regulatory Commission deems it to be a medical event (ME) if the total dose delivered differs from the prescribed dose by 20% or more. A dose-based definition of ME is not appropriate for permanent prostate brachytherapy as it generates too many spurious MEs and thereby creates unnecessary apprehension in patients, and ties up regulatory bodies and the licensees in unnecessary and burdensome investigations. A more suitable definition of ME is required for permanent prostate brachytherapy. The American Society for Radiation Oncology (ASTRO) formed a working group of experienced clinicians to review the literature, assess the validity of current regulations, and make specific recommendations about the definition of an ME in permanent prostate brachytherapy. The working group found that the current definition of ME in §35.3045 as "the total dose delivered differs from the prescribed dose by 20 percent or more" was not suitable for permanent prostate brachytherapy since the prostate volume (and hence the resultant calculated prostate dose) is dependent on the timing of the imaging, the imaging modality used, the observer variability in prostate contouring, the planning margins used, inadequacies of brachytherapy treatment planning systems to calculate tissue doses, and seed migration within and outside the prostate. If a dose-based definition for permanent implants is applied strictly, many properly executed implants would be improperly classified as an ME leading to a detrimental effect on brachytherapy. The working group found that a source strength-based criterion, of >20% of source strength prescribed in the post-procedure written directive being implanted outside the planning target volume is more appropriate for defining ME in permanent prostate brachytherapy. ASTRO recommends that the definition of ME for permanent prostate brachytherapy should not be dose based but should be based upon the source strength (air-kerma strength) administered.

  5. Long duration mild temperature hyperthermia and brachytherapy.

    Science.gov (United States)

    Armour, E P; Raaphorst, G P

    2004-03-01

    Combining long duration mild temperature hyperthermia (LDMH) and low dose-rate (LDR) brachytherapy to enhance therapeutic killing of cancer cells was proposed many years ago. The cellular and tumour research that supports this hypothesis is presented in this review. Research describing LDMH interaction with pulsed brachytherapy and high dose-rate brachytherapy using clinically relevant parameters are compared with LDMH/LDR brachytherapy. The mechanism by which LDMH sensitizes LDR has been established as the inhibition of sublethal damage repair. The molecular mechanisms have been shown to involve DNA repair enzymes, but the exact nature of these processes is still under investigation. The relative differences between LDMH interactions with human and rodent cells are presented to help in the understanding of possible roles of LDMH in clinical application. The role of LDMH in modifying tumour blood flow and its possible role in LDR sensitization of tumours is also presented. The positive aspects of LDMH-brachytherapy for clinical application are sixfold; (1) the thermal goals (temperature, time and volume) are achievable with currently available technology, (2) the hyperthermia by itself has no detectable toxic effects, (3) thermotolerance appears to play a minor if any role in radiation sensitization, (4) TER of around 2 can be expected, (5) hypoxic fraction may be decreased due to blood flow modification and (6) simultaneous chemotherapy may also be sensitized. Combined LDMH and brachytherapy is a cancer therapy that has established biological rationale and sufficient technical and clinical advancements to be appropriately applied. This modality is ripe for clinical testing.

  6. Evolutionary differences in Δ13C detected between spore and seed bearing plants following exposure to a range of atmospheric O2:CO2 ratios; implications for paleoatmosphere reconstruction

    Science.gov (United States)

    Porter, Amanda S.; Yiotis, Charilaos; Montañez, Isabel P.; McElwain, Jennifer C.

    2017-09-01

    The stable carbon isotopes of fossil plants are a reflection of the atmosphere and environment in which they grew. Fossil plant remains have thus stored information about the isotopic composition and concentration of atmospheric carbon dioxide (pCO2) and possibly pO2 through time. Studies to date, utilizing extant plants, have linked changes in plant stable carbon isotopes (δ13Cp) or carbon isotope discrimination (Δ13C) to changes in pCO2 and/or pO2. These studies have relied heavily on angiosperm representatives, a phylogenetic group only present in the fossil record post-Early Cretaceous (∼140 million years ago (mya)), whereas gymnosperms, monilophytes and lycophytes dominated terrestrial ecosystems prior to this time. The aim of this study was to expand our understanding of carbon isotope discrimination in all vascular plant groups of C3 plants including lycophytes, monilophytes, gymnosperms and angiosperms, under elevated CO2 and sub-ambient O2 to explore their utility as paleo-atmospheric proxies. To achieve this goal, plants were grown in controlled environment chambers under a range of O2:CO2 ratio treatments. Results reveal a strong phylogenetic dependency on Δ13C, where spore-bearing (lycophytes and monilophytes) have significantly higher 13C discrimination than seed plants (gymnosperms and angiosperms) by ∼5‰. We attribute this strong phylogenetic signal to differences in Ci/Ca likely mediated by fundamental differences in how spore and seed bearing plants control stomatal aperture. Decreasing O2:CO2 ratio in general resulted in increased carbon isotope discrimination in all plant groups. Notably, while all plant groups respond unidirectionally to elevated atmospheric CO2 (1900 ppm and ambient O2), they do not respond equally to sub-ambient O2 (16%). We conclude that (1) Δ13C has a strong phylogenetic or 'reproductive grade' bias, whereby Δ13C of spore reproducing plants is significantly different to seed reproducing taxa. (2) Δ13C increases

  7. The American Brachytherapy Society recommendations for low-dose-rate brachytherapy for carcinoma of the cervix

    International Nuclear Information System (INIS)

    Nag, Subir; Chao, Clifford; Erickson, Beth; Fowler, Jeffery; Gupta, Nilendu; Martinez, Alvaro; Thomadsen, Bruce

    2002-01-01

    Purpose: This report presents guidelines for using low-dose-rate (LDR) brachytherapy in the management of patients with cervical cancer. Methods: Members of the American Brachytherapy Society (ABS) with expertise in LDR brachytherapy for cervical cancer performed a literature review, supplemented by their clinical experience, to formulate guidelines for LDR brachytherapy of cervical cancer. Results: The ABS strongly recommends that radiation treatment for cervical carcinoma (with or without chemotherapy) should include brachytherapy as a component. Precise applicator placement is essential for improved local control and reduced morbidity. The outcome of brachytherapy depends, in part, on the skill of the brachytherapist. Doses given by external beam radiotherapy and brachytherapy depend upon the initial volume of disease, the ability to displace the bladder and rectum, the degree of tumor regression during pelvic irradiation, and institutional practice. The ABS recognizes that intracavitary brachytherapy is the standard technique for brachytherapy for cervical carcinoma. Interstitial brachytherapy should be considered for patients with disease that cannot be optimally encompassed by intracavitary brachytherapy. The ABS recommends completion of treatment within 8 weeks, when possible. Prolonging total treatment duration can adversely affect local control and survival. Recommendations are made for definitive and postoperative therapy after hysterectomy. Although recognizing that many efficacious LDR dose schedules exist, the ABS presents suggested dose and fractionation schemes for combining external beam radiotherapy with LDR brachytherapy for each stage of disease. The dose prescription point (point A) is defined for intracavitary insertions. Dose rates of 0.50 to 0.65 Gy/h are suggested for intracavitary brachytherapy. Dose rates of 0.50 to 0.70 Gy/h to the periphery of the implant are suggested for interstitial implant. Use of differential source activity or

  8. Fast dose kernel interpolation using Fourier transform with application to permanent prostate brachytherapy dosimetry.

    Science.gov (United States)

    Liu, Derek; Sloboda, Ron S

    2014-05-01

    Boyer and Mok proposed a fast calculation method employing the Fourier transform (FT), for which calculation time is independent of the number of seeds but seed placement is restricted to calculation grid points. Here an interpolation method is described enabling unrestricted seed placement while preserving the computational efficiency of the original method. The Iodine-125 seed dose kernel was sampled and selected values were modified to optimize interpolation accuracy for clinically relevant doses. For each seed, the kernel was shifted to the nearest grid point via convolution with a unit impulse, implemented in the Fourier domain. The remaining fractional shift was performed using a piecewise third-order Lagrange filter. Implementation of the interpolation method greatly improved FT-based dose calculation accuracy. The dose distribution was accurate to within 2% beyond 3 mm from each seed. Isodose contours were indistinguishable from explicit TG-43 calculation. Dose-volume metric errors were negligible. Computation time for the FT interpolation method was essentially the same as Boyer's method. A FT interpolation method for permanent prostate brachytherapy TG-43 dose calculation was developed which expands upon Boyer's original method and enables unrestricted seed placement. The proposed method substantially improves the clinically relevant dose accuracy with negligible additional computation cost, preserving the efficiency of the original method.

  9. Acute vasculitis after endovascular brachytherapy

    International Nuclear Information System (INIS)

    Fajardo L-G, Luis F.; Prionas, Stavros D.; Kaluza, Grzegorz L.; Raizner, Albert E.

    2002-01-01

    Purpose: Angioplasty effectively relieves coronary artery stenosis but is often followed by restenosis. Endovascular radiation (β or γ) at the time of angioplasty prevents restenosis in a large proportion of vessels in swine (short term) and humans (short and long term). Little information is available about the effects of this radiation exposure beyond the wall of the coronary arteries. Methods and Materials: Samples were obtained from 76 minipigs in the course of several experiments designed to evaluate endovascular brachytherapy: 76 of 114 coronary arteries and 6 of 12 iliac arteries were exposed to endovascular radiation from 32 P sources (35 Gy at 0.5 mm from the intima). Two-thirds of the vessels had angioplasty or stenting. The vessels were systematically examined either at 28 days or at 6 months after radiation. Results: We found an unexpected lesion: acute necrotizing vasculitis in arterioles located ≤2.05 mm from the target artery. It was characterized by fibrinoid necrosis of the wall, often associated with lymphocytic exudates or thrombosis. Based on the review of perpendicular sections of tissue samples, the arterioles had received between 6 and 40 Gy. This arteriolar vasculitis occurred at 28 days in samples from 51% of irradiated coronary arteries and 100% of irradiated iliac arteries. By 6 months, the incidence of acute vasculitis decreased to 24% around the coronary arteries. However, at that time, healing vasculitis was evident, often with luminal narrowing, in 46% of samples. Vasculitis was not seen in any of 44 samples from unirradiated vessels (0%) and had no relation to angioplasty, stenting, or their sequelae. This radiation-associated vasculitis in the swine resembles the localized lymphocytic vasculitis that we have reported in tissues of humans exposed to external radiation. On the other hand, it is quite different from the various types of systemic vasculitis that occur in nonirradiated humans. Conclusion: Endoarterial brachytherapy

  10. 1251 seed calibration using afterloading equipment Seed Selectron. Practical solution to meet the recommendations of the AAPM; Calibracion de semillas de {sup 1}25I usando el equipo de carga difereida SeedSelectron. Solucion practica para cumplir las recomendaciones de la AAPM

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Calatayud, J.; Richart, J.; Perez-Garcia, J.; Guirado, D.; Ballester, F.; Rodriguez, S.; Santos, M.; Depiaggio, M.; Carmona, V.; Lliso, F.; Camacho, C.; Pujades, M. C.

    2011-07-01

    Seed Selectron is a system used in the after loader permanent implant brachytherapy seeds 1-125 interstitial prostate. Two aspects are critical when you can meet the recommendations of the AAPM: a practical difficulty to check the quantity of seed required, and the great uncertainty of all measured diodes. The purpose of this paper is to present a practical solution that has been adopted to implement the recommendations of the AAPM.

  11. Production of 125I from amorphous films of Si doped with 124Xe and evaluation of its potential use in brachytherapy

    International Nuclear Information System (INIS)

    Leal, Alexandre S.; Viana, Gustavo A.

    2015-01-01

    This work describes the simulation of a new material that can be used in the brachytherapy treatment. The material consists of xenon-incorporated amorphous silicon (Xe@a-Si). The irradiated 124 Xe atoms of the samples are converted into 125 Xe, according to the reaction: 124 Xe (n,γ) 125 Xe that, in turn, decays to the radioisotope 125 I. A set of simulations performed using the MCNP5 code, shows that, in principle, the material proposed can be used in the seed of brachytherapy in the clinical treatment. (author)

  12. TU-AB-201-11: A Novel Theoretical Framework for MRI-Only Image Guided LDR Prostate and Breast Brachytherapy Implant Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A; Elzibak, A; Fatemi, A; Safigholi, H; Ravi, A; Morton, G; Song, W [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Han, D [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); University of California, San Diego, La Jolla, CA (United States)

    2015-06-15

    Purpose: To propose a novel framework for accurate model-based dose calculations using only MR images for LDR prostate and breast seed implant brachytherapy. Methods: Model-based dose calculation methodologies recommended by TG-186 require further knowledge about specific tissue composition, which is challenging with MRI. However, relying on MRI-only for implant dosimetry would reduce the soft tissue delineation uncertainty, costs, and uncertainties associated with multi-modality registration and fusion processes. We propose a novel framework to address this problem using quantitative MRI acquisitions and reconstruction techniques. The framework includes three steps: (1) Identify the locations of seeds(2) Identify the presence (or absence) of calcification(s)(3) Quantify the water and fat content in the underlying tissueSteps (1) and (2) consider the sources that limit patient dosimetry, particularly the inter-seed attenuation and the calcified regions; while step (3) targets the quantification of the tissue composition to consider the heterogeneities in the medium. Our preliminary work has shown that the seeds and the calcifications can be identified with MRI using both the magnitude and the phase images. By employing susceptibility-weighted imaging with specific post-processing techniques, the phase images can be further explored to distinguish the seeds from the calcifications. Absolute quantification of tissue, water, and fat content is feasible and was previously demonstrated in phantoms and in-vivo applications, particularly for brain diseases. The approach relies on the proportionality of the MR signal to the number of protons in an image volume. By employing appropriate correction algorithms for T1 - and T2*-related biases, B1 transmit and receive field inhomogeneities, absolute water/fat content can be determined. Results: By considering calcification and interseed attenuation, and through the knowledge of water and fat mass density, accurate patient

  13. A 3D computer graphics approach to brachytherapy planning.

    Science.gov (United States)

    Weichert, Frank; Wawro, Martin; Wilke, Carsten

    2004-06-01

    Intravascular brachytherapy (IVB) can significantly reduce the risk of restenosis after interventional treatment of stenotic arteries, if planned and applied correctly. In order to facilitate computer-based IVB planning, a three-dimensional reconstruction of the stenotic artery based on intravascular ultrasound (IVUS) sequences is desirable. For this purpose, the frames of the IVUS sequence are properly aligned in space, possible gaps inbetween the IVUS frames are filled by interpolation with radial basis functions known from scattered data interpolation. The alignment procedure uses additional information which is obtained from biplane X-ray angiography performed simultaneously during the capturing of the IVUS sequence. After IVUS images and biplane angiography data are acquired from the patient, the vessel-wall borders and the IVUS catheter are detected by an active contour algorithm. Next, the twist (relative orientation) between adjacent IVUS frames is determined by a sequential triangulation method. The absolute orientation of each frame is established by a stochastic analysis based on anatomical landmarks. Finally, the reconstructed 3D vessel model is visualized by methods of combined volume and polygon rendering. The reconstruction is then used for the computation of the radiation-distribution within the tissue, emitted from a beta-radiation source. All these steps are performed during the percutaneous intervention.

  14. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of brachytherapy source accountability. 35.2406... Records of brachytherapy source accountability. (a) A licensee shall maintain a record of brachytherapy source accountability required by § 35.406 for 3 years. (b) For temporary implants, the record must...

  15. 10 CFR 35.406 - Brachytherapy sources accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35....406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all times... area. (c) A licensee shall maintain a record of the brachytherapy source accountability in accordance...

  16. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    Science.gov (United States)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  17. COMS eye plaque brachytherapy dosimetry simulations for 103Pd, 125I, and 131Cs

    International Nuclear Information System (INIS)

    Melhus, Christopher S.; Rivard, Mark J.

    2008-01-01

    Monte Carlo (MC) simulations were performed to estimate brachytherapy dose distributions for Collaborative Ocular Melanoma Study (COMS) eye plaques. Brachytherapy seed models 200, 6711, and CS-1 Rev2 carrying 103 Pd, 125 I, and 131 Cs radionuclides, respectively, were modeled and benchmarked against previously published values. Calculated dose rate constants MC Λ were 0.684, 0.924, and 1.052 cGy h -1 U -1 (±2.6%, k=1 uncertainty) for models 200, 6711, and CS-1 Rev2, respectively. The seeds were distributed into 10, 12, 14, 16, 18, 20, and 22 mm-diameter COMS eye plaques. Simulations were performed in both heterogeneous and homogeneous environments, where the latter were in-water and the former included the silastic seed carrier insert and gold-alloy plaque. MC-based homogenous central axis dose distributions agreed within 2%±1% (±1 s.d.) to hand-calculated values. For heterogeneous simulations, notable photon attenuation was observed, with dose reduction at 5 mm of 19%, 11%, and 9% for 103 Pd, 125 I, and 131 Cs, respectively. A depth-dependent correction factor was derived to correct homogenous central-axis dose distributions for plaque component heterogeneities, which were found to be significant at short radial distances

  18. Postenucleation orbits in retinoblastoma: treatment with 125I brachytherapy

    International Nuclear Information System (INIS)

    Stannard, Clare; Sealy, Ross; Hering, Egbert; Hough, Jan; Knowles, Ruth; Lecuona, Karin; Reddi, V. Bala

    2002-01-01

    Purpose: Children with retinoblastoma that extends into or through the choroid, sclera, or optic nerve are at risk of developing orbital disease, as well as metastases. Previously, these enucleated orbits were treated with external beam radiotherapy in addition to chemotherapy. 125 I brachytherapy for tumors in and around the eye was pioneered by Sealy in Cape Town, South Africa, in 1974. In 1983, he developed a technique to irradiate the contents of the orbit while limiting the dose to the bony orbit and eyelids. Methods and Materials: Six nylon tubes containing 125 I seeds were implanted through the eyelids around the periphery of the orbit. Each contained a metal gutter that screens the outer part of the seeds from the bony orbit. A seventh unscreened tube was placed in the center, and a metal disc with 125 I seeds on its posterior surface was secured beneath the eyelids. Between 1983 and 2000, 57 orbits were treated in 56 children with retinoblastoma. Thirty-six were treated prophylactically and 21, with tumor at the resection line of the nerve, extrascleral tumor, or metastases, were treated therapeutically. They received a median dose of 34 Gy in 70 h; 30 also received chemotherapy. Children with tumor at the resection line of the nerve also received treatment to the craniospinal axis. Results: The median follow-up of the 35 patients treated prophylactically was 35 months (range 0-187). Seven patients died, 6 of metastases, at a median of 10 months (range 4-29) after the implant. Eight of the 13 patients with microscopic extraocular tumor survived a median of 29 months (range 5-156). None of the 8 patients presenting with orbital tumor or metastases survived. No orbital recurrences developed in any of the patients. Cosmesis was considerably improved compared with previous forms of irradiation. Conclusion: Orbital brachytherapy is an effective method of irradiating the orbit to prevent recurrent tumor, the treatment time is short, and the cosmesis is much more

  19. Treatment of localized prostate cancer with brachytherapy: six years experience

    International Nuclear Information System (INIS)

    Martinez, Pablo; Dourado, Leandro; Giudice, Carlos; Villamil, Wenceslao; Palacios, Victor; Sardi, Mabel; Damia, Oscar

    2006-01-01

    The usage of ultrasound scan to perform prostate biopsy punctures, the new radiation therapies and the more accurate selection of patients has allowed brachytherapy to play an important role in the treatment of the localized pathology. The objective of this paper is to review the results obtained when treating the localized prostate cancer by using brachytherapy with mud 125. Materials and methods: Between December 1999 and July 2006, 100 prostate cancer patients were treated at the Hospital Italiano de Buenos Aires, using brachytherapy with mud 125. One of the patients was treated with a combined therapy (brachytherapy + external radiotherapy). For that reason, the patient was not taken into consideration for this paper. The average age was 65.95 (52-79). The tumoral stages were T1c in 81% of the patients and T2a in 19% of them. The PSA was always below 15 ng/ml, with an average of 8.92 ng/ml; inferior to 10 ng/ml in 72 patients and between 10 and 15 ng/m ml in 28 of them. The average prostate volume was 34.68 c.c. (18.70 c.c.-58.00 c.c.). The combined Gleason score was below 6 (except for three patients with Gleason 7 who had a PSA below 10, stage T1c). The dose used was 16,000 cGy as recommended by the TG43. The energy charge of each seed was between 0.28 and 0.40 mci. Thirty days later, a prostate axial computer tomography was carried out every 3 mm. with a scanning set every 5 mm. to perform a dosimetric control of the implant. Results: The average age was 65.95 (52-79). The control computer tomography showed an adequate dosimetric coverage for the entire prostate volume, with a maximum urethral dose not above 400 Gy and a maximum rectal dose below 100 Gy. The PSA of all patients decreased to a normal level 6 months after the treatment started. The average follow-up of the 71 patients able to be tested from an oncological perspective lasted 31.15 months, with a minimum of 18 and a maximum of 72 months. Currently, seven patients of those tested (9.86%) manifest

  20. Study of isodose curves of an eye brachytherapy plaque

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Marcos R.O.; Mourao, Arnaldo P., E-mail: marcos.robertto@hotmail.com, E-mail: seg@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Grynberg, Suely E., E-mail: aprata@des.cefetmg.br [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil). Nucleo de Engenharia Hospitalar

    2015-07-01

    The use eye plaque brachytherapy for intraocular tumors treatment is a process designed to protect healthy eye structures, as well as visual functions. It replaces enucleation when possible. The knowledge of the dose spatial distribution inside the eyeball and adjacent structures is very important to obtain the therapeutic dose, minimize the side effects and ensure efficiency in the process. Small variations in positioning the plaque on the ocular surface may generate a less effective treatment. Thus, in this work an eyeball phantom and a seed accommodation system similar to a commercially eye plaque model ROPES with diameter of 15 mm, were developed both in solid water Gammex 457 to conduct the study of the possible variation in the dose deposition inside the eye phantom. Radiochromic films were used to record isodose curves of two orthogonal plans within the simulator. The results showed that there is a difference in the dose deposition for the two orthogonal plans studied. This difference is 8.33% higher for the maximum dose value. Thus, a difference in dose that occurs due to the asymmetrical distribution of seeds on the eye plaque may interfere with the treatment, making it less effective. (author)

  1. Study of isodose curves of an eye brachytherapy plaque

    International Nuclear Information System (INIS)

    Costa, Marcos R.O.; Mourao, Arnaldo P.; Grynberg, Suely E.

    2015-01-01

    The use eye plaque brachytherapy for intraocular tumors treatment is a process designed to protect healthy eye structures, as well as visual functions. It replaces enucleation when possible. The knowledge of the dose spatial distribution inside the eyeball and adjacent structures is very important to obtain the therapeutic dose, minimize the side effects and ensure efficiency in the process. Small variations in positioning the plaque on the ocular surface may generate a less effective treatment. Thus, in this work an eyeball phantom and a seed accommodation system similar to a commercially eye plaque model ROPES with diameter of 15 mm, were developed both in solid water Gammex 457 to conduct the study of the possible variation in the dose deposition inside the eye phantom. Radiochromic films were used to record isodose curves of two orthogonal plans within the simulator. The results showed that there is a difference in the dose deposition for the two orthogonal plans studied. This difference is 8.33% higher for the maximum dose value. Thus, a difference in dose that occurs due to the asymmetrical distribution of seeds on the eye plaque may interfere with the treatment, making it less effective. (author)

  2. Calculation of integrated biological response in brachytherapy

    International Nuclear Information System (INIS)

    Dale, Roger G.; Coles, Ian P.; Deehan, Charles; O'Donoghue, Joseph A.

    1997-01-01

    Purpose: To present analytical methods for calculating or estimating the integrated biological response in brachytherapy applications, and which allow for the presence of dose gradients. Methods and Materials: The approach uses linear-quadratic (LQ) formulations to identify an equivalent biologically effective dose (BED eq ) which, if applied to a specified tissue volume, would produce the same biological effect as that achieved by a given brachytherapy application. For simple geometrical cases, BED multiplying factors have been derived which allow the equivalent BED for tumors to be estimated from a single BED value calculated at a dose reference point. For more complex brachytherapy applications a voxel-by-voxel determination of the equivalent BED will be more accurate. Equations are derived which when incorporated into brachytherapy software would facilitate such a process. Results: At both high and low dose rates, the BEDs calculated at the dose reference point are shown to be lower than the true values by an amount which depends primarily on the magnitude of the prescribed dose; the BED multiplying factors are higher for smaller prescribed doses. The multiplying factors are less dependent on the assumed radiobiological parameters. In most clinical applications involving multiple sources, particularly those in multiplanar arrays, the multiplying factors are likely to be smaller than those derived here for single sources. The overall suggestion is that the radiobiological consequences of dose gradients in well-designed brachytherapy treatments, although important, may be less significant than is sometimes supposed. The modeling exercise also demonstrates that the integrated biological effect associated with fractionated high-dose-rate (FHDR) brachytherapy will usually be different from that for an 'equivalent' continuous low-dose-rate (CLDR) regime. For practical FHDR regimes involving relatively small numbers of fractions, the integrated biological effect to

  3. Seed quality in informal seed systems

    NARCIS (Netherlands)

    Biemond, P.C.

    2013-01-01

    Keywords: informal seed systems, seed recycling, seed quality, germination, seed pathology, seed health, seed-borne diseases, mycotoxigenic fungi, Fusarium verticillioides, mycotoxins, Vigna unguiculata, Zea mays, Nigeria.

    Seed is a crucial input for agricultural production.

  4. Methodology study for fixation of radioactive iodine in polymeric substrate for brachytherapy sources

    International Nuclear Information System (INIS)

    Rodrigues, Bruna T.; Rostelato, Maria Elisa C.M.; Souza, Carla D.; Tiezzi, Rodrigo; Souza, Daiane B. de; Benega, Marcos A.G.; Souza, Anderson S. de; Peleias Junior, Fernando S.; Zeituni, Calos A.; Fernandes, Vagner; Melo, Emerson Ronaldo de; Camargo, Anderson Rogerio de

    2015-01-01

    Cancer is now the second leading cause of death by disease in several countries, including Brazil. Prostate cancer is the most common among men. Brachytherapy is a modality of radiotherapy in which radioactive seeds are placed inside or in contact with the organ to be treated. The most widely used radioisotope in prostate brachytherapy is Iodine-125 which is presented fixated on a silver substrate that is subsequently placed inside a titanium capsule. A large dose of radiation is released only in the targeted tumor protecting healthy surrounding tissues. The technique requires the application of 80 - 120 seeds per patient. The implants of seeds have low impact and non-surgical procedures. Most patients can return to normal life within three days with little or no pain. This work proposes an alternative to the seeds that have already been developed, in order to reduce the cost by obtaining a better efficiency on fixing the radioactive iodine onto the epoxy resin. Methods have been developed to perform the fixation of Iodine-125 onto polymeric substrates. The parameters analyzed were the immersion time, type of static or dynamic reaction, concentration of the adsorption solution, the specific activity of the radioactive source, the need for carrier and chemical form of the radioactive Iodine. These experiments defined the most effective method to fixate the Iodine onto the polymeric material (epoxy resin), the Iodine activity in the polymeric substrate, the activity of the distribution of variation in a plot of polymeric cores and the efficiency of the epoxy resin to seal the seed. (author)

  5. ACPSEM brachytherapy working group recommendations for quality assurance in brachytherapy

    International Nuclear Information System (INIS)

    Dempsey, Claire; Smith, Ryan; Nyathi, Thulani; Ceylan, Abdurrahman; Howard, Lisa; Patel, Virendra; Dam, Ras; Haworth, Annette

    2013-01-01

    The Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) Radiation Oncology Specialty Group (ROSG) formed a series of working groups in 2011 to develop recommendation papers for guidance of radiation oncology medical physics practice within the Australasian setting. These recommendations are intended to provide guidance for safe work practices and a suitable level of quality control without detailed work instructions. It is the responsibility of the medical physicist to ensure that locally available equipment and procedures are sufficiently sensitive to establish compliance to these recommendations. The recommendations are endorsed by the ROSG, have been subject to independent expert reviews and have also been approved by the ACPSEM Council. For the Australian audience, these recommendations should be read in conjunction with the Tripartite Radiation Oncology Practice Standards. This publication presents the recommendations of the ACPSEM Brachytherapy Working Group (BTWG) and has been developed in alignment with other international associations. However, these recommendations should be read in conjunction with relevant national, state or territory legislation and local requirements, which take precedence over the ACPSEM recommendation papers. It is hoped that the users of this and other ACPSEM recommendation papers will contribute to the development of future versions through the Radiation Oncology Specialty Group of the ACPSEM.

  6. Evaluation of TG-43 recommended 2D-anisotropy function for elongated brachytherapy sources

    International Nuclear Information System (INIS)

    Awan, Shahid B.; Meigooni, Ali S.; Mokhberiosgouei, Ramin; Hussain, Manzoor

    2006-01-01

    The original and updated protocols recommended by Task Group 43 from the American Association of Physicists in Medicine (i.e., TG-43 and TG-43U1, respectively), have been introduced to unify brachytherapy source dosimetry around the world. Both of these protocols are based on experiences with sources less than 1.0 cm in length. TG-43U1 recommends that for 103 Pd sources, 2D anisotropy function F(r,θ), should be tabulated at a minimum for radial distances of 0.5, 1.0, 2.0, 3.0, and 5.0 cm. Anisotropy functions defined in these protocols are only valid when the point of calculation does not fall on the active length of the source. However, for elongated brachytherapy sources (active length >1 cm), some of the calculation points with r 103 Pd source at radial distances of 2.5, 3.0, and 4.0 cm were 2.95, 1.74, and 1.19, respectively, with differences up to about a factor of 3. Therefore, the validity of the linear interpolation technique for an elongated brachytherapy source with such a large variation in F(r,θ) needs to be investigated. In this project, application of the TG-43U1 formalism for dose calculation around an elongated RadioCoil trade mark sign 103 Pd brachytherapy source has been investigated. In addition, the linear interpolation techniques as described in TG-43U1 for seed type sources have been evaluated for a 5.0 cm long RadioCoil trade mark sign 103 Pd brachytherapy source. Application of a polynomial fit to F(r,θ) has also been investigated as an alternate approach to the linear interpolation technique. The results of these investigations indicate that the TG-43U1 formalism can be extended for elongated brachytherapy sources, if the two-dimensional (2D) anisotropy function is tabulated at a minimum for radial distances of 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 cm, L/2, and L/2±0.2 cm. Moreover, with the addition of recommended radial distances for 2D anisotropy functions, the linear interpolation technique more closely replicates

  7. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy

    International Nuclear Information System (INIS)

    Wang, Jian Z.; Mayr, Nina A.; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-01-01

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters (α=0.15 Gy -1 and α/β=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD 2 ) with respect to three effects: edema, RBE, and dose heterogeneity for 125 I and 103 Pd implants. The EUD 2 analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V 100 (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D 90 (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for 125 I and 103 Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for 125 I and 1.3-1.6 for 103 Pd implants. These RBE values are consistent with the RBE data published in the literature. These results may explain why in earlier modeling studies

  8. Adjuvant iodine-125 brachytherapy for hepatocellular carcinoma after complete hepatectomy: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Kaiyun Chen

    Full Text Available BACKGROUND: Tumor recurrence is a major problem after curative resection of hepatocellular carcinoma (HCC. The current study evaluated the effects of adjuvant iodine-125 ((125I brachytherapy on postoperative recurrence of HCC. METHODOLOGY/PRINCIPAL FINDINGS: From July 2000 to June 2004, 68 HCC patients undergoing curative hepatectomy were randomly assigned into a (125I adjuvant brachytherapy group (n = 34 and a group of best care (n = 34. Patients in the (125I adjuvant brachytherapy group received (125I seed implantation on the raw surface of resection. Patients in the best care control group received identical treatments except for the (125I seed implantation. Time to recurrence (TTR and 1-, 3- and 5-year overall survival (OS were compared between the two groups. The follow-up ended in January 2010, and lasted for 7.7-106.4 months with a median of 47.6 months. TTR was significantly longer in the (125I group (mean of 60.0 months vs. 36.7 months in the control. The 1-, 3- and 5-year recurrence-free rates of the (125I group were 94.12%, 76.42%, and 73.65% vs. 88.24%, 50.00%, and 29.41% compared with the control group, respectively. The 1-, 3- and 5-year OS rates of the (125I group were 94.12%, 73.53%, and 55.88% vs. 88.24%, 52.94%, and 29.41% compared with the control group, respectively. The (125I brachytherapy decreased the risk of recurrence (HR = 0.310 and the risk of death (HR = 0.364. Most frequent adverse events in the (125I group included nausea, vomiting, arrhythmia, decreased white blood cell and/or platelet counts, and were generally mild and manageable. CONCLUSIONS/SIGNIFICANCE: Adjuvant (125I brachytherapy significantly prolonged TTR and increased the OS rate after curative resection of HCC. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12610000081011.

  9. Local anesthesia for prostate brachytherapy

    International Nuclear Information System (INIS)

    Wallner, Kent; Simpson, Colleen; Roof, James; Arthurs, Sandy; Korssjoen, Tammy; Sutlief, Steven

    1999-01-01

    Purpose: To demonstrate the technique and feasibility of prostate brachytherapy performed with local anesthesia only. Methods and Materials: A 5 by 5 cm patch of perineal skin and subcutaneous tissue is anesthetized by local infiltration of 10 cc of 1% lidocaine with epinephrine, using a 25-gauge 5/8-inch needle. Immediately following injection into the subcutaneous tissues, the deeper tissues, including the pelvic floor and prostate apex, are anesthetized by injecting 15 cc lidocaine solution with approximately 8 passes of a 20-gauge 1.0-inch needle. Following subcutaneous and peri-apical lidocaine injections, the patient is brought to the simulator suite and placed in leg stirrups. The transrectal ultrasound (TRUS) probe is positioned to reproduce the planning images and a 3.5- or 6.0-inch, 22-gauge spinal needle is inserted into the peripheral planned needle tracks, monitored by TRUS. When the tips of the needles reach the prostatic base, about 1 cc of lidocaine solution is injected in the intraprostatic track, as the needle is slowly withdrawn, for a total volume of 15 cc. The implants are done with a Mick Applicator, inserting and loading groups of two to four needles, so that a maximum of only about four needles are in the patient at any one time. During the implant procedure, an additional 1 cc of lidocaine solution is injected into one or more needle tracks if the patient experiences substantial discomfort. The total dose of lidocaine is generally limited to 500 mg (50 ml of 1% solution). Results: To date, we have implanted approximately 50 patients in our simulator suite, using local anesthesia. Patients' heart rate and diastolic blood pressure usually showed moderate changes, consistent with some discomfort. The time from first subcutaneous injection and completion of the source insertion ranged from 35 to 90 minutes. Serum lidocaine levels were below or at the low range of therapeutic. There has been only one instance of acute urinary retention in the

  10. Introduction of a hybrid treatment delivery system used for quality assurance in multi-catheter interstitial brachytherapy

    Science.gov (United States)

    Kallis, Karoline; Kreppner, Stephan; Lotter, Michael; Fietkau, Rainer; Strnad, Vratislav; Bert, Christoph

    2018-05-01

    Multi-catheter interstitial brachytherapy (iBT) is a treatment option for breast cancer patients after breast conserving surgery. Typically, only a few additional quality interventions after the first irradiation have been introduced to ensure the planned treatment delivery. Therefore, the purpose of this study is to show the possibilities of an electromagnetic tracking (EMT) system integrated into the afterloader for quality assurance (QA) in high-dose rate (HDR) iBT of patients with breast cancer. The hybrid afterloader system equipped with an electromagnetic sensor was used for all phantom and patient measurements. Phantom measurements were conducted to estimate the quality of different evaluation schemes. After a coherent point drift registration of the EMT traces to the reconstructed catheters based on computed tomograms the dwell positions (DP) were defined. Different fitting and interpolation methods were analyzed for the reconstruction of DPs. All estimated DPs were compared to the DPs defined in treatment planning. Until now, the implant geometry of 20 patients treated with HDR brachytherapy was acquired and explored. Regarding the reconstruction techniques, both fitting and interpolation were able to detect manually introduced shifts and swaps. Nonetheless, interpolation showed superior results (RMSE  =  1.27 mm), whereas fitting seemed to be more stable to distortion and motion. The EMT system proved to be beneficial for QA in brachytherapy and furthermore, clinical feasibility was proven.

  11. Automation system for quality control in manufacture of iodine-125 sealed sources used in brachytherapy

    International Nuclear Information System (INIS)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria E.C.M.; Moura, Joao A.; Costa, Osvaldo L.; Calvo, Wilson A.P.

    2011-01-01

    The objective of this work is to develop an automation system for Quality Control in the production of Iodine-125 sealed sources, after undergoing the process of laser beam welding. These sources, also known as Iodine-125 seeds are used, successfully, in the treatment of cancer by brachytherapy, with low-dose rates. Each small seed is composed of a welded titanium capsule with 0.8 mm diameter and 4.5 mm in length, containing Iodine-125 adsorbed on an internal silver wire. The seeds are implanted in the human prostate to irradiate the tumor and treat the cancerous cells. The technology to automate the quality control system in the manufacture of Iodine-125 seeds consists in developing and associate mechanical parts, electronic components and pneumatic circuits to control machines and processes. The automation technology for Iodine-125 seed production developed in this work employs programmable logic controller, step motors, drivers of control, electrical-electronic interfaces, photoelectric sensors, interfaces of communication and software development. Industrial automation plays an important role in the production of Iodine-125 seeds, with higher productivity and high standard of quality, facilitating the implementation and operation of processes with good manufacturing practices. Nowadays, the Radiation Technology Center at IPEN-CNEN/SP imports and distributes 36,000 Iodine-125 seeds per year for clinics and hospitals in the whole country. However, the Brazilian potential market is of 8,000 Iodine-125 seeds per month. Therefore, the local production of these radioactive seeds has become a priority for the Institute, aiming to reduce the price and increase the supply to the population in Brazil. (author)

  12. Automation system for quality control in manufacture of iodine-125 sealed sources used in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria E.C.M.; Moura, Joao A.; Costa, Osvaldo L.; Calvo, Wilson A.P., E-mail: somessar@ipen.b, E-mail: afeher@ipen.b, E-mail: sprenger@ipen.b, E-mail: elisaros@ipen.b, E-mail: olcosta@ipen.b, E-mail: wapcalvo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The objective of this work is to develop an automation system for Quality Control in the production of Iodine-125 sealed sources, after undergoing the process of laser beam welding. These sources, also known as Iodine-125 seeds are used, successfully, in the treatment of cancer by brachytherapy, with low-dose rates. Each small seed is composed of a welded titanium capsule with 0.8 mm diameter and 4.5 mm in length, containing Iodine-125 adsorbed on an internal silver wire. The seeds are implanted in the human prostate to irradiate the tumor and treat the cancerous cells. The technology to automate the quality control system in the manufacture of Iodine-125 seeds consists in developing and associate mechanical parts, electronic components and pneumatic circuits to control machines and processes. The automation technology for Iodine-125 seed production developed in this work employs programmable logic controller, step motors, drivers of control, electrical-electronic interfaces, photoelectric sensors, interfaces of communication and software development. Industrial automation plays an important role in the production of Iodine-125 seeds, with higher productivity and high standard of quality, facilitating the implementation and operation of processes with good manufacturing practices. Nowadays, the Radiation Technology Center at IPEN-CNEN/SP imports and distributes 36,000 Iodine-125 seeds per year for clinics and hospitals in the whole country. However, the Brazilian potential market is of 8,000 Iodine-125 seeds per month. Therefore, the local production of these radioactive seeds has become a priority for the Institute, aiming to reduce the price and increase the supply to the population in Brazil. (author)

  13. Lung-conserving treatment of a pulmonary oligometastasis with a wedge resection and 131Cs brachytherapy.

    Science.gov (United States)

    Wernicke, A Gabriella; Parikh, Apurva; Yondorf, Menachem; Trichter, Samuel; Gupta, Divya; Port, Jeffrey; Parashar, Bhupesh

    2013-01-01

    Soft-tissue sarcomas most frequently metastasize to the lung. Surgical resection of pulmonary metastases is the primary treatment modality. Although lobectomy is widely acknowledged as the standard procedure to treat primary pulmonary tumors, the standard for pulmonary metastases is not well defined; furthermore, compromised lung function may tip the scales in favor of a less invasive approach. Here, we report the results of a patient treated with wedge resection and intraoperative cesium-131 ((131)Cs). A 58-year-old African American female was diagnosed with the American Joint Committee on Cancer Stage IIA mixed uterine leiomyosarcoma and underwent total abdominal hysterectomy and bilateral salpingo-oophorectomy followed by adjuvant external beam radiotherapy to a total dose of 45 Gy and vaginal brachytherapy to a total dose of 20 Gy. At 2 years, a routine CT scan of the chest revealed metastasis to right upper lobe of the lung. The patient's poor pulmonary function, related to a 45 pack-year smoking history and chronic emphysema, precluded a lobectomy. After the patient underwent a lung-sparing wedge resection of the pulmonary right upper lobe metastasis and intraoperative brachytherapy with (131)Cs seeds to a total dose of 80 Gy, she remained disease free in the implanted area. At a 2-year followup, imaging continued to reveal 100% local control of the area treated with wedge resection and intraoperative (131)Cs brachytherapy. The patient had no complications from this treatment. Such treatment approach may become an attractive option in patients with oligometastatic disease and compromised pulmonary function. Copyright © 2013 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  14. Novel high resolution 125I brachytherapy source dosimetry using Ge-doped optical fibres

    International Nuclear Information System (INIS)

    Issa, Fatma; Hugtenburg, Richard P.; Nisbet, Andrew; Bradley, David A.

    2013-01-01

    The steep dose gradients close to brachytherapy sources limit the ability to obtain accurate measurements of dose. Here we use a novel high spatial resolution dosimeter to measure dose around a 125 I source and compare against simulations. Ge-doped optical fibres, used as thermoluminescent dosimeters, offer sub-mm spatial resolution, linear response from 10 cGy to >1 kGy and dose-rate independence. For a 125 I brachytherapy seed in a PMMA phantom, doses were obtained for source-dosimeter separations from 0.1 cm up to several cm, supported by EGSnrc/DOSRZznrc Monte Carlo simulations and treatment planning system data. The measurements agree with simulations to within 2.3%±0.3% along the transverse and perpendicular axes and within 3.0%±0.5% for measurements investigating anisotropy in angular dose distribution. Measured and Veriseed™ brachytherapy treatment planning system (TPS) values agreed to within 2.7%±0.5%. Ge-doped optical fibre dosimeters allow detailed dose mapping around brachytherapy sources, not least in situations of high dose gradient. - Highlights: • We evaluate fall-off in dose for distances from an 125 I source of 1 mm to 60 mm. • The TL of optical fibres accommodate high dose gradients and doses that reduce by a factor of 10 3 across the range of separations. • We verify measured values using DOSRZnrc Monte Carlo code simulations and the Variseed™ Treatment Planning System. • Measured radial and angular dose are obtained with ≤3% uncertainty

  15. The brachytherapy with low dose-rate iridium for prostate cancer

    International Nuclear Information System (INIS)

    Momma, Tetsuo; Saito, Shiro; Ohki, Takahiro; Satoh, Hiroyuki; Toya, Kazuhito; Dokiya, Takushi; Murai, Masaru

    2000-01-01

    Brachytherapy as an option for the treatment of prostate cancer has been commonly performed in USA. As the permanent seeding of the radioactive materials is strictly restricted by the law in Japan, brachytherapy must be performed by the temporary implant. This treatment has been performed at a few facilities in Japan mostly using high dose-rate iridium. Only our facility has been using low dose-rate iridium (LDR-Ir) for prostate cancer. This study evaluates the clinical results of the treatment. Since December 1997 to December 1999, 26 patients with histologically diagnosed as prostate cancer (Stage B, 92%; Stage C, 8%) underwent brachytherapy. Twenty-two patients received brachytherapy alone, three were treated with a combination of brachytherapy and external beam radiotherapy (ERT) and one was treated with a combination of brachytherapy and neoadjuvant endocrine therapy. Patients ranged in age from 61 to 84 (median 76) years old. Treatment was initiated with perineal needle placement. From 10 to 14 needles were placed through the holes on the template which was fixed to the stabilizer of the transrectal ultrasound probe. After the needle placement, CT scan was performed to draw distribution curves for the treatment planning. LDR-Ir wires were introduced to the sheath and indwelled during the time calculated from dosimetry. Peripheral dose was 70 Gy for the monotherapy of brachytherapy. For the combination therapy, 40 Gy was given by brachytherapy and 36 Gy with ERT afterwards. LDR-Ir wires were removed after completion of the radiation and patients were followed with serum PSA level and annual biopsy. During 2 to 26 (median 12) months follow-up, 8 out of 9 patients with initial PSA level above 20 ng/ml showed PSA failure. All 13 patients with initial PSA level lower than 20 ng/ml were free from PSA failure. Eight out of 11 patients with Gleason's score 7 or higher showed PSA failure, and all 14 patients (including three patients with combined therapy) with

  16. Proficiency-based cervical cancer brachytherapy training.

    Science.gov (United States)

    Zhao, Sherry; Francis, Louise; Todor, Dorin; Fields, Emma C

    2018-04-25

    Although brachytherapy increases the local control rate for cervical cancer, there has been a progressive decline in its use. Furthermore, the training among residency programs for gynecologic brachytherapy varies considerably, with some residents receiving little to no training. This trend is especially concerning given the association between poor applicator placement and decline in local control. Considering the success of proficiency-based training in other procedural specialties, we developed and implemented a proficiency-based cervical brachytherapy training curriculum for our residents. Each resident placed tandem and ovoid applicators with attending guidance and again alone 2 weeks later using a pelvic model that was modified to allow for cervical brachytherapy. Plain films were taken of the pelvic model, and applicator placement quality was evaluated. Other evaluated metrics included retention of key procedural details, the time taken for each procedure and presession and postsession surveys to assess confidence. During the initial session, residents on average met 4.5 of 5 placement criteria, which improved to 5 the second session. On average, residents were able to remember 7.6 of the 8 key procedural steps. Execution time decreased by an average of 10.5%. Resident confidence with the procedure improved dramatically, from 2.6 to 4.6 of 5. Residents who had previously never performed a tandem and ovoid procedure showed greater improvements in these criteria than those who had. All residents strongly agreed that the training was helpful and wanted to participate again the following year. Residents participating in this simulation training had measurable improvements in the time to perform the procedure, applicator placement quality, and confidence. This curriculum is easy to implement and is of great value for training residents, and would be particularly beneficial in programs with low volume of cervical brachytherapy cases. Simulation programs could

  17. Quality Assurance Procedure Development in Iodine-125 Seeds Production

    International Nuclear Information System (INIS)

    Moura, J.A.; Moura, E.S.; Sprenger, F.E.

    2009-01-01

    Brachytherapy using Iodine-125 seeds has been used in prostate cancer treatment. In the quality control routine during seed production, leak tests are made to detect any leakage of radioactive material from inside the titanium shield. Leak tests are made according to the International Standard Organization- Radiation protection - sealed radioactive sources - ISO 9978 standard, and require liquid transfer between recipients. If any leakage happens, there will be contamination of the liquid and tubing. This study aims to establish decontamination routines for tubing, allowing its repeated use, in the automated assay process

  18. seed oils

    African Journals Online (AJOL)

    Timothy Ademakinwa

    processes, production of biodiesel, as lubricant and in deep-frying purposes. They could ... for its juice, nectars and fruit while its seeds are ... Malaysia. The fine seed powder was stored in a plastic container inside a refrigerator at between 4 o.

  19. seed flour

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... and with a nice taste, used for cooking or as lamp oil. The fatty acid ... Pra seeds were obtained from a local market in Nakhon Si Thammarat. Page 2. Table 1. Proximate composition of pra seed flour. Constituent. Percentage ...

  20. Image fusion techniques in permanent seed implantation

    Directory of Open Access Journals (Sweden)

    Alfredo Polo

    2010-10-01

    Full Text Available Over the last twenty years major software and hardware developments in brachytherapy treatment planning, intraoperative navigation and dose delivery have been made. Image-guided brachytherapy has emerged as the ultimate conformal radiation therapy, allowing precise dose deposition on small volumes under direct image visualization. In thisprocess imaging plays a central role and novel imaging techniques are being developed (PET, MRI-MRS and power Doppler US imaging are among them, creating a new paradigm (dose-guided brachytherapy, where imaging is used to map the exact coordinates of the tumour cells, and to guide applicator insertion to the correct position. Each of these modalities has limitations providing all of the physical and geometric information required for the brachytherapy workflow.Therefore, image fusion can be used as a solution in order to take full advantage of the information from each modality in treatment planning, intraoperative navigation, dose delivery, verification and follow-up of interstitial irradiation.Image fusion, understood as the visualization of any morphological volume (i.e. US, CT, MRI together with an additional second morpholo gical volume (i.e. CT, MRI or functional dataset (functional MRI, SPECT, PET, is a well known method for treatment planning, verification and follow-up of interstitial irradiation. The term image fusion is used when multiple patient image datasets are registered and overlaid or merged to provide additional information. Fused images may be created from multiple images from the same imaging modality taken at different moments (multi-temporalapproach, or by combining information from multiple modalities. Quality means that the fused images should provide additional information to the brachythe rapy process (diagnosis and staging, treatment planning, intraoperative imaging, treatment delivery and follow-up that cannot be obtained in other ways. In this review I will focus on the role of

  1. 137Cs - Brachytherapy sources : a technology scenario

    International Nuclear Information System (INIS)

    Varma, R.N.

    2001-01-01

    Cancer has emerged as one of the major cause of morbidity and mortality all over the world. India houses world's second largest population and registers 4-5 lakhs new cancer cases every year. Cancer of cervix is most common form of malignancy among Indian women. Radiation therapy, especially intracavity brachytherapy in conjunction with other modalities like surgery, chemotherapy has been found to be highly effective for the management and control of cervical carcinoma at all stages. A technology has been developed indigenously for the fabrication of 137 Cs sources for brachytherapy applications

  2. Robotic seeding

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Fountas, Spyros; Sørensen, Claus Aage Grøn

    2017-01-01

    Agricultural robotics has received attention for approximately 20 years, but today there are only a few examples of the application of robots in agricultural practice. The lack of uptake may be (at least partly) because in many cases there is either no compelling economic benefit......, or there is a benefit but it is not recognized. The aim of this chapter is to quantify the economic benefits from the application of agricultural robots under a specific condition where such a benefit is assumed to exist, namely the case of early seeding and re-seeding in sugar beet. With some predefined assumptions...... with regard to speed, capacity and seed mapping, we found that among these two technical systems both early seeding with a small robot and re-seeding using a robot for a smaller part of the field appear to be financially viable solutions in sugar beet production....

  3. American brachytherapy society (ABS) consensus guidelines for brachytherapy of esophageal cancer

    International Nuclear Information System (INIS)

    Gaspar, Laurie E.; Nag, Subir; Herskovic, Arnold; Mantravadi, Rao; Speiser, Burton

    1997-01-01

    Introduction: There is wide variation in the indications, treatment regimens, and dosimetry for brachytherapy in the treatment of cancer of the esophagus. No guidelines for optimal therapy currently exist. Methods and Materials: Utilizing published reports and clinical experience, representatives of the Clinical Research Committee of the American Brachytherapy Society (ABS) formulated guidelines for brachytherapy in esophageal cancer. Results: Recommendations were made for brachytherapy in the definitive and palliative treatment of esophageal cancer. (A) Definitive treatment: Good candidates for brachytherapy include patients with unifocal thoracic adeno- or squamous cancers ≤ 10 cm in length, with no evidence of intra-abdominal or metastatic disease. Contraindications include tracheal or bronchial involvement, cervical esophagus location, or stenosis that cannot be bypassed. The esophageal brachytherapy applicator should have an external diameter of 6-10 mm. If 5FU-based chemotherapy and 45-50-Gy external beam are used, recommended brachytherapy is either: (i) HDR 10 Gy in two weekly fractions of 5 Gy each; or (ii) LDR 20 Gy in a single course at 0.4-1 Gy/hr. All doses are specified 1 cm from the midsource or middwell position. Brachytherapy should follow external beam radiation therapy and should not be given concurrently with chemotherapy. (B) Palliative treatment: Patients with adeno- or squamous cancers of the thoracic esophagus with distant metastases or unresectable local disease progression/recurrence after definitive radiation treatment should be considered for brachytherapy with palliative intent. After limited dose (30 Gy) EBRT, the recommended brachytherapy is either: (i) HDR 10-14 Gy in one or two fractions; or (ii) LDR 20-25 Gy in a single course at 0.4-1 Gy/hr. The need for external beam radiation in newly diagnosed patients with a life expectancy of less than 3 months is controversial. In these cases, HDR of 15-20 Gy in two to four fractions or

  4. A multicentre ‘end to end’ dosimetry audit for cervix HDR brachytherapy treatment

    International Nuclear Information System (INIS)

    Palmer, Antony L.; Diez, Patricia; Gandon, Laura; Wynn-Jones, Andrea; Bownes, Peter; Lee, Chris; Aird, Edwin; Bidmead, Margaret; Lowe, Gerry; Bradley, David; Nisbet, Andrew

    2015-01-01

    Purpose: To undertake the first multicentre fully ‘end to end’ dosimetry audit for HDR cervix brachytherapy, comparing planned and delivered dose distributions around clinical treatment applicators, with review of local procedures. Materials and methods: A film-dosimetry audit was performed at 46 centres, including imaging, applicator reconstruction, treatment planning and delivery. Film dose maps were calculated using triple-channel dosimetry and compared to RTDose data from treatment planning systems. Deviations between plan and measurement were quantified at prescription Point A and using gamma analysis. Local procedures were also discussed. Results: The mean difference between planned and measured dose at Point A was −0.6% for plastic applicators and −3.0% for metal applicators, at standard uncertainty 3.0% (k = 1). Isodose distributions agreed within 1 mm over a dose range 2–16 Gy. Mean gamma passing rates exceeded 97% for plastic and metal applicators at 3% (local) 2 mm criteria. Two errors were found: one dose normalisation error and one applicator library misaligned with the imaged applicator. Suggestions for quality improvement were also made. Conclusions: The concept of ‘end to end’ dosimetry audit for HDR brachytherapy has been successfully implemented in a multicentre environment, providing evidence that a high level of accuracy in brachytherapy dosimetry can be achieved

  5. Tracking brachytherapy sources using emission imaging with one flat panel detector

    International Nuclear Information System (INIS)

    Song Haijun; Bowsher, James; Das, Shiva; Yin Fangfang

    2009-01-01

    This work proposes to use the radiation from brachytherapy sources to track their dwell positions in three-dimensional (3D) space. The prototype device uses a single flat panel detector and a BB tray. The BBs are arranged in a defined pattern. The shadow of the BBs on the flat panel is analyzed to derive the 3D coordinates of the illumination source, i.e., the dwell position of the brachytherapy source. A kilovoltage x-ray source located 3.3 m away was used to align the center BB with the center pixel on the flat panel detector. For a test plan of 11 dwell positions, with an Ir-192 high dose rate unit, one projection was taken for each dwell point, and locations of the BB shadows were manually identified on the projection images. The 3D coordinates for the 11 dwell positions were reconstructed based on two BBs. The distances between dwell points were compared with the expected values. The average difference was 0.07 cm with a standard deviation of 0.15 cm. With automated BB shadow recognition in the future, this technique possesses the potential of tracking the 3D trajectory and the dwell times of a brachytherapy source in real time, enabling real time source position verification.

  6. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, de l' Universite Laval, CHUQ, Pavillon L' Hotel-Dieu de Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Medical Physics Unit, McGill University, Montreal General Hospital, Montreal, Quebec H3G 1A4 (Canada)

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  7. Experimental dosimetry of Ho-166 bioglass seed polymer-protected

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luciana B.; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear. Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares

    2011-07-01

    This study aims to develop experimental dosimetry of Ho-166 bio glass seed for brachytherapy studies using GAFCHROMIC EBT2 radio chromium films. The methodology consists of placement of radio chromium films in a compressed breast phantom, along with bio glass polymer-protected seeds of [Si: Ca: Ho] and [Si: Ca: Ho: Zr]. The bio glass seeds were encapsulated with polyvinyl alcohol, before being activated and used in the study. The bio glass seeds were introduced into the breast phantom, along with radio chromium films for a period of 2 hours. After the exposure time, radio chromium films were removed from phantom and digitized for analysis in ImageDIG 2.0 program, which quantifies the intensity of RGB (Red, Green, Blue). The dose calculation was evaluated by Monte Carlo technique. Experimental and theoretical data were used to calibrate the dose distribution. The results were plotted on graphs and dose iso curves were obtained. As conclusion it is possible to perform dosimetry in Ho-166 seed brachytherapy using radio chromium films, limited to a short exposure time and small activity. (author)

  8. Experimental dosimetry of Ho-166 bioglass seed polymer-protected

    International Nuclear Information System (INIS)

    Nogueira, Luciana B.; Campos, Tarcisio P.R.

    2011-01-01

    This study aims to develop experimental dosimetry of Ho-166 bio glass seed for brachytherapy studies using GAFCHROMIC EBT2 radio chromium films. The methodology consists of placement of radio chromium films in a compressed breast phantom, along with bio glass polymer-protected seeds of [Si: Ca: Ho] and [Si: Ca: Ho: Zr]. The bio glass seeds were encapsulated with polyvinyl alcohol, before being activated and used in the study. The bio glass seeds were introduced into the breast phantom, along with radio chromium films for a period of 2 hours. After the exposure time, radio chromium films were removed from phantom and digitized for analysis in ImageDIG 2.0 program, which quantifies the intensity of RGB (Red, Green, Blue). The dose calculation was evaluated by Monte Carlo technique. Experimental and theoretical data were used to calibrate the dose distribution. The results were plotted on graphs and dose iso curves were obtained. As conclusion it is possible to perform dosimetry in Ho-166 seed brachytherapy using radio chromium films, limited to a short exposure time and small activity. (author)

  9. T2*-weighted image/T2-weighted image fusion in postimplant dosimetry of prostate brachytherapy

    International Nuclear Information System (INIS)

    Katayama, Norihisa; Takemoto, Mitsuhiro; Yoshio, Kotaro

    2011-01-01

    Computed tomography (CT)/magnetic resonance imaging (MRI) fusion is considered to be the best method for postimplant dosimetry of permanent prostate brachytherapy; however, it is inconvenient and costly. In T2 * -weighted image (T2 * -WI), seeds can be easily detected without the use of an intravenous contrast material. We present a novel method for postimplant dosimetry using T2 * -WI/T2-weighted image (T2-WI) fusion. We compared the outcomes of T2 * -WI/T2-WI fusion-based and CT/T2-WI fusion-based postimplant dosimetry. Between April 2008 and July 2009, 50 consecutive prostate cancer patients underwent brachytherapy. All the patients were treated with 144 Gy of brachytherapy alone. Dose-volume histogram (DVH) parameters (prostate D90, prostate V100, prostate V150, urethral D10, and rectal D2cc) were prospectively compared between T2 * -WI/T2-WI fusion-based and CT/T2-WI fusion-based dosimetry. All the DVH parameters estimated by T2 * -WI/T2-WI fusion-based dosimetry strongly correlated to those estimated by CT/T2-WI fusion-based dosimetry (0.77≤ R ≤0.91). No significant difference was observed in these parameters between the two methods, except for prostate V150 (p=0.04). These results show that T2 * -WI/T2-WI fusion-based dosimetry is comparable or superior to MRI-based dosimetry as previously reported, because no intravenous contrast material is required. For some patients, rather large differences were observed in the value between the 2 methods. We thought these large differences were a result of seed miscounts in T2 * -WI and shifts in fusion. Improving the image quality of T2 * -WI and the image acquisition speed of T2 * -WI and T2-WI may decrease seed miscounts and fusion shifts. Therefore, in the future, T2 * -WI/T2-WI fusion may be more useful for postimplant dosimetry of prostate brachytherapy. (author)

  10. Occupational exposure of professionals during interstitial permanent prostate brachytherapy implants

    International Nuclear Information System (INIS)

    Pirraco, R.; Pereira, A.; Viterbo, T.; Cavaco, A.

    2006-01-01

    Full text of publication follows: Introduction: In this study we present dose measurements for professionals exposed during interstitial 125 I permanent prostate brachytherapy implants. Methods and Materials: The implant technique used was intra operative real time using strand and loose seeds. The professionals inside the operating room are an oncologist, a radiologist, a physicist, a nurse and an anesthesiologist. The oncologist and the physicist contact directly the loaded needle with radioactive seeds and two types of measurements were taken: total body and extremities (finger) dose. The rest of the team operates at long distances, but measurements were made. To measure total body equivalent dose we use a Berthold Umo LB 123 coupled with a LB 1236-H10 detector, and we recorded dose, time and distance from implant location. Finger dosemeters are thermo -luminescent dosimeter (TLD) rings that were controlled over one month. Results: 50 cases (average number of applications per year) were analysed for extremities measurements and 9 cases for total body measurements (in this case, the results were extrapolated for 50 cases), with an average of 26.1 mCi total activity per implant (in a range of 17.4 - 40.3 mCi). The finger dose was 1.8 mSv for the oncologist and 1.9 mSv for the physicist. The interpolation of total body equivalent dose for the oncologist was 24 mSv, for the radiologist 6 mSv and 9 mSv for the physicist. The rest of the team did not receive anything but background radiation. The annual national limit dose for workers is 20 mSv for total body irradiation, and 500 mSv for extremities. Conclusion: In conclusion we may say that during interstitial permanent prostate brachytherapy implants, total doses received for all groups are not significant when compared to annual limits for Portuguese laws 1. Even so, our main goal is always to get the less possible dose (ALARA principle). References: 1. Decreto Lei n. 180/2002 de 8 de Agosto. (authors)

  11. Occupational exposure of professionals during interstitial permanent prostate brachytherapy implants

    Energy Technology Data Exchange (ETDEWEB)

    Pirraco, R.; Pereira, A.; Viterbo, T.; Cavaco, A. [Instituto Portugues de Oncologia Francisco Gentil, Centro R egional de Oncologia do Porto, SA, Porto (Portugal)

    2006-07-01

    Full text of publication follows: Introduction: In this study we present dose measurements for professionals exposed during interstitial 125 I permanent prostate brachytherapy implants. Methods and Materials: The implant technique used was intra operative real time using strand and loose seeds. The professionals inside the operating room are an oncologist, a radiologist, a physicist, a nurse and an anesthesiologist. The oncologist and the physicist contact directly the loaded needle with radioactive seeds and two types of measurements were taken: total body and extremities (finger) dose. The rest of the team operates at long distances, but measurements were made. To measure total body equivalent dose we use a Berthold Umo LB 123 coupled with a LB 1236-H10 detector, and we recorded dose, time and distance from implant location. Finger dosemeters are thermo -luminescent dosimeter (TLD) rings that were controlled over one month. Results: 50 cases (average number of applications per year) were analysed for extremities measurements and 9 cases for total body measurements (in this case, the results were extrapolated for 50 cases), with an average of 26.1 mCi total activity per implant (in a range of 17.4 - 40.3 mCi). The finger dose was 1.8 mSv for the oncologist and 1.9 mSv for the physicist. The interpolation of total body equivalent dose for the oncologist was 24 mSv, for the radiologist 6 mSv and 9 mSv for the physicist. The rest of the team did not receive anything but background radiation. The annual national limit dose for workers is 20 mSv for total body irradiation, and 500 mSv for extremities. Conclusion: In conclusion we may say that during interstitial permanent prostate brachytherapy implants, total doses received for all groups are not significant when compared to annual limits for Portuguese laws 1. Even so, our main goal is always to get the less possible dose (ALARA principle). References: 1. Decreto Lei n. 180/2002 de 8 de Agosto. (authors)

  12. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources.

    Science.gov (United States)

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-03-01

    The goal of this work is to compare D(m,m) (radiation transported in medium; dose scored in medium) and D(w,m) (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether ap plying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: 125I, 103Pd, and 131Cs seeds, as well as an EBS operating at 50 kV. Ratios of D(w,m) over D(m,m) are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using 103Pd) and prostate (using 125I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D90 values are compared for D(w,m) and D(m,m). (1) Differences (D(w,m)/D(m,m)-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D(w,m)/D(m,m) is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D90(w,m) over D90(m,m) for clinical implants matches D(w,m)/D(m,m) at 1 cm from the single point sources, Given

  13. Is there any place for LDR brachytherapy for head and neck carcinomas in HDR era?

    Science.gov (United States)

    Fijuth, Jacek

    2009-03-01

    In Poland, the classical LDR brachytherapy for head and neck carcinomas with Ir-192 wires or hairpins has completely disappeared some time ago after 30 years of successful clinical use. Can this technique be fully and safely replaced by HDR or PDR application? This option seems attractive because of new possibilities of 3D reconstruction and computer real-time treatment planning and optimization. However, in my opinion, long time is needed to get a clinical and scientific experience that has been accumulated for decades with the use of LDR technique.

  14. First practical and clinical experiences using the IBU (integrated brachytherapy unit): it works

    International Nuclear Information System (INIS)

    Loevey, GL.; Haker, H.; Koch, K

    1996-01-01

    A large number of modern HDR-AL treatments requires a three dimensional applicator reconstruction and dose optimization. Conventional Xray-film digitalization is time consuming, operation tables and the Xray units limit the possible radiography directions and therefore the optimal catheter reconstruction. The IBU concept and equipments offer new possibilities in applicator reconstruction and 3D isodoses display. Materials and methods: Since January 1994 1095 HDR applications have been performed on Nucletron's 1993 installed IBU. All treatments have been individually planned, in 151 (13, 78%) cases 3D applicator reconstruction were necessary. Total treatment time elapsed, reconstruction time, time interval from the start of the planning phase to the start of the irradiation were measured. Results: Total treatment time was reduced in comparison to treatments with conventional catheter reconstruction because: 1.) no time needed for Xray film processing, 2.) faster identification of catheters due to digital image processing, 3.) faster evaluation of isodoses due to 3D isodoses display. Examples of filmless reconstruction and planning in different gynaecologic and H and N localizations will be demonstrated. Conclusion: the first practical experiences show a good match to the theoretical advantages of the integrated brachytherapy unit: the system reduces total treatment time and thus patient distress

  15. Seed regulations and local seed systems

    NARCIS (Netherlands)

    Louwaars, N.

    2000-01-01

    Seed regulations have been introduced in most countries based on the development of formal seed production. Concerns about seed quality and about the varietal identity of the seeds have commonly led to seed laws. However, formal regulations are often inappropriate for informal seed systems, which

  16. The case for focal brachytherapy for the management of low grade prostate cancer

    International Nuclear Information System (INIS)

    Allen, B.J.; Enari, E.

    2011-01-01

    Full text: Radical therapy of low to intermediate prostate cancer patients can cause substantial adverse events relating to genitourinary and rectal toxicity. Yet there is little evidence that such treatment results in increased life expectancy. On the other hand, watchful waiting is associated with active surveillance and the patient must accept that the cancer remains untreated and has a risk of progression. Focal therapy of low grade prostate cancer provides an intermediate approach to the management of this cancer. The approach is to treat only those positive segments on biopsy and so reduce the likelihood of adverse events. However, continued surveillance is required because of the increased risk of disease progression. Focal therapy needs to be evaluated using available ablative therapies. Recent studies of focal HIFU for 20 patients showed PSA reduced from 7.3 to 1.5 ng/mL at 12 months. 1/20 patients had inadequate erections and 2120 required pads. 17/19 had no histological evidence of cancer and none had evidence of high volume or Gleason = 7 cancer in the treated lobe. Seed brachytherapy is commonly used for radical prostate treatment of low volume disease. As the same template can be used for seed therapy as is used for biopsy, the technique is ideally suited for focal brachytherapy. As any treatment involving less than the entire gland involves the risk of leaving viable cancer cells outside the treatment zone, a phase 3 randomised clinical trial between radical and focal brachytherapy is advocated to demonstrate the efficacy and safety of the latter relative to radical therapy.

  17. A Phase III Randomized Trial of the Timing of Meloxicam With Iodine-125 Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Crook, Juanita; Patil, Nikhilesh; Wallace, Kris; Borg, Jette; Zhou, David; Ma, Clement; Pond, Greg

    2010-01-01

    Purpose: Nonsteroidal anti-inflammatory medication is used to reduce prostate edema and urinary symptoms following prostate brachytherapy. We hypothesized that a cyclooxygenase-2 (COX-2) inhibitor regimen started 1 week prior to seed implant might diminish the inflammatory response, thus reducing edema, retention rates, and symptom severity. Methods and Materials: From March 2004 to February 2008, 316 men consented to an institutional review board-approved randomized study of a 4-week course of meloxicam, 7.5 mg orally twice per day, starting either on the day of implant or 1 week prior to implant. Brachytherapy was performed using iodine-125 seeds and was preplanned and performed under transrectal ultrasound (TRUS) and fluoroscopic guidance. Prostate volume obtained by MR imaging at 1 month was compared to baseline prostate volume obtained by TRUS planimetry and expressed as an edema factor. The trial endpoints were prostate edema at 1 month, International Prostate Symptom Score (IPSS) questionnaire results at 1 and 3 months, and any need for catheterization. Results: Results for 300 men were analyzed. Median age was 61 (range, 45-79 years), and median TRUS prostate volume was 35.7 cc (range, 18.1-69.5 cc). Median IPSS at baseline was 5 (range, 0-24) and was 15 at 1 month, 16 at 3 months, and 10 at 6 months. Catheterization was required for 7% of patients (6.2% day 0 arm vs. 7.9% day -7 arm; p = 0.65). The median edema factor at 1 month was 1.02 (range, 0.73-1.7). 1.01 day 0 arm vs. 1.05 day -7 arm. Baseline prostate volume remained the primary predictor of postimplant urinary retention. Conclusions: Starting meloxicam 1 week prior to brachytherapy compared to starting immediately after the procedure did not reduce 1-month edema, improve IPSSs at 1 or 3 months, or reduce the need for catheterization.

  18. Proposal for radioactive liquid waste management in a brachytherapy sealed sources development laboratory

    International Nuclear Information System (INIS)

    Souza, C.D.; Peleias Jr, F.S.; Rostelato, M.E.C.M.; Zeituni, C.A.; Benega, M.A.G.; Tiezzi, R.; Mattos, F.R.; Rodrigues, B.T.; Oliveira, T.B.; Feher, A.; Moura, J.A.; Costa, O.L.

    2014-01-01

    The radioactive waste management is addressed in several regulations. Literature survey indicates limited guidance on liquid waste management in Brachytherapy I-125 seeds production. Laboratories for those seeds are under implementation not only in Brazil but in several countries such as Poland, South Korea, Iran, China, and others. This paper may be used as reference to these other groups. For the correct implementation, a plan for radiological protection that has the management of radioactive waste fully specified is necessary. The proposal is that the waste will be deposited in a 20 L and 60 L containers which will take 2 years to fill. For glove box 1, the final activity of this container is 1.91 x 10 10 Bq (3.19 years to safe release in the environment). For glove box 3, the final activity of this container is 1.28 x 10 10 Bq (2.85 years to safe release in the environment). (authors)

  19. SU-E-T-366: Clinical Implementation of MR-Guided Vaginal Cylinder Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Owrangi, A; Jolly, S; Balter, J; Cao, Y; Young, L; Zhu, T; Prisciandaro, J [University of Michigan, Ann Arbor, MI (United States)

    2014-06-01

    Purpose: To evaluate the accuracy of MR-based vaginal brachytherapy source localization using an in-house MR-visible marker versus the alignment of an applicator model to MR images. Methods: Three consecutive patients undergoing vaginal HDR brachytherapy with a plastic cylinder were scanned with both CT and MRI (including T1- and T2- weighted images). An MR-visible source localization marker, consisting of a sealed thin catheter filled with either water (for T2 contrast) or Gd-doped water (for T1 contrast), was assembled shortly before scanning. Clinically, the applicator channel was digitized on CT with an x-ray marker. To evaluate the efficacy of MR-based applicator reconstruction, each MR image volume was aligned locally to the CT images based on the region containing the cylinder. Applicator digitization was performed on the MR images using (1) the MR visible marker and (2) alignment of an applicator surface model from Varian's Brachytherapy Planning software to the MRI images. Resulting source positions were compared with the original CT digitization. Results: Although the source path was visualized by the MR marker, the applicator tip proved difficult to identify due to challenges in achieving a watertight seal. This resulted in observed displacements of the catheter tip, at times >1cm. Deviations between the central source positions identified via aligning the applicator surface model to MR and using the xray marker on CT ranged from 0.07 – 0.19 cm and 0.07 – 0.20 cm on T1- weighted and T2-weighted images, respectively. Conclusion: Based on the current study, aligning the applicator model to MRI provides a practical, current approach to perform MR-based brachytherapy planning. Further study is needed to produce catheters with reliably and reproducibly identifiable tips. Attempts are being made to improve catheter seals, as well as to increase the viscosity of the contrast material to decrease fluid mobility inside the catheter.

  20. SU-E-T-366: Clinical Implementation of MR-Guided Vaginal Cylinder Brachytherapy

    International Nuclear Information System (INIS)

    Owrangi, A; Jolly, S; Balter, J; Cao, Y; Young, L; Zhu, T; Prisciandaro, J

    2014-01-01

    Purpose: To evaluate the accuracy of MR-based vaginal brachytherapy source localization using an in-house MR-visible marker versus the alignment of an applicator model to MR images. Methods: Three consecutive patients undergoing vaginal HDR brachytherapy with a plastic cylinder were scanned with both CT and MRI (including T1- and T2- weighted images). An MR-visible source localization marker, consisting of a sealed thin catheter filled with either water (for T2 contrast) or Gd-doped water (for T1 contrast), was assembled shortly before scanning. Clinically, the applicator channel was digitized on CT with an x-ray marker. To evaluate the efficacy of MR-based applicator reconstruction, each MR image volume was aligned locally to the CT images based on the region containing the cylinder. Applicator digitization was performed on the MR images using (1) the MR visible marker and (2) alignment of an applicator surface model from Varian's Brachytherapy Planning software to the MRI images. Resulting source positions were compared with the original CT digitization. Results: Although the source path was visualized by the MR marker, the applicator tip proved difficult to identify due to challenges in achieving a watertight seal. This resulted in observed displacements of the catheter tip, at times >1cm. Deviations between the central source positions identified via aligning the applicator surface model to MR and using the xray marker on CT ranged from 0.07 – 0.19 cm and 0.07 – 0.20 cm on T1- weighted and T2-weighted images, respectively. Conclusion: Based on the current study, aligning the applicator model to MRI provides a practical, current approach to perform MR-based brachytherapy planning. Further study is needed to produce catheters with reliably and reproducibly identifiable tips. Attempts are being made to improve catheter seals, as well as to increase the viscosity of the contrast material to decrease fluid mobility inside the catheter

  1. Fast prostate segmentation for brachytherapy based on joint fusion of images and labels

    Science.gov (United States)

    Nouranian, Saman; Ramezani, Mahdi; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, Septimiu E.; Abolmaesumi, Purang

    2014-03-01

    Brachytherapy as one of the treatment methods for prostate cancer takes place by implantation of radioactive seeds inside the gland. The standard of care for this treatment procedure is to acquire transrectal ultrasound images of the prostate which are segmented in order to plan the appropriate seed placement. The segmentation process is usually performed either manually or semi-automatically and is associated with subjective errors because the prostate visibility is limited in ultrasound images. The current segmentation process also limits the possibility of intra-operative delineation of the prostate to perform real-time dosimetry. In this paper, we propose a computationally inexpensive and fully automatic segmentation approach that takes advantage of previously segmented images to form a joint space of images and their segmentations. We utilize joint Independent Component Analysis method to generate a model which is further employed to produce a probability map of the target segmentation. We evaluate this approach on the transrectal ultrasound volume images of 60 patients using a leave-one-out cross-validation approach. The results are compared with the manually segmented prostate contours that were used by clinicians to plan brachytherapy procedures. We show that the proposed approach is fast with comparable accuracy and precision to those found in previous studies on TRUS segmentation.

  2. Comparison between methods for fixing radioactive iodine in silver substrate for manufacturing brachytherapy sources

    International Nuclear Information System (INIS)

    Souza, Carla Daruich

    2012-01-01

    Among the different ways to treat prostate cancer, brachytherapy with iodine- 125 seeds is an option that provides good results and fewer side effects. In the present study several deposition methods of radioactive iodine in a silver substrate were compared in order to choose the most suitable alternative for the routine production to be implemented at IPEN's laboratory. The methodology used was chosen based on the available infrastructure and experience of the researchers present. Therefore, the 131 I was used for testing (same chemical behavior as 131 I). Four methods were selected: Method 1 (test based on electrodeposition method developed by D.Kubiatowicz) presented 65.16% efficiency; Method 2 (chemical reaction based on the method developed by D. Kubiatowicz - HCl) with the result of 70.80% efficiency; method 3 (chemical reaction based on the method developed by Dr. Maria Elisa Rostelato) with 55.80% efficiency; Method 4 (IQ-IPEN) resulted in 99% efficiency. Since this method has more radioactive material fixation (which represents virtually the entire cost of the seed), the final price is the cheapest. This method is the suggested one to be implemented in the IPEN's laboratory for brachytherapy sources production. Besides, the method is the fasted one. (author)

  3. Spectroscopic output of {sup 125}I and {sup 103}Pd low dose rate brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Usher-Moga, Jacqueline; Beach, Stephen M.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin--Madison, Madison, Wisconsin 53705 (United States); Global Physics Solutions, St. Joseph, Michigan 49085 (United States); Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2009-01-15

    The spectroscopic output of low dose rate (LDR) brachytherapy sources is dependent on the physical design and construction of the source. Characterization of the emitted photons from 12 {sup 125}I and 3 {sup 103}Pd LDR brachytherapy source models is presented. Photon spectra, both along the transverse bisector and at several polar angles, were measured in air with a high-purity reverse electrode germanium (REGe) detector. Measured spectra were corrected to in vacuo conditions via Monte Carlo and analytical methods. The tabulated and plotted spectroscopic data provide a more complete understanding of each source model's output characteristics than can be obtained with other measurement techniques. The variation in fluorescence yield of the {sup 125}I sources containing silver caused greater differences in the emitted spectra and average energies among these seed models than was observed for the {sup 103}Pd sources or the {sup 125}I sources that do not contain silver. Angular spectroscopic data further highlighted the effects of source construction unique to each model, as well as the asymmetric output of many seeds. These data demonstrate the need for the incorporation of such physically measured output characteristics in the Monte Carlo modeling process.

  4. Dosimetry on ocular brachytherapy with ROPE plaque with iodine125 and palladium-103

    International Nuclear Information System (INIS)

    Mourao, Arnaldo P.; Campos, Tarcisio

    2009-01-01

    Radiotherapy is an alternative to ocular enucleation. However, the irradiation of ocular region can bring deleterious effects due to the high doses, mainly in the lens, retina and in the bone structures in growth phase. Brachytherapy instead of teletherapy looks for departing absorbed doses in tumor minimizing doses in the lens and the adjacent tissues of the eyeball (orbital region), avoiding deleterious effects. Thus, a three-dimensional computational model of ocular area was developed to simulate orbital irradiation with ROPES ophthalmologic plaque placed on the sclera surface filled to ten iodine-125 seeds, and palladium-103 seeds. Simulations are performed on the MCNP5 code. The computational simulation allows evaluating how the dose rates are spatially distributed in the orbital volume. The results are normalized to 100% at the maximum dose on the tumor base, and by the applied source activity. The maximum dose is found onto the eyeball, in the vitreous. The present model represents an advance in simulating and predicting absorbed dose on ocular brachytherapy. (author)

  5. Effects of insertion speed and trocar stiffness on the accuracy of needle position for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    McGill, Carl S.; Schwartz, Jonathon A.; Moore, Jason Z.; McLaughlin, Patrick W.; Shih, Albert J. [Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, State College, Pennsylvania 16802 (United States); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109 (United States); Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109 and Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2012-04-15

    Purpose: In prostate brachytherapy, accurate positioning of the needle tip to place radioactive seeds at its target site is critical for successful radiation treatment. During the procedure, needle deflection leads to seed misplacement and suboptimal radiation dose to cancerous cells. In practice, radiation oncologists commonly use high-speed hand needle insertion to minimize displacement of the prostate as well as the needle deflection. Effects of speed during needle insertion and stiffness of trocar (a solid rod inside the hollow cannula) on needle deflection are studied. Methods: Needle insertion experiments into phantom were performed using a 2{sup 2} factorial design (2 parameters at 2 levels), with each condition having replicates. Analysis of the deflection data included calculating the average, standard deviation, and analysis of variance (ANOVA) to find significant single and two-way interaction factors. Results: The stiffer tungsten carbide trocar is effective in reducing the average and standard deviation of needle deflection. The fast insertion speed together with the stiffer trocar generated the smallest average and standard deviation for needle deflection for almost all cases. Conclusions: The combination of stiff tungsten carbide trocar and fast needle insertion speed are important to decreasing needle deflection. The knowledge gained from this study can be used to improve the accuracy of needle insertion during brachytherapy procedures.

  6. SU-F-BRA-03: Integrating Novel Electromagnetic Tracking Hollow Needle Assistance in Permanent Implant Brachytherapy Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Racine, E; Hautvast, G; Binnekamp, D [Philips Group Innovation - Biomedical Systems, Eindhoven (Netherlands); Beaulieu, L [Centre Hospitalier Univ de Quebec, Quebec, QC (Canada)

    2015-06-15

    Purpose: To report on the results of a complete permanent implant brachytherapy procedure assisted by an electromagnetic (EM) hollow needle possessing both 3D tracking and seed drop detection abilities. Methods: End-to-end in-phantom EM-assisted LDR procedures were conducted. The novel system consisted of an EM tracking apparatus (NDI Aurora V2, Planar Field Generator), a 3D US scanner (Philips CX50), a hollow needle prototype allowing 3D tracking and seed drop detection and a specially designed treatment planning software (Philips Healthcare). A tungsten-doped 30 cc spherical agarose prostate immersed in gelatin was used for the treatment. A cylindrical shape of 0.8 cc was carved along its diameter to mimic the urethra. An initial plan of 26 needles and 47 seeds was established with the system. The plan was delivered with the EM-tracked hollow needle, and individual seed drop locations were recorded on the fly. The phantom was subsequently imaged with a CT scanner from which seed positions and contour definitions were obtained. The DVHs were then independently recomputed and compared with those produced by the planning system, both before and after the treatment. Results: Of the 47 seeds, 45 (96%) were detected by the EM technology embedded in the hollow needle design. The executed plan (from CT analysis) differed from the initial plan by 2%, 14% and 8% respectively in terms of V100, D90 and V150 for the prostate, and by 8%, 7% and 10% respectively in terms of D5, V100 and V120 for the urethra. Conclusion: The average DVH deviations between initial and executed plans were within a 5% tolerance imposed for this proof-of-concept assessment. This relatively good concordance demonstrates the feasibility and potential benefits of combining EM tracking and seed drop detection for real-time dosimetry validation and assistance in permanent implant brachytherapy procedures. This project has been entirely funded by Philips Healthcare.

  7. Dose calculation in brachytherapy with microcomputers

    International Nuclear Information System (INIS)

    Elbern, A.W.

    1989-01-01

    The computer algorithms, that allow the calculation of brachytherapy doses and its graphic representation for implants, using programs developed for Pc microcomputers are presented. These algorithms allow to localized the sources in space, from their projection in radiographics images and trace isodose counter. (C.G.C.) [pt