WorldWideScience

Sample records for brachytherapy human error

  1. Human factors evaluation of remote afterloading brachytherapy: Human error and critical tasks in remote afterloading brachytherapy and approaches for improved system performance. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L. [Pacific Science and Engineering Group, San Diego, CA (United States)] [and others

    1995-05-01

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices used in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error.

  2. Error Analysis of non-TLD HDR Brachytherapy Dosimetric Techniques

    Science.gov (United States)

    Amoush, Ahmad

    The American Association of Physicists in Medicine Task Group Report43 (AAPM-TG43) and its updated version TG-43U1 rely on the LiF TLD detector to determine the experimental absolute dose rate for brachytherapy. The recommended uncertainty estimates associated with TLD experimental dosimetry include 5% for statistical errors (Type A) and 7% for systematic errors (Type B). TG-43U1 protocol does not include recommendation for other experimental dosimetric techniques to calculate the absolute dose for brachytherapy. This research used two independent experimental methods and Monte Carlo simulations to investigate and analyze uncertainties and errors associated with absolute dosimetry of HDR brachytherapy for a Tandem applicator. An A16 MicroChamber* and one dose MOSFET detectors† were selected to meet the TG-43U1 recommendations for experimental dosimetry. Statistical and systematic uncertainty analyses associated with each experimental technique were analyzed quantitatively using MCNPX 2.6‡ to evaluate source positional error, Tandem positional error, the source spectrum, phantom size effect, reproducibility, temperature and pressure effects, volume averaging, stem and wall effects, and Tandem effect. Absolute dose calculations for clinical use are based on Treatment Planning System (TPS) with no corrections for the above uncertainties. Absolute dose and uncertainties along the transverse plane were predicted for the A16 microchamber. The generated overall uncertainties are 22%, 17%, 15%, 15%, 16%, 17%, and 19% at 1cm, 2cm, 3cm, 4cm, and 5cm, respectively. Predicting the dose beyond 5cm is complicated due to low signal-to-noise ratio, cable effect, and stem effect for the A16 microchamber. Since dose beyond 5cm adds no clinical information, it has been ignored in this study. The absolute dose was predicted for the MOSFET detector from 1cm to 7cm along the transverse plane. The generated overall uncertainties are 23%, 11%, 8%, 7%, 7%, 9%, and 8% at 1cm, 2cm, 3cm

  3. Human Error and Organizational Management

    Directory of Open Access Journals (Sweden)

    Alecxandrina DEACONU

    2009-01-01

    Full Text Available The concern for performance is a topic that raises interest in the businessenvironment but also in other areas that – even if they seem distant from thisworld – are aware of, interested in or conditioned by the economy development.As individual performance is very much influenced by the human resource, wechose to analyze in this paper the mechanisms that generate – consciously or not–human error nowadays.Moreover, the extremely tense Romanian context,where failure is rather a rule than an exception, made us investigate thephenomenon of generating a human error and the ways to diminish its effects.

  4. Human factors evaluation of remote afterloading brachytherapy. Volume 2, Function and task analysis

    Energy Technology Data Exchange (ETDEWEB)

    Callan, J.R.; Gwynne, J.W. III; Kelly, T.T.; Muckler, F.A. [Pacific Science and Engineering Group, San Diego, CA (United States); Saunders, W.M.; Lepage, R.P.; Chin, E. [University of California San Diego Medical Center, CA (United States). Div. of Radiation Oncology; Schoenfeld, I.; Serig, D.I. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

    1995-05-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the first phase of the project, which involved an extensive function and task analysis of RAB. This analysis identified the functions and tasks in RAB, made preliminary estimates of the likelihood of human error in each task, and determined the skills needed to perform each RAB task. The findings of the function and task analysis served as the foundation for the remainder of the project, which evaluated four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training and qualifications of RAB staff; and organizational practices and policies. At its completion, the project identified and prioritized areas for recommended NRC and industry attention based on all of the evaluations and analyses.

  5. Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al2O3:C dosimetry and a novel statistical error decision criterion

    DEFF Research Database (Denmark)

    Kertzscher, Gustavo; Andersen, Claus Erik; Siebert, Frank-André

    2011-01-01

    Background and purposeThe feasibility of a real-time in vivo dosimeter to detect errors has previously been demonstrated. The purpose of this study was to: (1) quantify the sensitivity of the dosimeter to detect imposed treatment errors under well controlled and clinically relevant experimental...... conditions, and (2) test a new statistical error decision concept based on full uncertainty analysis. Materials and methodsPhantom studies of two gynecological cancer PDR and one prostate cancer HDR patient treatment plans were performed using tandem ring applicators or interstitial needles. Imposed...... identified displacements ⩾5mm. ConclusionThis phantom study demonstrates that Al2O3:C real-time dosimetry can identify applicator displacements ⩾5mm and interchanged guide tube errors during PDR and HDR brachytherapy. The study demonstrates the shortcoming of a constant error criterion and the advantage...

  6. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir; Andersen, Claus E.; Tanderup, Kari

    2014-01-01

    Purpose:This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction...... of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects...... of the dosimeter position reconstruction. Given its nearly exclusive dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods:In the event of a measured potential treatment error, the AEDA proposes the most...

  7. Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy.

    Science.gov (United States)

    Andersen, Claus E; Nielsen, Søren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-11-01

    The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with 192Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from +/-5 to +/-15 mm) were simulated in software in order to assess the ability of the system to detect errors. For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when going from integrating to time

  8. Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Claus E.; Nielsen, Soeren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari [Radiation Research Division, Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Department of Medical Physics, Aarhus University Hospital, DK-8000 Aarhus C (Denmark); Department of Oncology, Aarhus University Hospital, DK-8000 Aarhus C (Denmark); Department of Medical Physics, Aarhus University Hospital, DK-8000 Aarhus C (Denmark)

    2009-11-15

    Purpose: The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Methods: Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with {sup 192}Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from {+-}5 to {+-}15 mm) were simulated in software in order to assess the ability of the system to detect errors. Results: For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when

  9. Human factors evaluation of remote afterloading brachytherapy. Supporting analyses of human-system interfaces, procedures and practices, training and organizational practices and policies. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L. [Pacific Science & Engineering Group, San Diego, CA (United States)] [and others

    1995-07-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the second, third, fourth, and fifth phases of the project, which involved detailed analyses of four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training practices and policies; and organizational practices and policies, respectively. Findings based on these analyses provided factual and conceptual support for the final phase of this project, which identified factors leading to human error in RAB. The impact of those factors on RAB performance was then evaluated and prioritized in terms of safety significance, and alternative approaches for resolving safety significant problems were identified and evaluated.

  10. Human error in anesthetic mishaps.

    Science.gov (United States)

    Gaba, D M

    1989-01-01

    While adverse outcomes linked to anesthesia are uncommon in healthy patients, they do occasionally happen. There is rarely a single cause. Anesthesia and surgery bring the patient into a complex world in which innumerable small failings can converge to produce an eventual catastrophe. And for all the technology involved, the anesthesiologist remains the cornerstone of safe anesthesia care, protecting the patient from harm regardless of its source. Responding to the demands of the operating room environment requires on-the-spot decision making in a complex, uncertain, and risky setting. Only responsible, professional human beings acting in concert can perform this task; no machine that we devise now or in the foreseeable future will suffice. I have outlined the components of a dynamic decision-making process that successfully protects patients in almost all cases. However, being human, anesthesiologists do make errors along the way--errors we are just beginning to understand. Sometimes these errors are due to faulty vigilance or incompetence, but usually they are made by appropriately trained, competent practitioners. Anesthesiologists can err in many ways, and recognizing these ways makes it easier to analyze the events leading to an anesthetic accident. More importantly, it better equips us to eliminate or minimize them in the future--and this is the real challenge.

  11. Human Errors and Bridge Management Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Nowak, A. S.

    Human errors are divided in two groups. The first group contains human errors, which effect the reliability directly. The second group contains human errors, which will not directly effect the reliability of the structure. The methodology used to estimate so-called reliability distributions...... on basis of reliability profiles for bridges without human errors are extended to include bridges with human errors. The first rehabilitation distributions for bridges without and with human errors are combined into a joint first rehabilitation distribution. The methodology presented is illustrated...

  12. Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al(2)O(3):C dosimetry and a novel statistical error decision criterion.

    Science.gov (United States)

    Kertzscher, Gustavo; Andersen, Claus E; Siebert, Frank-André; Nielsen, Søren Kynde; Lindegaard, Jacob C; Tanderup, Kari

    2011-09-01

    The feasibility of a real-time in vivo dosimeter to detect errors has previously been demonstrated. The purpose of this study was to: (1) quantify the sensitivity of the dosimeter to detect imposed treatment errors under well controlled and clinically relevant experimental conditions, and (2) test a new statistical error decision concept based on full uncertainty analysis. Phantom studies of two gynecological cancer PDR and one prostate cancer HDR patient treatment plans were performed using tandem ring applicators or interstitial needles. Imposed treatment errors, including interchanged pairs of afterloader guide tubes and 2-20mm source displacements, were monitored using a real-time fiber-coupled carbon doped aluminum oxide (Al(2)O(3):C) crystal dosimeter that was positioned in the reconstructed tumor region. The error detection capacity was evaluated at three dose levels: dwell position, source channel, and fraction. The error criterion incorporated the correlated source position uncertainties and other sources of uncertainty, and it was applied both for the specific phantom patient plans and for a general case (source-detector distance 5-90 mm and position uncertainty 1-4mm). Out of 20 interchanged guide tube errors, time-resolved analysis identified 17 while fraction level analysis identified two. Channel and fraction level comparisons could leave 10mm dosimeter displacement errors unidentified. Dwell position dose rate comparisons correctly identified displacements ≥ 5mm. This phantom study demonstrates that Al(2)O(3):C real-time dosimetry can identify applicator displacements ≥ 5mm and interchanged guide tube errors during PDR and HDR brachytherapy. The study demonstrates the shortcoming of a constant error criterion and the advantage of a statistical error criterion. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Adaptive error detection for HDR/PDR brachytherapy: guidance for decision making during real-time in vivo point dosimetry.

    Science.gov (United States)

    Kertzscher, Gustavo; Andersen, Claus E; Tanderup, Kari

    2014-05-01

    This study presents an adaptive error detection algorithm (AEDA) for real-time in vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusive dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). The AEDA applied on two in vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was sufficiently symmetric with

  14. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kertzscher, Gustavo, E-mail: guke@dtu.dk; Andersen, Claus E., E-mail: clan@dtu.dk [Centre for Nuclear Technologies, Technical University of Denmark, DTU Nutech, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Tanderup, Kari, E-mail: karitand@rm.dk [Department of Oncology, Aarhus University Hospital and Institute of Clinical Medicine, Aarhus University, Norrebrogade 44, DK-8000 Aarhus (Denmark)

    2014-05-15

    Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusive dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was

  15. Game Design Principles based on Human Error

    Directory of Open Access Journals (Sweden)

    Guilherme Zaffari

    2016-03-01

    Full Text Available This paper displays the result of the authors’ research regarding to the incorporation of Human Error, through design principles, to video game design. In a general way, designers must consider Human Error factors throughout video game interface development; however, when related to its core design, adaptations are in need, since challenge is an important factor for fun and under the perspective of Human Error, challenge can be considered as a flaw in the system. The research utilized Human Error classifications, data triangulation via predictive human error analysis, and the expanded flow theory to allow the design of a set of principles in order to match the design of playful challenges with the principles of Human Error. From the results, it was possible to conclude that the application of Human Error in game design has a positive effect on player experience, allowing it to interact only with errors associated with the intended aesthetics of the game.

  16. Understanding human management of automation errors

    Science.gov (United States)

    McBride, Sara E.; Rogers, Wendy A.; Fisk, Arthur D.

    2013-01-01

    Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance. PMID:25383042

  17. Human Error Mechanisms in Complex Work Environments

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1988-01-01

    Human error taxonomies have been developed from analysis of industrial incident reports as well as from psychological experiments. In this paper the results of the two approaches are reviewed and compared. It is found, in both cases, that a fairly small number of basic psychological mechanisms...... will account for most of the action errors observed. In addition, error mechanisms appear to be intimately related to the development of high skill and know-how in a complex work context. This relationship between errors and human adaptation is discussed in detail for individuals and organisations...

  18. Real-time in vivo dosimetry and error detection during afterloading brachytherapy

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir

    error scenarios, in order to quantify the error detection sensitivity of the real-time point dosimetry system used by means of a statistical error detection concept that incorporated a full uncertainty analysis. The limiting effects of the dependence on the a priori reconstruction of the dosimeter...... sources, even small discrepancies of the planned source position may result in largely modified dose distributions that could lead to an insufficient dose to the tumor and/or increased doses to OARs. One way to monitor the integrity of a BT treatment delivery and to detect potential treatment errors......, is to perform real-time in vivo dosimetry (IVD) inside the target region during the treatment. That way, an independent and patient specific verification of the agreement between delivered and planned treatments can be performed. If a treatment error is detected, modifications of the treatment parameters...

  19. Understanding Human Error Based on Automated Analyses

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a report on a continuing study of automated analyses of experiential textual reports to gain insight into the causal factors of human errors in aviation...

  20. Human error and patient safety: interdisciplinary course.

    Science.gov (United States)

    Wilson, Augustine R; Fabri, Peter J; Wolfson, Jay

    2012-01-01

    The medical community has only recently begun to address how human error affects patient safety. In order to confront human error in medicine, there is a need to teach students who are entering the health professions how potential errors may manifest and train them to prevent or mitigate these problems. The objective is to describe a semester-long, interdisciplinary, human error and patient safety course taught at the University of South Florida. Six interdisciplinary groups, composed of students from five of the university's colleges, were formed. The curriculum consisted of expert lecturers, readings, case studies, and analysis of patient safety problems. Students were evaluated based on their group's work on the final project and peer evaluations. Nursing students scored the highest in each category evaluated. Physicians and medical students had the lowest evaluations in team participation and active engagement. All students rated the course highly and indicated that it enhanced their ability to work in interprofessional settings. The students showed improved knowledge and substantive skill level relative to patient safety and human error concepts. Working in interdisciplinary teams gave the students a better understanding of the role each discipline can have in improving health care systems and health care delivery.

  1. Nursing Errors in Intensive Care Unit by Human Error Identification in Systems Tool: A Case Study

    National Research Council Canada - National Science Library

    Nezamodini, Zeynab Sadat; Khodamoradi, Fatemeh; Malekzadeh, Maryam; Vaziri, Hossein

    2016-01-01

    ...’ community that are preventable and require serious attention. Objectives The current study aimed to identify possible nursing errors applying human error identification in systems tool (HEIST...

  2. An evaluation of a Low-Dose-Rate (LDR) brachytherapy procedure using a systems engineering & error analysis methodology for health care (SEABH) - (SAVE)

    LENUS (Irish Health Repository)

    Chadwick, Liam

    2012-03-12

    Health Care Failure Modes and Effects Analysis (HFMEA®) is an established tool for risk assessment in health care. A number of deficiencies have been identified in the method. A new method called Systems and Error Analysis Bundle for Health Care (SEABH) was developed to address these deficiencies. SEABH has been applied to a number of medical processes as part of its validation and testing. One of these, Low Dose Rate (LDR) prostate Brachytherapy is reported in this paper. The case study supported the validity of SEABH with respect to its capacity to address the weaknesses of (HFMEA®).

  3. Human Error Assessmentin Minefield Cleaning Operation Using Human Event Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Hajiakbari

    2015-12-01

    Full Text Available Background & objective: Human error is one of the main causes of accidents. Due to the unreliability of the human element and the high-risk nature of demining operations, this study aimed to assess and manage human errors likely to occur in such operations. Methods: This study was performed at a demining site in war zones located in the West of Iran. After acquiring an initial familiarity with the operations, methods, and tools of clearing minefields, job task related to clearing landmines were specified. Next, these tasks were studied using HTA and related possible errors were assessed using ATHEANA. Results: de-mining task was composed of four main operations, including primary detection, technical identification, investigation, and neutralization. There were found four main reasons for accidents occurring in such operations; walking on the mines, leaving mines with no action, error in neutralizing operation and environmental explosion. The possibility of human error in mine clearance operations was calculated as 0.010. Conclusion: The main causes of human error in de-mining operations can be attributed to various factors such as poor weather and operating conditions like outdoor work, inappropriate personal protective equipment, personality characteristics, insufficient accuracy in the work, and insufficient time available. To reduce the probability of human error in de-mining operations, the aforementioned factors should be managed properly.

  4. Human error mitigation initiative (HEMI) : summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Susan M.; Ramos, M. Victoria; Wenner, Caren A.; Brannon, Nathan Gregory

    2004-11-01

    Despite continuing efforts to apply existing hazard analysis methods and comply with requirements, human errors persist across the nuclear weapons complex. Due to a number of factors, current retroactive and proactive methods to understand and minimize human error are highly subjective, inconsistent in numerous dimensions, and are cumbersome to characterize as thorough. An alternative and proposed method begins with leveraging historical data to understand what the systemic issues are and where resources need to be brought to bear proactively to minimize the risk of future occurrences. An illustrative analysis was performed using existing incident databases specific to Pantex weapons operations indicating systemic issues associated with operating procedures that undergo notably less development rigor relative to other task elements such as tooling and process flow. Future recommended steps to improve the objectivity, consistency, and thoroughness of hazard analysis and mitigation were delineated.

  5. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, de l' Universite Laval, CHUQ, Pavillon L' Hotel-Dieu de Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Medical Physics Unit, McGill University, Montreal General Hospital, Montreal, Quebec H3G 1A4 (Canada)

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  6. Perancangan Fasilitas Kerja untuk Mereduksi Human Error

    Directory of Open Access Journals (Sweden)

    Harmein Nasution

    2012-01-01

    Full Text Available Work equipments and environment which are not design ergonomically can cause physical exhaustion to the workers. As a result of that physical exhaustion, many defects in the production lines can happen due to human error and also cause musculoskeletal complaints. To overcome, those effects, we occupied methods for analyzing the workers posture based on the SNQ (Standard Nordic Questionnaire, plibel, QEC (Quick Exposure Check and biomechanism. Moreover, we applied those methods for designing rolling machines and grip egrek ergono-mically, so that the defects on those production lines can be minimized.

  7. A technique for human error analysis (ATHEANA)

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, S.E.; Ramey-Smith, A.M.; Wreathall, J.; Parry, G.W. [and others

    1996-05-01

    Probabilistic risk assessment (PRA) has become an important tool in the nuclear power industry, both for the Nuclear Regulatory Commission (NRC) and the operating utilities. Human reliability analysis (HRA) is a critical element of PRA; however, limitations in the analysis of human actions in PRAs have long been recognized as a constraint when using PRA. A multidisciplinary HRA framework has been developed with the objective of providing a structured approach for analyzing operating experience and understanding nuclear plant safety, human error, and the underlying factors that affect them. The concepts of the framework have matured into a rudimentary working HRA method. A trial application of the method has demonstrated that it is possible to identify potentially significant human failure events from actual operating experience which are not generally included in current PRAs, as well as to identify associated performance shaping factors and plant conditions that have an observable impact on the frequency of core damage. A general process was developed, albeit in preliminary form, that addresses the iterative steps of defining human failure events and estimating their probabilities using search schemes. Additionally, a knowledge- base was developed which describes the links between performance shaping factors and resulting unsafe actions.

  8. How social is error observation? The neural mechanisms underlying the observation of human and machine errors.

    Science.gov (United States)

    Desmet, Charlotte; Deschrijver, Eliane; Brass, Marcel

    2014-04-01

    Recently, it has been shown that the medial prefrontal cortex (MPFC) is involved in error execution as well as error observation. Based on this finding, it has been argued that recognizing each other's mistakes might rely on motor simulation. In the current functional magnetic resonance imaging (fMRI) study, we directly tested this hypothesis by investigating whether medial prefrontal activity in error observation is restricted to situations that enable simulation. To this aim, we compared brain activity related to the observation of errors that can be simulated (human errors) with brain activity related to errors that cannot be simulated (machine errors). We show that medial prefrontal activity is not only restricted to the observation of human errors but also occurs when observing errors of a machine. In addition, our data indicate that the MPFC reflects a domain general mechanism of monitoring violations of expectancies.

  9. Risk Management and the Concept of Human Error

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1995-01-01

    Investigations of recent major accidents invariably have pointed to the role of human error and it is often stated that 80-90 % of all accidents are caused by human error. The concept of human error is, however, very elusive. Careful analyses of such accidents tend to show that they are not caused...... by a stochastic coincidence of faults and human errors, but by a systemic erosion of the defenses due to decision making under competitive pressure in a dynamic environment. The presentation will discuss the nature of human error and the risk management problems found in a dynamic, competitive society facing...

  10. Human reliability, error, and human factors in power generation

    CERN Document Server

    Dhillon, B S

    2014-01-01

    Human reliability, error, and human factors in the area of power generation have been receiving increasing attention in recent years. Each year billions of dollars are spent in the area of power generation to design, construct/manufacture, operate, and maintain various types of power systems around the globe, and such systems often fail due to human error. This book compiles various recent results and data into one volume, and eliminates the need to consult many diverse sources to obtain vital information.  It enables potential readers to delve deeper into a specific area, providing the source of most of the material presented in references at the end of each chapter. Examples along with solutions are also provided at appropriate places, and there are numerous problems for testing the reader’s comprehension.  Chapters cover a broad range of topics, including general methods for performing human reliability and error analysis in power plants, specific human reliability analysis methods for nuclear power pl...

  11. Human factors and medication errors: a case study.

    Science.gov (United States)

    Gluyas, Heather; Morrison, Paul

    2014-12-15

    Human beings are error prone. A significant component of human error is flaws inherent in human cognitive processes, which are exacerbated by situations in which the individual making the error is distracted, stressed or overloaded, or does not have sufficient knowledge to undertake an action correctly. The scientific discipline of human factors deals with environmental, organisational and job factors, as well as human and individual characteristics, which influence behaviour at work in a way that potentially gives rise to human error. This article discusses how cognitive processing is related to medication errors. The case of a coronial inquest into the death of a nursing home resident is used to highlight the way people think and process information, and how such thinking and processing may lead to medication errors.

  12. Influence of organizational culture on human error

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, M.A.; Evans, S.A. [Pennsylvania Power and Light Co., Allentown, PA (United States)

    1996-12-31

    Much has been written in contemporary business literature during the last decade describing the role that corporate culture plays in virtually every aspect of a firm`s success. In 1990 Kotter and Heskett wrote, {open_quotes}We found that firms with cultures that emphasized all of the key managerial constituencies (customers, stockholders, and employees) and leadership from managers at all levels out-performed firms that did not have those cultural traits by a huge margin. Over an eleven year period, the former increased revenues by an average of 682 percent versus 166 percent for the latter, expanded their workforce by 282 percent versus 36 percent, grew their stock prices by 901 percent versus 74 percent, and improved their net incomes by 756 percent versus 1 percent.{close_quotes} Since the mid-1980s, several electric utilities have documented their efforts to undertake strategic culture change. In almost every case, these efforts have yielded dramatic improvements in the {open_quotes}bottom-line{close_quotes} operational and financial results (e.g., Western Resources, Arizona Public Service, San Diego Gas & Electric, and Electricity Trust of South Australia). Given the body of evidence that indicates a relationship between high-performing organizational culture and the financial and business success of a firm, Pennsylvania Power & Light Company undertook a study to identify the relationship between organizational culture and the frequency, severity, and nature of human error at the Susquehanna Steam Electric Station. The underlying proposition for this asssessment is that organizational culture is an independent variable that transforms external events into organizational performance.

  13. Nursing Errors in Intensive Care Unit by Human Error Identification in Systems Tool: A Case Study

    Directory of Open Access Journals (Sweden)

    Nezamodini

    2016-03-01

    Full Text Available Background Although health services are designed and implemented to improve human health, the errors in health services are a very common phenomenon and even sometimes fatal in this field. Medical errors and their cost are global issues with serious consequences for the patients’ community that are preventable and require serious attention. Objectives The current study aimed to identify possible nursing errors applying human error identification in systems tool (HEIST in the intensive care units (ICUs of hospitals. Patients and Methods This descriptive research was conducted in the intensive care unit of a hospital in Khuzestan province in 2013. Data were collected through observation and interview by nine nurses in this section in a period of four months. Human error classification was based on Rose and Rose and Swain and Guttmann models. According to HEIST work sheets the guide questions were answered and error causes were identified after the determination of the type of errors. Results In total 527 errors were detected. The performing operation on the wrong path had the highest frequency which was 150, and the second rate with a frequency of 136 was doing the tasks later than the deadline. Management causes with a frequency of 451 were the first rank among identified errors. Errors mostly occurred in the system observation stage and among the performance shaping factors (PSFs, time was the most influencing factor in occurrence of human errors. Conclusions Finally, in order to prevent the occurrence and reduce the consequences of identified errors the following suggestions were proposed : appropriate training courses, applying work guidelines and monitoring their implementation, increasing the number of work shifts, hiring professional workforce, equipping work space with appropriate facilities and equipment.

  14. The probability and the management of human error

    Energy Technology Data Exchange (ETDEWEB)

    Dufey, R.B. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON (Canada); Saull, J.W. [International Federation of Airworthiness, Sussex (United Kingdom)

    2004-07-01

    Embedded within modern technological systems, human error is the largest, and indeed dominant contributor to accident cause. The consequences dominate the risk profiles for nuclear power and for many other technologies. We need to quantify the probability of human error for the system as an integral contribution within the overall system failure, as it is generally not separable or predictable for actual events. We also need to provide a means to manage and effectively reduce the failure (error) rate. The fact that humans learn from their mistakes allows a new determination of the dynamic probability and human failure (error) rate in technological systems. The result is consistent with and derived from the available world data for modern technological systems. Comparisons are made to actual data from large technological systems and recent catastrophes. Best estimate values and relationships can be derived for both the human error rate, and for the probability. We describe the potential for new approaches to the management of human error and safety indicators, based on the principles of error state exclusion and of the systematic effect of learning. A new equation is given for the probability of human error ({lambda}) that combines the influences of early inexperience, learning from experience ({epsilon}) and stochastic occurrences with having a finite minimum rate, this equation is {lambda} 5.10{sup -5} + ((1/{epsilon}) - 5.10{sup -5}) exp(-3*{epsilon}). The future failure rate is entirely determined by the experience: thus the past defines the future.

  15. Software defect prevention based on human error theories

    Directory of Open Access Journals (Sweden)

    Fuqun HUANG

    2017-06-01

    Full Text Available Software defect prevention is an important way to reduce the defect introduction rate. As the primary cause of software defects, human error can be the key to understanding and preventing software defects. This paper proposes a defect prevention approach based on human error mechanisms: DPeHE. The approach includes both knowledge and regulation training in human error prevention. Knowledge training provides programmers with explicit knowledge on why programmers commit errors, what kinds of errors tend to be committed under different circumstances, and how these errors can be prevented. Regulation training further helps programmers to promote the awareness and ability to prevent human errors through practice. The practice is facilitated by a problem solving checklist and a root cause identification checklist. This paper provides a systematic framework that integrates knowledge across disciplines, e.g., cognitive science, software psychology and software engineering to defend against human errors in software development. Furthermore, we applied this approach in an international company at CMM Level 5 and a software development institution at CMM Level 1 in the Chinese Aviation Industry. The application cases show that the approach is feasible and effective in promoting developers’ ability to prevent software defects, independent of process maturity levels.

  16. Selecting Human Error Types for Cognitive Modelling and Simulation

    NARCIS (Netherlands)

    Mioch, T.; Osterloh, J.P.; Javaux, D.

    2010-01-01

    This paper presents a method that has enabled us to make a selection of error types and error production mechanisms relevant to the HUMAN European project, and discusses the reasons underlying those choices. We claim that this method has the advantage that it is very exhaustive in determining the

  17. A practical guideline for human error assessment: A causal model

    Science.gov (United States)

    Ayele, Y. Z.; Barabadi, A.

    2017-12-01

    To meet the availability target and reduce system downtime, effective maintenance have a great importance. However, maintenance performance is greatly affected in complex ways by human factors. Hence, to have an effective maintenance operation, these factors needs to be assessed and quantified. To avoid the inadequacies of traditional human error assessment (HEA) approaches, the application of Bayesian Networks (BN) is gaining popularity. The main purpose of this paper is to propose a HEA framework based on the BN for maintenance operation. The proposed framework aids for assessing the effects of human performance influencing factors on the likelihood of human error during maintenance activities. Further, the paper investigates how operational issues must be considered in system failure-rate analysis, maintenance planning, and prediction of human error in pre- and post-maintenance operations. The goal is to assess how performance monitoring and evaluation of human factors can effect better operation and maintenance.

  18. Error detection in spoken human-machine interaction

    NARCIS (Netherlands)

    Krahmer, E.; Swerts, M.; Theune, Mariet; Weegels, M.

    Given the state of the art of current language and speech technology, errors are unavoidable in present-day spoken dialogue systems. Therefore, one of the main concerns in dialogue design is how to decide whether or not the system has understood the user correctly. In human-human communication,

  19. Bringing organizational factors to the fore of human error management

    Energy Technology Data Exchange (ETDEWEB)

    Embrey, D. (Human Reliability Associates Ltd., Parbold (United Kingdom))

    1991-10-01

    Human performance problems account for more than half of all significant events at nuclear power plants, even when these did not necessarily lead to severe accidents. In dealing with the management of human error, both technical and organizational factors need to be taken into account. Most important, a long-term commitment from senior management is needed. (author).

  20. Normalization of Deviation: Quotation Error in Human Factors.

    Science.gov (United States)

    Lock, Jordan; Bearman, Chris

    2018-01-01

    Objective The objective of this paper is to examine quotation error in human factors. Background Science progresses through building on the work of previous research. This requires accurate quotation. Quotation error has a number of adverse consequences: loss of credibility, loss of confidence in the journal, and a flawed basis for academic debate and scientific progress. Quotation error has been observed in a number of domains, including marine biology and medicine, but there has been little or no previous study of this form of error in human factors, a domain that specializes in the causes and management of error. Methods A study was conducted examining quotation accuracy of 187 extracts from 118 published articles that cited a control article (Vaughan's 1996 book: The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA). Results Of extracts studied, 12.8% ( n = 24) were classed as inaccurate, with 87.2% ( n = 163) being classed as accurate. A second dimension of agreement was examined with 96.3% ( n = 180) agreeing with the control article and only 3.7% ( n = 7) disagreeing. The categories of accuracy and agreement form a two by two matrix. Conclusion Rather than simply blaming individuals for quotation error, systemic factors should also be considered. Vaughan's theory, normalization of deviance, is one systemic theory that can account for quotation error. Application Quotation error is occurring in human factors and should receive more attention. According to Vaughan's theory, the normal everyday systems that promote scholarship may also allow mistakes, mishaps, and quotation error to occur.

  1. ADVANCED MMIS TOWARD SUBSTANTIAL REDUCTION IN HUMAN ERRORS IN NPPS

    Directory of Open Access Journals (Sweden)

    POONG HYUN SEONG

    2013-04-01

    Full Text Available This paper aims to give an overview of the methods to inherently prevent human errors and to effectively mitigate the consequences of such errors by securing defense-in-depth during plant management through the advanced man-machine interface system (MMIS. It is needless to stress the significance of human error reduction during an accident in nuclear power plants (NPPs. Unexpected shutdowns caused by human errors not only threaten nuclear safety but also make public acceptance of nuclear power extremely lower. We have to recognize there must be the possibility of human errors occurring since humans are not essentially perfect particularly under stressful conditions. However, we have the opportunity to improve such a situation through advanced information and communication technologies on the basis of lessons learned from our experiences. As important lessons, authors explained key issues associated with automation, man-machine interface, operator support systems, and procedures. Upon this investigation, we outlined the concept and technical factors to develop advanced automation, operation and maintenance support systems, and computer-based procedures using wired/wireless technology. It should be noted that the ultimate responsibility of nuclear safety obviously belongs to humans not to machines. Therefore, safety culture including education and training, which is a kind of organizational factor, should be emphasized as well. In regard to safety culture for human error reduction, several issues that we are facing these days were described. We expect the ideas of the advanced MMIS proposed in this paper to lead in the future direction of related researches and finally supplement the safety of NPPs.

  2. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    Science.gov (United States)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  3. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    Science.gov (United States)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Quality within space exploration ground processing operations, the identification and or classification of underlying contributors and causes of human error must be identified, in order to manage human error.This presentation will provide a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  4. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    Science.gov (United States)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps/incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  5. Human Errors - A Taxonomy for Describing Human Malfunction in Industrial Installations

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1982-01-01

    as physiological factors are also taken into consideration. The taxonomy for event analysis, including human malfunction, is presented. Possibilities for the prediction of human error are discussed. The need for careful studies in actual work situations is expressed. Such studies could provide a better......This paper describes the definition and the characteristics of human errors. Different types of human behavior are classified, and their relation to different error mechanisms are analyzed. The effect of conditioning factors related to affective, motivating aspects of the work situation as well...... understanding of the complexity of human error situations as well as the data needed to characterize these situations....

  6. Human error analysis of commercial aviation accidents using the human factors analysis and classification system (HFACS)

    Science.gov (United States)

    2001-02-01

    The Human Factors Analysis and Classification System (HFACS) is a general human error framework : originally developed and tested within the U.S. military as a tool for investigating and analyzing the human : causes of aviation accidents. Based upon ...

  7. Human error in strabismus surgery: Quantification with a sensitivity analysis

    NARCIS (Netherlands)

    S. Schutte (Sander); J.R. Polling (Jan Roelof); F.C.T. van der Helm (Frans); H.J. Simonsz (Huib)

    2009-01-01

    textabstractBackground: Reoperations are frequently necessary in strabismus surgery. The goal of this study was to analyze human-error related factors that introduce variability in the results of strabismus surgery in a systematic fashion. Methods: We identified the primary factors that influence

  8. Human error in strabismus surgery : Quantification with a sensitivity analysis

    NARCIS (Netherlands)

    Schutte, S.; Polling, J.R.; Van der Helm, F.C.T.; Simonsz, H.J.

    2008-01-01

    Background- Reoperations are frequently necessary in strabismus surgery. The goal of this study was to analyze human-error related factors that introduce variability in the results of strabismus surgery in a systematic fashion. Methods- We identified the primary factors that influence the outcome of

  9. Process error rates in general research applications to the Human ...

    African Journals Online (AJOL)

    Objective. To examine process error rates in applications for ethics clearance of health research. Methods. Minutes of 586 general research applications made to a human health research ethics committee (HREC) from April 2008 to March 2009 were examined. Rates of approval were calculated and reasons for requiring ...

  10. When soft controls get slippery: User interfaces and human error

    Energy Technology Data Exchange (ETDEWEB)

    Stubler, W.F.; O`Hara, J.M.

    1998-12-01

    Many types of products and systems that have traditionally featured physical control devices are now being designed with soft controls--input formats appearing on computer-based display devices and operated by a variety of input devices. A review of complex human-machine systems found that soft controls are particularly prone to some types of errors and may affect overall system performance and safety. This paper discusses the application of design approaches for reducing the likelihood of these errors and for enhancing usability, user satisfaction, and system performance and safety.

  11. CLASSIFICATION OF ORGANIZATIONAL FAILURE ROOT CAUSES PRODUCING HUMAN ERROR

    Directory of Open Access Journals (Sweden)

    S. Arghami

    2006-08-01

    Full Text Available The formal study of human error is relatively recent, especially in medical domain, and is tied closely to a several other relatively new fields. Organizational root cause of human error is less considered. Despite growing social, industrial and scientific interest in the organizational causes of incidents, the concept of organizational failure and related tools are still less considered in many developing countries e.g. Iran. Also, there is few incident record-keeping in medical domain on human error. Therefore, this study draws on case study research to investigate the applicability of a European taxonomy of organizational failure in Iran, in aviation domain with a fair incident record-keeping. This case study resulted in 10 incident in-depth descriptions, which occurred during one year in a part of civil aviation due to operator error. Within each case study, an explanation building method is used to develop a tool for classifying organizational root causes. Results include 100 root causes. The distribution of organizational root causes over the main categories of the former taxonomy shows a need to add a new sub-category to improve its applicability in Iran. The new sub-category is related to culture.

  12. The Concept of Human Error and the Design of Reliable Human-Machine Systems

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1995-01-01

    The concept of human error is unreliable as a basis for design of reliable human-machine systems. Humans are basically highly adaptive and 'errors' are closely related to the process of adaptation and learning. Therefore, reliability of system operation depends on an interface that is not designe...... way. The concepts behind such 'ecological' interfaces are discussed, an it is argued that a 'typology' of visualization concepts is a pressing research need.......The concept of human error is unreliable as a basis for design of reliable human-machine systems. Humans are basically highly adaptive and 'errors' are closely related to the process of adaptation and learning. Therefore, reliability of system operation depends on an interface that is not designed...

  13. A simple error classification system for understanding sources of error in automatic speech recognition and human transcription.

    Science.gov (United States)

    Zafar, Atif; Mamlin, Burke; Perkins, Susan; Belsito, Anne M; Overhage, J Marc; McDonald, Clement J

    2004-09-01

    To (1) discover the types of errors most commonly found in clinical notes that are generated either using automatic speech recognition (ASR) or via human transcription and (2) to develop efficient rules for classifying these errors based on the categories found in (1). The purpose of classifying errors into categories is to understand the underlying processes that generate these errors, so that measures can be taken to improve these processes. We integrated the Dragon NaturallySpeaking v4.0 speech recognition engine into the Regenstrief Medical Record System. We captured the text output of the speech engine prior to error correction by the speaker. We also acquired a set of human transcribed but uncorrected notes for comparison. We then attempted to error correct these notes based on looking at the context alone. Initially, three domain experts independently examined 104 ASR notes (containing 29,144 words) generated by a single speaker and 44 human transcribed notes (containing 14,199 words) generated by multiple speakers for errors. Collaborative group sessions were subsequently held where error categorizes were determined and rules developed and incrementally refined for systematically examining the notes and classifying errors. We found that the errors could be classified into nine categories: (1) announciation errors occurring due to speaker mispronounciation, (2) dictionary errors resulting from missing terms, (3) suffix errors caused by misrecognition of appropriate tenses of a word, (4) added words, (5) deleted words, (6) homonym errors resulting from substitution of a phonetically identical word, (7) spelling errors, (8) nonsense errors, words/phrases whose meaning could not be appreciated by examining just the context, and (9) critical errors, words/phrases where a reader of a note could potentially misunderstand the concept that was related by the speaker. A simple method is presented for examining errors in transcribed documents and classifying these

  14. Individual differences in error tolerance in humans: Neurophysiological evidences.

    Science.gov (United States)

    Padrao, Gonçalo; Mallorquí, Aida; Cucurell, David; Rodriguez-Fornells, Antoni

    2015-12-01

    When interacting in error-prone environments, humans display different tolerances to changing their decisions when faced with erroneous feedback information. Here, we investigated whether these individual differences in error tolerance (ET) were reflected in neurophysiological mechanisms indexing specific motivational states related to feedback monitoring. To explore differences in ET, we examined the performance of 80 participants in a probabilistic reversal-learning task. We then compared event-related brain responses (ERPs) of two extreme groups of participants (High ET and Low ET), which showed radical differences in their propensity to maintain newly learned rules after receiving spurious negative feedback. We observed that High ET participants showed reduced anticipatory activity prior to the presentation of incoming feedback, informing them of the correctness of their performance. This was evidenced by measuring the amplitude of the stimulus-preceding negativity (SPN), an ERP component indexing attention and motivational engagement of incoming informative feedback. Postfeedback processing ERP components (the so-called Feedback-Related Negativity and the P300) also showed reduced amplitude in this group (High ET). The general decreased responsiveness of the High ET group to external feedback suggests a higher proneness to favor internal(rule)-based strategies, reducing attention to external cues and the consequent impact of negative evaluations on decision making. We believe that the present findings support the existence of specific cognitive and motivational processes underlying individual differences on error-tolerance among humans, contributing to the ongoing research focused on understanding the mental processes behind human fallibility in error-prone scenarios.

  15. Complications: acknowledging, managing, and coping with human error.

    Science.gov (United States)

    Helo, Sevann; Moulton, Carol-Anne E

    2017-08-01

    Errors are inherent in medicine due to the imperfectness of human nature. Health care providers may have a difficult time accepting their fallibility, acknowledging mistakes, and disclosing errors. Fear of litigation, shame, blame, and concern about reputation are just some of the barriers preventing physicians from being more candid with their patients, despite the supporting body of evidence that patients cite poor communication and lack of transparency as primary drivers to file a lawsuit in the wake of a medical complication. Proper error disclosure includes a timely explanation of what happened, who was involved, why the error occurred, and how it will be prevented in the future. Medical mistakes afford the opportunity for individuals and institutions to be candid about their weaknesses while improving patient care processes. When a physician takes the Hippocratic Oath they take on a tremendous sense of responsibility for the care of their patients, and often bear the burden of their mistakes in isolation. Physicians may struggle with guilt, shame, and a crisis of confidence, which may thwart efforts to identify areas for improvement that can lead to meaningful change. Coping strategies for providers include discussing the event with others, seeking professional counseling, and implementing quality improvement projects. Physicians and health care organizations need to find adaptive ways to deal with complications that will benefit patients, providers, and their institutions.

  16. Error-prone polymerase activity causes multinucleotide mutations in humans.

    Science.gov (United States)

    Harris, Kelley; Nielsen, Rasmus

    2014-09-01

    About 2% of human genetic polymorphisms have been hypothesized to arise via multinucleotide mutations (MNMs), complex events that generate SNPs at multiple sites in a single generation. MNMs have the potential to accelerate the pace at which single genes evolve and to confound studies of demography and selection that assume all SNPs arise independently. In this paper, we examine clustered mutations that are segregating in a set of 1092 human genomes, demonstrating that the signature of MNM becomes enriched as large numbers of individuals are sampled. We estimate the percentage of linked SNP pairs that were generated by simultaneous mutation as a function of the distance between affected sites and show that MNMs exhibit a high percentage of transversions relative to transitions, findings that are reproducible in data from multiple sequencing platforms and cannot be attributed to sequencing error. Among tandem mutations that occur simultaneously at adjacent sites, we find an especially skewed distribution of ancestral and derived alleles, with GC → AA, GA → TT, and their reverse complements making up 27% of the total. These mutations have been previously shown to dominate the spectrum of the error-prone polymerase Pol ζ, suggesting that low-fidelity DNA replication by Pol ζ is at least partly responsible for the MNMs that are segregating in the human population. We develop statistical estimates of MNM prevalence that can be used to correct phylogenetic and population genetic inferences for the presence of complex mutations. © 2014 Harris and Nielsen; Published by Cold Spring Harbor Laboratory Press.

  17. A study of brachytherapy for intraocular tumor

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yung Hoon; Lee, Dong Han; Ko, Kyung Hwan; Lee, Tae Won; Lee, Sung Koo; Choi, Moon Sik [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Seoul (Korea, Republic of)

    1994-12-01

    Our purpose of this study is to perform brachytherapy for intraocular tumor. The result were as followed. 1. Eye model was determined as a 25 mm diameter sphere. Ir-192 was considered the most appropriate as radioisotope for brachytherapy, because of the size, half, energy and availability. 2. Considering the biological response with human tissue and protection of exposed dose, we made the plaques with gold, of which size were 15 mm, 17 mm and 20 mm in diameter, and 1.5 mm in thickness. 3. Transmission factor of plaques are all 0.71 with TLD and film dosimetry at the surface of plaques and 0.45, 0.49 at 1.5 mm distance of surface, respectively. 4. As compared the measured data for the plaque with Ir-192 seeds to results of computer dose calculation model by Gary Luxton et al. and CAP-PLAN (Radiation Treatment Planning System), absorbed doses are within {+-}10% and distance deviations are within 0.4 mm. Maximum error is -11.3% and 0.8 mm, respectively. 7 figs, 2 tabs, 28 refs. (Author).

  18. Human error contribution in collision and grounding of oil tankers.

    Science.gov (United States)

    Martins, Marcelo Ramos; Maturana, Marcos Coelho

    2010-04-01

    The purpose of this article is to present a quantitative analysis of the human failure contribution in the collision and/or grounding of oil tankers, considering the recommendation of the "Guidelines for Formal Safety Assessment" of the International Maritime Organization. Initially, the employed methodology is presented, emphasizing the use of the technique for human error prediction to reach the desired objective. Later, this methodology is applied to a ship operating on the Brazilian coast and, thereafter, the procedure to isolate the human actions with the greatest potential to reduce the risk of an accident is described. Finally, the management and organizational factors presented in the "International Safety Management Code" are associated with these selected actions. Therefore, an operator will be able to decide where to work in order to obtain an effective reduction in the probability of accidents. Even though this study does not present a new methodology, it can be considered as a reference in the human reliability analysis for the maritime industry, which, in spite of having some guides for risk analysis, has few studies related to human reliability effectively applied to the sector.

  19. Human factors and error prevention in emergency medicine.

    Science.gov (United States)

    Bleetman, Anthony; Sanusi, Seliat; Dale, Trevor; Brace, Samantha

    2012-05-01

    Emergency departments are one of the highest risk areas in health care. Emergency physicians have to assemble and manage unrehearsed multidisciplinary teams with little notice and manage critically ill patients. With greater emphasis on management and leadership skills, there is an increasing awareness of the importance of human factors in making changes to improve patient safety. Non-clinical skills are required to achieve this in an information-poor environment and to minimise the risk of errors. Training in these non-clinical skills is a mandatory component in other high-risk industries, such as aviation and, needs to be part of an emergency physician's skill set. Therefore, there remains an educational gap that we need to fill before an emergency physician is equipped to function as a team leader and manager. This review will examine the lessons from aviation and how these are applicable to emergency medicine. Solutions to averting errors are discussed and the need for formal human factors training in emergency medicine.

  20. A strategy for minimizing common mode human error in executing critical functions and tasks

    Energy Technology Data Exchange (ETDEWEB)

    Beltracchi, L. (Nuclear Regulatory Commission, Washington, DC (United States)); Lindsay, R.W. (Argonne National Lab., IL (United States))

    1992-01-01

    Human error in execution of critical functions and tasks can be costly. The Three Mile Island and the Chernobyl Accidents are examples of results from human error in the nuclear industry. There are similar errors that could no doubt be cited from other industries. This paper discusses a strategy to minimize common mode human error in the execution of critical functions and tasks. The strategy consists of the use of human redundancy, and also diversity in human cognitive behavior: skill-, rule-, and knowledge-based behavior. The authors contend that the use of diversity in human cognitive behavior is possible, and it minimizes common mode error.

  1. A strategy for minimizing common mode human error in executing critical functions and tasks

    Energy Technology Data Exchange (ETDEWEB)

    Beltracchi, L. [Nuclear Regulatory Commission, Washington, DC (United States); Lindsay, R.W. [Argonne National Lab., IL (United States)

    1992-05-01

    Human error in execution of critical functions and tasks can be costly. The Three Mile Island and the Chernobyl Accidents are examples of results from human error in the nuclear industry. There are similar errors that could no doubt be cited from other industries. This paper discusses a strategy to minimize common mode human error in the execution of critical functions and tasks. The strategy consists of the use of human redundancy, and also diversity in human cognitive behavior: skill-, rule-, and knowledge-based behavior. The authors contend that the use of diversity in human cognitive behavior is possible, and it minimizes common mode error.

  2. Electromagnetic tracking for treatment verification in interstitial brachytherapy.

    Science.gov (United States)

    Bert, Christoph; Kellermeier, Markus; Tanderup, Kari

    2016-10-01

    Electromagnetic tracking (EMT) is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes the main issues of EMT and error detection in brachytherapy. The potential and complementarity of EMT as treatment verification technology will be discussed in relation to in vivo dosimetry and imaging.

  3. Electromagnetic tracking for treatment verification in interstitial brachytherapy

    Directory of Open Access Journals (Sweden)

    Christoph Bert

    2016-11-01

    Full Text Available Electromagnetic tracking (EMT is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes the main issues of EMT and error detection in brachytherapy. The potential and complementarity of EMT as treatment verification technology will be discussed in relation to in vivo dosimetry and imaging.

  4. Electromagnetic tracking for treatment verification in interstitial brachytherapy

    OpenAIRE

    Christoph Bert; Markus Kellermeier; Kari Tanderup

    2016-01-01

    Electromagnetic tracking (EMT) is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes the main issues of EMT and error detection in brachytherapy. The potential and complementarity of EMT as treatment verification technology will be discussed in relation to in vivo dosimetry and imaging.

  5. Latent human error analysis and efficient improvement strategies by fuzzy TOPSIS in aviation maintenance tasks.

    Science.gov (United States)

    Chiu, Ming-Chuan; Hsieh, Min-Chih

    2016-05-01

    The purposes of this study were to develop a latent human error analysis process, to explore the factors of latent human error in aviation maintenance tasks, and to provide an efficient improvement strategy for addressing those errors. First, we used HFACS and RCA to define the error factors related to aviation maintenance tasks. Fuzzy TOPSIS with four criteria was applied to evaluate the error factors. Results show that 1) adverse physiological states, 2) physical/mental limitations, and 3) coordination, communication, and planning are the factors related to airline maintenance tasks that could be addressed easily and efficiently. This research establishes a new analytic process for investigating latent human error and provides a strategy for analyzing human error using fuzzy TOPSIS. Our analysis process complements shortages in existing methodologies by incorporating improvement efficiency, and it enhances the depth and broadness of human error analysis methodology. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Development of Human Factor Management Requirements and Human Error Classification for the Prevention of Railway Accident

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Sang Log; Park, Chan Woo; Shin, Seung Ryoung [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2008-08-15

    Railway accident analysis results show that accidents cased by human factors are not decreasing, whereas H/W related accidents are steadily decreasing. For the efficient management of human factors, many expertise on design, conditions, safety culture and staffing are required. But current safety management activities on safety critical works are focused on training, due to the limited resource and information. In order to improve railway safety, human factors management requirements for safety critical worker and human error classification is proposed in this report. For this accident analysis, status of safety measure on human factor, safety management system on safety critical worker, current safety planning is analysis.

  7. A Generalized Process Model of Human Action Selection and Error and its Application to Error Prediction

    Science.gov (United States)

    2014-07-01

    times, issues of interruptions and multitasking have become mainstream concerns. For example, Time magazine (Wallis, 2006) and the New York Times...Thompson, 2005) both reported stories about interruptions and multitasking and how they affect performance. The information technology research firm...impact on individual and group productivity . Being interrupted also greatly increases the number of errors (Trafton, Altmann, & Ratwani, 2011

  8. Advancements in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Ménard, Cynthia; Polgar, Csaba

    2017-01-01

    Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherap...... in terms of controlling dose and demonstrating excellent clinical outcome. Interests in focal, hypofractionated and adaptive treatments are increasing, and brachytherapy has significant potential to develop further in these directions with current and new treatment indications....

  9. Analysis of Employee's Survey for Preventing Human-Errors

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chanho; Kim, Younggab; Joung, Sanghoun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Human errors in nuclear power plant can cause large and small events or incidents. These events or incidents are one of main contributors of reactor trip and might threaten the safety of nuclear plants. To prevent human-errors, KHNP(nuclear power plants) introduced 'Human-error prevention techniques' and have applied the techniques to main parts such as plant operation, operation support, and maintenance and engineering. This paper proposes the methods to prevent and reduce human-errors in nuclear power plants through analyzing survey results which includes the utilization of the human-error prevention techniques and the employees' awareness of preventing human-errors. With regard to human-error prevention, this survey analysis presented the status of the human-error prevention techniques and the employees' awareness of preventing human-errors. Employees' understanding and utilization of the techniques was generally high and training level of employee and training effect on actual works were in good condition. Also, employees answered that the root causes of human-error were due to working environment including tight process, manpower shortage, and excessive mission rather than personal negligence or lack of personal knowledge. Consideration of working environment is certainly needed. At the present time, based on analyzing this survey, the best methods of preventing human-error are personal equipment, training/education substantiality, private mental health check before starting work, prohibit of multiple task performing, compliance with procedures, and enhancement of job site review. However, the most important and basic things for preventing human-error are interests of workers and organizational atmosphere such as communication between managers and workers, and communication between employees and bosses.

  10. Prostate brachytherapy - discharge

    Science.gov (United States)

    Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge ... You had a procedure called brachytherapy to treat prostate cancer. Your treatment lasted 30 minutes or more, ...

  11. Human errors identification using the human factors analysis and classification system technique (HFACS

    Directory of Open Access Journals (Sweden)

    G. A. Shirali

    2013-12-01

    .Result: In this study, 158 reports of accident in Ahvaz steel industry were analyzed by HFACS technique. This analysis showed that most of the human errors were: in the first level was related to the skill-based errors, in the second to the physical environment, in the third level to the inadequate supervision and in the fourth level to the management of resources. .Conclusion: Studying and analyzing of past events using the HFACS technique can identify the major and root causes of accidents and can be effective on prevent repetitions of such mishaps. Also, it can be used as a basis for developing strategies to prevent future events in steel industries.

  12. Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant

    Directory of Open Access Journals (Sweden)

    Mehdi Jahangiri

    2016-03-01

    Conclusion: The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided.

  13. Coping with human errors through system design: Implications for ecological interface design

    DEFF Research Database (Denmark)

    Rasmussen, Jens; Vicente, Kim J.

    1989-01-01

    Research during recent years has revealed that human errors are not stochastic events which can be removed through improved training programs or optimal interface design. Rather, errors tend to reflect either systematic interference between various models, rules, and schemata, or the effects of t...... on both the interferences causing error and on the opportunity for error recovery left to the operator.......Research during recent years has revealed that human errors are not stochastic events which can be removed through improved training programs or optimal interface design. Rather, errors tend to reflect either systematic interference between various models, rules, and schemata, or the effects...... of the adaptive mechanisms involved in learning. In terms of design implications, these findings suggest that reliable human-system interaction will be achieved by designing interfaces which tend to minimize the potential for control interference and support recovery from errors. In other words, the focus should...

  14. In vivo dosimetry in brachytherapy.

    Science.gov (United States)

    Tanderup, Kari; Beddar, Sam; Andersen, Claus E; Kertzscher, Gustavo; Cygler, Joanna E

    2013-07-01

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.

  15. In vivo dosimetry in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tanderup, Kari [Department of Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Department of Clinical Medicine, Aarhus University, Aarhus 8000 (Denmark); Beddar, Sam [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Andersen, Claus E.; Kertzscher, Gustavo [Center of Nuclear Technologies, Technical University of Denmark, Roskilde 4000 (Denmark); Cygler, Joanna E. [Department of Physics, Ottawa Hospital Cancer Centre, Ottawa, Ontario K1H 8L6 (Canada)

    2013-07-15

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.

  16. An Approach to Human Error Hazard Detection of Unexpected Situations in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangjun; Oh, Yeonju; Shin, Youmin; Lee, Yong-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fukushima accident is a typical complex event including the extreme situations induced by the succeeding earthquake, tsunami, explosion, and human errors. And it is judged with incomplete cause of system build-up same manner, procedure as a deficiency of response manual, education and training, team capability and the discharge of operator from human engineering point of view. Especially, the guidelines of current operating NPPs are not enough including countermeasures to the human errors at the extreme situations. Therefore, this paper describes a trial to detect the hazards of human errors at extreme situation, and to define the countermeasures that can properly response to the human error hazards when an individual, team, organization, and working entities that encounter the extreme situation in NPPs. In this paper we try to propose an approach to analyzing and extracting human error hazards for suggesting additional countermeasures to the human errors in unexpected situations. They might be utilized to develop contingency guidelines, especially for reducing the human error accident in NPPs. But the trial application in this study is currently limited since it is not easy to find accidents cases in detail enough to enumerate the proposed steps. Therefore, we will try to analyze as more cases as possible, and consider other environmental factors and human error conditions.

  17. Research on Human-Error Factors of Civil Aircraft Pilots Based On Grey Relational Analysis

    Directory of Open Access Journals (Sweden)

    Guo Yundong

    2018-01-01

    Full Text Available In consideration of the situation that civil aviation accidents involve many human-error factors and show the features of typical grey systems, an index system of civil aviation accident human-error factors is built using human factor analysis and classification system model. With the data of accidents happened worldwide between 2008 and 2011, the correlation between human-error factors can be analyzed quantitatively using the method of grey relational analysis. Research results show that the order of main factors affecting pilot human-error factors is preconditions for unsafe acts, unsafe supervision, organization and unsafe acts. The factor related most closely with second-level indexes and pilot human-error factors is the physical/mental limitations of pilots, followed by supervisory violations. The relevancy between the first-level indexes and the corresponding second-level indexes and the relevancy between second-level indexes can also be analyzed quantitatively.

  18. The treatment of commission errors in first generation human reliability analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Alvarengga, Marco Antonio Bayout; Fonseca, Renato Alves da, E-mail: bayout@cnen.gov.b, E-mail: rfonseca@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN) Rio de Janeiro, RJ (Brazil); Melo, Paulo Fernando Frutuoso e, E-mail: frutuoso@nuclear.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    Human errors in human reliability analysis can be classified generically as errors of omission and commission errors. Omission errors are related to the omission of any human action that should have been performed, but does not occur. Errors of commission are those related to human actions that should not be performed, but which in fact are performed. Both involve specific types of cognitive error mechanisms, however, errors of commission are more difficult to model because they are characterized by non-anticipated actions that are performed instead of others that are omitted (omission errors) or are entered into an operational task without being part of the normal sequence of this task. The identification of actions that are not supposed to occur depends on the operational context that will influence or become easy certain unsafe actions of the operator depending on the operational performance of its parameters and variables. The survey of operational contexts and associated unsafe actions is a characteristic of second-generation models, unlike the first generation models. This paper discusses how first generation models can treat errors of commission in the steps of detection, diagnosis, decision-making and implementation, in the human information processing, particularly with the use of THERP tables of errors quantification. (author)

  19. Controlling Your Impulses: Electrical Stimulation of the Human Supplementary Motor Complex Prevents Impulsive Errors

    OpenAIRE

    Spieser, L.; Van den Wildenberg, W; Hasbroucq, T.; Ridderinkhof, K.R.; Burle, B.

    2015-01-01

    International audience; To err is human. However, an inappropriate urge does not always result in error. Impulsive errors thus entail both a motor system capture by an urge to act and a failed inhibition of that impulse. Here we show that neuromodulatory electrical stimulation of the supplementary motor complex in healthy humans leaves action urges unchanged but prevents them from turning into overt errors. Subjects performed a choice reaction-time task known to trigger impulsive responses, l...

  20. Error-related EEG patterns during tactile human-machine interaction

    NARCIS (Netherlands)

    Lehne, M.; Ihme, K.; Brouwer, A.M.; Erp, J.B.F. van; Zander, T.O.

    2009-01-01

    Recently, the use of brain-computer interfaces (BCIs) has been extended from active control to passive detection of cognitive user states. These passive BCI systems can be especially useful for automatic error detection in human-machine systems by recording EEG potentials related to human error

  1. Advancements in brachytherapy.

    Science.gov (United States)

    Tanderup, Kari; Ménard, Cynthia; Polgar, Csaba; Lindegaard, Jacob Christian; Kirisits, Christian; Pötter, Richard

    2017-01-15

    Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherapy makes it attractive for boosting limited size target volumes to very high doses while sparing normal tissues. Significant developments over the last decades have increased the use of 3D image guided procedures with the utilization of CT, MRI, US and PET. This has taken brachytherapy to a new level in terms of controlling dose and demonstrating excellent clinical outcome. Interests in focal, hypofractionated and adaptive treatments are increasing, and brachytherapy has significant potential to develop further in these directions with current and new treatment indications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Quality of IT service delivery — Analysis and framework for human error prevention

    KAUST Repository

    Shwartz, L.

    2010-12-01

    In this paper, we address the problem of reducing the occurrence of Human Errors that cause service interruptions in IT Service Support and Delivery operations. Analysis of a large volume of service interruption records revealed that more than 21% of interruptions were caused by human error. We focus on Change Management, the process with the largest risk of human error, and identify the main instances of human errors as the 4 Wrongs: request, time, configuration item, and command. Analysis of change records revealed that the humanerror prevention by partial automation is highly relevant. We propose the HEP Framework, a framework for execution of IT Service Delivery operations that reduces human error by addressing the 4 Wrongs using content integration, contextualization of operation patterns, partial automation of command execution, and controlled access to resources.

  3. Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant.

    Science.gov (United States)

    Jahangiri, Mehdi; Hoboubi, Naser; Rostamabadi, Akbar; Keshavarzi, Sareh; Hosseini, Ali Akbar

    2016-03-01

    A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTW processes in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTW was considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided.

  4. Behind Human Error: Cognitive Systems, Computers and Hindsight

    Science.gov (United States)

    1994-12-01

    normative models developed for much simpler situations to these more complex fields of activity (Klein et al., 1993). For example, laboratory-based norma ...Johnson, P. E., Duran , A. S., Hassebrock, E, Moller, J., Prietula, M.. Feltovich, P. J., and Swanson, D. B. (1981). Expertise and error in di- agnostic

  5. Modeling Human Error Mechanism for Soft Control in Advanced Control Rooms (ACRs)

    Energy Technology Data Exchange (ETDEWEB)

    Aljneibi, Hanan Salah Ali [Khalifa Univ., Abu Dhabi (United Arab Emirates); Ha, Jun Su; Kang, Seongkeun; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    To achieve the switch from conventional analog-based design to digital design in ACRs, a large number of manual operating controls and switches have to be replaced by a few common multi-function devices which is called soft control system. The soft controls in APR-1400 ACRs are classified into safety-grade and non-safety-grade soft controls; each was designed using different and independent input devices in ACRs. The operations using soft controls require operators to perform new tasks which were not necessary in conventional controls such as navigating computerized displays to monitor plant information and control devices. These kinds of computerized displays and soft controls may make operations more convenient but they might cause new types of human error. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or human errors) during NPP operation. The developed model would contribute to a lot of applications to improve human performance (or reduce human errors), HMI designs, and operators' training program in ACRs. The developed model of human error mechanism for the soft control is based on assumptions that a human operator has certain amount of capacity in cognitive resources and if resources required by operating tasks are greater than resources invested by the operator, human error (or poor human performance) is likely to occur (especially in 'slip'); good HMI (Human-machine Interface) design decreases the required resources; operator's skillfulness decreases the required resources; and high vigilance increases the invested resources. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or reduction of human errors) during NPP operation.

  6. Automation of Commanding at NASA: Reducing Human Error in Space Flight

    Science.gov (United States)

    Dorn, Sarah J.

    2010-01-01

    Automation has been implemented in many different industries to improve efficiency and reduce human error. Reducing or eliminating the human interaction in tasks has been proven to increase productivity in manufacturing and lessen the risk of mistakes by humans in the airline industry. Human space flight requires the flight controllers to monitor multiple systems and react quickly when failures occur so NASA is interested in implementing techniques that can assist in these tasks. Using automation to control some of these responsibilities could reduce the number of errors the flight controllers encounter due to standard human error characteristics. This paper will investigate the possibility of reducing human error in the critical area of manned space flight at NASA.

  7. A methodology for identifying human error in U.S. Navy diving accidents.

    Science.gov (United States)

    O'Connor, Paul; O'Dea, Angela; Melton, John

    2007-04-01

    To better understand how human error contributes to U.S. Navy diving accidents. An analysis of 263 U.S. Navy diving accident and mishap reports revealed that the human factors classifications were not informative for further analysis, and 70% of mishaps were attributed to unknown causes; only 23% were attributed to human factors. Five diving fatality reports were examined using the consensual qualitative research (CQR) method to develop a taxonomy of six categories and 21 subcategories for classifying human errors in diving. In addition, 15 critical incident technique (CIT) interviews were conducted with U.S. Navy divers who had been involved in a diving accident or near miss and analyzed using the dive team error taxonomy. Overall, failures in situation awareness and leadership were the most common human errors made by the dive team. The dive team human error taxonomy could aid in accident investigation and in the training and evaluation of U.S. Navy divers. The development of the dive team human error taxonomy has generated a number of considerations that researchers should take into account when developing, or adapting, an error taxonomy from one industry to another.

  8. Intensity-based fluoroscopy and ultrasound registration for prostate brachytherapy

    Science.gov (United States)

    Aghaloo, Zahra Karim

    Prostate cancer continues to be the most commonly diagnosed cancer among men. Brachytherapy has emerged as one of the definitive treatment options for early stage prostate cancer which entails permanent implantation of radioactive seeds into the prostate to eradicate the cancer with ionizing radiation. Successful brachytherapy requires the ability to perform dosimetry -which requires seed localization- during the procedure but such function is not available today. If dosimetry could be performed intraoperatively, physicians could implant additional seeds into the under-dosed portions of the prostate while the patient is still on the operating table. This thesis addresses the brachytherapy seed localization problem with introducing intensity based registration between transrectal ultrasound (TRUS) that shows only the prostate and a 3D seed model drawn from fluoroscopy that shows only the implanted seeds. The TRUS images are first filtered and compounded, and then registered to the seed model by using mutual information. A training phantom was implanted with 48 seeds and imaged. Various ultrasound filtering techniques were analyzed. The effect of false positives and false negatives in ultrasound was investigated by randomly masking seeds from the fluoroscopy volume or adding seeds to that in random locations. Furthermore, the effect of sparse and dense ultrasound data was analyzed by running the registration for ultrasound data with different spacing. The registration error remained consistently below clinical threshold and capture range was significantly larger than the initial guess guaranteed by the clinical workflow. This fully automated method provided excellent registration accuracy and robustness in phantom studies and promises to demonstrate clinically adequate performance on human data.

  9. Brachytherapy in lip cancer.

    Science.gov (United States)

    Rovirosa-Casino, Angeles; Planas-Toledano, Isabel; Ferre-Jorge, Jorge; Oliva-Díez, José María; Conill-Llobet, Carlos; Arenas-Prat, Meritxell

    2006-05-01

    Lip cancer is one of the most prevalent skin tumours of the head and neck. The characteristics of the tumour relate to their exophyitic growth in an area of easy visual acces which allows their diagnosis in early stages. As a result, there is a better prognosis with the present treatments. In early stages the treatment can be performed by surgery or by brachytherapy, and the results are similar on local control; nevertheless brachytherapy offers the best functional and esthetic results. We are reporting on a review of the literature in relation to indications, techniques and results of brachytherapy for lip cancer.

  10. Derivation of main drivers affecting the possibility of human errors during low power and shutdown operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ar Ryum; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of); Park, Jin Kyun; Kim, Jae Whan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In order to estimate the possibility of human error and identify its nature, human reliability analysis (HRA) methods have been implemented. For this, various HRA methods have been developed so far: techniques for human error rate prediction (THERP), cause based decision tree (CBDT), the cognitive reliability and error analysis method (CREAM) and so on. Most HRA methods have been developed with a focus on full power operation of NPPs even though human performance may more largely affect the safety of the system during low power and shutdown (LPSD) operation than it would when the system is in full power operation. In this regard, it is necessary to conduct a research for developing HRA method to be used in LPSD operation. For the first step of the study, main drivers which affect the possibility of human error have been developed. Drivers which are commonly called as performance shaping factors (PSFs) are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. In order to estimate the possibility of human error and identify its nature, human reliability analysis (HRA) methods have been implemented. For this, various HRA methods have been developed so far: techniques for human error rate prediction (THERP), cause based decision tree (CBDT), the cognitive reliability and error analysis method (CREAM) and so on. Most HRA methods have been developed with a focus on full power operation of NPPs even though human performance may more largely affect the safety of the system during low power and shutdown (LPSD) operation than it would when the system is in full power operation. In this regard, it is necessary to conduct a research for developing HRA method to be used in LPSD operation. For the first step of the study, main drivers which affect the possibility of human error have been developed. Drivers

  11. Human error and the problem of causality in analysis of accidents

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1990-01-01

    Present technology is characterized by complexity, rapid change and growing size of technical systems. This has caused increasing concern with the human involvement in system safety. Analyses of the major accidents during recent decades have concluded that human errors on part of operators...... and for termination of the search for `causes'. In addition, the concept of human error is analysed and its intimate relation with human adaptation and learning is discussed. It is concluded that identification of errors as a separate class of behaviour is becoming increasingly difficult in modern work environments......, designers or managers have played a major role. There are, however, several basic problems in analysis of accidents and identification of human error. This paper addresses the nature of causal explanations and the ambiguity of the rules applied for identification of the events to include in analysis...

  12. Using a Delphi Method to Identify Human Factors Contributing to Nursing Errors.

    Science.gov (United States)

    Roth, Cheryl; Brewer, Melanie; Wieck, K Lynn

    2017-07-01

    The purpose of this study was to identify human factors associated with nursing errors. Using a Delphi technique, this study used feedback from a panel of nurse experts (n = 25) on an initial qualitative survey questionnaire followed by summarizing the results with feedback and confirmation. Synthesized factors regarding causes of errors were incorporated into a quantitative Likert-type scale, and the original expert panel participants were queried a second time to validate responses. The list identified 24 items as most common causes of nursing errors, including swamping and errors made by others that nurses are expected to recognize and fix. The responses provided a consensus top 10 errors list based on means with heavy workload and fatigue at the top of the list. The use of the Delphi survey established consensus and developed a platform upon which future study of nursing errors can evolve as a link to future solutions. This list of human factors in nursing errors should serve to stimulate dialogue among nurses about how to prevent errors and improve outcomes. Human and system failures have been the subject of an abundance of research, yet nursing errors continue to occur. © 2016 Wiley Periodicals, Inc.

  13. Human errors evaluation for muster in emergency situations applying human error probability index (HEPI, in the oil company warehouse in Hamadan City

    Directory of Open Access Journals (Sweden)

    2012-12-01

    Full Text Available Introduction: Emergency situation is one of the influencing factors on human error. The aim of this research was purpose to evaluate human error in emergency situation of fire and explosion at the oil company warehouse in Hamadan city applying human error probability index (HEPI. . Material and Method: First, the scenario of emergency situation of those situation of fire and explosion at the oil company warehouse was designed and then maneuver against, was performed. The scaled questionnaire of muster for the maneuver was completed in the next stage. Collected data were analyzed to calculate the probability success for the 18 actions required in an emergency situation from starting point of the muster until the latest action to temporary sheltersafe. .Result: The result showed that the highest probability of error occurrence was related to make safe workplace (evaluation phase with 32.4 % and lowest probability of occurrence error in detection alarm (awareness phase with 1.8 %, probability. The highest severity of error was in the evaluation phase and the lowest severity of error was in the awareness and recovery phase. Maximum risk level was related to the evaluating exit routes and selecting one route and choosy another exit route and minimum risk level was related to the four evaluation phases. . Conclusion: To reduce the risk of reaction in the exit phases of an emergency situation, the following actions are recommended, based on the finding in this study: A periodic evaluation of the exit phase and modifying them if necessary, conducting more maneuvers and analyzing this results along with a sufficient feedback to the employees.

  14. Controlling your impulses: Electrical stimulation of the human supplementary motor complex prevents impulsive errors

    NARCIS (Netherlands)

    Spieser, L.; van den Wildenberg, W.; Hasbroucq, T.; Ridderinkhof, K.R.; Burle, B.

    2015-01-01

    To err is human. However, an inappropriate urge does not always result in error. Impulsive errors thus entail both a motor system capture by an urge to act and a failed inhibition of that impulse. Here we show that neuromodulatory electrical stimulation of the supplementary motor complex in healthy

  15. Detection of error related neuronal responses recorded by electrocorticography in humans during continuous movements.

    Directory of Open Access Journals (Sweden)

    Tomislav Milekovic

    Full Text Available BACKGROUND: Brain-machine interfaces (BMIs can translate the neuronal activity underlying a user's movement intention into movements of an artificial effector. In spite of continuous improvements, errors in movement decoding are still a major problem of current BMI systems. If the difference between the decoded and intended movements becomes noticeable, it may lead to an execution error. Outcome errors, where subjects fail to reach a certain movement goal, are also present during online BMI operation. Detecting such errors can be beneficial for BMI operation: (i errors can be corrected online after being detected and (ii adaptive BMI decoding algorithm can be updated to make fewer errors in the future. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that error events can be detected from human electrocorticography (ECoG during a continuous task with high precision, given a temporal tolerance of 300-400 milliseconds. We quantified the error detection accuracy and showed that, using only a small subset of 2×2 ECoG electrodes, 82% of detection information for outcome error and 74% of detection information for execution error available from all ECoG electrodes could be retained. CONCLUSIONS/SIGNIFICANCE: The error detection method presented here could be used to correct errors made during BMI operation or to adapt a BMI algorithm to make fewer errors in the future. Furthermore, our results indicate that smaller ECoG implant could be used for error detection. Reducing the size of an ECoG electrode implant used for BMI decoding and error detection could significantly reduce the medical risk of implantation.

  16. Human Error and the International Space Station: Challenges and Triumphs in Science Operations

    Science.gov (United States)

    Harris, Samantha S.; Simpson, Beau C.

    2016-01-01

    Any system with a human component is inherently risky. Studies in human factors and psychology have repeatedly shown that human operators will inevitably make errors, regardless of how well they are trained. Onboard the International Space Station (ISS) where crew time is arguably the most valuable resource, errors by the crew or ground operators can be costly to critical science objectives. Operations experts at the ISS Payload Operations Integration Center (POIC), located at NASA's Marshall Space Flight Center in Huntsville, Alabama, have learned that from payload concept development through execution, there are countless opportunities to introduce errors that can potentially result in costly losses of crew time and science. To effectively address this challenge, we must approach the design, testing, and operation processes with two specific goals in mind. First, a systematic approach to error and human centered design methodology should be implemented to minimize opportunities for user error. Second, we must assume that human errors will be made and enable rapid identification and recoverability when they occur. While a systematic approach and human centered development process can go a long way toward eliminating error, the complete exclusion of operator error is not a reasonable expectation. The ISS environment in particular poses challenging conditions, especially for flight controllers and astronauts. Operating a scientific laboratory 250 miles above the Earth is a complicated and dangerous task with high stakes and a steep learning curve. While human error is a reality that may never be fully eliminated, smart implementation of carefully chosen tools and techniques can go a long way toward minimizing risk and increasing the efficiency of NASA's space science operations.

  17. Defining the Relationship Between Human Error Classes and Technology Intervention Strategies

    Science.gov (United States)

    Wiegmann, Douglas A.; Rantanen, Eas M.

    2003-01-01

    The modus operandi in addressing human error in aviation systems is predominantly that of technological interventions or fixes. Such interventions exhibit considerable variability both in terms of sophistication and application. Some technological interventions address human error directly while others do so only indirectly. Some attempt to eliminate the occurrence of errors altogether whereas others look to reduce the negative consequences of these errors. In any case, technological interventions add to the complexity of the systems and may interact with other system components in unforeseeable ways and often create opportunities for novel human errors. Consequently, there is a need to develop standards for evaluating the potential safety benefit of each of these intervention products so that resources can be effectively invested to produce the biggest benefit to flight safety as well as to mitigate any adverse ramifications. The purpose of this project was to help define the relationship between human error and technological interventions, with the ultimate goal of developing a set of standards for evaluating or measuring the potential benefits of new human error fixes.

  18. The Error Is the Clue: Breakdown In Human-Machine Interaction

    National Research Council Canada - National Science Library

    Martinovsky, Bilyana; Traum, David

    2006-01-01

    This paper focuses not on the detection and correction of specific errors in the interaction between machines and humans, but rather cases of massive deviation from the user's conversational expectations and desires...

  19. Human Error and General Aviation Accidents: A Comprehensive, Fine-Grained Analysis Using HFACS

    National Research Council Canada - National Science Library

    Wiegmann, Douglas; Faaborg, Troy; Boquet, Albert; Detwiler, Cristy; Holcomb, Kali; Shappell, Scott

    2005-01-01

    ... of both commercial and general aviation (GA) accidents. These analyses have helped to identify general trends in the types of human factors issues and aircrew errors that have contributed to civil aviation accidents...

  20. The comparative study of evaluating human error assessment and reduction technique and cognitive reliability and error analysis method techniques in the control room of the cement industry

    Directory of Open Access Journals (Sweden)

    Amin Babaei Pouya

    2015-01-01

    Full Text Available Aims: The present study aimed to evaluate the assessment methods of human errors and compare the results of these techniques in order to introduce the precise method of human error assessment, and recognize the factors affecting the occurrence of these errors. Materials and Methods: This case study was done at three workstation control room of a cement industry in 2014. After determining the responsibilities and critical jobs by hierarchical task analysis, cognitive reliability and error analysis method (CREAM and human error assessment and reduction technique (HEART were used in order to analyze the human errors. Results: The results showed that in the CREAM method, the highest probability of error occurrence is related to monitoring and control (operator with a probability of 0.207, and that of in the HEART method, is related to control signs (operator with a probability of 0.416. The number of errors detected by CREAM and HEART method were 85 and 80, respectively. Time and cost of applying the CREAM methods were 235 h and 1175($, while those in the HEART techniques were 215 h and 1075($. Conclusion: We concluded that the highest probability of calculated errors relates to "monitoring and control (operator," "controlling warning signs (operators," and "cooperation in solving the problem (supervisor" for both techniques. By considering the time and cost factors, HEART has superiority, while CREAM is better due to its extensive evaluation and the number of detected errors.

  1. SCHEME (Soft Control Human error Evaluation MEthod) for advanced MCR HRA

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Inseok; Jung, Wondea [KAERI, Daejeon (Korea, Republic of); Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The Technique for Human Error Rate Prediction (THERP), Korean Human Reliability Analysis (K-HRA), Human Error Assessment and Reduction Technique (HEART), A Technique for Human Event Analysis (ATHEANA), Cognitive Reliability and Error Analysis Method (CREAM), and Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) in relation to NPP maintenance and operation. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). They are still used for HRA in advanced MCRs even though the operating environment of advanced MCRs in NPPs has been considerably changed by the adoption of new human-system interfaces such as computer-based soft controls. Among the many features in advanced MCRs, soft controls are an important feature because the operation action in NPP advanced MCRs is performed by soft controls. Consequently, those conventional methods may not sufficiently consider the features of soft control execution human errors. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing the soft control task analysis and the literature reviews regarding widely accepted human error taxonomies. In this study, the framework of a HRA method for evaluating soft control execution human error in advanced MCRs is developed. First, the factors which HRA method in advanced MCRs should encompass are derived based on the literature review, and soft control task analysis. Based on the derived factors, execution HRA framework in advanced MCRs is developed mainly focusing on the features of soft control. Moreover, since most current HRA database deal with operation in conventional type of MCRs and are not explicitly designed to deal with digital HSI, HRA database are developed under lab scale simulation.

  2. Reward expectation and prediction error in human medial frontal cortex: an EEG study.

    Science.gov (United States)

    Silvetti, Massimo; Nuñez Castellar, Elena; Roger, Clémence; Verguts, Tom

    2014-01-01

    The mammalian medial frontal cortex (MFC) is involved in reward-based decision making. In particular, in nonhuman primates this area constructs expectations about upcoming rewards, given an environmental state or a choice planned by the animal. At the same time, in both humans and nonhuman primates, the MFC computes the difference between such predictions and actual environmental outcomes (reward prediction errors). However, there is a paucity of evidence about the time course of MFC-related activity during reward prediction and prediction error in humans. Here we experimentally investigated this by recording the EEG during a reinforcement learning task. Our results support the hypothesis that human MFC codes for reward prediction during the cue period and for prediction error during the outcome period. Further, reward expectation (cue period) was positively correlated with prediction error (outcome period) in error trials but negatively in correct trials, consistent with updating of reward expectation by prediction error. This demonstrates in humans, like in nonhuman primates, a role of the MFC in the rapid updating of reward expectations through prediction errors. © 2013.

  3. A Human Reliability Analysis of Post- Accident Human Errors in the Low Power and Shutdown PSA of KSNP

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Daeil; Kim, J. H.; Jang, S. C

    2007-03-15

    Korea Atomic Energy Research Institute, using the ANS low power and shutdown (LPSD) probabilistic risk assessment (PRA) Standard, evaluated the LPSD PSA model of the KSNP, Yonggwang Units 5 and 6, and identified the items to be improved. The evaluation results of human reliability analysis (HRA) of the post-accident human errors in the LPSD PSA model for the KSNP showed that 10 items among 19 items of supporting requirements for those in the ANS PRA Standard were identified as them to be improved. Thus, we newly carried out a HRA for post-accident human errors in the LPSD PSA model for the KSNP. Following tasks are the improvements in the HRA of post-accident human errors of the LPSD PSA model for the KSNP compared with the previous one: Interviews with operators in the interpretation of the procedure, modeling of operator actions, and the quantification results of human errors, site visit. Applications of limiting value to the combined post-accident human errors. Documentation of information of all the input and bases for the detailed quantifications and the dependency analysis using the quantification sheets The assessment results for the new HRA results of post-accident human errors using the ANS LPSD PRA Standard show that above 80% items of its supporting requirements for post-accident human errors were graded as its Category II. The number of the re-estimated human errors using the LPSD Korea Standard HRA method is 385. Among them, the number of individual post-accident human errors is 253. The number of dependent post-accident human errors is 135. The quantification results of the LPSD PSA model for the KSNP with new HEPs show that core damage frequency (CDF) is increased by 5.1% compared with the previous baseline CDF It is expected that this study results will be greatly helpful to improve the PSA quality for the domestic nuclear power plants because they have sufficient PSA quality to meet the Category II of Supporting Requirements for the post

  4. Fatal attraction: ventral striatum predicts costly choice errors in humans.

    Science.gov (United States)

    Chumbley, J R; Tobler, P N; Fehr, E

    2014-04-01

    Animals approach rewards and cues associated with reward, even when this behavior is irrelevant or detrimental to the attainment of these rewards. Motivated by these findings we study the biology of financially-costly approach behavior in humans. Our subjects passively learned to predict the occurrence of erotic rewards. We show that neuronal responses in ventral striatum during this Pavlovian learning task stably predict an individual's general tendency towards financially-costly approach behavior in an active choice task several months later. Our data suggest that approach behavior may prevent some individuals from acting in their own interests. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. An Estimation of Human Error Probability of Filtered Containment Venting System Using Dynamic HRA Method

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seunghyun; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    The human failure events (HFEs) are considered in the development of system fault trees as well as accident sequence event trees in part of Probabilistic Safety Assessment (PSA). As a method for analyzing the human error, several methods, such as Technique for Human Error Rate Prediction (THERP), Human Cognitive Reliability (HCR), and Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) are used and new methods for human reliability analysis (HRA) are under developing at this time. This paper presents a dynamic HRA method for assessing the human failure events and estimation of human error probability for filtered containment venting system (FCVS) is performed. The action associated with implementation of the containment venting during a station blackout sequence is used as an example. In this report, dynamic HRA method was used to analyze FCVS-related operator action. The distributions of the required time and the available time were developed by MAAP code and LHS sampling. Though the numerical calculations given here are only for illustrative purpose, the dynamic HRA method can be useful tools to estimate the human error estimation and it can be applied to any kind of the operator actions, including the severe accident management strategy.

  6. HUMAN ERROR QUANTIFICATION USING PERFORMANCE SHAPING FACTORS IN THE SPAR-H METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Harold S. Blackman; David I. Gertman; Ronald L. Boring

    2008-09-01

    This paper describes a cognitively based human reliability analysis (HRA) quantification technique for estimating the human error probabilities (HEPs) associated with operator and crew actions at nuclear power plants. The method described here, Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method, was developed to aid in characterizing and quantifying human performance at nuclear power plants. The intent was to develop a defensible method that would consider all factors that may influence performance. In the SPAR-H approach, calculation of HEP rates is especially straightforward, starting with pre-defined nominal error rates for cognitive vs. action-oriented tasks, and incorporating performance shaping factor multipliers upon those nominal error rates.

  7. MRI-guided brachytherapy

    Science.gov (United States)

    Tanderup, Kari; Viswanathan, Akila; Kirisits, Christian; Frank, Steven J.

    2014-01-01

    The application of MRI-guided brachytherapy has demonstrated significant growth during the last two decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and mounting evidence of improved clinical outcome with regard to local control, overall survival as well as morbidity. MRI-guided prostate HDR and LDR brachytherapy has improved the accuracy of target and organs-at-risk (OAR) delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education. PMID:24931089

  8. Dosimetric audit in brachytherapy

    Science.gov (United States)

    Bradley, D A; Nisbet, A

    2014-01-01

    Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068

  9. Canadian prostate brachytherapy in 2012

    Science.gov (United States)

    Keyes, Mira; Crook, Juanita; Morris, W. James; Morton, Gerard; Pickles, Tom; Usmani, Nawaid; Vigneault, Eric

    2013-01-01

    Prostate brachytherapy can be used as a monotherapy for low- and intermediate-risk patients or in combination with external beam radiation therapy (EBRT) as a form of dose escalation for selected intermediate- and high-risk patients. Prostate brachytherapy with either permanent implants (low dose rate [LDR]) or temporary implants (high dose rate [HDR]) is emerging as the most effective radiation treatment for prostate cancer. Several large Canadian brachytherapy programs were established in the mid- to late-1990s. Prostate brachytherapy is offered in British Columbia, Alberta, Manitoba, Ontario, Quebec and New Brunswick. We anticipate the need for brachytherapy services in Canada will significantly increase in the near future. In this review, we summarize brachytherapy programs across Canada, contemporary eligibility criteria for the procedure, toxicity and prostate-specific antigen recurrence free survival (PRFS), as published from Canadian institutions for both LDR and HDR brachytherapy. PMID:23671495

  10. Human error identification for laparoscopic surgery: Development of a motion economy perspective.

    Science.gov (United States)

    Al-Hakim, Latif; Sevdalis, Nick; Maiping, Tanaphon; Watanachote, Damrongpan; Sengupta, Shomik; Dissaranan, Charuspong

    2015-09-01

    This study postulates that traditional human error identification techniques fail to consider motion economy principles and, accordingly, their applicability in operating theatres may be limited. This study addresses this gap in the literature with a dual aim. First, it identifies the principles of motion economy that suit the operative environment and second, it develops a new error mode taxonomy for human error identification techniques which recognises motion economy deficiencies affecting the performance of surgeons and predisposing them to errors. A total of 30 principles of motion economy were developed and categorised into five areas. A hierarchical task analysis was used to break down main tasks of a urological laparoscopic surgery (hand-assisted laparoscopic nephrectomy) to their elements and the new taxonomy was used to identify errors and their root causes resulting from violation of motion economy principles. The approach was prospectively tested in 12 observed laparoscopic surgeries performed by 5 experienced surgeons. A total of 86 errors were identified and linked to the motion economy deficiencies. Results indicate the developed methodology is promising. Our methodology allows error prevention in surgery and the developed set of motion economy principles could be useful for training surgeons on motion economy principles. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta

  12. Accounting for measurement error in human life history trade-offs using structural equation modeling.

    Science.gov (United States)

    Helle, Samuli

    2017-11-11

    Revealing causal effects from correlative data is very challenging and a contemporary problem in human life history research owing to the lack of experimental approach. Problems with causal inference arising from measurement error in independent variables, whether related either to inaccurate measurement technique or validity of measurements, seem not well-known in this field. The aim of this study is to show how structural equation modeling (SEM) with latent variables can be applied to account for measurement error in independent variables when the researcher has recorded several indicators of a hypothesized latent construct. As a simple example of this approach, measurement error in lifetime allocation of resources to reproduction in Finnish preindustrial women is modelled in the context of the survival cost of reproduction. In humans, lifetime energetic resources allocated in reproduction are almost impossible to quantify with precision and, thus, typically used measures of lifetime reproductive effort (e.g., lifetime reproductive success and parity) are likely to be plagued by measurement error. These results are contrasted with those obtained from a traditional regression approach where the single best proxy of lifetime reproductive effort available in the data is used for inference. As expected, the inability to account for measurement error in women's lifetime reproductive effort resulted in the underestimation of its underlying effect size on post-reproductive survival. This article emphasizes the advantages that the SEM framework can provide in handling measurement error via multiple-indicator latent variables in human life history studies. © 2017 Wiley Periodicals, Inc.

  13. A Novel Approach to Training on Human Errors Underlying Security Incidents

    Energy Technology Data Exchange (ETDEWEB)

    Greitzer, Frank L.; Pond, Daniel J.

    2005-09-14

    Abstract Human errors and their safety- or security- consequences often result from unsuitable systems- and personnel- characteristics. Only by identifying the conditions that make errors more likely can we develop effective strategies to eliminate errors and their adverse impacts. The US Department of Energy (DOE) initiated a program to determine if system-induced human errors could also be contributing factors to security incidents. As a foundation for this work, the Enhanced Security Through Human Error Reduction (ESTHER) program at Los Alamos National Laboratory (LANL) produced a contributing factors data set and systems categorization for security related incidents attributed to human error. This material supports the development and delivery of training for security incident inquiry officials. While LANL’s initial work focused on classroom training, a collaborative effort between LANL and Pacific Northwest National Laboratory (PNNL) has focused on delivering an interactive web-based training application that provides instruction on and practice in employing ESTHER principles. The ESTHER e-Learning application uses cognitive-based instructional design principles to engage the learner in interactive, realistic, problem-centered activity implemented within a guided-discovery framework. Through this novel approach to computer-based instruction, the DOE will enhance the ability of its inquiry officials to meet their performance and reporting responsibilities. Ultimately, it is hoped, this program will lead to areduction in the number of security incidents across the DOE complex. This paper reviews the human error background for this research program and describes the guided-discovery computer-based training approach.

  14. Review of human error analysis methodologies and case study for accident management

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Won Dae; Kim, Jae Whan; Lee, Yong Hee; Ha, Jae Joo

    1998-03-01

    In this research, we tried to establish the requirements for the development of a new human error analysis method. To achieve this goal, we performed a case study as following steps; 1. review of the existing HEA methods 2. selection of those methods which are considered to be appropriate for the analysis of operator`s tasks in NPPs 3. choice of tasks for the application, selected for the case study: HRMS (Human reliability management system), PHECA (Potential Human Error Cause Analysis), CREAM (Cognitive Reliability and Error Analysis Method). And, as the tasks for the application, `bleed and feed operation` and `decision-making for the reactor cavity flooding` tasks are chosen. We measured the applicability of the selected methods to the NPP tasks, and evaluated the advantages and disadvantages between each method. The three methods are turned out to be applicable for the prediction of human error. We concluded that both of CREAM and HRMS are equipped with enough applicability for the NPP tasks, however, compared two methods. CREAM is thought to be more appropriate than HRMS from the viewpoint of overall requirements. The requirements for the new HEA method obtained from the study can be summarized as follows; firstly, it should deal with cognitive error analysis, secondly, it should have adequate classification system for the NPP tasks, thirdly, the description on the error causes and error mechanisms should be explicit, fourthly, it should maintain the consistency of the result by minimizing the ambiguity in each step of analysis procedure, fifty, it should be done with acceptable human resources. (author). 25 refs., 30 tabs., 4 figs.

  15. A Cognitive Human Error Analysis with CREAM in Control Room of Petrochemical Industry

    Directory of Open Access Journals (Sweden)

    Sana Shokria

    2016-10-01

    Full Text Available Background The cognitive human error analysis technique is one of the second-generation techniques used to evaluate human reliability; it has a strong, detailed theoretical background that focuses on the important cognitive features of human behavior. Objectives The aim of this study was to assign task and jobs crisis using analysis of cognitive human error with CREAM. Finally, based on the results, the major causes of error were detected. Methods This cross-sectional study was conducted on 53 people working in an olefin unit. It is one of the most important control rooms located in a special economic zone in Assaluyeh petrochemical industry. In this study, first a job analysis was conducted and the sub-tasks and conditions affecting the performance of the staff were determined. Then, the control mode coefficient and control mode type, as well as the possibility of total error were determined. Finally, the cognitive functions and type of cognitive error related to each sub-task were identified. Results Among the six evaluated occupational tasks, the tasks performed by board-man and site-man had the highest values of total human error in terms of transitory overall error coefficient (0.056 and 0.031, respectively. In addition, the following results were obtained on the basis of the extended CREAM: execution failure (31.72%, interpretation failure (29.20%, planning failure (14.63%, and observation failure (24.39%. Conclusions Common Performance Conditions (CPCs, empowerment, and the time available for work were among the most important factors that reduced occupational performance. To optimize a communication system, it is necessary to arrange the priority of tasks, hold joint meetings, inform the staff about the termination of work permits, hold training sessions, and measure the pollutants.

  16. A Human Reliability Analysis of Pre-Accident Human Errors in the Low Power and Shutdown PSA of the KSNP

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Daeil; Jang, Seungchul

    2007-03-15

    Korea Atomic Energy Research Institute, using the ANS Low Power /Shutdown (LPSD)PRA Standard, evaluated the LPSD PSA model of the KSNP, Younggwang (YGN) Units 5 and 6, and identified the items to be improved. The evaluation results of human reliability analysis (HRA) of the pre-accident human errors in the LPSD PSA model of the KSNP showed that 13 items among 15 items of supporting requirements for those in the ANS PRA Standard were identified as them to be improved. Thus, we newly carried out a HRA for pre-accident human errors in the LPSD PSA model for the KSNP to improve its quality. We considered potential pre-accident human errors for all manual valves and control/instrumentation equipment of the systems modeled in the KSNP LPSD PSA model except reactor protection system/ engineering safety features actuation system. We reviewed 160 manual valves and 56 control/instrumentation equipment. The number of newly identified pre-accident human errors is 101. Among them, the number of those related to testing/maintenance tasks is 56. The number of those related to calibration tasks is 45. The number of those related to only shutdown operation is 10. It was shown that the pre-accident human errors related to only shutdown operation contributions to the core damage frequency of LPSD PSA model for the KSNP was negligible.The self-assessment results for the new HRA results of pre-accident human errors using the ANS LPSD PRA Standard show that above 80% items of its supporting requirements for post-accident human errors were graded as its Category II or III. It is expected that the HRA results for the pre-accident human errors presented in this study will be greatly helpful to improve the PSA quality for the domestic nuclear power plants because they have sufficient PSA quality to meet the Category II of supporting requirements for the postaccident human errors in the ANS LPSD PRA Standard.

  17. Coregistered photoacoustic-ultrasound imaging applied to brachytherapy

    Science.gov (United States)

    Harrison, Tyler; Zemp, Roger J.

    2011-08-01

    Brachytherapy is a form of radiation therapy commonly used in the treatment of prostate cancer wherein sustained radiation doses can be precisely targeted to the tumor area by the implantation of small radioactive seeds around the treatment area. Ultrasound is a popular imaging mode for seed implantation, but the seeds are difficult to distinguish from the tissue structure. In this work, we demonstrate the feasibility of photoacoustic imaging for identifying brachytherapy seeds in a tissue phantom, comparing the received intensity to endogenous contrast. We have found that photoacoustic imaging at 1064 nm can identify brachytherapy seeds uniquely at laser penetration depths of 5 cm in biological tissue at the ANSI limit for human exposure with a contrast-to-noise ratio of 26.5 dB. Our realtime combined photoacoustic-ultrasound imaging approach may be suitable for brachytherapy seed placement and post-placement verification, potentially allowing for realtime dosimetry assessment during implantation.

  18. Basic design of multimedia system for the representation of human error cases in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Park, Geun Ok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-04-01

    We have developed a multimedia system for the representation of human error cases with the education and training on human errors can be done effectively. The followings are major topics during the basic design; 1 Establishment of a basic concept for representing human error cases using multimedia, 2 Establishment of a design procedure for the multimedia system, 3 Establishment of a hardware and software environment for operating the multimedia system, 4 Design of multimedia input and output interfaces. In order to verify the results of this basic design, we implemented the basic design with an incident triggered by operator`s misaction which occurred at Uljin NPP Unit 1. (Author) 12 refs., 30 figs.,.

  19. Electromagnetic tracking for treatment verification in interstitial brachytherapy

    DEFF Research Database (Denmark)

    Bert, Christoph; Kellermeier, Markus; Tanderup, Kari

    2016-01-01

    Electromagnetic tracking (EMT) is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes...

  20. In vivo dosimetry: trends and prospects for brachytherapy

    DEFF Research Database (Denmark)

    Kertzscher, Gustavo; Rosenfeld, A.; Beddar, S.

    2014-01-01

    The error types during brachytherapy (BT) treatments and their occurrence rates are not well known. The limited knowledge is partly attributed to the lack of independent verification systems of the treatment progression in the clinical workflow routine. Within the field of in vivo dosimetry (IVD...

  1. Controlling your impulses: electrical stimulation of the human supplementary motor complex prevents impulsive errors.

    Science.gov (United States)

    Spieser, Laure; van den Wildenberg, Wery; Hasbroucq, Thierry; Ridderinkhof, K Richard; Burle, Borís

    2015-02-18

    To err is human. However, an inappropriate urge does not always result in error. Impulsive errors thus entail both a motor system capture by an urge to act and a failed inhibition of that impulse. Here we show that neuromodulatory electrical stimulation of the supplementary motor complex in healthy humans leaves action urges unchanged but prevents them from turning into overt errors. Subjects performed a choice reaction-time task known to trigger impulsive responses, leading to fast errors that can be revealed by analyzing accuracy as a function of poststimulus time. Yet, such fast errors are only the tip of the iceberg: electromyography (EMG) revealed fast subthreshold muscle activation in the incorrect response hand in an even larger proportion of overtly correct trials, revealing covert response impulses not discernible in overt behavior. Analyzing both overt and covert response tendencies enables to gauge the ability to prevent these incorrect impulses from turning into overt action errors. Hyperpolarizing the supplementary motor complex using transcranial direct current stimulation (tDCS) preserves action impulses but prevents their behavioral expression. This new combination of detailed behavioral, EMG, and tDCS techniques clarifies the neurophysiology of impulse control, and may point to avenues for improving impulse control deficits in various neurologic and psychiatric disorders. Copyright © 2015 the authors 0270-6474/15/333010-06$15.00/0.

  2. A system dynamic simulation model for managing the human error in power tools industries

    Science.gov (United States)

    Jamil, Jastini Mohd; Shaharanee, Izwan Nizal Mohd

    2017-10-01

    In the era of modern and competitive life of today, every organization will face the situations in which the work does not proceed as planned when there is problems occur in which it had to be delay. However, human error is often cited as the culprit. The error that made by the employees would cause them have to spend additional time to identify and check for the error which in turn could affect the normal operations of the company as well as the company's reputation. Employee is a key element of the organization in running all of the activities of organization. Hence, work performance of the employees is a crucial factor in organizational success. The purpose of this study is to identify the factors that cause the increasing errors make by employees in the organization by using system dynamics approach. The broadly defined targets in this study are employees in the Regional Material Field team from purchasing department in power tools industries. Questionnaires were distributed to the respondents to obtain their perceptions on the root cause of errors make by employees in the company. The system dynamics model was developed to simulate the factor of the increasing errors make by employees and its impact. The findings of this study showed that the increasing of error make by employees was generally caused by the factors of workload, work capacity, job stress, motivation and performance of employees. However, this problem could be solve by increased the number of employees in the organization.

  3. Scenario-Based Training on Human Errors Contributing to Security Incidents

    Energy Technology Data Exchange (ETDEWEB)

    Greitzer, Frank L.; Pond, Daniel J.; Jannotta, Marjorie

    2004-12-06

    Error assessment studies reveal that ''human errors'' are often the consequence of unsuitable environmental factors, ineffective systems, inappropriate task conditions, and individual actions or failures to act. The US Department of Energy (DOE) initiated a program to determine if system-induced human errors could also be contributing factors to security incidents. As the seminal basis for this work, the Enhanced Security Through Human Error Reduction (ESTHER) program at Los Alamos National Laboratory (LANL) produced a contributing factors data set and systems categorization for security related incidents attributed to human error. This material supports the development and delivery of training for security incident inquiry officials. While LANL's initial work focused on classroom training, a collaborative effort between LANL and Pacific Northwest National Laboratory (PNNL) has focused on delivering interactive e-Learning training applications based on ESTHER principles. Through training, inquiry officials will understand and be capable of applying the underlying human error control concepts to new or novel situations. Their performance requires a high degree of analysis and judgment to accomplish the associated cognitive and procedural tasks. To meet this requirement, we employed cognitive principles of instructional design to engage the learner in interactive, realistic, problem-centered activity; we constructed scenarios within a guided-discovery framework; and we utilized learner-centered developmental sequences leading to field application. To enhance the relevance and realism of the training experience, we employed 3-D modeling technologies in constructing interactive scenarios. This paper describes the application of cognitive learning principles, use of varied media, and the implementation challenges in developing a technology-rich, interactive security incident training program that includes Web-based training.

  4. Evaluation and Management of Human Errors in Critical Processes of Hospital Using the Extended CREAM Technique

    Directory of Open Access Journals (Sweden)

    Iraj Mohammadfam

    2017-07-01

    Full Text Available Medical errors result in serious and often-preventable problems for patients. Human errors can be used as an opportunity for learning as well as a key factor for patients’ safety improvement and quality of patients' surveillance in hospitals. The aim of the present study was to identify and evaluate human errors to help reduce risks among personnel who render health services during critical hospital processes. This cross-sectional study was done in the Besat hospital in Hamedan in 2016. At first, the critical processes were selected via given scores in Delphi method and by multiplying the scores of each of the five criteria including the severity of the consequences caused by error incidence, probability of error, capability of the error detection, task repeatability and type of hospital ward with each other. Determining the risk numbers of each process, three ones were chosen with the largest scores. At the end, the selected processes were analyzed by the method of extended CREAM. The results showed that the highest CFP is associated with the CPR process, particularly in the sub-stage of command of starting CPR by anesthesiologists (0.0891, the one in the giving medicine process is in the sub-stage of calculating of medicine dozes and determining prescription methods (0.0796 and also the one in the tracheal intubation process is in the sub-stages of pulmonary and respiratory monitoring of patients and observing the vocal cords and larynx of patients (0.0350. Regarding the critical consequences of human errors in the selected processes, reviewing the qualities of roles and responsibilities of each of the medical group members and providing specialized introduction for hospital processes seem necessary.

  5. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.

    Science.gov (United States)

    Krigolson, Olav E; Hassall, Cameron D; Handy, Todd C

    2014-03-01

    Our ability to make decisions is predicated upon our knowledge of the outcomes of the actions available to us. Reinforcement learning theory posits that actions followed by a reward or punishment acquire value through the computation of prediction errors-discrepancies between the predicted and the actual reward. A multitude of neuroimaging studies have demonstrated that rewards and punishments evoke neural responses that appear to reflect reinforcement learning prediction errors [e.g., Krigolson, O. E., Pierce, L. J., Holroyd, C. B., & Tanaka, J. W. Learning to become an expert: Reinforcement learning and the acquisition of perceptual expertise. Journal of Cognitive Neuroscience, 21, 1833-1840, 2009; Bayer, H. M., & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129-141, 2005; O'Doherty, J. P. Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769-776, 2004; Holroyd, C. B., & Coles, M. G. H. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679-709, 2002]. Here, we used the brain ERP technique to demonstrate that not only do rewards elicit a neural response akin to a prediction error but also that this signal rapidly diminished and propagated to the time of choice presentation with learning. Specifically, in a simple, learnable gambling task, we show that novel rewards elicited a feedback error-related negativity that rapidly decreased in amplitude with learning. Furthermore, we demonstrate the existence of a reward positivity at choice presentation, a previously unreported ERP component that has a similar timing and topography as the feedback error-related negativity that increased in amplitude with learning. The pattern of results we observed mirrored the output of a computational model that we implemented to compute reward

  6. A human error analysis methodology, AGAPE-ET, for emergency tasks in nuclear power plants and its application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Jung, Won Dea [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    This report presents a procedurised human reliability analysis (HRA) methodology, AGAPE-ET (A Guidance And Procedure for Human Error Analysis for Emergency Tasks), for both qualitative error analysis and quantification of human error probability (HEP) of emergency tasks in nuclear power plants. The AGAPE-ET is based on the simplified cognitive model. By each cognitive function, error causes or error-likely situations have been identified considering the characteristics of the performance of each cognitive function and influencing mechanism of PIFs on the cognitive function. Then, error analysis items have been determined from the identified error causes or error-likely situations to help the analysts cue or guide overall human error analysis. A human error analysis procedure based on the error analysis items is organised. The basic scheme for the quantification of HEP consists in the multiplication of the BHEP assigned by the error analysis item and the weight from the influencing factors decision tree (IFDT) constituted by cognitive function. The method can be characterised by the structured identification of the weak points of the task required to perform and the efficient analysis process that the analysts have only to carry out with the necessary cognitive functions. The report also presents the the application of AFAPE-ET to 31 nuclear emergency tasks and its results. 42 refs., 7 figs., 36 tabs. (Author)

  7. An Empirical Survey on the Role of Human Error in Marine Incidents

    Directory of Open Access Journals (Sweden)

    Abas Harati Mokhtari

    2013-09-01

    Full Text Available Error is a part of human. Despite that organizations are trying to reduce error to the zero level, this goal is unachievable. As far as human operation is taking place in a complicated environment, error will occurred, and its possibility would be increased under the conditions of stress, extra loading work, and fatigue. One of the most important transportation modes is marine transportations. The sea is an unsafe place that kills many by a simple event. Every year there are thousands of marine accidents that result in injuries, casualties, marine pollutions and also massive financial loss. To reduce the accidents, there should be more attention to the factors such as suitable training of human resource, proper implementation of national and international laws and regulations, vessels and the equipment on board them, port facilities, and also the utilities for marine search and rescue. In this research 1816 marine accidents have been studied in five Iranian shipping companies. 17 factors are known to be effective in occurrence of human error in these accidents. Four factors of the most influence are negligence, poor training, inadequate tools, and lack of skill and experience.

  8. The human fallibility of scientists : Dealing with error and bias in academic research

    NARCIS (Netherlands)

    Veldkamp, Coosje

    2017-01-01

    THE HUMAN FALLIBILITY OF SCIENTISTS Dealing with error and bias in academic research Recent studies have highlighted that not all published findings in the scientific lit¬erature are trustworthy, suggesting that currently implemented control mechanisms such as high standards for the reporting of

  9. Human error views : a framework for benchmarking organizations and measuring the distance between academia and industry

    NARCIS (Netherlands)

    Karanikas, Nektarios

    2015-01-01

    The paper presents a framework that through structured analysis of accident reports explores the differences between practice and academic literature as well amongst organizations regarding their views on human error. The framework is based on the hypothesis that the wording of accident reports

  10. Human error data collection as a precursor to the development of a human reliability assessment capability in air traffic management

    Energy Technology Data Exchange (ETDEWEB)

    Kirwan, Barry [Eurocontrol Experimental Centre, Centre des Bois des Bordes, BP15, F 91222 Bretigny (France)], E-mail: barry.kirwan@eurocontrol.int; Gibson, W. Huw [The University of Birmingham, Birmingham (United Kingdom); Hickling, Brian [Eurocontrol Experimental Centre, Centre des Bois des Bordes, BP15, F 91222 Bretigny (France)

    2008-02-15

    Quantified risk and safety assessments are now required for safety cases for European air traffic management (ATM) services. Since ATM is highly human-dependent for its safety, this suggests a need for formal human reliability assessment (HRA), as carried out in other industries such as nuclear power. Since the fundamental aspect of HRA is human error data, in the form of human error probabilities (HEPs), it was decided to take a first step towards development of an ATM HRA approach by deriving some HEPs in an ATM context. This paper reports a study, which collected HEPs via analysing the results of a real-time simulation involving air traffic controllers (ATCOs) and pilots, with a focus on communication errors. This study did indeed derive HEPs that were found to be concordant with other known communication human error data. This is a first step, and shows promise for HRA in ATM, since HEPs have been derived which could be used in safety assessments, although these HEPs are for only one (albeit critical) aspect of ATCOs' tasks (communications). The paper discusses options and potential ways forward for the development of a full HRA capability in ATM.

  11. Human vs. robot operator error in a needle-based navigation system for percutaneous liver interventions

    Science.gov (United States)

    Maier-Hein, Lena; Walsh, Conor J.; Seitel, Alexander; Hanumara, Nevan C.; Shepard, Jo-Anne; Franz, A. M.; Pianka, F.; Müller, Sascha A.; Schmied, Bruno; Slocum, Alexander H.; Gupta, Rajiv; Meinzer, Hans-Peter

    2009-02-01

    Computed tomography (CT) guided percutaneous punctures of the liver for cancer diagnosis and therapy (e.g. tumor biopsy, radiofrequency ablation) are well-established procedures in clinical routine. One of the main challenges related to these interventions is the accurate placement of the needle within the lesion. Several navigation concepts have been introduced to compensate for organ shift and deformation in real-time, yet, the operator error remains an important factor influencing the overall accuracy of the developed systems. The aim of this study was to investigate whether the operator error and, thus, the overall insertion error of an existing navigation system could be further reduced by replacing the user with the medical robot Robopsy. For this purpose, we performed navigated needle insertions in a static abdominal phantom as well as in a respiratory liver motion simulator and compared the human operator error with the targeting error performed by the robot. According to the results, the Robopsy driven needle insertion system is able to more accurately align the needle and insert it along its axis compared to a human operator. Integration of the robot into the current navigation system could thus improve targeting accuracy in clinical use.

  12. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas, E-mail: samiabrandao@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Campos, Tarcisio Passos Ribeiro de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2013-06-15

    Objective: comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and methods: simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results: intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively, on the healthy tissue, on the balloon periphery and on the /{sub 1} and /{sub 2} tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively on the healthy tissue, on the target tumor and on the /{sub 1} and /{sub 2} infiltration zones. Conclusion: Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones. (author)

  13. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Directory of Open Access Journals (Sweden)

    Samia de Freitas Brandao

    2013-07-01

    Full Text Available Objective Comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and Methods Simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results Intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h-1.p-1.s, respectively, on the healthy tissue, on the balloon periphery and on the I 1 and I 2 tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h-1.p-1.s, respectively on the healthy tissue, on the target tumor and on the I 1 and I 2 infiltration zones. Conclusion Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones.

  14. Human characteristics and limits from human error in aviation; Kokuki no hyuman era kara mita Ningen no tokusei to genkai

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, I. [Waseda Univ., Tokyo (Japan)

    1996-08-10

    Aircraft accidents must be examined from 5 viewpoints, man, machine, media, mission, and management. Errors and mistakes are incongruent phenomena occurring at the interface between man and environment or between man and machine. The problems of human factor in man-machine system are grouped into physiological, physical, pathological, pharmacological, psychological, and social psychological factors. The difference of the human cognitive property from that of the computer is the presence of control system which gives big effects on the information processing system. In other words, it is the presence of discord of the function of two types of brains. The SRK model, i.e. Rasmussen`s simplified model, divides human behavior into 3 steps of mastery, rule, and knowledge bases. Impatience, personal honor, royalty, high participative sense to organization, pride, exhaustion, monotony, tediousness, anger, and the state of emergency are the factors for the conditions which cause errors in human activity. 2 refs., 1 fig.

  15. SIMULATED HUMAN ERROR PROBABILITY AND ITS APPLICATION TO DYNAMIC HUMAN FAILURE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Herberger, Sarah M.; Boring, Ronald L.

    2016-10-01

    Abstract Objectives: Human reliability analysis (HRA) methods typically analyze human failure events (HFEs) at the overall task level. For dynamic HRA, it is important to model human activities at the subtask level. There exists a disconnect between dynamic subtask level and static task level that presents issues when modeling dynamic scenarios. For example, the SPAR-H method is typically used to calculate the human error probability (HEP) at the task level. As demonstrated in this paper, quantification in SPAR-H does not translate to the subtask level. Methods: Two different discrete distributions were generated for each SPAR-H Performance Shaping Factor (PSF) to define the frequency of PSF levels. The first distribution was a uniform, or uninformed distribution that assumed the frequency of each PSF level was equally likely. The second non-continuous distribution took the frequency of PSF level as identified from an assessment of the HERA database. These two different approaches were created to identify the resulting distribution of the HEP. The resulting HEP that appears closer to the known distribution, a log-normal centered on 1E-3, is the more desirable. Each approach then has median, average and maximum HFE calculations applied. To calculate these three values, three events, A, B and C are generated from the PSF level frequencies comprised of subtasks. The median HFE selects the median PSF level from each PSF and calculates HEP. The average HFE takes the mean PSF level, and the maximum takes the maximum PSF level. The same data set of subtask HEPs yields starkly different HEPs when aggregated to the HFE level in SPAR-H. Results: Assuming that each PSF level in each HFE is equally likely creates an unrealistic distribution of the HEP that is centered at 1. Next the observed frequency of PSF levels was applied with the resulting HEP behaving log-normally with a majority of the values under 2.5% HEP. The median, average and maximum HFE calculations did yield

  16. Development of an improved HRA method: A technique for human error analysis (ATHEANA)

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.H.; Luckas, W.J. [Brookhaven National Lab., Upton, NY (United States); Wreathall, J. [John Wreathall & Co., Dublin, OH (United States)] [and others

    1996-03-01

    Probabilistic risk assessment (PRA) has become an increasingly important tool in the nuclear power industry, both for the Nuclear Regulatory Commission (NRC) and the operating utilities. The NRC recently published a final policy statement, SECY-95-126, encouraging the use of PRA in regulatory activities. Human reliability analysis (HRA), while a critical element of PRA, has limitations in the analysis of human actions in PRAs that have long been recognized as a constraint when using PRA. In fact, better integration of HRA into the PRA process has long been a NRC issue. Of particular concern, has been the omission of errors of commission - those errors that are associated with inappropriate interventions by operators with operating systems. To address these concerns, the NRC identified the need to develop an improved HRA method, so that human reliability can be better represented and integrated into PRA modeling and quantification.

  17. Developing a Verification and Training Phantom for Gynecological Brachytherapy System

    Directory of Open Access Journals (Sweden)

    Mahbobeh Nazarnejad

    2012-03-01

    Full Text Available Introduction Dosimetric accuracy is a major issue in the quality assurance (QA program for treatment planning systems (TPS. An important contribution to this process has been a proper dosimetry method to guarantee the accuracy of delivered dose to the tumor. In brachytherapy (BT of gynecological (Gyn cancer it is usual to insert a combination of tandem and ovoid applicators with a complicated geometry which makes their dosimetry verification difficult and important. Therefore, evaluation and verification of dose distribution is necessary for accurate dose delivery to the patients. Materials and Methods The solid phantom was made from Perspex slabs as a tool for intracavitary brachytherapy dosimetric QA. Film dosimetry (EDR2 was done for a combination of ovoid and tandem applicators introduced by Flexitron brachytherapy system. Treatment planning was also done with Flexiplan 3D-TPS to irradiate films sandwiched between phantom slabs. Isodose curves obtained from treatment planning system and the films were compared with each other in 2D and 3D manners. Results The brachytherapy solid phantom was constructed with slabs. It was possible to insert tandems and ovoids loaded with radioactive source of Ir-192 subsequently. Relative error was 3-8.6% and average relative error was 5.08% in comparison with the films and TPS isodose curves. Conclusion Our results showed that the difference between TPS and the measurements is well within the acceptable boundaries and below the action level according to AAPM TG.45. Our findings showed that this phantom after minor corrections can be used as a method of choice for inter-comparison analysis of TPS and to fill the existing gap for accurate QA program in intracavitary brachytherapy. The constructed phantom also showed that it can be a valuable tool for verification of accurate dose delivery to the patients as well as training for brachytherapy residents and physics students.

  18. SU-E-T-635: Process Mapping of Eye Plaque Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, J; Kim, Y [University of Arizona, Tucson, AZ (United States)

    2015-06-15

    Purpose: To apply a risk-based assessment and analysis technique (AAPM TG 100) to eye plaque brachytherapy treatment of ocular melanoma. Methods: The role and responsibility of personnel involved in the eye plaque brachytherapy is defined for retinal specialist, radiation oncologist, nurse and medical physicist. The entire procedure was examined carefully. First, major processes were identified and then details for each major process were followed. Results: Seventy-one total potential modes were identified. Eight major processes (corresponding detailed number of modes) are patient consultation (2 modes), pretreatment tumor localization (11), treatment planning (13), seed ordering and calibration (10), eye plaque assembly (10), implantation (11), removal (11), and deconstruction (3), respectively. Half of the total modes (36 modes) are related to physicist while physicist is not involved in processes such as during the actual procedure of suturing and removing the plaque. Conclusion: Not only can failure modes arise from physicist-related procedures such as treatment planning and source activity calibration, but it can also exist in more clinical procedures by other medical staff. The improvement of the accurate communication for non-physicist-related clinical procedures could potentially be an approach to prevent human errors. More rigorous physics double check would reduce the error for physicist-related procedures. Eventually, based on this detailed process map, failure mode and effect analysis (FMEA) will identify top tiers of modes by ranking all possible modes with risk priority number (RPN). For those high risk modes, fault tree analysis (FTA) will provide possible preventive action plans.

  19. Human Error Probabilites (HEPs) for generic tasks and Performance Shaping Factors (PSFs) selected for railway operations

    DEFF Research Database (Denmark)

    Thommesen, Jacob; Andersen, Henning Boje

    at task level, which can be performed with fewer resources than a more detailed analysis of specific errors for each task. The generic tasks are presented with estimated Human Error Probabili-ties (HEPs) based on and extrapolated from the HRA literature, and estimates are compared with samples of measures...... on estimates derived from industries other than rail and the general warning that a task-based analysis is less precise than an error-based one. The authors recommend that estimates be adjusted to actual measures of task failures when feasible....... collaboration with Banedanmark. The estimates provided are based on HRA literature and primarily the HEART method, being recently been adapted for railway tasks by the British Rail Safety and Stan-dards Board (RSSB). The method presented in this report differs from the RSSB tool by supporting an analysis...

  20. MEASURING THE INFLUENCE OF TASK COMPLEXITY ON HUMAN ERROR PROBABILITY: AN EMPIRICAL EVALUATION

    Directory of Open Access Journals (Sweden)

    LUCA PODOFILLINI

    2013-04-01

    Full Text Available A key input for the assessment of Human Error Probabilities (HEPs with Human Reliability Analysis (HRA methods is the evaluation of the factors influencing the human performance (often referred to as Performance Shaping Factors, PSFs. In general, the definition of these factors and the supporting guidance are such that their evaluation involves significant subjectivity. This affects the repeatability of HRA results as well as the collection of HRA data for model construction and verification. In this context, the present paper considers the TAsk COMplexity (TACOM measure, developed by one of the authors to quantify the complexity of procedure-guided tasks (by the operating crew of nuclear power plants in emergency situations, and evaluates its use to represent (objectively and quantitatively task complexity issues relevant to HRA methods. In particular, TACOM scores are calculated for five Human Failure Events (HFEs for which empirical evidence on the HEPs (albeit with large uncertainty and influencing factors are available – from the International HRA Empirical Study. The empirical evaluation has shown promising results. The TACOM score increases as the empirical HEP of the selected HFEs increases. Except for one case, TACOM scores are well distinguished if related to different difficulty categories (e.g., “easy” vs. “somewhat difficult”, while values corresponding to tasks within the same category are very close. Despite some important limitations related to the small number of HFEs investigated and the large uncertainty in their HEPs, this paper presents one of few attempts to empirically study the effect of a performance shaping factor on the human error probability. This type of study is important to enhance the empirical basis of HRA methods, to make sure that 1 the definitions of the PSFs cover the influences important for HRA (i.e., influencing the error probability, and 2 the quantitative relationships among PSFs and error

  1. Human error in medical practice: an unavoidable presence El error en la práctica médica: una presencia ineludible

    Directory of Open Access Journals (Sweden)

    Gladis Adriana Vélez Álvarez

    2006-01-01

    Full Text Available Making mistakes is a human characteristic and a mechanism to learn, but at the same time it may become a threat to human beings in some scenarios. Aviation and Medicine are good examples of this. Some data are presented about the frequency of error in Medicine, its ubiquity and the circumstances that favor it. A reflection is done about how the error is being managed and why it is not more often discussed. It is proposed that the first step in learning from an error is to accept it as an unavoidable presence. El errar, que es una característica humana y un mecanismo de aprendizaje, se convierte en una amenaza para el hombre mismo en algunos escenarios como la aviación y la medicina. Se presentan algunos datos acerca de la frecuencia del error en medicina, su ubicuidad y las circunstancias que lo favorecen, y se hace una reflexión acerca de cómo se ha enfrentado el error y de por qué no se habla abiertamente del mismo. Se propone que el primer paso para aprender del error es aceptarlo como una presencia ineludible.

  2. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources.

    Science.gov (United States)

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-03-01

    The goal of this work is to compare D(m,m) (radiation transported in medium; dose scored in medium) and D(w,m) (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether ap plying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: 125I, 103Pd, and 131Cs seeds, as well as an EBS operating at 50 kV. Ratios of D(w,m) over D(m,m) are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using 103Pd) and prostate (using 125I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D90 values are compared for D(w,m) and D(m,m). (1) Differences (D(w,m)/D(m,m)-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D(w,m)/D(m,m) is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D90(w,m) over D90(m,m) for clinical implants matches D(w,m)/D(m,m) at 1 cm from the single point sources, Given

  3. Human error considerations and annunciator effects in determining optimal test intervals for periodically inspected standby systems

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, T.P.; Martz, H.F.

    1981-01-01

    This paper incorporates the effects of four types of human error in a model for determining the optimal time between periodic inspections which maximizes the steady state availability for standby safety systems. Such safety systems are characteristic of nuclear power plant operations. The system is modeled by means of an infinite state-space Markov chain. Purpose of the paper is to demonstrate techniques for computing steady-state availability A and the optimal periodic inspection interval tau* for the system. The model can be used to investigate the effects of human error probabilities on optimal availability, study the benefits of annunciating the standby-system, and to determine optimal inspection intervals. Several examples which are representative of nuclear power plant applications are presented.

  4. The Role of Human Error in Design, Construction, and Reliability of Marine Structures.

    Science.gov (United States)

    1994-10-01

    Management Systems Assessment ( LACA ) (SAMSA) 287 Role of Human Error In Refiabihty of Marine Structures zCa zq ýWx zU<UW z lCA L--!-J zZ F. 0 OZ W Exq Ot 4-j...assessment module relative to each other, e.g., how GEFA, LOCA, VESA, LACA , OHFA, RIRA, LISA and SAMSA should be considered on a comparative basis. 5

  5. Sample Size Bounding and Context Ranking as Approaches to the Human Error Quantification Problem

    Energy Technology Data Exchange (ETDEWEB)

    Reer, B

    2004-03-01

    The paper describes a technique denoted as Sub-Sample-Size Bounding (SSSB), which is useable for the statistical derivation of context-specific probabilities from data available in existing reports on operating experience. Applications to human reliability analysis (HRA) are emphasised in the presentation of this technique. Exemplified by a sample of 180 abnormal event sequences, the manner in which SSSB can provide viable input for the quantification of errors of commission (EOCs) are outlined. (author)

  6. Intraoperative localization of brachytherapy implants using intensity-based registration

    Science.gov (United States)

    KarimAghaloo, Z.; Abolmaesumi, P.; Ahmidi, N.; Chen, T. K.; Gobbi, D. G.; Fichtinger, G.

    2009-02-01

    In prostate brachytherapy, a transrectal ultrasound (TRUS) will show the prostate boundary but not all the implanted seeds, while fluoroscopy will show all the seeds clearly but not the boundary. We propose an intensity-based registration between TRUS images and the implant reconstructed from fluoroscopy as a means of achieving accurate intra-operative dosimetry. The TRUS images are first filtered and compounded, and then registered to the fluoroscopy model via mutual information. A training phantom was implanted with 48 seeds and imaged. Various ultrasound filtering techniques were analyzed, and the best results were achieved with the Bayesian combination of adaptive thresholding, phase congruency, and compensation for the non-uniform ultrasound beam profile in the elevation and lateral directions. The average registration error between corresponding seeds relative to the ground truth was 0.78 mm. The effect of false positives and false negatives in ultrasound were investigated by masking true seeds in the fluoroscopy volume or adding false seeds. The registration error remained below 1.01 mm when the false positive rate was 31%, and 0.96 mm when the false negative rate was 31%. This fully automated method delivers excellent registration accuracy and robustness in phantom studies, and promises to demonstrate clinically adequate performance on human data as well.

  7. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    Science.gov (United States)

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  8. New era of electronic brachytherapy.

    Science.gov (United States)

    Ramachandran, Prabhakar

    2017-04-28

    Traditional brachytherapy refers to the placement of radioactive sources on or inside the cancer tissues. Based on the type of sources, brachytherapy can be classified as radionuclide and electronic brachytherapy. Electronic brachytherapy uses miniaturized X-ray sources instead of radionuclides to deliver high doses of radiation. The advantages of electronic brachytherapy include low dose to organs at risk, reduced dose to treating staff, no leakage radiation in off state, less shielding, and no radioactive waste. Most of these systems operate between 50 and 100 kVp and are widely used in the treatment of skin cancer. Intrabeam, Xoft and Papillon systems are also used in the treatment of intra-operative radiotherapy to breast in addition to other treatment sites. The rapid fall-off in the dose due to its low energy is a highly desirable property in brachytherapy and results in a reduced dose to the surrounding normal tissues compared to the Ir-192 source. The Xoft Axxent brachytherapy system uses a 2.25 mm miniaturized X-ray tube and the source almost mimics the high dose rate Ir-192 source in terms of dose rate and it is the only electronic brachytherapy system specifically used in the treatment of cervical cancers. One of the limiting factors that impede the use of electronic brachytherapy for interstitial application is the source dimension. However, it is highly anticipated that the design of miniaturized X-ray tube closer to the dimension of an Ir-192 wire is not too far away, and the new era of electronic brachytherapy has just begun.

  9. New era of electronic brachytherapy

    Science.gov (United States)

    Ramachandran, Prabhakar

    2017-01-01

    Traditional brachytherapy refers to the placement of radioactive sources on or inside the cancer tissues. Based on the type of sources, brachytherapy can be classified as radionuclide and electronic brachytherapy. Electronic brachytherapy uses miniaturized X-ray sources instead of radionuclides to deliver high doses of radiation. The advantages of electronic brachytherapy include low dose to organs at risk, reduced dose to treating staff, no leakage radiation in off state, less shielding, and no radioactive waste. Most of these systems operate between 50 and 100 kVp and are widely used in the treatment of skin cancer. Intrabeam, Xoft and Papillon systems are also used in the treatment of intra-operative radiotherapy to breast in addition to other treatment sites. The rapid fall-off in the dose due to its low energy is a highly desirable property in brachytherapy and results in a reduced dose to the surrounding normal tissues compared to the Ir-192 source. The Xoft Axxent brachytherapy system uses a 2.25 mm miniaturized X-ray tube and the source almost mimics the high dose rate Ir-192 source in terms of dose rate and it is the only electronic brachytherapy system specifically used in the treatment of cervical cancers. One of the limiting factors that impede the use of electronic brachytherapy for interstitial application is the source dimension. However, it is highly anticipated that the design of miniaturized X-ray tube closer to the dimension of an Ir-192 wire is not too far away, and the new era of electronic brachytherapy has just begun. PMID:28529679

  10. Does the A-not-B error in adult pet dogs indicate sensitivity to human communication?

    Science.gov (United States)

    Kis, Anna; Topál, József; Gácsi, Márta; Range, Friederike; Huber, Ludwig; Miklósi, Adám; Virányi, Zsófia

    2012-07-01

    Recent dog-infant comparisons have indicated that the experimenter's communicative signals in object hide-and-search tasks increase the probability of perseverative (A-not-B) errors in both species (Topál et al. 2009). These behaviourally similar results, however, might reflect different mechanisms in dogs and in children. Similar errors may occur if the motor response of retrieving the object during the A trials cannot be inhibited in the B trials or if the experimenter's movements and signals toward the A hiding place in the B trials ('sham-baiting') distract the dogs' attention. In order to test these hypotheses, we tested dogs similarly to Topál et al. (2009) but eliminated the motor search in the A trials and 'sham-baiting' in the B trials. We found that neither an inability to inhibit previously rewarded motor response nor insufficiencies in their working memory and/or attention skills can explain dogs' erroneous choices. Further, we replicated the finding that dogs have a strong tendency to commit the A-not-B error after ostensive-communicative hiding and demonstrated the crucial effect of socio-communicative cues as the A-not-B error diminishes when location B is ostensively enhanced. These findings further support the hypothesis that the dogs' A-not-B error may reflect a special sensitivity to human communicative cues. Such object-hiding and search tasks provide a typical case for how susceptibility to human social signals could (mis)lead domestic dogs.

  11. Empirical Analysis of Errors on Human-Generated Learning Objects Metadata

    Science.gov (United States)

    Cechinel, Cristian; Sánchez-Alonso, Salvador; Sicilia, Miguel Ángel

    Learning object metadata is considered crucial for the right management of learning objects stored in public repositories. Search operations, in particular, rely on the quality of these metadata as an essential precondition for finding results adequate to users requirements and needs. However, learning object metadata are not always reliable, as many factors have a negative influence in metadata quality (human annotators not having the minimum skills, unvoluntary mistakes, lack of information, for instance). This paper analyses human-generated learning object metadata records described according to the IEEE LOM standard, identifies the most significant errors committed and points out which parts of the standard should be improved for the sake of quality.

  12. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    Science.gov (United States)

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  13. A system engineer's Perspective on Human Errors For a more Effective Management of Human Factors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong-Hee; Jang, Tong-Il; Lee, Soo-Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    The management of human factors in nuclear power plants (NPPs) has become one of the burden factors during their operating period after the design and construction period. Almost every study on the major accidents emphasizes the prominent importance of the human errors. Regardless of the regulatory requirements such as Periodic Safety Review, the management of human factors would be a main issue to reduce the human errors and to enhance the performance of plants. However, it is not easy to find out a more effective perspective on human errors to establish the engineering implementation plan for preventing them. This paper describes a system engineer's perspectives on human errors and discusses its application to the recent study on the human error events in Korean NPPs.

  14. APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans

    Science.gov (United States)

    Verhoeven, Virginie J. M.; Hysi, Pirro G.; Wojciechowski, Robert; Singh, Pawan Kumar; Kumar, Ashok; Thinakaran, Gopal; Williams, Cathy

    2015-01-01

    Myopia is the most common vision disorder and the leading cause of visual impairment worldwide. However, gene variants identified to date explain less than 10% of the variance in refractive error, leaving the majority of heritability unexplained (“missing heritability”). Previously, we reported that expression of APLP2 was strongly associated with myopia in a primate model. Here, we found that low-frequency variants near the 5’-end of APLP2 were associated with refractive error in a prospective UK birth cohort (n = 3,819 children; top SNP rs188663068, p = 5.0 × 10−4) and a CREAM consortium panel (n = 45,756 adults; top SNP rs7127037, p = 6.6 × 10−3). These variants showed evidence of differential effect on childhood longitudinal refractive error trajectories depending on time spent reading (gene x time spent reading x age interaction, p = 4.0 × 10−3). Furthermore, Aplp2 knockout mice developed high degrees of hyperopia (+11.5 ± 2.2 D, p myopia (F(2, 33) = 191.0, p myopia genes, demonstrating the importance of a low-frequency gene variant in the development of human myopia. It also demonstrates an important role for APLP2 in refractive development in mice and humans, suggesting a high level of evolutionary conservation of the signaling pathways underlying refractive eye development. PMID:26313004

  15. (106)Ruthenium brachytherapy for retinoblastoma.

    Science.gov (United States)

    Abouzeid, Hana; Moeckli, Raphaël; Gaillard, Marie-Claire; Beck-Popovic, Maja; Pica, Alessia; Zografos, Leonidas; Balmer, Aubin; Pampallona, Sandro; Munier, Francis L

    2008-07-01

    To evaluate the efficacy of (106)Ru plaque brachytherapy for the treatment of retinoblastoma. We reviewed a retrospective, noncomparative case series of 39 children with retinoblastoma treated with (106)Ru plaques at the Jules-Gonin Eye Hospital between October 1992 and July 2006, with 12 months of follow-up. A total of 63 tumors were treated with (106)Ru brachytherapy in 41 eyes. The median patient age was 27 months. (106)Ru brachytherapy was the first-line treatment for 3 tumors (4.8%), second-line treatment for 13 (20.6%), and salvage treatment for 47 tumors (74.6%) resistant to other treatment modalities. Overall tumor control was achieved in 73% at 1 year. Tumor recurrence at 12 months was observed in 2 (12.5%) of 16 tumors for which (106)Ru brachytherapy was used as the first- or second-line treatment and in 15 (31.9%) of 47 tumors for which (106)Ru brachytherapy was used as salvage treatment. Eye retention was achieved in 76% of cases (31 of 41 eyes). Univariate and multivariate analyses revealed no statistically significant risk factors for tumor recurrence. Radiation complications included retinal detachment in 7 (17.1%), proliferative retinopathy in 1 (2.4%), and subcapsular cataract in 4 (9.7%) of 41 eyes. (106)Ru brachytherapy is an effective treatment for retinoblastoma, with few secondary complications. Local vitreous seeding can be successfully treated with (106)Ru brachytherapy.

  16. Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans.

    Directory of Open Access Journals (Sweden)

    Fernando Racimo

    2016-04-01

    Full Text Available When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s. Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters-including drift times and admixture rates-for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African. The method is implemented in a C++ program called 'Demographic Inference with Contamination and Error' (DICE. We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X, we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%.

  17. Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans.

    Science.gov (United States)

    Racimo, Fernando; Renaud, Gabriel; Slatkin, Montgomery

    2016-04-01

    When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters-including drift times and admixture rates-for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called 'Demographic Inference with Contamination and Error' (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%.

  18. Faces in places: humans and machines make similar face detection errors.

    Directory of Open Access Journals (Sweden)

    Bernard Marius 't Hart

    Full Text Available The human visual system seems to be particularly efficient at detecting faces. This efficiency sometimes comes at the cost of wrongfully seeing faces in arbitrary patterns, including famous examples such as a rock configuration on Mars or a toast's roast patterns. In machine vision, face detection has made considerable progress and has become a standard feature of many digital cameras. The arguably most wide-spread algorithm for such applications ("Viola-Jones" algorithm achieves high detection rates at high computational efficiency. To what extent do the patterns that the algorithm mistakenly classifies as faces also fool humans? We selected three kinds of stimuli from real-life, first-person perspective movies based on the algorithm's output: correct detections ("real faces", false positives ("illusory faces" and correctly rejected locations ("non faces". Observers were shown pairs of these for 20 ms and had to direct their gaze to the location of the face. We found that illusory faces were mistaken for faces more frequently than non faces. In addition, rotation of the real face yielded more errors, while rotation of the illusory face yielded fewer errors. Using colored stimuli increases overall performance, but does not change the pattern of results. When replacing the eye movement by a manual response, however, the preference for illusory faces over non faces disappeared. Taken together, our data show that humans make similar face-detection errors as the Viola-Jones algorithm, when directing their gaze to briefly presented stimuli. In particular, the relative spatial arrangement of oriented filters seems of relevance. This suggests that efficient face detection in humans is likely to be pre-attentive and based on rather simple features as those encoded in the early visual system.

  19. Results of a nuclear power plant application of A New Technique for Human Error Analysis (ATHEANA)

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, D.W.; Forester, J.A. [Sandia National Labs., Albuquerque, NM (United States); Bley, D.C. [Buttonwood Consulting, Inc. (United States)] [and others

    1998-03-01

    A new method to analyze human errors has been demonstrated at a pressurized water reactor (PWR) nuclear power plant. This was the first application of the new method referred to as A Technique for Human Error Analysis (ATHEANA). The main goals of the demonstration were to test the ATHEANA process as described in the frame-of-reference manual and the implementation guideline, test a training package developed for the method, test the hypothesis that plant operators and trainers have significant insight into the error-forcing-contexts (EFCs) that can make unsafe actions (UAs) more likely, and to identify ways to improve the method and its documentation. A set of criteria to evaluate the success of the ATHEANA method as used in the demonstration was identified. A human reliability analysis (HRA) team was formed that consisted of an expert in probabilistic risk assessment (PRA) with some background in HRA (not ATHEANA) and four personnel from the nuclear power plant. Personnel from the plant included two individuals from their PRA staff and two individuals from their training staff. Both individuals from training are currently licensed operators and one of them was a senior reactor operator on shift until a few months before the demonstration. The demonstration was conducted over a 5-month period and was observed by members of the Nuclear Regulatory Commission`s ATHEANA development team, who also served as consultants to the HRA team when necessary. Example results of the demonstration to date, including identified human failure events (HFEs), UAs, and EFCs are discussed. Also addressed is how simulator exercises are used in the ATHEANA demonstration project.

  20. Faces in places: humans and machines make similar face detection errors.

    Science.gov (United States)

    't Hart, Bernard Marius; Abresch, Tilman Gerrit Jakob; Einhäuser, Wolfgang

    2011-01-01

    The human visual system seems to be particularly efficient at detecting faces. This efficiency sometimes comes at the cost of wrongfully seeing faces in arbitrary patterns, including famous examples such as a rock configuration on Mars or a toast's roast patterns. In machine vision, face detection has made considerable progress and has become a standard feature of many digital cameras. The arguably most wide-spread algorithm for such applications ("Viola-Jones" algorithm) achieves high detection rates at high computational efficiency. To what extent do the patterns that the algorithm mistakenly classifies as faces also fool humans? We selected three kinds of stimuli from real-life, first-person perspective movies based on the algorithm's output: correct detections ("real faces"), false positives ("illusory faces") and correctly rejected locations ("non faces"). Observers were shown pairs of these for 20 ms and had to direct their gaze to the location of the face. We found that illusory faces were mistaken for faces more frequently than non faces. In addition, rotation of the real face yielded more errors, while rotation of the illusory face yielded fewer errors. Using colored stimuli increases overall performance, but does not change the pattern of results. When replacing the eye movement by a manual response, however, the preference for illusory faces over non faces disappeared. Taken together, our data show that humans make similar face-detection errors as the Viola-Jones algorithm, when directing their gaze to briefly presented stimuli. In particular, the relative spatial arrangement of oriented filters seems of relevance. This suggests that efficient face detection in humans is likely to be pre-attentive and based on rather simple features as those encoded in the early visual system.

  1. Human-simulation-based learning to prevent medication error: A systematic review.

    Science.gov (United States)

    Sarfati, Laura; Ranchon, Florence; Vantard, Nicolas; Schwiertz, Vérane; Larbre, Virginie; Parat, Stéphanie; Faudel, Amélie; Rioufol, Catherine

    2018-01-31

    In the past 2 decades, there has been an increasing interest in simulation-based learning programs to prevent medication error (ME). To improve knowledge, skills, and attitudes in prescribers, nurses, and pharmaceutical staff, these methods enable training without directly involving patients. However, best practices for simulation for healthcare providers are as yet undefined. By analysing the current state of experience in the field, the present review aims to assess whether human simulation in healthcare helps to reduce ME. A systematic review was conducted on Medline from 2000 to June 2015, associating the terms "Patient Simulation," "Medication Errors," and "Simulation Healthcare." Reports of technology-based simulation were excluded, to focus exclusively on human simulation in nontechnical skills learning. Twenty-one studies assessing simulation-based learning programs were selected, focusing on pharmacy, medicine or nursing students, or concerning programs aimed at reducing administration or preparation errors, managing crises, or learning communication skills for healthcare professionals. The studies varied in design, methodology, and assessment criteria. Few demonstrated that simulation was more effective than didactic learning in reducing ME. This review highlights a lack of long-term assessment and real-life extrapolation, with limited scenarios and participant samples. These various experiences, however, help in identifying the key elements required for an effective human simulation-based learning program for ME prevention: ie, scenario design, debriefing, and perception assessment. The performance of these programs depends on their ability to reflect reality and on professional guidance. Properly regulated simulation is a good way to train staff in events that happen only exceptionally, as well as in standard daily activities. By integrating human factors, simulation seems to be effective in preventing iatrogenic risk related to ME, if the program is

  2. A method for verification of treatment times for high-dose-rate intraluminal brachytherapy treatment

    Directory of Open Access Journals (Sweden)

    Muhammad Asghar Gadhi

    2016-06-01

    Full Text Available Purpose: This study was aimed to increase the quality of high dose rate (HDR intraluminal brachytherapy treatment. For this purpose, an easy, fast and accurate patient-specific quality assurance (QA tool has been developed. This tool has been implemented at Bahawalpur Institute of Nuclear Medicine and Oncology (BINO, Bahawalpur, Pakistan.Methods: ABACUS 3.1 Treatment planning system (TPS has been used for treatment planning and calculation of total dwell time and then results were compared with the time calculated using the proposed method. This method has been used to verify the total dwell time for different rectum applicators for relevant treatment lengths (2-7 cm and depths (1.5-2.5 cm, different oesophagus applicators of relevant treatment lengths (6-10 cm and depths (0.9 & 1.0 cm, and a bronchus applicator for relevant treatment lengths (4-7.5 cm and depth (0.5 cm.Results: The average percentage differences between treatment time TM with manual calculation and as calculated by the TPS is 0.32% (standard deviation 1.32% for rectum, 0.24% (standard deviation 2.36% for oesophagus and 1.96% (standard deviation 0.55% for bronchus, respectively. These results advocate that the proposed method is valuable for independent verification of patient-specific treatment planning QA.Conclusion: The technique illustrated in the current study is an easy, simple, quick and useful for independent verification of the total dwell time for HDR intraluminal brachytherapy. Our method is able to identify human error-related planning mistakes and to evaluate the quality of treatment planning. It enhances the quality of brachytherapy treatment and reliability of the system.

  3. Post-event human decision errors: operator action tree/time reliability correlation

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R E; Fragola, J; Wreathall, J

    1982-11-01

    This report documents an interim framework for the quantification of the probability of errors of decision on the part of nuclear power plant operators after the initiation of an accident. The framework can easily be incorporated into an event tree/fault tree analysis. The method presented consists of a structure called the operator action tree and a time reliability correlation which assumes the time available for making a decision to be the dominating factor in situations requiring cognitive human response. This limited approach decreases the magnitude and complexity of the decision modeling task. Specifically, in the past, some human performance models have attempted prediction by trying to emulate sequences of human actions, or by identifying and modeling the information processing approach applicable to the task. The model developed here is directed at describing the statistical performance of a representative group of hypothetical individuals responding to generalized situations.

  4. Development of the Human Error Management Criteria and the Job Aptitude Evaluation Criteria for Rail Safety Personnel

    Energy Technology Data Exchange (ETDEWEB)

    Koo, In Soo; Seo, Sang Mun; Park, Geun Ok (and others)

    2008-08-15

    It has been estimated that up to 90% of all workplace accidents have human error as a cause. Human error has been widely recognized as a key factor in almost all the highly publicized accidents, including Daegu subway fire of February 18, 2003 killed 198 people and injured 147. Because most human behavior is 'unintentional', carried out automatically, root causes of human error should be carefully investigated and regulated by a legal authority. The final goal of this study is to set up some regulatory guidance that are supposed to be used by the korean rail organizations related to safety managements and the contents are : - to develop the regulatory guidance for managing human error, - to develop the regulatory guidance for managing qualifications of rail drivers - to develop the regulatory guidance for evaluating the aptitude of the safety-related personnel.

  5. Multidisciplinary framework for human reliability analysis with an application to errors of commission and dependencies

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, M.T.; Luckas, W.J. [Brookhaven National Lab., Upton, NY (United States); Wreathall, J. [Wreathall (John) and Co., Dublin, OH (United States); Cooper, S.E. [Science Applications International Corp., Reston, VA (United States); Bley, D.C. [PLG, Inc., Newport Beach, CA (United States); Ramey-Smith, A. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

    1995-08-01

    Since the early 1970s, human reliability analysis (HRA) has been considered to be an integral part of probabilistic risk assessments (PRAs). Nuclear power plant (NPP) events, from Three Mile Island through the mid-1980s, showed the importance of human performance to NPP risk. Recent events demonstrate that human performance continues to be a dominant source of risk. In light of these observations, the current limitations of existing HRA approaches become apparent when the role of humans is examined explicitly in the context of real NPP events. The development of new or improved HRA methodologies to more realistically represent human performance is recognized by the Nuclear Regulatory Commission (NRC) as a necessary means to increase the utility of PRAS. To accomplish this objective, an Improved HRA Project, sponsored by the NRC`s Office of Nuclear Regulatory Research (RES), was initiated in late February, 1992, at Brookhaven National Laboratory (BNL) to develop an improved method for HRA that more realistically assesses the human contribution to plant risk and can be fully integrated with PRA. This report describes the research efforts including the development of a multidisciplinary HRA framework, the characterization and representation of errors of commission, and an approach for addressing human dependencies. The implications of the research and necessary requirements for further development also are discussed.

  6. Using human error theory to explore the supply of non-prescription medicines from community pharmacies.

    Science.gov (United States)

    Watson, M C; Bond, C M; Johnston, M; Mearns, K

    2006-08-01

    The importance of theory in underpinning interventions to promote effective professional practice is gaining recognition. The Medical Research Council framework for complex interventions has assisted in promoting awareness and adoption of theory into study design. Human error theory has previously been used by high risk industries but its relevance to healthcare settings and patient safety requires further investigation. This study used this theory as a framework to explore non-prescription medicine supply from community pharmacies. The relevance to other healthcare settings and behaviours is discussed. A 25% random sample was made of 364 observed consultations for non-prescription medicines. Each of the 91 consultations was assessed by two groups: a consensus group (stage 1) to identify common problems with the consultation process, and an expert group (stages 2 and 3) to apply human error theory to these consultations. Paired assessors (most of whom were pharmacists) categorised the perceived problems occurring in each consultation (stage 1). During stage 2 paired assessors from an expert group (comprising patient safety experts, community pharmacists and psychologists) considered whether each consultation was compliant with professional guidelines for the supply of pharmacy medicines. Each non-compliant consultation identified during stage 2 was then categorised as a slip/lapse, mistake, or violation using human error theory (stage 3). During stage 1 most consultations (n = 75, 83%) were deemed deficient in information exchange. At stage 2, paired assessors varied in attributing non-compliance to specific error types. Where agreement was achieved, the error type most often selected was "violation" (n = 27, 51.9%, stage 3). Consultations involving product requests were less likely to be guideline compliant than symptom presentations (OR 0.30, 95% CI 0.10 to 0.95, p = 0.05). The large proportion of consultations classified as violations suggests that either

  7. Using human error theory to explore the supply of non‐prescription medicines from community pharmacies

    Science.gov (United States)

    Watson, M C; Bond, C M; Johnston, M; Mearns, K

    2006-01-01

    Background The importance of theory in underpinning interventions to promote effective professional practice is gaining recognition. The Medical Research Council framework for complex interventions has assisted in promoting awareness and adoption of theory into study design. Human error theory has previously been used by high risk industries but its relevance to healthcare settings and patient safety requires further investigation. This study used this theory as a framework to explore non‐prescription medicine supply from community pharmacies. The relevance to other healthcare settings and behaviours is discussed. Method A 25% random sample was made of 364 observed consultations for non‐prescription medicines. Each of the 91 consultations was assessed by two groups: a consensus group (stage 1) to identify common problems with the consultation process, and an expert group (stages 2 and 3) to apply human error theory to these consultations. Paired assessors (most of whom were pharmacists) categorised the perceived problems occurring in each consultation (stage 1). During stage 2 paired assessors from an expert group (comprising patient safety experts, community pharmacists and psychologists) considered whether each consultation was compliant with professional guidelines for the supply of pharmacy medicines. Each non‐compliant consultation identified during stage 2 was then categorised as a slip/lapse, mistake, or violation using human error theory (stage 3). Results During stage 1 most consultations (n = 75, 83%) were deemed deficient in information exchange. At stage 2, paired assessors varied in attributing non‐compliance to specific error types. Where agreement was achieved, the error type most often selected was “violation” (n = 27, 51.9%, stage 3). Consultations involving product requests were less likely to be guideline compliant than symptom presentations (OR 0.30, 95% CI 0.10 to 0.95, p = 0.05). Conclusions The large proportion of

  8. On the Orientation Error of IMU: Investigating Static and Dynamic Accuracy Targeting Human Motion.

    Science.gov (United States)

    Ricci, Luca; Taffoni, Fabrizio; Formica, Domenico

    2016-01-01

    The accuracy in orientation tracking attainable by using inertial measurement units (IMU) when measuring human motion is still an open issue. This study presents a systematic quantification of the accuracy under static conditions and typical human dynamics, simulated by means of a robotic arm. Two sensor fusion algorithms, selected from the classes of the stochastic and complementary methods, are considered. The proposed protocol implements controlled and repeatable experimental conditions and validates accuracy for an extensive set of dynamic movements, that differ in frequency and amplitude of the movement. We found that dynamic performance of the tracking is only slightly dependent on the sensor fusion algorithm. Instead, it is dependent on the amplitude and frequency of the movement and a major contribution to the error derives from the orientation of the rotation axis w.r.t. the gravity vector. Absolute and relative errors upper bounds are found respectively in the range [0.7° ÷ 8.2°] and [1.0° ÷ 10.3°]. Alongside dynamic, static accuracy is thoroughly investigated, also with an emphasis on convergence behavior of the different algorithms. Reported results emphasize critical issues associated with the use of this technology and provide a baseline level of performance for the human motion related application.

  9. On the Orientation Error of IMU: Investigating Static and Dynamic Accuracy Targeting Human Motion.

    Directory of Open Access Journals (Sweden)

    Luca Ricci

    Full Text Available The accuracy in orientation tracking attainable by using inertial measurement units (IMU when measuring human motion is still an open issue. This study presents a systematic quantification of the accuracy under static conditions and typical human dynamics, simulated by means of a robotic arm. Two sensor fusion algorithms, selected from the classes of the stochastic and complementary methods, are considered. The proposed protocol implements controlled and repeatable experimental conditions and validates accuracy for an extensive set of dynamic movements, that differ in frequency and amplitude of the movement. We found that dynamic performance of the tracking is only slightly dependent on the sensor fusion algorithm. Instead, it is dependent on the amplitude and frequency of the movement and a major contribution to the error derives from the orientation of the rotation axis w.r.t. the gravity vector. Absolute and relative errors upper bounds are found respectively in the range [0.7° ÷ 8.2°] and [1.0° ÷ 10.3°]. Alongside dynamic, static accuracy is thoroughly investigated, also with an emphasis on convergence behavior of the different algorithms. Reported results emphasize critical issues associated with the use of this technology and provide a baseline level of performance for the human motion related application.

  10. Determining The Factors Causing Human Error Deficiencies At A Public Utility Company

    Directory of Open Access Journals (Sweden)

    F. W. Badenhorst

    2004-11-01

    Full Text Available According to Neff (1977, as cited by Bergh (1995, the westernised culture considers work important for industrial mental health. Most individuals experience work positively, which creates a positive attitude. Should this positive attitude be inhibited, workers could lose concentration and become bored, potentially resulting in some form of human error. The aim of this research was to determine the factors responsible for human error events, which lead to power supply failures at Eskom power stations. Proposals were made for the reduction of these contributing factors towards improving plant performance. The target population was 700 panel operators in Eskom’s Power Generation Group. The results showed that factors leading to human error can be reduced or even eliminated. Opsomming Neff (1977 soos aangehaal deur Bergh (1995, skryf dat in die westerse kultuur werk belangrik vir bedryfsgeestesgesondheid is. Die meeste persone ervaar werk as positief, wat ’n positiewe gesindheid kweek. Indien hierdie positiewe gesindheid geïnhibeer word, kan dit lei tot ’n gebrek aan konsentrasie by die werkers. Werkers kan verveeld raak en dit kan weer lei tot menslike foute. Die doel van hierdie navorsing is om die faktore vas te stel wat tot menslike foute lei, en wat bydra tot onderbrekings in kragvoorsiening by Eskom kragstasies. Voorstelle is gemaak vir die vermindering van hierdie bydraende faktore ten einde die kragaanleg se prestasie te verbeter. Die teiken-populasie was 700 paneel-operateurs in die Kragopwekkingsgroep by Eskom. Die resultate dui daarop dat die faktore wat aanleiding gee tot menslike foute wel verminder, of geëlimineer kan word.

  11. Long-range temporal correlations in resting-state α oscillations predict human timing-error dynamics

    NARCIS (Netherlands)

    Smit, D.J.A.; Linkenkaer-Hansen, K.; de Geus, E.J.C.

    2013-01-01

    Human behavior is imperfect. This is notably clear during repetitive tasks in which sequences of errors or deviations from perfect performance result. These errors are not random, but show patterned fluctuations with long-range temporal correlations that are well described using power-law spectra

  12. A compendium of inborn errors of metabolism mapped onto the human metabolic network.

    OpenAIRE

    Sahoo, Swagatika; Franzson, Leifur; Jonsson, Jon J; Thiele, Ines

    2012-01-01

    Efst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn Inborn errors of metabolism (IEMs) are hereditary metabolic defects, which are encountered in almost all major metabolic pathways occurring in man. Many IEMs are screened for in neonates through metabolomic analysis of dried blood spot samples. To enable the mapping of these metabolomic data onto the published human metabolic reconstruction, we added missing reactions and pathways involved in acylcarnitin...

  13. Review of advances in human reliability analysis of errors of commission-Part 2: EOC quantification

    Energy Technology Data Exchange (ETDEWEB)

    Reer, Bernhard [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)], E-mail: bernhard.reer@psi.ch

    2008-08-15

    In close connection with examples relevant to contemporary probabilistic safety assessment (PSA), a review of advances in human reliability analysis (HRA) of post-initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions, has been carried out. The review comprises both EOC identification (part 1) and quantification (part 2); part 2 is presented in this article. Emerging HRA methods in this field are: ATHEANA, MERMOS, the EOC HRA method developed by Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS), the MDTA method and CREAM. The essential advanced features are on the conceptual side, especially to envisage the modeling of multiple contexts for an EOC to be quantified (ATHEANA, MERMOS and MDTA), in order to explicitly address adverse conditions. There is promising progress in providing systematic guidance to better account for cognitive demands and tendencies (GRS, CREAM), and EOC recovery (MDTA). Problematic issues are associated with the implementation of multiple context modeling and the assessment of context-specific error probabilities. Approaches for task or error opportunity scaling (CREAM, GRS) and the concept of reference cases (ATHEANA outlook) provide promising orientations for achieving progress towards data-based quantification. Further development work is needed and should be carried out in close connection with large-scale applications of existing approaches.

  14. Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction.

    Science.gov (United States)

    Kim, Su Kyoung; Kirchner, Elsa Andrea; Stefes, Arne; Kirchner, Frank

    2017-12-14

    Reinforcement learning (RL) enables robots to learn its optimal behavioral strategy in dynamic environments based on feedback. Explicit human feedback during robot RL is advantageous, since an explicit reward function can be easily adapted. However, it is very demanding and tiresome for a human to continuously and explicitly generate feedback. Therefore, the development of implicit approaches is of high relevance. In this paper, we used an error-related potential (ErrP), an event-related activity in the human electroencephalogram (EEG), as an intrinsically generated implicit feedback (rewards) for RL. Initially we validated our approach with seven subjects in a simulated robot learning scenario. ErrPs were detected online in single trial with a balanced accuracy (bACC) of 91%, which was sufficient to learn to recognize gestures and the correct mapping between human gestures and robot actions in parallel. Finally, we validated our approach in a real robot scenario, in which seven subjects freely chose gestures and the real robot correctly learned the mapping between gestures and actions (ErrP detection (90% bACC)). In this paper, we demonstrated that intrinsically generated EEG-based human feedback in RL can successfully be used to implicitly improve gesture-based robot control during human-robot interaction. We call our approach intrinsic interactive RL.

  15. An approach to using conventional brachytherapy software for clinical treatment planning of complex, Monte Carlo-based brachytherapy dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, Mark J.; Melhus, Christopher S.; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Radiation Oncology Department, Physics Section, ' ' La Fe' ' University Hospital, Avenida Campanar 21, E-46009 Valencia (Spain); Department of Atomic, Molecular, and Nuclear Physics, University of Valencia, C/Dr. Moliner 50, E-46100 Burjassot, Spain and IFIC (University of Valencia-CSIC), C/Dr. Moliner 50, E-46100 Burjassot (Spain)

    2009-06-15

    Certain brachytherapy dose distributions, such as those for LDR prostate implants, are readily modeled by treatment planning systems (TPS) that use the superposition principle of individual seed dose distributions to calculate the total dose distribution. However, dose distributions for brachytherapy treatments using high-Z shields or having significant material heterogeneities are not currently well modeled using conventional TPS. The purpose of this study is to establish a new treatment planning technique (Tufts technique) that could be applied in some clinical situations where the conventional approach is not acceptable and dose distributions present cylindrical symmetry. Dose distributions from complex brachytherapy source configurations determined with Monte Carlo methods were used as input data. These source distributions included the 2 and 3 cm diameter Valencia skin applicators from Nucletron, 4-8 cm diameter AccuBoost peripheral breast brachytherapy applicators from Advanced Radiation Therapy, and a 16 mm COMS-based eye plaque using {sup 103}Pd, {sup 125}I, and {sup 131}Cs seeds. Radial dose functions and 2D anisotropy functions were obtained by positioning the coordinate system origin along the dose distribution cylindrical axis of symmetry. Origin:tissue distance and active length were chosen to minimize TPS interpolation errors. Dosimetry parameters were entered into the PINNACLE TPS, and dose distributions were subsequently calculated and compared to the original Monte Carlo-derived dose distributions. The new planning technique was able to reproduce brachytherapy dose distributions for all three applicator types, producing dosimetric agreement typically within 2% when compared with Monte Carlo-derived dose distributions. Agreement between Monte Carlo-derived and planned dose distributions improved as the spatial resolution of the fitted dosimetry parameters improved. For agreement within 5% throughout the clinical volume, spatial resolution of

  16. Good people who try their best can have problems: recognition of human factors and how to minimise error.

    Science.gov (United States)

    Brennan, Peter A; Mitchell, David A; Holmes, Simon; Plint, Simon; Parry, David

    2016-01-01

    Human error is as old as humanity itself and is an appreciable cause of mistakes by both organisations and people. Much of the work related to human factors in causing error has originated from aviation where mistakes can be catastrophic not only for those who contribute to the error, but for passengers as well. The role of human error in medical and surgical incidents, which are often multifactorial, is becoming better understood, and includes both organisational issues (by the employer) and potential human factors (at a personal level). Mistakes as a result of individual human factors and surgical teams should be better recognised and emphasised. Attitudes and acceptance of preoperative briefing has improved since the introduction of the World Health Organization (WHO) surgical checklist. However, this does not address limitations or other safety concerns that are related to performance, such as stress and fatigue, emotional state, hunger, awareness of what is going on situational awareness, and other factors that could potentially lead to error. Here we attempt to raise awareness of these human factors, and highlight how they can lead to error, and how they can be minimised in our day-to-day practice. Can hospitals move from being "high risk industries" to "high reliability organisations"? Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. A Human Error Analysis of General Aviation Controlled Flight Into Terrain Accidents Occurring Between 1990-1998

    National Research Council Canada - National Science Library

    Shappell, Scott

    2003-01-01

    .... While the study represented the work and opinions of several experts in the FAA and industry, the findings might have benefited from a more detailed human error analysis involving a larger number of accidents...

  18. Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.

    Science.gov (United States)

    Diederen, Kelly M J; Ziauddeen, Hisham; Vestergaard, Martin D; Spencer, Tom; Schultz, Wolfram; Fletcher, Paul C

    2017-02-15

    Learning to optimally predict rewards requires agents to account for fluctuations in reward value. Recent work suggests that individuals can efficiently learn about variable rewards through adaptation of the learning rate, and coding of prediction errors relative to reward variability. Such adaptive coding has been linked to midbrain dopamine neurons in nonhuman primates, and evidence in support for a similar role of the dopaminergic system in humans is emerging from fMRI data. Here, we sought to investigate the effect of dopaminergic perturbations on adaptive prediction error coding in humans, using a between-subject, placebo-controlled pharmacological fMRI study with a dopaminergic agonist (bromocriptine) and antagonist (sulpiride). Participants performed a previously validated task in which they predicted the magnitude of upcoming rewards drawn from distributions with varying SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. Under placebo, we replicated previous observations of adaptive coding in the midbrain and ventral striatum. Treatment with sulpiride attenuated adaptive coding in both midbrain and ventral striatum, and was associated with a decrease in performance, whereas bromocriptine did not have a significant impact. Although we observed no differential effect of SD on performance between the groups, computational modeling suggested decreased behavioral adaptation in the sulpiride group. These results suggest that normal dopaminergic function is critical for adaptive prediction error coding, a key property of the brain thought to facilitate efficient learning in variable environments. Crucially, these results also offer potential insights for understanding the impact of disrupted dopamine function in mental illness.SIGNIFICANCE STATEMENT To choose optimally, we have to learn what to expect. Humans dampen learning when there is a great deal of variability in reward outcome, and two brain regions that

  19. Sleep quality, posttraumatic stress, depression, and human errors in train drivers: a population-based nationwide study in South Korea.

    Science.gov (United States)

    Jeon, Hong Jin; Kim, Ji-Hae; Kim, Bin-Na; Park, Seung Jin; Fava, Maurizio; Mischoulon, David; Kang, Eun-Ho; Roh, Sungwon; Lee, Dongsoo

    2014-12-01

    Human error is defined as an unintended error that is attributable to humans rather than machines, and that is important to avoid to prevent accidents. We aimed to investigate the association between sleep quality and human errors among train drivers. Cross-sectional. Population-based. A sample of 5,480 subjects who were actively working as train drivers were recruited in South Korea. The participants were 4,634 drivers who completed all questionnaires (response rate 84.6%). None. The Pittsburgh Sleep Quality Index (PSQI), the Center for Epidemiologic Studies Depression Scale (CES-D), the Impact of Event Scale-Revised (IES-R), the State-Trait Anxiety Inventory (STAI), and the Korean Occupational Stress Scale (KOSS). Of 4,634 train drivers, 349 (7.5%) showed more than one human error per 5 y. Human errors were associated with poor sleep quality, higher PSQI total scores, short sleep duration at night, and longer sleep latency. Among train drivers with poor sleep quality, those who experienced severe posttraumatic stress showed a significantly higher number of human errors than those without. Multiple logistic regression analysis showed that human errors were significantly associated with poor sleep quality and posttraumatic stress, whereas there were no significant associations with depression, trait and state anxiety, and work stress after adjusting for age, sex, education years, marital status, and career duration. Poor sleep quality was found to be associated with more human errors in train drivers, especially in those who experienced severe posttraumatic stress. © 2014 Associated Professional Sleep Societies, LLC.

  20. Review of advances in human reliability analysis of errors of commission, Part 1: EOC identification

    Energy Technology Data Exchange (ETDEWEB)

    Reer, Bernhard [Paul Scherrer Institute (PSI), 5232 Villigen PSI (Switzerland)], E-mail: bernhard.reer@hsk.ch

    2008-08-15

    In close connection with examples relevant to contemporary probabilistic safety assessment (PSA), a review of advances in human reliability analysis (HRA) of post-initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions, has been carried out. The review comprises both EOC identification (part 1) and quantification (part 2); part 1 is presented in this article. Emerging HRA methods addressing the problem of EOC identification are: A Technique for Human Event Analysis (ATHEANA), the EOC HRA method developed by Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS), the Misdiagnosis Tree Analysis (MDTA) method, and the Commission Errors Search and Assessment (CESA) method. Most of the EOCs referred to in predictive studies comprise the stop of running or the inhibition of anticipated functions; a few comprise the start of a function. The CESA search scheme-which proceeds from possible operator actions to the affected systems to scenarios and uses procedures and importance measures as key sources of input information-provides a formalized way for identifying relatively important scenarios with EOC opportunities. In the implementation however, attention should be paid regarding EOCs associated with familiar but non-procedural actions and EOCs leading to failures of manually initiated safety functions.

  1. Human reliability analysis of errors of commission: a review of methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Reer, B

    2007-06-15

    Illustrated by specific examples relevant to contemporary probabilistic safety assessment (PSA), this report presents a review of human reliability analysis (HRA) addressing post initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions. The review addressed both methods and applications. Emerging HRA methods providing advanced features and explicit guidance suitable for PSA are: A Technique for Human Event Analysis (ATHEANA, key publications in 1998/2000), Methode d'Evaluation de la Realisation des Missions Operateur pour la Surete (MERMOS, 1998/2000), the EOC HRA method developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, 2003), the Misdiagnosis Tree Analysis (MDTA) method (2005/2006), the Cognitive Reliability and Error Analysis Method (CREAM, 1998), and the Commission Errors Search and Assessment (CESA) method (2002/2004). As a result of a thorough investigation of various PSA/HRA applications, this paper furthermore presents an overview of EOCs (termination of safety injection, shutdown of secondary cooling, etc.) referred to in predictive studies and a qualitative review of cases of EOC quantification. The main conclusions of the review of both the methods and the EOC HRA cases are: (1) The CESA search scheme, which proceeds from possible operator actions to the affected systems to scenarios, may be preferable because this scheme provides a formalized way for identifying relatively important scenarios with EOC opportunities; (2) an EOC identification guidance like CESA, which is strongly based on the procedural guidance and important measures of systems or components affected by inappropriate actions, however should pay some attention to EOCs associated with familiar but non-procedural actions and EOCs leading to failures of manually initiated safety functions. (3) Orientations of advanced EOC quantification comprise a) modeling of multiple contexts for a given scenario, b) accounting for

  2. Photon Sources for Brachytherapy

    Science.gov (United States)

    Rijnders, Alex

    As introduction a short overview of the history of brachytherapy (BT) is given, with a focus on the evolution in the photon sources that have been used over the years. A major step in this evolution was the introduction of the automatic afterloading devices, which could be compared to the introduction of linear accelerators in external beam radiotherapy (EBRT). The modern afterloaders allow for optimization of the dose delivery and the use of different dose rates (low dose rate, high dose rate and pulsed dose rate) in function of tumor biology and patient comfort. Still today new sources are under investigation, and these developments together with the improvements in treatment planning and treatment techniques will enforce the role and place of BT as a valuable alternative for or supplementary to EBRT.

  3. An empirical study on the basic human error probabilities for NPP advanced main control room operation using soft control

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Inseok, E-mail: nuclear82@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Ar Ryum, E-mail: arryum@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Harbi, Mohamed Ali Salem Al, E-mail: 100035556@kustar.ac.ae [Department of Nuclear Engineering, Khalifa University of Science, Technology and Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates); Lee, Seung Jun, E-mail: sjlee@kaeri.re.kr [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, 150-1, Dukjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kang, Hyun Gook, E-mail: hyungook@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Seong, Poong Hyun, E-mail: phseong@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2013-04-15

    Highlights: ► The operation environment of MCRs in NPPs has changed by adopting new HSIs. ► The operation action in NPP Advanced MCRs is performed by soft control. ► Different basic human error probabilities (BHEPs) should be considered. ► BHEPs in a soft control operation environment are investigated empirically. ► This work will be helpful to verify if soft control has positive or negative effects. -- Abstract: By adopting new human–system interfaces that are based on computer-based technologies, the operation environment of main control rooms (MCRs) in nuclear power plants (NPPs) has changed. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, soft controls, and so on, are called Advanced MCRs. Among the many features in Advanced MCRs, soft controls are an important feature because the operation action in NPP Advanced MCRs is performed by soft control. Using soft controls such as mouse control, touch screens, and so on, operators can select a specific screen, then choose the controller, and finally manipulate the devices. However, because of the different interfaces between soft control and hardwired conventional type control, different basic human error probabilities (BHEPs) should be considered in the Human Reliability Analysis (HRA) for advanced MCRs. Although there are many HRA methods to assess human reliabilities, such as Technique for Human Error Rate Prediction (THERP), Accident Sequence Evaluation Program (ASEP), Human Error Assessment and Reduction Technique (HEART), Human Event Repository and Analysis (HERA), Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR), Cognitive Reliability and Error Analysis Method (CREAM), and so on, these methods have been applied to conventional MCRs, and they do not consider the new features of advance MCRs such as soft controls. As a result, there is an insufficient database for assessing human reliabilities in advanced

  4. AN IV CATHETER FRAGMENTS DURING MDCT SCANNING OF HUMAN ERROR: EXPERIMENTAL AND REPRODUCIBLE MICROSCOPIC MAGNIFICATION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Dae Cheol [Dept. of Radiologic Science, Shin Heung College, Uijeongbu (Korea, Republic of); Lee, Jong Woong [Dept. of of Radiology, Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Choi, Ji Won [Dept. of Radiological Science, Jeonju University, Jeonju (Korea, Republic of); Yang, Sung Hwan [Dept. of of Prosthetics and Orthotics, Korean National College of Rehabilitation and Welfare, Pyeongtaek (Korea, Republic of); Dong, Kyung Rae [Dept. of Radiological Technology, Gwangju Health College University, Gwangju (Korea, Republic of); Chung, Won Kwan [Dept. of of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2011-12-15

    The use of intravenous catheters are occasionally complicated by intravascular fragments and swelling of the catheter fragments. We present a patient in whom an intravenous catheter fragments was retrieved from the dorsal metacarpal vein following its incidental CT examination detection. The case of demonstrates the utility of microscopy and multi-detector CT in localizing small of subtle intravenous catheter fragments as a human error. A case of IV catheter fragments in the metacarpal vein, in which reproducible and microscopy data allowed complete localization of a missing fragments and guided surgery with respect to the optimal incision site for fragments removal. These reproducible studies may help to determine the best course of action and treatment for the patient who presents with such a case.

  5. A compendium of inborn errors of metabolism mapped onto the human metabolic network.

    Science.gov (United States)

    Sahoo, Swagatika; Franzson, Leifur; Jonsson, Jon J; Thiele, Ines

    2012-10-01

    Inborn errors of metabolism (IEMs) are hereditary metabolic defects, which are encountered in almost all major metabolic pathways occurring in man. Many IEMs are screened for in neonates through metabolomic analysis of dried blood spot samples. To enable the mapping of these metabolomic data onto the published human metabolic reconstruction, we added missing reactions and pathways involved in acylcarnitine (AC) and fatty acid oxidation (FAO) metabolism. Using literary data, we reconstructed an AC/FAO module consisting of 352 reactions and 139 metabolites. When this module was combined with the human metabolic reconstruction, the synthesis of 39 acylcarnitines and 22 amino acids, which are routinely measured, was captured and 235 distinct IEMs could be mapped. We collected phenotypic and clinical features for each IEM enabling comprehensive classification. We found that carbohydrate, amino acid, and lipid metabolism were most affected by the IEMs, while the brain was the most commonly affected organ. Furthermore, we analyzed the IEMs in the context of metabolic network topology to gain insight into common features between metabolically connected IEMs. While many known examples were identified, we discovered some surprising IEM pairs that shared reactions as well as clinical features but not necessarily causal genes. Moreover, we could also re-confirm that acetyl-CoA acts as a central metabolite. This network based analysis leads to further insight of hot spots in human metabolism with respect to IEMs. The presented comprehensive knowledge base of IEMs will provide a valuable tool in studying metabolic changes involved in inherited metabolic diseases.

  6. APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans.

    Directory of Open Access Journals (Sweden)

    Andrei V Tkatchenko

    2015-08-01

    Full Text Available Myopia is the most common vision disorder and the leading cause of visual impairment worldwide. However, gene variants identified to date explain less than 10% of the variance in refractive error, leaving the majority of heritability unexplained ("missing heritability". Previously, we reported that expression of APLP2 was strongly associated with myopia in a primate model. Here, we found that low-frequency variants near the 5'-end of APLP2 were associated with refractive error in a prospective UK birth cohort (n = 3,819 children; top SNP rs188663068, p = 5.0 × 10-4 and a CREAM consortium panel (n = 45,756 adults; top SNP rs7127037, p = 6.6 × 10-3. These variants showed evidence of differential effect on childhood longitudinal refractive error trajectories depending on time spent reading (gene x time spent reading x age interaction, p = 4.0 × 10-3. Furthermore, Aplp2 knockout mice developed high degrees of hyperopia (+11.5 ± 2.2 D, p < 1.0 × 10-4 compared to both heterozygous (-0.8 ± 2.0 D, p < 1.0 × 10-4 and wild-type (+0.3 ± 2.2 D, p < 1.0 × 10-4 littermates and exhibited a dose-dependent reduction in susceptibility to environmentally induced myopia (F(2, 33 = 191.0, p < 1.0 × 10-4. This phenotype was associated with reduced contrast sensitivity (F(12, 120 = 3.6, p = 1.5 × 10-4 and changes in the electrophysiological properties of retinal amacrine cells, which expressed Aplp2. This work identifies APLP2 as one of the "missing" myopia genes, demonstrating the importance of a low-frequency gene variant in the development of human myopia. It also demonstrates an important role for APLP2 in refractive development in mice and humans, suggesting a high level of evolutionary conservation of the signaling pathways underlying refractive eye development.

  7. Magnetic resonance image guided brachytherapy.

    Science.gov (United States)

    Tanderup, Kari; Viswanathan, Akila N; Kirisits, Christian; Frank, Steven J

    2014-07-01

    The application of magnetic resonance image (MRI)-guided brachytherapy has demonstrated significant growth during the past 2 decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and resulted in mounting evidence of improved clinical outcome regarding local control, overall survival as well as morbidity. MRI-guided prostate high-dose-rate and low-dose-rate brachytherapies have improved the accuracy of target and organs-at-risk delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high-quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Coverage error of commercial skin pigments as compared to human facial skin tones.

    Science.gov (United States)

    Hungerford, Elizabeth; Beatty, Mark W; Marx, David B; Simetich, Bobby; Wee, Alvin G

    2013-11-01

    It is unknown if present-day pigments used for intrinsic colouration of maxillofacial prostheses are representative of human facial skin tones. This study's purpose was to measure L*a*b* values of pigmented elastomers coloured by eleven skin tone pigments and determine coverage error (CE) when the pigments were compared to human facial lip and nose colour data. 11 skin tone pigments were combined at 0.1%, 1% and 10% by weight with A-2186 elastomer (n=3). L*a*b* values were measured with a spectrophotometer and group means were used to calculate ΔE* colour differences with each L*a*b* value obtained for human nose and lip. Pigmented elastomer CEs were calculated for nose and lip. Results were compared to CEs for proposed shade guide colours obtained from clustering analyses of facial skin colours. L* values of pigmented elastomers generally were higher than those measured for nose and lip, whereas a* values were lower. CEs for pigmented elastomers were higher than those obtained from the proposed shade guide obtained from clustered skin measurements. Overall, the current commercial elastomers appeared to be too white and not red enough to adequately match the skin tones of the subject population. Adjustments must be made to the existing pigmenting system in order to adequately match the skin colours of the study population. The creation of a shade guide and a collection of intrinsic pigments representing the realm of human facial skin colours would greatly decrease the time a patient must sit while the clinician is obtaining an acceptable colour match for the silicone to be used for processing the final prosthesis, thereby increasing both patient satisfaction and clinician productivity. Published by Elsevier Ltd.

  9. A study on fatigue measurement of operators for human error prevention in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Oh Yeon; Il, Jang Tong; Meiling, Luo; Hee, Lee Young [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The identification and the analysis of individual factor of operators, which is one of the various causes of adverse effects in human performance, is not easy in NPPs. There are work types (including shift), environment, personality, qualification, training, education, cognition, fatigue, job stress, workload, etc in individual factors for the operators. Research at the Finnish Institute of Occupational Health (FIOH) reported that a 'burn out (extreme fatigue)' is related to alcohol dependent habits and must be dealt with using a stress management program. USNRC (U.S. Nuclear Regulatory Commission) developed FFD (Fitness for Duty) for improving the task efficiency and preventing human errors. 'Managing Fatigue' of 10CFR26 presented as requirements to control operator fatigue in NPPs. The committee explained that excessive fatigue is due to stressful work environments, working hours, shifts, sleep disorders, and unstable circadian rhythms. In addition, an International Labor Organization (ILO) developed and suggested a checklist to manage fatigue and job stress. In domestic, a systematic evaluation way is presented by the Final Safety Analysis Report (FSAR) chapter 18, Human Factors, in the licensing process. However, it almost focused on the interface design such as HMI (Human Machine Interface), not individual factors. In particular, because our country is in a process of the exporting the NPP to UAE, the development and setting of fatigue management technique is important and urgent to present the technical standard and FFD criteria to UAE. And also, it is anticipated that the domestic regulatory body applies the FFD program as the regulation requirement so that a preparation for that situation is required. In this paper, advanced researches are investigated to find the fatigue measurement and evaluation methods of operators in a high reliability industry. Also, this study tries to review the NRC report and discuss the causal factors and

  10. Identification and Assessment of Human Errors in Postgraduate Endodontic Students of Kerman University of Medical Sciences by Using the SHERPA Method

    Directory of Open Access Journals (Sweden)

    Saman Dastaran

    2016-03-01

    Full Text Available Introduction: Human errors are the cause of many accidents, including industrial and medical, therefore finding out an approach for identifying and reducing them is very important. Since no study has been done about human errors in the dental field, this study aimed to identify and assess human errors in postgraduate endodontic students of Kerman University of Medical Sciences by using the SHERPA Method. Methods: This cross-sectional study was performed during year 2014. Data was collected using task observation and interviewing postgraduate endodontic students. Overall, 10 critical tasks, which were most likely to cause harm to patients were determined. Next, Hierarchical Task Analysis (HTA was conducted and human errors in each task were identified by the Systematic Human Error Reduction Prediction Approach (SHERPA technique worksheets. Results: After analyzing the SHERPA worksheets, 90 human errors were identified including (67.7% action errors, (13.3% checking errors, (8.8% selection errors, (5.5% retrieval errors and (4.4% communication errors. As a result, most of them were action errors and less of them were communication errors. Conclusions: The results of the study showed that the highest percentage of errors and the highest level of risk were associated with action errors, therefore, to reduce the occurrence of such errors and limit their consequences, control measures including periodical training of work procedures, providing work check-lists, development of guidelines and establishment of a systematic and standardized reporting system, should be put in place. Regarding the results of this study, the control of recovery errors with the highest percentage of undesirable risk and action errors with the highest frequency of errors should be in the priority of control

  11. Systematic analysis of video data from different human-robot interaction studies: a categorization of social signals during error situations.

    Science.gov (United States)

    Giuliani, Manuel; Mirnig, Nicole; Stollnberger, Gerald; Stadler, Susanne; Buchner, Roland; Tscheligi, Manfred

    2015-01-01

    Human-robot interactions are often affected by error situations that are caused by either the robot or the human. Therefore, robots would profit from the ability to recognize when error situations occur. We investigated the verbal and non-verbal social signals that humans show when error situations occur in human-robot interaction experiments. For that, we analyzed 201 videos of five human-robot interaction user studies with varying tasks from four independent projects. The analysis shows that there are two types of error situations: social norm violations and technical failures. Social norm violations are situations in which the robot does not adhere to the underlying social script of the interaction. Technical failures are caused by technical shortcomings of the robot. The results of the video analysis show that the study participants use many head movements and very few gestures, but they often smile, when in an error situation with the robot. Another result is that the participants sometimes stop moving at the beginning of error situations. We also found that the participants talked more in the case of social norm violations and less during technical failures. Finally, the participants use fewer non-verbal social signals (for example smiling, nodding, and head shaking), when they are interacting with the robot alone and no experimenter or other human is present. The results suggest that participants do not see the robot as a social interaction partner with comparable communication skills. Our findings have implications for builders and evaluators of human-robot interaction systems. The builders need to consider including modules for recognition and classification of head movements to the robot input channels. The evaluators need to make sure that the presence of an experimenter does not skew the results of their user studies.

  12. Visual Prediction Error Spreads Across Object Features in Human Visual Cortex.

    Science.gov (United States)

    Jiang, Jiefeng; Summerfield, Christopher; Egner, Tobias

    2016-12-14

    Visual cognition is thought to rely heavily on contextual expectations. Accordingly, previous studies have revealed distinct neural signatures for expected versus unexpected stimuli in visual cortex. However, it is presently unknown how the brain combines multiple concurrent stimulus expectations such as those we have for different features of a familiar object. To understand how an unexpected object feature affects the simultaneous processing of other expected feature(s), we combined human fMRI with a task that independently manipulated expectations for color and motion features of moving-dot stimuli. Behavioral data and neural signals from visual cortex were then interrogated to adjudicate between three possible ways in which prediction error (surprise) in the processing of one feature might affect the concurrent processing of another, expected feature: (1) feature processing may be independent; (2) surprise might "spread" from the unexpected to the expected feature, rendering the entire object unexpected; or (3) pairing a surprising feature with an expected feature might promote the inference that the two features are not in fact part of the same object. To formalize these rival hypotheses, we implemented them in a simple computational model of multifeature expectations. Across a range of analyses, behavior and visual neural signals consistently supported a model that assumes a mixing of prediction error signals across features: surprise in one object feature spreads to its other feature(s), thus rendering the entire object unexpected. These results reveal neurocomputational principles of multifeature expectations and indicate that objects are the unit of selection for predictive vision. We address a key question in predictive visual cognition: how does the brain combine multiple concurrent expectations for different features of a single object such as its color and motion trajectory? By combining a behavioral protocol that independently varies expectation of

  13. Brachytherapy in oesophageal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Leung, J.T.; Kuan, R. [Royal Prince Alfred Hospital, Camperdown, NSW (Australia)

    1995-11-01

    Patients with recurrent or locally advanced oesophageal carcinoma have a poor prognosis. Relief of dysphagia is often the goal of any further treatment. Several methods, including laser re-canalization, prosthetic intubation, dilatation, external beam irradiation (EBI) and intraluminal brachytherapy (IBT) can be used to alleviate dysphagia. In this retrospective review of 11 patients, eight with recurrent tumour and three newly diagnosed patients were treated with low dose rate IBT. Relief of dysphagia was achieved in nine patients, all of whom were able to maintain swallowing of at least a semi-solid diet until death or last follow-up. Toxicity was minimal, but survival was poor, with a median survival of only 3 months. IBT presents several advantages over other palliative methods, especially in recurrent tumours where re-treatment with EBI is often difficult because of normal tissue tolerance. Low dose rate IBT takes only 1-2 days to deliver, is highly effective, has little morbidity and the palliation achieved is relatively durable. 19 refs., 2 tabs., 1 fig.

  14. Methods of error detection in genetic linkage data for human pedigrees

    Energy Technology Data Exchange (ETDEWEB)

    Ehm, M.G.; Kimmel, M. [Rice Univ., Houston, TX (United States); Cottingham, R.W. [Baylor College of Medicine, Houston, TX (United States)

    1994-09-01

    The occurrence of laboratory typing error in pedigree data collected for use in linkage analysis cannot be ignored. In maps where recombinations between nearby markers rarely occur, each erroneous recombination (result of typing error) is given substantial weight thereby increasing the estimate of theta, the recombination fraction. As the maps being developed become more dense, theta approaches the error rate and most of all observed crossovers will be erroneous. We present two methods for detecting errors in pedigree data. The first index is a variant of the likelihood ratio test statistic and is used to test the null hypothesis of no error for an individual at a locus versus the alternative hypothesis of error. The second index is the conditional likelihood of the data given the phenotype of an individual at a locus. High values of both indices correspond to unlikely genotypes, and p-values can be calculated using simulated distributions under the null hypothesis. Both methods have been shown to detect errors introduced into CEPH pedigrees and an error in a larger experimental pedigree (retinitis pigmentosa). While the methods were designed to detect typing error, they are sufficiently general to detect any relatively unlikely genotype and therefore can also be used to detect pedigree error.

  15. Systematic Analysis of Video Data from Different Human-Robot Interaction Studies: A Categorisation of Social Signals During Error Situations

    Directory of Open Access Journals (Sweden)

    Manuel eGiuliani

    2015-07-01

    Full Text Available Human-robot interactions are often affected by error situations that are caused by either the robot or the human. Therefore, robots would profit from the ability to recognise when error situations occur. We investigated the verbal and non-verbal social signals that humans show when error situations occur in human-robot interaction experiments. For that, we analysed 201 videos of five human-robot interaction user studies with varying tasks from four independent projects. The analysis shows that there are two types of error situations: social norm violations and technical failures. Social norm violations are situations in which the robot does not adhere to the underlying social script of the interaction. Technical failures are caused by technical shortcomings of the robot. The results of the video analysis show that the study participants use many head movements and very few gestures, when in an error situation with the robot. We also found that the participants talked more in the case of social norm violations and less during technical failures. Finally, the participants use fewer non-verbal social signals (for example smiling, nodding, and head shaking, when they are interacting with the robot alone and no experimenter or other human is present. The results suggest that participants do not see the robot as a social interaction partner with comparable communication skills. Our findings have implications for builders and evaluators of human-robot interaction systems. The builders need to consider including modules for recognition and classification of head movements to the robot input channels. The evaluators need to make sure that the presence of an experimenter does not skew the results of their user studies.

  16. A Preliminary Study on the Measures to Assess the Organizational Safety: The Cultural Impact on Human Error Potential

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The Fukushima I nuclear accident following the Tohoku earthquake and tsunami on 11 March 2011 occurred after twelve years had passed since the JCO accident which was caused as a result of an error made by JCO employees. These accidents, along with the Chernobyl accident, associated with characteristic problems of various organizations caused severe social and economic disruptions and have had significant environmental and health impact. The cultural problems with human errors occur for various reasons, and different actions are needed to prevent different errors. Unfortunately, much of the research on organization and human error has shown widely various or different results which call for different approaches. In other words, we have to find more practical solutions from various researches for nuclear safety and lead a systematic approach to organizational deficiency causing human error. This paper reviews Hofstede's criteria, IAEA safety culture, safety areas of periodic safety review (PSR), teamwork and performance, and an evaluation of HANARO safety culture to verify the measures used to assess the organizational safety

  17. Error-Correcting Output Codes in Classification of Human Induced Pluripotent Stem Cell Colony Images

    Directory of Open Access Journals (Sweden)

    Henry Joutsijoki

    2016-01-01

    Full Text Available The purpose of this paper is to examine how well the human induced pluripotent stem cell (hiPSC colony images can be classified using error-correcting output codes (ECOC. Our image dataset includes hiPSC colony images from three classes (bad, semigood, and good which makes our classification task a multiclass problem. ECOC is a general framework to model multiclass classification problems. We focus on four different coding designs of ECOC and apply to each one of them k-Nearest Neighbor (k-NN searching, naïve Bayes, classification tree, and discriminant analysis variants classifiers. We use Scaled Invariant Feature Transformation (SIFT based features in classification. The best accuracy (62.4% is obtained with ternary complete ECOC coding design and k-NN classifier (standardized Euclidean distance measure and inverse weighting. The best result is comparable with our earlier research. The quality identification of hiPSC colony images is an essential problem to be solved before hiPSCs can be used in practice in large-scale. ECOC methods examined are promising techniques for solving this challenging problem.

  18. Error-Correcting Output Codes in Classification of Human Induced Pluripotent Stem Cell Colony Images.

    Science.gov (United States)

    Joutsijoki, Henry; Haponen, Markus; Rasku, Jyrki; Aalto-Setälä, Katriina; Juhola, Martti

    2016-01-01

    The purpose of this paper is to examine how well the human induced pluripotent stem cell (hiPSC) colony images can be classified using error-correcting output codes (ECOC). Our image dataset includes hiPSC colony images from three classes (bad, semigood, and good) which makes our classification task a multiclass problem. ECOC is a general framework to model multiclass classification problems. We focus on four different coding designs of ECOC and apply to each one of them k-Nearest Neighbor (k-NN) searching, naïve Bayes, classification tree, and discriminant analysis variants classifiers. We use Scaled Invariant Feature Transformation (SIFT) based features in classification. The best accuracy (62.4%) is obtained with ternary complete ECOC coding design and k-NN classifier (standardized Euclidean distance measure and inverse weighting). The best result is comparable with our earlier research. The quality identification of hiPSC colony images is an essential problem to be solved before hiPSCs can be used in practice in large-scale. ECOC methods examined are promising techniques for solving this challenging problem.

  19. Brachytherapy dosimeter with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, L.M., E-mail: moutinho@ua.pt [i3N, Physics Department, University of Aveiro (Portugal); Castro, I.F.C. [i3N, Physics Department, University of Aveiro (Portugal); Peralta, L. [Faculdade de Ciências da Universidade de Lisboa (Portugal); Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa (Portugal); Abreu, M.C. [Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa (Portugal); Veloso, J.F.C.A. [i3N, Physics Department, University of Aveiro (Portugal)

    2015-07-01

    In-vivo and in-situ measurement of the radiation dose administered during brachytherapy faces several technical challenges, requiring a very compact, tissue-equivalent, linear and highly sensitive dosimeter, particularly in low-dose rate brachytherapy procedures, which use radioactive seeds with low energy and low dose deposition rate. In this work we present a scintillating optical fiber dosimeter composed of a flexible sensitive probe and a dedicated electronic readout system based on silicon photomultiplier photodetection, capable of operating both in pulse and current modes. The performance of the scintillating fiber optic dosimeter was evaluated in low energy regimes, using an X-ray tube operating at voltages of 40–50 kV and currents below 1 mA, to assess minimum dose response of the scintillating fiber. The dosimeter shows a linear response with dose and is capable of detecting mGy dose variations like an ionization chamber. Besides fulfilling all the requirements for a dosimeter in brachytherapy, the high sensitivity of this device makes it a suitable candidate for application in low-dose rate brachytherapy. According to Peralta and Rego [1], the BCF-10 and BCF-60 scintillating optical fibers used in dosimetry exhibit high variations in their sensitivity for photon beams in the 25–100 kVp energy range. Energy linearity for energies below 50 keV needs to be further investigated, using monochromatic X-ray photons.

  20. A study on the critical factors of human error in civil aviation: An early warning management perspective in Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Salah Uddin Rajib

    2015-01-01

    Full Text Available The safety of civil aviation will be more secured if the errors in all the facets can be reduced. Like the other industrial sectors, human resource is one of the most complex and sensitive resources for the civil aviation. The error of human resources can cause fatal disasters. In these days, a good volume of researches have been conducted on the disaster of civil aviation. The researchers have identified the causes of the civil aviation disasters from various perspectives. They identified the areas where more concern is needed to reduce the disastrous impacts. This paper aims to find out the critical factors of human error in civil aviation in a developing country (Bangladesh as it is accepted that human error is one of main causes of civil aviation disasters. The paper reviews the previous research to find out the critical factors conceptually. Fuzzy analytical hierarchy process (FAHP has been used to find out the critical factors systematically. Analyses indicate that the concentration on precondition for unsafe acts (including sub-factors is required to ensure the aviation safety.

  1. Scintillating fiber optic dosimeters for breast and prostate brachytherapy

    Science.gov (United States)

    Moutinho, L. M.; Castro, I. F.; Freitas, H.; Melo, J.; Silva, P.; Gonçalves, A.; Peralta, L.; Rachinhas, P. J.; Simões, P. C. P. S.; Pinto, S.; Pereira, A.; Santos, J. A. M.; Costa, M.; Veloso, J. F. C. A.

    2017-02-01

    Brachytherapy is a radiotherapy modality where the radioactive material is placed close to the tumor, being a common treatment for skin, breast, gynecological and prostate cancers. These treatments can be of low-dose-rate, using isotopes with mean energy of 30 keV, or high-dose-rate, using isotopes such as 192Ir with a mean energy of 380 keV. Currently these treatments are performed in most cases without in-vivo dosimetry for quality control and quality assurance. We developed a dosimeter using small diameter probes that can be inserted into the patient's body using standard brachytherapy needles. By performing real-time dosimetry in breast and prostate brachytherapy it will be possible to perform real-time dose correction when deviations from the treatment plan are observed. The dosimeter presented in this work was evaluated in-vitro. The studies consisted in the characterization of the dosimeter with 500 μm diameter sensitive probes (with a BCF-12 scintillating optical fiber) using an inhouse made gelatin breast phantom with a volume of 566 cm3. A breast brachytherapy treatment was simulated considering a tumor volume of 27 cm3 and a prescribed absolute dose of 5 Gy. The dose distribution was determined by the Inverse Planning Simulated Annealing (IPSA) optimization algorithm (ELEKTA). The dwell times estimated from the experimental measurements are in agreement with the prescribed dwell times, with relative error below 3%. The measured signal-to-noise ratio (SNR) including the stem-effect contribution is below 3%.

  2. Management and Evaluation System on Human Error, Licence Requirements, and Job-aptitude in Rail and the Other Industries

    Energy Technology Data Exchange (ETDEWEB)

    Koo, In Soo; Suh, S. M.; Park, G. O. (and others)

    2006-07-15

    Rail system is a system that is very closely related to the public life. When an accident happens, the public using this system should be injured or even be killed. The accident that recently took place in Taegu subway system, because of the inappropriate human-side task performance, showed demonstratively how its results could turn out to be tragic one. Many studies have shown that the most cases of the accidents have occurred because of performing his/her tasks in inappropriate way. It is generally recognised that the rail system without human element could never be happened quite long time. So human element in rail system is going to be the major factor to the next tragic accident. This state of the art report studied the cases of the managements and evaluation systems related to human errors, license requirements, and job aptitudes in the areas of rail and the other industries for the purpose of improvement of the task performance of personnel which consists of an element and finally enhancement of rail safety. The human errors, license requirements, and evaluation system of the job aptitude on people engaged in agencies with close relation to rail do much for development and preservation their abilities. But due to various inside and outside factors, to some extent it may have limitations to timely reflect overall trends of society, technology, and a sense of value. Removal and control of the factors of human errors will have epochal roles in safety of the rail system through the case studies of this report. Analytical results on case studies of this report will be used in the project 'Development of Management Criteria on Human Error and Evaluation Criteria on Job-aptitude of Rail Safe-operation Personnel' which has been carried out as a part of 'Integrated R and D Program for Railway Safety'.

  3. Control of Human Error and comparison Level risk after correction action With the SHERPA Method in a control Room of petrochemical industry

    Directory of Open Access Journals (Sweden)

    A. Zakerian

    2011-12-01

    Full Text Available Background and aims Today in many jobs like nuclear, military and chemical industries, human errors may result in a disaster. Accident in different places of the world emphasizes this subject and we indicate for example, Chernobyl disaster in (1986, tree Mile accident in (1974 and Flixborough explosion in (1974.So human errors identification especially in important and intricate systems is necessary and unavoidable for predicting control methods.   Methods Recent research is a case study and performed in Zagross Methanol Company in Asalouye (South pars.   Walking –Talking through method with process expert and control room operators, inspecting technical documents are used for collecting required information and completing Systematic Human Error Reductive and Predictive Approach (SHERPA worksheets.   Results analyzing SHERPA worksheet indicated that, were accepting capable invertebrate errors % 71.25, % 26.75 undesirable errors, % 2 accepting capable(with change errors, % 0 accepting capable errors, and after correction action forecast Level risk to this arrangement, accepting capable invertebrate errors % 0, % 4.35 undesirable errors , % 58.55 accepting capable(with change errors, % 37.1 accepting capable errors .   ConclusionFinally this result is comprehension that this method in different industries especially in chemical industries is enforceable and useful for human errors identification that may lead to accident and adventures.

  4. Redesign of process map to increase efficiency: Reducing procedure time in cervical cancer brachytherapy.

    Science.gov (United States)

    Damato, Antonio L; Lee, Larissa J; Bhagwat, Mandar S; Buzurovic, Ivan; Cormack, Robert A; Finucane, Susan; Hansen, Jorgen L; O'Farrell, Desmond A; Offiong, Alecia; Randall, Una; Friesen, Scott; Viswanathan, Akila N

    2015-01-01

    To increase intraprocedural efficiency in the use of clinical resources and to decrease planning time for cervical cancer brachytherapy treatments through redesign of the procedure's process map. A multidisciplinary team identified all tasks and associated resources involved in cervical cancer brachytherapy in our institution and arranged them in a process map. A redesign of the treatment planning component of the process map was conducted with the goal of minimizing planning time. Planning time was measured on 20 consecutive insertions, of which 10 were performed with standard procedures and 10 with the redesigned process map, and results were compared. Statistical significance (p brachytherapy treatments were identified. The process map showed that in standard procedures, the treatment planning tasks were performed sequentially. The process map was redesigned to specify that contouring and some planning tasks are performed concomitantly. Some quality assurance tasks were reorganized to minimize adverse effects of a possible error on procedure time. Test dry runs followed by live implementation confirmed the applicability of the new process map to clinical conditions. A 29% reduction in planning time (p brachytherapy was generated. The treatment planning component of the process map was redesigned, resulting in a 29% decrease in planning time and a streamlining of the quality assurance process. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  5. Monte Carlo dose calculations for high-dose-rate brachytherapy using GPU-accelerated processing.

    Science.gov (United States)

    Tian, Z; Zhang, M; Hrycushko, B; Albuquerque, K; Jiang, S B; Jia, X

    2016-01-01

    Current clinical brachytherapy dose calculations are typically based on the Association of American Physicists in Medicine Task Group report 43 (TG-43) guidelines, which approximate patient geometry as an infinitely large water phantom. This ignores patient and applicator geometries and heterogeneities, causing dosimetric errors. Although Monte Carlo (MC) dose calculation is commonly recognized as the most accurate method, its associated long computational time is a major bottleneck for routine clinical applications. This article presents our recent developments of a fast MC dose calculation package for high-dose-rate (HDR) brachytherapy, gBMC, built on a graphics processing unit (GPU) platform. gBMC-simulated photon transport in voxelized geometry with physics in (192)Ir HDR brachytherapy energy range considered. A phase-space file was used as a source model. GPU-based parallel computation was used to simultaneously transport multiple photons, one on a GPU thread. We validated gBMC by comparing the dose calculation results in water with that computed TG-43. We also studied heterogeneous phantom cases and a patient case and compared gBMC results with Acuros BV results. Radial dose function in water calculated by gBMC showed GPU-based MC dose calculation package, gBMC, for HDR brachytherapy make it attractive for clinical applications. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. Applying human factors principles to alert design increases efficiency and reduces prescribing errors in a scenario-based simulation.

    Science.gov (United States)

    Russ, Alissa L; Zillich, Alan J; Melton, Brittany L; Russell, Scott A; Chen, Siying; Spina, Jeffrey R; Weiner, Michael; Johnson, Elizabette G; Daggy, Joanne K; McManus, M Sue; Hawsey, Jason M; Puleo, Anthony G; Doebbeling, Bradley N; Saleem, Jason J

    2014-10-01

    To apply human factors engineering principles to improve alert interface design. We hypothesized that incorporating human factors principles into alerts would improve usability, reduce workload for prescribers, and reduce prescribing errors. We performed a scenario-based simulation study using a counterbalanced, crossover design with 20 Veterans Affairs prescribers to compare original versus redesigned alerts. We redesigned drug-allergy, drug-drug interaction, and drug-disease alerts based upon human factors principles. We assessed usability (learnability of redesign, efficiency, satisfaction, and usability errors), perceived workload, and prescribing errors. Although prescribers received no training on the design changes, prescribers were able to resolve redesigned alerts more efficiently (median (IQR): 56 (47) s) compared to the original alerts (85 (71) s; p=0.015). In addition, prescribers rated redesigned alerts significantly higher than original alerts across several dimensions of satisfaction. Redesigned alerts led to a modest but significant reduction in workload (p=0.042) and significantly reduced the number of prescribing errors per prescriber (median (range): 2 (1-5) compared to original alerts: 4 (1-7); p=0.024). Aspects of the redesigned alerts that likely contributed to better prescribing include design modifications that reduced usability-related errors, providing clinical data closer to the point of decision, and displaying alert text in a tabular format. Displaying alert text in a tabular format may help prescribers extract information quickly and thereby increase responsiveness to alerts. This simulation study provides evidence that applying human factors design principles to medication alerts can improve usability and prescribing outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Rectal complications after prostate brachytherapy.

    Science.gov (United States)

    Shah, Shimul A; Cima, Robert R; Benoit, Eric; Breen, Elizabeth L; Bleday, Ronald

    2004-09-01

    Prostate brachytherapy is gaining wide popularity as an alternative to resection for the treatment of locally advanced prostate cancer. Rectal-urethral fistula after prostate brachytherapy is a rare but serious complication, and its incidence, presentation, risk factors, and clinical management have not been well described. From January 1997 to October 2002, seven patients with rectal-urethral fistulas were referred to two institutions (Brigham and Women's Hospital and West Roxbury Veteran's Administration Hospital) of a major teaching referral center. Clinical presentation, risk factors, prostate staging, and clinical management were examined in a retrospective fashion. Seven rectal-urethral fistulas developed from roughly 700 (1 percent) patients treated with prostate brachytherapy for prostate cancer. The average patient age was 67.7 years, preimplant prostate-specific antigen was 7.1, and Gleason score was 3+3. Symptoms occurred at a mean of 27.3 months after prostate brachytherapy was started and included anorectal pain (57 percent), clear mucous discharge (57 percent), diarrhea (43 percent), and rectal ulceration (43 percent). Coronary artery disease was a common comorbidity (71 percent). Previous transurethral resection of prostate (28 percent) and pelvic irradiation or external beam radiation therapy (14 percent) were not associated with increased risk of rectal-urethral fistula. All patients underwent a diverting colostomy (86 percent) or ileostomy (14 percent), and four patients went on to have definitive therapy. Definitive resection was performed between 5 and 43 months after diverting ostomy and was chosen on the basis of comorbid disease, quality of life, and degree of operation. Two patients required a second diversion after definitive resection because of anorectal pain and a colocutaneous fistula. Postoperative complications included myocardial infarction (14 percent), blood transfusion (14 percent), and bowel perforation (14 percent). Patients

  8. Human error risk management for engineering systems: a methodology for design, safety assessment, accident investigation and training

    Energy Technology Data Exchange (ETDEWEB)

    Cacciabue, P.C

    2004-02-01

    The objective of this paper is to tackle methodological issues associated with the inclusion of cognitive and dynamic considerations into Human Reliability methods. A methodology called Human Error Risk Management for Engineering Systems is presented that offers a 'roadmap' for selecting and consistently applying Human Factors approaches in different areas of application and contains also a 'body' of possible methods and techniques of its own. Two types of possible application are discussed to demonstrate practical applications of the methodology. Specific attention is dedicated to the issue of data collection and definition from specific field assessment.

  9. Adaptive Prediction Error Coding in the Human Midbrain and Striatum Facilitates Behavioral Adaptation and Learning Efficiency.

    Science.gov (United States)

    Diederen, Kelly M J; Spencer, Tom; Vestergaard, Martin D; Fletcher, Paul C; Schultz, Wolfram

    2016-06-01

    Effective error-driven learning benefits from scaling of prediction errors to reward variability. Such behavioral adaptation may be facilitated by neurons coding prediction errors relative to the standard deviation (SD) of reward distributions. To investigate this hypothesis, we required participants to predict the magnitude of upcoming reward drawn from distributions with different SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. In line with the notion of adaptive coding, BOLD response slopes in the Substantia Nigra/Ventral Tegmental Area (SN/VTA) and ventral striatum were steeper for prediction errors occurring in distributions with smaller SDs. SN/VTA adaptation was not instantaneous but developed across trials. Adaptive prediction error coding was paralleled by behavioral adaptation, as reflected by SD-dependent changes in learning rate. Crucially, increased SN/VTA and ventral striatal adaptation was related to improved task performance. These results suggest that adaptive coding facilitates behavioral adaptation and supports efficient learning. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Automated high-dose rate brachytherapy treatment planning for a single-channel vaginal cylinder applicator

    Science.gov (United States)

    Zhou, Yuhong; Klages, Peter; Tan, Jun; Chi, Yujie; Stojadinovic, Strahinja; Yang, Ming; Hrycushko, Brian; Medin, Paul; Pompos, Arnold; Jiang, Steve; Albuquerque, Kevin; Jia, Xun

    2017-06-01

    High dose rate (HDR) brachytherapy treatment planning is conventionally performed manually and/or with aids of preplanned templates. In general, the standard of care would be elevated by conducting an automated process to improve treatment planning efficiency, eliminate human error, and reduce plan quality variations. Thus, our group is developing AutoBrachy, an automated HDR brachytherapy planning suite of modules used to augment a clinical treatment planning system. This paper describes our proof-of-concept module for vaginal cylinder HDR planning that has been fully developed. After a patient CT scan is acquired, the cylinder applicator is automatically segmented using image-processing techniques. The target CTV is generated based on physician-specified treatment depth and length. Locations of the dose calculation point, apex point and vaginal surface point, as well as the central applicator channel coordinates, and the corresponding dwell positions are determined according to their geometric relationship with the applicator and written to a structure file. Dwell times are computed through iterative quadratic optimization techniques. The planning information is then transferred to the treatment planning system through a DICOM-RT interface. The entire process was tested for nine patients. The AutoBrachy cylindrical applicator module was able to generate treatment plans for these cases with clinical grade quality. Computation times varied between 1 and 3 min on an Intel Xeon CPU E3-1226 v3 processor. All geometric components in the automated treatment plans were generated accurately. The applicator channel tip positions agreed with the manually identified positions with submillimeter deviations and the channel orientations between the plans agreed within less than 1 degree. The automatically generated plans obtained clinically acceptable quality.

  11. Intravascular brachytherapy for peripheral vascular disease

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2008-09-01

    Full Text Available Scientific background: Percutaneous transluminal angioplasties (PTA through balloon dilatation with or without stenting, i.e. vessel expansion through balloons with or without of implantation of small tubes, called stents, are used in the treatment of peripheral artery occlusive disease (PAOD. The intravascular vessel irradiation, called intravascular brachytherapy, promises a reduction in the rate of repeated stenosis (rate of restenosis after PTA. Research questions: The evaluation addresses questions on medical efficacy, cost-effectiveness as well as ethic, social and legal implications in the use of brachytherapy in PAOD patients. Methods: A systematic literature search was conducted in August 2007 in the most important medical electronic databases for publications beginning from 2002. The medical evaluation included randomized controlled trials (RCT. The information synthesis was performed using meta-analysis. Health economic modeling was performed with clinical assumptions derived from the meta-analysis and economical assumptions derived from the German Diagnosis Related Groups (G-DRG-2007. Results: Medical evaluation: Twelve publications about seven RCT on brachytherapy vs. no brachytherapy were included in the medical evaluation. Two RCT showed a significant reduction in the rate of restenosis at six and/or twelve months for brachytherapy vs. no brachytherapy after successful balloon dilatation, the relative risk in the meta-analysis was 0.62 (95% CI: 0.46 to 0.84. At five years, time to recurrence of restenosis was significantly delayed after brachytherapy. One RCT showed a significant reduction in the rate of restenosis at six months for brachytherapy vs. no brachytherapy after PTA with optional stenting, the relative risk in the meta-analysis was 0.76 (95% CI: 0.61 to 0.95. One RCT observed a significantly higher rate of late thrombotic occlusions after brachytherapy in the subgroup of stented patients. A single RCT for brachytherapy

  12. Afterloading: The Technique That Rescued Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Aronowitz, Jesse N., E-mail: jesse.aronowitz@umassmemorial.org

    2015-07-01

    Although brachytherapy had been established as a highly effective modality for the treatment of cancer, its application was threatened by mid-20th century due to appreciation of the radiation hazard to health care workers. This review examines how the introduction of afterloading eliminated exposure and ushered in a brachytherapy renaissance.

  13. Intraoperative HDR Brachytherapy: Present and Future

    NARCIS (Netherlands)

    I.-K.K. Kolkman-Deurloo (Inger-Karina)

    2007-01-01

    textabstractRadiotherapy is one of the most effective modalities in cancer treatment, and can be applied either by external beam radiotherapy or by brachytherapy. Brachytherapy is a treatment modality in which tumors are irradiated by positioning radioactive sources very close to or in the tumor

  14. Brachytherapy in breast cancer: an effective alternative

    Science.gov (United States)

    Chicheł, Adam

    2014-01-01

    Breast conserving surgery (BCS) with following external beam radiation therapy (EBRT) of the conserved breast has become widely accepted in the last decades for the treatment of early invasive breast cancer. The standard technique of EBRT after BCS is to treat the whole breast up to a total dose of 42.5 to 50 Gy. An additional dose is given to treated volume as a boost to a portion of the breast. In the early stage of breast cancer, research has shown that the area requiring radiation treatment to prevent the cancer from local recurrence is the breast tissue that surrounds the area where the initial cancer was removed. Accelerated partial breast irradiation (APBI) is an approach that treats only the lumpectomy bed plus a 1-2 cm margin rather than the whole breast and as a result allows accelerated delivery of the radiation dose in four to five days. There has been a growing interest for APBI and various approaches have been developed under phase I-III clinical studies; these include multicatheter interstitial brachytherapy, balloon catheter brachytherapy, conformal external beam radiation therapy (3D-EBRT) and intra-operative radiation therapy (IORT). Balloon-based brachytherapy approaches include MammoSite, Axxent electronic brachytherapy, Contura, hybrid brachytherapy devices. Another indication for breast brachytherapy is reirradiation of local recurrence after mastectomy. Published results of brachytherapy are very promising. We discuss the current status, indications, and technical aspects of breast cancer brachytherapy. PMID:26327829

  15. The analysis of human error as causes in the maintenance of machines: a case study in mining companies

    Directory of Open Access Journals (Sweden)

    Kovacevic, Srdja

    2016-12-01

    Full Text Available This paper describes the two-step method used to analyse the factors and aspects influencing human error during the maintenance of mining machines. The first step is the cause-effect analysis, supported by brainstorming, where five factors and 21 aspects are identified. During the second step, the group fuzzy analytic hierarchy process is used to rank the identified factors and aspects. A case study is done on mining companies in Serbia. The key aspects are ranked according to an analysis that included experts who assess risks in mining companies (a maintenance engineer, a technologist, an ergonomist, a psychologist, and an organisational scientist. Failure to follow technical maintenance instructions, poor organisation of the training process, inadequate diagnostic equipment, and a lack of understanding of the work process are identified as the most important causes of human error.

  16. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, Universite Laval, CHUQ Pavillon L' Hotel-Dieu de Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Department of Oncology, McGill University, Montreal General Hospital, Montreal, Quebec H3G 1A4 (Canada)

    2011-03-15

    Purpose: The goal of this work is to compare D{sub m,m} (radiation transported in medium; dose scored in medium) and D{sub w,m} (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether applying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Methods: Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: {sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds, as well as an EBS operating at 50 kV. Ratios of D{sub w,m} over D{sub m,m} are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using {sup 103}Pd) and prostate (using {sup 125}I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D{sub 90} values are compared for D{sub w,m} and D{sub m,m}. Results: (1) Differences (D{sub w,m}/D{sub m,m}-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D{sub w,m}/D{sub m,m} is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D

  17. Human factors in matching images to standards: assimilation and time order error.

    Science.gov (United States)

    Elfering, Achim

    2005-01-01

    This study examines recognition performance to depend on image context and time order error. Recognition of standard images is a basic process in medical image analysis. After the presentation of a standard square, 20 subjects identified the standard within a variety of 7 squares. The choice was between the standard and either 3 smaller and 3 larger squares, 5 smaller and 1 larger square, or 5 larger and 1 smaller square (context conditions). Multilevel regression analysis showed large individual differences in judgments (P < .001). Context induced assimilation of judgments to the medium-sized square within response options (P < .001). Negative time order error in rapid judgments caused an underestimation of the standard (P < .001). Assimilation of judgments and time order error might be a threat to the reliability of medical image analysis. Some procedural recommendations are derived to reduce bias and increase patient safety in radiology.

  18. Aspects of dosimetry and clinical practice of skin brachytherapy: The American Brachytherapy Society working group report.

    Science.gov (United States)

    Ouhib, Zoubir; Kasper, Michael; Perez Calatayud, Jose; Rodriguez, Silvia; Bhatnagar, Ajay; Pai, Sujatha; Strasswimmer, John

    2015-01-01

    Nonmelanoma skin cancers (NMSCs) are the most common type of human malignancy. Although surgical techniques are the standard treatment, radiation therapy using photons, electrons, and brachytherapy (BT) (radionuclide-based and electronic) has been an important mode of treatment in specific clinical situations. The purpose of this work is to provide a clinical and dosimetric summary of the use of BT for the treatment of NMSC and to describe the different BT approaches used in treating cutaneous malignancies. A group of experts from the fields of radiation oncology, medical physics, and dermatology, who specialize in managing cutaneous malignancies reviewed the literature and compiled their clinical experience regarding the clinical and dosimetric aspects of skin BT. A dosimetric and clinical review of both high dose rate ((192)Ir) and electronic BT treatment including surface, interstitial, and custom mold applicators is given. Patient evaluation tools such as staging, imaging, and patient selection criteria are discussed. Guidelines for clinical and dosimetric planning, appropriate margin delineation, and applicator selection are suggested. Dose prescription and dose fractionation schedules, as well as prescription depth are discussed. Commissioning and quality assurance requirements are also outlined. Given the limited published data for skin BT, this article is a summary of the limited literature and best practices currently in use for the treatment of NMSC. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  19. Dynamic rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Yang, Wenjun [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Wu, Xiaodong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2013-12-15

    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively

  20. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qaisieh, Bashar [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Mason, Josh, E-mail: joshua.mason@nhs.net [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Bownes, Peter; Henry, Ann [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Dickinson, Louise [Division of Surgery and Interventional Science, University College London, London (United Kingdom); Department of Radiology, Northwick Park Hospital, London North West NHS Trust, London (United Kingdom); Ahmed, Hashim U. [Division of Surgery and Interventional Science, University College London, London (United Kingdom); University College London Hospital, London (United Kingdom); Emberton, Mark [University College London Hospital, London (United Kingdom); Langley, Stephen [St Luke' s Cancer Centre, Guildford (United Kingdom)

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  1. High dose rate brachytherapy for oral cancer

    Science.gov (United States)

    YamazakI, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. PMID:23179377

  2. To err is human: How regulatory focus and action orientation predict performance following errors

    NARCIS (Netherlands)

    Knippenberg, A.F.M. van; Lange, Martijn A. de

    2009-01-01

    In the current study, we hypothesize that post-error performance is influenced by individual differences in action orientation and situationally induced regulatory focus. Two experiments employing a time-pressured flanker-like task, measured participants' dispositional action orientation and

  3. APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans

    NARCIS (Netherlands)

    A.V. Tkatchenko (Andrei V.); T.V. Tkatchenko (Tatiana V.); J. Guggenheim (Jean); V.J.M. Verhoeven (Virginie); P.G. Hysi (Pirro); R. Wojciechowski (Robert); P.K. Singh (Pawan Kumar); A. Kumar (Ashok); G. Thinakaran (Gopal); C. Williams (Cathy)

    2015-01-01

    textabstractMyopia is the most common vision disorder and the leading cause of visual impairment worldwide. However, gene variants identified to date explain less than 10% of the variance in refractive error, leaving the majority of heritability unexplained (“missing heritability”). Previously, we

  4. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  5. Radiochromic film-based quality assurance for CT-based high-dose-rate brachytherapy.

    Science.gov (United States)

    Asgharizadeh, Saeid; Bekerat, Hamed; Syme, Alasdair; Aldelaijan, Saad; DeBlois, François; Vuong, Té; Evans, Michael; Seuntjens, Jan; Devic, Slobodan

    2015-01-01

    In the past, film dosimetry was developed into a powerful tool for external beam radiotherapy treatment verification and quality assurance. The objective of this work was the development and clinical testing of the EBT3 model GafChromic film based brachytherapy quality assurance (QA) system. Retrospective dosimetry study was performed to test a patient-specific QA system for preoperative endorectal brachytherapy that uses a radiochromic film dosimetry system. A dedicated phantom for brachytherapy applicator used for rectal cancer treatment was fabricated enabling us to compare calculated-to-measured dose distributions. Starting from the same criteria used for external beam intensity-modulated radiation therapy QA (3%, 3 mm), passing criteria for high- and low-dose gradient regions were subsequently determined. Finally, we investigated the QA system's sensitivity to controlled source positional errors on selected patient plans. In low-dose gradient regions, measured dose distributions with criteria of 3%, 3 mm barely passed the test, as they showed 95% passing pixels. However, in the high-dose gradient region, a more stringent condition could be established. Both criteria of 2%, 3 mm and 3%, 2 mm with gamma function calculated using normalization to the same absolute dose value in both measured and calculated dose distributions, and matrix sizes rescaled to match each other showed more than 95% of pixels passing, on average, for 15 patient plans analyzed. Although the necessity of the patient-specific brachytherapy QA needs yet to be justified, we described a radiochromic film dosimetry-based QA system that can be a part of the brachytherapy commissioning process, as well as yearly QA program. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. Distinguishing science from pseudoscience in school psychology: science and scientific thinking as safeguards against human error.

    Science.gov (United States)

    Lilienfeld, Scott O; Ammirati, Rachel; David, Michal

    2012-02-01

    Like many domains of professional psychology, school psychology continues to struggle with the problem of distinguishing scientific from pseudoscientific and otherwise questionable clinical practices. We review evidence for the scientist-practitioner gap in school psychology and provide a user-friendly primer on science and scientific thinking for school psychologists. Specifically, we (a) outline basic principles of scientific thinking, (b) delineate widespread cognitive errors that can contribute to belief in pseudoscientific practices within school psychology and allied professions, (c) provide a list of 10 key warning signs of pseudoscience, illustrated by contemporary examples from school psychology and allied disciplines, and (d) offer 10 user-friendly prescriptions designed to encourage scientific thinking among school psychology practitioners and researchers. We argue that scientific thinking, although fallible, is ultimately school psychologists' best safeguard against a host of errors in thinking. Copyright © 2011 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  7. ATHEANA: {open_quotes}a technique for human error analysis{close_quotes} entering the implementation phase

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.; O`Hara, J.; Luckas, W. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1997-02-01

    Probabilistic Risk Assessment (PRA) has become an increasingly important tool in the nuclear power industry, both for the Nuclear Regulatory Commission (NRC) and the operating utilities. The NRC recently published a final policy statement, SECY-95-126, encouraging the use of PRA in regulatory activities. Human reliability analysis (HRA), while a critical element of PRA, has limitations in the analysis of human actions in PRAs that have long been recognized as a constraint when using PRA. In fact, better integration of HRA into the PRA process has long been a NRC issue. Of particular concern, has been the omission of errors of commission - those errors that are associated with inappropriate interventions by operators with operating systems. To address these concerns, the NRC identified the need to develop an improved HRA method, so that human reliability can be better represented and integrated into PRA modeling and quantification. The purpose of the Brookhaven National Laboratory (BNL) project, entitled `Improved HRA Method Based on Operating Experience` is to develop a new method for HRA which is supported by the analysis of risk-significant operating experience. This approach will allow a more realistic assessment and representation of the human contribution to plant risk, and thereby increase the utility of PRA. The project`s completed, ongoing, and future efforts fall into four phases: (1) Assessment phase (FY 92/93); (2) Analysis and Characterization phase (FY 93/94); (3) Development phase (FY 95/96); and (4) Implementation phase (FY 96/97 ongoing).

  8. Clinical implementation of a new electronic brachytherapy system for skin brachytherapy

    OpenAIRE

    Pons-Llanas, Olga; Ballester-S?nchez, Rosa; Celada-?lvarez, Francisco Javier; Candela-Juan, Cristian; Garc?a-Mart?nez, Teresa; Llavador-Ros, Margarita; Botella-Estrada, Rafael; Barker, Christopher A.; Ballesta, Antonio; Tormo-Mic?, Alejandro; Rodr?guez, Silvia; Perez-Calatayud, Jose

    2014-01-01

    Although surgery is usually the first-line treatment for nonmelanoma skin cancers, radiotherapy (RT) may be indicated in selected cases. Radiation therapy as primary therapy can result in excellent control rates, cosmetics, and quality of life. Brachytherapy is a radiation treatment modality that offers the most conformal option to patients. A new modality for skin brachytherapy is electronic brachytherapy. This involves the placement of a high dose rate X-ray source directly in a skin applic...

  9. A human error taxonomy for analysing healthcare incident reports: assessing reporting culture and its effects on safety perfomance

    DEFF Research Database (Denmark)

    Itoh, Kenji; Omata, N.; Andersen, Henning Boje

    2009-01-01

    The present paper reports on a human error taxonomy system developed for healthcare risk management and on its application to evaluating safety performance and reporting culture. The taxonomy comprises dimensions for classifying errors, for performance-shaping factors, and for the maturity...... of reporting culture contained in incident reports. Applying several dimensions in the taxonomy, we propose on the one hand two safety performance measures, i.e., the rate of near-miss reporting and the rate of near-miss detection by safety procedure, and on the other, measures for diagnosing reporting culture...... including average descriptive depth in reports. We applied the taxonomy to a total of 3749 incident cases collected from two Japanese hospitals, which were at different stages of patient safety activities: Hospital A initiated organisation-wide initiatives several years before the survey period, while...

  10. SU-F-T-65: AutomaticTreatment Planning for High-Dose Rate (HDR) Brachytherapy with a VaginalCylinder Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y; Tan, J; Jiang, S; Albuquerque, K; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: High dose rate (HDR) brachytherapy treatment planning is conventionally performed in a manual fashion. Yet it is highly desirable to perform computerized automated planning to improve treatment planning efficiency, eliminate human errors, and reduce plan quality variation. The goal of this research is to develop an automatic treatment planning tool for HDR brachytherapy with a cylinder applicator for vaginal cancer. Methods: After inserting the cylinder applicator into the patient, a CT scan was acquired and was loaded to an in-house developed treatment planning software. The cylinder applicator was automatically segmented using image-processing techniques. CTV was generated based on user-specified treatment depth and length. Locations of relevant points (apex point, prescription point, and vaginal surface point), central applicator channel coordinates, and dwell positions were determined according to their geometric relations with the applicator. Dwell time was computed through an inverse optimization process. The planning information was written into DICOM-RT plan and structure files to transfer the automatically generated plan to a commercial treatment planning system for plan verification and delivery. Results: We have tested the system retrospectively in nine patients treated with vaginal cylinder applicator. These cases were selected with different treatment prescriptions, lengths, depths, and cylinder diameters to represent a large patient population. Our system was able to generate treatment plans for these cases with clinically acceptable quality. Computation time varied from 3–6 min. Conclusion: We have developed a system to perform automated treatment planning for HDR brachytherapy with a cylinder applicator. Such a novel system has greatly improved treatment planning efficiency and reduced plan quality variation. It also served as a testbed to demonstrate the feasibility of automatic HDR treatment planning for more complicated cases.

  11. EM-navigated catheter placement for gynecologic brachytherapy: an accuracy study

    Science.gov (United States)

    Mehrtash, Alireza; Damato, Antonio; Pernelle, Guillaume; Barber, Lauren; Farhat, Nabgha; Viswanathan, Akila; Cormack, Robert; Kapur, Tina

    2014-03-01

    Gynecologic malignancies, including cervical, endometrial, ovarian, vaginal and vulvar cancers, cause significant mortality in women worldwide. The standard care for many primary and recurrent gynecologic cancers consists of chemoradiation followed by brachytherapy. In high dose rate (HDR) brachytherapy, intracavitary applicators and /or interstitial needles are placed directly inside the cancerous tissue so as to provide catheters to deliver high doses of radiation. Although technology for the navigation of catheters and needles is well developed for procedures such as prostate biopsy, brain biopsy, and cardiac ablation, it is notably lacking for gynecologic HDR brachytherapy. Using a benchtop study that closely mimics the clinical interstitial gynecologic brachytherapy procedure, we developed a method for evaluating the accuracy of image-guided catheter placement. Future bedside translation of this technology offers the potential benefit of maximizing tumor coverage during catheter placement while avoiding damage to the adjacent organs, for example bladder, rectum and bowel. In the study, two independent experiments were performed on a phantom model to evaluate the targeting accuracy of an electromagnetic (EM) tracking system. The procedure was carried out using a laptop computer (2.1GHz Intel Core i7 computer, 8GB RAM, Windows 7 64-bit), an EM Aurora tracking system with a 1.3mm diameter 6 DOF sensor, and 6F (2 mm) brachytherapy catheters inserted through a Syed-Neblett applicator. The 3D Slicer and PLUS open source software were used to develop the system. The mean of the targeting error was less than 2.9mm, which is comparable to the targeting errors in commercial clinical navigation systems.

  12. Effect of implanted brachytherapy seeds on optical fluence distribution: preliminary ex vivo study

    Science.gov (United States)

    Hetzel, Fred W.; Chen, Qun; Ding, Meisong; Newman, Francis; Dole, Kenneth C.; Huang, Zheng; Blanc, Dominique

    2007-02-01

    Photodynamic therapy (PDT) has gradually found its place in the treatment of malignant and non-malignant human diseases. Currently, interstitial PDT is being explored as an alternative modality for newly diagnosed and recurrent organ-confined prostate cancer. The interstitial PDT for the treatment of prostate cancer might be considered to treat prostates with permanent radioactive seeds implantation. However, the effect of implanted brachytherapy seeds on the optical fluence distribution of PDT light has not been studied before. This study investigated, for the first time, the effect of brachytherapy seed on the optical fluence distribution of 760 nm light in ex vivo models (meat and canine prostate).

  13. Human errors in the information security realm – and how to fix them

    OpenAIRE

    Sohrabi Safa, Nader; Maple, Carsten

    2016-01-01

    Information security breaches and privacy violations are major concerns for many organisations. Human behaviour, either intentionally or through negligence, is a great source of risk to information assets. It is acknowledged that technology alone cannot guarantee a secure environment for information assets; human considerations should be taken into account as well as technological and procedural aspects.\\ud \\ud

  14. The Error Is the Clue: Breakdown In Human-Machine Interaction

    National Research Council Canada - National Science Library

    Martinovsky, Bilyana; Traum, David

    2006-01-01

    .... Human reactions to these irritating features typically appear in the following order: tiredness, tolerance, anger, confusion, irony, humor, exhaustion, uncertainty, lack of desire to communicate. The studied features of human expressions of irritation in nonface- to-face interaction are: intonation, emphatic speech, elliptic speech, speed of speech, extra-linguistic signs, speed of verbal action, and overlap.

  15. To Err is Human: An error analysis approach to Turkish as an L2

    Directory of Open Access Journals (Sweden)

    Talip Gonulal

    2016-10-01

    Full Text Available In this study we investigate which aspects of Turkish pose particular challenges for English-speaking learners. The data are from a large pool of university LCTL learners who responded to five pre-recorded speaking prompts. They audio-recorded their speech twice a semester for up to three consecutive semesters using a virtual interview assessment tool called VOICES. Each interview lasted about 10 minutes. We identified and analyzed the various types and frequencies of grammatical and lexical errors that emerged in the Turkish speech from twelve English-speaking learners of Turkish. The results indicate that English-speaking learners of Turkish had problems with the Turkish case-marking system, subject-verb agreement, singularity/plurality, near synonyms and lexical shifts. Consistent with previous L2 Turkish studies, we found that some of the errors can be attributed to the fact that Turkish is an agglutinative language while English is isolating. We discuss how analyses of this type can improve LCTL instruction.

  16. Human errors: their psychophysical bases and the Proprioceptive Diagnosis of Temperament and Character (DP-TC as a tool for measuring.

    Directory of Open Access Journals (Sweden)

    Tous Ral J.M.

    2014-07-01

    Full Text Available Human error is commonly differentiated into three different types. These are: errors in perception, errors in decision and errors in sensation. This analysis is based on classical psychophysics (Fechner, 1860 and describes the errors of detection and perception. Decision- making errors are evaluated in terms of the theory of signal detection (McNicholson, 1974, and errors of sensation or sensitivity are evaluated in terms of proprioceptive information (van Beers, 2001. Each of these stages developed its own method of evaluation that has influenced the development of ergonomics in the event of errors in perception and the verbal assessment of personality (stress, impulsiveness, burnout, etc. in decision-making errors. Here we represent the method we have developed, the Proprioceptive Diagnosis of Temperament and Character (DP- TC test, for the specific assessment of errors of perception or expressivity which are based on fine motor precision performance. Each of the described errors types are interdependent of each other in such a manner that observable stress in behaviour may be caused due to: the inadequate performance of a task due to the perception of the person (i.e. from right to left for a right-handed person; performing a task that requires attentive decision-making to be performed too hastily; undertaking a task that does not correspond to the prevailing disposition of the person.

  17. The Measure of Human Error: Direct and Indirect Performance Shaping Factors

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Candice D. Griffith; Jeffrey C. Joe

    2007-08-01

    The goal of performance shaping factors (PSFs) is to provide measures to account for human performance. PSFs fall into two categories—direct and indirect measures of human performance. While some PSFs such as “time to complete a task” are directly measurable, other PSFs, such as “fitness for duty,” can only be measured indirectly through other measures and PSFs, such as through fatigue measures. This paper explores the role of direct and indirect measures in human reliability analysis (HRA) and the implications that measurement theory has on analyses and applications using PSFs. The paper concludes with suggestions for maximizing the reliability and validity of PSFs.

  18. Comprehensive brachytherapy physical and clinical aspects

    CERN Document Server

    Baltas, Dimos; Meigooni, Ali S; Hoskin, Peter J

    2013-01-01

    Modern brachytherapy is one of the most important oncological treatment modalities requiring an integrated approach that utilizes new technologies, advanced clinical imaging facilities, and a thorough understanding of the radiobiological effects on different tissues, the principles of physics, dosimetry techniques and protocols, and clinical expertise. A complete overview of the field, Comprehensive Brachytherapy: Physical and Clinical Aspects is a landmark publication, presenting a detailed account of the underlying physics, design, and implementation of the techniques, along with practical guidance for practitioners. Bridging the gap between research and application, this single source brings together the technological basis, radiation dosimetry, quality assurance, and fundamentals of brachytherapy. In addition, it presents discussion of the most recent clinical practice in brachytherapy including prostate, gynecology, breast, and other clinical treatment sites. Along with exploring new clinical protocols, ...

  19. Observed Human Actions, and Not Mechanical Actions, Induce Searching Errors in Infants

    Directory of Open Access Journals (Sweden)

    Yusuke Moriguchi

    2012-01-01

    Full Text Available Recent neurophysiological studies have shown that several human brain regions involved in executing actions are activated by merely observing such actions via a human, and not by a mechanical hand. At a behavioral level, observing a human’s movements, but not those of a robot, significantly interferes with ongoing executed movements. However, it is unclear whether the biological tuning in the observation/execution matching system are functional during infancy. The present study examines whether a human’s actions, and not a mechanical action, influence infants’ execution of the same actions due to the observation/execution matching system. Twelve-month-old infants were given a searching task. In the tasks, infants observed an object hidden at location A, after which either a human hand (human condition or a mechanical one (mechanical condition searched the object correctly. Next, the object was hidden at location B and infants were allowed to search the object. We examined whether infants searched the object at location B correctly. The results revealed that infants in the human condition were more likely to search location A than those in the mechanical condition. Moreover, the results suggested that infants’ searching behaviors were affected by their observations of the same actions by a human, but not a mechanical hand. Thus, it may be concluded that the observation/execution matching system may be biologically tuned during infancy.

  20. Redesign of Process Map to Increase Efficiency: Reducing Procedure Time 1 in Cervical-Cancer Brachytherapy

    Science.gov (United States)

    Damato, Antonio L.; Cormack, Robert A.; Bhagwat, Mandar S.; Buzurovic, Ivan; Finucane, Susan; Hansen, Jorgen L.; O’Farrell, Desmond A.; Offiong, Alecia; Randall, Una; Friesen, Scott; Lee, Larissa J.; Viswanathan, Akila N.

    2014-01-01

    Purpose To increase intra-procedural efficiency in the use of clinical resources and to decrease planning time for cervical-cancer brachytherapy treatments through redesign of the procedure’s process map. Methods and Materials A multi-disciplinary team identified all tasks and associated resources involved in cervical-cancer brachytherapy in our institution, and arranged them in a process map. A redesign of the treatment planning component of the process map was conducted with the goal of minimizing planning time. Planning time was measured on 20 consecutive insertions, of which 10 were performed with standard procedures and 10 with the redesigned process map, and results compared. Statistical significance (p brachytherapy treatments were identified. The process map showed that in standard procedures, the treatment planning tasks were performed sequentially. The process map was redesigned to specify that contouring and some planning tasks are performed concomitantly. Some quality assurance (QA) tasks were reorganized to minimize adverse effects of a possible error on procedure time. Test “dry runs” followed by live implementation confirmed the applicability of the new process map to clinical conditions. A 29% reduction in planning time (p brachytherapy was generated. The treatment planning component of the process map was redesigned, resulting in a 29% decrease in planning time and a streamlining of the QA process. PMID:25572438

  1. Action errors, error management, and learning in organizations.

    Science.gov (United States)

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  2. Clinical implementation of a new electronic brachytherapy system for skin brachytherapy.

    Science.gov (United States)

    Pons-Llanas, Olga; Ballester-Sánchez, Rosa; Celada-Álvarez, Francisco Javier; Candela-Juan, Cristian; García-Martínez, Teresa; Llavador-Ros, Margarita; Botella-Estrada, Rafael; Barker, Christopher A; Ballesta, Antonio; Tormo-Micó, Alejandro; Rodríguez, Silvia; Perez-Calatayud, Jose

    2015-01-01

    Although surgery is usually the first-line treatment for nonmelanoma skin cancers, radiotherapy (RT) may be indicated in selected cases. Radiation therapy as primary therapy can result in excellent control rates, cosmetics, and quality of life. Brachytherapy is a radiation treatment modality that offers the most conformal option to patients. A new modality for skin brachytherapy is electronic brachytherapy. This involves the placement of a high dose rate X-ray source directly in a skin applicator close to the skin surface, and therefore combines the benefits of brachytherapy with those of low energy X-ray radiotherapy. The Esteya electronic brachytherapy system is specifically designed for skin surface brachytherapy procedures. The purpose of this manuscript is to describe the clinical implementation of the new Esteya electronic brachytherapy system, which may provide guidance for users of this system. The information covered includes patient selection, treatment planning (depth evaluation and margin determination), patient marking, and setup. The justification for the hypofractionated regimen is described and compared with others protocols in the literature. Quality assurance (QA) aspects including daily testing are also included. We emphasize that these are guidelines, and clinical judgment and experience must always prevail in the care of patients, as with any medical treatment. We conclude that clinical implementation of the Esteya brachytherapy system is simple for patients and providers, and should allow for precise and safe treatment of nonmelanoma skin cancers.

  3. Brachytherapy catheter spacing and stabilization technique.

    Science.gov (United States)

    Demanes, D Jeffrey; Friedman, Jeffrey M; Park, Sang-June; Steinberg, Michael L; Hayes, John K; Kamrava, Mitchell R

    2012-01-01

    To facilitate catheter spacing, implant stability, and patient comfort during multicatheter interstitial brachytherapy. Uniform and consistent spacing of multiple interstitial implant catheters can be difficult because individual catheters may become displaced during the course of treatment. The authors have developed a brachytherapy catheter fixation method using Jackson-Pratt (JP) drains that can be used within wounds to maintain catheter spacing or on the skin surface for applicator fixation. JP drains are threaded over the implant needles to space and stabilize the implant geometry. The needles are then replaced with the usual brachytherapy catheters. Surgically directed ("open") placement of implant catheters is less prone to displacement when a drain connects and spaces the catheters in the wound. Fixation on the skin surface can also be achieved with the JP drains, which make the friction buttons optional. The soft drain material helps avoid discomfort and pressure injury sometimes associated with hard plastic buttons. Small (10 French) round JP drains are suitable for breast, and head and neck sites and larger 7×10-mm flat JP drains for extremity sarcomas, abdominal, or thoracic tumors. The complex brachytherapy devices fashioned from widely available surgical drains effectively guide and maintain geometry for multicatheter interstitial implants. Stable implant geometry leads to more reliable implementation of brachytherapy dosimetry. Patient comfort is improved and soft tissue injury from hard-edged buttons is avoided. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Human Dorsal Striatum Encodes Prediction Errors during Observational Learning of Instrumental Actions

    Science.gov (United States)

    Cooper, Jeffrey C.; Dunne, Simon; Furey, Teresa; O'Doherty, John P.

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of…

  5. Dose determination in high dose-rate brachytherapy.

    Science.gov (United States)

    Houdek, P V; Schwade, J G; Wu, X; Pisciotta, V; Fiedler, J A; Serago, C F; Markoe, A M; Abitbol, A A; Lewin, A A; Braunschweiger, P G

    1992-01-01

    Although high dose-rate brachytherapy with a single, rapidly moving radiation source is becoming a common treatment modality, a suitable formalism for determination of the dose delivered by a moving radiation source has not yet been developed. At present, brachytherapy software simulates high dose-rate treatments using only a series of stationary sources, and consequently fails to account for the dose component delivered while the source is in motion. We now describe a practical model for determination of the true, total dose administered. The algorithm calculates both the dose delivered while the source is in motion within and outside of the implanted volume (dynamic component), and the dose delivered while the source is stationary at a series of fixed dwell points. It is shown that the dynamic dose element cannot be ignored because it always increases the dose at the prescription points and, in addition, distorts the dose distribution within and outside of the irradiated volume. Failure to account for the dynamic dose component results in dosimetric errors that range from significant (> 10%) to negligible (source activity, and source speed as defined by the implant geometry.

  6. Correlations between refractive error and biometric parameters in human eyes using the LenStar 900.

    Science.gov (United States)

    O'Donnell, Clare; Hartwig, Andreas; Radhakrishnan, Hema

    2011-02-01

    To investigate the relationship between refractive error and ocular biometry in healthy subjects using a new optical low coherence reflectometry device. Biometric measurements were obtained with a LenStar LS 900 (Haag Streit, Switzerland) on one eye of 70 phakic subjects (mean ± SD age; 29 ± 9 years). Forty myopes and 30 non-myopes (best sphere range -9.63 D to +0.63 D) were included. Outcome measures were compared for the two groups using one way between groups ANOVA. These included; keratometry, central corneal thickness, iris width, anterior chamber depth, pupil diameter, lens thickness, axial length and retinal thickness. No mydriatic or cycloplegic agents were used. There were significant differences between groups for keratometry readings (p = 0.021 and p = 0.038 for steep and flat k readings respectively), anterior chamber depth (p = 0.001), lens thickness (p = 0.026) and axial length (pbiometric parameters assessed and provides information about the relationships between these biometric parameters and age. The results, coupled with a unique ability to image and analyse the ocular structures non-invasively make the LenStar a promising new instrument for ocular evaluation in research and clinical practice. Copyright © 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  7. Theoretical effect of refractive error and accommodation on longitudinal chromatic aberration of the human eye.

    Science.gov (United States)

    Atchison, D A; Smith, G; Waterworth, M D

    1993-09-01

    Simple formulas based on reduced eyes have been developed to predict the variation in longitudinal chromatic aberration with variation in ametropia or accommodation. Two formulas were developed, one for axial ametropia and one for refractive ametropia. The latter also served as a model for accommodation. The results using the formulas are in close agreement with results obtained using raytracing through more sophisticated models. Combining the results of different methods gives the following predictions of change in chromatic difference of focus, between wavelengths of 400 and 700 nm, with change in each diopter of refractive error or accommodation: axial ametropia 0.012 to 0.017 D (0.6 to 0.9%), refractive ametropia 0.05 D (2.2 to 2.4%), and accommodation 0.04 to 0.05 D (2.1 to 2.6%). The chromatic aberration effects of correcting lenses with low dispersion are intermediate in effect and opposite in sign to the effects of corresponding degrees of axial ametropia and refractive ametropia.

  8. The Error Is the Clue: Breakdown In Human-Machine Interaction

    Science.gov (United States)

    2006-01-01

    is because it is sought in fusion” writes Levinas in his essay “The Other in Proust” [10]. Levinas meant fusion of humans, of views, of perspectives...London, 1999. [9] Shanon, C., The Mathematical Theory of Communication, University of Illinois, Urbana, 1949. [10] Levinas , E., “The Other in...Proust”, in The Levinas Reader, ed. Sean Hand. Basil Blackwell, Oxford, 1989. [11] Charlesworth , W. R., “The Role of Surprise in Cognitive Development

  9. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of a...

  10. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide brachytherapy source. 892.5730... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy source. (a) Identification. A radionuclide brachytherapy source is a device that consists of a...

  11. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of brachytherapy source accountability. 35.2406... Records of brachytherapy source accountability. (a) A licensee shall maintain a record of brachytherapy source accountability required by § 35.406 for 3 years. (b) For temporary implants, the record must...

  12. 10 CFR 35.406 - Brachytherapy sources accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35....406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all times... area. (c) A licensee shall maintain a record of the brachytherapy source accountability in accordance...

  13. Identification of chromosomal errors in human preimplantation embryos with oligonucleotide DNA microarray.

    Directory of Open Access Journals (Sweden)

    Lifeng Liang

    Full Text Available A previous study comparing the performance of different platforms for DNA microarray found that the oligonucleotide (oligo microarray platform containing 385K isothermal probes had the best performance when evaluating dosage sensitivity, precision, specificity, sensitivity and copy number variations border definition. Although oligo microarray platform has been used in some research fields and clinics, it has not been used for aneuploidy screening in human embryos. The present study was designed to use this new microarray platform for preimplantation genetic screening in the human. A total of 383 blastocysts from 72 infertility patients with either advanced maternal age or with previous miscarriage were analyzed after biopsy and microarray. Euploid blastocysts were transferred to patients and clinical pregnancy and implantation rates were measured. Chromosomes in some aneuploid blastocysts were further analyzed by fluorescence in-situ hybridization (FISH to evaluate accuracy of the results. We found that most (58.1% of the blastocysts had chromosomal abnormalities that included single or multiple gains and/or losses of chromosome(s, partial chromosome deletions and/or duplications in both euploid and aneuploid embryos. Transfer of normal euploid blastocysts in 34 cycles resulted in 58.8% clinical pregnancy and 54.4% implantation rates. Examination of abnormal blastocysts by FISH showed that all embryos had matching results comparing microarray and FISH analysis. The present study indicates that oligo microarray conducted with a higher resolution and a greater number of probes is able to detect not only aneuploidy, but also minor chromosomal abnormalities, such as partial chromosome deletion and/or duplication in human embryos. Preimplantation genetic screening of the aneuploidy by DNA microarray is an advanced technology used to select embryos for transfer and improved embryo implantation can be obtained after transfer of the screened normal

  14. Time-resolved in vivo dosimetry for source tracking in brachytherapy.

    Science.gov (United States)

    Johansen, Jacob Graversen; Rylander, Susanne; Buus, Simon; Bentzen, Lise; Hokland, Steffen Bjerre; Søndergaard, Christian Skou; With, Anders Karl Mikael; Kertzscher, Gustavo; Tanderup, Kari

    The purpose of this article is to demonstrate that brachytherapy source tracking can be realized with in vivo dosimetry. This concept could enable real-time treatment monitoring. In vivo dosimetry was incorporated in the clinical routine during high-dose-rate prostate brachytherapy at Aarhus University Hospital. The dosimetry was performed with a radioluminescent crystal positioned in a dedicated brachytherapy needle in the prostate. The dose rate was recorded every 50-100 ms during treatment and analyzed retrospectively. The measured total delivered dose and dose rates for each dwell position with dwell times >0.7 s were compared with expected values. Furthermore, the distance between the source and dosimeter, which was derived from the measured dose rates, was compared with expected values. The measured dose rate pattern in each needle was used to determine the most likely position of the needle relative to the dosimeter. In total, 305 needles and 3239 dwell positions were analyzed based on 20 treatments. The measured total doses differed from the expected values by -4.7 ± 8.4% (1SD) with range (-17% to 12%). It was possible to determine needle shifts for 304 out of 305 needles. The mean radial needle shift between imaging and treatment was 0.2 ± 1.1 mm (1SD), and the mean longitudinal shift was 0.3 ± 2.0 mm (1SD). Time-resolved in vivo dosimetry can be used to provide geometric information about the treatment progression of afterloading brachytherapy. This information may provide a clear indication of errors and uncertainties during a treatment and, therefore, enables real-time treatment monitoring. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  15. SU-F-T-50: Evaluation of Monte Carlo Simulations Performance for Pediatric Brachytherapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chatzipapas, C; Kagadis, G [University Patras, Rion, Ahaia (Greece); Papadimitroulas, P [BET Solutions, Athens, Attiki (Greece); Loudos, G [Technological Educational Institute of Athens, Egaleo, Attiki (Greece); Papanikolaou, N [University of Texas HSC SA, San Antonio, TX (United States)

    2016-06-15

    Purpose: Pediatric tumors are generally treated with multi-modal procedures. Brachytherapy can be used with pediatric tumors, especially given that in this patient population low toxicity on normal tissues is critical as is the suppression of the probability for late malignancies. Our goal is to validate the GATE toolkit on realistic brachytherapy applications, and evaluate brachytherapy plans on pediatrics for accurate dosimetry on sensitive and critical organs of interest. Methods: The GATE Monte Carlo (MC) toolkit was used. Two High Dose Rate (HDR) 192Ir brachytherapy sources were simulated (Nucletron mHDR-v1 and Varian VS2000), and fully validated using the AAPM and ESTRO protocols. A realistic brachytherapy plan was also simulated using the XCAT anthropomorphic computational model .The simulated data were compared to the clinical dose points. Finally, a 14 years old girl with vaginal rhabdomyosarcoma was modelled based on clinical procedures for the calculation of the absorbed dose per organ. Results: The MC simulations resulted in accurate dosimetry in terms of dose rate constant (Λ), radial dose gL(r) and anisotropy function F(r,θ) for both sources.The simulations were executed using ∼1010 number of primaries resulting in statistical uncertainties lower than 2%.The differences between the theoretical values and the simulated ones ranged from 0.01% up to 3.3%, with the largest discrepancy (6%) being observed in the dose rate constant calculation.The simulated DVH using an adult female XCAT model was also compared to a clinical one resulting in differences smaller than 5%. Finally, a realistic pediatric brachytherapy simulation was performed to evaluate the absorbed dose per organ and to calculate DVH with respect to heterogeneities of the human anatomy. Conclusion: GATE is a reliable tool for brachytherapy simulations both for source modeling and for dosimetry in anthropomorphic voxelized models. Our project aims to evaluate a variety of pediatric

  16. TECHNOLOGY VS NATURE: HUMAN ERROR IN DEALING WITH NATURE IN CRICHTON'S JURASSIC PARK

    Directory of Open Access Journals (Sweden)

    Sarah Prasasti

    2000-01-01

    Full Text Available Witnessing the euphoria of the era of biotechnology in the late twentieth century, Crichton exposes the theme of biotechnology in his works. In Jurassic Park, he voices his concern about the impact of the use of biotechnology to preserve nature and its living creatures. He further describes how the purpose of preserving nature and the creatures has turned out to be destructive. This article discusses Crichton's main character, Hammond, who attempts to control nature by genetically recreating the extinct fossil animals. It seems that the attempt ignores his human limitations. Although he is confident that has been equipped with the technology, he forgets to get along with nature. His way of using technology to accomplish his purpose proves not to be in harmony with nature. As a consequence, nature fights back. And he is conquered.

  17. Procedures for using expert judgment to estimate human-error probabilities in nuclear power plant operations. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Seaver, D.A.; Stillwell, W.G.

    1983-03-01

    This report describes and evaluates several procedures for using expert judgment to estimate human-error probabilities (HEPs) in nuclear power plant operations. These HEPs are currently needed for several purposes, particularly for probabilistic risk assessments. Data do not exist for estimating these HEPs, so expert judgment can provide these estimates in a timely manner. Five judgmental procedures are described here: paired comparisons, ranking and rating, direct numerical estimation, indirect numerical estimation and multiattribute utility measurement. These procedures are evaluated in terms of several criteria: quality of judgments, difficulty of data collection, empirical support, acceptability, theoretical justification, and data processing. Situational constraints such as the number of experts available, the number of HEPs to be estimated, the time available, the location of the experts, and the resources available are discussed in regard to their implications for selecting a procedure for use.

  18. In vivo dosimetry: trends and prospects for brachytherapy

    Science.gov (United States)

    Rosenfeld, A; Beddar, S; Tanderup, K; Cygler, J E

    2014-01-01

    The error types during brachytherapy (BT) treatments and their occurrence rates are not well known. The limited knowledge is partly attributed to the lack of independent verification systems of the treatment progression in the clinical workflow routine. Within the field of in vivo dosimetry (IVD), it is established that real-time IVD can provide efficient error detection and treatment verification. However, it is also recognized that widespread implementations are hampered by the lack of available high-accuracy IVD systems that are straightforward for the clinical staff to use. This article highlights the capabilities of the state-of-the-art IVD technology in the context of error detection and quality assurance (QA) and discusses related prospects of the latest developments within the field. The article emphasizes the main challenges responsible for the limited practice of IVD and provides descriptions on how they can be overcome. Finally, the article suggests a framework for collaborations between BT clinics that implemented IVD on a routine basis and postulates that such collaborations could improve BT QA measures and the knowledge about BT error types and their occurrence rates. PMID:25007037

  19. Selection of the important performance influencing factors for the assessment of human error under accident management situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Jung, W. J. [KAERI, Taejon (Korea, Republic of)

    1999-05-01

    This paper introduces the process and final results of selection of the important Performance Influencing Factors (PIFs) under emergency operation and accident management situations in nuclear power plants for use in the assessment of human errors. We collected two types of PIF taxonomies, one is the full set PIF list mainly developed for human error analysis, and the other is the PIFs for human reliability analysis (HRA) in probabilistic safety assessment (PSA). 5 PIF taxonomies among the full set PIF list and 10 PIF taxonomies among HRA methodologies (CREAM, SLIM, INTENT), were collected in this research. By reviewing and analyzing PIFs selected for HRA methodologies, the criterion could be established for the selection of appropriate PIFs under emergency operation and accident management situations. Based on this selection criteria, a new PIF taxonomy was proposed for the assessment of human error under emergency operation and accident management situations in nuclear power plants.

  20. A New Human-Machine Interfaces of Computer-based Procedure System to Reduce the Team Errors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa Kil; Sim, Joo Hyun; Lee, Hyun Chul [Korea Atomic Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, we identify the emerging types of team errors, especially, in digitalized control room of nuclear power plants such as the APR-1400 main control room of Korea. Most works in nuclear industry are to be performed by a team of more than two persons. Even though the individual errors can be detected and recovered by the qualified others and/or the well trained team, it is rather seldom that the errors by team could be easily detected and properly recovered by the team itself. Note that the team is defined as two or more people who are appropriately interacting with each other, and the team is a dependent aggregate, which accomplishes a valuable goal. Organizational errors sometimes increase the likelihood of operator errors through the active failure pathway and, at the same time, enhance the possibility of adverse outcomes through defensive weaknesses. We incorporate the crew resource management as a representative approach to deal with the team factors of the human errors. We suggest a set of crew resource management training procedures under the unsafe environments where human errors can have devastating effects. We are on the way to develop alternative interfaces against team error in a condition of using a computer-based procedure system in a digitalized main control room. The computer-based procedure system is a representative feature of digitalized control room. In this study, we will propose new interfaces of computer-based procedure system to reduce feasible team errors. We are on the way of effectiveness test to validate whether the new interface can reduce team errors during operating with a computer-based procedure system in a digitalized control room.

  1. Comparison of organ doses for patients undergoing balloon brachytherapy of the breast with HDR {sup 192}Ir or electronic sources using Monte Carlo simulations in a heterogeneous human phantom

    Energy Technology Data Exchange (ETDEWEB)

    Mille, Matthew M.; Xu, X. George; Rivard, Mark J. [Nuclear Engineering and Engineering Physics Program, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2010-02-15

    Purpose: Accelerated partial breast irradiation via interstitial balloon brachytherapy is a fast and effective treatment method for certain early stage breast cancers. The radiation can be delivered using a conventional high-dose rate (HDR) {sup 192}Ir gamma-emitting source or a novel electronic brachytherapy (eBx) source which uses lower energy x rays that do not penetrate as far within the patient. A previous study [A. Dickler, M. C. Kirk, N. Seif, K. Griem, K. Dowlatshahi, D. Francescatti, and R. A. Abrams, ''A dosimetric comparison of MammoSite high-dose-rate brachytherapy and Xoft Axxent electronic brachytherapy,'' Brachytherapy 6, 164-168 (2007)] showed that the target dose is similar for HDR {sup 192}Ir and eBx. This study compares these sources based on the dose received by healthy organs and tissues away from the treatment site. Methods: A virtual patient with left breast cancer was represented by a whole-body, tissue-heterogeneous female voxel phantom. Monte Carlo methods were used to calculate the dose to healthy organs in a virtual patient undergoing balloon brachytherapy of the left breast with HDR {sup 192}Ir or eBx sources. The dose-volume histograms for a few organs which received large doses were also calculated. Additional simulations were performed with all tissues in the phantom defined as water to study the effect of tissue inhomogeneities. Results: For both HDR {sup 192}Ir and eBx, the largest mean organ doses were received by the ribs, thymus gland, left lung, heart, and sternum which were close to the brachytherapy source in the left breast. eBx yielded mean healthy organ doses that were more than a factor of {approx}1.4 smaller than for HDR {sup 192}Ir for all organs considered, except for the three closest ribs. Excluding these ribs, the average and median dose-reduction factors were {approx}28 and {approx}11, respectively. The volume distribution of doses in nearby soft tissue organs that were outside the PTV were also

  2. Brachytherapy

    Science.gov (United States)

    ... type of energy, called ionizing radiation, to kill cancer cells and shrink tumors. External beam radiation therapy (EBRT) involves high-energy ... a grain of rice) in or near the tumor and leaving them there permanently. ... the radioactivity level of the implants eventually diminishes to nothing. ...

  3. In-phantom dosimetric measurements as quality control for brachytherapy. System check and constancy check; Messungen im Festkoerperphantom als Qualitaetskontrolle in der Brachytherapie. Systempruefung und Konstanzpruefung

    Energy Technology Data Exchange (ETDEWEB)

    Kollefrath, Michael; Bruggmoser, Gregor; Nanko, Norbert; Gainey, Mark [Universitaetsklinik Freiburg (Germany). Klinik fuer Strahlenheilkunde

    2015-09-01

    In brachytherapy dosimetric measurements are difficult due to the inherent dose-inhomogeneities. Typically in routine clinical practice only the nominal dose rate is determined for computer controlled afterloading systems. The region of interest lies close to the source when measuring the spatial dose distribution. In this region small errors in the positioning of the detector, and its finite size, lead to large measurement uncertainties that exacerbate the routine dosimetric control of the system in the clinic. The size of the measurement chamber, its energy dependence, and the directional dependence of the measurement apparatus are the factors which have a significant influence on dosimetry. Although ionisation chambers are relatively large, they are employed since similar chambers are commonly found on clinical brachytherapy units. The dose is determined using DIN 6800 [11] since DIN 6809-2 [12], which deals with dosimetry in brachytherapy, is antiquated and is currently in the process of revision. Further information regarding dosimetry for brachytherapy can be found in textbooks [1] and [2]. The measurements for this work were performed with a HDR (High-Dose-Rate) {sup 192}Ir source, type mHDR V2, and a Microselectron Afterloader V2 both from Nucletron/Elekta. In this work two dosimetric procedures are presented which, despite the aforemention difficulties, should assist in performing checks of the proper operation of the system. The first is a system check that measures the dose distribution along a line and is to be performed when first bringing the afterloader into operation, or after significant changes to the system. The other is a dosimetric constancy check, which with little effort can be performed monthly or weekly. It simultaneously verifies the positioning of the source at two positions, the functionality of the system clock and the automatic re-calculation of the source activity.

  4. Accurate model-based segmentation of gynecologic brachytherapy catheter collections in MRI-images.

    Science.gov (United States)

    Mastmeyer, Andre; Pernelle, Guillaume; Ma, Ruibin; Barber, Lauren; Kapur, Tina

    2017-12-01

    The gynecological cancer mortality rate, including cervical, ovarian, vaginal and vulvar cancers, is more than 20,000 annually in the US alone. In many countries, including the US, external-beam radiotherapy followed by high dose rate brachytherapy is the standard-of-care. The superior ability of MR to visualize soft tissue has led to an increase in its usage in planning and delivering brachytherapy treatment. A technical challenge associated with the use of MRI imaging for brachytherapy, in contrast to that of CT imaging, is the visualization of catheters that are used to place radiation sources into cancerous tissue. We describe here a precise, accurate method for achieving catheter segmentation and visualization. The algorithm, with the assistance of manually provided tip locations, performs segmentation using image-features, and is guided by a catheter-specific, estimated mechanical model. A final quality control step removes outliers or conflicting catheter trajectories. The mean Hausdorff error on a 54 patient, 760 catheter reference database was 1.49  mm; 51 of the outliers deviated more than two catheter widths (3.4  mm) from the gold standard, corresponding to catheter identification accuracy of 93% in a Syed-Neblett template. In a multi-user simulation experiment for evaluating RMS precision by simulating varying manually-provided superior tip positions, 3σ maximum errors were 2.44  mm. The average segmentation time for a single catheter was 3 s on a standard PC. The segmentation time, accuracy and precision, are promising indicators of the value of this method for clinical translation of MR-guidance in gynecologic brachytherapy and other catheter-based interventional procedures. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The American Brachytherapy Society consensus guidelines for plaque brachytherapy of uveal melanoma and retinoblastoma.

    Science.gov (United States)

    2014-01-01

    To present the American Brachytherapy Society (ABS) guidelines for plaque brachytherapy of choroidal melanoma and retinoblastoma. An international multicenter Ophthalmic Oncology Task Force (OOTF) was assembled to include 47 radiation oncologists, medical physicists, and ophthalmic oncologists from 10 countries. The ABS-OOTF produced collaborative guidelines, based on their eye cancer-specific clinical experience and knowledge of the literature. This work was reviewed and approved by the ABS Board of Directors as well as within the journal's peer-reivew process. The ABS-OOTF reached consensus that ophthalmic plaque radiation therapy is best performed in subspecialty brachytherapy centers. Quality assurance, methods of plaque construction, and dosimetry should be consistent with the 2012 joint guidelines of the American Association of Physicists in Medicine and ABS. Implantation of plaque sources should be performed by subspecialty-trained surgeons. Although there exist select restrictions related to tumor size and location, the ABS-OOTF agreed that most melanomas of the iris, ciliary body, and choroid could be treated with plaque brachytherapy. The ABS-OOTF reached consensus that tumors with gross orbital extension and blind painful eyes and those with no light perception vision are unsuitable for brachytherapy. In contrast, only select retinoblastomas are eligible for plaque brachytherapy. Prescription doses, dose rates, treatment durations, and clinical methods are described. Plaque brachytherapy is an effective eye and vision-sparing method to treat patients with intraocular tumors. Practitioners are encouraged to use ABS-OOTF guidelines to enhance their practice. Copyright © 2014 American Brachytherapy Society. All rights reserved.

  6. Interpretive Error in Radiology.

    Science.gov (United States)

    Waite, Stephen; Scott, Jinel; Gale, Brian; Fuchs, Travis; Kolla, Srinivas; Reede, Deborah

    2017-04-01

    Although imaging technology has advanced significantly since the work of Garland in 1949, interpretive error rates remain unchanged. In addition to patient harm, interpretive errors are a major cause of litigation and distress to radiologists. In this article, we discuss the mechanics involved in searching an image, categorize omission errors, and discuss factors influencing diagnostic accuracy. Potential individual- and system-based solutions to mitigate or eliminate errors are also discussed. Radiologists use visual detection, pattern recognition, memory, and cognitive reasoning to synthesize final interpretations of radiologic studies. This synthesis is performed in an environment in which there are numerous extrinsic distractors, increasing workloads and fatigue. Given the ultimately human task of perception, some degree of error is likely inevitable even with experienced observers. However, an understanding of the causes of interpretive errors can help in the development of tools to mitigate errors and improve patient safety.

  7. Medication Errors

    Science.gov (United States)

    ... for You Agency for Healthcare Research and Quality: Medical Errors and Patient Safety Centers for Disease Control and ... Quality Chasm Series National Coordinating Council for Medication Error Reporting and Prevention ... Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ...

  8. Error Patterns

    NARCIS (Netherlands)

    Hoede, C.; Li, Z.

    2001-01-01

    In coding theory the problem of decoding focuses on error vectors. In the simplest situation code words are $(0,1)$-vectors, as are the received messages and the error vectors. Comparison of a received word with the code words yields a set of error vectors. In deciding on the original code word,

  9. A strategy to the development of a human error analysis method for accident management in nuclear power plants using industrial accident dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Kim, Jae Whan; Jung, Won Dae; Ha, Jae Ju

    1998-06-01

    This technical report describes the early progress of he establishment of a human error analysis method as a part of a human reliability analysis(HRA) method for the assessment of the human error potential in a given accident management strategy. At first, we review the shortages and limitations of the existing HRA methods through an example application. In order to enhance the bias to the quantitative aspect of the HRA method, we focused to the qualitative aspect, i.e., human error analysis(HEA), during the proposition of a strategy to the new method. For the establishment of a new HEA method, we discuss the basic theories and approaches to the human error in industry, and propose three basic requirements that should be maintained as pre-requisites for HEA method in practice. Finally, we test IAD(Industrial Accident Dynamics) which has been widely utilized in industrial fields, in order to know whether IAD can be so easily modified and extended to the nuclear power plant applications. We try to apply IAD to the same example case and develop new taxonomy of the performance shaping factors in accident management and their influence matrix, which could enhance the IAD method as an HEA method. (author). 33 refs., 17 tabs., 20 figs.

  10. Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts.

    Science.gov (United States)

    Hou, Caixia; Chan, Nelson L S; Gu, Liya; Li, Guo-Min

    2009-08-01

    Expansion of CAG/CTG trinucleotide repeats is associated with certain familial neurological disorders, including Huntington's disease. Increasing evidence suggests that formation of a stable DNA hairpin within CAG/CTG repeats during DNA metabolism contributes to their expansion. However, the molecular mechanism(s) by which cells remove CAG/CTG hairpins remain unknown. Here we demonstrate that human cell extracts can catalyze error-free repair of CAG/CTG hairpins in a nick-directed manner. The repair system specifically targets CAG/CTG tracts for incisions in the nicked DNA strand, followed by DNA resynthesis using the continuous strand as a template, thereby ensuring CAG/CTG stability. Proliferating cell nuclear antigen (PCNA) is required for the incision step of the hairpin removal, which uses distinct endonuclease activities for individual CAG/CTG hairpins depending on their strand locations and/or secondary structures. We discuss the implications of these data for understanding the etiology of neurological diseases and trinucleotide repeat instability.

  11. Human substantia nigra and ventral tegmental area involvement in computing social error signals during the ultimatum game.

    Science.gov (United States)

    Hétu, Sébastien; Luo, Yi; D'Ardenne, Kimberlee; Lohrenz, Terry; Montague, P Read

    2017-12-01

    As models of shared expectations, social norms play an essential role in our societies. Since our social environment is changing constantly, our internal models of it also need to change. In humans, there is mounting evidence that neural structures such as the insula and the ventral striatum are involved in detecting norm violation and updating internal models. However, because of methodological challenges, little is known about the possible involvement of midbrain structures in detecting norm violation and updating internal models of our norms. Here, we used high-resolution cardiac-gated functional magnetic resonance imaging and a norm adaptation paradigm in healthy adults to investigate the role of the substantia nigra/ventral tegmental area (SN/VTA) complex in tracking signals related to norm violation that can be used to update internal norms. We show that the SN/VTA codes for the norm's variance prediction error (PE) and norm PE with spatially distinct regions coding for negative and positive norm PE. These results point to a common role played by the SN/VTA complex in supporting both simple reward-based and social decision making. © The Author (2017). Published by Oxford University Press.

  12. No unified reward prediction error in local field potentials from the human nucleus accumbens: evidence from epilepsy patients.

    Science.gov (United States)

    Stenner, Max-Philipp; Rutledge, Robb B; Zaehle, Tino; Schmitt, Friedhelm C; Kopitzki, Klaus; Kowski, Alexander B; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J

    2015-08-01

    Functional magnetic resonance imaging (fMRI), cyclic voltammetry, and single-unit electrophysiology studies suggest that signals measured in the nucleus accumbens (Nacc) during value-based decision making represent reward prediction errors (RPEs), the difference between actual and predicted rewards. Here, we studied the precise temporal and spectral pattern of reward-related signals in the human Nacc. We recorded local field potentials (LFPs) from the Nacc of six epilepsy patients during an economic decision-making task. On each trial, patients decided whether to accept or reject a gamble with equal probabilities of a monetary gain or loss. The behavior of four patients was consistent with choices being guided by value expectations. Expected value signals before outcome onset were observed in three of those patients, at varying latencies and with nonoverlapping spectral patterns. Signals after outcome onset were correlated with RPE regressors in all subjects. However, further analysis revealed that these signals were better explained as outcome valence rather than RPE signals, with gamble gains and losses differing in the power of beta oscillations and in evoked response amplitudes. Taken together, our results do not support the idea that postsynaptic potentials in the Nacc represent a RPE that unifies outcome magnitude and prior value expectation. We discuss the generalizability of our findings to healthy individuals and the relation of our results to measurements of RPE signals obtained from the Nacc with other methods. Copyright © 2015 the American Physiological Society.

  13. Mechanism of error-free DNA synthesis across N1-methyl-deoxyadenosine by human DNA polymerase-ι

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rinku; Choudhury, Jayati Roy; Buku, Angeliki; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2017-03-08

    N1-methyl-deoxyadenosine (1-MeA) is formed by methylation of deoxyadenosine at the N1 atom. 1-MeA presents a block to replicative DNA polymerases due to its inability to participate in Watson-Crick (W-C) base pairing. Here we determine how human DNA polymerase-ι (Polι) promotes error-free replication across 1-MeA. Steady state kinetic analyses indicate that Polι is ~100 fold more efficient in incorporating the correct nucleotide T versus the incorrect nucleotide C opposite 1-MeA. To understand the basis of this selectivity, we determined ternary structures of Polι bound to template 1-MeA and incoming dTTP or dCTP. In both structures, template 1-MeA rotates to the syn conformation but pairs differently with dTTP versus dCTP. Thus, whereas dTTP partakes in stable Hoogsteen base pairing with 1-MeA, dCTP fails to gain a “foothold” and is largely disordered. Together, our kinetic and structural studies show how Polι maintains discrimination between correct and incorrect incoming nucleotide opposite 1-MeA in preserving genome integrity.

  14. Science, practice, and human errors in controlling Clostridium botulinum in heat-preserved food in hermetic containers.

    Science.gov (United States)

    Pflug, Irving J

    2010-05-01

    The incidence of botulism in canned food in the last century is reviewed along with the background science; a few conclusions are reached based on analysis of published data. There are two primary aspects to botulism control: the design of an adequate process and the delivery of the adequate process to containers of food. The probability that the designed process will not be adequate to control Clostridium botulinum is very small, probably less than 1.0 x 10(-6), based on containers of food, whereas the failure of the operator of the processing equipment to deliver the specified process to containers of food may be of the order of 1 in 40, to 1 in 100, based on processing units (retort loads). In the commercial food canning industry, failure to deliver the process will probably be of the order of 1.0 x 10(-4) to 1.0 x 10(-6) when U.S. Food and Drug Administration (FDA) regulations are followed. Botulism incidents have occurred in food canning plants that have not followed the FDA regulations. It is possible but very rare to have botulism result from postprocessing contamination. It may thus be concluded that botulism incidents in canned food are primarily the result of human failure in the delivery of the designed or specified process to containers of food that, in turn, result in the survival, outgrowth, and toxin production of C. botulinum spores. Therefore, efforts in C. botulinum control should be concentrated on reducing human errors in the delivery of the specified process to containers of food.

  15. Consequences of random and systematic reconstruction uncertainties in 3D image based brachytherapy in cervical cancer.

    Science.gov (United States)

    Tanderup, Kari; Hellebust, Taran Paulsen; Lang, Stefan; Granfeldt, Jørgen; Pötter, Richard; Lindegaard, Jacob Christian; Kirisits, Christian

    2008-11-01

    The purpose of this study was to evaluate the impact of random and systematic applicator reconstruction uncertainties on DVH parameters in brachytherapy for cervical cancer. Dose plans were analysed for 20 cervical cancer patients with MRI based brachytherapy. Uncertainty of applicator reconstruction was modelled by translating and rotating the applicator. Changes in DVH parameters per mm of applicator displacement were evaluated for GTV, CTV, bladder, rectum, and sigmoid. These data were used to derive patient population based estimates of delivered dose relative to expected dose. Deviations of DVH parameters depend on direction of reconstruction uncertainty. The most sensitive organs are rectum and bladder where mean DVH parameter shifts are 5-6% per mm applicator displacement in ant-post direction. For other directions and other DVH parameters, mean shifts are below 4% per mm. By avoiding systematic reconstruction errors, uncertainties on DVH parameters can be kept below 10% in 90% of a patient population. Systematic errors of a few millimetres can lead to significant deviations. Comprehensive quality control of afterloader, applicators and imaging procedures should be applied to prevent systematic errors in applicator reconstruction. Random errors should be minimised by using small slice thickness. With careful reconstruction procedures, reliable DVH parameters for target and OAR's can be obtained.

  16. BrachyView, a novel in-body imaging system for HDR prostate brachytherapy: Experimental evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Safavi-Naeini, M.; Han, Z.; Alnaghy, S.; Cutajar, D.; Petasecca, M.; Lerch, M. L. F.; Rosenfeld, A. B., E-mail: anatoly@uow.edu.au [Centre for Medical Radiation Physics, University of Wollongong, Wollongong 2522 (Australia); Franklin, D. R. [Faculty of Engineering and Information Technology, University of Technology, Sydney 2007 (Australia); Bucci, J. [St George Hospital Cancer Care Centre, Kogarah 2217 (Australia); Carrara, M. [Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133 (Italy); Zaider, M. [Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States)

    2015-12-15

    Purpose: This paper presents initial experimental results from a prototype of high dose rate (HDR) BrachyView, a novel in-body source tracking system for HDR brachytherapy based on a multipinhole tungsten collimator and a high resolution pixellated silicon detector array. The probe and its associated position estimation algorithms are validated and a comprehensive evaluation of the accuracy of its position estimation capabilities is presented. Methods: The HDR brachytherapy source is moved through a sequence of positions in a prostate phantom, for various displacements in x, y, and z. For each position, multiple image acquisitions are performed, and source positions are reconstructed. Error estimates in each dimension are calculated at each source position and combined to calculate overall positioning errors. Gafchromic film is used to validate the accuracy of source placement within the phantom. Results: More than 90% of evaluated source positions were estimated with an error of less than one millimeter, with the worst-case error being 1.3 mm. Experimental results were in close agreement with previously published Monte Carlo simulation results. Conclusions: The prototype of HDR BrachyView demonstrates a satisfactory level of accuracy in its source position estimation, and additional improvements are achievable with further refinement of HDR BrachyView’s image processing algorithms.

  17. The American Brachytherapy Society Treatment Recommendations for Locally Advanced Carcinoma of the Cervix Part II: High Dose-Rate Brachytherapy

    Science.gov (United States)

    Viswanathan, Akila N.; Beriwal, Sushil; De Los Santos, Jennifer; Demanes, D. Jeffrey; Gaffney, David; Hansen, Jorgen; Jones, Ellen; Kirisits, Christian; Thomadsen, Bruce; Erickson, Beth

    2012-01-01

    Purpose This report presents the 2011 update to the American Brachytherapy Society (ABS) high-dose-rate (HDR) brachytherapy guidelines for locally advanced cervical cancer. Methods Members of the American Brachytherapy Society (ABS) with expertise in cervical cancer brachytherapy formulated updated guidelines for HDR brachytherapy using tandem and ring, ovoids, cylinder or interstitial applicators for locally advanced cervical cancer were revised based on medical evidence in the literature and input of clinical experts in gynecologic brachytherapy. Results The Cervical Cancer Committee for Guideline Development affirms the essential curative role of tandem-based brachytherapy in the management of locally advanced cervical cancer. Proper applicator selection, insertion, and imaging are fundamental aspects of the procedure. Three-dimensional imaging with magnetic resonance or computed tomography or radiographic imaging may be used for treatment planning. Dosimetry must be performed after each insertion prior to treatment delivery. Applicator placement, dose specification and dose fractionation must be documented, quality assurance measures must be performed, and follow-up information must be obtained. A variety of dose/fractionation schedules and methods for integrating brachytherapy with external-beam radiation exist. The recommended tumor dose in 2 Gray (Gy) per fraction radiobiologic equivalence (EQD2) is 80–90 Gy, depending on tumor size at the time of brachytherapy. Dose limits for normal tissues are discussed. Conclusion These guidelines update those of 2000 and provide a comprehensive description of HDR cervical cancer brachytherapy in 2011. PMID:22265437

  18. Late coronary occlusion after intracoronary brachytherapy

    NARCIS (Netherlands)

    M.A. Costa (Marco); M. Sabaté (Manel); I.P. Kay (Ian Patrick); P. Cervinka; J.M.R. Ligthart (Jürgen); P. Serrano (Pedro); V.L.M.A. Coen (Veronique); P.W.J.C. Serruys (Patrick); P.C. Levendag (Peter); W.J. van der Giessen (Wim)

    1999-01-01

    textabstractBACKGROUND: Intracoronary brachytherapy appears to be a promising technology to prevent restenosis. Presently, limited data are available regarding the late safety of this therapeutic modality. The aim of the study was to determine the incidence of late (>1 month)

  19. Concomitant chemoradiotherapy with high dose rate brachytherapy ...

    African Journals Online (AJOL)

    Purpose: This study aims to report the incidence of treatment-induced acute toxicities, local control and survival of patients with cervix cancer treated by external beam radiotherapy (EBR) and high-dose-rate (HDR) brachytherapy concomitant with weekly Cisplatin chemotherapy. Methods: Forty patients with FIGO Stages IB2 ...

  20. In vivo dosimetry in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Beddar, Sam; Andersen, Claus Erik

    2013-01-01

    and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact...... of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments...

  1. MO-D-BRD-00: Electronic Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  2. A hybrid deformable model for simulating prostate brachytherapy

    Science.gov (United States)

    Levin, David; Fenster, Aaron; Ladak, Hanif M.

    2006-03-01

    Ultrasound (US) guided prostate brachytherapy is a minimally invasive form of cancer treatment during which a needle is used to insert radioactive seeds into the prostate at pre-planned positions. Interaction with the needle can cause the prostate to deform and this can lead to inaccuracy in seed placement. Virtual reality (VR) simulation could provide a way for surgical residents to practice compensating for these deformations. To facilitate such a tool, we have developed a hybrid deformable model that combines ChainMail distance constraints with mass-spring physics to provide realistic, yet customizable deformations. Displacements generated by the model were used to warp a baseline US image to simulate an acquired US sequence. The algorithm was evaluated using a gelatin phantom with a Young's modulus approximately equal to that of the prostate (60 kPa). A 2D US movie was acquired while the phantom underwent needle insertion and inter-frame displacements were calculated using normalized cross correlation. The hybrid model was used to simulate the same needle insertion and the two sets of displacements were compared on a frame-by-frame basis. The average perpixel displacement error was 0.210 mm. A simulation rate of 100 frames per second was achieved using a 1000 element triangular mesh while warping a 300x400 pixel US image on an AMD Athlon 1.1 Ghz computer with 1 GB of RAM and an ATI Radeon 9800 Pro graphics card. These results show that this new deformable model can provide an accurate solution to the problem of simulating real-time prostate brachytherapy.

  3. In vivo dose verification method in catheter based high dose rate brachytherapy.

    Science.gov (United States)

    Jaselskė, Evelina; Adlienė, Diana; Rudžianskas, Viktoras; Urbonavičius, Benas Gabrielis; Inčiūra, Arturas

    2017-12-01

    In vivo dosimetry is a powerful tool for dose verification in radiotherapy. Its application in high dose rate (HDR) brachytherapy is usually limited to the estimation of gross errors, due to inability of the dosimetry system/ method to record non-uniform dose distribution in steep dose gradient fields close to the radioactive source. In vivo dose verification in interstitial catheter based HDR brachytherapy is crucial since the treatment is performed inserting radioactive source at the certain positions within the catheters that are pre-implanted into the tumour. We propose in vivo dose verification method for this type of brachytherapy treatment which is based on the comparison between experimentally measured and theoretical dose values calculated at well-defined locations corresponding dosemeter positions in the catheter. Dose measurements were performed using TLD 100-H rods (6 mm long, 1 mm diameter) inserted in a certain sequences into additionally pre-implanted dosimetry catheter. The adjustment of dosemeter positioning in the catheter was performed using reconstructed CT scans of patient with pre-implanted catheters. Doses to three Head&Neck and one Breast cancer patient have been measured during several randomly selected treatment fractions. It was found that the average experimental dose error varied from 4.02% to 12.93% during independent in vivo dosimetry control measurements for selected Head&Neck cancer patients and from 7.17% to 8.63% - for Breast cancer patient. Average experimental dose error was below the AAPM recommended margin of 20% and did not exceed the measurement uncertainty of 17.87% estimated for this type of dosemeters. Tendency of slightly increasing average dose error was observed in every following treatment fraction of the same patient. It was linked to the changes of theoretically estimated dosemeter positions due to the possible patient's organ movement between different treatment fractions, since catheter reconstruction was

  4. Prostate brachytherapy in Ghana: our initial experience.

    Science.gov (United States)

    Mensah, James Edward; Yarney, Joel; Vanderpuye, Verna; Akpakli, Evans; Tagoe, Samuel; Sasu, Evans

    2016-10-01

    This study presents the experience of a brachytherapy team in Ghana with a focus on technology transfer and outcome. The team was initially proctored by experienced physicians from Europe and South Africa. A total of 90 consecutive patients underwent either brachytherapy alone or brachytherapy in combination with external beam radiotherapy for prostate carcinoma between July 2008 and February 2014 at Korle Bu Teaching Hospital, Accra, Ghana. Patients were classified as low-risk, intermediate, and high-risk according to the National Comprehensive Cancer Network (NCCN) criteria. All low-risk and some intermediate risk group patients were treated with seed implantation alone. Some intermediate and all high-risk group patients received brachytherapy combined with external beam radiotherapy. The median patient age was 64.0 years (range 46-78 years). The median follow-up was 58 months (range 18-74 months). Twelve patients experienced biochemical failure including one patient who had evidence of metastatic disease and died of prostate cancer. Freedom from biochemical failure rates for low, intermediate, and high-risk cases were 95.4%, 90.9%, and 70.8%, respectively. Clinical parameters predictive of biochemical outcome included: clinical stage, Gleason score, and risk group. Pre-treatment prostate specific antigen (PSA) was not a statistically significant predictor of biochemical failure. Sixty-nine patients (76.6%) experienced grade 1 urinary symptoms in the form of frequency, urgency, and poor stream. These symptoms were mostly self-limiting. Four patients needed catheterization for urinary retention (grade 2). One patient developed a recto urethral fistula (grade 3) following banding for hemorrhoids. Our results compare favorably with those reported by other institutions with more extensive experience. We believe therefore that, interstitial permanent brachytherapy can be safely and effectively performed in a resource challenged environment if adequate training

  5. Prostate brachytherapy in Ghana: our initial experience

    Directory of Open Access Journals (Sweden)

    James Edward Mensah

    2016-10-01

    Full Text Available Purpose: This study presents the experience of a brachytherapy team in Ghana with a focus on technology transfer and outcome. The team was initially proctored by experienced physicians from Europe and South Africa. Material and methods : A total of 90 consecutive patients underwent either brachytherapy alone or brachytherapy in combination with external beam radiotherapy for prostate carcinoma between July 2008 and February 2014 at Korle Bu Teaching Hospital, Accra, Ghana. Patients were classified as low-risk, intermediate, and high-risk according to the National Comprehensive Cancer Network (NCCN criteria. All low-risk and some intermediate risk group patients were treated with seed implantation alone. Some intermediate and all high-risk group patients received brachytherapy combined with external beam radiotherapy. Results: The median patient age was 64.0 years (range 46-78 years. The median follow-up was 58 months (range 18-74 months. Twelve patients experienced biochemical failure including one patient who had evidence of metastatic disease and died of prostate cancer. Freedom from biochemical failure rates for low, intermediate, and high-risk cases were 95.4%, 90.9%, and 70.8%, respectively. Clinical parameters predictive of biochemical outcome included: clinical stage, Gleason score, and risk group. Pre-treatment prostate specific antigen (PSA was not a statistically significant predictor of biochemical failure. Sixty-nine patients (76.6% experienced grade 1 urinary symptoms in the form of frequency, urgency, and poor stream. These symptoms were mostly self-limiting. Four patients needed catheterization for urinary retention (grade 2. One patient developed a recto urethral fistula (grade 3 following banding for hemorrhoids. Conclusions : Our results compare favorably with those reported by other institutions with more extensive experience. We believe therefore that, interstitial permanent brachytherapy can be safely and effectively

  6. Patient safety is improved with an incident learning system-Clinical evidence in brachytherapy.

    Science.gov (United States)

    Deufel, Christopher L; McLemore, Luke B; de Los Santos, Luis E Fong; Classic, Kelly L; Park, Sean S; Furutani, Keith M

    2017-10-01

    Health leaders have advocated for incident learning systems (ILSs) to prevent errors, but there is limited evidence demonstrating that ILSs improve cancer patient safety. Herein, we report a long-term retrospective review of ILS reports for the brachytherapy practice at a large academic institution. Over a nine-year period, the brachytherapy practice was encouraged to report all standard operating procedure deviations, including low risk deviations. A multidisciplinary committee assigned root causes and risk scores to all incidents. Evidence based practice changes were made using ILS data, and relevant incidents were communicated to all staff in order to reduce recurrence rates. 5258 brachytherapy procedures were performed and 2238 incidents were reported from 2007 to 2015. A ramp-up period was observed in ILS participation between 2007 (0.12 submissions/procedures) and 2011 (1.55 submissions/procedures). Participation remained stable between 2011 and 2015, and we achieved a 60% (psafety policy and a 70% (ppatient care. Safety improvements have been sustained over several years. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Design for Error Tolerance

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1983-01-01

    An important aspect of the optimal design of computer-based operator support systems is the sensitivity of such systems to operator errors. The author discusses how a system might allow for human variability with the use of reversibility and observability.......An important aspect of the optimal design of computer-based operator support systems is the sensitivity of such systems to operator errors. The author discusses how a system might allow for human variability with the use of reversibility and observability....

  8. Assessing changes to the brachytherapy target for cervical cancer using a single MRI and serial ultrasound.

    Science.gov (United States)

    van Dyk, Sylvia; Kondalsamy-Chennakesavan, Srinivas; Schneider, Michal; Bernshaw, David; Narayan, Kailash

    2015-01-01

    To assess changes to the brachytherapy target over the course of treatment and the impact of these changes on planning and resources. Patients undergoing curative treatment with radiotherapy between January 2007 and March 2012 were included in the study. Intrauterine applicators were positioned in the uterine canal while patients were under anesthesia. Images were obtained by MRI and ultrasound at Fraction 1 and ultrasound alone at Fractions 2, 3, and 4. Cervix and uterine dimensions were measured on MRI and ultrasound and compared using Bland-Altman plots and repeated measures one-way analysis of variance. Of 192 patients who underwent three fractions of brachytherapy, 141 of them received four fractions. Mean differences and standard error of differences between MRI at Fraction 1 and ultrasound at Fraction 4 for anterior cervix measurements were 2.9 (0.31), 3.5 (0.25), and 4.2 (0.27) mm and for posterior cervix 0.8 (0.3), 0.3 (0.3), and 0.9 (0.3) mm. All differences were within clinically acceptable limits. The mean differences in the cervix over the course of brachytherapy were less than 1 mm at all measurement points on the posterior surface. Replanning occurred in 11 of 192 (5.7%) patients, although changes to the cervix dimensions were not outside clinical limits. There were small changes to the cervix and uterus over the course of brachytherapy that were not clinically significant. Use of intraoperative ultrasound as a verification aid accurately assesses the target at each insertion, reduces uncertainties in treatment delivery, and improves efficiency of the procedure benefiting both the patient and staff. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  9. Estimating the Probability of Human Error by Incorporating Component Failure Data from User-Induced Defects in the Development of Complex Electrical Systems.

    Science.gov (United States)

    Majewicz, Peter J; Blessner, Paul; Olson, Bill; Blackburn, Timothy

    2017-04-05

    This article proposes a methodology for incorporating electrical component failure data into the human error assessment and reduction technique (HEART) for estimating human error probabilities (HEPs). The existing HEART method contains factors known as error-producing conditions (EPCs) that adjust a generic HEP to a more specific situation being assessed. The selection and proportioning of these EPCs are at the discretion of an assessor, and are therefore subject to the assessor's experience and potential bias. This dependence on expert opinion is prevalent in similar HEP assessment techniques used in numerous industrial areas. The proposed method incorporates factors based on observed trends in electrical component failures to produce a revised HEP that can trigger risk mitigation actions more effectively based on the presence of component categories or other hazardous conditions that have a history of failure due to human error. The data used for the additional factors are a result of an analysis of failures of electronic components experienced during system integration and testing at NASA Goddard Space Flight Center. The analysis includes the determination of root failure mechanisms and trend analysis. The major causes of these defects were attributed to electrostatic damage, electrical overstress, mechanical overstress, or thermal overstress. These factors representing user-induced defects are quantified and incorporated into specific hardware factors based on the system's electrical parts list. This proposed methodology is demonstrated with an example comparing the original HEART method and the proposed modified technique. © 2017 Society for Risk Analysis.

  10. Medical error

    African Journals Online (AJOL)

    QuickSilver

    Studies in the USA have shown that medical error is the 8th most common cause of death.2,3. The most common causes of medical error are:- administration of the wrong medication or wrong dose of the correct medication, using the wrong route of administration, giving a treatment to the wrong patient or at the wrong time.4 ...

  11. Application of RADPOS in Vivo Dosimetry for QA of High Dose Rate Brachytherapy

    DEFF Research Database (Denmark)

    Cherpak, A.; Kertzscher Schwencke, Gustavo Adolfo Vladimir; Cygler, J.

    2012-01-01

    Purpose: The RADPOS in vivo dosimetry system combines an electromagnetic positioning sensor with MOSFET dosimetry, allowing for simultaneous online measurements of dose and spatial position. In this work, we assess the potential use of RADPOS for measurements of motion and dose during prostate HDR......Gy. Conclusions: In vivo dosimetry can potentially signal errors in catheter placement or numbering before entire dose is delivered. The demonstrated accuracy of RADPOS dose measurements and its ability to simultaneously measure displacement makes it a powerful tool for HDR brachytherapy treatments for prostate...

  12. EMG Versus Torque Control of Human-Machine Systems: Equalizing Control Signal Variability Does not Equalize Error or Uncertainty.

    Science.gov (United States)

    Johnson, Reva E; Kording, Konrad P; Hargrove, Levi J; Sensinger, Jonathon W

    2017-06-01

    In this paper we asked the question: if we artificially raise the variability of torque control signals to match that of EMG, do subjects make similar errors and have similar uncertainty about their movements? We answered this question using two experiments in which subjects used three different control signals: torque, torque+noise, and EMG. First, we measured error on a simple target-hitting task in which subjects received visual feedback only at the end of their movements. We found that even when the signal-to-noise ratio was equal across EMG and torque+noise control signals, EMG resulted in larger errors. Second, we quantified uncertainty by measuring the just-noticeable difference of a visual perturbation. We found that for equal errors, EMG resulted in higher movement uncertainty than both torque and torque+noise. The differences suggest that performance and confidence are influenced by more than just the noisiness of the control signal, and suggest that other factors, such as the user's ability to incorporate feedback and develop accurate internal models, also have significant impacts on the performance and confidence of a person's actions. We theorize that users have difficulty distinguishing between random and systematic errors for EMG control, and future work should examine in more detail the types of errors made with EMG control.

  13. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources for...

  14. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Science.gov (United States)

    2010-01-01

    ... brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... brachytherapy sources. (a) A licensee in possession of any sealed source or brachytherapy source shall follow... brachytherapy sources, except for gamma stereotactic radiosurgery sources, shall conduct a semi-annual physical...

  15. Modern head and neck brachytherapy: from radium towards intensity modulated interventional brachytherapy

    Science.gov (United States)

    2014-01-01

    Intensity modulated brachytherapy (IMBT) is a modern development of classical interventional radiation therapy (brachytherapy), which allows the application of a high radiation dose sparing severe adverse events, thereby further improving the treatment outcome. Classical indications in head and neck (H&N) cancers are the face, the oral cavity, the naso- and oropharynx, the paranasal sinuses including base of skull, incomplete resections on important structures, and palliation. The application type can be curative, adjuvant or perioperative, as a boost to external beam radiation as well as without external beam radiation and with palliative intention. Due to the frequently used perioperative application method (intraoperative implantation of inactive applicators and postoperative performance of radiation), close interdisciplinary cooperation between surgical specialists (ENT-, dento-maxillary-facial-, neuro- and orbital surgeons), as well interventional radiotherapy (brachytherapy) experts are obligatory. Published results encourage the integration of IMBT into H&N therapy, thereby improving the prognosis and quality of life of patients. PMID:25834586

  16. Distinct prediction errors in mesostriatal circuits of the human brain mediate learning about the values of both states and actions: evidence from high-resolution fMRI.

    Science.gov (United States)

    Colas, Jaron T; Pauli, Wolfgang M; Larsen, Tobias; Tyszka, J Michael; O'Doherty, John P

    2017-10-01

    Prediction-error signals consistent with formal models of "reinforcement learning" (RL) have repeatedly been found within dopaminergic nuclei of the midbrain and dopaminoceptive areas of the striatum. However, the precise form of the RL algorithms implemented in the human brain is not yet well determined. Here, we created a novel paradigm optimized to dissociate the subtypes of reward-prediction errors that function as the key computational signatures of two distinct classes of RL models-namely, "actor/critic" models and action-value-learning models (e.g., the Q-learning model). The state-value-prediction error (SVPE), which is independent of actions, is a hallmark of the actor/critic architecture, whereas the action-value-prediction error (AVPE) is the distinguishing feature of action-value-learning algorithms. To test for the presence of these prediction-error signals in the brain, we scanned human participants with a high-resolution functional magnetic-resonance imaging (fMRI) protocol optimized to enable measurement of neural activity in the dopaminergic midbrain as well as the striatal areas to which it projects. In keeping with the actor/critic model, the SVPE signal was detected in the substantia nigra. The SVPE was also clearly present in both the ventral striatum and the dorsal striatum. However, alongside these purely state-value-based computations we also found evidence for AVPE signals throughout the striatum. These high-resolution fMRI findings suggest that model-free aspects of reward learning in humans can be explained algorithmically with RL in terms of an actor/critic mechanism operating in parallel with a system for more direct action-value learning.

  17. Development of a brachytherapy audit checklist tool.

    Science.gov (United States)

    Prisciandaro, Joann; Hadley, Scott; Jolly, Shruti; Lee, Choonik; Roberson, Peter; Roberts, Donald; Ritter, Timothy

    2015-01-01

    To develop a brachytherapy audit checklist that could be used to prepare for Nuclear Regulatory Commission or agreement state inspections, to aid in readiness for a practice accreditation visit, or to be used as an annual internal audit tool. Six board-certified medical physicists and one radiation oncologist conducted a thorough review of brachytherapy-related literature and practice guidelines published by professional organizations and federal regulations. The team members worked at two facilities that are part of a large, academic health care center. Checklist items were given a score based on their judged importance. Four clinical sites performed an audit of their program using the checklist. The sites were asked to score each item based on a defined severity scale for their noncompliance, and final audit scores were tallied by summing the products of importance score and severity score for each item. The final audit checklist, which is available online, contains 83 items. The audit scores from the beta sites ranged from 17 to 71 (out of 690) and identified a total of 7-16 noncompliance items. The total time to conduct the audit ranged from 1.5 to 5 hours. A comprehensive audit checklist was developed which can be implemented by any facility that wishes to perform a program audit in support of their own brachytherapy program. The checklist is designed to allow users to identify areas of noncompliance and to prioritize how these items are addressed to minimize deviations from nationally-recognized standards. Copyright © 2015 American Brachytherapy Society. All rights reserved.

  18. Design and optimization of a brachytherapy robot

    Science.gov (United States)

    Meltsner, Michael A.

    Trans-rectal ultrasound guided (TRUS) low dose rate (LDR) interstitial brachytherapy has become a popular procedure for the treatment of prostate cancer, the most common type of non-skin cancer among men. The current TRUS technique of LDR implantation may result in less than ideal coverage of the tumor with increased risk of negative response such as rectal toxicity and urinary retention. This technique is limited by the skill of the physician performing the implant, the accuracy of needle localization, and the inherent weaknesses of the procedure itself. The treatment may require 100 or more sources and 25 needles, compounding the inaccuracy of the needle localization procedure. A robot designed for prostate brachytherapy may increase the accuracy of needle placement while minimizing the effect of physician technique in the TRUS procedure. Furthermore, a robot may improve associated toxicities by utilizing angled insertions and freeing implantations from constraints applied by the 0.5 cm-spaced template used in the TRUS method. Within our group, Lin et al. have designed a new type of LDR source. The "directional" source is a seed designed to be partially shielded. Thus, a directional, or anisotropic, source does not emit radiation in all directions. The source can be oriented to irradiate cancerous tissues while sparing normal ones. This type of source necessitates a new, highly accurate method for localization in 6 degrees of freedom. A robot is the best way to accomplish this task accurately. The following presentation of work describes the invention and optimization of a new prostate brachytherapy robot that fulfills these goals. Furthermore, some research has been dedicated to the use of the robot to perform needle insertion tasks (brachytherapy, biopsy, RF ablation, etc.) in nearly any other soft tissue in the body. This can be accomplished with the robot combined with automatic, magnetic tracking.

  19. Proofreading for word errors.

    Science.gov (United States)

    Pilotti, Maura; Chodorow, Martin; Agpawa, Ian; Krajniak, Marta; Mahamane, Salif

    2012-04-01

    Proofreading (i.e., reading text for the purpose of detecting and correcting typographical errors) is viewed as a component of the activity of revising text and thus is a necessary (albeit not sufficient) procedural step for enhancing the quality of a written product. The purpose of the present research was to test competing accounts of word-error detection which predict factors that may influence reading and proofreading differently. Word errors, which change a word into another word (e.g., from --> form), were selected for examination because they are unlikely to be detected by automatic spell-checking functions. Consequently, their detection still rests mostly in the hands of the human proofreader. Findings highlighted the weaknesses of existing accounts of proofreading and identified factors, such as length and frequency of the error in the English language relative to frequency of the correct word, which might play a key role in detection of word errors.

  20. Refractive Errors

    Science.gov (United States)

    ... halos around bright lights, squinting, headaches, or eye strain. Glasses or contact lenses can usually correct refractive errors. Laser eye surgery may also be a possibility. NIH: National Eye ...

  1. An Active Mammosite For Breast Brachytherapy

    Science.gov (United States)

    Cudjoe, Thomas

    2006-03-01

    Brachytherapy is an advanced cancer treatment that uses radioactive sources inside or in close proximity to cancerous tumors, thus minimizing exposure to neighboring healthy cells. This radiation oncology treatment unlike many others is localized and precise. The latest involvement of the Brachytherapy research group of the medical physics program at Hampton University is in the development of a scintillator fiber based detector for the breast cancer specific Mammosite (balloon device) from Cytyc Inc. Radioactive sources are inserted into a small plastic catheter (shaft) and pushed at the end of the tube. At that location, a water filled balloon surrounds the source and allow uniform gamma emission into cancer tumors. There is presently no capability for this device to provide measurements of the location of the source, as well as the radiation emitted from the source. Recent data were acquired to evaluate the possibility of measuring the dose distribution during breast Brachytherapy cancer treatments with this device. A high activity ^192Ir radioactive source and a 0.5 and 1 mm^2 scintillating fibers were used. Results will be presented and discussed.

  2. Identification and Assessment of Human Error Due to design in damagingto the Sour Water Equipment and SRP Unit of Control Room in A Refinery Plant using SHERPA Technique

    Directory of Open Access Journals (Sweden)

    2013-02-01

    Conclusion: To prevent and control occurring each of the identified errors and to limit the consequences of them, appropriate counter measures such as proper control measures in the form of changes in design, including install the appropriate colored tag, digital indicator and warning lights which must be used base on the kind of system consequently, of this study showed that SHEPA can be an efficientmethod to study humanness in operational site.

  3. Insight and Lessons Learned on Organizational Factors and Safety Culture from the Review of Human Error-related Events of NPPs in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Tae; Lee, Dhong Hoon; Choi, Young Sung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-08-15

    Event investigation is one of the key means of enhancing nuclear safety deriving effective measures and preventing recurrences. However, it is difficult to analyze organizational factors and safety culture. This paper tries to review human error-related events from perspectives of organizational factors and safety culture, and to derive insights and lessons learned in developing the regulatory infrastructure of plant oversight on safety culture.

  4. Uncertainty quantification and error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Higdon, Dave M [Los Alamos National Laboratory; Anderson, Mark C [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Klein, Richard [Los Alamos National Laboratory; Berliner, Mark [OHIO STATE UNIV.; Covey, Curt [LLNL; Ghattas, Omar [UNIV OF TEXAS; Graziani, Carlo [UNIV OF CHICAGO; Seager, Mark [LLNL; Sefcik, Joseph [LLNL; Stark, Philip [UC/BERKELEY; Stewart, James [SNL

    2010-01-01

    UQ studies all sources of error and uncertainty, including: systematic and stochastic measurement error; ignorance; limitations of theoretical models; limitations of numerical representations of those models; limitations on the accuracy and reliability of computations, approximations, and algorithms; and human error. A more precise definition for UQ is suggested below.

  5. Gold marker displacement due to needle insertion during HDR-brachytherapy for treatment of prostate cancer: A prospective cone beam computed tomography and kilovoltage on-board imaging (kV-OBI study

    Directory of Open Access Journals (Sweden)

    Herrmann Markus KA

    2012-02-01

    Full Text Available Abstract Purpose To evaluate gold marker displacement due to needle insertion during HDR-brachytherapy for therapy of prostate cancer. Patients and methods 18 patients entered into this prospective evaluation. Three gold markers were implanted into the prostate during the first HDR-brachytherapy procedure after the irradiation was administered. Three days after marker implantation all patients had a CT-scan for planning purpose of the percutaneous irradiation. Marker localization was defined on the digitally-reconstructed-radiographs (DRR for daily (VMAT technique or weekly (IMRT set-up error correction. Percutaneous therapy started one week after first HDR-brachytherapy. After the second HDR-brachytherapy, two weeks after first HDR-brachtherapy, a cone-beam CT-scan was done to evaluate marker displacement due to needle insertion. In case of marker displacement, the actual positions of the gold markers were adjusted on the DRR. Results The value of the gold marker displacement due to the second HDR-brachytherapy was analyzed in all patients and for each gold marker by comparison of the marker positions in the prostate after soft tissue registration of the prostate of the CT-scans prior the first and second HDR-brachytherapy. The maximum deviation was 5 mm, 7 mm and 12 mm for the anterior-posterior, lateral and superior-inferior direction. At least one marker in each patient showed a significant displacement and therefore new marker positions were adjusted on the DRRs for the ongoing percutaneous therapy. Conclusions Needle insertion in the prostate due to HDR-brachytherapy can lead to gold marker displacements. Therefore, it is necessary to verify the actual position of markers after the second HDR-brachytherapy. In case of significant deviations, a new DRR with the adjusted marker positions should be generated for precise positioning during the ongoing percutaneous irradiation.

  6. Analysis of human error in occupational accidents in the power plant industries using combining innovative FTA and meta-heuristic algorithms

    Directory of Open Access Journals (Sweden)

    M. Omidvari

    2015-09-01

    Full Text Available Introduction: Occupational accidents are of the main issues in industries. It is necessary to identify the main root causes of accidents for their control. Several models have been proposed for determining the accidents root causes. FTA is one of the most widely used models which could graphically establish the root causes of accidents. The non-linear function is one of the main challenges in FTA compliance and in order to obtain the exact number, the meta-heuristic algorithms can be used. Material and Method: The present research was done in power plant industries in construction phase. In this study, a pattern for the analysis of human error in work-related accidents was provided by combination of neural network algorithms and FTA analytical model. Finally, using this pattern, the potential rate of all causes was determined. Result: The results showed that training, age, and non-compliance with safety principals in the workplace were the most important factors influencing human error in the occupational accident. Conclusion: According to the obtained results, it can be concluded that human errors can be greatly reduced by training, right choice of workers with regard to the type of occupations, and provision of appropriate safety conditions in the work place.

  7. Uncorrected refractive errors

    Directory of Open Access Journals (Sweden)

    Kovin S Naidoo

    2012-01-01

    Full Text Available Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC, were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR Development, Service Development and Social Entrepreneurship.

  8. Uncorrected refractive errors.

    Science.gov (United States)

    Naidoo, Kovin S; Jaggernath, Jyoti

    2012-01-01

    Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.

  9. Uncorrected refractive errors

    Science.gov (United States)

    Naidoo, Kovin S; Jaggernath, Jyoti

    2012-01-01

    Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship. PMID:22944755

  10. Brachytherapy in the treatment of cervical cancer: a review

    Directory of Open Access Journals (Sweden)

    Banerjee R

    2014-05-01

    Full Text Available Robyn Banerjee,1 Mitchell Kamrava21Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada; 2Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USAAbstract: Dramatic advances have been made in brachytherapy for cervical cancer. Radiation treatment planning has evolved from two-dimensional to three-dimensional, incorporating magnetic resonance imaging and/or computed tomography into the treatment paradigm. This allows for better delineation and coverage of the tumor, as well as improved avoidance of surrounding organs. Consequently, advanced brachytherapy can achieve very high rates of local control with a reduction in morbidity, compared with historic approaches. This review provides an overview of state-of-the-art gynecologic brachytherapy, with a focus on recent advances and their implications for women with cervical cancer.Keywords: cervical cancer, brachytherapy, image-guided brachytherapy

  11. Improving the efficiency of image guided brachytherapy in cervical cancer

    Directory of Open Access Journals (Sweden)

    Sophie Otter

    2016-12-01

    Full Text Available Brachytherapy is an essential component of the treatment of locally advanced cervical cancers. It enables the dose to the tumor to be boosted whilst allowing relative sparing of the normal tissues. Traditionally, cervical brachytherapy was prescribed to point A but since the GEC-ESTRO guidelines were published in 2005, there has been a move towards prescribing the dose to a 3D volume. Image guided brachytherapy has been shown to reduce local recurrence, and improve survival and is optimally predicated on magnetic resonance imaging. Radiological studies, patient workflow, operative parameters, and intensive therapy planning can represent a challenge to clinical resources. This article explores the ways, in which 3D conformal brachytherapy can be implemented and draws findings from recent literature and a well-developed hospital practice in order to suggest ways to improve the efficiency and efficacy of a brachytherapy service. Finally, we discuss relatively underexploited translational research opportunities.

  12. Disclosure of medical errors.

    Science.gov (United States)

    Matlow, Anne; Stevens, Polly; Harrison, Christine; Laxer, Ronald M

    2006-12-01

    The 1999 release of the Institute of Medicine's document To Err is Human was akin to removing the lid of Pandora's box. Not only were the magnitude and impact of medical errors now apparent to those working in the health care industry, but consumers or health care were alerted to the occurrence of medical events causing harm. One specific solution advocated was the disclosure to patients and their families of adverse events resulting from medical error. Knowledge of the historical perspective, ethical underpinnings, and medico-legal implications gives us a better appreciation of current recommendations for disclosing adverse events resulting from medical error to those affected.

  13. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  14. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  15. Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM☆

    Science.gov (United States)

    Kirisits, Christian; Rivard, Mark J.; Baltas, Dimos; Ballester, Facundo; De Brabandere, Marisol; van der Laarse, Rob; Niatsetski, Yury; Papagiannis, Panagiotis; Hellebust, Taran Paulsen; Perez-Calatayud, Jose; Tanderup, Kari; Venselaar, Jack L.M.; Siebert, Frank-André

    2014-01-01

    Background and purpose A substantial reduction of uncertainties in clinical brachytherapy should result in improved outcome in terms of increased local control and reduced side effects. Types of uncertainties have to be identified, grouped, and quantified. Methods A detailed literature review was performed to identify uncertainty components and their relative importance to the combined overall uncertainty. Results Very few components (e.g., source strength and afterloader timer) are independent of clinical disease site and location of administered dose. While the influence of medium on dose calculation can be substantial for low energy sources or non-deeply seated implants, the influence of medium is of minor importance for high-energy sources in the pelvic region. The level of uncertainties due to target, organ, applicator, and/or source movement in relation to the geometry assumed for treatment planning is highly dependent on fractionation and the level of image guided adaptive treatment. Most studies to date report the results in a manner that allows no direct reproduction and further comparison with other studies. Often, no distinction is made between variations, uncertainties, and errors or mistakes. The literature review facilitated the drafting of recommendations for uniform uncertainty reporting in clinical BT, which are also provided. The recommended comprehensive uncertainty investigations are key to obtain a general impression of uncertainties, and may help to identify elements of the brachytherapy treatment process that need improvement in terms of diminishing their dosimetric uncertainties. It is recommended to present data on the analyzed parameters (distance shifts, volume changes, source or applicator position, etc.), and also their influence on absorbed dose for clinically-relevant dose parameters (e.g., target parameters such as D90 or OAR doses). Publications on brachytherapy should include a statement of total dose uncertainty for the entire

  16. Review of clinical brachytherapy uncertainties: analysis guidelines of GEC-ESTRO and the AAPM.

    Science.gov (United States)

    Kirisits, Christian; Rivard, Mark J; Baltas, Dimos; Ballester, Facundo; De Brabandere, Marisol; van der Laarse, Rob; Niatsetski, Yury; Papagiannis, Panagiotis; Hellebust, Taran Paulsen; Perez-Calatayud, Jose; Tanderup, Kari; Venselaar, Jack L M; Siebert, Frank-André

    2014-01-01

    A substantial reduction of uncertainties in clinical brachytherapy should result in improved outcome in terms of increased local control and reduced side effects. Types of uncertainties have to be identified, grouped, and quantified. A detailed literature review was performed to identify uncertainty components and their relative importance to the combined overall uncertainty. Very few components (e.g., source strength and afterloader timer) are independent of clinical disease site and location of administered dose. While the influence of medium on dose calculation can be substantial for low energy sources or non-deeply seated implants, the influence of medium is of minor importance for high-energy sources in the pelvic region. The level of uncertainties due to target, organ, applicator, and/or source movement in relation to the geometry assumed for treatment planning is highly dependent on fractionation and the level of image guided adaptive treatment. Most studies to date report the results in a manner that allows no direct reproduction and further comparison with other studies. Often, no distinction is made between variations, uncertainties, and errors or mistakes. The literature review facilitated the drafting of recommendations for uniform uncertainty reporting in clinical BT, which are also provided. The recommended comprehensive uncertainty investigations are key to obtain a general impression of uncertainties, and may help to identify elements of the brachytherapy treatment process that need improvement in terms of diminishing their dosimetric uncertainties. It is recommended to present data on the analyzed parameters (distance shifts, volume changes, source or applicator position, etc.), and also their influence on absorbed dose for clinically-relevant dose parameters (e.g., target parameters such as D90 or OAR doses). Publications on brachytherapy should include a statement of total dose uncertainty for the entire treatment course, taking into account the

  17. Inorganic scintillation detectors based on Eu-activated phosphors for 192Ir brachytherapy

    Science.gov (United States)

    Kertzscher, Gustavo; Beddar, Sam

    2017-06-01

    The availability of real-time treatment verification during high-dose-rate (HDR) brachytherapy is currently limited. Therefore, we studied the luminescence properties of the widely commercially available scintillators using the inorganic materials Eu-activated phosphors Y2O3:Eu, YVO4:Eu, Y2O2S:Eu, and Gd2O2S:Eu to determine whether they could be used to accurately and precisely verify HDR brachytherapy doses in real time. The suitability for HDR brachytherapy of inorganic scintillation detectors (ISDs) based on the 4 Eu-activated phosphors in powder form was determined based on experiments with a 192Ir HDR brachytherapy source. The scintillation intensities of the phosphors were 16-134 times greater than that of the commonly used organic plastic scintillator BCF-12. High signal intensities were achieved with an optimized packing density of the phosphor mixture and with a shortened fiber-optic cable. The influence of contaminating Cerenkov and fluorescence light induced in the fiber-optic cable (stem signal) was adequately suppressed by inserting between the fiber-optic cable and the photodetector a 25 nm band-pass filter centered at the emission peak. The spurious photoluminescence signal induced by the stem signal was suppressed by placing a long-pass filter between the scintillation detector volume and the fiber-optic cable. The time-dependent luminescence properties of the phosphors were quantified by measuring the non-constant scintillation during irradiation and the afterglow after the brachytherapy source had retracted. We demonstrated that a mixture of Y2O3:Eu and YVO4:Eu suppressed the time-dependence of the ISDs and that the time-dependence of Y2O2S:Eu and Gd2O2S:Eu introduced large measurement inaccuracies. We conclude that ISDs based on a mixture of Y2O3:Eu and YVO4:Eu are promising candidates for accurate and precise real-time verification technology for HDR BT that is cost effective and straightforward to manufacture. Widespread dissemination of this

  18. A Comparison of the Dosimetric Parameters of Cs-137 Brachytherapy Source in Different Tissues with Water Using Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2012-03-01

    Full Text Available Introduction After the publication of Task Group number 43 dose calculation formalism by the American Association of Physicists in Medicine (AAPM, this method has been known as the most common dose calculation method in brachytherapy treatment planning. In this formalism, the water phantom is introduced as the reference dosimetry phantom, while the attenuation coefficient of the sources in the water phantom is different from that of different tissues. The purpose of this study is to investigate the effects of the phantom materials on the TG-43 dosimetery parameters of the Cs-137 brachytherapy source using MCNP4C Monte Carlo code. Materials and Methods In this research, the Cs-137 (Model Selectron brachytherapy source was simulated in different phantoms (bone, soft tissue, muscle, fat, and the inhomogeneous phantoms of water/bone of volume 27000 cm3 using MCNP4C Monte Carlo code. *F8 tally was used to obtain the dose in a fine cubical lattice. Then the TG-43 dosimetry parameters of the brachytherapy source were obtained in water phantom and compared with those of different phantoms. Results The percentage difference between the radial dose function g(r of bone and the g(r of water phantom, at a distance of 10 cm from the source center is 20%, while such differences are 1.7%, 1.6% and 1.1% for soft tissue, muscle, and fat, respectively. The largest difference of the dose rate constant of phantoms with those of water is 4.52% for the bone phantom, while the differences for soft tissue, muscle, and fat are 1.18%, 1.27%, and 0.18%, respectively. The 2D anisotropy function of the Cs-137 source for different tissues is identical to that of water. Conclusion The results of the simulations have shown that dose calculation in water phantom would introduce errors in the dose calculation around brachytherapy sources. Therefore, it is suggested that the correction factors of different tissues be applied after dose calculation in water phantoms, in order to

  19. Conformal treatment planning for interstitial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, G. [Kiel Univ. (Germany). Klinik fuer Strahlentherapie (Radioonkologie); Hebbinghaus, D. [Kiel Univ. (Germany). Klinik fuer Strahlentherapie (Radioonkologie); Dennert, P. [Kiel Univ. (Germany). Klinik fuer Strahlentherapie (Radioonkologie); Kohr, P. [Kiel Univ. (Germany). Klinik fuer Strahlentherapie (Radioonkologie); Wilhelm, R. [Kiel Univ. (Germany). Klinik fuer Strahlentherapie (Radioonkologie); Kimmig, B. [Kiel Univ. (Germany). Klinik fuer Strahlentherapie (Radioonkologie)

    1996-09-01

    Quality of a brachytherapy application depends on the choice of the target volume, on the dose distribution homogeneity and radiation injury on critical tissue, which should be postulated by advanced brachytherapy treatment planning systems. Basic imaging method for conformal treatment planning is the cross-sectional imaging. The clinical applicatibility of a new type 3D planning system using CT and/or MRT-simulation or US-simulation for planning purposes was studied. The planning system developed at Kiel University differs from usual brachytherapy planning systems because of the obligatory use of cross-sectional imaging as basic imaging method for reconstruction of structures of interest. Dose distribution and normal anatomy can be visualized on each CT/MRT/US slice as well as coronal, sagittal, axial and free chosen reconstructions (3D), as well as dose-volume histogram curves and special colour-coded visualization of dose homogeneity in the target can be analyzed. Because of the experience in the clinical routine, as well as on the base of 30 simultaneous planning procedures on both 2D (semi-3D) and 3D planning systems we observed similar time consumption. Advantages of 3D planning were the better interpretation of target delineation, delineation of critical structures as well as dose distribution, causing more accurate volume optimisation of dose distribution. Conformal brachytherapy treatment planning for interstitial brachytherapy means significant advantages for the clinical routine compared to 2D or semi-3D methods. (orig.) [Deutsch] Die Qualitaet einer Brachytherapieapplikation ist abhaengig von der Zielvolumenwahl, der homogenen Dosisverteilung und der Schonung kritischer Organe. Diese Voraussetzungen koennen am besten mit Hilfe eines 3D-Planungssystem erfuellt werden. Als Planungsvorlage fuer die Konformationstherapieplanung sind am besten Schnittbilder (CT, MRT, US) geeignet. Es wurde die Anwendbarkeit eines auf CT- (oder MRT-)Simulation oder geeignete

  20. Refractive errors.

    Science.gov (United States)

    Schiefer, Ulrich; Kraus, Christina; Baumbach, Peter; Ungewiß, Judith; Michels, Ralf

    2016-10-14

    All over the world, refractive errors are among the most frequently occuring treatable distur - bances of visual function. Ametropias have a prevalence of nearly 70% among adults in Germany and are thus of great epidemiologic and socio-economic relevance. In the light of their own clinical experience, the authors review pertinent articles retrieved by a selective literature search employing the terms "ametropia, "anisometropia," "refraction," "visual acuity," and epidemiology." In 2011, only 31% of persons over age 16 in Germany did not use any kind of visual aid; 63.4% wore eyeglasses and 5.3% wore contact lenses. Refractive errors were the most common reason for consulting an ophthalmologist, accounting for 21.1% of all outpatient visits. A pinhole aperture (stenopeic slit) is a suitable instrument for the basic diagnostic evaluation of impaired visual function due to optical factors. Spherical refractive errors (myopia and hyperopia), cylindrical refractive errors (astigmatism), unequal refractive errors in the two eyes (anisometropia), and the typical optical disturbance of old age (presbyopia) cause specific functional limitations and can be detected by a physician who does not need to be an ophthalmologist. Simple functional tests can be used in everyday clinical practice to determine quickly, easily, and safely whether the patient is suffering from a benign and easily correctable type of visual impairment, or whether there are other, more serious underlying causes.

  1. Clinical implementation and failure mode and effects analysis of HDR skin brachytherapy using Valencia and Leipzig surface applicators.

    Science.gov (United States)

    Sayler, Elaine; Eldredge-Hindy, Harriet; Dinome, Jessie; Lockamy, Virginia; Harrison, Amy S

    2015-01-01

    The planning procedure for Valencia and Leipzig surface applicators (VLSAs) (Nucletron, Veenendaal, The Netherlands) differs substantially from CT-based planning; the unfamiliarity could lead to significant errors. This study applies failure modes and effects analysis (FMEA) to high-dose-rate (HDR) skin brachytherapy using VLSAs to ensure safety and quality. A multidisciplinary team created a protocol for HDR VLSA skin treatments and applied FMEA. Failure modes were identified and scored by severity, occurrence, and detectability. The clinical procedure was then revised to address high-scoring process nodes. Several key components were added to the protocol to minimize risk probability numbers. (1) Diagnosis, prescription, applicator selection, and setup are reviewed at weekly quality assurance rounds. Peer review reduces the likelihood of an inappropriate treatment regime. (2) A template for HDR skin treatments was established in the clinic's electronic medical record system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planner as well as increases the detectability of an error. (3) A screen check was implemented during the second check to increase detectability of an error. (4) To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display, facilitating data entry and verification. (5) VLSAs are color coded and labeled to match the electronic medical record prescriptions, simplifying in-room selection and verification. Multidisciplinary planning and FMEA increased detectability and reduced error probability during VLSA HDR brachytherapy. This clinical model may be useful to institutions implementing similar procedures. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. Online pretreatment verification of high-dose rate brachytherapy using an imaging panel

    Science.gov (United States)

    Fonseca, Gabriel P.; Podesta, Mark; Bellezzo, Murillo; Van den Bosch, Michiel R.; Lutgens, Ludy; Vanneste, Ben G. L.; Voncken, Robert; Van Limbergen, Evert J.; Reniers, Brigitte; Verhaegen, Frank

    2017-07-01

    Brachytherapy is employed to treat a wide variety of cancers. However, an accurate treatment verification method is currently not available. This study describes a pre-treatment verification system that uses an imaging panel (IP) to verify important aspects of the treatment plan. A detailed modelling of the IP was only possible with an extensive calibration performed using a robotic arm. Irradiations were performed with a high dose rate (HDR) 192Ir source within a water phantom. An empirical fit was applied to measure the distance between the source and the detector so 3D Cartesian coordinates of the dwell positions can be obtained using a single panel. The IP acquires 7.14 fps to verify the dwell times, dwell positions and air kerma strength (Sk). A gynecological applicator was used to create a treatment plan that was registered with a CT image of the water phantom used during the experiments for verification purposes. Errors (shifts, exchanged connections and wrong dwell times) were simulated to verify the proposed verification system. Cartesian source positions (panel measurement plane) have a standard deviation of about 0.02 cm. The measured distance between the source and the panel (z-coordinate) have a standard deviation up to 0.16 cm and maximum absolute error of  ≈0.6 cm if the signal is close to sensitive limit of the panel. The average response of the panel is very linear with Sk. Therefore, Sk measurements can be performed with relatively small errors. The measured dwell times show a maximum error of 0.2 s which is consistent with the acquisition rate of the panel. All simulated errors were clearly identified by the proposed system. The use of IPs is not common in brachytherapy, however, it provides considerable advantages. It was demonstrated that the IP can accurately measure Sk, dwell times and dwell positions.

  3. American Brachytherapy Society consensus report for accelerated partial breast irradiation using interstitial multicatheter brachytherapy.

    Science.gov (United States)

    Hepel, Jaroslaw T; Arthur, Douglas; Shaitelman, Simona; Polgár, Csaba; Todor, Dorin; Zoberi, Imran; Kamrava, Mitchell; Major, Tibor; Yashar, Catheryn; Wazer, David E

    To develop a consensus report for the quality practice of accelerated partial breast irradiation (APBI) using interstitial multicatheter brachytherapy (IMB). The American Brachytherapy Society Board appointed an expert panel with clinical and research experience with breast brachytherapy to provide guidance for the current practice of IMB. This report is based on a comprehensive literature review with emphasis on randomized data and expertise of the panel. Randomized trials have demonstrated equivalent efficacy of APBI using IMB compared with whole breast irradiation for select patients with early-stage breast cancer. Several techniques for placement of interstitial catheters are described, and importance of three-dimensional planning with appropriate optimization is reviewed. Optimal target definition is outlined. Commonly used dosing schemas include 50 Gy delivered in pulses of 0.6-0.8 Gy/h using pulsed-dose-rate technique and 34 Gy in 10 fractions, 32 Gy in eight fractions, or 30 Gy in seven fractions using high-dose-rate technique. Potential toxicities and strategies for toxicity avoidance are described in detail. Dosimetric constraints include limiting whole breast volume that receives ≥50% of prescription dose to skin dose to ≤100% of prescription dose (≤60-70% preferred), chest wall dose to ≤125% of prescription dose, Dose Homogeneity Index to >0.75 (>0.85 preferred), V150 Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Quality control of the breast cancer treatments on Hdr brachytherapy with TLD-100

    Energy Technology Data Exchange (ETDEWEB)

    Torres H, F. [Universidad de Cordoba, Materials and Applied Physics Group, 230002 Monteria, Cordoba (Colombia); De la Espriella V, N. [Universidad de Cordoba, Grupo Avanzado de Materiales y Sistemas Complejos, 230002 Monteria, Cordoba (Colombia); Sanchez C, A., E-mail: franciscotorreshoyos@yahoo.com [Universidad de Cordoba, Departamento de Enfermeria, 230002 Monteria, Cordoba (Colombia)

    2014-07-01

    An anthropomorphic Phantom, a female trunk, was built with a natural bone structure and experimental material coated, glycerin and water-based material called JJT to build soft tissue equivalent to the muscle of human tissue, and a polymer (styrofoam) to build the lung as critical organ to simulate the treatment of breast cancer, with high dose rate brachytherapy (Hdr) and sources of Ir-192. The treatments were planned and calculated for the critical organ: Lung, and injury of 2 cm in diameter in breast with Micro Selectron Hdr system and the software Plato Brachytherapy V 14.1 of the Nucletron (Netherlands) which uses the standard protocol of radiotherapy for brachytherapy treatments. The dose experimentally measured with dosimeters TLD-100 LiF: Mg; Ti, which were previously calibrated, were placed in the same positions and bodies mentioned above, with less than 5% uncertainty. The reading dosimeters was carried out in a Harshaw TLD 4500. The results obtained for calculated treatments, using the standard simulator, and the experimental with TLD-100, show a high concordance, as they are on average a ± 1.1% making process becomes in a quality control of this type of treatments. (Author)

  5. A fully actuated robotic assistant for MRI-guided prostate biopsy and brachytherapy

    Science.gov (United States)

    Li, Gang; Su, Hao; Shang, Weijian; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fischer, Gregory S.

    2013-03-01

    Intra-operative medical imaging enables incorporation of human experience and intelligence in a controlled, closed-loop fashion. Magnetic resonance imaging (MRI) is an ideal modality for surgical guidance of diagnostic and therapeutic procedures, with its ability to perform high resolution, real-time, high soft tissue contrast imaging without ionizing radiation. However, for most current image-guided approaches only static pre-operative images are accessible for guidance, which are unable to provide updated information during a surgical procedure. The high magnetic field, electrical interference, and limited access of closed-bore MRI render great challenges to developing robotic systems that can perform inside a diagnostic high-field MRI while obtaining interactively updated MR images. To overcome these limitations, we are developing a piezoelectrically actuated robotic assistant for actuated percutaneous prostate interventions under real-time MRI guidance. Utilizing a modular design, the system enables coherent and straight forward workflow for various percutaneous interventions, including prostate biopsy sampling and brachytherapy seed placement, using various needle driver configurations. The unified workflow compromises: 1) system hardware and software initialization, 2) fiducial frame registration, 3) target selection and motion planning, 4) moving to the target and performing the intervention (e.g. taking a biopsy sample) under live imaging, and 5) visualization and verification. Phantom experiments of prostate biopsy and brachytherapy were executed under MRI-guidance to evaluate the feasibility of the workflow. The robot successfully performed fully actuated biopsy sampling and delivery of simulated brachytherapy seeds under live MR imaging, as well as precise delivery of a prostate brachytherapy seed distribution with an RMS accuracy of 0.98mm.

  6. SU-F-T-17: A Feasibility Study for the Transit Dosimetry with a Glass Dosimeter in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S; Yoon, M [Korea University, Seoul (Korea, Republic of); Chung, W; Chung, M; Kim, D [Kyung Hee University Hospital at Gangdong, Gangdonggu, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Confirming the dose delivered to a patient is important to make sure the treatment quality and safety of the radiotherapy. Measuring a transit dose of the patient during the radiotherapy could be an interesting way to confirm the patient dose. In this study, we evaluated the feasibility of the transit dosimetry with a glass dosimeter in brachytherapy. Methods: We made a phantom that inserted the glass dosimeters and placed under patient lying on a couch for cervix cancer brachytherapy. The 18 glass dosimeters were placed in the phantom arranged 6 per row. A point putting 1cm vertically from the source was prescribed as 500.00 cGy. Solid phantoms of 0, 2, 4, 6, 8, 10 cm were placed between the source and the glass dosimeter. The transit dose was measured each thickness using the glass dosimeters and compared with a treatment planning system (TPS). Results: When the transit dose was smaller than 10 cGy, the average of the differences between measured values and calculated values by TPS was 0.50 cGy and the standard deviation was 0.69 cGy. If the transit dose was smaller than 100 cGy, the average of the error was 1.67 ± 4.01 cGy. The error to a point near the prescription point was −14.02 cGy per 500.00 cGy of the prescription dose. Conclusion: The distances from the sources to skin of the patient generally are within 10 cm for cervix cancer cases in brachytherapy. The results of this preliminary study showed the probability of the glass dosimeter as the transit dosimeter in brachytherapy.

  7. A system to use electromagnetic tracking for the quality assurance of brachytherapy catheter digitization.

    Science.gov (United States)

    Damato, Antonio L; Viswanathan, Akila N; Don, Sarah M; Hansen, Jorgen L; Cormack, Robert A

    2014-10-01

    To investigate the use of a system using electromagnetic tracking (EMT), post-processing and an error-detection algorithm for detecting errors and resolving uncertainties in high-dose-rate brachytherapy catheter digitization for treatment planning. EMT was used to localize 15 catheters inserted into a phantom using a stepwise acquisition technique. Five distinct acquisition experiments were performed. Noise associated with the acquisition was calculated. The dwell location configuration was extracted from the EMT data. A CT scan of the phantom was performed, and five distinct catheter digitization sessions were performed. No a priori registration of the CT scan coordinate system with the EMT coordinate system was performed. CT-based digitization was automatically extracted from the brachytherapy plan DICOM files (CT), and rigid registration was performed between EMT and CT dwell positions. EMT registration error was characterized in terms of the mean and maximum distance between corresponding EMT and CT dwell positions per catheter. An algorithm for error detection and identification was presented. Three types of errors were systematically simulated: swap of two catheter numbers, partial swap of catheter number identification for parts of the catheters (mix), and catheter-tip shift. Error-detection sensitivity (number of simulated scenarios correctly identified as containing an error/number of simulated scenarios containing an error) and specificity (number of scenarios correctly identified as not containing errors/number of correct scenarios) were calculated. Catheter identification sensitivity (number of catheters correctly identified as erroneous across all scenarios/number of erroneous catheters across all scenarios) and specificity (number of catheters correctly identified as correct across all scenarios/number of correct catheters across all scenarios) were calculated. The mean detected and identified shift was calculated. The maximum noise ±1 standard

  8. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  9. [Perioperative interstitial brachytherapy for recurrent keloid scars].

    Science.gov (United States)

    Rio, E; Bardet, E; Peuvrel, P; Martinet, L; Perrot, P; Baraer, F; Loirat, Y; Sartre, J-Y; Malard, O; Ferron, C; Dreno, B

    2010-01-01

    Evaluation of the results of perioperative interstitial brachytherapy with low dose-rate (LDR) Ir-192 in the treatment of keloid scars. We performed a retrospective analysis of 73 histologically confirmed keloids (from 58 patients) resistant to medicosurgical treated by surgical excision plus early perioperative brachytherapy. All lesions were initially symptomatic. Local control was evaluated by clinical evaluation. Functional and cosmetic results were assessed in terms of patient responses to a self-administered questionnaire. Median age was 28 years (range 13-71 years). Scars were located as follows: 37% on the face, 32% on the trunk or abdomen, 16% on the neck, and 15% on the arms or legs. The mean delay before loading was four hours (range, 1-6h). The median dose was 20Gy (range, 15-40Gy). Sixty-four scars (from 53 patients) were evaluated. Local control was 86% (follow-up, 44.5 months; range, 14-150 months). All relapses occurred early - within 2 years posttreatment. At 20 months, survival without recurrence was significantly lower when treated lengths were more than 6cm long. The rate was 100% for treated scars below 4.5cm in length, 95% (95% CI: 55-96) for those 4.5-6cm long, and 75% (95% CI: 56-88) beyond 6cm (p=0.038). Of the 35 scars (28 patients) whose results were reassessed, six remained symptomatic and the esthetic results were considered to be good in 51% (18/35) and average in 37% (13/35) (median follow-up, 70 months; range, 16-181 months). Early perioperative LDR brachytherapy delivering 20Gy at 5mm reduced the rate of recurrent keloids resistant to other treatments and gave good functional results. 2009 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  10. Stereotactic radiotherapy as an alternative to plaque brachytherapy in retinoblastoma.

    Science.gov (United States)

    Eldebawy, Eman; Patrocinio, Horacio; Evans, Michael; Hashem, Rania; Nelson, Sylvie; Sidi, Rubina; Freeman, Carolyn

    2010-12-01

    Radioactive plaque brachytherapy has an established role for selected patients with retinoblastoma. Newer non-invasive radiotherapy techniques such as stereotactic conformal radiotherapy (SCR) that uses highly accurate positioning to deliver treatment with small beams may be an interesting alternative to brachytherapy. We report a case treated with SCR and compare the dosimetry with that achievable with brachytherapy. With advantages and disadvantages to both, SCR should more often be considered in the management of RB because of the more homogeneous dose within the target volume and similar or lower doses to surrounding normal tissues.

  11. The application of Geant4 simulation code for brachytherapy treatment

    CERN Document Server

    Agostinelli, S; Garelli, S; Paoli, G; Nieminen, P; Pia, M G

    2000-01-01

    Brachytherapy is a radiotherapeutic modality that makes use of radionuclides to deliver a high radiation dose to a well-defined volume while sparing surrounding healthy structures. At the National Institute for Cancer Research of Genova a High Dose Rate remote afterloading system provides Ir(192) endocavitary brachytherapy treatments. We studied the possibility to use the Geant4 Monte Carlo simulation toolkit in brachytherapy for calculation of complex physical parameters, not directly available by experiment al measurements, used in treatment planning dose deposition models.

  12. Flap reconstruction and interstitial brachytherapy in nonextremity soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Goel Vineeta

    2007-01-01

    Full Text Available Radiotherapy is an integral component of management of high-grade soft tissue sarcomas. Interstitial brachytherapy is used to deliver a boost or radical dose with several advantages over external beam radiotherapy. There has always been a concern to use brachytherapy with flap reconstruction of skin defects after wide excision. We preset our initial experience with interstitial brachytherapy in two patients of recurrent high-grade non-extremity sarcomas treated with surgical excision and soft tissue reconstruction of surgical defect.

  13. The American College of Radiology and the American Brachytherapy Society practice parameter for transperineal permanent brachytherapy of prostate cancer.

    Science.gov (United States)

    Bittner, Nathan H J; Orio, Peter F; Merrick, Gregory S; Prestidge, Bradley R; Hartford, Alan Charles; Rosenthal, Seth A

    Transperineal permanent brachytherapy is a safe and effective treatment option for patients with organ-confined prostate cancer. Careful adherence to established brachytherapy standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and the American Brachytherapy Society (ABS) has produced practice parameters for LDR prostate brachytherapy. These practice parameters define the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrist. Factors with respect to patient selection and appropriate use of supplemental treatment modalities such as external beam radiation and androgen suppression therapy are discussed. Logistics with respect to the brachytherapy implant procedure, the importance of dosimetric guidelines, and attention to radiation safety procedures and documentation are presented. Adherence to these parameters can be part of ensuring quality and safety in a successful prostate brachytherapy program. Copyright © 2016 American Brachytherapy Society and American College of Radiology. Published by Elsevier Inc. All rights reserved.

  14. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR): Data manual. Part 2: Human error probability (HEP) data; Volume 5, Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Reece, W.J.; Gilbert, B.G.; Richards, R.E. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-09-01

    This data manual contains a hard copy of the information in the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) Version 3.5 database, which is sponsored by the US Nuclear Regulatory Commission. NUCLARR was designed as a tool for risk analysis. Many of the nuclear reactors in the US and several outside the US are represented in the NUCLARR database. NUCLARR includes both human error probability estimates for workers at the plants and hardware failure data for nuclear reactor equipment. Aggregations of these data yield valuable reliability estimates for probabilistic risk assessments and human reliability analyses. The data manual is organized to permit manual searches of the information if the computerized version is not available. Originally, the manual was published in three parts. In this revision the introductory material located in the original Part 1 has been incorporated into the text of Parts 2 and 3. The user can now find introductory material either in the original Part 1, or in Parts 2 and 3 as revised. Part 2 contains the human error probability data, and Part 3, the hardware component reliability data.

  15. Method to control depth error when ablating human dentin with numerically controlled picosecond laser: a preliminary study.

    Science.gov (United States)

    Sun, Yuchun; Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Wang, Yong

    2015-07-01

    A three-axis numerically controlled picosecond laser was used to ablate dentin to investigate the quantitative relationships among the number of additive pulse layers in two-dimensional scans starting from the focal plane, step size along the normal of the focal plane (focal plane normal), and ablation depth error. A method to control the ablation depth error, suitable to control stepping along the focal plane normal, was preliminarily established. Twenty-four freshly removed mandibular first molars were cut transversely along the long axis of the crown and prepared as 48 tooth sample slices with approximately flat surfaces. Forty-two slices were used in the first section. The picosecond laser was 1,064 nm in wavelength, 3 W in power, and 10 kHz in repetition frequency. For a varying number (n = 5-70) of focal plane additive pulse layers (14 groups, three repetitions each), two-dimensional scanning and ablation were performed on the dentin regions of the tooth sample slices, which were fixed on the focal plane. The ablation depth, d, was measured, and the quantitative function between n and d was established. Six slices were used in the second section. The function was used to calculate and set the timing of stepwise increments, and the single-step size along the focal plane normal was d micrometer after ablation of n layers (n = 5-50; 10 groups, six repetitions each). Each sample underwent three-dimensional scanning and ablation to produce 2 × 2-mm square cavities. The difference, e, between the measured cavity depth and theoretical value was calculated, along with the difference, e 1, between the measured average ablation depth of a single-step along the focal plane normal and theoretical value. Values of n and d corresponding to the minimum values of e and e 1, respectively, were obtained. In two-dimensional ablation, d was largest (720.61 μm) when n = 65 and smallest when n = 5 (45.00 μm). Linear regression yielded the quantitative

  16. American Brachytherapy Society Task Group Report: Long-term control and toxicity with brachytherapy for localized breast cancer.

    Science.gov (United States)

    Shaitelman, Simona F; Amendola, Beatriz; Khan, Atif; Beriwal, Sushil; Rabinovitch, Rachel; Demanes, D Jeffrey; Kim, Leonard H; Cuttino, Laurie

    There has been significant controversy regarding the equivalency of accelerated partial breast irradiation to whole-breast irradiation. With the recent publication of a large, randomized trial comparing these two treatment modalities, an update on the current state of knowledge of brachytherapy-based accelerated partial breast irradiation, with respect to local control and toxicities, would be useful to practitioners and patients. A systematic literature review was conducted examining articles published between January 2000 and April 2016 on the topics "brachytherapy" and "breast." A total of 67 articles met inclusion criteria, providing outcomes on local tumor control and/or toxicity for breast brachytherapy. Reported 5-year local failure rates were 1.4-6.1% for multicatheter interstitial brachytherapy (MIB) and 0-5.7% for single-entry brachytherapy catheters when delivered to patients with standard selection criteria. Toxicity profiles are acceptable, with cosmetic outcomes comparable to whole-breast irradiation. The reported rates of infection were 0-12%. Symptomatic fat necrosis was found in 0-12% and 0-3.2% of patients treated with MIB and single-entry brachytherapy catheters, respectively. Late Grade ≥3 telangiectasias and fibrosis were reported in 0-8% and 0-9.1% of patients treated with MIB, respectively. These side effects were less common with single-entry brachytherapy catheters (0-2.0% and 0%, respectively). Breast brachytherapy is a treatment technique that provides acceptable rates of local control in select patients, as demonstrated by Level I evidence. The side effect profile of this treatment is well documented and should be shared with patients when considering this treatment modality. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  17. Investigation of the gold nanoparticles effects on the prostate dose distribution in brachytherapy: gel dosimetry and Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Hossein Khosravi

    2016-11-01

    Full Text Available Purpose: In this work, gold nanoparticles (GNPs were embedded in the MAGIC-f polymer gel irradiated with the 192 Ir brachytherapy sources. Material and methods: At the first plexiglas phantom was made as the human pelvis. The GNPs were synthesized with 15 nm in diameter and 0.1 mM (0.0197 mg/ml in concentration by using a chemical reduction method. Then, the MAGIC-f gel was synthesized. The fabricated gel was poured into the tubes located at the prostate (with and without the GNPs locations of the phantom. The phantom was irradiated with 192 Ir brachytherapy sources for prostate cancer. After 24 hours, the irradiated gels was read by using Siemens 1.5 Tesla MRI scanner. Following the brachytherapy practices, the absolute doses at the reference points and isodose curves were extracted and compared by experimental measurements and Monte Carlo (MC simulations. Results : The mean absorbed doses in the presence of the GNPs in prostate were 14% higher than the corresponding values without the GNPs in the brachytherapy. The gamma index analysis (between gel and MC using 7%/7 mm was also applied to the data and a high pass rate achieved (91.7% and 86.4% for analysis with/without GNPs, respectively. Conclusions : The real three-dimensional analysis shows the comparison of the dose-volume histograms measured for planning volumes and the expected one from the MC calculation. The results indicate that the polymer gel dosimetry method, which developed and used in this study, could be recommended as a reliable method for investigating the dose enhancement factor of GNPs in brachytherapy.

  18. Physical security and cyber security issues and human error prevention for 3D printed objects: detecting the use of an incorrect printing material

    Science.gov (United States)

    Straub, Jeremy

    2017-06-01

    A wide variety of characteristics of 3D printed objects have been linked to impaired structural integrity and use-efficacy. The printing material can also have a significant impact on the quality, utility and safety characteristics of a 3D printed object. Material issues can be created by vendor issues, physical security issues and human error. This paper presents and evaluates a system that can be used to detect incorrect material use in a 3D printer, using visible light imaging. Specifically, it assesses the ability to ascertain the difference between materials of different color and different types of material with similar coloration.

  19. Novel tools for stepping source brachytherapy treatment planning: Enhanced geometrical optimization and interactive inverse planning

    Energy Technology Data Exchange (ETDEWEB)

    Dinkla, Anna M., E-mail: a.m.dinkla@amc.uva.nl; Laarse, Rob van der; Koedooder, Kees; Petra Kok, H.; Wieringen, Niek van; Pieters, Bradley R.; Bel, Arjan [Department of Radiation Oncology, Academic Medical Center Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ (Netherlands)

    2015-01-15

    Purpose: Dose optimization for stepping source brachytherapy can nowadays be performed using automated inverse algorithms. Although much quicker than graphical optimization, an experienced treatment planner is required for both methods. With automated inverse algorithms, the procedure to achieve the desired dose distribution is often based on trial-and-error. Methods: A new approach for stepping source prostate brachytherapy treatment planning was developed as a quick and user-friendly alternative. This approach consists of the combined use of two novel tools: Enhanced geometrical optimization (EGO) and interactive inverse planning (IIP). EGO is an extended version of the common geometrical optimization method and is applied to create a dose distribution as homogeneous as possible. With the second tool, IIP, this dose distribution is tailored to a specific patient anatomy by interactively changing the highest and lowest dose on the contours. Results: The combined use of EGO–IIP was evaluated on 24 prostate cancer patients, by having an inexperienced user create treatment plans, compliant to clinical dose objectives. This user was able to create dose plans of 24 patients in an average time of 4.4 min/patient. An experienced treatment planner without extensive training in EGO–IIP also created 24 plans. The resulting dose-volume histogram parameters were comparable to the clinical plans and showed high conformance to clinical standards. Conclusions: Even for an inexperienced user, treatment planning with EGO–IIP for stepping source prostate brachytherapy is feasible as an alternative to current optimization algorithms, offering speed, simplicity for the user, and local control of the dose levels.

  20. Anticipation- and error-related EEG signals during realistic human-machine interaction: a study on visual and tactile feedback.

    Science.gov (United States)

    Chavarriaga, Ricardo; Perrin, Xavier; Siegwart, Roland; Millán, José del R

    2012-01-01

    The exploitation of EEG signatures of cognitive processes can provide valuable information to improve interaction with brain actuated devices. In this work we study these correlates in a realistic situation simulated in a virtual reality environment. We focus on cortical potentials linked to the anticipation of future events (i.e. the contingent negative variation, CNV) and error-related potentials elicited by both visual and tactile feedback. Experiments with 6 subjects show brain activity consistent with previous studies using simpler stimuli, both at the level of ERPs and single trial classification. Moreover, we observe comparable signals irrespective of whether the subject was required to perform motor actions. Altogether, these results support the possibility of using these signals for practical brain machine interaction.

  1. Error analysis in laparoscopic surgery

    Science.gov (United States)

    Gantert, Walter A.; Tendick, Frank; Bhoyrul, Sunil; Tyrrell, Dana; Fujino, Yukio; Rangel, Shawn; Patti, Marco G.; Way, Lawrence W.

    1998-06-01

    Iatrogenic complications in laparoscopic surgery, as in any field, stem from human error. In recent years, cognitive psychologists have developed theories for understanding and analyzing human error, and the application of these principles has decreased error rates in the aviation and nuclear power industries. The purpose of this study was to apply error analysis to laparoscopic surgery and evaluate its potential for preventing complications. Our approach is based on James Reason's framework using a classification of errors according to three performance levels: at the skill- based performance level, slips are caused by attention failures, and lapses result form memory failures. Rule-based mistakes constitute the second level. Knowledge-based mistakes occur at the highest performance level and are caused by shortcomings in conscious processing. These errors committed by the performer 'at the sharp end' occur in typical situations which often times are brought about by already built-in latent system failures. We present a series of case studies in laparoscopic surgery in which errors are classified and the influence of intrinsic failures and extrinsic system flaws are evaluated. Most serious technical errors in lap surgery stem from a rule-based or knowledge- based mistake triggered by cognitive underspecification due to incomplete or illusory visual input information. Error analysis in laparoscopic surgery should be able to improve human performance, and it should detect and help eliminate system flaws. Complication rates in laparoscopic surgery due to technical errors can thus be considerably reduced.

  2. Evaluation of resins for use in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luiz Claudio F.M. Garcia; Ferraz, Wilmar Barbosa; Chrcanovic, Bruno Ramos; Santos, Ana Maria M., E-mail: ferrazw@cdtn.b, E-mail: amms@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Brachytherapy is an advanced cancer treatment where radioactive seeds or sources are placed near or directly into the tumor thus reducing the radiation exposure in the surrounding healthy tissues. Prostate cancer can be treated with interstitial brachytherapy in initial stage of the disease in which tiny radioactive seeds with cylindrical geometry are used. Several kinds of seeds have been developed in order to obtain a better dose distribution around them and with a lower cost manufacturing. These seeds consist of an encapsulation, a radionuclide carrier, and X-ray marker. Among the materials that have potential for innovation in the construction of seeds, biocompatible resins appear as an important option. In this paper, we present some characterization results with Fourier transform infrared spectroscopic (FTIR) and ultraviolet-visible spectroscopy (UV-vis) performed on two types of resins in which curing temperatures for each one were varied as also the results of coatings with these resins under titanium substrates. Interactions of these resins in contact with the simulated body fluid were evaluated by atomic force microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. (author)

  3. Coatings of nanoparticles applied to brachytherapy treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Andreza A.D.C.C.; Rostelato, Maria Elisa C.M.; Souza, Carla D.; Rodrigues, Bruna T.; Souza, Daiane C.B.; Zeituni, Carlos A.; Nogueira, Beatriz R., E-mail: ccg.andreza@gmail.com, E-mail: elisaros@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Brachytherapy is a treatment for cancer in which the radiation is placed close or in contact with the region to be treated saving the surrounding healthy tissues. Nanotechnology is the science that studies the properties of nanometric materials. Nanobrachytherapy in a new field that unites the advantages of brachytherapy with the small size in the nanoparticle, resulting in an even less invasive treatment. In view of the synthesis of the nanoparticles and their use, there is a fundamental role that is made by the coatings, which not only have the function of avoiding the aggregation of particles, but also stabilize and control their functional properties. Among the range of coatings, the most outstanding are polyethylene glycol (PEG) and gum arabica (GA). PEG improves the surface properties of nanoparticles and presents high stability under biomedical conditions. After the synthesis of gold nanoparticles was developed, PEG and gum arabica were successfully incorporated into the surface. In a vial of pyrex, 1 ml of coating agent and 1 ml of nanoparticles was left under gentle shaking for 2 hours. Incorporation was confirmed by DLS and HRTEM. GA requires further study. (author)

  4. A flattening filter for brachytherapy skin irradiation

    Science.gov (United States)

    Kron, Tomas; Haque, Mamoon; Foulkes, Kristie; Jeraj, Robert

    2002-03-01

    Radioactive sources in close contact offer an alternative to superficial radiation in the treatment of skin lesions. A flattening filter was designed for a lead surface applicator to improve the skin dose distribution of a high dose rate (HDR) brachytherapy unit (Nucletron). At three heights from the opening (10, 15 and 25 mm) of the cylindrical applicator, the 192Ir source can be driven into the centre of the applicator. Thin sheets of lead foil (0.2 mm) were cut into circular shapes and placed in the opening to build a cylindrical cone that acts as a flattening filter. The shape of the cone was optimized in an iterative process using a spreadsheet and the resulting dose distribution under the applicator was determined using radiosensitive film. The use of the filter improved the dose distribution in a plane perpendicular to the beam axis to be within +/-5% of the central axis dose. The present applicator and flattening filter together with an HDR brachytherapy unit offer an alternative for skin irradiation where a superficial unit is not available or will be replaced with a more flexible device. As the depth dose characteristics can be modified using different source-to-surface distances, the dose throughout the patient's skin can be shaped as desired by the radiation oncologist using a compensator design type approach.

  5. Quality assurance in MR image guided adaptive brachytherapy for cervical cancer: Final results of the EMBRACE study dummy run.

    Science.gov (United States)

    Kirisits, Christian; Federico, Mario; Nkiwane, Karen; Fidarova, Elena; Jürgenliemk-Schulz, Ina; de Leeuw, Astrid; Lindegaard, Jacob; Pötter, Richard; Tanderup, Kari

    2015-12-01

    Upfront quality assurance (QA) is considered essential when starting a multicenter clinical trial in radiotherapy. Despite the long experience gained for external beam radiotherapy (EBRT) trials, there are only limited audit QA methods for brachytherapy (BT) and none include the specific aspects of image guided adaptive brachytherapy (IGABT). EMBRACE is a prospective multicenter trial aiming to assess the impact of (MRI)-based IGABT in locally advanced cervical cancer. An EMBRACE dummy run was designed to identify sources and magnitude of uncertainties and errors considered important for the evaluation of clinical, and dosimetric parameters and their relation to outcome. Contouring, treatment planning and dose reporting was evaluated and scored with a categorical scale of 1-10. Active feedback to centers was provided to improve protocol compliance and reporting. A second dummy run was required in case of major deviations (score 30 cases) had better performance as compared to centers with limited experience. The comprehensive dummy run designed for the EMBRACE trial has been a feasible tool for QA in IGABT of cervix cancer. It should be considered for future IGABT trials and could serve as the basis for continuous quality checks for brachytherapy centers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Image-Based Brachytherapy for the Treatment of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Harkenrider, Matthew M., E-mail: mharkenrider@lumc.edu; Alite, Fiori; Silva, Scott R.; Small, William

    2015-07-15

    Cervical cancer is a disease that requires considerable multidisciplinary coordination of care and labor in order to maximize tumor control and survival while minimizing treatment-related toxicity. As with external beam radiation therapy, the use of advanced imaging and 3-dimensional treatment planning has generated a paradigm shift in the delivery of brachytherapy for the treatment of cervical cancer. The use of image-based brachytherapy, most commonly with magnetic resonance imaging (MRI), requires additional attention and effort by the treating physician to prescribe dose to the proper volume and account for adjacent organs at risk. This represents a dramatic change from the classic Manchester approach of orthogonal radiographic images and prescribing dose to point A. We reviewed the history and currently evolving data and recommendations for the clinical use of image-based brachytherapy with an emphasis on MRI-based brachytherapy.

  7. Brachytherapy in thetreatment of the oral and oropharyngeal cancer

    Directory of Open Access Journals (Sweden)

    A. M. Zhumankulov

    2015-01-01

    Full Text Available Background. One of the methods of radiotherapy of malignant tumors of oral cavity and oropharyngeal region today is interstitial radiation therapy – brachytherapy, allowing you to create the optimum dose of irradiation to the tumor, necessary for its destruction, without severe radiation reactions in the surrounding tissues unchanged. Brachytherapy has the following advantages: high precision – the ability of the local summarization of high single doses in a limited volume of tissue; good tolerability; a short time of treatment. At this time, brachytherapy is the method of choice used as palliative therapy and as a component of radical treatment.Objective: The purpose of this article is a literature review about the latest achievements of interstitial brachytherapy in malignant tumors of the oral cavity and oropharynx.

  8. Pulsed-dose-rate and low-dose-rate brachytherapy : Comparison of sparing effects in cells of a radiosensitive and a radioresistant cell line

    NARCIS (Netherlands)

    Pomp, J; Woudstra, EC; Kampinga, HH

    Pulsed-dose-rate regimens are an attractive alternative to continuous low-dose-rate brachytherapy. However, apart from data obtained from modeling, only a few irt vitro results are available for comparing the biological effectiveness of both modalities. Cells of two human cell lines with survival

  9. Radiotherapy and Brachytherapy : Proceedings of the NATO Advanced Study Institute on Physics of Modern Radiotherapy & Brachytherapy

    CERN Document Server

    Lemoigne, Yves

    2009-01-01

    This volume collects a series of lectures presented at the tenth ESI School held at Archamps (FR) in November 2007 and dedicated to radiotherapy and brachytherapy. The lectures focus on the multiple facets of radiotherapy in general, including external radiotherapy (often called teletherapy) as well as internal radiotherapy (called brachytherapy). Radiotherapy strategy and dose management as well as the decisive role of digital imaging in the associated clinical practice are developed in several articles. Grouped under the discipline of Conformal Radiotherapy (CRT), numerous modern techniques, from Multi-Leaf Collimators (MLC) to Intensity Modulated RadioTherapy (IMRT), are explained in detail. The importance of treatment planning based upon patient data from digital imaging (Computed Tomography) is also underlined. Finally, despite the quasi- totality of patients being presently treated with gamma and X-rays, novel powerful tools are emerging using proton and light ions (like carbon ions) beams, bound to bec...

  10. Electronic brachytherapy management of atypical fibroxanthoma: report of 8 lesions

    OpenAIRE

    Stephen Doggett; James Brazil; Marketa Limova; Leah Press; Sidney Smith; Jeremy Peck

    2017-01-01

    Purpose : To evaluate the suitability of treating atypical fibroxanthoma (AFX), an uncommon skin malignancy, with electronic brachytherapy. Material and methods : From Feb 2013 to Sep 2014, we were referred a total of 8 cases of AFX in 7 patients, all involving the scalp. All of them were treated with electronic brachytherapy 50 Kev radiations (Xoft Axxent®, Fremont, California). All lesions received 40 Gy in two fractions per week with 5mm margins. Results : At a median follow-up...

  11. Dosimetric characteristics of a new unit for electronic skin brachytherapy.

    Science.gov (United States)

    Garcia-Martinez, Teresa; Chan, Jan-Pieter; Perez-Calatayud, Jose; Ballester, Facundo

    2014-03-01

    Brachytherapy with radioactive high dose rate (HDR) (192)Ir source is applied to small skin cancer lesions, using surface applicators, i.e. Leipzig or Valencia type. New developments in the field of radiotherapy for skin cancer include electronic brachytherapy. This technique involves the placement of an HDR X-ray source close to the skin, therefore combining the benefits of brachytherapy with the reduced shielding requirements and targeted energy of low energy X-rays. Recently, the Esteya(®) Electronic Brachytherapy System (Esteya EBS, Elekta AB-Nucletron, Stockholm, Sweden) has been developed specifically for HDR brachytherapy treatment of surface lesions. The system provides radionuclide free HDR brachytherapy by means of a small 69.5 kV X-ray source. The purpose of this study is to obtain the dosimetric characterization required for clinical implementation, providing the detailed methodology to perform the commissioning. Flatness, symmetry and penumbra, percentage of depth dose (PDD), kV stability, HVL, output, spectrum, linearity, and leakage have been evaluated for a set of applicators (from 10 mm to 30 mm in diameter). Flatness and symmetry resulted better than 5% with around 1 mm of penumbra. The depth dose gradient is about 7%/mm. A kV value of 68.4 ± 1.0 kV (k = 1) was obtained, in good agreement with manufacturer data (69.5 kV). HVL was 1.85 mm Al. Dose rate for a typical 6 Gy to 7 Gy prescription resulted about 3.3 Gy/min and the leakage value was Brachytherapy System presents excellent flatness and penumbra as with the Valencia applicator case, combined with an improved PDD, allowing treatment of lesions of up to a depth of 5 mm in combination with reduced treatment duration. The Esteya unit allows HDR brachytherapy superficial treatment within a minimally shielded environment due its low energy.

  12. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: wwang21@partners.org [Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115 and Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston, Massachusetts 02115 (United States); Viswanathan, Akila N.; Damato, Antonio L.; Cormack, Robert A. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston, Massachusetts 02115 (United States); Chen, Yue; Tse, Zion [Department of Engineering, The University of Georgia, Athens, Georgia 30602 (United States); Pan, Li [Siemens Healthcare USA, Baltimore, Maryland 21287 (United States); Tokuda, Junichi; Schmidt, Ehud J. [Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115 (United States); Seethamraju, Ravi T. [Siemens Healthcare USA, Boston, Massachusetts 02115 (United States); Dumoulin, Charles L. [Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229 (United States)

    2015-12-15

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High

  13. Role of brachytherapy in the treatment of localized prostate cancer

    Directory of Open Access Journals (Sweden)

    A. D. Kaprin

    2015-01-01

    Full Text Available The review is devoted to application of brachytherapy for treating the localized prostate cancer (PC. Statistics for incidence and detectability of this pathology and its dynamics for recent years are represented. Brief analysis of other methods which are conveniently used for treatment of PC, such as radical prostatectomy and external-beam radiotherapy, was performed. Advantages and disadvantages of these methods have been discussed. Brief history about the development of brachytherapy from first experience to wide-spread use in clinical practice is reported. The detailed review of series of large trials from Russia and other countries for efficiency and safety of brachytherapy in patients with prostate cancer for recent 15 years is also represented. Two types of brachytherapy in current clinical oncology i.e. low-dose technique with permanent implantation of microsources and high-dose temporary isotope implantation, specifics of its application in different groups of patients have been described. The procedure of brachytherapy and its three main steps i.e. planning, implantation and control assessment after implantation have been characterized in details. The conclusion about benefits of using of brachytherapy in the treatment of prostate cancer as minimally invasive and efficient method was made. 

  14. Electronic brachytherapy management of atypical fibroxanthoma: report of 8 lesions

    Directory of Open Access Journals (Sweden)

    Stephen Doggett

    2017-01-01

    Full Text Available Purpose : To evaluate the suitability of treating atypical fibroxanthoma (AFX, an uncommon skin malignancy, with electronic brachytherapy. Material and methods : From Feb 2013 to Sep 2014, we were referred a total of 8 cases of AFX in 7 patients, all involving the scalp. All of them were treated with electronic brachytherapy 50 Kev radiations (Xoft Axxent®, Fremont, California. All lesions received 40 Gy in two fractions per week with 5mm margins. Results : At a median follow-up of 23.7 months, the local recurrence rate is 12.5%. The single lesion that failed was not debulked surgically prior to electronic brachytherapy. Conclusions : To our knowledge, this is the first report in the literature on the use of radiation therapy as curative primary treatment for AFX. No contraindication to the use of radiations is found in the literature, with surgery being the sole treatment for AFX noted. Our recurrence rate is 0% for debulked lesions. Risk of recurrence is mitigated with surgical debulking prior to brachytherapy. Electronic brachytherapy appears to be a safe and effective treatment for debulked AFX. Multiple excisions, skin grafting, and wound care can be avoided in elderly patients by the use of electronic brachytherapy.

  15. MO-B-BRC-01: Introduction [Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Prisciandaro, J. [University of Michigan (United States)

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.

  16. Adaptation of the CVT algorithm for catheter optimization in high dose rate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Eric; Fekete, Charles-Antoine Collins; Beaulieu, Luc [Département de Physique, de Génie Physique et d’Optique et Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de Radio-Oncologie et Axe oncologie du Centre de Recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Létourneau, Mélanie [Département de Radio-Oncologie, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 (United Kingdom); Pouliot, Jean [Department of Radiation Oncology, University of California San Francisco, Helen Diller Family Comprehensive Cancer Center, 1600 Divisadero Street, San Francisco, California 94143-1708 (United States)

    2013-11-15

    Purpose: An innovative, simple, and fast method to optimize the number and position of catheters is presented for prostate and breast high dose rate (HDR) brachytherapy, both for arbitrary templates or template-free implants (such as robotic templates).Methods: Eight clinical cases were chosen randomly from a bank of patients, previously treated in our clinic to test our method. The 2D Centroidal Voronoi Tessellations (CVT) algorithm was adapted to distribute catheters uniformly in space, within the maximum external contour of the planning target volume. The catheters optimization procedure includes the inverse planning simulated annealing algorithm (IPSA). Complete treatment plans can then be generated from the algorithm for different number of catheters. The best plan is chosen from different dosimetry criteria and will automatically provide the number of catheters and their positions. After the CVT algorithm parameters were optimized for speed and dosimetric results, it was validated against prostate clinical cases, using clinically relevant dose parameters. The robustness to implantation error was also evaluated. Finally, the efficiency of the method was tested in breast interstitial HDR brachytherapy cases.Results: The effect of the number and locations of the catheters on prostate cancer patients was studied. Treatment plans with a better or equivalent dose distributions could be obtained with fewer catheters. A better or equal prostate V100 was obtained down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of prostate V100 and D90. Implantation errors up to 3 mm were acceptable since no statistical difference was found when compared to 0 mm error (p > 0.05). No significant difference in dosimetric indices was observed for the different combination of parameters within the CVT algorithm. A linear relation was found between the number of random points and the optimization time of the CVT algorithm. Because the

  17. A review of the clinical experience in pulsed dose rate brachytherapy

    Science.gov (United States)

    Balgobind, Brian V; Koedooder, Kees; Ordoñez Zúñiga, Diego; Dávila Fajardo, Raquel; Rasch, Coen R N

    2015-01-01

    Pulsed dose rate (PDR) brachytherapy is a treatment modality that combines physical advantages of high dose rate (HDR) brachytherapy with the radiobiological advantages of low dose rate brachytherapy. The aim of this review was to describe the effective clinical use of PDR brachytherapy worldwide in different tumour locations. We found 66 articles reporting on clinical PDR brachytherapy including the treatment procedure and outcome. Moreover, PDR brachytherapy has been applied in almost all tumour sites for which brachytherapy is indicated and with good local control and low toxicity. The main advantage of PDR is, because of the small pulse sizes used, the ability to spare normal tissue. In certain cases, HDR resembles PDR brachytherapy by the use of multifractionated low-fraction dose. PMID:26290399

  18. Building a World-Class Safety Culture: The National Ignition Facility and the Control of Human and Organizational Error

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C T; Stalnaker, G

    2002-12-06

    Accidents in complex systems send us signals. They may be harbingers of a catastrophe. Some even argue that a ''normal'' consequence of operations in a complex organization may not only be the goods it produces, but also accidents and--inevitably--catastrophes. We would like to tell you the story of a large, complex organization, whose history questions the argument ''that accidents just happen.'' Starting from a less than enviable safety record, the National Ignition Facility (NIF) has accumulated over 2.5 million safe hours. The story of NIF is still unfolding. The facility is still being constructed and commissioned. But the steps NIF has taken in achieving its safety record provide a principled blueprint that may be of value to others. Describing that principled blueprint is the purpose of this paper. The first part of this paper is a case study of NIF and its effort to achieve a world-class safety record. This case study will include a description of (1) NIF's complex systems, (2) NIF's early safety history, (3) factors that may have initiated its safety culture change, and (4) the evolution of its safety blueprint. In the last part of the paper, we will compare NIF's safety culture to what safety industry experts, psychologists, and sociologists say about how to shape a culture and control organizational error.

  19. Mechanism of Error-Free DNA Replication Past Lucidin-Derived DNA Damage by Human DNA Polymerase κ.

    Science.gov (United States)

    Yockey, Oliver P; Jha, Vikash; Ghodke, Pratibha P; Xu, Tianzuo; Xu, Wenyan; Ling, Hong; Pradeepkumar, P I; Zhao, Linlin

    2017-11-20

    DNA damage impinges on genetic information flow and has significant implications in human disease and aging. Lucidin-3-O-primeveroside (LuP) is an anthraquinone derivative present in madder root, which has been used as a coloring agent and food additive. LuP can be metabolically converted to genotoxic compound lucidin, which subsequently forms lucidin-specific N2-2'-deoxyguanosine (N2-dG) and N6-2'-deoxyadenosine (N6-dA) DNA adducts. Lucidin is mutagenic and carcinogenic in rodents but has low carcinogenic risks in humans. To understand the molecular mechanism of low carcinogenicity of lucidin in humans, we performed DNA replication assays using site-specifically modified oligodeoxynucleotides containing a structural analogue (LdG) of lucidin-N2-dG DNA adduct and determined the crystal structures of DNA polymerase (pol) κ in complex with LdG-bearing DNA and an incoming nucleotide. We examined four human pols (pol η, pol ι, pol κ, and Rev1) in their efficiency and accuracy during DNA replication with LdG; these pols are key players in translesion DNA synthesis. Our results demonstrate that pol κ efficiently and accurately replicates past the LdG adduct, whereas DNA replication by pol η, pol ι is compromised to different extents. Rev1 retains its ability to incorporate dCTP opposite the lesion albeit with decreased efficiency. Two ternary crystal structures of pol κ illustrate that the LdG adduct is accommodated by pol κ at the enzyme active site during insertion and postlesion-extension steps. The unique open active site of pol κ allows the adducted DNA to adopt a standard B-form for accurate DNA replication. Collectively, these biochemical and structural data provide mechanistic insights into the low carcinogenic risk of lucidin in humans.

  20. A simplified analytical dose calculation algorithm accounting for tissue heterogeneity for low-energy brachytherapy sources

    Science.gov (United States)

    Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M.; Ravi, Ananth; Pignol, Jean-Philippe

    2013-09-01

    The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.

  1. Data fusion for planning target volume and isodose prediction in prostate brachytherapy

    Science.gov (United States)

    Nouranian, Saman; Ramezani, Mahdi; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, Septimiu E.; Abolmaesumi, Purang

    2015-03-01

    In low-dose prostate brachytherapy treatment, a large number of radioactive seeds is implanted in and adjacent to the prostate gland. Planning of this treatment involves the determination of a Planning Target Volume (PTV), followed by defining the optimal number of seeds, needles and their coordinates for implantation. The two major planning tasks, i.e. PTV determination and seed definition, are associated with inter- and intra-expert variability. Moreover, since these two steps are performed in sequence, the variability is accumulated in the overall treatment plan. In this paper, we introduce a model based on a data fusion technique that enables joint determination of PTV and the minimum Prescribed Isodose (mPD) map. The model captures the correlation between different information modalities consisting of transrectal ultrasound (TRUS) volumes, PTV and isodose contours. We take advantage of joint Independent Component Analysis (jICA) as a linear decomposition technique to obtain a set of joint components that optimally describe such correlation. We perform a component stability analysis to generate a model with stable parameters that predicts the PTV and isodose contours solely based on a new patient TRUS volume. We propose a framework for both modeling and prediction processes and evaluate it on a dataset of 60 brachytherapy treatment records. We show PTV prediction error of 10:02+/-4:5% and the V100 isodose overlap of 97+/-3:55% with respect to the clinical gold standard.

  2. Toward four-dimensional image-guided adaptive brachytherapy in locally recurrent endometrial cancer.

    Science.gov (United States)

    Fokdal, Lars; Ørtoft, Gitte; Hansen, Estrid S; Røhl, Lisbeth; Pedersen, Erik Morre; Tanderup, Kari; Lindegaard, Jacob Christian

    2014-01-01

    To evaluate clinical outcome and feasibility of a four-dimensional image-guided adaptive brachytherapy concept in patients with locally recurrent endometrial cancer. Forty-three patients with locally recurrent endometrial cancer were included. Treatment consisted of conformal external beam radiotherapy followed by a boost using pulsed-dose-rate brachytherapy (BT). Large tumors were treated with MRI-guided interstitial BT. Small tumors were treated with CT-guided intracavitary BT. The planning aim (total external beam radiotherapy and BT) for high-risk clinical target volume was D90 > 80 Gy, whereas constraints for organs at risk were D2cc ≤ 90 Gy for bladder and D2cc ≤ 70 Gy for rectum, sigmoid, and bowel in terms of equivalent dose in 2 Gy fractions. Median high-risk clinical target volume was 18 cm(3) (range, 0-91). D90 was 82 Gy (range, 77-88). D2cc to bladder, rectum, and sigmoid were 67 Gy (range, 50-81), 67 Gy (range, 51-77), and 55 Gy (range, 44-68), respectively. Median followup was 30 months (6-88). Two-year local control rate was 92% (standard error [SE], 5). Disease-free survival rate and overall survival rate was 59% (SE, 8) and 78% (SE, 7), respectively. Patients with low- to intermediate-risk for recurrence had a 2-year disease-free survival rate of 72% (SE, 9) compared with 42% (SE, 12) in patients with high risk for recurrence (p = 0.04). Late morbidity Grade 3 was recorded in 5 (12%) patients. Four-dimensional image-guided adaptive brachytherapy is feasible in locally recurrent endometrial cancer. Local control rate is good. Systemic control remains a problem in patients with high risk for recurrence. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. Predictors of Metastatic Disease After Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Forsythe, Kevin [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, NY (United States); Burri, Ryan [Department of Radiation Oncology, New York-Presbyterian Hospital, New York, NY (United States); Stone, Nelson [Department of Urology, Mount Sinai School of Medicine, New York, NY (United States); Stock, Richard G., E-mail: richard.stock@moutsinai.org [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, NY (United States)

    2012-06-01

    Purpose: To identify predictors of metastatic disease after brachytherapy treatment for prostate cancer. Methods and Materials: All patients who received either brachytherapy alone (implant) or brachytherapy in combination with external beam radiation therapy for treatment of localized prostate cancer at The Mount Sinai Hospital between June 1990 and March 2007 with a minimum follow-up of 2 years were included. Univariate and multivariable analyses were performed on the following variables: risk group, Gleason score (GS), clinical T stage, pretreatment prostate-specific antigen level, post-treatment prostate-specific antigen doubling time (PSA-DT), treatment type (implant vs. implant plus external beam radiation therapy), treatment era, total biological effective dose, use of androgen deprivation therapy, age at diagnosis, and race. PSA-DT was analyzed in the following ordinate groups: 0 to 90 days, 91 to 180 days, 180 to 360 days, and greater than 360 days. Results: We included 1,887 patients in this study. Metastases developed in 47 of these patients. The 10-year freedom from distant metastasis (FFDM) rate for the entire population was 95.1%. Median follow-up was 6 years (range, 2-15 years). The only two significant predictors of metastatic disease by multivariable analyses were GS and PSA-DT (p < 0.001 for both variables). Estimated 10-year FFDM rates for GS of 6 or less, GS of 7, and GS of 8 or greater were 97.9%, 94.3%, and 76.1%, respectively (p < 0.001). Estimated FFDM rates for PSA-DT of 0 to 90 days, 91 to 180 days, 181 to 360 days, and greater than 360 days were 17.5%, 67.9%, 74%, and 94.8%, respectively (p < 0.001). Estimated 10-year FFDM rates for the low-, intermediate-, and high-risk groups were 98.6%, 96.2%, and 86.7%, respectively. A demographic shift to patients presenting with higher-grade disease in more recent years was observed. Conclusions: GS and post-treatment PSA-DT are both statistically significant independent predictors of metastatic

  4. Observed Human Errors in Interpreting 3D visualizations: implications for Teaching Students how to Comprehend Geological Block Diagrams

    Science.gov (United States)

    Bemis, K. G.; Pirl, E.; Chiang, J.; Tremaine, M.

    2009-12-01

    Block diagrams are commonly used to communicate three dimensional geological structures and other phenomena relevant to geological science (e.g., water bodies in the ocean). However, several recent studies have suggested that these 3D visualizations create difficulties for individuals with low to moderate spatial abilities. We have therefore initiated a series of studies to understand what it is about the 3D structures that make them so difficult for some people and also to determine if we can improve people’s understanding of these structures through web-based training not related to geology or other underlying information. Our first study examined what mistakes subjects made in a set of 3D block diagrams designed to represent progressively more difficult internal structures. Each block was shown bisected by a plane either perpendicular or at an angle to the block sides. Five low to medium spatial subjects were asked to draw the features that would appear on the bisecting plane. They were asked to talk aloud as they solved the problem. Each session was videotaped. Using the time it took subjects to solve the problems, the subject verbalizations of their problem solving and the drawings that were found to be in error, we have been able to find common patterns in the difficulties the subjects had with the diagrams. We have used these patterns to generate a set of strategies the subjects used in solving the problems. From these strategies, we are developing methods of teaching. A problem found in earlier work on geology structures was not observed in our study, that is, one of subjects failing to recognize the 2D representation of the block as 3D and drawing the cross-section as a combined version of the visible faces of the object. We attribute this to our experiment introduction, suggesting that even this simple training needs to be carried out with students encountering 3D block diagrams. Other problems subjects had included difficulties in perceptually

  5. Errors in Neonatology

    Directory of Open Access Journals (Sweden)

    Antonio Boldrini

    2013-06-01

    Full Text Available Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy. Results: In Neonatology the main error domains are: medication and total parenteral nutrition, resuscitation and respiratory care, invasive procedures, nosocomial infections, patient identification, diagnostics. Risk factors include patients’ size, prematurity, vulnerability and underlying disease conditions but also multidisciplinary teams, working conditions providing fatigue, a large variety of treatment and investigative modalities needed. Discussion and Conclusions: In our opinion, it is hardly possible to change the human beings but it is likely possible to change the conditions under they work. Voluntary errors report systems can help in preventing adverse events. Education and re-training by means of simulation can be an effective strategy too. In Pisa (Italy Nina (ceNtro di FormazIone e SimulazioNe NeonAtale is a simulation center that offers the possibility of a continuous retraining for technical and non-technical skills to optimize neonatological care strategies. Furthermore, we have been working on a novel skill trainer for mechanical ventilation (MEchatronic REspiratory System SImulator for Neonatal Applications, MERESSINA. Finally, in our opinion national health policy indirectly influences risk for errors. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  6. Error monitoring in musicians

    Directory of Open Access Journals (Sweden)

    Clemens eMaidhof

    2013-07-01

    Full Text Available To err is human, and hence even professional musicians make errors occasionally during their performances. This paper summarizes recent work investigating error monitoring in musicians, i.e. the processes and their neural correlates associated with the monitoring of ongoing actions and the detection of deviations from intended sounds. EEG Studies reported an early component of the event-related potential (ERP occurring before the onsets of pitch errors. This component, which can be altered in musicians with focal dystonia, likely reflects processes of error detection and/or error compensation, i.e. attempts to cancel the undesired sensory consequence (a wrong tone a musician is about to perceive. Thus, auditory feedback seems not to be a prerequisite for error detection, consistent with previous behavioral results. In contrast, when auditory feedback is externally manipulated and thus unexpected, motor performance can be severely distorted, although not all feedback alterations result in performance impairments. Recent studies investigating the neural correlates of feedback processing showed that unexpected feedback elicits an ERP component after note onsets, which shows larger amplitudes during music performance than during mere perception of the same musical sequences. Hence, these results stress the role of motor actions for the processing of auditory information. Furthermore, recent methodological advances like the combination of 3D motion capture techniques with EEG will be discussed. Such combinations of different measures can potentially help to disentangle the roles of different feedback types such as proprioceptive and auditory feedback, and in general to derive at a better understanding of the complex interactions between the motor and auditory domain during error monitoring. Finally, outstanding questions and future directions in this context will be discussed.

  7. Learning from Errors

    Directory of Open Access Journals (Sweden)

    MA. Lendita Kryeziu

    2015-06-01

    Full Text Available “Errare humanum est”, a well known and widespread Latin proverb which states that: to err is human, and that people make mistakes all the time. However, what counts is that people must learn from mistakes. On these grounds Steve Jobs stated: “Sometimes when you innovate, you make mistakes. It is best to admit them quickly, and get on with improving your other innovations.” Similarly, in learning new language, learners make mistakes, thus it is important to accept them, learn from them, discover the reason why they make them, improve and move on. The significance of studying errors is described by Corder as: “There have always been two justifications proposed for the study of learners' errors: the pedagogical justification, namely that a good understanding of the nature of error is necessary before a systematic means of eradicating them could be found, and the theoretical justification, which claims that a study of learners' errors is part of the systematic study of the learners' language which is itself necessary to an understanding of the process of second language acquisition” (Corder, 1982; 1. Thus the importance and the aim of this paper is analyzing errors in the process of second language acquisition and the way we teachers can benefit from mistakes to help students improve themselves while giving the proper feedback.

  8. Controlling errors in unidosis carts

    Directory of Open Access Journals (Sweden)

    Inmaculada Díaz Fernández

    2010-01-01

    Full Text Available Objective: To identify errors in the unidosis system carts. Method: For two months, the Pharmacy Service controlled medication either returned or missing from the unidosis carts both in the pharmacy and in the wards. Results: Uncorrected unidosis carts show a 0.9% of medication errors (264 versus 0.6% (154 which appeared in unidosis carts previously revised. In carts not revised, the error is 70.83% and mainly caused when setting up unidosis carts. The rest are due to a lack of stock or unavailability (21.6%, errors in the transcription of medical orders (6.81% or that the boxes had not been emptied previously (0.76%. The errors found in the units correspond to errors in the transcription of the treatment (3.46%, non-receipt of the unidosis copy (23.14%, the patient did not take the medication (14.36%or was discharged without medication (12.77%, was not provided by nurses (14.09%, was withdrawn from the stocks of the unit (14.62%, and errors of the pharmacy service (17.56% . Conclusions: It is concluded the need to redress unidosis carts and a computerized prescription system to avoid errors in transcription.Discussion: A high percentage of medication errors is caused by human error. If unidosis carts are overlooked before sent to hospitalization units, the error diminishes to 0.3%.

  9. 78 FR 41125 - Interim Enforcement Policy for Permanent Implant Brachytherapy Medical Event Reporting

    Science.gov (United States)

    2013-07-09

    ... COMMISSION Interim Enforcement Policy for Permanent Implant Brachytherapy Medical Event Reporting AGENCY...'s permanent implant brachytherapy program. This interim policy affects NRC licensees that are authorized to perform permanent implant brachytherapy. DATES: This policy revision is effective July 9, 2013...

  10. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of calibration measurements of brachytherapy... Records § 35.2432 Records of calibration measurements of brachytherapy sources. (a) A licensee shall maintain a record of the calibrations of brachytherapy sources required by § 35.432 for 3 years after the...

  11. Interstitial brachytherapy in carcinoma of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, A.J.; Ghosh, S.; Bhalavat, R.L. [Tata Memorial Hospital, Mumbai (India). Dept. of Radiation Oncology; Kulkarni, J.N. [Tata Memorial Hospital, Mumbai (India). Dept. of Surgery; Sequeira, B.V.E. [Tata Memorial Hospital, Mumbai (India). Dept. of Medical Physics

    1999-01-01

    Aim: Keeping in line with the increasing emphasis on organ preservation, we at the Tata Memorial Hospital have evaluated the role of Ir-192 interstitial implant as regards local control, functional and cosmetic outcome in early as well as locally recurrent carcinoma of the distal penis. Patients and Methods: From October 1988 to December 1996, 23 patients with histopathologically proven cancer of the penis were treated with radical radiation therapy using Ir-192 temporary interstitial implant. Our patients were in the age group of 20 to 60 years. The primary lesions were T1 and 7, T2 in 7 and recurrent in 9 patients. Only 7 patients had palpable groin nodes at presentation, all of which were pathologically negative. The median dose of implant was 50 Gy (range 40 to 60 Gy), using the LDR afterloading system and the Paris system of implant rules for dosimetry. Follow-up ranged from 4 to 117 months (median 24 months). Results: At last follow-up 18 of the 23 patients remained locally controlled with implant alone. Three patients failed only locally, 2 locoregionally and 1 only at the groin. Of the 5 patients who failed locally, 4 were successfully salvaged with partial penectomy and remained controlled when last seen. Local control with implant alone at 8 years was 70% by life table analysis. The patients had excellent functional and cosmetic outcome. We did not record any case of skin or softtissue necrosis. Only 2 patients developed meatal stenosis, both of which were treated endoscopically. Conclusion: Our results lead us to interpret that interstitial brachytherapy with Ir-192 offers excellent local control rates with preservation of organ and function. Penectomy can be reserved as a means for effective salvage. (orig.) [Deutsch] Ziel: Das Prinzip des Organerhalts gewinnt in der Onkologie zunehmend an Bedeutung. Ziel dieser Untersuchung war es, die Rolle der interstitiellen Brachytherapie mit Ir-192 zur Behandlung des fruehen und rezidivierten Peniskarzinoms zu

  12. Epoxy resins used to seal brachytherapy seed

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Natalia Carolina Camargos; Ferraz, Wilmar Barbosa; Reis, Sergio Carneiro dos; Santos, Ana Maria Matildes dos, E-mail: nccf@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: reissc@cdtn.br, E-mail: amms@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, BH (Brazil)

    2013-07-01

    Prostate cancer treatment with brachytherapy is recommended for patients with cancer at an early stage. In this treatment, small radioactive seeds are implanted directly in the prostate gland. These seeds are composed at least of one radionuclide carrier and an X-ray marker enclosed within a metallic tube usually sealed by laser process. This process is expensive and, furthermore, it can provoke a partial volatilization of the radionuclide and change the isotropy in dose distribution around the seed. In this paper, we present a new sealing process using epoxy resin. Three kinds of resins were utilized and characterized by scanning electron microscopy (SEM), energy dispersive X ray (EDS) and by differential scanning calorimetry (DSC) after immersion in simulated body fluid (SBF) and in sodium iodine solution (NaI). The sealing process showed excellent potential to replace the sealing laser usually employed. (author)

  13. Paddle-based rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Xu, Weiyu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  14. Fast dose optimization for rotating shield brachytherapy.

    Science.gov (United States)

    Cho, Myung; Wu, Xiaodong; Dadkhah, Hossein; Yi, Jirong; Flynn, Ryan T; Kim, Yusung; Xu, Weiyu

    2017-10-01

    To provide a fast computational method, based on the proximal graph solver (POGS) - A convex optimization solver using the alternating direction method of multipliers (ADMM), for calculating an optimal treatment plan in rotating shield brachytherapy (RSBT). RSBT treatment planning has more degrees of freedom than conventional high-dose-rate brachytherapy due to the addition of emission direction, and this necessitates a fast optimization technique to enable clinical usage. The multi-helix RSBT (H-RSBT) delivery technique was investigated for five representative cervical cancer patients. Treatment plans were generated for all patients using the POGS method and the commercially available solver IBM ILOG CPLEX. The rectum, bladder, sigmoid colon, high-risk clinical target volume (HR-CTV), and HR-CTV boundary were the structures included in our optimization, which applied an asymmetric dose-volume optimization with smoothness control. Dose calculation resolution was 1 × 1 × 3 mm3 for all cases. The H-RSBT applicator had 6 helices, with 33.3 mm of translation along the applicator per helical rotation and 1.7 mm spacing between dwell positions, yielding 17.5° emission angle spacing per 5 mm along the applicator. For each patient, HR-CTV D90 , HR-CTV D100 , rectum D2cc , sigmoid D2cc , and bladder D2cc matched within 1% for CPLEX and POGS methods. Also, similar EQD2 values between CPLEX and POGS methods were obtained. POGS was around 18 times faster than CPLEX. For all patients, total optimization times were 32.1-65.4 s for CPLEX and 2.1-3.9 s for POGS. POGS reduced treatment plan optimization time approximately 18 times for RSBT with similar HR-CTV D90 , organ at risk (OAR) D2cc values, and EQD2 values compared to CPLEX, which is significant progress toward clinical translation of RSBT. © 2017 American Association of Physicists in Medicine.

  15. Calibration of Photon Sources for Brachytherapy

    Science.gov (United States)

    Rijnders, Alex

    Source calibration has to be considered an essential part of the quality assurance program in a brachytherapy department. Not only it will ensure that the source strength value used for dose calculation agrees within some predetermined limits to the value stated on the source certificate, but also it will ensure traceability to international standards. At present calibration is most often still given in terms of reference air kerma rate, although calibration in terms of absorbed dose to water would be closer to the users interest. It can be expected that in a near future several standard laboratories will be able to offer this latter service, and dosimetry protocols will have to be adapted in this way. In-air measurement using ionization chambers (e.g. a Baldwin—Farmer ionization chamber for 192Ir high dose rate HDR or pulsed dose rate PDR sources) is still considered the method of choice for high energy source calibration, but because of their ease of use and reliability well type chambers are becoming more popular and are nowadays often recommended as the standard equipment. For low energy sources well type chambers are in practice the only equipment available for calibration. Care should be taken that the chamber is calibrated at the standard laboratory for the same source type and model as used in the clinic, and using the same measurement conditions and setup. Several standard laboratories have difficulties to provide these calibration facilities, especially for the low energy seed sources (125I and 103Pd). Should a user not be able to obtain properly calibrated equipment to verify the brachytherapy sources used in his department, then at least for sources that are replaced on a regular basis, a consistency check program should be set up to ensure a minimal level of quality control before these sources are used for patient treatment.

  16. Mechanism of Error-Free Bypass of the Environmental Carcinogen N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone Adduct by Human DNA Polymerase η.

    Science.gov (United States)

    Patra, Amritraj; Politica, Dustin A; Chatterjee, Arindom; Tokarsky, E John; Suo, Zucai; Basu, Ashis K; Stone, Michael P; Egli, Martin

    2016-11-03

    The environmental pollutant 3-nitrobenzanthrone produces bulky aminobenzanthrone (ABA) DNA adducts with both guanine and adenine nucleobases. A major product occurs at the C8 position of guanine (C8-dG-ABA). These adducts present a strong block to replicative polymerases but, remarkably, can be bypassed in a largely error-free manner by the human Y-family polymerase η (hPol η). Here, we report the crystal structure of a ternary Pol⋅DNA⋅dCTP complex between a C8-dG-ABA-containing template:primer duplex and hPol η. The complex was captured at the insertion stage and provides crucial insight into the mechanism of error-free bypass of this bulky lesion. Specifically, bypass involves accommodation of the ABA moiety inside a hydrophobic cleft to the side of the enzyme active site and formation of an intra-nucleotide hydrogen bond between the phosphate and ABA amino moiety, allowing the adducted guanine to form a standard Watson-Crick pair with the incoming dCTP. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Beyond human error taxonomies in assessment of risk in sociotechnical systems: a new paradigm with the EAST 'broken-links' approach.

    Science.gov (United States)

    Stanton, Neville A; Harvey, Catherine

    2017-02-01

    Risk assessments in Sociotechnical Systems (STS) tend to be based on error taxonomies, yet the term 'human error' does not sit easily with STS theories and concepts. A new break-link approach was proposed as an alternative risk assessment paradigm to reveal the effect of information communication failures between agents and tasks on the entire STS. A case study of the training of a Royal Navy crew detecting a low flying Hawk (simulating a sea-skimming missile) is presented using EAST to model the Hawk-Frigate STS in terms of social, information and task networks. By breaking 19 social links and 12 task links, 137 potential risks were identified. Discoveries included revealing the effect of risk moving around the system; reducing the risks to the Hawk increased the risks to the Frigate. Future research should examine the effects of compounded information communication failures on STS performance. Practitioner Summary: The paper presents a step-by-step walk-through of EAST to show how it can be used for risk assessment in sociotechnical systems. The 'broken-links' method takes a systemic, rather than taxonomic, approach to identify information communication failures in social and task networks.

  18. Comprehensive Error Rate Testing (CERT)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Centers for Medicare and Medicaid Services (CMS) implemented the Comprehensive Error Rate Testing (CERT) program to measure improper payments in the Medicare...

  19. Error Budgeting

    Energy Technology Data Exchange (ETDEWEB)

    Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-04

    We calculate opacity from k (hn)=-ln[T(hv)]/pL, where T(hv) is the transmission for photon energy hv, p is sample density, and L is path length through the sample. The density and path length are measured together by Rutherford backscatter. Δk = $\\partial k$\\ $\\partial T$ ΔT + $\\partial k$\\ $\\partial (pL)$. We can re-write this in terms of fractional error as Δk/k = Δ1n(T)/T + Δ(pL)/(pL). Transmission itself is calculated from T=(U-E)/(V-E)=B/B0, where B is transmitted backlighter (BL) signal and B0 is unattenuated backlighter signal. Then ΔT/T=Δln(T)=ΔB/B+ΔB0/B0, and consequently Δk/k = 1/T (ΔB/B + ΔB$_0$/B$_0$ + Δ(pL)/(pL). Transmission is measured in the range of 0.2

  20. A modified dose calculation formalism for electronic brachytherapy sources.

    Science.gov (United States)

    DeWerd, Larry A; Culberson, Wesley S; Micka, John A; Simiele, Samantha J

    2015-01-01

    To propose a modification of the current dose calculation formalism introduced in the Task Group No. 43 Report (TG-43) to accommodate an air-kerma rate standard for electronic brachytherapy sources as an alternative to an air-kerma strength standard. Electronic brachytherapy sources are miniature x-ray tubes emitting low energies with high-dose-rates. The National Institute of Standards and Technology (NIST) has introduced a new primary air-kerma rate standard for one of these sources, in contrast to air-kerma strength. A modification of the TG-43 protocol for calculation of dose-rate distributions around electronic brachytherapy sources including sources in an applicator is presented. It cannot be assumed that the perturbations from sources in an applicator are negligible, and thus, the applicator is incorporated in the formalism. The modified protocol mimics the fundamental methodology of the original TG-43 formalism, but now incorporates the new NIST-traceable source strength metric of air-kerma rate at 50 cm and introduces a new subscript, i, to denote the presence of an applicator used in treatment delivery. Applications of electronic brachytherapy sources for surface brachytherapy are not addressed in this Technical Note since they are well documented in other publications. A modification of the AAPM TG-43 protocol has been developed to accommodate an air-kerma rate standard for electronic brachytherapy sources as an alternative to an air-kerma strength standard. The modified TG-43 formalism allows dose calculations to be performed using a new NIST-traceable source strength metric and introduces the concept of applicator-specific formalism parameters denoted with subscript, i. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. Skin surface brachytherapy: A survey of contemporary practice patterns.

    Science.gov (United States)

    Likhacheva, Anna O; Devlin, Phillip M; Shirvani, Shervin M; Barker, Christopher A; Beron, Phillip; Bhatnagar, Ajay; Doggett, Stephen W; Hochman, Lawrence; Hsu, Charles; Kasper, Michael; Keisch, Martin; Mutyala, Subhakar; Prestidge, Bradley; Rodriguez Villalba, Silvia; Shukla, Vershalee; Sundararaman, Srinath; Kamrava, Mitchell

    The aim of this study was to define current patterns of care among radiation oncologists who use skin surface brachytherapy for the treatment of cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC) in academic and community settings. A 30-question electronic survey was administered to clinician members of the American Brachytherapy Society. The respondents were asked to provide details regarding their clinical practice and their approach to skin surface brachytherapy. A total of 16 surveys were returned. Among the respondents, aggregate experience varied from 8 to 1800 cases. Most preferred brachytherapy over external beam radiation because of shorter treatment course, conformality of treatment for irregular or curved targets, and shallow dose deposition. Of the total, 60% of respondents routinely estimated lesion depth via ultrasound before initiating treatment. Treatment margin on gross disease varied widely (range, 3-15 mm; median, 5 mm). Hypofractionation was the preferred dose schedule. Prescribed doses ranged from 30 Gy in five fractions to 64 Gy in 32 fractions (EQD2, 40 Gy-65 Gy). There was a tendency to increase the number of fractions for larger targets, although some used the same fractionation regardless of anatomic location or lesion size. There was no consensus on dosimetric constraints, and some respondents reported cases of severe toxicity, particularly when treating the pretibial skin. This pattern of care study suggests that skin brachytherapy can be a convenient and safe tool for treatment of BCC and cSCC. Prospective trials and the development of expert consensus guidelines would be beneficial for optimizing skin surface brachytherapy and reducing practice variation. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. DNA polymerase kappa protects human cells against MMC-induced genotoxicity through error-free translesion DNA synthesis.

    Science.gov (United States)

    Kanemaru, Yuki; Suzuki, Tetsuya; Sassa, Akira; Matsumoto, Kyomu; Adachi, Noritaka; Honma, Masamitsu; Numazawa, Satoshi; Nohmi, Takehiko

    2017-01-01

    Interactions between genes and environment are critical factors for causing cancer in humans. The genotoxicity of environmental chemicals can be enhanced via the modulation of susceptible genes in host human cells. DNA polymerase kappa (Pol κ) is a specialized DNA polymerase that plays an important role in DNA damage tolerance through translesion DNA synthesis. To better understand the protective roles of Pol κ, we previously engineered two human cell lines either deficient in expression of Pol κ (KO) or expressing catalytically dead Pol κ (CD) in Nalm-6-MSH+ cells and examined cytotoxic sensitivity against various genotoxins. In this study, we set up several genotoxicity assays with cell lines possessing altered Pol κ activities and investigated the protective roles of Pol κ in terms of genotoxicity induced by mitomycin C (MMC), a therapeutic agent that induces bulky DNA adducts and crosslinks in DNA. We introduced a frameshift mutation in one allele of the thymidine kinase (TK) gene of the KO, CD, and wild-type Pol κ cells (WT), thereby establishing cell lines for the TK gene mutation assay, namely TK+/- cells. In addition, we formulated experimental conditions to conduct chromosome aberration (CA) and sister chromatid exchange (SCE) assays with cells. By using the WT TK+/- and KO TK+/- cells, we assayed genotoxicity of MMC. In the TK gene mutation assay, the cytotoxic and mutagenic sensitivities of KO TK+/- cells were higher than those of WT TK+/- cells. MMC induced loss of heterozygosity (LOH), base pair substitutions at CpG sites and tandem mutations at GpG sites in both cell lines. However, the frequencies of LOH and base substitutions at CpG sites were significantly higher in KO TK+/- cells than in WT TK+/- cells. MMC also induced CA and SCE in both cell lines. The KO TK+/- cells displayed higher sensitivity than that displayed by WT TK+/- cells in the SCE assay. These results suggest that Pol κ is a modulating factor for the genotoxicity of MMC and

  3. Causes of intravenous medication errors: an ethnographic study

    OpenAIRE

    Taxis, K; Barber, N

    2003-01-01

    Background: Intravenous (IV) medication errors are frequent events. They are associated with considerable harm, but little is known about their causes. Human error theory is increasingly used to understand adverse events in medicine, but has not yet been applied to study IV errors. Our aim was to investigate causes of errors in IV drug preparation and administration using a framework of human error theory.

  4. Dosimetry Comparison of Water Phantom and Complete Eye Definition for 125I and 103Pd Brachytherapy Plaques

    Directory of Open Access Journals (Sweden)

    Zohreh Dehghannia Rostami

    2011-06-01

    Full Text Available Introduction: In this paper, by complete definition of human eye containing the various parts and their materials, the difference between this model and a homogeneous water phantom are compared for two ophthalmic plaques using 125I and 103Pd. Material and methods: The simulation of the two phantoms were performed in the MCNP-4C code and by using the geometry of a three-dimensional eye, different parts of the eye including the lens, cornea, retina, choroid, sclera, anterior chamber, optic nerve and tumor were defined in the eye phantom. Also, for two ophthalmic brachytherapy sources, 20 mm COMS plaques containing 24 125I or 103Pd sources were simulated. The depth dose and doses in different parts of the eye were calculated by using the *F8 tally in the MCNP code. Results: The results showed that the doses in different parts of the eye in the two phantoms were different and depended on the ophthalmic plaques. The dose increased in the tumor and decreased in some parts of the eye such as the lens. Discussion and Conclusion: Complete definition of human eye in simulation of ophthalmic brachytherapy leads to better results. As the effects of eye definition are different in the tumor and healthy tissues, the results for the eye phantom provide more accurate information for calculation of treatment time and the type of ophthalmic brachytherapy used.

  5. Ocular Brachytherapy Dosimetry for 103Pd and 125I in The Presence of Gold Nanoparticles: Monte Carlo Study

    CERN Document Server

    Asadi, S; Vahidian, M; Marghchouei, M; Masoudi, S Farhad

    2015-01-01

    The aim of the present Monte Carlo study is to evaluate the variation of energy deposition in healthy tissues in the human eye which is irradiated by brachytherapy sources in comparison with the resultant dose increase in the gold nanoparticle(GNP)-loaded choroidal melanoma. The effects of these nanoparticles on normal tissues are compared between 103Pd and 125I as two ophthalmic brachytherapy sources. Dose distribution in the tumor and healthy tissues have been taken into account for both mentioned brachytherapy sources. Also, in a certain point of the eye, the ratio of the absorbed dose by the normal tissue in the presence of GNPs to the absorbed dose by the same point in the absence of GNPs has been calculated. In addition, differences observed in the comparison of simple water phantom and actual simulated human eye in presence of GNPs are also a matter of interest that have been considered in the present work. The results show that the calculated dose enhancement factor in the tumor for 125I is higher tha...

  6. A phantom for verification of dwell position and time of a high dose rate brachytherapy source.

    Science.gov (United States)

    Madebo, M; Pillainayagam, J; Kron, T; Franich, R

    2012-09-01

    Accuracy of dwell position and reproducibility of dwell time are critical in high dose rate (HDR) brachytherapy. A phantom was designed to verify dwell position and dwell time reproducibility for an Ir-192 HDR stepping source using Computed Radiography (CR). The central part of the phantom, incorporating thin alternating strips of lead and acrylic, was used to measure dwell positions. The outer part of the phantom features recesses containing different absorber materials (lead, aluminium, acrylic and polystyrene foam), and was used for determining reproducibility of dwell times. Dwell position errors of dwell time as low as 0.1 s, the minimum dwell time of the treatment unit, could be detected by choosing dwell times over the four materials that produce identical exposure at the CR detector.

  7. A human reliability analysis (HRA) method for identifying and assessing the error of commission (EOC) from a diagnosis failure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Yun; Kang, Dae Il

    2005-01-01

    The study deals with a method for systematically identifying and assessing the EOC events that might be caused from a diagnosis failure or misdiagnosis of the expected events in accident scenarios of nuclear power plants. The method for EOC identification and assessment consists of three steps: analysis of the potential for a diagnosis failure (or misdiagnosis), identification of the EOC events from the diagnosis failure, quantitative assessment of the identified EOC events. As a tool for analysing a diagnosis failure, the MisDiagnosis Tree Analysis (MDTA) technique is proposed with the taxonomy of misdiagnosis causes. Also, the guidance on the identification of EOC events and the classification system and data are given for quantitiative assessment. As an applicaton of the proposed method, the EOCs identification and assessment for Younggwang 3 and 4 plants and their impact on the plant risk were performed. As the result, six events or event sequences were considered for diagnosis failures and about 20 new Human Failure Events (HFEs) involving EOCs were identified. According to the assessment of the risk impact of the identified HFEs, they increase the CDF by 11.4 % of the current CDF value, which corresponds to 10.2 % of the new CDF. The small loss of coolant accident (SLOCA) turned out to be a major contributor to the increase of CDF resulting in 9.2 % increaseof the current CDF.

  8. The role of brachytherapy in radiation and isotopes centre of Khartoum (RICK)

    CERN Document Server

    Ali, A M

    2000-01-01

    As there are many efforts devoted in order to manage the cancer, here the researcher handle one of these efforts that play a major part in treating the cancer internationally, it is a brachytherapy system. Brachytherapy was carried out mostly with radium sources, but recently some artificial sources are incorporated in this mode of treatment such as Cs-137, Ir-192, Au-198, P-32, Sr-90 and I-125. The research cover history of brachytherapy and radioactive sources used in, techniques of implementation, radiation protection and methods of brachytherapy dose calculation, as well as brachytherapy in radiation and isotopes centre in Khartoum.

  9. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Grace L. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Huo, Jinhai [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Giordano, Sharon H. [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hunt, Kelly K. [Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Buchholz, Thomas A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D., E-mail: bsmith3@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-09-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  10. Treatment planning of a skin-sparing conical breast brachytherapy applicator using conventional brachytherapy software

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yun; Melhus, Christopher S.; Sioshansi, Shirin; Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2011-03-15

    Purpose: AccuBoost is a noninvasive image-guided technique for the delivery of partial breast irradiation to the tumor bed and currently serves as an alternate to conventional electron beam boost. To irradiate the target volume while providing dose sparing to the skin, the round applicator design was augmented through the addition of an internally truncated conical shield and the reduction of the source to skin distance. Methods: Brachytherapy dose distributions for two types of conical applicators were simulated and estimated using Monte Carlo (MC) methods for radiation transport and a conventional treatment planning system (TPS). MC-derived and TPS-generated dose volume histograms (DVHs) and dose distribution data were compared for both the conical and round applicators for benchmarking purposes. Results: Agreement using the gamma-index test was {>=}99.95% for distance to agreement and dose accuracy criteria of 2 mm and 2%, respectively. After observing good agreement, TPS DVHs and dose distributions for the conical and round applicators were obtained and compared. Brachytherapy dose distributions generated using Pinnacle{sup 3} for ten CT data sets showed that the parallel-opposed beams of the conical applicators provided similar PTV coverage to the round applicators and reduced the maximum dose to skin, chest wall, and lung by up to 27%, 42%, and 43%, respectively. Conclusions: Brachytherapy dose distributions for the conical applicators have been generated using MC methods and entered into the Pinnacle{sup 3} TPS via the Tufts technique. Treatment planning metrics for the conical AccuBoost applicators were significantly improved in comparison to those for conventional electron beam breast boost.

  11. Treatment planning of a skin-sparing conical breast brachytherapy applicator using conventional brachytherapy software.

    Science.gov (United States)

    Yang, Yun; Melhus, Christopher S; Sioshansi, Shirin; Rivard, Mark J

    2011-03-01

    AccuBoost is a noninvasive image-guided technique for the delivery of partial breast irradiation to the tumor bed and currently serves as an alternate to conventional electron beam boost. To irradiate the target volume while providing dose sparing to the skin, the round applicator design was augmented through the addition of an internally truncated conical shield and the reduction of the source to skin distance. Brachytherapy dose distributions for two types of conical applicators were simulated and estimated using Monte Carlo (MC) methods for radiation transport and a conventional treatment planning system (TPS). MC-derived and TPS-generated dose volume histograms (DVHs) and dose distribution data were compared for both the conical and round applicators for benchmarking purposes. Agreement using the gamma-index test was > or = 99.95% for distance to agreement and dose accuracy criteria of 2 mm and 2%, respectively. After observing good agreement, TPS DVHs and dose distributions for the conical and round applicators were obtained and compared. Brachytherapy dose distributions generated using Pinnacle for ten CT data sets showed that the parallel-opposed beams of the conical applicators provided similar PTV coverage to the round applicators and reduced the maximum dose to skin, chest wall, and lung by up to 27%, 42%, and 43%, respectively. Brachytherapy dose distributions for the conical applicators have been generated using MC methods and entered into the Pinnacle TPS via the Tufts technique. Treatment planning metrics for the conical AccuBoost applicators were significantly improved in comparison to those for conventional electron beam breast boost.

  12. Understanding the Relationship Between Interactive Optimisation and Visual Analytics in the Context of Prostate Brachytherapy.

    Science.gov (United States)

    Liu, Jie; Dwyer, Tim; Marriott, Kim; Millar, Jeremy; Haworth, Annette

    2018-01-01

    The fields of operations research and computer science have long sought to find automatic solver techniques that can find high-quality solutions to difficult real-world optimisation problems. The traditional workflow is to exactly model the problem and then enter this model into a general-purpose "black-box" solver. In practice, however, many problems cannot be solved completely automatically, but require a "human-in-the-loop" to iteratively refine the model and give hints to the solver. In this paper, we explore the parallels between this interactive optimisation workflow and the visual analytics sense-making loop. We assert that interactive optimisation is essentially a visual analytics task and propose a problem-solving loop analogous to the sense-making loop. We explore these ideas through an in-depth analysis of a use-case in prostate brachytherapy, an application where interactive optimisation may be able to provide significant assistance to practitioners in creating prostate cancer treatment plans customised to each patient's tumour characteristics. However, current brachytherapy treatment planning is usually a careful, mostly manual process involving multiple professionals. We developed a prototype interactive optimisation tool for brachytherapy that goes beyond current practice in supporting focal therapy - targeting tumour cells directly rather than simply seeking coverage of the whole prostate gland. We conducted semi-structured interviews, in two stages, with seven radiation oncology professionals in order to establish whether they would prefer to use interactive optimisation for treatment planning and whether such a tool could improve their trust in the novel focal therapy approach and in machine generated solutions to the problem.

  13. Photoacoustic imaging of brachytherapy seeds using a channel-domain ultrasound array system

    Science.gov (United States)

    Harrison, Tyler; Zemp, Roger J.

    2011-03-01

    Brachytherapy is a technique commonly used in the treatment of prostate cancer that relies on the precise placement of small radioactive seeds near the tumor location. The advantage of this technique over traditional radiation therapies is that treatment can be continuous and uniform, resulting in fewer clinic visits and a shorter treatment duration. Two important phases of this treatment are needle guidance for implantation, and post-placement verification for dosimetry. Ultrasound is a common imaging modality used for these purposes, but it can be difficult to distinguish the seeds from surrounding tissues, often requiring other imaging techniques such as MRI or CT. Photoacoustic imaging may offer a viable alternative. Using a photoacoustic system based on an L7- 4 array transducer and a realtime ultrasound array system capable of parallel channel data acquisition streamed to a multi-core computer via PCI-express, we have demonstrated imaging of these seeds at an ultrasound depth of 16 mm and laser penetration depths ranging up to 50 mm in chicken tissue with multiple optical wavelengths. Ultrasound and photoacoustic images are coregistered via an interlaced pulse sequence. Two laser pulses are used to form a photoacoustic image, and at these depths, the brachytherapy seeds are detected with a signal-to-noise ratio of over 26dB. To obtain this result, 1064nm light was used with a fluence of 100mJ/cm2, the ANSI limit for human skin exposure at this wavelength. This study demonstrates the potential for photoacoustic imaging as a candidate technology for brachytherapy seed placement guidance and verification.

  14. In vivo measurements for high dose rate brachytherapy with optically stimulated luminescent dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Renu; Jursinic, Paul A. [Department of Radiation Oncology, West Michigan Cancer Center, 200 North Park Street, Kalamazoo, Michigan 49007 (United States)

    2013-07-15

    -rays if 6 MV x-rays were used for OSLD calibration. The limitations of the treatment planning algorithm must be understood, especially for surface dose measurements. Use of in vivo dosimetry for HDR brachytherapy treatments is feasible and has the potential to detect and prevent gross errors. In vivo HDR brachytherapy should be included as part of the QA for a HDR brachytherapy program.

  15. The American College of Radiology and the American Brachytherapy Society practice parameter for the performance of radionuclide-based high-dose-rate brachytherapy.

    Science.gov (United States)

    Erickson, Beth A; Bittner, Nathan H J; Chadha, Manjeet; Mourtada, Firas; Demanes, D Jeffrey

    Brachytherapy is a radiation therapy method in which radionuclide sources are used to deliver a radiation dose at a distance of up to a few centimeters by surface, intracavitary, intraluminal, or interstitial application. This practice parameter refers only to the use of radionuclides for brachytherapy. Brachytherapy alone or combined with external beam therapy plays an important role in the management and treatment of patients with cancer. High-dose-rate (HDR) brachytherapy uses radionuclides such as iridium-192 at dose rates of 20 cGy per minute (12 Gy per hour) or more to a designated target point or volume. High-dose-rate (HDR) brachytherapy is indicated for treating malignant or benign tumors where the treatment volume or targeted points are defined and accessible. Copyright © 2016 American Brachytherapy Society and American College of Radiology. Published by Elsevier Inc. All rights reserved.

  16. Brachytherapy in the treatment of skin cancer: an overview.

    Science.gov (United States)

    Skowronek, Janusz

    2015-10-01

    The incidence of skin cancer worldwide is constantly growing and it is the most frequently diagnosed tumor. Brachytherapy (BT) in particular localizations is a valuable tool of the exact radiation depot inside the tumor mass. In localizations such as the face, skull skin and inoperable tumors, relapses after surgery, radiotherapy are usually not suitable for primary or secondary invasive treatment. Brachytherapy is a safe procedure for organs at risk according to rapid fall of a dose outside the axis of the applicator with satisfactory dose localization inside the target. The complications rate is acceptable and treatment costs are low. In some tumors (great skin lesions in the scalp, near eyes or on the nose) BT allows for a great dose reduction in surrounding healthy tissues. Brachytherapy provides minimal dose delivery to surrounding healthy tissue, thus enabling good functional and cosmetic results. Treatment is possible almost in all cases on an outpatient basis.

  17. SU-C-16A-01: In Vivo Source Position Verification in High Dose Rate (HDR) Prostate Brachytherapy Using a Flat Panel Imager: Initial Clinical Experience

    Energy Technology Data Exchange (ETDEWEB)

    Franich, R; Smith, R; Millar, J [RMIT University, Melbourne, Victoria (Australia); The Alfred Hospital, Melbourne, Victoria (Australia); Haworth, A [RMIT University, Melbourne, Victoria (Australia); Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Taylor, M [RMIT University, Melbourne, Victoria (Australia); Australian Federal Police, Canberra, ACT (Australia); McDermott, L [RMIT University, Melbourne, Victoria (Australia)

    2014-06-15

    delivery, free of most potential human related errors identified in ICRP 97. This research is supported by funding from the Australian Government Department of Health through Cancer Australia grant no. 616614.

  18. Radioactive seed migration following parotid gland interstitial brachytherapy.

    Science.gov (United States)

    Fan, Yi; Huang, Ming-Wei; Zhao, Yi-Jiao; Gao, Hong; Zhang, Jian-Guo

    2017-09-15

    To evaluate the incidence and associated factors of pulmonary seed migration after parotid brachytherapy using a novel migrated seed detection technique. Patients diagnosed with parotid cancer who underwent permanent parotid brachytherapy from January 2006 to December 2011 were reviewed retrospectively. Head and neck CT scans and chest X-rays were evaluated during routine follow-up. Mimics software and Geomagic Studio software were used for seed reconstruction and migrated seed detection from the original implanted region, respectively. Postimplant dosimetry analysis was performed after seeds migration if the seeds were still in their emitting count. Adverse clinical sequelae from seed embolization to the lung were documented. The radioactive seed implants were identified on chest X-rays in 6 patients. The incidence rate of seed migration in 321 parotid brachytherapy patients was 1.87% (6/321) and that of individual seed migration was 0.04% (6/15218 seeds). All migrated seeds were originally from the retromandibular region. No adverse dosimetric consequences were found in the target region. Pulmonary symptoms were not reported by any patient in this study. In our patient set, migration of radioactive seeds with an initial radioactivity of 0.6-0.7 mCi to the chest following parotid brachytherapy was rare. Late migration of a single seed from the central target region did not affect the dosimetry significantly, and patients did not have severe short-term complications. This study proposed a novel technique to localize the anatomical origin of the migrated seeds during brachytherapy. Our evidence suggested that placement of seeds adjacent to blood vessels was associated with an increased likelihood of seed migration to the lungs. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  19. Validation of GPUMCD for low-energy brachytherapy seed dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe; Carrier, Jean-Francois [Ecole polytechnique de Montreal, Departement de genie informatique et genie logiciel, 2500 chemin de Polytechnique, Montreal, QC, H3T 1J4 (Canada); Departement de radio-oncologie, Centre hospitalier universitaire de Quebec (CHUQ), 11 Cote du Palais, Quebec, QC, G1R 2J6 (Canada); Departement de physique, Universite de Montreal, Montreal, QC (Canada) and Departement de radio-oncologie and Centre de recherche du CHUM, Centre hospitalier de l' Universite de Montreal (CHUM), Montreal, QC, H2L 4M1 (Canada)

    2011-07-15

    Purpose: To validate GPUMCD, a new package for fast Monte Carlo dose calculations based on the GPU (graphics processing unit), as a tool for low-energy single seed brachytherapy dosimetry for specific seed models. As the currently accepted method of dose calculation in low-energy brachytherapy computations relies on severe approximations, a Monte Carlo based approach would result in more accurate dose calculations, taking in to consideration the patient anatomy as well as interseed attenuation. The first step is to evaluate the capability of GPUMCD to reproduce low-energy, single source, brachytherapy calculations which could ultimately result in fast and accurate, Monte Carlo based, brachytherapy dose calculations for routine planning. Methods: A mixed geometry engine was integrated to GPUMCD capable of handling parametric as well as voxelized geometries. In order to evaluate GPUMCD for brachytherapy calculations, several dosimetry parameters were computed and compared to values found in the literature. These parameters, defined by the AAPM Task-Group No. 43, are the radial dose function, the 2D anisotropy function, and the dose rate constant. These three parameters were computed for two different brachytherapy sources: the Amersham OncoSeed 6711 and the Imagyn IsoStar IS-12501. Results: GPUMCD was shown to yield dosimetric parameters similar to those found in the literature. It reproduces radial dose functions to within 1.25% for both sources in the 0.5< r <10 cm range. The 2D anisotropy function was found to be within 3% at r = 5 cm and within 4% at r = 1 cm. The dose rate constants obtained were within the range of other values reported in the literature.Conclusion: GPUMCD was shown to be able to reproduce various TG-43 parameters for two different low-energy brachytherapy sources found in the literature. The next step is to test GPUMCD as a fast clinical Monte Carlo brachytherapy dose calculations with multiple seeds and patient geometry, potentially providing

  20. Current state of the art brachytherapy treatment planning dosimetry algorithms

    Science.gov (United States)

    Pantelis, E; Karaiskos, P

    2014-01-01

    Following literature contributions delineating the deficiencies introduced by the approximations of conventional brachytherapy dosimetry, different model-based dosimetry algorithms have been incorporated into commercial systems for 192Ir brachytherapy treatment planning. The calculation settings of these algorithms are pre-configured according to criteria established by their developers for optimizing computation speed vs accuracy. Their clinical use is hence straightforward. A basic understanding of these algorithms and their limitations is essential, however, for commissioning; detecting differences from conventional algorithms; explaining their origin; assessing their impact; and maintaining global uniformity of clinical practice. PMID:25027247

  1. Imaging method for monitoring delivery of high dose rate brachytherapy

    Science.gov (United States)

    Weisenberger, Andrew G; Majewski, Stanislaw

    2012-10-23

    A method for in-situ monitoring both the balloon/cavity and the radioactive source in brachytherapy treatment utilizing using at least one pair of miniature gamma cameras to acquire separate images of: 1) the radioactive source as it is moved in the tumor volume during brachytherapy; and 2) a relatively low intensity radiation source produced by either an injected radiopharmaceutical rendering cancerous tissue visible or from a radioactive solution filling a balloon surgically implanted into the cavity formed by the surgical resection of a tumor.

  2. Endoluminal brachytherapy for recurrent laryngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Latham, M.M. [Sir Charles Gairdner Hospital, Perth, WA, (Australia). Dept of Radiotherapy; Smart, G.P.; Hedland-Thomas, B. [Royal Perth Hospital, WA, (Australia). Dept of Medical Physics; Harper, C.S. [Royal Perth Hospital, WA (Australia). Radiation Oncology Centre

    1997-11-01

    Early-stage squamous cell carcinoma of the larynx is usually treated with local field radiotherapy. Surgery is used for salvage following recurrence. Further recurrences present a more difficult therapeutic problem which requires individualized management. The aims of local control, survival, maintenance of function and minimizing side effects all need to be balanced according to the site and extent of disease. The present case study looks at the management of a 54-year-old man with multiple recurrences from a squamous cell carcinoma of the larynx. It describes a technique of endoluminal brachytherapy using an iridium-192 wire spiraled around the outer part of a tracheotomy tube that achieves good local control while enabling self-insertion and self-cleaning during the procedure. The dose given was 2500 cGy at 5 mm over 25.2 h and was achieved with minimal early or delayed side effects. The patient had no further symptoms relating to the stomal recurrence until his death from metastatic disease 6 months later. (authors). 8 refs., 3 figs.

  3. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  4. MO-FG-BRA-01: Development of An Image-Guided Dosimetric Planning System for Injectable Brachytherapy Using ELP Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lafata, K [Duke University, Durham, North Carolina (United States); Duke University Medical Center, Durham, NC (United States); Schaal, J; Liu, W [Duke University, Durham, North Carolina (United States); Cai, J [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To develop, validate, and evaluate a methodology for determining dosimetry for intratumoral injections of elastin-like-polypeptide (ELP) brachytherapy nanoparticles. These organic-polymer-based nanoparticles are injectable, biodegradable, and genetically tunable. We present a genetically encoded polymer-solution, composed of novel radiolabeled-ELP nanoparticles that are custom-designed to self-assemble into a local source upon intratumoral injection. Our preliminary results of a small animal study demonstrate 100% tumor response, effective radionuclide retention-rates, strong in vivo stability, and no polymer-induced toxicities. While our approach is therefore highly promising for improved brachytherapy, the current workflow lacks a dosimetry framework. Methods: We are developing a robust software framework that provides image-guided dosimetric-planning capabilities for ELP brachytherapy. The user graphically places ELP injection sites within a µCT-planning-image, and independently defines each injection volume, concentration, and radioisotope to be used. The resulting internal dosimetry is then pre-determined by first modeling post-injection ELP advection-diffusion, and then calculating the resulting dose distribution based on a point- dose-kernel-convolution algorithm. We have experimentally measured ELP steady-state concentrations via µSPECT acquisition, and validated our dose calculation algorithm against Monte Carlo simulations of several radioactivity distributions. Finally, we have investigated potential advantages and limitations of various ELP injection parameters. Results: The µSPECT results demonstrated inhomogeneous steady-state distributions of ELP in tissue, and Monte Carlo radioactivity distributions were designed accordingly. Our algorithm yielded a root-mean-square-error of less than 2% for each distribution tested (average root-mean-square-error was 0.73%). Dose-Volume-Histogram analysis of five different plans showed how strategic

  5. Spectral CT evaluation of interstitial brachytherapy in pancreatic carcinoma xenografts: preliminary animal experience

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shudong [Jiangsu University, Department of Radiology, The Affiliated Renmin Hospital, Zhenjiang, Jiangsu (China); Shanghai Jiao tong University, School of Medicine, Department of Radiology, Ruijin Hospital, Shanghai (China); Huang, Wei; Song, Qi; Lin, Xiaozhu; Wang, Zhongmin; Chen, Kemin [Shanghai Jiao tong University, School of Medicine, Department of Radiology, Ruijin Hospital, Shanghai (China); Chen, Yerong [Jiangsu University, Department of Radiology, The Affiliated Renmin Hospital, Zhenjiang, Jiangsu (China)

    2014-09-15

    We sought to evaluate the capability of spectral CT to detect the therapeutic response to {sup 125}I interstitial brachytherapy in a pancreatic carcinoma xenograft nude mouse model. Twenty mice bearing SWl990 human pancreatic cancer cell xenografts were randomly separated into two groups: experimental (n = 10; 1.0 mCi) and control (n = 10; 0 mCi). After a two-week treatment, spectral CT was performed. Contrast-to-noise ratio (CNR) and iodine concentration (IC) in the lesions were measured and normalized to the muscle tissue, and nIC CD31 immunohistochemistry was used to measure microvessel density (MVD). The relationships between the nIC and MVD of the tumours were analysed. The nIC of the experimental group was significantly lower than that of the control group during the multiphase examination. A significant difference in the MVD was observed between the two groups (P <0.001). The nIC values of the three-phase scans have a certain positive correlation with MVD (r = 0.57, p < 0.0001; r = 0.48, p = 0.002; r = 0.63, p = 0.0017 in the 10, 25, and 60 s phase, respectively). Spectral CT can be a useful non-invasive imaging modality in evaluating the therapeutic effect of {sup 125}I interstitial brachytherapy to a pancreatic carcinoma. (orig.)

  6. Systems approach to reduce errors in surgery

    NARCIS (Netherlands)

    Dankelman, J.; Grimbergen, C. A.

    2005-01-01

    Reducing the number of medical errors significantly is the challenge for the coming decade. In medicine and in surgery, in particular, errors are traditionally treated as being committed by individuals. To reduce human errors, two approaches can be used: the person approach and the systems approach.

  7. Error tracking in a clinical biochemistry laboratory

    DEFF Research Database (Denmark)

    Szecsi, Pal Bela; Ødum, Lars

    2009-01-01

    BACKGROUND: We report our results for the systematic recording of all errors in a standard clinical laboratory over a 1-year period. METHODS: Recording was performed using a commercial database program. All individuals in the laboratory were allowed to report errors. The testing processes were...... classified according to function, and errors were classified as pre-analytical, analytical, post-analytical, or service-related, and then further divided into descriptive subgroups. Samples were taken from hospital wards (38.6%), outpatient clinics (25.7%), general practitioners (29.4%), and other hospitals....... RESULTS: A total of 1189 errors were reported in 1151 reports during the first year, corresponding to an error rate of 1 error for every 142 patients, or 1 per 1223 tests. The majority of events were due to human errors (82.6%), and only a few (4.3%) were the result of technical errors. Most of the errors...

  8. Spinal anaesthesia for brachytherapy for carcinoma of the cervix: a ...

    African Journals Online (AJOL)

    Setting and subjects: Forty female patients, presenting to Groote Schuur Hospital for brachytherapy for carcinoma of the cervix, were randomised to receive either 5 mg or 9 mg (1 ml or 1.8 ml) of 0.5% hyperbaric bupivacaine, plus 15 μg fentanyl via the L3/L4 interspace. Results: Patients receiving the lower dose could be ...

  9. Factors influencing outcome of I-125 prostate cancer brachytherapy

    NARCIS (Netherlands)

    Hinnen, K.A.

    2011-01-01

    Brachytherapy is becoming an increasingly popular prostate cancer treatment, probably due to the specific advantages of the procedure, such as the minimal invasiveness and the lower chance of impotence and incontinence. Nonetheless, because of the long follow-up that is required to obtain prostate

  10. Calculation of the Transit Dose in HDR Brachytherapy Based on ...

    African Journals Online (AJOL)

    The Monte Carlo method, which is the gold standard for accurate dose calculations in radiotherapy, was used to obtain the transit doses around a high dose rate (HDR) brachytherapy implant with thirteen dwell points. The midpoints of each of the inter-dwell separations, of step size 0.25 cm, were representative of the ...

  11. Brachytherapy optimal planning with application to intravascular radiation therapy

    DEFF Research Database (Denmark)

    Sadegh, Payman; Mourtada, Firas A.; Taylor, Russell H.

    1999-01-01

    . Dose rate calculations are based on the sosimetry formulation of the American Association of Physicists in Medicine, Task Group 43. We apply the technique to optimal planning for intravascular brachytherapy of intimal hyperplasia using ultrasound data and 192Ir seeds. The planning includes...

  12. Transit dose calculation in high dose rate brachytherapy (HDR ...

    African Journals Online (AJOL)

    Transit doses around a high dose rate 192Ir brachytherapy source were calculated using Sievert Integral at positions where the moving source was located exactly between two adjacent dwell positions. The correspond-ing transit dose rates were obtained by using energy absorption coefficients. Discrete step sizes of 0.25 ...

  13. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    Science.gov (United States)

    Smith, Grace L; Huo, Jinhai; Giordano, Sharon H.; Hunt, Kelly K.; Buchholz, Thomas A; Smith, Benjamin D

    2015-01-01

    Background Breast brachytherapy after lumpectomy is controversial in younger patients, as effectiveness is unclear and selection criteria are debated. Methods Using MarketScan® healthcare claims data, we identified 45,884 invasive breast cancer patients (ages 18–64), treated from 2003–2010 with lumpectomy, followed by brachytherapy (n=3,134) or whole breast irradiation (WBI) (n=42,750). We stratified patients into risk groups, based on age (Agebrachytherapy vs. WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results Brachytherapy utilization increased from 2003 to 2010: In patients Agebrachytherapy patients were Agebrachytherapy patients were Endocrine- vs. 44% of WBI patients (P=0.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Agebrachytherapy vs. 9.0% after WBI (Hazard ratio[HR]=2.18, 1.37–3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs. 4.9%; HR=1.76, 1.26–2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Agebrachytherapy vs. WBI and therefore may be useful for selecting appropriate younger brachytherapy candidates. PMID:26279027

  14. Pulsed dose rate brachytherapy – is it the right way?

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2010-10-01

    Full Text Available Pulsed dose rate (PDR-BT treatment is a brachytherapy modality that combines physical advantages of high-doserate (HDR-BT technology (isodose optimization, radiation safety with the radiobiological advantages of low-dose-rate (LDR-BT brachytherapy. Pulsed brachytherapy consists of using stronger radiation source than for LDR-BT and producing series of short exposures of 10 to 30 minutes in every hour to approximately the same total dose in the sameoverall time as with the LDR-BT. Modern afterloading equipment offers certain advantages over interstitial or intracavitaryinsertion of separate needles, tubes, seeds or wires. Isodose volumes in tissues can be created flexibly by a combinationof careful placement of the catheter and the adjustment of the dwell times of the computerized stepping source.Automatic removal of the radiation sources into a shielded safe eliminates radiation exposures to staff and visitors.Radiation exposure is also eliminated to the staff who formerly loaded and unloaded multiplicity of radioactive sources into the catheters, ovoids, tubes etc. This review based on summarized clinical investigations, analyses the feasibility and the background to introduce this brachytherapy technique and chosen clinical applications of PDR-BT.

  15. The American College of Radiology and the American Brachytherapy Society practice parameter for the performance of low-dose-rate brachytherapy.

    Science.gov (United States)

    Viswanathan, Akila N; Erickson, Beth A; Ibbott, Geoffrey S; Small, William; Eifel, Patricia J

    Brachytherapy is the use of radionuclides to treat malignancies or benign conditions by means of a radiation source placed close to or into the tumor or treatment site. This practice parameter refers only to the use of radionuclide brachytherapy. Brachytherapy alone or combined with external beam therapy plays an important role in the management and treatment of patients with cancer. Low-dose-rate (LDR) brachytherapy has traditionally been used for treating prostate, head and neck, breast, cervical, and endometrial cancers as well as obstructive bile duct, esophageal, or bronchial lesions. It has been practiced for over a century with a variety of sources including radium-226, cesium-137, and, more recently, iridium- 192, iodine-125, and palladium-103. Low-dose-rate (LDR) brachytherapy can be given as interstitial, intracavitary, intraluminal, and/or plesiotherapy to a wide variety of treatment sites. This practice parameter addresses sealed sources as they are used for LDR brachytherapy. It is recognized that unsealed sources (e.g., yttrium-90) are also a form of LDR brachytherapy. Copyright © 2016 American Brachytherapy Society and American College of Radiology. Published by Elsevier Inc. All rights reserved.

  16. Brachytherapy on restenosis. {sup 32}P radioisotope in animal model

    Energy Technology Data Exchange (ETDEWEB)

    Bergoc, R.; Rivera, E.; Cocca, C.; Martin, G.; Cricco, G. [Buenos Aires Univ. (Argentina). School of Pharmacy and Biochemistry; Croci, M.; Guzman, L.

    2000-05-01

    Despite a notorious decline in age-adjusted death rates for cardiovascular pathologies, coronary artery disease still remains as the main cause of mortality above the age of 40 in men and 60 in women. More than 25% of death in persons over the age of 35 are due to coronary disease. In about 50% of men and 30% of women, the first manifestation of the disease is an acute myocardial infarction and 10% a sudden cardiac death. In Argentina it is estimated that in 1998 about 100.000-115.000 people suffered as first manifestation of coronary illness a myocardial acute infarct. Angioplasty has an important and well established site in the treatment of the coronary illness and restenosis represents the principal complication of this method for myocardial re-vascularization. About a 35-40% of treated arteries present restenosis within the first six month the intervention with the concomitant need of re-interventions, re-hospitalizations, by-pass surgery, work discontinuity and the high cost for the health system. A number of drugs were tested as anti-restenosis: anticoagulants, aspirin, antispasmodics and lipid-lowering agents but none was clearly efficient; also, experimental studies in which intravascular irradiation with different source types and energies, radiation doses and doses rate to prevent restenosis was utilized; however, there is no consensus in many aspects of this intravascular brachytherapy. The first step in this work was to induce the experimental model in rabbits. Afterwards, by means of the balloon methodology and stent implantation, brachytherapy experiments were carried out to evaluate the biological effect on different layers of arteries, with different Doses using a beta particle emitting radioisotope ({sup 32}P). The arteriosclerotic lesions were induced in New Zealand rabbits through the administration of a diet with high cholesterol content. Angioplastic interventions on femoral arteries were done with balloon methodology and controlled by

  17. Mathematical formulation of (125)I seed dosimetry parameters and heterogeneity correction in lung permanent implant brachytherapy.

    Science.gov (United States)

    Mostaghimi, Hesameddin; Mehdizadeh, Ali Reza; Darvish, Leili; Akbari, Sadegh; Rezaei, Hadi

    2017-01-01

    Precise determination of dose distribution around low-energy brachytherapy sources as well as considering tissue heterogeneity is crucial for optimized treatment planning. This study is aimed at determination and mathematically formulation of American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) dosimetry parameters of 125I seed (model 6711) and calculation of dose difference caused by neglecting lung heterogeneity in permanent implant brachytherapy. Using MCNPX 2.6.0 code, 125I seed (model 6711) was simulated in a cubic water environment, and its dosimetry parameters mentioned in AAPM TG-43 protocol were obtained. After benchmarking of parameters and comparison with prior studies, mathematical equations were fitted to the data, and a specific set of 125I seeds was simulated on a plane in simulated lung and water environments. Appropriate photon histories were considered to achieve data with maximum accuracy (max error 1%). In the end, isodose curves, profiles, depth dose, and dose difference between lung and water environments were obtained. For 125I seed (model 6711), radial dose function and anisotropy functions were obtained precisely with R2 > 0.99, all in good agreement with previous studies and protocol. In addition, percentage dose difference between inhomogeneous lung and homogenous water environments in a 5 cm distance was calculated and presented as D (r) function with R2 > 0.99. Considering practical difficulties in dose calculations, 125I seed dosimetry parameters and lung heterogeneity corrections can be obtained precisely by MCNPX. Equations presented in this study are recommended to be considered in future studies based on lung permanent implantation.

  18. Verification of High Dose Rate 192Ir Source Position During Brachytherapy Treatment Using Silicon Pixel Detectors

    Science.gov (United States)

    Batic, Matej; Burger, Janez; Cindro, Vladimir; Kramberger, Gregor; Mandic, Igor; Mikuz, Marko; Studen, Andrej; Zavrtanik, Marko

    2011-10-01

    A system for in-vivo tracking of 192Ir source during high dose rate or pulsed dose rate brachytherapy treatment was built using 1 mm thick silicon pad detectors as image sensors and knife-edge lead pinholes as collimators. With source self-images obtained from a dual-pinhole system, location of the source could be reconstructed in three dimensions in real time. The system was tested with 192Ir clinical source (kerma rate in air at 1 m 2.38 Gy/h) in air and plexi-glass phantom. The locations of the source were tracked from a distance of 40 cm in a field of view of 20 × 20 × 20 cm3. Reconstruction precision, defined as the average distance between true and reconstructed source positions, with data collected in less than 1 s with 22 GBq 192Ir source was about 5 mm. The reconstruction precision was in our case mainly limited by imperfect alignment of detectors and pinholes. With perfect alignment the statistical error would allow precision of about 1 mm which could further be improved with larger detector placed at larger distance from the pinhole. However already the modest precision of few millimeters is sufficient for in-vivo detection of larger deviations from planned treatment caused by various misadministrations or malfunctioning of the brachytherapy treatment apparatus. Usage of silicon detectors offers a possibility for building a compact device which could be used as an independent online quality assurance system. In this paper details about sensors, readout system and reconstruction algorithm are described. Results from measurements with clinical source are presented.

  19. Dwell time modulation restrictions do not necessarily improve treatment plan quality for prostate HDR brachytherapy.

    Science.gov (United States)

    Balvert, Marleen; Gorissen, Bram L; den Hertog, Dick; Hoffmann, Aswin L

    2015-01-21

    Inverse planning algorithms for dwell time optimisation in interstitial high-dose-rate (HDR) brachytherapy may produce solutions with large dwell time variations within catheters, which may result in undesirable selective high-dose subvolumes. Extending the dwell time optimisation model with a dwell time modulation restriction (DTMR) that limits dwell time differences between neighboring dwell positions has been suggested to eliminate this problem. DTMRs may additionally reduce the sensitivity for uncertainties in dwell positions that inevitably result from catheter reconstruction errors and afterloader source positioning inaccuracies. This study quantifies the reduction of high-dose subvolumes and the robustness against these uncertainties by applying a DTMR to template-based prostate HDR brachytherapy implants. Three different DTMRs were consecutively applied to a linear dose-based penalty model (LD) and a dose-volume based model (LDV), both obtained from literature. The models were solved with DTMR levels ranging from no restriction to uniform dwell times within catheters in discrete steps. Uncertainties were simulated on clinical cases using in-house developed software, and dose-volume metrics were calculated in each simulation. For the assessment of high-dose subvolumes, the dose homogeneity index (DHI) and the contiguous dose volume histogram were analysed. Robustness was measured by the improvement of the lowest D90% of the planning target volume (PTV) observed in the simulations. For (LD), a DTMR yields an increase in DHI of approximately 30% and reduces the size of the largest high-dose volume by 2-5 cc. However, this comes at a cost of a reduction in D90% of the PTV of 10%, which often implies that it drops below the desired minimum of 100%. For (LDV), none of the DTMRs were able to improve high-dose volume measures. DTMRs were not capable of improving robustness of PTV D90% against uncertainty in dwell positions for both models.

  20. Novel simple templates for reproducible positioning of skin applicators in brachytherapy.

    Science.gov (United States)

    Villalba, Silvia Rodríguez; Perez-Calatayud, Maria Jose; Bautista, Juan Antonio; Carmona, Vicente; Celada, Francisco; Tormo, Alejandro; García-Martinez, Teresa; Richart, José; Ortega, Manuel Santos; Silla, Magda; Ballester, Facundo; Perez-Calatayud, Jose

    2016-08-01

    Esteya and Valencia surface applicators are designed to treat skin tumors using brachytherapy. In clinical practice, in order to avoid errors that may affect the treatment outcome, there are two issues that need to be carefully addressed. First, the selected applicator for the treatment should provide adequate margin for the target, and second, the applicator has to be precisely positioned before each treatment fraction. In this work, we describe the development and use of a new acrylic templates named Template La Fe-ITIC. They have been designed specifically to help the clinical user in the selection of the correct applicator, and to assist the medical staff in reproducing the positioning of the applicator. These templates are freely available upon request. Templates that were developed by University and Polytechnic Hospital La Fe (La Fe) and Hospital Clínica Benidorm (ITIC) in cooperation with Elekta, consist of a thin sheet made of transparent acrylic. For each applicator, a crosshair and two different circles are drawn on these templates: the inner one corresponds to the useful beam, while the outer one represents the external perimeter of the applicator. The outer circle contains slits that facilitate to draw a circle on the skin of the patient for exact positioning of the applicator. In addition, there are two perpendicular rulers to define the adequate margin. For each applicator size, a specific template was developed. The templates have been used successfully in our institutions for more than 50 patients' brachytherapy treatments. They are currently being used for Esteya and Valencia applicators. The template La Fe-ITIC is simple and practical. It improves both the set-up time and reproducibility. It helps to establish the adequate margins, an essential point in the clinical outcome.

  1. Dwell time modulation restrictions do not necessarily improve treatment plan quality for prostate HDR brachytherapy

    Science.gov (United States)

    Balvert, Marleen; Gorissen, Bram L.; den Hertog, Dick; Hoffmann, Aswin L.

    2015-01-01

    Inverse planning algorithms for dwell time optimisation in interstitial high-dose-rate (HDR) brachytherapy may produce solutions with large dwell time variations within catheters, which may result in undesirable selective high-dose subvolumes. Extending the dwell time optimisation model with a dwell time modulation restriction (DTMR) that limits dwell time differences between neighboring dwell positions has been suggested to eliminate this problem. DTMRs may additionally reduce the sensitivity for uncertainties in dwell positions that inevitably result from catheter reconstruction errors and afterloader source positioning inaccuracies. This study quantifies the reduction of high-dose subvolumes and the robustness against these uncertainties by applying a DTMR to template-based prostate HDR brachytherapy implants. Three different DTMRs were consecutively applied to a linear dose-based penalty model (LD) and a dose-volume based model (LDV), both obtained from literature. The models were solved with DTMR levels ranging from no restriction to uniform dwell times within catheters in discrete steps. Uncertainties were simulated on clinical cases using in-house developed software, and dose-volume metrics were calculated in each simulation. For the assessment of high-dose subvolumes, the dose homogeneity index (DHI) and the contiguous dose volume histogram were analysed. Robustness was measured by the improvement of the lowest D90% of the planning target volume (PTV) observed in the simulations. For (LD), a DTMR yields an increase in DHI of approximately 30% and reduces the size of the largest high-dose volume by 2-5 cc. However, this comes at a cost of a reduction in D90% of the PTV of 10%, which often implies that it drops below the desired minimum of 100%. For (LDV), none of the DTMRs were able to improve high-dose volume measures. DTMRs were not capable of improving robustness of PTV D90% against uncertainty in dwell positions for both models.

  2. Novel simple templates for reproducible positioning of skin applicators in brachytherapy

    Directory of Open Access Journals (Sweden)

    Silvia Rodríguez Villalba

    2016-08-01

    Full Text Available Purpose : Esteya and Valencia surface applicators are designed to treat skin tumors using brachytherapy. In clinical practice, in order to avoid errors that may affect the treatment outcome, there are two issues that need to be carefully addressed. First, the selected applicator for the treatment should provide adequate margin for the target, and second, the applicator has to be precisely positioned before each treatment fraction. In this work, we describe the development and use of a new acrylic templates named Template La Fe-ITIC. They have been designed specifically to help the clinical user in the selection of the correct applicator, and to assist the medical staff in reproducing the positioning of the applicator. These templates are freely available upon request. Material and methods: Templates that were developed by University and Polytechnic Hospital La Fe (La Fe and Hospital Clínica Benidorm (ITIC in cooperation with Elekta, consist of a thin sheet made of transparent acrylic. For each applicator, a crosshair and two different circles are drawn on these templates: the inner one corresponds to the useful beam, while the outer one represents the external perimeter of the applicator. The outer circle contains slits that facilitate to draw a circle on the skin of the patient for exact positioning of the applicator. In addition, there are two perpendicular rulers to define the adequate margin. For each applicator size, a specific template was developed. Results: The templates have been used successfully in our institutions for more than 50 patients’ brachytherapy treatments. They are currently being used for Esteya and Valencia applicators. Conclusions : The template La Fe-ITIC is simple and practical. It improves both the set-up time and reproducibility. It helps to establish the adequate margins, an essential point in the clinical outcome.

  3. Brachytherapy dose measurements in heterogeneous tissues

    Energy Technology Data Exchange (ETDEWEB)

    Paiva F, G.; Luvizotto, J.; Salles C, T.; Guimaraes A, P. C.; Dalledone S, P. de T.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Rubo, R., E-mail: gabrielpaivafonseca@gmail.com [Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo (Brazil)

    2014-08-15

    Recently, Beau lieu et al. published an article providing guidance for Model-Based Dose Calculation Algorithms (MBDCAs), where tissue heterogeneity considerations are addressed. It is well-known that T G-43 formalism which considers only water medium is limited and significant dose differences have been found comparing both methodologies. The aim of the present work is to experimentally quantify dose values in heterogeneous medium using different dose measurement methods and techniques and compare them with those obtained with Monte Carlo simulations. Experiments have been performed using a Nucletron micro Selectron-Hdr Ir-192 brachytherapy source and a heterogeneous phantom composed by PMMA and different tissue equivalent cylinders like bone, lungs and muscle. Several dose measurements were obtained using tissue equivalent materials with height 1.8 cm and 4.3 cm positioned between the radiation source and the detectors. Radiochromic films, TLDs and MOSFET S have been used for the dose measurements. Film dosimetry has been performed using two methodologies: a) linearization for dose-response curve based on calibration curves to create a functional form that linearize s the dose response and b) 177 multichannel analysis dosimetry where the multiple color channels are analyzed allowing to address not only disturbances in the measurements caused by thickness variation in the film layer, but also, separate other external influences in the film response. All experiments have been simulated using the MCNP5 Monte Carlo radiation transport code. Comparison of experimental results are in good agreement with calculated dose values with differences less than 6% for almost all cases. (Author)

  4. Dose optimisation in single plane interstitial brachytherapy.

    Science.gov (United States)

    Tanderup, Kari; Hellebust, Taran Paulsen; Honoré, Henriette Benedicte; Nielsen, Søren Kynde; Olsen, Dag Rune; Grau, Cai; Lindegaard, Jacob Christian

    2006-10-01

    Brachytherapy dose distributions can be optimised by modulation of source dwell times. In this study dose optimisation in single planar interstitial implants was evaluated in order to quantify the potential benefit in patients. In 14 patients, treated for recurrent rectal and cervical cancer, flexible catheters were sutured intra-operatively to the tumour bed in areas with compromised surgical margin. Both non-optimised, geometrically and graphically optimised CT -based dose plans were made. The overdose index (OI), homogeneity index (HI), conformal index (COIN), minimum target dose, and high dose volumes were evaluated. The dependence of OI, HI, and COIN on target volume and implant regularity was evaluated. In addition, 12 theoretical implant configurations were analyzed. Geometrical and graphical optimisation improved the dose plans significantly with graphical optimisation being superior. Graphically optimised dose plans showed a significant decrease of 18%+/-9% in high dose volume (p<0.001). HI, COIN, and OI were significantly improved from 0.50+/-0.05 to 0.60+/-0.05, from 0.65+/-0.04 to 0.71+/-0.04, and from 0.19+/-0.03 to 0.15+/-0.03, respectively (p<0.001 for all). Moreover, minimum target dose increased significantly from 71%+/-5% to 80%+/-5% (p<0.001). The improvement in OI and HI obtained by optimisation depended on the regularity of the implant, such that the benefit of optimisation was larger for irregular implants. OI and HI correlated strongly with target volume limiting the usability of these parameters for comparison of dose plans between patients. Dwell time optimisation significantly improved the dose distribution regarding homogeneity, conformity, minimum target dose, and size of high dose volumes. Graphical optimisation is fast, reproducible and superior to geometric optimisation.

  5. Use of ultrasound in image-guided high-dose-rate brachytherapy: enumerations and arguments

    Science.gov (United States)

    Kataria, Tejinder; Gupta, Deepak; Goyal, Shikha; Bisht, Shyam Singh; Basu, Trinanjan; Abhishek, Ashu

    2017-01-01

    Inherently, brachytherapy is the most conformal radiotherapeutic technique. As an aid to brachytherapy, ultrasonography (USG) serves as a portable, inexpensive, and simple to use method allowing for accurate, reproducible, and adaptive treatments. Some newer brachytherapy planning systems have incorporated USG as the sole imaging modality. Ultrasonography has been successfully used to place applicator and dose planning for prostate, cervix, and anal canal cancers. It can guide placement of brachytherapy catheters for all other sites like breast, skin, and head and neck cancers. Traditional USG has a few limitations, but recent advances such as 3-dimensional (3D) USG and contrast USG have enhanced its potential as a dependable guide in high-dose-rate image-guided brachytherapy (HDR-IGBT). The authors in this review have attempted to enumerate various aspects of USG in brachytherapy, highlighting its use across various sites. PMID:28533803

  6. Use of ultrasound in image-guided high-dose-rate brachytherapy: enumerations and arguments

    Directory of Open Access Journals (Sweden)

    Susovan Banerjee

    2017-04-01

    Full Text Available Inherently, brachytherapy is the most conformal radiotherapeutic technique. As an aid to brachytherapy, ultrasonography (USG serves as a portable, inexpensive, and simple to use method allowing for accurate, reproducible, and adaptive treatments. Some newer brachytherapy planning systems have incorporated USG as the sole imaging modality. Ultrasonography has been successfully used to place applicator and dose planning for prostate, cervix, and anal canal cancers. It can guide placement of brachytherapy catheters for all other sites like breast, skin, and head and neck cancers. Traditional USG has a few limitations, but recent advances such as 3-dimensional (3D USG and contrast USG have enhanced its potential as a dependable guide in high-dose-rate image-guided brachytherapy (HDR-IGBT. The authors in this review have attempted to enumerate various aspects of USG in brachytherapy, highlighting its use across various sites.

  7. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy.

    Science.gov (United States)

    Hellebust, Taran Paulsen; Kirisits, Christian; Berger, Daniel; Pérez-Calatayud, José; De Brabandere, Marisol; De Leeuw, Astrid; Dumas, Isabelle; Hudej, Robert; Lowe, Gerry; Wills, Rachel; Tanderup, Kari

    2010-08-01

    Image-guided brachytherapy in cervical cancer is increasingly replacing X-ray based dose planning. In image-guided brachytherapy the geometry of the applicator is extracted from the patient 3D images and introduced into the treatment planning system; a process referred to as applicator reconstruction. Due to the steep brachytherapy dose gradients, reconstruction errors can lead to major dose deviations in target and organs at risk. Appropriate applicator commissioning and reconstruction methods must be implemented in order to minimise uncertainties and to avoid accidental errors. Applicator commissioning verifies the location of source positions in relation to the applicator by using auto-radiography and imaging. Sectional imaging can be utilised in the process, with CT imaging being the optimal modality. The results from the commissioning process can be stored as library applicators. The importance of proper commissioning is underlined by the fact that errors in library files result in systematic errors for clinical treatment plans. While the source channel is well visualised in CT images, applicator reconstruction is more challenging when using MR images. Availability of commercial dummy sources for MRI is limited, and image artifacts may occur with titanium applicators. The choice of MR sequence is essential for optimal visualisation of the applicator. Para-transverse imaging (oriented according to the applicator) with small slice thickness (< or =5 mm) is recommended or alternatively 3D MR sequences with isotropic voxel sizes. Preferably, contouring and reconstruction should be performed in the same image series in order to avoid fusion uncertainties. Clear and correct strategies for the applicator reconstruction will ensure that reconstruction uncertainties have limited impact on the delivered dose. Under well-controlled circumstances the reconstruction uncertainties are in general smaller than other brachytherapy uncertainties such as contouring and organ

  8. In vivo dosimetry HDR brachytherapy prostate with source CO-60: Results of measures in a point urethra; Dosimetria in vivo en braquiterapia HDR de prostate con fuente de CO-60: Resultados de medidas en un punto de uretra

    Energy Technology Data Exchange (ETDEWEB)

    Latorre, D.; Fernandez, J.; Rivero, G.; Crelgo, D.; Gonzalez, J. M.; Sanchez, P.; Villace, A.; Sanchez, E.; Arroyo, M. A.; Garcia, E.; Trabanco, E.

    2015-07-01

    In this study we present and analyze the results of the in vivo dosimetry made a point of urethra with a group of 30 patients treated with brachytherapy prostate high rate with Co-60 source. Taking into account the uncertainties, the results and integration, globally evaluate this system DIV. This DIV system, due to its ease of calibration and use, and provides a relatively simple integration way to avoid serious errors in administering treatment. (Author)

  9. Surgical resection and permanent iodine-125 brachytherapy for brain metastases.

    Science.gov (United States)

    Huang, Kim; Sneed, Penny K; Kunwar, Sandeep; Kragten, Annemarie; Larson, David A; Berger, Mitchel S; Chan, Albert; Pouliot, Jean; McDermott, Michael W

    2009-01-01

    To evaluate the efficacy and toxicity of surgical resection and permanent iodine-125 brachytherapy without adjuvant whole brain radiation therapy (WBRT) for brain metastases. Forty patients were treated with permanent iodine-125 brachytherapy at the time of resection of brain metastases from 1997 to 2003. Actuarial freedom from progression (FFP) and survival were measured from the date of surgery and estimated using the Kaplan-Meier method, with censoring at last imaging for FFP endpoints. The median survival was 11.3 months overall, 12.0 months in 19 patients with newly diagnosed brain metastases and 7.3 months in 21 patients with recurrent brain metastases. Twenty-two patients (55%) remained free of progression of brain metastases, three failed at the resection cavity (including one with leptomeningeal dissemination), two failed with leptomeningeal spread only, and 13 failed elsewhere in the brain including two who also had leptomeningeal disease. The 1-year resection cavity FFP probabilities were 92%, 86% and 88%; and brain FFP probabilities were 29%, 43% and 37% for the newly diagnosed, recurrent and all patients, respectively. Symptomatic necrosis developed 7.4-40.0 months (median, 19.5 months) after brachytherapy in 9 patients (23%), confirmed by resection in 6 patients. Excellent local control was achieved using permanent iodine-125 brachytherapy for brain metastasis resection cavities, although there is a high risk of radiation necrosis over time. These data support consideration of permanent brachytherapy without adjuvant WBRT as a treatment option in patients with symptomatic or large newly diagnosed or recurrent brain metastases.

  10. Use of ultrasound in image-guided high-dose-rate brachytherapy: enumerations and arguments

    OpenAIRE

    Susovan Banerjee; Tejinder Kataria; Deepak Gupta; Shikha Goyal; Shyam Singh Bisht; Trinanjan Basu; Ashu Abhishek

    2017-01-01

    Inherently, brachytherapy is the most conformal radiotherapeutic technique. As an aid to brachytherapy, ultrasonography (USG) serves as a portable, inexpensive, and simple to use method allowing for accurate, reproducible, and adaptive treatments. Some newer brachytherapy planning systems have incorporated USG as the sole imaging modality. Ultrasonography has been successfully used to place applicator and dose planning for prostate, cervix, and anal canal cancers. It can guide placement of br...

  11. Performance assessment of the BEBIG MultiSource® high dose rate brachytherapy treatment unit

    Science.gov (United States)

    Palmer, Antony; Mzenda, Bongile

    2009-12-01

    A comprehensive system characterisation was performed of the Eckert & Ziegler BEBIG GmbH MultiSource® High Dose Rate (HDR) brachytherapy treatment unit with an 192Ir source. The unit is relatively new to the UK market, with the first installation in the country having been made in the summer of 2009. A detailed commissioning programme was devised and is reported including checks of the fundamental parameters of source positioning, dwell timing, transit doses and absolute dosimetry of the source. Well chamber measurements, autoradiography and video camera analysis techniques were all employed. The absolute dosimetry was verified by the National Physical Laboratory, UK, and compared to a measurement based on a calibration from PTB, Germany, and the supplied source certificate, as well as an independent assessment by a visiting UK centre. The use of the 'Krieger' dosimetry phantom has also been evaluated. Users of the BEBIG HDR system should take care to avoid any significant bend in the transfer tube, as this will lead to positioning errors of the source, of up to 1.0 mm for slight bends, 2.0 mm for moderate bends and 5.0 mm for extreme curvature (depending on applicators and transfer tube used) for the situations reported in this study. The reason for these errors and the potential clinical impact are discussed. Users should also note the methodology employed by the system for correction of transit doses, and that no correction is made for the initial and final transit doses. The results of this investigation found that the uncorrected transit doses lead to small errors in the delivered dose at the first dwell position, of up to 2.5 cGy at 2 cm (5.6 cGy at 1 cm) from a 10 Ci source, but the transit dose correction for other dwells was accurate within 0.2 cGy. The unit has been mechanically reliable, and source positioning accuracy and dwell timing have been reproducible, with overall performance similar to other existing HDR equipment. The unit is capable of high

  12. Using total error concept for the validation of a liquid chromatography-tandem mass spectrometry method for the determination of budesonide epimers in human plasma.

    Science.gov (United States)

    Streel, B; Cahay, B; Klinkenberg, R

    2009-08-01

    A robust, sensitive and selective method to quantify budesonide epimers in human plasma using solid-phase extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and fully validated. The drug was first isolated from the biological matrix by automated solid-phase extraction (SPE) on disposable extraction cartridges (C-2). The methanolic eluate was then collected and evaporated to dryness. The residue was dissolved in mobile phase and an aliquot was injected onto a Phenomenex Luna octadecylsilica (C-18) column (50 mm x 4.6 mm i.d., 3 microm). The mobile phase is composed of water containing 10 mM ammonium acetate adjusted to pH 3.2 with glacial acetic acid and acetonitrile (65:35, v/v). The flow-rate was 1.00 ml/min. Hydrocortisone acetate was used as internal standard (IS). Detection of the analytes was achieved using negative atmospheric pressure chemical ionization (APCI) tandem mass spectrometry in selected reaction monitoring (SRM) mode. The MS/MS ion transitions monitored were m/z 489.3-->357.3 and 463.3-->403.2 for budesonide epimers and hydrocortisone, respectively. The method was validated using SFSTP (2003) proposal based on total measurement error and accuracy profiles as a decision tool. The most appropriate regression model for the response function as well as the limit of quantitation was first selected during the prevalidation step. These latter criteria were then assessed during the formal validation step. The limit of quantitation (LOQ) was around 50 pg/ml for budesonide epimers. The method was validated with respect to stability, recovery, linearity, precision, trueness and accuracy. Risk and uncertainty were also evaluated. The validated method was finally applied successfully to investigate the plasma concentration of budesonide epimers in a pharmacokinetic study.

  13. Image guided, adaptive, accelerated, high dose brachytherapy as model for advanced small volume radiotherapy.

    Science.gov (United States)

    Haie-Meder, Christine; Siebert, Frank-André; Pötter, Richard

    2011-09-01

    Brachytherapy has consistently provided a very conformal radiation therapy modality. Over the last two decades this has been associated with significant improvements in imaging for brachytherapy applications (prostate, gynecology), resulting in many positive advances in treatment planning, application techniques and clinical outcome. This is emphasized by the increased use of brachytherapy in Europe with gynecology as continuous basis and prostate and breast as more recently growing fields. Image guidance enables exact knowledge of the applicator together with improved visualization of tumor and target volumes as well as of organs at risk providing the basis for very individualized 3D and 4D treatment planning. In this commentary the most important recent developments in prostate, gynecological and breast brachytherapy are reviewed, with a focus on European recent and current research aiming at the definition of areas for important future research. Moreover the positive impact of GEC-ESTRO recommendations and the highlights of brachytherapy physics are discussed what altogether presents a full overview of modern image guided brachytherapy. An overview is finally provided on past and current international brachytherapy publications focusing on "Radiotherapy and Oncology". These data show tremendous increase in almost all research areas over the last three decades strongly influenced recently by translational research in regard to imaging and technology. In order to provide high level clinical evidence for future brachytherapy practice the strong need for comprehensive prospective clinical research addressing brachytherapy issues is high-lighted. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Advantages of high-dose rate (HDR) brachytherapy in treatment of prostate cancer

    Science.gov (United States)

    Molokov, A. A.; Vanina, E. A.; Tseluyko, S. S.

    2017-09-01

    One of the modern methods of preserving organs radiation treatment is brachytherapy. This article analyzes the results of prostate brachytherapy. These studies of the advantages of high dose brachytherapy lead to the conclusion that this method of radiation treatment for prostate cancer has a favorable advantage in comparison with remote sensing methods, and is competitive, preserving organs in comparison to surgical methods of treatment. The use of the method of polyfocal transperineal biopsy during the brachytherapy session provides information on the volumetric spread of prostate cancer and adjust the dosimetry plan taking into account the obtained data.

  15. MRI signal intensity based B-spline nonrigid registration for pre- and intraoperative imaging during prostate brachytherapy.

    Science.gov (United States)

    Oguro, Sota; Tokuda, Junichi; Elhawary, Haytham; Haker, Steven; Kikinis, Ron; Tempany, Clare M C; Hata, Nobuhiko

    2009-11-01

    To apply an intensity-based nonrigid registration algorithm to MRI-guided prostate brachytherapy clinical data and to assess its accuracy. A nonrigid registration of preoperative MRI to intraoperative MRI images was carried out in 16 cases using a Basis-Spline algorithm in a retrospective manner. The registration was assessed qualitatively by experts' visual inspection and quantitatively by measuring the Dice similarity coefficient (DSC) for total gland (TG), central gland (CG), and peripheral zone (PZ), the mutual information (MI) metric, and the fiducial registration error (FRE) between corresponding anatomical landmarks for both the nonrigid and a rigid registration method. All 16 cases were successfully registered in less than 5 min. After the nonrigid registration, DSC values for TG, CG, PZ were 0.91, 0.89, 0.79, respectively, the MI metric was -0.19 +/- 0.07 and FRE presented a value of 2.3 +/- 1.8 mm. All the metrics were significantly better than in the case of rigid registration, as determined by one-sided t-tests. The intensity-based nonrigid registration method using clinical data was demonstrated to be feasible and showed statistically improved metrics when compare to only rigid registration. The method is a valuable tool to integrate pre- and intraoperative images for brachytherapy.

  16. What changes are there in decisions by the Wits Human Research Ethics Committee (Medical) and in process errors by research applicants between 2003 and 2015?

    National Research Council Canada - National Science Library

    Cleaton-Jones, Peter

    2016-01-01

    Objective. A retrospective examination of numbers of applications, decision rates, and process errors in 2015 was done for comparison with earlier studies to understand current ethics secretariat workload. Methods...

  17. Quality control of high-dose-rate brachytherapy: treatment delivery analysis using statistical process control.

    Science.gov (United States)

    Able, Charles M; Bright, Megan; Frizzell, Bart

    2013-03-01

    Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles with 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. dose in cervical cancer intracavitary brachytherapy

    Directory of Open Access Journals (Sweden)

    Zahra Siavashpour

    2016-04-01

    Full Text Available Purpose: To analyze the optimum organ filling point for organs at risk (OARs dose in cervical cancer high-dose-rate (HDR brachytherapy. Material and methods : In a retrospective study, 32 locally advanced cervical cancer patients (97 insertions who were treated with 3D conformal external beam radiation therapy (EBRT and concurrent chemotherapy during 2010-2013 were included. Rotterdam HDR tandem-ovoid applicators were used and computed tomography (CT scanning was performed after each insertion. The OARs delineation and GEC-ESTRO-based clinical target volumes (CTVs contouring was followed by 3D forward planning. Then, dose volume histogram (DVH parameters of organs were recorded and patients were classified based on their OARs volumes, as well as their inserted tandem length. Results : The absorbed dose to point A ranged between 6.5-7.5 Gy. D 0.1cm ³ and D 2cm ³ of the bladder significantly increased with the bladder volume enlargement (p value < 0.05. By increasing the bladder volume up to about 140 cm3, the rectum dose was also increased. For the cases with bladder volumes higher than 140 cm3, the rectum dose decreased. For bladder volumes lower than 75 cm3, the sigmoid dose decreased; however, for bladder volumes higher than 75 cm3, the sigmoid dose increased. The D 2cm ³ of the bladder and rectum were higher for longer tandems than for shorter ones, respectively. The divergence of the obtained results for different tandem lengths became wider by the extension of the bladder volume. The rectum and sigmoid volume had a direct impact on increasing their D 0.1cm ³ and D 2cm ³, as well as decreasing their D 10 , D 30 , and D 50 . Conclusions : There is a relationship between the volumes of OARs and their received doses. Selecting a bladder with a volume of about 70 cm3 or less proved to be better with regards to the dose to the bladder, rectum, and sigmoid.

  19. An integrated system for clinical treatment verification of HDR prostate brachytherapy combining source tracking with pretreatment imaging.

    Science.gov (United States)

    Smith, Ryan L; Hanlon, Max; Panettieri, Vanessa; Millar, Jeremy L; Matheson, Bronwyn; Haworth, Annette; Franich, Rick D

    2017-09-22

    High-dose-rate (HDR) prostate brachytherapy treatment is usually delivered in one or a few large dose fractions. Poor execution of a planned treatment could have significant clinical impact, as high doses are delivered in seconds, and mistakes in an individual fraction cannot be easily rectified. Given that most potential errors in HDR brachytherapy ultimately lead to a geographical miss, a more direct approach to verification of correct treatment delivery is to directly monitor the position of the source throughout the treatment. In this work, we report on the clinical implementation of our treatment verification system that uniquely combines the 2D source-tracking capability with 2D pretreatment imaging, using a single flat panel detector (FPD). The clinical brachytherapy treatment couch was modified to allow integration of the FPD into the couch. This enabled the patient to be set up in the brachytherapy bunker in a position that closely matched that at treatment planning imaging. An anteroposterior image was acquired of the patient immediately before treatment delivery and was assessed by the Radiation Oncologist online, to reestablish the positions of the catheters relative to the prostate. Assessment of catheter positions was performed in the left-right and superior-inferior directions along the entire catheter length and throughout the treatment volume. Source tracking was then performed during treatment delivery, and the measured position of the source dwells were directly compared to the treatment plan for verification. The treatment verification system was integrated into the clinical environment without significant change to workflow. Two patient cases are presented in this work to provide clinical examples of this system, which is now in routine use for all patient treatments in our clinic. The catheter positions were visualized relative to the prostate, immediately before treatment delivery. For one of the patient cases presented in this work, they

  20. Medical errors in neurosurgery

    OpenAIRE

    Rolston, John D.; Zygourakis, Corinna C.; Han, Seunggu J.; Lau, Catherine Y.; Berger, Mitchel S.; Parsa, Andrew T

    2014-01-01

    Background: Medical errors cause nearly 100,000 deaths per year and cost billions of dollars annually. In order to rationally develop and institute programs to mitigate errors, the relative frequency and costs of different errors must be documented. This analysis will permit the judicious allocation of scarce healthcare resources to address the most costly errors as they are identified. Methods: Here, we provide a systematic review of the neurosurgical literature describing medical errors...

  1. Medication errors: prescribing faults and prescription errors.

    Science.gov (United States)

    Velo, Giampaolo P; Minuz, Pietro

    2009-06-01

    1. Medication errors are common in general practice and in hospitals. Both errors in the act of writing (prescription errors) and prescribing faults due to erroneous medical decisions can result in harm to patients. 2. Any step in the prescribing process can generate errors. Slips, lapses, or mistakes are sources of errors, as in unintended omissions in the transcription of drugs. Faults in dose selection, omitted transcription, and poor handwriting are common. 3. Inadequate knowledge or competence and incomplete information about clinical characteristics and previous treatment of individual patients can result in prescribing faults, including the use of potentially inappropriate medications. 4. An unsafe working environment, complex or undefined procedures, and inadequate communication among health-care personnel, particularly between doctors and nurses, have been identified as important underlying factors that contribute to prescription errors and prescribing faults. 5. Active interventions aimed at reducing prescription errors and prescribing faults are strongly recommended. These should be focused on the education and training of prescribers and the use of on-line aids. The complexity of the prescribing procedure should be reduced by introducing automated systems or uniform prescribing charts, in order to avoid transcription and omission errors. Feedback control systems and immediate review of prescriptions, which can be performed with the assistance of a hospital pharmacist, are also helpful. Audits should be performed periodically.

  2. 10 CFR 35.2067 - Records of leaks tests and inventory of sealed sources and brachytherapy sources.

    Science.gov (United States)

    2010-01-01

    ... brachytherapy sources. 35.2067 Section 35.2067 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2067 Records of leaks tests and inventory of sealed sources and brachytherapy sources... of the semi-annual physical inventory of sealed sources and brachytherapy sources required by § 35.67...

  3. Parallelized patient-specific quality assurance for high-dose-rate image-guided brachytherapy in an integrated computed tomography-on-rails brachytherapy suite.

    Science.gov (United States)

    Kim, Taeho; Showalter, Timothy N; Watkins, W Tyler; Trifiletti, Daniel M; Libby, Bruce

    2015-01-01

    To describe a parallelized patient-specific quality assurance (QA) program designed to ensure safety and quality in image-guided high-dose-rate brachytherapy in an integrated computed tomography (CT)-on-rails brachytherapy suite. A patient-specific QA program has been modified for the image-guided brachytherapy (IGBT) program in an integrated CT-on-rails brachytherapy suite. In the modification of the QA procedures of Task Group-59, the additional patient-specific QA procedures are included to improve rapid IGBT workflow with applicator placement, imaging, planning, treatment, and applicator removal taking place in one room. The IGBT workflow is partitioned into two groups of tasks that can be performed in parallel by two or more staff members. One of the unique components of our implemented workflow is that groups work together to perform QA steps in parallel and in series during treatment planning and contouring. Coordinating efforts in this systematic way enable rapid and safe brachytherapy treatment while incorporating 3-dimensional anatomic variations between treatment days. Implementation of these patient-specific QA procedures in an integrated CT-on-rails brachytherapy suite ensures confidence that a rapid workflow IGBT program can be implemented without sacrificing patient safety or quality and deliver highly-conformal dose to target volumes. These patient-specific QA components may be adapted to other IGBT environments that seek to provide rapid workflow while ensuring quality. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Trends in the Utilization of Brachytherapy in Cervical Cancer in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kathy, E-mail: Kathy.Han@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario (Canada); Milosevic, Michael; Fyles, Anthony [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario (Canada); Pintilie, Melania [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario (Canada); Viswanathan, Akila N. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: To determine the trends in brachytherapy use in cervical cancer in the United States and to identify factors and survival benefits associated with brachytherapy treatment. Methods and Materials: Using the Surveillance, Epidemiology, and End Results (SEER) database, we identified 7359 patients with stages IB2-IVA cervical cancer treated with external beam radiation therapy (EBRT) between 1988 and 2009. Propensity score matching was used to adjust for differences between patients who received brachytherapy and those who did not from 2000 onward (after the National Cancer Institute alert recommending concurrent chemotherapy). Results: Sixty-three percent of the 7359 women received brachytherapy in combination with EBRT, and 37% received EBRT alone. The brachytherapy utilization rate has decreased from 83% in 1988 to 58% in 2009 (P<.001), with a sharp decline of 23% in 2003 to 43%. Factors associated with higher odds of brachytherapy use include younger age, married (vs single) patients, earlier years of diagnosis, earlier stage and certain SEER regions. In the propensity score-matched cohort, brachytherapy treatment was associated with higher 4-year cause-specific survival (CSS; 64.3% vs 51.5%, P<.001) and overall survival (OS; 58.2% vs 46.2%, P<.001). Brachytherapy treatment was independently associated with better CSS (hazard ratio [HR], 0.64; 95% confidence interval [CI], 0.57-0.71), and OS (HR 0.66; 95% CI, 0.60 to 0.74). Conclusions: This population-based analysis reveals a concerning decline in brachytherapy utilization and significant geographic disparities in the delivery of brachytherapy in the United States. Brachytherapy use is independently associated with significantly higher CSS and OS and should be implemented in all feasible cases.

  5. Salvage high-dose-rate brachytherapy for isolated vaginal recurrence of endometrial cancer.

    Science.gov (United States)

    Baek, Sungjae; Isohashi, Fumiaki; Yamaguchi, Hiroko; Mabuchi, Seiji; Yoshida, Ken; Kotsuma, Tadayuki; Yamazaki, Hideya; Tanaka, Eiichi; Sumida, Iori; Tamari, Keisuke; Otani, Keisuke; Seo, Yuji; Suzuki, Osamu; Yoshioka, Yasuo; Kimura, Tadashi; Ogawa, Kazuhiko

    We have retrospectively analyzed the outcomes of high-dose-rate (HDR) brachytherapy as a salvage therapy for vaginal recurrence of endometrial cancer. From 1997 to 2012, salvage HDR brachytherapy was performed in 43 patients. The median age was 64 years (range, 41-88 years). HDR brachytherapy was performed by interstitial brachytherapy in 34 patients (79%) and by intracavity brachytherapy in nine patients (21%). Seventeen (40%) of the 43 patients were treated with external beam radiotherapy. The median followup period was 58 months (range, 6-179 months). The 5-year overall survival (OS), progression-free survival (PFS), and local control rates (LC) were 84%, 52%, and 78%, respectively. Patients who received brachytherapy with external beam radiotherapy experienced no nodal recurrence (0 of 17 patients), whereas 23% of the patients (6 of 26 patients) who received brachytherapy alone experienced nodal recurrence (p = 0.047). The pathologic grade at the time of initial surgery (G1-2 vs. G3) was found to be a significant prognostic factor for both OS and PFS. The respective 5-year OS was 96% vs. 40% (p brachytherapy vs. intracavity brachytherapy) were significant prognostic factors for LC. The respective 5-year LC was 74% vs. 100% (p = 0.020) and 85% vs. 56% (p = 0.035). HDR brachytherapy is effective and feasible in patients with isolated vaginal recurrence of endometrial cancer. Pathologic grade, age, and modality were significant prognostic factors. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. MO-E-BRD-03: Intra-Operative Breast Brachytherapy: Is One Stop Shopping Best? [Non-invasive Image-Guided Breast Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Libby, B. [University of Virginia (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  7. An Empirical Methodology for Engineering Human Systems Integration

    Science.gov (United States)

    2009-12-01

    Government Electronics & Information Technology Assoc. HAZOP .............................. Human Error Hazard and...errors include the Systematic Human Error Reduction and Prediction Approach (SHERPA), Human Error Hazard and Operability study ( HAZOP ), and Human Error

  8. Error image aware content restoration

    Science.gov (United States)

    Choi, Sungwoo; Lee, Moonsik; Jung, Byunghee

    2015-12-01

    As the resolution of TV significantly increased, content consumers have become increasingly sensitive to the subtlest defect in TV contents. This rising standard in quality demanded by consumers has posed a new challenge in today's context where the tape-based process has transitioned to the file-based process: the transition necessitated digitalizing old archives, a process which inevitably produces errors such as disordered pixel blocks, scattered white noise, or totally missing pixels. Unsurprisingly, detecting and fixing such errors require a substantial amount of time and human labor to meet the standard demanded by today's consumers. In this paper, we introduce a novel, automated error restoration algorithm which can be applied to different types of classic errors by utilizing adjacent images while preserving the undamaged parts of an error image as much as possible. We tested our method to error images detected from our quality check system in KBS(Korean Broadcasting System) video archive. We are also implementing the algorithm as a plugin of well-known NLE(Non-linear editing system), which is a familiar tool for quality control agent.

  9. Medical errors in neurosurgery.

    Science.gov (United States)

    Rolston, John D; Zygourakis, Corinna C; Han, Seunggu J; Lau, Catherine Y; Berger, Mitchel S; Parsa, Andrew T

    2014-01-01

    Medical errors cause nearly 100,000 deaths per year and cost billions of dollars annually. In order to rationally develop and institute programs to mitigate errors, the relative frequency and costs of different errors must be documented. This analysis will permit the judicious allocation of scarce healthcare resources to address the most costly errors as they are identified. Here, we provide a systematic review of the neurosurgical literature describing medical errors at the departmental level. Eligible articles were identified from the PubMed database, and restricted to reports of recognizable errors across neurosurgical practices. We limited this analysis to cross-sectional studies of errors in order to better match systems-level concerns, rather than reviewing the literature for individually selected errors like wrong-sided or wrong-level surgery. Only a small number of articles met these criteria, highlighting the paucity of data on this topic. From these studies, errors were documented in anywhere from 12% to 88.7% of cases. These errors had many sources, of which only 23.7-27.8% were technical, related to the execution of the surgery itself, highlighting the importance of systems-level approaches to protecting patients and reducing errors. Overall, the magnitude of medical errors in neurosurgery and the lack of focused research emphasize the need for prospective categorization of morbidity with judicious attribution. Ultimately, we must raise awareness of the impact of medical errors in neurosurgery, reduce the occurrence of medical errors, and mitigate their detrimental effects.

  10. Dose volume analysis in brachytherapy and stereotactic radiosurgery

    CERN Document Server

    Tozer-Loft, S M

    2000-01-01

    compared with a range of figures of merit which express different aspects of the quality of each dose distributions. The results are analysed in an attempt to answer the question: What are the important features of the dose distribution (conformality, uniformity, etc) which show a definite relationship with the outcome of the treatment? Initial results show positively that, when Gamma Knife radiosurgery is used to treat acoustic neuroma, some measures of conformality seem to have a surprising, but significant association with outcome. A brief introduction to three branches of radiotherapy is given: interstitial brachytherapy, external beam megavoltage radiotherapy, and stereotactic radiosurgery. The current interest in issues around conformity, uniformity and optimisation is explained in the light of technical developments in these fields. A novel method of displaying dose-volume information, which mathematically suppresses the inverse-square law, as first suggested by L.L. Anderson for use in brachytherapy i...

  11. Brachytherapy optimal planning with application to intravascular radiation therapy.

    Science.gov (United States)

    Sadegh, P; Mourtada, F A; Taylor, R H; Anderson, J H

    1999-09-01

    We have been studying brachytherapy planning with the objective of minimizing the maximum deviation of the delivered dose from prescribed dose bounds for treatment volumes. A general framework for optimal treatment planning is presented and the minmax optimization is formulated as a linear program. Dose rate calculations are based on the dosimetry formulation of the American Association of Physicists in Medicine, Task Group 43. We apply the technique to optimal planning for intravascular brachytherapy of intimal hyperplasia using ultrasound data and 192Ir seeds. The planning includes determination of an optimal dwell-time sequence for a train of seeds that deliver radiation while stepping through the vessel lesion. The results illustrate the advantage of this strategy over the common approach of delivering radiation by positioning a single train of seeds along the whole lesion.

  12. Iodine-125 brachytherapy for brain tumours - a review

    Science.gov (United States)

    2012-01-01

    Iodine-125 brachytherapy has been applied to brain tumours since 1979. Even though the physical and biological characteristics make these implants particularly attractive for minimal invasive treatment, the place for stereotactic brachytherapy is still poorly defined. An extensive review of the literature has been performed, especially concerning indications, results and complications. Iodine-125 seeds have been implanted in astrocytomas I-III, glioblastomas, metastases and several other tumour entities. Outcome data given in the literature are summarized. Complications are rare in carefully selected patients. All in all, for highly selected patients with newly diagnosed or recurrent primary or metastatic tumours, this method provides encouraging survival rates with relatively low complication rates and a good quality of life. PMID:22394548

  13. 3T MR-Guided Brachytherapy for Gynecologic Malignancies

    CERN Document Server

    Kapur, Tina; Damato, Antonio; Schmidt, Ehud J; Viswanathan, Akila N; 10.1016/j.mri.2012.06.003

    2013-01-01

    Gynecologic malignancies are a leading cause of death in women worldwide. Standard treatment for many primary and recurrent gynecologic cancer cases includes a combination of external beam radiation, followed by brachytherapy. Magnetic Resonance Imaging (MRI) is benefitial in diagnostic evaluation, in mapping the tumor location to tailor radiation dose, and in monitoring the tumor response to treatment. Initial studies of MR-guidance in gynecologic brachtherapy demonstrate the ability to optimize tumor coverage and reduce radiation dose to normal tissues, resulting in improved outcomes for patients. In this article we describe a methodology to aid applicator placement and treatment planning for 3 Tesla (3T) MR-guided brachytherapy that was developed specifically for gynecologic cancers. This has been used in 18 cases to date in the Advanced Multimodality Image Guided Operating suite at Brigham and Women's Hospital. It is comprised of state of the art methods for MR imaging, image analysis, and treatment plann...

  14. [Basic principles and results of brachytherapy in gynecological oncology].

    Science.gov (United States)

    Kanaev, S V; Turkevich, V G; Baranov, S B; Savel'eva, V V

    2014-01-01

    The fundamental basics of contact radiation therapy (brachytherapy) for gynecological cancer are presented. During brachytherapy the principles of conformal radiotherapy should be implemented, the aim of which is to sum the maximum possible dose of radiation to the tumor and decrease the dose load in adjacent organs and tissues, which allows reducing the frequency of radiation damage at treatment of primary tumors. It is really feasible only on modern technological level, thanks to precision topometry preparation, optimal computer dosimetrical and radiobiological planning of each session and radiotherapy in general. Successful local and long-term results of the contact radiation therapy for cancer of cervix and endometrium are due to optimal anatomical and topometrical ratio of the tumor localization, radioactive sources, and also physical and radiobiological laws of distribution and effects of ionizing radiation, the dose load accounting rules.

  15. Metal artefacts in MRI-guided brachytherapy of cervical cancer

    Directory of Open Access Journals (Sweden)

    Abraam S. Soliman

    2016-08-01

    Full Text Available The importance of assessing the metal-induced artefacts in magnetic resonance imaging (MRI-guided brachytherapy is growing along with the increasing interest of integrating MRI into the treatment procedure of cervical cancer. Examples of metal objects in use include intracavitary cervical applicators and interstitial needles. The induced artefacts increase the uncertainties in the clinical workflow and can be a potential obstacle for the accurate delivery of the treatment. Overcoming this problem necessitates a good understanding of its originating sources. Several efforts are recorded in the literature to quantify the extent of such artefacts, in phantoms and in clinical practice. Here, we elaborate on the origin of metal-induced artefacts in the light of brachytherapy applications, while summarizing recent efforts that have been made to assess and overcome the induced distortions.

  16. Which modality for prostate brachytherapy; Quelle modalite de curietherapie prostatique?

    Energy Technology Data Exchange (ETDEWEB)

    Bossi, A. [Departement de radiotherapie, institut Gustave-Roussy, 94 - Villejuif (France)

    2010-10-15

    Brachytherapy techniques by permanent implant of radioactive sources or by temporary high-dose-rate (HDR) fractions are nowadays extensively used for the treatment of prostatic carcinoma. Long-term results (at 20 years) concerning large amount of patients have been published by major centers confirming both in terms of efficacy and toxicities that permanent implant of radioactive iodine-125 seeds yields at least the same good results of surgery and of external beam irradiation when proposed to patients affected by low-risk disease. For intermediate to high-risk tumors, HDR temporary implants are proposed as a boost for dose escalation. For both techniques, several topics still need to be clarified dealing with a recent enlargement of indications (HDR alone for low-risk, iodine-125 seeds boost for intermediate-high-risk cancers), or with technical aspects (loose seeds versus linked ones, number of fractions and dose for HDR protocols), while dosimetric issues have only recently been addressed by cooperatives groups. Last but not least, there is a real need to address and clearly characterize the correct definition of biochemical disease control both for iodine permanent implant and for HDR implant. New challenges are facing the prostate-brachytherapy community in the near future: local relapse after external beam radiotherapy are currently managed by several salvage treatments (prostatectomy, cryo, high intensity focused ultrasounds [HIFU]) but the role of reirradiation by brachytherapy is also actively investigated. Focal therapy has gained considerable interest in the last 5 years aiming at treating only the area of cancer foci inside the prostate and preserving nearby healthy tissues. Encouraging results have been obtained with the so-called 'minimally invasive' approaches and both permanent seed implantation and HDR brachytherapy techniques may be worthwhile testing in this setting because of their capability of exactly sculpting the dose inside the

  17. Brachytherapy in Lip Carcinoma: Long-Term Results

    Energy Technology Data Exchange (ETDEWEB)

    Guibert, Mireille, E-mail: mireilleguib@voila.fr [Department of Head and Neck Surgery, Larrey Hospital, Toulouse (France); David, Isabelle [Department of Radiation Oncology, Claudius Regaud Institut, Toulouse (France); Vergez, Sebastien [Department of Head and Neck Surgery, Larrey Hospital, Toulouse (France); Rives, Michel [Department of Radiation Oncology, Claudius Regaud Institut, Toulouse (France); Filleron, Thomas [Department of Epidemiology, Claudius Regaud Institut, Toulouse (France); Bonnet, Jacques; Delannes, Martine [Department of Radiation Oncology, Claudius Regaud Institut, Toulouse (France)

    2011-12-01

    Purpose: The aim of this study was to evaluate the effectiveness of low-dose-rate brachytherapy for local control and relapse-free survival in squamous cell and basal cell carcinomas of the lips. We compared two groups: one with tumors on the skin and the other with tumors on the lip. Patients and methods: All patients had been treated at Claudius Regaud Cancer Centre from 1990 to 2008 for squamous cell or basal cell carcinoma. Low-dose-rate brachytherapy was performed with iridium 192 wires according to the Paris system rules. On average, the dose delivered was 65 Gy. Results: 172 consecutive patients were included in our study; 69 had skin carcinoma (squamous cell or basal cell), and 92 had squamous cell mucosal carcinoma. The average follow-up time was 5.4 years. In the skin cancer group, there were five local recurrences and one lymph node recurrence. In the mucosal cancer group, there were ten local recurrences and five lymph node recurrences. The 8-year relapse-free survival for the entire population was 80%. The 8-year relapse-free survival was 85% for skin carcinoma 75% for mucosal carcinoma, with no significant difference between groups. The functional results were satisfactory for 99% of patients, and the cosmetic results were satisfactory for 92%. Maximal toxicity observed was Grade 2. Conclusions: Low-dose-rate brachytherapy can be used to treat lip carcinomas at Stages T1 and T2 as the only treatment with excellent results for local control and relapse-free survival. The benefits of brachytherapy are also cosmetic and functional, with 91% of patients having no side effects.

  18. Study of two different radioactive sources for prostate brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Neves, Lucio; Perini, Ana Paula [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, 38400-902, Uberlandia, MG (Brazil); Souza Santos, William de; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, IPENCNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo, SP (Brazil); Belinato, Walmir [Departamento de Ensino, Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia, Campus Vitoria da Conquista, Zabele, Av. Amazonas 3150, 45030-220 Vitoria da Conquista, BA (Brazil)

    2015-07-01

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a {sup 192}Ir and a {sup 125}I radioactive sources. The {sup 192}Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The {sup 125}I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of an adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of {sup 125}I and one of {sup 192}Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the {sup 192}Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the {sup 125}I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)

  19. Ruby-based inorganic scintillation detectors for 192Ir brachytherapy

    Science.gov (United States)

    Kertzscher, Gustavo; Beddar, Sam

    2016-11-01

    We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from  >5% to  5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.

  20. HDR brachytherapy for superficial non-melanoma skin cancers.

    Science.gov (United States)

    Gauden, Ruth; Pracy, Martin; Avery, Anne-Marie; Hodgetts, Ian; Gauden, Stan

    2013-04-01

    Our initial experience using recommended high dose per fraction skin brachytherapy (BT) treatment schedules, resulted in poor cosmesis. This study aimed to assess in a prospective group of patients the use of Leipzig surface applicators for High Dose Rate (HDR) brachytherapy, for the treatment of small non-melanoma skin cancers (NMSC) using a protracted treatment schedule. Treatment was delivered by HDR brachytherapy with Leipzig applicators. 36 Gy, prescribed to between 3 to 4 mm, was given in daily 3 Gy fractions. Acute skin toxicity was evaluated weekly during irradiation using the Radiation Therapy Oncology Group criteria. Local response, late skin effects and cosmetic results were monitored at periodic intervals after treatment completion. From March 2002, 200 patients with 236 lesions were treated. Median follow-up was 66 months (range 25-121 months). A total of 162 lesions were macroscopic, while in 74 cases, BT was given after resection because of positive microscopic margins. There were 121 lesions that were basal cell carcinomas, and 115 were squamous cell carcinomas. Lesions were located on the head and neck (198), the extremities (26) and trunk (12). Local control was 232/236 (98%). Four patients required further surgery to treat recurrence. Grade 1 acute skin toxicity was detected in 168 treated lesions (71%) and grade 2 in 81 (34%). Cosmesis was good or excellent in 208 cases (88%). Late skin hypopigmentation changes were observed in 13 cases (5.5%). Delivering 36 Gy over 2 weeks to superficial NMSC using HDR brachytherapy is well tolerated and provides a high local control rate without significant toxicity. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  1. Serum Testosterone Kinetics After Brachytherapy for Clinically Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Taira, Al V. [Western Radiation Oncology, Mountain View, CA (United States); Merrick, Gregory S., E-mail: gmerrick@urologicresearchinstitute.org [Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, WV (United States); Galbreath, Robert W.; Butler, Wayne M.; Lief, Jonathan H.; Allen, Zachariah A. [Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, WV (United States); Wallner, Kent E. [Puget Sound Healthcare Corporation Group Health Cooperative, University of Washington, Seattle, WA (United States)

    2012-01-01

    Purpose: To evaluate temporal changes in testosterone after prostate brachytherapy and investigate the potential impact of these changes on response to treatment. Methods and Materials: Between January 2008 and March 2009, 221 consecutive patients underwent Pd-103 brachytherapy without androgen deprivation for clinically localized prostate cancer. Prebrachytherapy prostate-specific antigen (PSA) and serum testosterone were obtained for each patient. Repeat levels were obtained 3 months after brachytherapy and at least every 6 months thereafter. Multiple clinical, treatment, and dosimetric parameters were evaluated to determine an association with temporal testosterone changes. In addition, analysis was conducted to determine if there was an association between testosterone changes and treatment outcomes or the occurrence of a PSA spike. Results: There was no significant difference in serum testosterone over time after implant (p = 0.57). 29% of men experienced an increase {>=}25%, 23% of men experienced a decrease {>=}25%, and the remaining 48% of men had no notable change in testosterone over time. There was no difference in testosterone trends between men who received external beam radiotherapy and those who did not (p = 0.12). On multivariate analysis, preimplant testosterone was the only variable that consistently predicted for changes in testosterone over time. Men with higher than average testosterone tended to experience drop in testosterone (p < 0.001), whereas men with average or below average baseline testosterone had no significant change. There was no association between men who experienced PSA spike and testosterone temporal trends (p = 0.50) nor between initial PSA response and testosterone trends (p = 0.21). Conclusion: Prostate brachytherapy does not appear to impact serum testosterone over time. Changes in serum testosterone do not appear to be associated with PSA spike phenomena nor with initial PSA response to treatment; therefore, PSA response

  2. Postoperative high-dose-rate brachytherapy in the prevention of keloids

    NARCIS (Netherlands)

    Veen, Ronald E.; Kal, Henk B.

    <