WorldWideScience

Sample records for br-3-vn reactor

  1. Decommissioning of a small reactor (BR3 reactor, Belgium)

    International Nuclear Information System (INIS)

    Dadoumont, J.; Massaut, V.; Klein, M.; Demeulemeester, Y.

    2002-01-01

    Since 1989, SCK-CEN has been dismantling its PWR reactor BR3 (Belgian Reactor No. 3). After gaining a great deal of experience in remote dismantling of highly radioactive components during the actual dismantling of the two sets of internals, the BR3 team completed the cutting of its reactor pressure vessel (RPV). During the feasibility phase of the RPV dismantling, a decision was made to cut it under water in the refuelling pool of the plant, after having removed it from its cavity. The RPV was cut into segments using a milling cutter and a bandsaw machine. These mechanical techniques have shown their ability for this kind of operations. Prior to the segmentation, the thermal insulation situated around the RPV was remotely removed and disposed of. The paper will describe all these operations. The BR3 decommissioning activities also include the dismantling of contaminated loops and equipment. After a careful sorting of the pieces, optimized management routes are selected in order to minimize the final amount of radioactive waste to be disposed of. Some development of different methods of decontamination were carried out: abrasive blasting (or sand blasting), chemical decontamination (Oxidizing-Reducing process using Cerium). The main goal of the decontamination program is to recycle most of the metallic materials either in the nuclear world or in the industrial world by reaching the respective recycling or clearance level. Overall the decommissioning of the BR3 reactor has shown the feasibility of performing such a project in a safe and economical way. Moreover, BR3 has developed methodologies and decontamination processes to economically reduce the amount of radwaste produced. (author)

  2. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  3. Reactor BR2

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported

  4. Decommissioning of the BR3 pressurized-water reactor

    International Nuclear Information System (INIS)

    Massaut, V.

    1996-01-01

    The dismantling and the decommissioning of nuclear installations at the end of their life-cycle is a new challenge to the nuclear industry. Different techniques and procedures for the dismantling of a nuclear power plant on an existing installation, the BR-3 pressurized-water reactor, are described. The scientific programme, objectives, achievements in this research area at the Belgian Nuclear Research Centre SCK-CEN for 1995 are summarized

  5. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    Moons, F.

    2007-01-01

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3 He, 6 Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  6. Annealing of the BR3 reactor pressure vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Motte, F.; Stiennon, G.; Debrue, J.; Gubel, P.; Van de Velde, J.; Minsart, G.; Van Asbroeck, P.

    1985-01-01

    The pressure vessel of the Belgian BR-3 plant, a small (11 MWe) PWR presently used for fuel testing programs and operated since 1962, was annealed during March, 1984. The anneal was performed under wet conditions for 168 hours at 650 0 F with core removal and within plant design margins justification for the anneal, summary of plant characteristics, description of materials sampling, summary of reactor physics and dosimetry, development of embrittlement trend curves, hypothesized pressurized and overcooling thermal shock accidents, and conclusions are provided in detail

  7. Reactor BR2: Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. A safety audit was conduced by the IAEA, the conclusions of which demonstrated the excellent performance of the plant in terms of operational safety. In 1999, the CALLISTO facility was extensively used for various programmes involving LWR pressure vessel materials, IASCC of LWR structural materials, fusion reactor materials and martensic steels for use in ADS systems. In 1999, BR2's commercial programmes were further developed

  8. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2001-01-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given

  9. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  10. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2002-01-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system

  11. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2002-04-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system.

  12. Material test reactor fuel research at the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, Steven Van; Koonen, Edgar; Berghe, Sven van den [Institute for Nuclear Materials Science, SCK-CEN, Boeretang, Mol (Belgium)

    2012-03-15

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  13. Optimized Control Rods of the BR2 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kalcheva, Silva; Koonen, E.

    2007-09-15

    At the present time the BR-2 reactor uses control elements with cadmium as neutron absorbing part. The lower section of the control element is a beryllium assembly cooled by light water. Due to the burn up of the lower end of the cadmium section during the reactor operation, the presently used rods for reactivity control of the BR-2 reactor have to be replaced by new ones. Considered are various types Control Rods with full active part of the following materials: cadmium (Cd), hafnium (Hf), europium oxide (Eu2O3) and gadolinium (Gd2O3). Options to decrease the burn up of the control rod material in the hot spot, such as use of stainless steel in the lower active part of the Control Rod are discussed. Comparison with the characteristics of the presently used Control Rods types is performed. The changing of the characteristics of different types Control Rods and the perturbation effects on the reactor neutronics during the BR-2 fuel cycle are investigated. The burn up of the Control Rod absorbing material, total and differential control rods worth, macroscopic and effective microscopic absorption cross sections, fuel and reactivity evolution are evaluated during approximately 30 operating cycles.

  14. Optimized Control Rods of the BR2 Reactor

    International Nuclear Information System (INIS)

    Kalcheva, Silva; Koonen, E.

    2007-01-01

    At the present time the BR-2 reactor uses control elements with cadmium as neutron absorbing part. The lower section of the control element is a beryllium assembly cooled by light water. Due to the burn up of the lower end of the cadmium section during the reactor operation, the presently used rods for reactivity control of the BR-2 reactor have to be replaced by new ones. Considered are various types Control Rods with full active part of the following materials: cadmium (Cd), hafnium (Hf), europium oxide (Eu2O3) and gadolinium (Gd2O3). Options to decrease the burn up of the control rod material in the hot spot, such as use of stainless steel in the lower active part of the Control Rod are discussed. Comparison with the characteristics of the presently used Control Rods types is performed. The changing of the characteristics of different types Control Rods and the perturbation effects on the reactor neutronics during the BR-2 fuel cycle are investigated. The burn up of the Control Rod absorbing material, total and differential control rods worth, macroscopic and effective microscopic absorption cross sections, fuel and reactivity evolution are evaluated during approximately 30 operating cycles.

  15. Application of MCNPX 2.7.D for reactor core management at the research reactor BR2

    International Nuclear Information System (INIS)

    Kalcheva, Silva; Koonen, Edgar

    2011-01-01

    The paper discusses application of the Monte Carlo burn up code MCNPX 2.7.D for whole core criticality and depletion analysis of the Material Testing Research Reactor BR2 at SCK-CEN in Mol, Belgium. Two different approaches in the use of MCNPX 2.7.D are presented. The first methodology couples the evolution of fuel depletion, evaluated by MCNPX 2.7.D in an infinite lattice with a steady-state 3-D power distribution in the full core model. The second method represents fully automatic whole core depletion and criticality calculations in the detailed 3-D heterogeneous geometry model of the BR2 reactor. The accuracy of the method and computational time as function of the number of used unique burn up materials in the model are being studied. The depletion capabilities of MCNPX 2.7.D are compared vs. the developed at the BR2 reactor department MCNPX & ORIGEN-S combined method. Testing of MCNPX 2.7.D on the criticality measurements at the BR2 reactor is presented. (author)

  16. Irradiation techniques at BR2 reactor

    International Nuclear Information System (INIS)

    Hebel, W.

    1978-01-01

    Since 1963 the material testing reactor BR2 at Mol is operated for the realisation of numerous research programs and experiments on the behavior of materials under nuclear radiation and in particular under intensive neutron exposure. During this period special irradiation techniques and experimental devices were developed according to the desiderata of the different experiments and to the irradiation possibilities offered at BR2. The design and the operating characteristics of quite a number of those irradiation rigs of proven reliability may be used or can be made available for new irradiation experiments. A brief description is given of some typical irradiation devices designed and constructed by CEN/SCK, Technology and Energy Dpt. They are compiled according to their main use for the different research and development programs realized at BR2. Their eventual application however for different objectives could be possible. A final chapter summarizes the principal irradiation conditions offered by BR2 reactor. (author)

  17. Ageing management of the BR2 research reactor

    International Nuclear Information System (INIS)

    Verpoortem, J. R.; Van Dyck, S.

    2014-01-01

    At the Belgian nuclear research centre (SCK.CEN) several test reactors are operated. Among these, Belgian Reactor 2 (BR2) is the largest Material Test Reactor (MTR). This water-cooled, beryllium moderated reactor with a maximum thermal power of 100 MW became operational in 1962. Except for two major refurbishment campaigns of one year each, this reactor has been operated continuously over the past 50 years, with a frequency of 5-12 cycles per year. At present, BR2 is used for different research activities, the production of medical isotopes, the production of n-doped silicon and various training and education activities. (Author)

  18. Aagesta-BR3 Decommissioning Cost. Comparison and Benchmarking Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Geoff [NAC International, Henley on Thames (United Kingdom)

    2002-11-01

    This report presents the results of decommissioning cost analyses focusing on discrete working packages within the decommissioning program of the BR3 reactor in Mol, Belgium and comparison of them with cost estimate data for the Aagesta research reactor in Sweden. The specific BR3 work packages analysed were: Primary coolant piping decontamination; Primary coolant piping dismantling; Vulcain reactor internals dismantling; Westinghouse reactor internals dismantling; Reactor vessel dismantling. The main conclusions to be drawn from the analyses are that: The fixed costs related to decontamination and dismantling activities generally are a very important part of the overall resources needed to execute the work, with the Reactor Pressure Vessel (RPV) seemingly being significantly more demanding than other major components. Cutting activities tend to need something like 150 to 200 labour hours per m{sup 2} of reactor equipment dismantled. Fixed investment costs to set up the equipment needed to cut up major vessels or internals appear to be in the range of MSEK 4 to 8. Consumables costs vary according to the nature of the equipment being dismantled. The thicker the metal being cut, the higher the attrition rate for things such as cutting blades. The range of consumables costs at BR3 have been in the range of MSEK 0.1 to 0.2/m{sup 2} dismantled. The extent of detailed information available in the 1996 Aagesta estimate is not sufficient to enable a full comparison with the BR3 decommissioning results. A global first comparison has been attempted by summing the resources expended on the BR3 work packages described in this report with the combined dismantling data presented in the 1996 Aagesta cost estimate report. Very broadly the cost of decontamination plus dismantling of the main process equipment at Aagesta appears to be in the order of MSEK 70, of which MSEK 4 is labour on preparatory/planning work, MSEK 40 is labour on actual decontamination and dismantling and MSEK

  19. Refurbishing the BR2 materials testing reactor

    International Nuclear Information System (INIS)

    Baugnet, J.M.; Dekeyser, J.; Gubel, P.

    1995-01-01

    SCK/CEN is refurbishing its BR2 reactor to allow its further operation during the next 15 years; in doing so, it chooses to keep BR2 available for future scientific and technological irradiation programs within an international context. (author) 2 figs

  20. Aagesta-BR3 Decommissioning Cost. Comparison and Benchmarking Analysis

    International Nuclear Information System (INIS)

    Varley, Geoff

    2002-11-01

    This report presents the results of decommissioning cost analyses focusing on discrete working packages within the decommissioning program of the BR3 reactor in Mol, Belgium and comparison of them with cost estimate data for the Aagesta research reactor in Sweden. The specific BR3 work packages analysed were: Primary coolant piping decontamination; Primary coolant piping dismantling; Vulcain reactor internals dismantling; Westinghouse reactor internals dismantling; Reactor vessel dismantling. The main conclusions to be drawn from the analyses are that: The fixed costs related to decontamination and dismantling activities generally are a very important part of the overall resources needed to execute the work, with the Reactor Pressure Vessel (RPV) seemingly being significantly more demanding than other major components. Cutting activities tend to need something like 150 to 200 labour hours per m 2 of reactor equipment dismantled. Fixed investment costs to set up the equipment needed to cut up major vessels or internals appear to be in the range of MSEK 4 to 8. Consumables costs vary according to the nature of the equipment being dismantled. The thicker the metal being cut, the higher the attrition rate for things such as cutting blades. The range of consumables costs at BR3 have been in the range of MSEK 0.1 to 0.2/m 2 dismantled. The extent of detailed information available in the 1996 Aagesta estimate is not sufficient to enable a full comparison with the BR3 decommissioning results. A global first comparison has been attempted by summing the resources expended on the BR3 work packages described in this report with the combined dismantling data presented in the 1996 Aagesta cost estimate report. Very broadly the cost of decontamination plus dismantling of the main process equipment at Aagesta appears to be in the order of MSEK 70, of which MSEK 4 is labour on preparatory/planning work, MSEK 40 is labour on actual decontamination and dismantling and MSEK 25 is

  1. Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Sikik, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.

  2. Operating Experience with the BR-5 Reactor; Experience acquise aupres du reacteur BR-5; Opyt ehkspluatatsii reaktora BR-5; Experiencia practica con el reactor BR-5

    Energy Technology Data Exchange (ETDEWEB)

    Lejpunskij, A. I.; Kazachkovskij, O. D.; Pinkhasik, M. S.; Aristarkhov, N. N.; Karpov, A. V.; Larin, E. P.; Efimov, I. A.

    1963-10-15

    The paper discusses the carrying-out of repair and maintenance work on the radioactive liquid-metal circuit of the BR-5 fast neutron reactor. Attention is also given to problems of reactor operation after achievement of the planned 2% fuel burn-up with some disturbance of leak-tightness in individual fuel elements. An account is given of experience in discharging the active section, examining the condition and leak-tightness of the fuel elements, and decontaminating the equipment and piping of the first radioactive circuit after reaching 5% fuel burn-up. (author) [French] Dans ce memoire les auteurs decrivent l'execution des reparations et des travaux d'entretien dans le circuit radioactif liquide-metal du reacteur a neutrons rapides BR-5. Ils etudient egalement les problemes lies au fonctionnement du reacteur au taux de combustion de 2% prevu avec quelques defauts d'etancheite dans des elements combustibles particuliers. Ils decrivent le dechargementen zone active et examinent les conditions d'etancheite des elements combustibles. Ainsi que la decontamination de l'appareillage et des tuyauteries du premier circuit radioactif apres avoir atteint un taux de combustion de 5%. (author) [Spanish] En la memoria se examinan los problemas planteados por el mantenimiento del circuito radiactivo de metal liquido del reactor de neutrones rapidos BR-5. Se tratan cuestiones relacionadas con la explotacion del reactor una vez alcanzado el grado de combustion de 2%, previsto en el proyecto y luego de producirse ciertas alteraciones de la densidad de determinados elementos combustibles. Se describen la experiencia adquirida durante la descarga del cuerpo del reactor, las investigaciones del estado general y de la hermeticidad de los elementos combustibles y las operaciones de descontaminacion de la instalacion y de las tuberias del circuito radiactivo primario despues de alcanzado un grado de combustion de 5%. (author) [Russian] V doklade rassmatrivayutsya voprosy proizvodstva

  3. Regulating the Emission Spectrum of CsPbBr3 from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor

    Science.gov (United States)

    Tang, Yong; Lu, Hanguang; Rao, Longshi; Ding, Xinrui; Yan, Caiman; Yu, Binhai

    2018-01-01

    The ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs) is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr3 QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr3 QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing halide component. The mechanism of photoluminescence (PL) spectral shift of CsPbBr3 QDs was investigated, the result shows that the supersaturation control enabled by the superior mass and heat transfer performance in the microchannel is the key to achieve the wide range of PL spectrum, with only a change in the setting of the temperature controller required. The wide spectrum of CsPbBr3 QDs can be applied to light-emitting diodes (LEDs), photoelectric sensors, lasers, etc. PMID:29498710

  4. Regulating the Emission Spectrum of CsPbBr3 from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor

    OpenAIRE

    Yong Tang; Hanguang Lu; Longshi Rao; Zongtao Li; Xinrui Ding; Caiman Yan; Binhai Yu

    2018-01-01

    The ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs) is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr3 QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr3 QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing hal...

  5. Refurbishment programme for the BR2-reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koonen, E [Centre d' Etude de l' Energie Nucleaire, Studiecentrum voor Kernenergie, BR2 Department, Boeretang, Mol (Belgium)

    1992-07-01

    BR2 is a high flux engineering test reactor, which differs from comparable material testing reactors by its specific core array (fig. 1). It is a heterogeneous, thermal, tank-in-pool type reactor, moderated by beryllium and light water, which serves also as coolant. The fuel elements consist of cylindrical assemblies loaded in channels materialized by hexagonal beryllium prisms. The central 200 mm channel is vertical, while all others are inclined and form a hyperbolical arrangement around the central one. This feature combines a very compact core with the requirement of sufficient space for individual access to all channels through penetrations in the top cover of the aluminium pressure vessel. Each channel may hold a fuel element, a control rod, an experiment, an irradiation device or a beryllium plug. The refurbishment Program According to the present programme of C.E.N./S.C.K., BR2 will be in operation until 1996. At that time, the beryllium matrix will reach its foreseen end-of-life. In order to continue operation beyond this point, a thorough refurbishment of the reactor is foreseen, in addition to the unavoidable replacement of the matrix, to ensure quality of the installation and compliance with modern standards. Some fundamental options have been taken as a starting point: BR2 will continue to be used as a classical MTR, i.e. fuel and material irradiations and safety experiments with some additional service-activities. The present configuration is optimized for that use and there is no specific experimental requirement to change the basic concepts and performance characteristics. From the customers viewpoint, it is desirable to go ahead with the well-known features of BR2, to maintain a high degree of availability and reliability and to minimize the duration of the long shutdown. It is also important to limit the amount of nuclear liabilities. So the objective of the refurbishment programme is the life extension of BR2 for about 15 years, corresponding to

  6. Refurbishment programme for the BR2-reactor

    International Nuclear Information System (INIS)

    Koonen, E.

    1992-01-01

    BR2 is a high flux engineering test reactor, which differs from comparable material testing reactors by its specific core array (fig. 1). It is a heterogeneous, thermal, tank-in-pool type reactor, moderated by beryllium and light water, which serves also as coolant. The fuel elements consist of cylindrical assemblies loaded in channels materialized by hexagonal beryllium prisms. The central 200 mm channel is vertical, while all others are inclined and form a hyperbolical arrangement around the central one. This feature combines a very compact core with the requirement of sufficient space for individual access to all channels through penetrations in the top cover of the aluminium pressure vessel. Each channel may hold a fuel element, a control rod, an experiment, an irradiation device or a beryllium plug. The refurbishment Program According to the present programme of C.E.N./S.C.K., BR2 will be in operation until 1996. At that time, the beryllium matrix will reach its foreseen end-of-life. In order to continue operation beyond this point, a thorough refurbishment of the reactor is foreseen, in addition to the unavoidable replacement of the matrix, to ensure quality of the installation and compliance with modern standards. Some fundamental options have been taken as a starting point: BR2 will continue to be used as a classical MTR, i.e. fuel and material irradiations and safety experiments with some additional service-activities. The present configuration is optimized for that use and there is no specific experimental requirement to change the basic concepts and performance characteristics. From the customers viewpoint, it is desirable to go ahead with the well-known features of BR2, to maintain a high degree of availability and reliability and to minimize the duration of the long shutdown. It is also important to limit the amount of nuclear liabilities. So the objective of the refurbishment programme is the life extension of BR2 for about 15 years, corresponding to

  7. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    Neve de Mevergnies, M.

    1977-01-01

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  8. BR2 Reactor: Irradiation of fuels

    International Nuclear Information System (INIS)

    Verwimp, A.

    2005-01-01

    Safe, reliable and economical operation of reactor fuels, both UO 2 and MOX types, requires in-pile testing and qualification up to high target burn-up levels. In-pile testing of advanced fuels for improved performance is also mandatory. The objectives of research performed at SCK-CEN are to perform Neutron irradiation of LWR (Light Water Reactor) fuels in the BR2 reactor under relevant operating and monitoring conditions, as specified by the experimenter's requirements and to improve the on-line measurements on the fuel rods themselves

  9. Regulating the Emission Spectrum of CsPbBr3 from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2018-03-01

    Full Text Available The ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr3 QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr3 QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing halide component. The mechanism of photoluminescence (PL spectral shift of CsPbBr3 QDs was investigated, the result shows that the supersaturation control enabled by the superior mass and heat transfer performance in the microchannel is the key to achieve the wide range of PL spectrum, with only a change in the setting of the temperature controller required. The wide spectrum of CsPbBr3 QDs can be applied to light-emitting diodes (LEDs, photoelectric sensors, lasers, etc.

  10. Autophagy inhibition synergistically enhances anti-cancer efficacy of RAMBA, VN/12-1 in SKBR-3 cells and tumor xenografts

    Science.gov (United States)

    Godbole, Abhijit M.; Purushottamachar, Puranik; Martin, Marlena S.; Daskalakis, Constantine; Njar, Vincent C. O.

    2012-01-01

    VN/12-1 is a novel retinoic acid metabolism blocking agent (RAMBA) discovered in our laboratory. The purpose of the study was to elucidate the molecular mechanism of VN/12-1’s anticancer activity in breast cancer cell lines and in tumor xenografts. We investigated the effects of VN/12-1 on induction of autophagy andapoptosis in SKBR-3 cells. Further, we also examined the impact of pharmacological and genomic inhibition of autophagy on VN/12-1’s anti-cancer activity. Finally, the anti-tumor activity of VN/12-1 was evaluated as a single agent and in combination with autophagy inhibitor chloroquine (CHL) in an SKBR-3 mouse xenograft model. Short exposure of low dose (< 10 µM) of VN/12-1 induced endoplasmic reticulum stress (ERS), autophagy and inhibits G1-S phase transition and caused a protective response. However, higher dose of VN/12-1 initiates apoptosis in vitro. Inhibition of autophagy using either pharmacological inhibitors or RNA interference of Beclin-1 enhanced anti-cancer activity induced by VN/12-1 in SKBR-3 cells by triggering apoptosis. Importantly, VN/12-1 (5 mg/kg twice weekly) and the combination of VN/12-1 (5 mg/kg twice weekly) + chloroquine (50 mg/kg twice weekly) significantly suppressed established SKBR-3 tumor growth by 81.4% (p < 0.001 vs. control) and 96.2% (p < 0.001 vs. control), respectively. Our novel findings suggest that VN/12-1 may be useful as a single agent or in combination with autophagy inhibitors for treating human breast cancers. Our data provides a strong rationale for clinical evaluation of VN/12-1 as single agent or in combination with autophagy inhibitors. PMID:22334589

  11. Thermodynamic assessment of NdBr3 unary and LiBr-NdBr3 binary system

    International Nuclear Information System (INIS)

    Gong Weiping; Gaune-Escard, Marcelle

    2006-01-01

    Phase diagram and thermodynamic properties calculations were carried out on the NdBr 3 unary and the LiBr-NdBr 3 binary systems over the entire temperature and composition range, respectively. The Gibbs energy of NdBr 3 was evaluated using an independent polynomial to fit the experimental thermodynamic properties. The liquid phase in the LiBr-NdBr 3 system was described by the two sub-lattice ionic solution model (Li + ) P : (Br - , NdBr 6 -3 , NdBr 3 ) Q . Comparisons between the calculated phase diagram and thermodynamic quantities show that all reliable experimental information was satisfactorily accounted for by the present thermodynamic description

  12. BR2 reactor: medical and industrial applications

    International Nuclear Information System (INIS)

    Ponsard, B.

    2005-01-01

    The radioisotopes are produced for various applications in the nuclear medicine (diagnostic, therapy, palliation of metastatic bone pain), industry (radiography of welds, ...), agriculture (radiotracers, ...) and basic research. Due to the availability of high neutron fluxes (thermal neutron flux up to 10 15 n/cm 2 .s), the BR2 reactor is considered as a major facility through its contribution for a continuous supply of products such 99 Mo ( 99 mTc), 131 I, 133 Xe, 192 Ir, 186 Re, 153 Sm, 90 Y, 32 P, 188 W ( 188 Re), 203 Hg, 82 Br, 41 Ar, 125 I, 177 Lu, 89 Sr, 60 Co, 169 Yb, 147 Nd, and others. Neutron Transmutation Doped (NTD) silicon is produced for the semiconductor industry in the SIDONIE (Silicon Doping by Neutron Irradiation Experiment) facility, which is designed to continuously rotate and traverse the silicon through the neutron flux. These combined movements produce exceptional dopant homogeneity in batches of silicon measuring 4 and 5-inches in diameter by up to 750 mm in length. The main objectives of work performed were to provide a reliable and qualitative supply of radioisotopes and NTD-silicon to the customers in accordance with a quality system that has been certified to the requirements of the EN ISO 9001: 2000. This new Quality System Certificate has been obtained in November 2003 for the Production of radioisotopes for medical and industrial applications and the Production of Neutron Transmutation Doped (NTD) Silicon in the BR2 reactor

  13. Decommissioning of the BR3 PWR

    International Nuclear Information System (INIS)

    Massaut, V.

    1998-01-01

    The dismantling and the decommissioning of nuclear installations at the end of their life-cycle is a new challenge to the nuclear industry. Different techniques and procedures for the dismantling of a nuclear power plant on an existing installation, the BR-3 pressurized-water reactor, are described. The scientific program, objectives, achievements in this research area at the Belgian Nuclear Research Centre SCK-CEN for 1997 are summarized

  14. Production of Sn-117m in the BR2 high-flux reactor.

    Science.gov (United States)

    Ponsard, B; Srivastava, S C; Mausner, L F; Russ Knapp, F F; Garland, M A; Mirzadeh, S

    2009-01-01

    The BR2 reactor is a 100MW(th) high-flux 'materials testing reactor', which produces a wide range of radioisotopes for various applications in nuclear medicine and industry. Tin-117m ((117m)Sn), a promising radionuclide for therapeutic applications, and its production have been validated in the BR2 reactor. In contrast to therapeutic beta emitters, (117m)Sn decays via isomeric transition with the emission of monoenergetic conversion electrons which are effective for metastatic bone pain palliation and radiosynovectomy with lesser damage to the bone marrow and the healthy tissues. Furthermore, the emitted gamma photons are ideal for imaging and dosimetry.

  15. In-pile creep test technique for zirconium alloys examination in BR-10 reactor channels

    International Nuclear Information System (INIS)

    Pevchikh, Yu.M.; Kruglov, A.S.; Troyanov, V.M.

    2002-01-01

    The irradiation enhanced creep phenomenon was discovered in stainless steels as a specific physical process accompanying high-intensity neutron flux irradiation in fast reactors. IPPE is also experienced in irradiation creep test activities, studying different types of materials under irradiation in BR-10 fast reactor. Series of in-channel type test facilities were constructed and tested in BR-10 reactor's 'dry' channels in order to carry out full-scale instrumented examination regarded to in-pile creep behaviour of different reactor materials. As a result, a specific test technique, named 'Tensometric method', has been developed and experimentally proved to be power enough in order to investigate irradiation creep of materials right in situ under neutron irradiation. The main peculiarity of test facility, which is constructed to apply the tensometric method, consists in absence of any special deformation-measurement cell at all. The in-pile creep strain measurement technique developed at IPPE is based on the non-direct measurement of specimen's deformation (either linear tensile strain or angular twisting one), which directly affects the loaded draws' tension parameters. Starting from 1993, in-pile creep experiments to investigate in-reactor creep behaviour of E110 and E635 zirconium alloys were carried out in BR-10. Experimental results and data collected during more than 20-year of BR-10 in-reactor creep test experience can be assumed as a strong evidence that the tensometric technique is a powerful instrument, which can give a chance to study different irradiation effects on reactor materials directly under irradiation. (author)

  16. Decommissioning of the BR3 PWR

    International Nuclear Information System (INIS)

    Massaut, V.; Klein, M.

    1998-01-01

    The objectives, programme and main achievements of SCK-CEN's decommissioning programme in 1997 are summarised. Particular emphasis is on the BR3 decommissioning project. In 1997, auxiliary equipment and loops were dismantled; concrete antimissile slabs were decontaminated; the radiology of the primary loop was modelled; the quality assurance procedure for dismantling loops and equipment were implemented; a method for the dismantling of the reactor pressure vessel was selected; and contaminated thermal insulation of the primary loop containing asbestos was removed

  17. Recent advances in the utilization and the irradiation technology of the refurbished BR2 reactor

    International Nuclear Information System (INIS)

    Dekeyser, J.; Benoit, P.; Decloedt, C.; Pouleur, Y.; Verwimp, A.; Weber, M.; Vankeerberghen, M.; Ponsard, B.

    1999-01-01

    Operation and utilization of the materials testing reactor BR2 at the Belgian Nuclear Research Centre (SCK·CEN) has since its start in 1963 always followed closely the needs and developments of nuclear technology. In particular, a multitude of irradiation experiments have been carried out for most types of nuclear power reactors, existing or under design. Since the early 1990s and increased focus was directed towards more specific irradiation testing needs for light water reactor fuels and materials, although other areas of utilization continued as well (e.g. fusion reactor materials, safety research, ...), including also the growing activities of radioisotope production and silicon doping. An important milestone was the decision in 1994 to implement a comprehensive refurbishment programme for the BR2 reactor and plant installations. The scope of this programme comprised very substantial studies and hardware interventions, which have been completed in early 1997 within planning and budget. Directly connected to this strategic decision for reactor refurbishment was the reinforcement of our efforts to requalify and upgrade the existing irradiation facilities and to develop advanced devices in BR2 to support emerging programs in the following fields: - LWR pressure vessel steel, - LWR irradiation assisted stress corrosion cracking (IASCC), - reliability and safety of high-burnup LWR fuel, - fusion reactor materials and blanket components, - fast neutron reactor fuels and actinide burning, - extension and diversification of radioisotope production. The paper highlights these advances in the areas of BR2 utilisation and the ongoing development activities for the required new generation of irradiations devices. (author)

  18. Monte Carlo modelling of the Belgian materials testing reactor BR2: present status

    International Nuclear Information System (INIS)

    Verboomen, B.; Aoust, Th.; Raedt, Ch. de; Beeckmans de West-Meerbeeck, A.

    2001-01-01

    A very detailed 3-D MCNP-4B model of the BR2 reactor was developed to perform all neutron and gamma calculations needed for the design of new experimental irradiation rigs. The Monte Carlo model of BR2 includes the nearly exact geometrical representation of fuel elements (now with their axially varying burn-up), of partially inserted control and regulating rods, of experimental devices and of radioisotope production rigs. The multiple level-geometry possibilities of MCNP-4B are fully exploited to obtain sufficiently flexible tools to cope with the very changing core loading. (orig.)

  19. Understanding overpressure in the FAA aerosol can test by C3H2F3Br (2-BTP).

    Science.gov (United States)

    Linteris, Gregory Thomas; Babushok, Valeri Ivan; Pagliaro, John Leonard; Burgess, Donald Raymond; Manion, Jeffrey Alan; Takahashi, Fumiaki; Katta, Viswanath Reddy; Baker, Patrick Thomas

    2016-05-01

    Thermodynamic equilibrium calculations, as well as perfectly-stirred reactor (PSR) simulations with detailed reaction kinetics, are performed for a potential halon replacement, C 3 H 2 F 3 Br (2-BTP, C 3 H 2 F 3 Br, 2-Bromo-3,3,3-trifluoropropene), to understand the reasons for the unexpected enhanced combustion rather than suppression in a mandated FAA test. The high pressure rise with added agent is shown to depend on the amount of agent, and is well-predicted by an equilibrium model corresponding to stoichiometric reaction of fuel, oxygen, and agent. A kinetic model for the reaction of C 3 H 2 F 3 Br in hydrocarbon-air flames has been applied to understand differences in the chemical suppression behavior of C 3 H 2 F 3 Br vs. CF 3 Br in the FAA test. Stirred-reactor simulations predict that in the conditions of the FAA test, the inhibition effectiveness of C 3 H 2 F 3 Br at high agent loadings is relatively insensitive to the overall stoichiometry (for fuel-lean conditions), and the marginal inhibitory effect of the agent is greatly reduced, so that the mixture remains flammable over a wide range of conditions. Most important, the flammability of the agent-air mixtures themselves (when compressively preheated), can support low-strain flames which are much more difficult to extinguish than the easy-to extinguish, high-strain primary fireball from the impulsively released fuel mixture. Hence, the exothermic reaction of halogenated hydrocarbons in air should be considered in other situations with strong ignition sources and low strain flows, especially at preheated conditions.

  20. The BR2 materials testing reactor. Past, ongoing and under-study upgradings

    Energy Technology Data Exchange (ETDEWEB)

    Baugnet, J M; Roedt, Ch de; Gubel, P; Koonen, E [Centre d' Etude de I' Energie Nucleaire, Studiecentrum voor Kernenergie, C.E.N./S.C.K., Mol (Belgium)

    1990-05-01

    The BR2 reactor (Mol, Belgium) is a high-flux materials testing reactor. The fuel is 93% {sup 235}U enriched uranium. The nominal power ranges from 60 to 100 MW. The main features of the design are the following: 1) maximum neutron flux, thermal: 1.2 x 10{sup 15} n/cm{sup 2} s; fast (E > 0.1 MeV) : 8.4 x 10{sup 14} n /cm{sup 2} s; 2) great flexibility of utilization: the core configuration and operation mode can be adapted to the experimental loading; 3) neutron spectrum tailoring; 4) availability of five 200 mm diameter channels besides the standard channels (84 mm diameter); 5) access to the top and bottom covers of the reactor authorizing the irradiation of loops. The reactor is used to study the behaviour of fuel elements and structural materials intended for future nuclear power stations of several types (fission and fusion). Irradiations are carried out in connection with performance tests up to very high burn-up or neutron fluence as well as for safety experiments, power cycling experiments, and generally speaking, tests under off-normal conditions. Irradiations for nuclear transmutation (production of high specific activity radio-isotopes and transplutonium elements), neutron-radiography, use of beam tubes for physics studies, and gamma irradiations are also carried out. The BR2 is used in support of Belgian programs, at the request of utilities, industry and universities and in the framework of international agreements. The paper reviews the past and ongoing upgrading and enhancement of reactor capabilities as well as those under study or consideration, namely with regard to: reactor equipment, fuel elements, irradiation facilities, reactor operation conditions and long-term strategy. (author)

  1. Monte Carlo simulation of irradiation of MTR fuel plates in the BR2 reactor using a full-scale 3-d model with inclined channels

    International Nuclear Information System (INIS)

    Kuzminov, V. V; Koonen, E.; Ponsard, B.

    2002-01-01

    A three-dimensional full-scale Monte Carlo model of the BR2 reactor has been developed for simulation of irradiation conditions of materials and fuel loaded in various irradiation devices. This new reactor model includes a detailed geometrical description of the inclined reactor channels, the irradiation devices loaded in these channels including the materials to be tested/loaded in these devices, the burn-up of the BR2 fuel elements and the poisoning of the beryllium matrix. Recently a benchmark irradiation of new irradiation device for testing and qualification of MTR fuel plates has been performed. For this purpose the detailed irradiation conditions of fuel plates had to be predetermined. Monte Carlo calculations of neutron fluxes and heat load distributions in irradiated MTR fuel plates were performed taking into account the contents of all loaded experimental devices in the reactor channels. A comparison of the calculated and measured values of neutron fluxes and of heat loads in the BR2 reactor is presented in this paper. The comparison is part of the validation process of the new reactor model. It also serves to establish the capability to conduct a fuel plate irradiation program under requested and well- known irradiation conditions. (author)

  2. Understanding overpressure in the FAA aerosol can test by C3H2F3Br (2-BTP)✩

    Science.gov (United States)

    Linteris, Gregory Thomas; Babushok, Valeri Ivan; Pagliaro, John Leonard; Burgess, Donald Raymond; Manion, Jeffrey Alan; Takahashi, Fumiaki; Katta, Viswanath Reddy; Baker, Patrick Thomas

    2018-01-01

    Thermodynamic equilibrium calculations, as well as perfectly-stirred reactor (PSR) simulations with detailed reaction kinetics, are performed for a potential halon replacement, C3H2F3Br (2-BTP, C3H2F3Br, 2-Bromo-3,3,3-trifluoropropene), to understand the reasons for the unexpected enhanced combustion rather than suppression in a mandated FAA test. The high pressure rise with added agent is shown to depend on the amount of agent, and is well-predicted by an equilibrium model corresponding to stoichiometric reaction of fuel, oxygen, and agent. A kinetic model for the reaction of C3H2F3Br in hydrocarbon-air flames has been applied to understand differences in the chemical suppression behavior of C3H2F3Br vs. CF3Br in the FAA test. Stirred-reactor simulations predict that in the conditions of the FAA test, the inhibition effectiveness of C3H2F3Br at high agent loadings is relatively insensitive to the overall stoichiometry (for fuel-lean conditions), and the marginal inhibitory effect of the agent is greatly reduced, so that the mixture remains flammable over a wide range of conditions. Most important, the flammability of the agent-air mixtures themselves (when compressively preheated), can support low-strain flames which are much more difficult to extinguish than the easy-to extinguish, high-strain primary fireball from the impulsively released fuel mixture. Hence, the exothermic reaction of halogenated hydrocarbons in air should be considered in other situations with strong ignition sources and low strain flows, especially at preheated conditions. PMID:29628525

  3. BR3/Vulcain Nuclear Power Station. Construction and Operational Experience

    Energy Technology Data Exchange (ETDEWEB)

    Storrer, J. [Belgonucleaire, S.A., Brussels (Belgium)

    1968-04-15

    A full-scale reactor experiment was set out as the main objective of the Vulcain research and development programme agreed in May 1962 between the UKAEA and BelgoNucleaire, manager of ''Syndicat Vulcain''. Vulcain uses variable moderation as the long-term method to control reactivity: the reactor is cooled and moderated by a mixture of heavy and light water, the D{sub 2}O content being stepwise reduced to permit power operation with all control rods completely out of the core. To carry out the Vulcain power experiment it was decided to modify the BR3 nuclear power plant located at Mol, Belgium, which had operated from 1962 to 1964 as a conventional PWR with outputs of 40.9 MW(th) and 11.45 MW(e). The BR3/Vulcain plant was started in December 1966 and since then is running with a load factor around 90%. It is the first time that such a reactor type has been built and operated and the experience gained by its design, construction, commissioning and operation has proven to be most valuable. D{sub 2}O is being used at a pressure (2000 lb/in{sup 2} abs.) never before achieved in a heavy-water reactor and the leak rate from the HP primary systems to the atmosphere has been kept to a negligible value, around 1 to 2 grams/h. Commissioning of the primary plant had been carried out with light water first without fuel, and thereafter with fuel, at which time the water was poisoned with boric acid. The reactor vessel contains experimental devices such as 65 in-pile instrumentation detectors and four hydraulically operated Zircaloy control rods. They required the interposition of a collar between the vessel and its lid. Refuelling is performed under boronated light water, the interchange between the primary water and the H{sub 2}O being carried out by means of a draining and spraying system. The reactor had been operated for two years before its modifications for Vulcain: many lessons have therefore been learned about working on irradiated systems. The BR3/Vulcain core has a

  4. Novel VN/C nanocomposites as methanol-tolerant oxygen reduction electrocatalyst in alkaline electrolyte

    Science.gov (United States)

    Huang, K.; Bi, K.; Liang, C.; Lin, S.; Zhang, R.; Wang, W. J.; Tang, H. L.; Lei, M.

    2015-06-01

    A novel VN/C nanostructure consisting of VN nanoparticles and graphite-dominant carbon layers is synthesized by nitridation of V2O5 using melamine as reductant under inert atmosphere. High crystalline VN nanoparticles are observed to be uniformly distributed in carbon layers with an average size of ca13.45 nm. Moreover, the electrocatalytic performance of VN/C towards oxygen reduction reaction (ORR) in alkaline electrolyte is fascinating. The results show that VN/C has a considerable ORR activity, including a 75 percent value of the diffusion-limited current density and a 0.11 V smaller value about the onset potential with respect to Pt/C catalyst. Moreover, the excellent methanol-tolerance performance of VN/C has also been verified with 3 M methanol. Combined with the competitive prices, this VN/C nanocomposite can serve as an appropriate non-precious methanol-tolerant ORR catalyst for alkaline fuel cells.

  5. Technology development and production of elongated shell for reactor vessel active zone of WWER-TOI project from steel 15Cr2NiMoVN class 1

    International Nuclear Information System (INIS)

    Shklyaev, S.Eh.; Titova, T.I.; Ratushev, D.V.; Shul'gan, N.A.; Eroshkin, S.B.; Durynin, V.A.; Efimov, S.V.; Dub, V.S.; Kulikov, A.P.; Romashkin, A.N.

    2015-01-01

    Production process for the elongated shell blank of the active zone of the reactor pressure vessel made from steel 15Cr2NiMoVN Class 1 with finished sizes Dext=4.655 mm, Dint=4.240 mm, H=4.910 mm (height for heat treatment – 5.750 mm) is presented. For the first time in Russia in production site of OMZ-Special steel LLC a unique elongated shell blank of the reactor vessel active zone was made from ingot 420.0 t for WWER-TOI project fully meeting the specified requirements in terms of metallurgical quality and set of service properties [ru

  6. Spent fuel strategy for the BR2 reactor

    International Nuclear Information System (INIS)

    Gubel, P.; Collard, G.

    1998-01-01

    The Belgian MTR reactor is fuelled with HEU UAl x elements and the fuel cycle was normally closed by reprocessing consecutively in Belgium (Eurochemic), France (Marcoule) and finally in the U.S.A. (Idaho Falls and Savannah River). When the acceptance of spent fuel by the U.S. was terminated, the facility was left with a huge backlog of used elements stored under water. After a few years, urgent and mandatory actions were required to maintain the BR2 facility operating. Later the accent was put on the evaluation of an optimum long term solution for the BR2 spent fuel during the projected 15 years life extension after the refurbishment executed between 1995 and 1997. The paper gives an overview of these successive actions taken during the last years as well as the handled various criteria for comparing and evaluating the available long-term alternatives. After commitment to reprocessing in existing facilities operated for aluminum fuels the focus of the BR2 fuel cycle strategy is now moving to the procurement of the necessary HEU fuel for securing the long-term operation of the facility. (author)

  7. Validation of SCALE4.4a for Calculation of Xe-Sm Transients After a Scram of the BR2 Reactor

    International Nuclear Information System (INIS)

    Kalcheva, S.; Ponsard, B.; Koonen, E.

    2007-01-01

    The aim of this report is to validate the computational modules system SCALE4.4a for evaluation of reactivity changes, macroscopic absorption cross sections and calculations of the positions of the Control Rods during their motion in Xe-Sm transient after a scram of the BR-2 reactor. The rapid shutting down of the reactor by inserting of negative reactivity by the Control Rods is known as a reactor scram. Following reactor scram, a large xenon and samarium buildup occur in the reactor, which may appreciably affect the multiplication factor of the core due to enormous neutron absorption. The validation of the calculations of Xe-Sm transients by SCALE4.4a has been performed on the measurements of the positions of the Control Rods during their motion in Xe-Sm transients of the BR-2 reactor and on comparison with the calculations by the standard procedure XESM, developed at the BR-2 reactor. A final conclusion is made that the SCALE4.4a modules system can be used for evaluation of Xe-Sm transients of the BR-2 reactor. The utilization of the code is simple, the computational time takes from few seconds.

  8. General outline of the operation and utilization of the BR2 reactor

    International Nuclear Information System (INIS)

    Baugnet, J.M.; Leonard, F.; Gandolfo, J.M.; Lenders, H.

    1978-01-01

    The BR2 reactor is a high-flux material testing reactor of the thermal heterogeneous type. The fuel is 93% 235 U enriched uranium in the form of plates clad in aluminium. The moderator consists of beryllium and light water, the water being pressurized (12.5kg/cm 2 )and acting also as coolant. The pressure vessel is of aluminium, and is placed in a pool of demineralized water. One should stress the following main features of the design: the experimental channels are skew, the tube bundle presenting the form of a hyperboloid of revolution (see figure 1)-this gives easy access at the top and bottom reactor covers allowing complex instrumented devices, while maintaining a very high neutron flux at the core; great flexibilty of utilization, due to the fact that it is possible to adapt the core configuration to the experimental loading as the fissile charge can be centred on different experimental channels; although BR2 is a thermal reactor, it is possible to achieve neutron spectra very similar to those obtained in a fast reactor, either by the use of absorbing screens or by the use of fissile material within the experimental device; five 200mm diameter channels are available for loading large experimental irradiation devices, as in-pile sodium, gas or water loops. (author)

  9. Mixed core management: Use of 93% and 72% enriched uranium in the BR2 reactor

    International Nuclear Information System (INIS)

    Ponsard, B.

    2000-01-01

    The BR2 reactor, put into operation in 1963 and refurbished from July 1995 till April 1997, is a 100 MW high-flux Materials Testing Reactor, using 93% 235 U enriched uranium as standard fuel, light water as coolant and beryllium as moderator. The present operating regime consists of five irradiation cycles per year at an operating power between 50 and 70 MW; each cycle is characterized by 21 days operation. In the framework of a 'qualification programme', six 72% 235 U fuel elements fabricated with uranium recovered from the reprocessing of BR2 spent fuel at UKAEA-Dounreay have been successfully irradiated in the period 1994-1995 reaching a maximum mean burnup of 48% without the release of fission products. Since 1998, this type of fuel element is irradiated routinely together with standard 93% 235 U fuel elements in order to optimize the utilization of the available HEU inventory. The purpose of this paper is to present the strategy developed in order to optimize the mixed core management of the BR2 reactor. (author)

  10. The decommissioning of the BR3 steam generator

    International Nuclear Information System (INIS)

    Denissen, L.

    2006-01-01

    A steam generator is a crucial component in a PWR (Pressurized Water Reactor). It is the crossing between the primary, contaminated, circuit and the secondary water-steam circuit. The heat from the primary reactor coolant loop is transferred to the secondary side in thousands of small tubes. Due to several problems in the material of those tubes, like SCC (Stress Corrosion Cracking), insufficient control in water chemistry, which can be the cause of tube leakage, more and more steam generators are replaced today. Only in Belgium, already 17 of them are replaced. The old 300 ton heavy SGs are stored at the 2 nuclear power plants of Doel and Tihange . While it was foreseen in the BR3 strategy to dismantle the steam generator (only 30 ton), we took the opportunity to search for a complete package in the decommissioning of a steam generator. The complete management consists of a decontamination of the primary side followed by the complete dismantling. The first step, the decontamination with MEDOC (water box + tube bundle) has already been achieved in 2002. It has led to an important DF (Decontamination Factor) between 100 and 1000 and an important dose rate reduction. This hard chemical decontamination process has been described earlier in the scientific report 2002 (The BR3 steam generator decontamination with the MEDOC process - M. Ponnet). The second step, the complete dismantling of the SG has been executed in 2005. With the BR3 SG, the main goal was to dismantle it in a safe way and to free release a maximum of material. We've used two cutting tools to perform the job: A HPWJC (High Pressure Water Jet Cutting) tool in combination with a hydraulic robot and a water cooled diamond cable. The last technique was done in close collaboration with the external company Husqvarna. It was important to have an idea of the performance, the efficiency of the cable and the quantity and the type of secondary waste

  11. Core electron binding energy shifts of AlBr3 and Al2Br6 vapor

    International Nuclear Information System (INIS)

    Mueller, Astrid M.; Plenge, Juergen; Leone, Stephen R.; Canton, Sophie E.; Rude, Bruce S.; Bozek, John D.

    2006-01-01

    The Al 2p and Br 3d inner-shell photoelectron spectra of aluminum tribromide monomer and dimer vapor were measured at 90 and 95 eV photon energy, respectively, to determine the core electron binding energies of the atoms in the two molecular species. While AlBr 3 has three identical Br atoms, Al 2 Br 6 exhibits four terminal and two bridging Br atoms. The species are identified by their distinct valence photoelectron spectra. Comparison of the observed Al 2p 1/2 and Al 2p 3/2 electron binding energies of AlBr 3 with those of Al 2 Br 6 shows that there is a chemical shift of (0.15 ± 0.03) eV to lower energy in the dimer. In Al 2 Br 6 , an assignment is proposed in which the Br 3d 3/2 and Br 3d 5/2 binding energies of terminal Br atoms are (1.18 ± 0.03) eV lower than those of bridging Br atoms. This assignment assumes that both types of Br atoms have similar cross-sections for ionization. With this result, the Br 3d 3/2 and Br 3d 5/2 binding energies of Br atoms in AlBr 3 are (0.81 ± 0.03) eV lower than those of bridging Br atoms of the dimer but (0.37 ± 0.03) eV higher than those of terminal Br atoms of the dimer. The obtained chemical shifts are considered in terms of the binding relations and electron density distributions in both molecules. Chemical shifts that are larger than a few hundred millielectron volts, as observed in the Al 2 Br 6 /AlBr 3 system, offer potential to study the dissociation dynamics of the dimer in a femtosecond visible or ultraviolet-pump/XUV-probe experiment

  12. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [SCK CEN (Belgium); Kalcheva, S. [SCK CEN (Belgium); Sikik, E. [SCK CEN (Belgium); Koonen, E. [SCK CEN (Belgium)

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.

  13. Study of the AlON-VN composite ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Sainbaatar; Zhang Zuotai; Li Wenchao; Wang Xidong [Dept. of Physical Chemistry of Metallurgy, Univ. of Science and Technology Beijing, BJ (China)

    2005-07-01

    Aluminium oxynitride-vanadium nitride (AlON-VN) composite ceramic was fabricated based on thermodynamic analysis of V-Al-O-N systems. The results indicated that the VN dispersed homogeneously in AlON matrix and can reinforce AlON matrix. Oxidation behavior was studied and the results showed that it belongs to self-protective oxidation due to the good adherence of oxidation product. Therefore, AlON-VN composites have excellent oxidation resistance. (orig.)

  14. Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior

    International Nuclear Information System (INIS)

    Cheng Fukui; He Chun; Shu Dong; Chen Hongyu; Zhang Jie; Tang Shaoqing; Finlow, David E.

    2011-01-01

    Highlights: ► Organic nitridizing agent was employed for preparation of nanocrystalline VN. ► The supercapacitive behavior of VN was studied by electrochemical method. ► The supercapacitive behavior of VN was studied in three kinds of electrolyte. ► The specific capacitance of VN was determined as 273 F g −1 in 1.0 M KOH. ► The supercapacitive mechanism and involved factor on capacitance were analyzed. - Abstract: An organic nitridizing reagent was employed in the preparation of nanocrystalline VN at 800 °C under a N 2 atmosphere. The prepared VN was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and its supercapacitive behavior was studied by cyclic voltammetry (CV) in three different types of aqueous electrolyte, 0.5 M H 2 SO 4 , 2.0 M NaNO 3 and 1.0 M KOH. The XRD results indicate that prepared VN has a cubic structure with space group Fm3m and a lattice parameter of 4.139 Å. The nanocrystalline structure of VN with a low degree of crystallinity was confirmed by TEM imaging. The presence of oxygen on the VN surface was detected by FTIR and XPS, and its molecular composition was determined to be VN 1.02 O 0.1 . The specific capacitances of nanocrystalline VN were determined to be 114, 45.7 and 273 F g −1 in 0.5 M H 2 SO 4 , 2.0 M NaNO 3 and 1.0 M KOH, respectively. Thus, the KOH solution was considered the best aqueous electrolyte for the capacitive performance of VN. The supercapacitive mechanism and the factor that influenced the specific capacitance are also analyzed in this paper.

  15. arXiv Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment

    CERN Document Server

    Abreu, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Castle, B.C.; Clark, K.; Coupé, B.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Ghys, L.; Giot, L.; Guillon, B.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L.N.; Koonen, E.; Labare, M.; Lehaut, G.; Manzanillas, L.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Pestel, V.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Schune, M.-H.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Verstraeten, M.; Weber, A.; Yermia, F.

    2018-05-03

    The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288 kg prototype detector was deployed in 2015 and collected data during the operational period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/√E(MeV). The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration so...

  16. The management routes for materials produced by the dismantling of the BR3-PWR reactor

    International Nuclear Information System (INIS)

    Klein, M.; Demeulemeester, Y.; Ponnet, M.; Emond, M.; Emond, O.; Dadoumont, J.; Massaut, V.

    2000-01-01

    The dismantling of the BR3 reactor produces quite large masses of contaminated materials, mainly metals or concrete. The main management routes are: conditioning of the radioactive wastes and disposal, recycling of radioactive materials in the nuclear sector and the recycling of free released materials in the industrial sector or their evacuation as industrial waste. The conditioning of the radioactive wastes is essentially performed in the installations of Belgoprocess and must follow the specifications imposed by the national radwaste management agency ONDRAF/NIRAS. The conditioning of the pieces produced during the cutting of the reactor pressure vessel is given as example. The recycling of radioactive materials in the nuclear sector is possible for metals and for concrete. For metals, SCK.CEN has an agreement with a nuclear foundry which reuses these materials for the fabrication of shieldings. For concrete, an R and D programme is going on with the objective to demonstrate the possible reuse of baryte concrete as raw materials for the production of mortar used in the conditioning of radioactive wastes. The free release of radioactive materials and their reuse or evacuation as radioactive wastes requires the strict respect of procedures and the use of low level measurement techniques. Various decontamination techniques are used at SCK.CEN to reach this objective. For the metals, we use mainly simple washing, abrasive decontamination and hard chemical decontamination. For concrete, we use mainly scabbling or shaving techniques. (authors)

  17. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J.C., E-mail: Jcesarca@calima.univalle.edu.co [Grupo de Peliculas Delgadas, Departamento de Fisica, Universidad del Valle, Cali (Colombia); Zambrano, G. [Grupo de Peliculas Delgadas, Departamento de Fisica, Universidad del Valle, Cali (Colombia); Aperador, W. [Ingenieria Mecatronica, Universidad Militar Nueva Granada, Bogota (Colombia); Escobar-Alarcon, L.; Camps, E. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico, DF 11801 (Mexico)

    2011-10-15

    Vanadium nitride (V-N) thin films were grown using a reactive d.c. magnetron sputtering process, from a vanadium target (99.999%) in an Ar/N{sub 2} gas mixture at different deposition bias voltage. Films were deposited onto silicon (1 0 0) and RUS-3 steel substrates at 400 deg. C. Structural, compositional, mechanical and electrochemical characterizations were performed by X-ray diffraction (XRD), elastic forward analysis (EFA), nanoindentation, electrochemical impedance spectroscopy (EIS), and Tafel polarization curves, respectively. X-ray diffraction patterns show the presence of (1 1 1) and (2 0 0) crystallographic orientations associated to the V-N cubic phase. Nanoindentation measurements revealed that when the bias voltage increases from 0 V to -150 V the hardness and elastic modulus are increased from 11 GPa to 20 GPa and from 187 GPa to 221 GPa, respectively. EIS and Tafel curves showed that the corrosion rate of steel, coated with V-N single layer films deposited without bias voltage, diminishes 90% compared to the steel without this coating. On the other hand, when the V-N coating was deposited at the highest d.c. bias voltage (-150 V), the corrosion rate was greater than in the steel coated with zero-voltage (0 V) V-N films. This last result could be attributed to the formation of porosities produced by the ion bombardment during the deposition process.

  18. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films

    International Nuclear Information System (INIS)

    Caicedo, J.C.; Zambrano, G.; Aperador, W.; Escobar-Alarcon, L.; Camps, E.

    2011-01-01

    Vanadium nitride (V-N) thin films were grown using a reactive d.c. magnetron sputtering process, from a vanadium target (99.999%) in an Ar/N 2 gas mixture at different deposition bias voltage. Films were deposited onto silicon (1 0 0) and RUS-3 steel substrates at 400 deg. C. Structural, compositional, mechanical and electrochemical characterizations were performed by X-ray diffraction (XRD), elastic forward analysis (EFA), nanoindentation, electrochemical impedance spectroscopy (EIS), and Tafel polarization curves, respectively. X-ray diffraction patterns show the presence of (1 1 1) and (2 0 0) crystallographic orientations associated to the V-N cubic phase. Nanoindentation measurements revealed that when the bias voltage increases from 0 V to -150 V the hardness and elastic modulus are increased from 11 GPa to 20 GPa and from 187 GPa to 221 GPa, respectively. EIS and Tafel curves showed that the corrosion rate of steel, coated with V-N single layer films deposited without bias voltage, diminishes 90% compared to the steel without this coating. On the other hand, when the V-N coating was deposited at the highest d.c. bias voltage (-150 V), the corrosion rate was greater than in the steel coated with zero-voltage (0 V) V-N films. This last result could be attributed to the formation of porosities produced by the ion bombardment during the deposition process.

  19. Embrittlement and annealing of reactor pressure vessel steels: comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, T.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rossinski, S.T.; Carter, R.G.

    1996-07-01

    The sister pressure vessels at the BR3 and Rowe Yankee PWR plants were operated at a lower-than-usual temperature (260 degrees Celsius) and their plates were austenitized at higher-than-usual temperature (970 degrees Celsius). A heat tratemement leading to a coarser microstructure than typical for the fine grain plates that are considered in development of USNRC Regulatory guide 1.99. This material displayed outlier behaviour charackterized by a 41J CVN-shift significantly larger than predicted by Regulatory Guide 1.99. Because lower radiation temperature and nickell alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements enbodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: 1) the accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively, 2) the BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, ANCL was trepanned in early 1995, 3) the accelerated irradiations in the Belgian BR2 test reactor of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is shown that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel anneal was neither necessary nor sufficient. Finally, the sensitivity of embrittlement, annealing and post-annealing reembrittlement to irradiation

  20. Embrittlement and annealing of reactor pressure vessel steels: comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe vessel

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.; Chaouadi, T.; Puzzolante, J.L.; Van de Velde, J. [Centre de l``Etude de l``Energie Nucleaire, Mol (Belgium); Biemiller, E.C. [Yankee Atomic Electric Company, Bolton (United States); Rossinski, S.T.; Carter, R.G. [Electric Power Research Institute, Charlotte (United States)

    1996-07-01

    The sister pressure vessels at the BR3 and Rowe Yankee PWR plants were operated at a lower-than-usual temperature (260 degrees Celsius) and their plates were austenitized at higher-than-usual temperature (970 degrees Celsius). A heat tratemement leading to a coarser microstructure than typical for the fine grain plates that are considered in development of USNRC Regulatory guide 1.99. This material displayed outlier behaviour charackterized by a 41J CVN-shift significantly larger than predicted by Regulatory Guide 1.99. Because lower radiation temperature and nickell alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements enbodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: 1) the accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively, 2) the BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, ANCL was trepanned in early 1995, 3) the accelerated irradiations in the Belgian BR2 test reactor of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is shown that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel anneal was neither necessary nor sufficient. Finally, the sensitivity of embrittlement, annealing and post-annealing reembrittlement to irradiation

  1. Hybrid MnO2/carbon nanotube-VN/carbon nanotube supercapacitors

    Science.gov (United States)

    Su, Y.; Zhitomirsky, I.

    2014-12-01

    Composite materials, containing fibrous VN nanoparticles and multiwalled carbon nanotubes (MWCNT) are prepared by a chemical method for application in electrochemical supercapacitors. We demonstrate for the first time that VN-MWCNT electrodes exhibit good capacitive behavior in 0.5 M Na2SO4 electrolyte in a negative voltage window of 0.9 V. Quartz crystal microbalance studies provide an insight into the mechanism of charge storage. Composite VN-MWCNT materials show significant improvement in capacitance, compared to individual VN and MWCNT materials. Testing results indicate that VN-MWCNT electrodes exhibit high specific capacitance at high mass loadings in the range of 10-30 mg cm-2, good capacitance retention at scan rates in the range of 2-200 mV s-1 and good cycling stability. The highest specific capacitance of 160 F g-1 is achieved at a scan rate of 2 mV s-1. The new findings open a new and promising strategy in the fabrication of hybrid devices based on VN. The proof-of-principle is demonstrated by the fabrication of hybrid supercapacitor devices based on VN-MWCNT negative electrodes and MnO2 -MWCNT positive electrodes with voltage window of 1.8 V in aqueous 0.5 M Na2SO4 electrolyte. The hybrid VN-MWCNT/MnO2-MWCNT supercapacitor cells show promising capacitive and power-energy characteristics.

  2. Temperature dependent absorption spectra of Br(-), Br2(•-), and Br3(-) in aqueous solutions.

    Science.gov (United States)

    Lin, Mingzhang; Archirel, Pierre; Van-Oanh, Nguyen Thi; Muroya, Yusa; Fu, Haiying; Yan, Yu; Nagaishi, Ryuji; Kumagai, Yuta; Katsumura, Yosuke; Mostafavi, Mehran

    2011-05-05

    The absorption spectra of Br(2)(•-) and Br(3)(-) in aqueous solutions are investigated by pulse radiolysis techniques from room temperature to 380 and 350 °C, respectively. Br(2)(•-) can be observed even in supercritical conditions, showing that this species could be used as a probe in pulse radiolysis at high temperature and even under supercritical conditions. The weak temperature effect on the absorption spectra of Br(2)(•-) and Br(3)(-) is because, in these two systems, the transition occurs between two valence states; for example, for Br(2)(-) we have (2)Σ(u) → (2)Σ(g) transition. These valence transitions involve no diffuse final state. However, the absorption band of Br(-) undergoes an important red shift to longer wavelengths. We performed classical dynamics of hydrated Br(-) system at 20 and 300 °C under pressure of 25 MPa. The radial distribution functions (rdf's) show that the strong temperature increase (from 20 to 300 °C) does not change the radius of the solvent first shell. On the other hand, it shifts dramatically (by 1 Å) the second maximum of the Br-O rdf and introduces much disorder. This shows that the first water shell is strongly bound to the anion whatever the temperature. The first two water shells form a cavity of a roughly spherical shape around the anion. By TDDFT method, we calculated the absorption spectra of hydrated Br(-) at two temperatures and we compared the results with the experimental data.

  3. SoLid: Search for Oscillations with Lithium-6 Detector at the SCK-CEN BR2 reactor

    Science.gov (United States)

    Ban, G.; Beaumont, W.; Buhour, J. M.; Coupé, B.; Cucoanes, A. S.; D'Hondt, J.; Durand, D.; Fallot, M.; Fresneau, S.; Giot, L.; Guillon, B.; Guilloux, G.; Janssen, X.; Kalcheva, S.; Koonen, E.; Labare, M.; Moortgat, C.; Pronost, G.; Raes, L.; Ryckbosch, D.; Ryder, N.; Shitov, Y.; Vacheret, A.; Van Mulders, P.; Van Remortel, N.; Weber, A.; Yermia, F.

    2016-04-01

    Sterile neutrinos have been considered as a possible explanation for the recent reactor and Gallium anomalies arising from reanalysis of reactor flux and calibration data of previous neutrino experiments. A way to test this hypothesis is to look for distortions of the anti-neutrino energy caused by oscillation from active to sterile neutrino at close stand-off (˜ 6- 8m) of a compact reactor core. Due to the low rate of anti-neutrino interactions the main challenge in such measurement is to control the high level of gamma rays and neutron background. The SoLid experiment is a proposal to search for active-to-sterile anti-neutrino oscillation at very short baseline of the SCK•CEN BR2 research reactor. This experiment uses a novel approach to detect anti-neutrino with a highly segmented detector based on Lithium-6. With the combination of high granularity, high neutron-gamma discrimination using 6LiF:ZnS(Ag) and precise localization of the Inverse Beta Decay products, a better experimental sensitivity can be achieved compared to other state-of-the-art technology. This compact system requires minimum passive shielding allowing for very close stand off to the reactor. The experimental set up of the SoLid experiment and the BR2 reactor will be presented. The new principle of neutrino detection and the detector design with expected performance will be described. The expected sensitivity to new oscillations of the SoLid detector as well as the first measurements made with the 8 kg prototype detector deployed at the BR2 reactor in 2013-2014 will be reported.

  4. Cd4As2Br3

    Directory of Open Access Journals (Sweden)

    Mohammed Kars

    2014-03-01

    Full Text Available Single crystals of Cd4As2Br3 (tetracadmium biarsenide tribromide were grown by a chemical transport reaction. The structure is isotypic with the members of the cadmium and mercury pnictidohalides family with general formula M4A2X3 (M = Cd, Hg; A = P, As, Sb; X = Cl, Br, I and contains two independent As atoms on special positions with site symmetry -3 and two independent Cd atoms, of which one is on a special position with site symmetry -3. The Cd4As2Br3 structure consists of AsCd4 tetrahedra sharing vertices with isolated As2Cd6 octahedra that contain As–As dumbbells in the centre of the octahedron. The Br atoms are located in the voids of this three-dimensional arrangement and bridge the different polyhedra through Cd...Br contacts.

  5. X-ray and NQR studies of bromoindate(III) complexes. [C2H5NH3]4InBr7, [C(NH2)3]3InBr6, and [H3NCH2C(CH3)2CH2NH3]InBr5

    International Nuclear Information System (INIS)

    Iwakiri, Takeharu; Ishihara, Hideta; Terao, Hiromitsu; Lork, Enno; Gesing, Thorsten M.

    2017-01-01

    The crystal structures of [C 2 H 5 NH 3 ] 4 InBr 7 (1), [C(NH 2 ) 3 ] 3 InBr 6 (2), and [H 3 NCH 2 C(CH 3 ) 2 CH 2 NH 3 ]InBr 5 (3) were determined at 100(2) K: monoclinic, P2 1 /n, a=1061.94(3), b=1186.40(4), c=2007.88(7) pm, β= 104.575(1) , Z=4 for 1; monoclinic, C2/c, a=3128.81(12), b=878.42(3), c=2816.50(10) pm, β=92.1320(10) , Z=16 for 2; orthorhombic, P2 1 2 1 2 1 , a=1250.33(5), b=1391.46(6), c=2503.22(9) pm, Z=4 for 3. The structure of 1 contains an isolated octahedral [InBr 6 ] 3- ion and a Br - ion. The structure of 2 contains three different isolated octahedral [InBr 6 ] 3- ions. The structure of 3 has a corner-shared double-octahedral [In 2 Br 11 ] 5- ion and an isolated tetrahedral [InBr 4 ] - ion. The 81 Br nuclear quadrupole resonance (NQR) lines of the terminal Br atoms of the compounds are widely spread in frequency, and some of them show unusual positive temperature dependence. These observations manifest the N-H..Br-In hydrogen bond networks developed between the cations and anions to stabilize the crystal structures. The 81 Br NQR and differential thermal analysis (DTA) measurements have revealed the occurrence of unique phase transitions in 1 and 3. When the bond angles were estimated from the electric field gradient (EFG) directions calculated by the molecular orbital (MO) methods, accurate values were obtained for [InBr 6 ] 3- of 1 and for [In 2 Br 11 ] 5- and [InBr 4 ] - of 3, except for several exceptions in those for the latter two ions. On the other hand, the calculations of 81 Br NQR frequencies have produced up to 1.4 times higher values than the observed ones.

  6. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Kalcheva, S [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Sikik, E [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-09-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).

  7. Photodissociation of C3H5Br and C4H7Br at 234 nm

    International Nuclear Information System (INIS)

    Kim, Hyun Kook; Paul, Dababrata; Hong, Ki Ryong; Cho, Ha Na; Kim, Tae Kyu; Lee, Kyoung Seok

    2012-01-01

    The photodissociation dynamics of cyclopropyl bromide (C-3H 5 Br) and cyclobutyl bromide (C 4 H 7 Br) at 234 nm was investigated. A two-dimensional photofragment ion-imaging technique coupled with a [2+1] resonance enhanced multiphoton ionization scheme was utilized to obtain speed and angular distributions of the nascent Br( 2 P 3/2 ) and Br*( 2 P 1/2 ) atoms. The recoil anisotropies for the Br and Br* channels were measured to be βBr = 0.92 ± 0.03 and βBr* = 1.52 ± 0.04 for C 3 H 5 Br and βBr = 1.10 ± 0.03 and βBr* = 1.49 ± 0.05 for C 4 H 7 Br. The relative quantum yield for Br was found to be ΦBr = 0.13 ± 0.03 and for C 3 H 5 Br and C 4 H 7 Br, respectively. The soft radical limit of the impulsive model adequately modeled the related energy partitioning. The nonadiabatic transition probability from the 3A' and 4A' potential energy surfaces was estimated and discussed

  8. Predecommissioning radiological survey of BR3 infrastructures

    International Nuclear Information System (INIS)

    Cantrel, E.

    2006-01-01

    The decommissioning of the BR3 (Belgian Reactor 3) approaches its final phase, in which the buildings infrastructures are being decontaminated targeting either the reuse or the conventional demolition after denuclearisation. In a PWR with a significant operation lifetime, such as the BR3, maintenance operations, failure and/or leakages, incidents occurring in the different circuits of the plant result in the contamination of the buildings infrastructures at various activity levels with contaminants penetrating/migrating up to several cm inside the material bulk structure. Moreover, the BR3 bioshield has been exposed to rather high neutron leakage fluxes during the reactor operation and is therefore activated. The different radiological situations faced require the implementation of different characterization methodologies based on the use of an adequate combination of measurement devices and/or sampling devices. The non-destructive assay of activation depth using the ISOCS (In Situ Object Counting System) and a specific spectra analysis protocol has been tested in 2004. The first results obtained were encouraging and the qualification program for activated material is running. We are now investigating the possibilities to extend the methodology to building materials contaminated in-depth with 137 Cs. The overall process of dismantling/denuclearization of the BR3 building infrastructure consists of: (1) a preliminary characterization and determination of the contamination or activation depth; (2) the determination of the decontamination method; (3) the effective decontamination and clean up; (4) a possible intermediate characterization followed by an additional decontamination step; and (5) the characterization for clearance. The more accurate the preliminary survey is performed the less additional control/decontamination cycles are needed to reach clearance levels. The pre-decommissioning characterization process includes a preliminary categorisation (see picture

  9. Bromine-rich Zinc Bromides: Zn6Br12(18-crown-6)2×(Br2)5, Zn4Br8(18-crown-6)2×(Br2)3, and Zn6Br12(18-crown-6)2×(Br2)2.

    Science.gov (United States)

    Hausmann, David; Feldmann, Claus

    2016-06-20

    The bromine-rich zinc bromides Zn6Br12(18-crown-6)2×(Br2)5 (1), Zn4Br8(18-crown-6)2×(Br2)3 (2), and Zn6Br12(18-crown-6)2×(Br2)2 (3) are prepared by reaction of ZnBr2, 18-crown-6, and elemental bromine in the ionic liquid [MeBu3N][N(Tf)2] (N(Tf)2 = bis(trifluoromethylsulfonyl)amide). Zn6Br12(18-crown-6)2×(Br2)5 (1) is formed instantaneously by the reaction. Even at room temperature, compound 1 releases bromine, which was confirmed by thermogravimetry (TG) and mass spectrometry (MS). The release of Br2 can also be directly followed by the color and density of the title compounds. With controlled conditions (2 weeks, 25 °C, absence of excess Br2) Zn6Br12(18-crown-6)2×(Br2)5 (1) slowly releases bromine with conconcurrent generation of Zn4Br8(18-crown-6)2×(Br2)3 (2) (in ionic liquid) and Zn6Br12(18-crown-6)2×(Br2)2 (3) (in inert oil). All bromine-rich zinc bromides contain voluminous uncharged (e.g., Zn3Br6(18-crown-6), Zn2Br4(18-crown-6)) or ionic (e.g., [Zn2Br3(18-crown-6)](+), [(Zn2Br6)×(Br2)2](2-)) building units with dibromine molecules between the Zn oligomers and partially interconnecting the Zn-containing building units. Due to the structural similarity, the bromine release is possible via crystal-to-crystal transformation with retention of the crystal shape.

  10. The TbBr3–LiBr binary system: Experimental thermodynamic investigation and assessment of phase diagram

    International Nuclear Information System (INIS)

    Rycerz, L.; Gong, W.; Gaune-Escard, M.

    2013-01-01

    Highlights: ► DSC measurements for the (LiBr + TbBr 3 ) system. ► congruently Li3TbBr 6 and incongruently melting Li5TbBr 8 compounds. ► Thermodynamic description of the liquid phase in the (LiBr + TbBr 3 ) system. ► Assessment with a two-sublattice ionic solution model. - Abstract: DSC was used to study the phase equilibrium in the TbBr 3 –LiBr binary system. The results obtained provided a basis for constructing the phase diagram of this system. It exhibits two compounds: Li 5 TbBr 8 , which decomposes in the solid state at 611 K, and Li 3 TbBr 6 , which melts congruently at 785 K with the related enthalpy 59.1 kJ·mol −1 . The binary LiBr–TbBr 3 system was then optimized using the available experimental information on phase diagram and thermodynamic properties. A two-sub-lattice ionic solution model (Li + ) P :(Br − , TbBr 6 −3 , TbBr 3 ) Q was adopted to describe the liquid phase. The present assessment of the binary LiBr–TbBr 3 system was in good agreement with the corresponding experimental data and confirmed their consistency.

  11. Hybridization of Single Nanocrystals of Cs4PbBr6 and CsPbBr3.

    Science.gov (United States)

    Weerd, Chris de; Lin, Junhao; Gomez, Leyre; Fujiwara, Yasufumi; Suenaga, Kazutomo; Gregorkiewicz, Tom

    2017-09-07

    Nanocrystals of all-inorganic cesium lead halide perovskites (CsPbX 3 , X = Cl, Br, I) feature high absorption and efficient narrow-band emission which renders them promising for future generation of photovoltaic and optoelectronic devices. Colloidal ensembles of these nanocrystals can be conveniently prepared by chemical synthesis. However, in the case of CsPbBr 3 , its synthesis can also yield nanocrystals of Cs 4 PbBr 6 and the properties of the two are easily confused. Here, we investigate in detail the optical characteristics of simultaneously synthesized green-emitting CsPbBr 3 and insulating Cs 4 PbBr 6 nanocrystals. We demonstrate that, in this case, the two materials inevitably hybridize, forming nanoparticles with a spherical shape. The actual amount of these Cs 4 PbBr 6 nanocrystals and nanohybrids increases for synthesis at lower temperatures, i.e., the condition typically used for the development of perovskite CsPbBr 3 nanocrystals with smaller sizes. We use state-of-the-art electron energy loss spectroscopy to characterize nanoparticles at the single object level. This method allows distinguishing between optical characteristics of a pure Cs 4 PbBr 6 and CsPbBr 3 nanocrystal and their nanohybrid. In this way, we resolve some of the recent misconceptions concerning possible visible absorption and emission of Cs 4 PbBr 6 . Our method provides detailed structural characterization, and combined with modeling, we conclusively identify the nanospheres as CsPbBr 3 /Cs 4 PbBr 6 hybrids. We show that the two phases are independent of each other's presence and merge symbiotically. Herein, the optical characteristics of the parent materials are preserved, allowing for an increased absorption in the UV due to Cs 4 PbBr 6 , accompanied by the distinctive efficient green emission resulting from CsPbBr 3 .

  12. Die Interhalogenkationen [Br2F5]+ und [Br3F8].

    Science.gov (United States)

    Ivlev, Sergei; Karttunen, Antti; Buchner, Magnus; Conrad, Matthias; Kraus, Florian

    2018-05-02

    Wir berichten über die Synthese und Charakterisierung der bislang einzigen Polyhalogenkationen, in denen verbrückende Fluoratome vorliegen. Das [Br2F5]+-Kation enthält eine symmetrische [F2Br-µ-F-BrF2]-Brücke, das [Br3F8]+-Kation enthält unsymmetrische µ-F-Brücken. Die Fluoronium-Ionen wurden in Form ihrer [SbF6]--Salze erhalten und Raman-, und 19F-NMR-spektroskopisch, sowie durch Röntgenbeugung am Einkristall untersucht. Quantenchemische Rechnungen, sowohl für die isolierten Kationen in der Gasphase, als auch für die Festkörper selbst, wurden durchgeführt. Populationsanalysen zeigen, dass die µ-F-Atome die am stärksten negativ partialgeladenen Atome der Kationen sind. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Photostriction of CH3NH3PbBr3 Perovskite Crystals

    KAUST Repository

    Wei, Tzu-Chiao

    2017-07-17

    Organic-inorganic hybrid perovskite materials exhibit a variety of physical properties. Pronounced coupling between phonon, organic cations, and the inorganic framework suggest that these materials exhibit strong light-matter interactions. The photoinduced strain of CH3 NH3 PbBr3 is investigated using high-resolution and contactless in situ Raman spectroscopy. Under illumination, the material exhibits large blue shifts in its Raman spectra that indicate significant structural deformations (i.e., photostriction). From these shifts, the photostrictive coefficient of CH3 NH3 PbBr3 is calculated as 2.08 × 10-8 m2 W-1 at room temperature under visible light illumination. The significant photostriction of CH3 NH3 PbBr3 is attributed to a combination of the photovoltaic effect and translational symmetry loss of the molecular configuration via strong translation-rotation coupling. Unlike CH3 NH3 PbI3 , it is noted that the photostriction of CH3 NH3 PbBr3 is extremely stable, demonstrating no signs of optical decay for at least 30 d. These results suggest the potential of CH3 NH3 PbBr3 for applications in next-generation optical micro-electromechanical devices.

  14. Novel VN/C nanocomposites as methanol-tolerant oxygen reduction electrocatalyst in alkaline electrolyte

    OpenAIRE

    K. Huang; K. Bi; C. Liang; S. Lin; R. Zhang; W. J. Wang; H. L. Tang; M. Lei

    2015-01-01

    A novel VN/C nanostructure consisting of VN nanoparticles and graphite-dominant carbon layers is synthesized by nitridation of V2O5 using melamine as reductant under inert atmosphere. High crystalline VN nanoparticles are observed to be uniformly distributed in carbon layers with an average size of ca13.45?nm. Moreover, the electrocatalytic performance of VN/C towards oxygen reduction reaction (ORR) in alkaline electrolyte is fascinating. The results show that VN/C has a considerable ORR acti...

  15. Dosimetry work and calculations in connection with the irradiation of large devices in the high flux materials testing reactor BR2

    International Nuclear Information System (INIS)

    De Raedt, C.; Leenders, L.; Tourwe, H.; Farrar, H. IV.

    1982-01-01

    For about fifteen years the high flux reactor BR2 has been involved in the testing of fast reactor fuel pins. In order to simulate the fast reactor neutron environment most devices are irradiated under cadmium screen, cutting off the thermal flux component. Extensive neutronic calculations are performed to help the optimization of the fuel bundle design. The actual experiments are preceded by irradiations of their mock-ups in BR02, the zero power model of BR2. The mock-up irradiations, supported by supplementary calculations, are performed for the determination of the main neutronic characteristics of the irradiation proper in BR2 and for the determination of the corresponding operation data. At the end of the BR2 irradiation, the experimental results, such as burn-ups, neutron fluences, helium production in the fuel pin claddings, etc. are correlated by neutronic calculations in order to examine the consistency of the post-irradiation results and to validate the routine calculation procedure and cross-section data employed. A comparison is made in this paper between neutronic calculation results and some post-irradiation data for MOL 7D, a cadmium screened sodium cooled loop containing a nineteen fuel pin bundle

  16. Preparation of nanocrystalline VN by the melamine reduction of V{sub 2}O{sub 5} xerogel and its supercapacitive behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Fukui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); He Chun [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Shu Dong, E-mail: dshu@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Base of Production, Education and Research on Energy Storage and Power Battery of Guangdong Higher Education Institutes, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Chen Hongyu, E-mail: hychen@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Base of Production, Education and Research on Energy Storage and Power Battery of Guangdong Higher Education Institutes, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Zhang Jie; Tang Shaoqing; Finlow, David E. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Organic nitridizing agent was employed for preparation of nanocrystalline VN. Black-Right-Pointing-Pointer The supercapacitive behavior of VN was studied by electrochemical method. Black-Right-Pointing-Pointer The supercapacitive behavior of VN was studied in three kinds of electrolyte. Black-Right-Pointing-Pointer The specific capacitance of VN was determined as 273 F g{sup -1} in 1.0 M KOH. Black-Right-Pointing-Pointer The supercapacitive mechanism and involved factor on capacitance were analyzed. - Abstract: An organic nitridizing reagent was employed in the preparation of nanocrystalline VN at 800 Degree-Sign C under a N{sub 2} atmosphere. The prepared VN was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and its supercapacitive behavior was studied by cyclic voltammetry (CV) in three different types of aqueous electrolyte, 0.5 M H{sub 2}SO{sub 4}, 2.0 M NaNO{sub 3} and 1.0 M KOH. The XRD results indicate that prepared VN has a cubic structure with space group Fm3m and a lattice parameter of 4.139 Angstrom-Sign . The nanocrystalline structure of VN with a low degree of crystallinity was confirmed by TEM imaging. The presence of oxygen on the VN surface was detected by FTIR and XPS, and its molecular composition was determined to be VN{sub 1.02}O{sub 0.1}. The specific capacitances of nanocrystalline VN were determined to be 114, 45.7 and 273 F g{sup -1} in 0.5 M H{sub 2}SO{sub 4}, 2.0 M NaNO{sub 3} and 1.0 M KOH, respectively. Thus, the KOH solution was considered the best aqueous electrolyte for the capacitive performance of VN. The supercapacitive mechanism and the factor that influenced the specific capacitance are also analyzed in this paper.

  17. Zn2(TeO3Br2

    Directory of Open Access Journals (Sweden)

    Mats Johnsson

    2008-05-01

    Full Text Available Single crystals of dizinc tellurium dibromide trioxide, Zn2(TeO3Br2, were synthesized via a transport reaction in sealed evacuated silica tubes. The compound has a layered crystal structure in which the building units are [ZnO4Br] distorted square pyramids, [ZnO2Br2] distorted tetrahedra, and [TeO3E] tetrahedra (E being the 5s2 lone pair of Te4+ joined through sharing of edges and corners to form layers of no net charge. Bromine atoms and tellurium lone pairs protrude from the surfaces of each layer towards adjacent layers. This new compound Zn2(TeO3Br2 is isostructural with the synthetic compounds Zn2(TeO3Cl2, CuZn(TeO32, Co2(TeO3Br2 and the mineral sophiite, Zn2(SeO3Cl2.

  18. Zn2(TeO3)Br2

    Science.gov (United States)

    Zhang, Dong; Johnsson, Mats

    2008-01-01

    Single crystals of dizinc tellurium dibromide trioxide, Zn2(TeO3)Br2, were synthesized via a transport reaction in sealed evacuated silica tubes. The compound has a layered crystal structure in which the building units are [ZnO4Br] distorted square pyramids, [ZnO2Br2] distorted tetra­hedra, and [TeO3 E] tetra­hedra (E being the 5s 2 lone pair of Te4+) joined through sharing of edges and corners to form layers of no net charge. Bromine atoms and tellurium lone pairs protrude from the surfaces of each layer towards adjacent layers. This new compound Zn2(TeO3)Br2 is isostructural with the synthetic compounds Zn2(TeO3)Cl2, CuZn(TeO3)2, Co2(TeO3)Br2 and the mineral sophiite, Zn2(SeO3)Cl2. PMID:21202162

  19. Supplemental Thermal-Hydraulic Transient Analyses of BR2 in Support of Conversion to LEU Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Sikik, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The RELAP5/Mod 3.3 code has been used to perform transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. A RELAP5 model of BR2 has been validated against select transient BR2 reactor experiments performed in 1963 by showing agreement with measured cladding temperatures. Following the validation, the RELAP5 model was then updated to represent the current use of the reactor; taking into account core configuration, neutronic parameters, trip settings, component changes, etc. Simulations of the 1963 experiments were repeated with this updated model to re-evaluate the boiling risks associated with the currently allowed maximum heat flux limit of 470 W/cm2 and temporary heat flux limit of 600 W/cm2. This document provides analysis of additional transient simulations that are required as part of a modern BR2 safety analysis report (SAR). The additional simulations included in this report are effect of pool temperature, reduced steady-state flow rate, in-pool loss of coolant accidents, and loss of external cooling. The simulations described in this document have been performed for both an HEU- and LEU-fueled core.

  20. Dissociative multiple photoionization of SiBr4 and GeBr4 in the VUV and X-ray regions: a comparative study of inner-shell processes involving Si(2p, 2s), Ge(3d, 3p, 3s), and Br(3d, 3p, 3s)

    International Nuclear Information System (INIS)

    Boo, Bong Hyun; Saito, Norio

    2003-01-01

    Dissociative multiple photoionization of MBr 4 (M=Si, Ge) in the Si(2p, 2s), Ge(3d, 3s, 3p), and Br(3d, 3p, 3s) inner-shell regions has been studied by using time-of-flight (TOF) mass spectrometry coupled to synchrotron radiation in the ranges of 50∼944 eV for SiBr 4 and 50∼467 eV for GeBr 4 . Total photoion and photoion-photoion coincidence (PIPICO) yields have been measured as functions of the photon energy. Here, giant shape resonances have been observed beyond the thresholds of the 3d shells owing to the Br(3d 10 )→Br(3d 9 -f) excitation, showing the similar patterns for both of the systems. The ranges and the intensities of the shape resonances are found to be tremendously broad and enhanced, respectively, by the tetrahedral arrangement of the bromine ligands. In addition to the giant resonances, we have observed discrete features corresponding to the Br(3d), Si(2p), and Si(2s) in SiBr 4 and to the Br(3d), Ge(3p), and Ge(3s) in GeBr 4 . The dissociation processes of multiply charged parent ions have also been evaluated from the variations of photoelectron-photoion coincidence (PEPICO) and PIPICO yields with the photon energy. Over the entire energies examined, most efficient PIPICO channels involve Br + -Br + , Br + -MBr + , and M + -Br + (M=Si, Ge), the formation of which indicates that the total destruction of the molecules is a dominant process in the dissociative photoionization of the molecules

  1. Thermodiffusion Mo-B-Si coating on VN-3 niobium alloy

    International Nuclear Information System (INIS)

    Kozlov, A.T.; Lazarev, Eh.M.; Monakhova, L.A.; Shestova, V.F.; Romanovich, I.V.

    1985-01-01

    Protective properties of complex Mo-B-Si-coating on niobium alloy VN-3 (4.7 mass.% Mo, 1.1 mass.% Zr, 0.1 mass.% C) have been studied. It is established, that the complex Mo-B-Si-coating ensures protection from oxidation of niobium alloys in the temperature range of 800-1200 degC for 1000-1500 hr, at 1600 degC - for 10 hr. High heat resistance of Mo-B-Si - coating at 800-1200 degC is determined by the presence of amorphous film of SiOΛ2 over the layer MoSiΛ2 and barrier boride layer on the boundary with the metal protected; decrease in the coating heat resistance at 1600 degC is related to the destruction of boride layer, decomposition of MoSiΛ2 for lower cilicides and loosening of SiOΛ2 film

  2. Exploring Polaronic, Excitonic Structures and Luminescence in Cs4PbBr6/CsPbBr3.

    Science.gov (United States)

    Kang, Byungkyun; Biswas, Koushik

    2018-02-15

    Among the important family of halide perovskites, one particular case of all-inorganic, 0-D Cs 4 PbBr 6 and 3-D CsPbBr 3 -based nanostructures and thin films is witnessing intense activity due to ultrafast luminescence with high quantum yield. To understand their emissive behavior, we use hybrid density functional calculations to first compare the ground-state electronic structure of the two prospective compounds. The dispersive band edges of CsPbBr 3 do not support self-trapped carriers, which agrees with reports of weak exciton binding energy and high photocurrent. The larger gap 0-D material Cs 4 PbBr 6 , however, reveals polaronic and excitonic features. We show that those lattice-coupled carriers are likely responsible for observed ultraviolet emission around ∼375 nm, reported in bulk Cs 4 PbBr 6 and Cs 4 PbBr 6 /CsPbBr 3 composites. Ionization potential calculations and estimates of type-I band alignment support the notion of quantum confinement leading to fast, green emission from CsPbBr 3 nanostructures embedded in Cs 4 PbBr 6 .

  3. Results of water chemistry control in the in-pile ''Callisto'' loop (an experimental PWR rig installed in the BR2 reactor)

    International Nuclear Information System (INIS)

    Weber, M.; Benoit, P.; Dekeyser, J.; Verwimp, A.

    1994-01-01

    Since June 1992, a new experimental facility, called CALLISTO, is being irradiated in the BR2 materials testing reactor at Mol, Belgium. The main objective of the present test campaign is to study the behaviour of advanced fuel to high burn-up rates in a realistic PWR environment. Three in-pile sections, containing each 9 fuel rods, are loaded inside the reactor vessel and are connected to a common out-of-pile pressurized water circulation loop (ref.1). The later is branched-off into a purification circuit (feed-bleed concept) and further equipped with safety and auxiliary systems. To cope with the test programme, the equipments are designed so that the guidelines of a PWR primary water chemistry can be followed (ref.2). Real steady-state conditions cannot be observed because the typical BR2 cycle (3 weeks running/3 weeks shut-down) is much shorter and because the rig is cooled down during each reactor shut-down. The purpose of this poster is to provide results of chemical parameters recorded during the cycling behaviour of the CALLISTO primary water. (authors). 4 figs., 1 tab., 2 refs

  4. Photostriction of CH3NH3PbBr3 Perovskite Crystals

    KAUST Repository

    Wei, Tzu-Chiao; Wang, Hsin-Ping; Li, Ting-You; Lin, Chun-Ho; Hsieh, Ying-Hui; Chu, Ying-Hao; He, Jr-Hau

    2017-01-01

    .e., photostriction). From these shifts, the photostrictive coefficient of CH3 NH3 PbBr3 is calculated as 2.08 × 10-8 m2 W-1 at room temperature under visible light illumination. The significant photostriction of CH3 NH3 PbBr3 is attributed to a combination

  5. Photoresponse of CsPbBr3 and Cs4PbBr6 Perovskite Single Crystals.

    Science.gov (United States)

    Cha, Ji-Hyun; Han, Jae Hoon; Yin, Wenping; Park, Cheolwoo; Park, Yongmin; Ahn, Tae Kyu; Cho, Jeong Ho; Jung, Duk-Young

    2017-02-02

    High-quality and millimeter-sized perovskite single crystals of CsPbBr 3 and Cs 4 PbBr 6 were prepared in organic solvents and studied for correlation between photocurrent generation and photoluminescence (PL) emission. The CsPbBr 3 crystals, which have a 3D perovskite structure, showed a highly sensitive photoresponse and poor PL signal. In contrast, Cs 4 PbBr 6 crystals, which have a 0D perovskite structure, exhibited more than 1 order of magnitude higher PL intensity than CsPbBr 3 , which generated an ultralow photoresponse under illumination. Their contrasting optoelectrical characteristics were attributed to different exciton binding energies, induced by coordination geometry of the [PbBr 6 ] 4- octahedron sublattices. This work correlated the local structures of lead in the primitive perovskite and its derivatives to PL spectra as well as photoconductivity.

  6. A comparative study of LaBr3(Ce(3+)) and CeBr3 based gamma-ray spectrometers for planetary remote sensing applications.

    Science.gov (United States)

    Kozyrev, A; Mitrofanov, I; Owens, A; Quarati, F; Benkhoff, J; Bakhtin, B; Fedosov, F; Golovin, D; Litvak, M; Malakhov, A; Mokrousov, M; Nuzhdin, I; Sanin, A; Tretyakov, V; Vostrukhin, A; Timoshenko, G; Shvetsov, V; Granja, C; Slavicek, T; Pospisil, S

    2016-08-01

    The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESA's BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. single crystal of LaBr3(Ce(3+)) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr3 became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr3 crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr3(Ce(3+)) and CeBr3 provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr3 is a more attractive system than LaBr3(Ce(3+)) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr3 now forms the central gamma-ray detection element on the MPO spacecraft.

  7. Limited geographic distribution of the novel cyclovirus CyCV-VN.

    Science.gov (United States)

    Le, Van Tan; de Jong, Menno D; Nguyen, Van Kinh; Nguyen, Vu Trung; Taylor, Walter; Wertheim, Heiman F L; van der Ende, Arie; van der Hoek, Lia; Canuti, Marta; Crusat, Martin; Sona, Soeng; Nguyen, Hanh Uyen; Giri, Abhishek; Nguyen, Thi Thuy Chinh Bkrong; Ho, Dang Trung Nghia; Farrar, Jeremy; Bryant, Juliet E; Tran, Tinh Hien; Nguyen, Van Vinh Chau; van Doorn, H Rogier

    2014-02-05

    A novel cyclovirus, CyCV-VN, was recently identified in cerebrospinal fluid (CSF) from patients with central nervous system (CNS) infections in central and southern Vietnam. To explore the geographic distribution of this novel virus, more than 600 CSF specimens from patients with suspected CNS infections in northern Vietnam, Cambodia, Nepal and The Netherlands were screened for the presence of CyCV-VN but all were negative. Sequence comparison and phylogenetic analysis between CyCV-VN and another novel cyclovirus recently identified in CSF from Malawian patients indicated that these represent distinct cycloviral species, albeit phylogenetically closely related. The data suggest that CyCV-VN has a limited geographic distribution within southern and central Vietnam. Further research is needed to determine the global distribution and diversity of cycloviruses and importantly their possible association with human disease.

  8. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  9. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  10. Chemical consequences of radioactive decay. 1. Study of 249Cf ingrowth into crystalline 249BkBr3: a new crystalline phase of CfBr3

    International Nuclear Information System (INIS)

    Young, J.P.; Haire, R.G.; Peterson, J.R.; Ensor, D.D.; Fellows, R.L.

    1980-01-01

    Spectrophotometric and x-ray powder diffraction methods have been applied to a study of the ingrowth of californium-249 by β - decay of berkelium-249 in crystalline 249 BkBr 3 . It was found that the Cf daughter grows in with the same oxidation state and crystal structure as the parent. Thus, six-coordinate BkBr 3 (AlCl 3 -type monoclinic structure) generates six-coordinate CfBr 3 , and eight-coordinate BkBr 3 (PuBr 3 -type orthorhombic structure) generates eight-coordinate CfBr 3 , a previously unknown form of CfBr 3 . It was also found that the daughter Cf(III) in the BkBr 3 parent compound can be reduced to Cf(II) by treatment with H 2 , as it can in pure CfBr 3 . 5 figures

  11. PbBr3 Perovskite Crystals

    KAUST Repository

    Wei, Tzu-Chiao

    2018-01-31

    Researchers have recently revealed that hybrid lead halide perovskites exhibit ferroelectricity, which is often associated with other physical characteristics, such as a large nonlinear optical response. In this work, the nonlinear optical properties of single crystal inorganic–organic hybrid perovskite CH3NH3PbBr3 are studied. By exciting the material with a 1044 nm laser, strong two-photon absorption-induced photoluminescence in the green spectral region is observed. Using the transmission open-aperture Z-scan technique, the values of the two-photon absorption coefficient are observed to be 8.5 cm GW−1, which is much higher than that of standard two-photon absorbing materials that are industrially used in nonlinear optical applications, such as lithium niobate (LiNbO3), LiTaO3, KTiOPO4, and KH2PO4. Such a strong two-photon absorption effect in CH3NH3PbBr3 can be used to modulate the spectral and spatial profiles of laser pulses, as well as to reduce noise, and can be used to strongly control the intensity of incident light. In this study, the superior optical limiting, pulse reshaping, and stabilization properties of CH3NH3PbBr3 are demonstrated, opening new applications for perovskites in nonlinear optics.

  12. Modulation of electronic and optical properties in mixed halide perovskites CsPbCl3xBr3(1-x) and CsPbBr3xI3(1-x)

    Science.gov (United States)

    Zhou, Ziqi; Cui, Yu; Deng, Hui-Xiong; Huang, Le; Wei, Zhongming; Li, Jingbo

    2017-03-01

    The recent discovery of lead halide perovskites with band gaps in the visible presents important potential in the design of high efficient solar cells. CsPbCl3, CsPbBr3 and CsPbI3 are stable compounds within this new family of semiconductors. By performing the first-principles calculation, we explore the structural, electronic and optical properties of CsPbCl3xBr3(1-x) and CsPbBr3xI3(1-x) with various compositions of halide atoms. Structural stability is demonstrated with halide atoms distributing randomly at the halide atomic sites. CsPbCl3xBr3(1-x) and CsPbBr3xI3(1-x) exhibit the modulation of their band gaps by varying the halide composition. Our results also indicate that CsPbCl3xBr3(1-x) and CsPbBr3xI3(1-x) with different halide compositions are suitable to application to solar cells for the general features are well preserved. Good absorption to lights of different wavelengths has been obtained in these mixed halide perovskites.

  13. A pilot application of the RELAP file to the steady state and transient analysis of a test section inside the BR2 reactor

    International Nuclear Information System (INIS)

    Ferri, M. G.; D'Auria, F.; Forasassi, G.; Giot, M.

    2000-01-01

    BR2 is a material test reactor sited in the Belgian Nuclear Research Centre in Mol. The main research programs carried out in BR2 are related to the safety of nuclear reactor structural materials and fuels, in normal and accidental conditions, plant lifetime evaluation and ageing of components. In this framework, a computer program that allows the performance of detailed, steady state analysis of several kinds of in-pile sections with an axisymmetrical geometry has been developed. Furthermore, comparing its results with those of the well known, extensively used, Relap5/Mod 3.2 code on a test problem has validated this program. This was performed in three steps: 1. modalisation development of a subsystem of a typical in-pile section. 2. steady state analysis and comparison with the above-mentioned program. 3. transient simulation of the same system; the considered transient consists of a loss of coolant flow. (author)

  14. The experience of the fuel waste management of AM and BR-10 reactor facilities at SSC RF IPPE named after A.I. Leipunsky

    International Nuclear Information System (INIS)

    Kochetkov, L.A.; Mamaev, L.I.; Stuzhnev, Yu.A.

    1999-01-01

    8 research and experimental reactors have been created at the Institute industrial site. The majority of them have been or are being decommissioned now. During many decades the reactor of the first-in-the-world NPP -AM and the fast neutron reactor BR-5 (BR-10) are the main research reactor bases of the Institute. They have been in operation for 45 and 40 years respectively. At present the preparation work for their decommissioning is being carried out. One of the problems of that process is the fuel waste management which amount is about 13 tons. The possibility of its reprocessing is under consideration. (author)

  15. Validation of MCNP and ORIGEN-S 3-D computational model for reactivity predictions during BR2 operation

    International Nuclear Information System (INIS)

    Kalcheva, S.; Koonen, E.; Ponsard, B.

    2005-01-01

    The Belgian Material Test Reactor (MTR) BR2 is strongly heterogeneous high flux engineering test reactor at SCK-CEN (Centre d'Etude de l'energie Nucleaire) in Mol at a thermal power 60 to 100 MW. It deploys highly enriched uranium, water cooled concentric plate fuel elements, positioned inside a beryllium reflector with complex hyperboloid arrangement of test holes. The objective of this paper is the validation of a MCNP and ORIGEN-S 3D model for reactivity predictions of the entire BR2 core during reactor operation. We employ the Monte Carlo code MCNP-4C for evaluating the effective multiplication factor k eff and 3D space dependent specific power distribution. The 1D code ORIGEN-S is used for calculation of isotopic fuel depletion versus burn up and preparation of a database (DB) with depleted fuel compositions. The approach taken is to evaluate the 3D power distribution at each time step and along with DB to evaluate the 3D isotopic fuel depletion at the next step and to deduce the corresponding shim rods positions of the reactor operation. The capabilities of the both codes are fully exploited without constraints on the number of involved isotope depletion chains or increase of the computational time. The reactor has a complex operation, with important shutdowns between cycles, and its reactivity is strongly influenced by poisons, mainly 3 He and 6 Li from the beryllium reflector, and burnable absorbers 149 Sm and 10 B in the fresh UAlx fuel. Our computational predictions for the shim rods position at various restarts are within 0.5$ (β eff =0.0072). (author)

  16. Radiobiological aspects of application of BR-10 reactor neutrons for radiotherapy of malignant tumours

    International Nuclear Information System (INIS)

    Ul'yanenko, S.E.; Kuznetsova, M.N.; Obaturov, G.M.

    1992-01-01

    Possibilities to increase the factor of therapeutical gain (FTG) by optimizing irradiation conditions and using hyperglycemia were studied. It is shown that relative biological effectiveness (RBE) of neutrons in fission spectrum of the BR-10 reactor in the dose range from 10 Gy used one time is 4.2-4.5 for tumours and 4.0-4.2 for normal skin; in case of fractionated irradiation by neutrons (1-8 fractions in the range of 6-10 Gy) RBE increases practically 1.5 fold; employment of neutron beam filters and hyperglycemia in conditions of combined gamma-neutron procedures of irradiation permits a considerable increase in FTG. 3 refs

  17. Radiative forcing calculations for CH3Br

    International Nuclear Information System (INIS)

    Grossman, A.S.; Blass, W.E.; Wuebbles, D.J.

    1995-06-01

    Methyl Bromide, CH 3 Br, is the major organobromine species in the lower atmosphere and is a primary source of bromine in the stratosphere. It has a lifetime of 1.3 years. The IR methyl bromide spectra in the atmospheric window region, 7--13μ, was determined using a well tested Coriolis resonance and ell-doubling (and ell-resonance) computational system. A radiative forcing value of 0.00493 W/m 2 /ppbv was obtained for CH 3 Br and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 278 times the forcing of C0 2 , on a per molecule basis. The radiative forcing calculation is used to estimate the global warming potential (GWP) of CH 3 Br. The results give GWPs for CH 3 Br of the order of 13 for an integration period of 20 years and 4 for an integration period of 100 years (assuming C0 2 = 1, following IPCC [1994]). While CH 3 Br has a GWP which is approximately 25 percent of the GWP of CH 4 , the current emission rates are too low to cause serious atmospheric greenhouse heating effects at this time

  18. Miniature fission chambers calibration in pulse mode: interlaboratory comparison at the. SCK·CEN BR1 and CEA CALIBAN reactors

    International Nuclear Information System (INIS)

    Lamirand, V.; Geslot, B.; Gregoire, G.; Garnier, D.; Breaud, S.; Mellier, F.; Di-Salvo, J.; Destouches, C.; Blaise, P.; Wagemans, J.; Borms, L.; Malambu, E.; Casoli, P.; Jacquet, X.; Rousseau, G.; Sauvecane, P.

    2013-06-01

    Miniature fission chambers are suited tools for instrumenting experimental reactors, allowing online and in-core neutron measurements of quantities such as fission rates or reactor power. A new set of such detectors was produced by CEA to be used during the next experimental program at the EOLE facility starting in 2013. Some of these detectors will be employed in pulse mode for absolute measurements, thus requiring calibration. The calibration factor is expressed in mass units and thus called 'effective mass'. A calibration campaign was conducted in December 2012 at the SCK.CEN BR1 facility within the framework of the scientific cooperation VEP (VENUS-EOLE-PROTEUS) between SCK.CEN, CEA and PSI. Two actions were conducted in order to improve the calibration method. First a new characterisation of the thermal flux cavity and the MARK3 neutron flux conversion device performed by SCK.CEN allowed using calculated effective cross sections for determining detectors effective masses. Dosimetry irradiations were performed in situ in order to determine the neutron flux level and provide link to the metrological standard. Secondly two fission chambers were also calibrated at the CEA CALIBAN reactor (fast neutron spectrum), using the same method so that the results can be compared with the results obtained at the SCK.CEN. In this paper the calibration method and recent improvements on uncertainty reduction are presented. The results and uncertainties obtained in the two reactors CALIBAN and BR1 are compared and discussed. (authors)

  19. Identification of the transition arrays 3d74s-3d74p in Br X and 3d64s-3d64p in Br XI

    International Nuclear Information System (INIS)

    Zeng, X.T.; Jupen, C.; Bengtsson, P.; Engstroem, L.; Westerlind, M.; Martinson, I.

    1991-01-01

    We report a beam-foil study of multiply ionized bromine in the region 400-1300A, performed with 6 and 8 MeV Br ions from a tandem accelerator. At these energies transitions belonging to Fe-like Br X and Mn-like Br XI are expected to be prominent. We have identified 31 lines as 3d 7 4s-3d 7 4p transitions in Br X, from which 16 levels of the previously unknown 3d 7 4s configuration could be established. We have also added 6 new 3d 7 4p levels to the 99 previously known. For Br XI we have classified 9 lines as 3d 6 4s-3d 6 4p combinations. The line identifications have been corroborated by isoelectronic comparisons and theoretical calculations using the superposition-of-configurations technique. (orig.)

  20. Ongoing refurbishment activities and strategy for the future operation of the BR2 reactor

    International Nuclear Information System (INIS)

    Koonen, E.; Gubel, P.

    1994-01-01

    The operation of the BR2 reactor with its second Be-matrix is foreseen up to mid-1995 or mid-1996. A life extension for another 15 years is envisaged considering programmatic, financial and technical aspects. At present, the second phase of the refurbishment programme is being executed. The major activities of this programme can be grouped under two headings: safety reassessment and ageing issues. The expected outcome end '93 is an assessment report defining extent, choosen options, prioritized activities, budget and a tentative planning for the preparation and execution of the refurbishment. These aspects together with the prospects of possible cooperation with other parties for the refurbishment programme and the future operation of BR2 will be evaluated by the CEN/SCK Board who has to take a decision early in 1994. Various scenarios are now being considered and evaluated for the refurbishment and the future BR2 operation regime. (author)

  1. Ongoing refurbishment activities and strategy for the future operation of the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koonen, E; Gubel, P [BR2 Department, Belgian Nuclear Research Center, CEN/SCK, Mol (Belgium)

    1993-07-01

    The operation of the BR2 reactor with its second Be-matrix is foreseen up to mid-1995 or mid-1996. A life extension for another 15 years is envisaged considering programmatic, financial and technical aspects. At present, the second phase of the refurbishment programme is being executed. The major activities of this programme can be grouped under two headings: safety reassessment and ageing issues. The expected outcome end '93 is an assessment report defining extent, choosen options, prioritized activities, budget and a tentative planning for the preparation and execution of the refurbishment. These aspects together with the prospects of possible cooperation with other parties for the refurbishment programme and the future operation of BR2 will be evaluated by the CEN/SCK Board who has to take a decision early in 1994. Various scenarios are now being considered and evaluated for the refurbishment and the future BR2 operation regime. (author)

  2. Ongoing refurbishment activities and strategy for the future operation of the BR2 reactor

    International Nuclear Information System (INIS)

    Koonen, E.; Gubel, P.

    1993-01-01

    The operation of the BR2 reactor with its second Be-matrix is foreseen up to mid-1995 or mid-1996. A life extension for another 15 years is envisaged considering programmatic, financial and technical aspects. At present, the second phase of the refurbishment programme is being executed. The major activities of this programme can be grouped under two headings: safety reassessment and ageing issues. The expected outcome end '93 is an assessment report defining extent, choosen options, prioritized activities, budget and a tentative planning for the preparation and execution of the refurbishment. These aspects together with the prospects of possible cooperation with other parties for the refurbishment programme and the future operation of BR2 will be evaluated by the CEN/SCK Board who has to take a decision early in 1994. Various scenarios are now being considered and evaluated for the refurbishment and the future BR2 operation regime. (author)

  3. Reactor Division semestrial progress report January - June 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report covers the activities of the reactor division at the SCK-CEN during the first semester of 1987. It deals with the BR-2 materials testing reactor, the BR-3 power plant, reactor physics, water cooled reactors, fast neutron reactors, fusion, non nuclear programmes, testing and commissioning, high and medium activities, and informatics. (MCB)

  4. Reactor Division semestrial progress report July - December 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report covers the activities of the reactor division at the SCK-CEN during the second semester of 1987. It deals with the BR-2 materials testing reactor, the BR-3 power plant, reactor physics, water cooled reactors, fast neutron reactors, fusion, non nuclear programmes, testing and commissioning, high and medium activities, and informatics. (MCB)

  5. Tunable CsPbBr3/Cs4PbBr6 phase transformation and their optical spectroscopic properties.

    Science.gov (United States)

    Chen, Xiao; Chen, Daqin; Li, Junni; Fang, Gaoliang; Sheng, Hongchao; Zhong, Jiasong

    2018-04-24

    As a novel type of promising materials, metal halide perovskites are a rising star in the field of optoelectronics. On this basis, a new frontier of zero-dimensional perovskite-related Cs4PbBr6 with bright green emission and high stability has attracted an enormous amount of attention, even though its photoluminescence still requires to clarification. Herein, the controllable phase transformation between three-dimensional CsPbBr3 and zero-dimensional Cs4PbBr6 is easily achieved in a facile ligand-assisted supersaturated recrystallization synthesis procedure via tuning the amount of surfactants, and their unique optical properties are investigated and compared in detail. Both Cs4PbBr6 and CsPbBr3 produce remarkably intense green luminescence with quantum yields up to 45% and 80%, respectively; however, significantly different emitting behaviors are observed. The fluorescence lifetime of Cs4PbBr6 is much longer than that of CsPbBr3, and photo-blinking is easily detected in the Cs4PbBr6 product, proving that the zero-dimensional Cs4PbBr6 is indeed a highly luminescent perovskite-related material. Additionally, for the first time, tunable emissions over the visible-light spectral region are demonstrated to be achievable via halogen composition modulations in the Cs4PbX6 (X = Cl, Br, I) samples. Our study brings a simple method for the phase control of CsPbBr3/Cs4PbBr6 and demonstrates the intrinsic luminescence nature of the zero-dimensional perovskite-related Cs4PbX6 products.

  6. The utility of different reactor types for the research

    International Nuclear Information System (INIS)

    Stiennon, G.

    1983-01-01

    The report presents a general view of the use of the different belgian research reactor i.e. venus reactor, BR-1 reactor, BR-2 reactor and BR-3 reactor. Particular attention is given to the programmes which is in the interest of international collaboration. In order to reach an efficient utilization of such reactors they require a specialized personnel groups to deal with the irradiation devices and radioactive materials and post irradiation examinations, creating a complete material testing station. (A.J.)

  7. Qualification of the on-line power determination of fuel elements in irradiation devices in the BR2 reactor

    International Nuclear Information System (INIS)

    Vermeeren, L.; Dekeyser, J.; Gouat, P.; Kalcheva, S.; Koonen, E.; Kuzminov, V.; Verwimp, A.; Weber, M.

    2005-01-01

    Fuel irradiation tests require an on-line monitoring of the fuel power. In the BR2 reactor, this is performed by continuously measuring the enthalpy change in the coolant of the irradiation device and complementing this information with data on power losses, heating of structure parts and spatial power profiles from mock-up test experiments and from calculations. Since a few years Monte Carlo codes (MCNP) are used, describing the BR2 core in great detail for every reactor cycle with its specific core load, yielding not only reliable relative values, but also calculated absolute local power values in agreement with data from PIE analyses. Several methods were conceived to combine the experimental and calculated data for the on-line calculation of the local linear power in the fuel elements; their internal consistency and the consistency with gamma spectroscopy data and data from radiochemical fission product analysis was checked. The data show that fuel irradiations in BR2 can be performed in a well-controlled way, with an accurate and reliable on-line follow-up of the fuel power. (author)

  8. Photodissociation of C{sub 3}H{sub 5}Br and C{sub 4}H{sub 7}Br at 234 nm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Kook; Paul, Dababrata; Hong, Ki Ryong; Cho, Ha Na; Kim, Tae Kyu [Pusan National University, Busan (Korea, Republic of); Lee, Kyoung Seok [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2012-01-15

    The photodissociation dynamics of cyclopropyl bromide (C-3H{sub 5}Br) and cyclobutyl bromide (C{sub 4}H{sub 7}Br) at 234 nm was investigated. A two-dimensional photofragment ion-imaging technique coupled with a [2+1] resonance enhanced multiphoton ionization scheme was utilized to obtain speed and angular distributions of the nascent Br({sup 2}P{sub 3/2}) and Br*({sup 2}P{sub 1/2}) atoms. The recoil anisotropies for the Br and Br* channels were measured to be βBr = 0.92 ± 0.03 and βBr* = 1.52 ± 0.04 for C{sub 3}H{sub 5}Br and βBr = 1.10 ± 0.03 and βBr* = 1.49 ± 0.05 for C{sub 4}H{sub 7}Br. The relative quantum yield for Br was found to be ΦBr = 0.13 ± 0.03 and for C{sub 3}H{sub 5}Br and C{sub 4}H{sub 7}Br, respectively. The soft radical limit of the impulsive model adequately modeled the related energy partitioning. The nonadiabatic transition probability from the 3A' and 4A' potential energy surfaces was estimated and discussed.

  9. BR2 reactor core steady state transient modeling

    International Nuclear Information System (INIS)

    Makarenko, A.; Petrova, T.

    2000-01-01

    A coupled neutronics/hydraulics/heat-conduction model of the BR2 reactor core is under development at SCK-CEN. The neutron transport phenomenon has been implemented as steady state and time dependent nodal diffusion. The non-linear heat conduction equation in-side fuel elements is solved with a time dependent finite element method. To allow coupling between functional modules and to simulate subcooled regimes, a simple single-phase hydraulics has been introduced, while the two-phase hydraulics is under development. Multiple tests, general benchmark cases as well as calculation/experiment comparisons demonstrated a good accuracy of both neutronic and thermal hydraulic models, numerical reliability and full code portability. A refinement methodology has been developed and tested for better neutronic representation in hexagonal geometry. Much effort is still needed to complete the development of an extended cross section library with kinetic data and two-phase flow representation. (author)

  10. A comparative study of LaBr{sub 3}(Ce{sup 3+}) and CeBr{sub 3} based gamma-ray spectrometers for planetary remote sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Kozyrev, A., E-mail: kozyrev@mx.iki.rssi.ru; Mitrofanov, I.; Bakhtin, B.; Fedosov, F.; Golovin, D.; Litvak, M.; Malakhov, A.; Mokrousov, M.; Nuzhdin, I.; Sanin, A.; Tretyakov, V.; Vostrukhin, A. [Space Research Institute of the Russian Academy of Sciences (IKI), 84/32 Profsoyuznaya St., Moscow 117997 (Russian Federation); Owens, A.; Benkhoff, J. [European Space Agency, ESTEC, Keplerlaan, 2200 AG Noordwijk (Netherlands); Quarati, F. [AP, RST, FAME, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Gonitec BV, J. Bildersstraat 60, 2596 EJ Den Haag (Netherlands); Timoshenko, G.; Shvetsov, V. [Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980 (Russian Federation); Granja, C.; Slavicek, T.; Pospisil, S. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 12800 Prague 2 (Czech Republic)

    2016-08-15

    The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESA’s BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. single crystal of LaBr{sub 3}(Ce{sup 3+}) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr{sub 3} became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr{sub 3} crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr{sub 3}(Ce{sup 3+}) and CeBr{sub 3} provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr{sub 3} is a more attractive system than LaBr{sub 3}(Ce{sup 3+}) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr{sub 3} now forms

  11. Development of quantum device simulator NEMO-VN1

    Science.gov (United States)

    Hien, Dinh Sy; Thi Luong, Nguyen; Hoang Minh, Le; Tien Phuc, Tran; Thanh Trung, Pham; Dong, Bui An; Thu Thao, Huynh Lam; Van Le Thanh, Nguyen; Tuan, Thi Tran Anh; Hoang Trung, Huynh; Thi Thanh Nhan, Nguyen; Viet Nga, Dinh

    2009-09-01

    We have developed NEMO-VN1 (NanoElectronic MOdelling), a new modelling tool that simulates a wide variety of quantum devices including Quantum Dot (QD), Resonant Tunneling Diode (RTD), Resonant Tunneling Transistor (RTT), Single Electron Transistor (SET), Molecular FET (MFET), Carbon Nanotube FET (CNTFET), Spin FET (SPINFET). It has a collection of models that allow user to trade off between calculation speed and accuracy. NEMO-VN1 also includes a graphic user interface of Matlab that enables parameter entry, calculation control, intuitive display of calculation results, and in-situ data analysis methods.

  12. Development of quantum device simulator NEMO-VN1

    International Nuclear Information System (INIS)

    Dinh Sy Hien; Nguyen Thi Luong; Le Hoang Minh; Tran Tien Phuc; Pham Thanh Trung; Bui An Dong; Huynh Lam Thu Thao; Nguyen Van Le Thanh; Thi Tran Anh Tuan; Huynh Hoang Trung; Nguyen Thi Thanh Nhan; Dinh Viet Nga

    2009-01-01

    We have developed NEMO-VN1 (NanoElectronic MOdelling), a new modelling tool that simulates a wide variety of quantum devices including Quantum Dot (QD), Resonant Tunneling Diode (RTD), Resonant Tunneling Transistor (RTT), Single Electron Transistor (SET), Molecular FET (MFET), Carbon Nanotube FET (CNTFET), Spin FET (SPINFET). It has a collection of models that allow user to trade off between calculation speed and accuracy. NEMO-VN1 also includes a graphic user interface of Matlab that enables parameter entry, calculation control, intuitive display of calculation results, and in-situ data analysis methods.

  13. All-Ambient Processed Binary CsPbBr3-CsPb2Br5 Perovskites with Synergistic Enhancement for High-Efficiency Cs-Pb-Br-Based Solar Cells.

    Science.gov (United States)

    Zhang, Xisheng; Jin, Zhiwen; Zhang, Jingru; Bai, Dongliang; Bian, Hui; Wang, Kang; Sun, Jie; Wang, Qian; Liu, Shengzhong Frank

    2018-02-28

    All-inorganic CsPbBr 3 perovskite solar cells display outstanding stability toward moisture, light soaking, and thermal stressing, demonstrating great potential in tandem solar cells and toward commercialization. Unfortunately, it is still challenging to prepare high-performance CsPbBr 3 films at moderate temperatures. Herein, a uniform, compact CsPbBr 3 film was fabricated using its quantum dot (QD)-based ink precursor. The film was then treated using thiocyanate ethyl acetate (EA) solution in all-ambient conditions to produce a superior CsPbBr 3 -CsPb 2 Br 5 composite film with a larger grain size and minimal defects. The achievement was attributed to the surface dissolution and recrystallization of the existing SCN - and EA. More specifically, the SCN - ions were first absorbed on the Pb atoms, leading to the dissolution and stripping of Cs + and Br - ions from the CsPbBr 3 QDs. On the other hand, the EA solution enhances the diffusion dynamics of surface atoms and the surfactant species. It is found that a small amount of CsPb 2 Br 5 in the composite film gives the best surface passivation, while the Br-rich surface decreases Br vacancies (V Br ) for a prolonged carrier lifetime. As a result, the fabricated device gives a higher solar cell efficiency of 6.81% with an outstanding long-term stability.

  14. Performance evaluation of LaBr3: Ce scintillator

    International Nuclear Information System (INIS)

    Xie Ming; Lin Li; Liu Shihao; Xiao Peng; Xie Qingguo

    2012-01-01

    The cerium doped lanthanum bromide crystal (LaBr 3 : Ce) is a new kind of scintillator with many advantages such as good energy resolution, high light output, short decay time, good proportionality response. These properties make the LaBr 3 : Ce attractive substantial interest to use in the radiation detection. The energy resolution were investigated with Φ25 × 25 mm LaBr 3 : Ce coupled to a Hamamatsu R8900 photomultiplier tube. Energy resolution of 3.6% (FWHM) have been achieved for 511 keV photons ( 18 F source) at room temperature. Decay time constant of 20 ns have been acquired with a Hamamatsu fast-time-response R9800 photomultiplier tube. The results approve the excellent characterizations of LaBr 3 : Ce and imply its enormous potentiality in the radiation detectors of gamma-ray spectroscopy and PET. (authors)

  15. Qualification of high density aluminide fuels for the BR2 reactor

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, Andre; Gubel, Pol; Ponsard, Bernard; Pin, Thomas; Falgoux, Jean Louis

    2005-01-01

    The BR2 operation still relies on the use of 90..93% enriched HEU aluminide fuel. The availability of a limited batch of 73% enriched HEU from reprocessed BR2 uranium in Dounreay justified 10 years ago the qualification and use of this material. After some preliminary test irradiations, various batches of fuel elements were fabricated by the UKAEA-Dounreay and successfully irradiated. Due to their lower 235 U content (0.050 g 235 U/cm 2 ), these elements were always irradiated together with standard 90...93% HEU fuel elements. A mixed-core strategy was developed at this occasion for an optimal utilization, and was reported during the 4th RRFM conference (March 19-21, 2000, Colmar, France). The availability of a new batch of fresh 73% HEU material was the occasion, a few years ago, to initiate the development, fabrication and qualification of a new high density fuel element. An order was placed with CERCA to assess the optimal fabrication methods and tooling required to meet as far as possible the existing BR2 standard specifications and 235 U content (0.060 g 235 U/cm 2 ). This development phase has been already reported during the 7th RRFM conference (March 9-12, 2003, Aix-en-Provence, France). Afterwards, six lead test fuel elements were ordered for qualification by irradiation. The neutronic properties of the fuel elements were adjusted and optimized. After a short summary of the main results of the development program, this paper describes the nuclear characteristics of the high density fuel elements and comments on the nuclear follow-up of the lead test fuel elements during their irradiation for five cycles in the BR2 reactor and the return of experience for CERCA. (author)

  16. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided; if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly

  17. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided: if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly. (author)

  18. Hybridization of Single Nanocrystals of Cs4PbBr6 and CsPbBr3

    OpenAIRE

    Weerd, Chris de; Lin, Junhao; Gomez, Leyre; Fujiwara, Yasufumi; Suenaga, Kazutomo; Gregorkiewicz, Tom

    2017-01-01

    Nanocrystals of all-inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, I) feature high absorption and efficient narrow-band emission which renders them promising for future generation of photovoltaic and optoelectronic devices. Colloidal ensembles of these nanocrystals can be conveniently prepared by chemical synthesis. However, in the case of CsPbBr3, its synthesis can also yield nanocrystals of Cs4PbBr6 and the properties of the two are easily confused. Here, we investigate in de...

  19. Safety challenges encountered during the operating life of the almost 40 year old research reactor BR2

    International Nuclear Information System (INIS)

    Koonen, E.; Joppen, F.; Gubel, P.

    2001-01-01

    The BR2 reactor is one of the major MTR-type research reactors in the world. Its operation started in the early 1960's. Two major refurbishment operations have been carried out since then. Several safety reassessments were carried out over the years in order to keep the safety level in line with modern standards and to enhance operational safety. This paper gives an overview of the safety challenges encountered over the years and how those were met. (author)

  20. Crystallographic and magnetic properties of (C6D11ND3)CuBr3 and (Zn1-xMnx)3As2

    International Nuclear Information System (INIS)

    Vries, G.C. de.

    1989-08-01

    The investigations described concern the crystallographic and magnetic properties of the quasi one-dimensional (1d) ferromagnetic system (C 6 D 11 ND 3 )CuBr 3 (or CHAB) and the II-V type diluted magnetic semiconductor (Zn 1 - x Mn x ) 3 As 2 (or ZMA). Both compounds have been studied with various neutron scattering techniques. The crystallographic properties of CHAB and ZMA have been investigated by neutron diffraction. These diffraction experiments were carried out at the High Flux Reactor (HFR) at Petten, Netherlands. For the investigation of the static and dynamic magnetic properties of CHAB neutron scattering experiments were performed in Petten as well as other European reactor institutes. These investigations comprise a study of the 3d long-rate order and the 1d correlations of the magnetic moments, and a study of the behaviour of the linear spin-wave excitations

  1. $D^{0}$ meson $v_{n}$ harmonics in PbPb collisions at $5.02~\\mathrm{TeV}$

    CERN Document Server

    CMS Collaboration

    2016-01-01

    The Fourier coefficients $v_{2}$ and $v_{3}$, which reflect the azimuthal anisotropy of $D^0$ meson, is measured with scalar-product method in PbPb collisions at $\\sqrt{s_\\mathrm{NN}} = 5.02~\\mathrm{TeV}$ with CMS. The measurement is done in a wide $p_T$ range up to $40~\\mathrm{GeV}/c$, for centrality classes 0-10$\\%$, 10-30$\\%$ and 30-50$\\%$. It is the first measurement on $D^0$ $v_{3}$ and the uncertainties on $D^0$ $v_{2}$ are significantly improved compared with previous measurements. The measured $D^0$ $v_{n}$ (n = 2, 3) is consistent with charged particle $v_{n}$ in central collisions, and begins to be lower than charged particles $v_{n}$ in $p_T$ range 1 to $6~\\mathrm{GeV}/c$ for more peripheral collisions. In high $p_T$ range, non-zero $D^0$ $v_{2}$ is also observed, which indicates the path length dependent energy loss of charm quark.

  2. Improved Growth Methods for LaBr3 Scintillation Radiation Detectors

    International Nuclear Information System (INIS)

    McGregor, Douglas S.

    2011-01-01

    The objective is to develop advanced materials for deployment as high-resolution gamma ray detectors. Both LaBr3 and CeBr3 are advanced scintillation materials, and will be studied in this research. Prototype devices, in collaboration Sandia National Laboratories, will be demonstrated along with recommendations for mass production and deployment. It is anticipated that improved methods of crystal growth will yield larger single crystals of LaBr3 for deployable room-temperature operated gamma radiation spectrometers. The growth methods will be characterized. The LaBr3 and CeBr3 scintillation crystals will be characterized for light yield, spectral resolution, and for hardness.

  3. TiN/VN composites with core/shell structure for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shanmu; Chen, Xiao [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101 (China); Gu, Lin [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 9808577 (Japan); Zhou, Xinhong [Qingdao University of Science and Technology, Qingdao 266101 (China); Wang, Haibo; Liu, Zhihong; Han, Pengxian; Yao, Jianhua; Wang, Li [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101 (China); Cui, Guanglei, E-mail: cuigl@qibebt.ac.cn [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101 (China); Chen, Liquan [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101 (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2011-06-15

    Research highlights: {yields} Vanadium and titanium nitride nanocomposite with core-shell structure was prepared. {yields} TiN/VN composites with different V:Ti molar ratios were obtained. {yields} TiN/VN composites can provide promising electronic conductivity and favorable capacity storage. -- Abstract: TiN/VN core-shell composites are prepared by a two-step strategy involving coating of commercial TiN nanoparticles with V{sub 2}O{sub 5}.nH{sub 2}O sols followed by ammonia reduction. The highest specific capacitance of 170 F g{sup -1} is obtained when scanned at 2 mV s{sup -1} and a promising rate capacity performance is maintained at higher voltage sweep rates. These results indicate that these composites with good electronic conductivity can deliver a favorable capacity performance.

  4. First results of the deployment of a SoLid detector module at the SCK•CEN BR2 reactor

    Science.gov (United States)

    Ryder, N.

    The SoLid experiment aims to resolve the reactor neutrino anomaly by searching for electron-to-sterile anti-neutrino oscillations. The search will be performed between 5.5 and 10 m from the highly enriched uranium core of the BR2 reactor at SCK-CEN. The experiment utilises a novel approach to anti-neutrino detection based on a highly segmented, composite scintillator detector design. High experimental sensitivity can be achieved using a combination of high neutron-gamma discrimination using 6 LiF:ZnS(Ag) and precise localisation of the inverse beta decay products. This compact detector system requires limited passive shielding as it relies on spacial topology to determine the different classes of backgrounds. The first full scale, 288 kg, detector module was deployed at the BR2 reactor in November 2014. A phased three tonne experimental deployment will begin in the second half of 2016, allowing a precise search for oscillations that will resolve the reactor anomaly using a three tonne detector running for three years. In this talk the novel detector design is explained and initial detector performance results from the module level deployment are presented along with an estimation of the physics reach of the next phase.

  5. Interaction of Cr-Ti-Si coating on VN-3 niobium alloy with air environment

    International Nuclear Information System (INIS)

    Lazarev, Eh.M.; Kozlov, A.T.; Monakhova, L.A.

    1985-01-01

    Investigation of heat-resistance, microstructure and phase composition of Cr-Ti-Si coating on VN-3 niobium alloy with air oxidation in the temperature interval of 1200-1600 deg C is conducted. Thermogravimetry, metallography, X-ray diffraction and microprobe analysis methods are used. It is ascertained that the coating is a dense niobium disilicide layer, luriched on the surface with chromium and titanium disilicides and separated and from the protected alloy by a narrow zone of the lowest niobium silicide Nb 5 Si 3 . The coating protective junctions are provided by a selective chromium and titanium disilicides oxidation as well as niobium disilicide oxidation at the temperature of 1600 deg C, and by the rates of niobium and silicon diffusion through Nb 5 SI 3 and NbSi 2 and oxygen diffusion through the amorphous SiO 2

  6. Effects of CuBr addition to CH3NH3PbI3(Cl) perovskite photovoltaic devices

    Science.gov (United States)

    Oku, Takeo; Ohishi, Yuya; Tanaka, Hiroki

    2018-01-01

    Effects of CuBr addition to perovskite CH3NH3PbI3(Cl) precursor solutions on photovoltaic properties were investigated. The CH3NH3Pb(Cu)I3(Cl,Br)-based photovoltaic devices were fabricated by a spin-coating technique, and the microstructures of the devices were investigated by X-ray diffraction, optical microscopy and scanning electron microscopy. Current density-voltage characteristics were improved by a small amount of CuBr addition, which resulted in improvement of the conversion efficiencies of the devices. The structure analysis showed decrease of unit cell volume and increase of Cu/Br composition by the CuBr addition, which would indicate the Cu/Br substitution at the Pb/I sites in the perovskite crystal, respectively.

  7. Angular correlation for gamma-gamma transitions in 81Br and 83Br nuclei

    International Nuclear Information System (INIS)

    Matheus, R.

    1984-01-01

    The directional angular correlation of coincident gamma transitions in 81 Br and 83 Br have been measured following the β - decay of 81 Se(T sub(1/2) = 18.6 min) and 83 Se(T sub(1/2) = 22.6 min) respectively, using Ge(Li) - high purity Ge and Ge(Li)-NaI(Tl) spectrometers. The radioactive sources were prepared by irradiating with neutrons in the IEA-R1 reactor, metallic selenium (natural) to produce 81 Se and samples of metallic selenium enriched (to approx. 90% in 82 Se) to produce 83 Se. Measurements have been carried out for the gamma cascades 260-276 KeV, 290-276 KeV and 552-276 KeV in 81 Br and the gamma cascades 225(510)-356 KeV, 510-356 KeV, 572-(510)-356 KeV, 718-(225)-(510)-356 KeV, 1064-356 KeV, 718-225 KeV, 718-(225)-510 KeV, 836-718 KeV, 718-(225)-866 KeV, 883-718 KeV and 1895-799 KeV in 83 Br. The multipole mixing ratios, σ(E2/M1), were determined for 3 gamma transitions in 81 Br and 11 gamma transitions in 83 Br. In the case of 81 Br present results confirmed some of the earlier results. The spin and parity assignment were made to the majority of levels in 81 Br and 83 Br involved in the present study, some of them confirming the earlier results. A comparison of some of the nuclear properties of the 79 Br, 81 Br and 83 Br is made based on the available experimental data. The experimental results are also discussed qualitatively in terms of some nuclear models applicable for the description of the properties of odd-A bromine isotopes. (Author) [pt

  8. Site selective excitation spectroscopy of CsCdBr sub 3 :U sup 3 sup +

    CERN Document Server

    Yin Min

    2002-01-01

    The CsCdBr sub 3 :U sup 3 sup + crystal was grown by the Bridgman technique from the starting materials CsBr, CdBr sub 2 and UBr sub 4. X-ray check showed that the sample crystallized in the CsNiBr sub 3 structure. Under selective excitation at low temperature, the emission spectra and the fluorescence decay curve were measured and discussed

  9. X-ray and NQR studies of bromoindate(III) complexes. [C{sub 2}H{sub 5}NH{sub 3}]{sub 4}InBr{sub 7}, [C(NH{sub 2}){sub 3}]{sub 3}InBr{sub 6}, and [H{sub 3}NCH{sub 2}C(CH{sub 3}){sub 2}CH{sub 2}NH{sub 3}]InBr{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, Takeharu; Ishihara, Hideta [Saga Univ. (Japan). Faculty of Culture and Education; Terao, Hiromitsu [Tokushima Univ. (Japan). Faculty of Integrated Arts and Sciences; Lork, Enno; Gesing, Thorsten M. [Bremen Univ. (Germany). Inst. of Inorganic Chemistry and Crystallography

    2017-03-01

    The crystal structures of [C{sub 2}H{sub 5}NH{sub 3}]{sub 4}InBr{sub 7}(1), [C(NH{sub 2}){sub 3}]{sub 3}InBr{sub 6}(2), and [H{sub 3}NCH{sub 2}C(CH{sub 3}){sub 2}CH{sub 2}NH{sub 3}]InBr{sub 5}(3) were determined at 100(2) K: monoclinic, P2{sub 1}/n, a=1061.94(3), b=1186.40(4), c=2007.88(7) pm, β= 104.575(1) , Z=4 for 1; monoclinic, C2/c, a=3128.81(12), b=878.42(3), c=2816.50(10) pm, β=92.1320(10) , Z=16 for 2; orthorhombic, P2{sub 1}2{sub 1}2{sub 1}, a=1250.33(5), b=1391.46(6), c=2503.22(9) pm, Z=4 for 3. The structure of 1 contains an isolated octahedral [InBr{sub 6}]{sup 3-} ion and a Br{sup -} ion. The structure of 2 contains three different isolated octahedral [InBr{sub 6}]{sup 3-} ions. The structure of 3 has a corner-shared double-octahedral [In{sub 2}Br{sub 11}]{sup 5-} ion and an isolated tetrahedral [InBr{sub 4}]{sup -} ion. The {sup 81}Br nuclear quadrupole resonance (NQR) lines of the terminal Br atoms of the compounds are widely spread in frequency, and some of them show unusual positive temperature dependence. These observations manifest the N-H..Br-In hydrogen bond networks developed between the cations and anions to stabilize the crystal structures. The {sup 81}Br NQR and differential thermal analysis (DTA) measurements have revealed the occurrence of unique phase transitions in 1 and 3. When the bond angles were estimated from the electric field gradient (EFG) directions calculated by the molecular orbital (MO) methods, accurate values were obtained for [InBr{sub 6}]{sup 3-} of 1 and for [In{sub 2}Br{sub 11}]{sup 5-} and [InBr{sub 4}]{sup -} of 3, except for several exceptions in those for the latter two ions. On the other hand, the calculations of {sup 81}Br NQR frequencies have produced up to 1.4 times higher values than the observed ones.

  10. PbBr3 Perovskite Crystals

    KAUST Repository

    Wei, Tzu-Chiao; Mokkapati, Sudha; Li, Ting-You; Lin, Chun-Ho; Lin, Gong-Ru; Jagadish, Chennupati; He, Jr-Hau

    2018-01-01

    , such as lithium niobate (LiNbO3), LiTaO3, KTiOPO4, and KH2PO4. Such a strong two-photon absorption effect in CH3NH3PbBr3 can be used to modulate the spectral and spatial profiles of laser pulses, as well as to reduce noise, and can be used to strongly control

  11. Facile synthesis of CsPbBr3/PbSe composite clusters.

    Science.gov (United States)

    Nguyen, Thang Phan; Ozturk, Abdullah; Park, Jongee; Sohn, Woonbae; Lee, Tae Hyung; Jang, Ho Won; Kim, Soo Young

    2018-01-01

    In this work, CsPbBr 3 and PbSe nanocomposites were synthesized to protect perovskite material from self-enlargement during reaction. UV absorption and photoluminescence (PL) spectra indicate that the addition of Se into CsPbBr 3 quantum dots modified the electronic structure of CsPbBr 3 , increasing the band gap from 2.38 to 2.48 eV as the Cs:Se ratio increased to 1:3. Thus, the emission color of CsPbBr 3 perovskite quantum dots was modified from green to blue by increasing the Se ratio in composites. According to X-ray diffraction patterns, the structure of CsPbBr 3 quantum dots changed from cubic to orthorhombic due to the introduction of PbSe at the surface. Transmission electron microscopy and X-ray photoemission spectroscopy confirmed that the atomic distribution in CsPbBr 3 /PbSe composite clusters is uniform and the composite materials were well formed. The PL intensity of a CsPbBr 3 /PbSe sample with a 1:1 Cs:Se ratio maintained 50% of its initial intensity after keeping the sample for 81 h in air, while the PL intensity of CsPbBr 3 reduced to 20% of its initial intensity. Therefore, it is considered that low amounts of Se could improve the stability of CsPbBr 3 quantum dots.

  12. Pellet bed reactor for nuclear thermal propelled vehicles

    International Nuclear Information System (INIS)

    El-Genk, M.; Morley, N.J.; Haloulakos, V.E.

    1991-01-01

    The Pellet Bed Reactor (PeBR) concept is capable of operating at a high power density of up to 3.0 kWt/cu cm and an exit hydrogen gas temperature of 3000 K. The nominal reactor thermal power is 1500 MW and the reactor core is 0.80 m in diameter and 1.3 m high. The nominal PeBR engine generates a thrust of approximately 315 kN at a specific impulse of 1000 s for a mission duration to Mars of 250 days requiring a total firing time of 170 minutes. Because of its low diameter-to-height ratio, PeBR has enough surface area for passive removal of the decay heat from the reactor core. The reactor is equipped with two independent shutdown mechanisms; 8-B4C safety rods and 26 BeO/B4C control drums; each system is capable of operating and scraming the reactor safely. Due to the absence of core internal support structures, the PeBR can be fueled and refueled in orbit using the vacuum of space. These unique features of the PeBR provide for safety during launch, simplicity of handling, deployment, and end-of-life disposal, and vehicle extended lifetime. 11 refs

  13. Review of the accident source terms for aluminide fuel: Application to the BR2 reactor

    International Nuclear Information System (INIS)

    Joppen, F.

    2005-01-01

    A major safety review of the BR2, a material test reactor, is to be conducted for the year 2006. One of the subjects selected for the safety review is the definition of source terms for emergency planning and in particular the development of accident scenarios. For nuclear power plants the behaviour of fuel under accident conditions is a well studied object. In case of non-power reactors this basic knowledge is rather scarce. The usefulness of information from power plant fuels is limited due to the differences in fuel type, power level and thermohydraulical conditions. First investigation indicates that using data from power plant fuel leads to an overestimation of the source terms. Further research on this subject could be very useful for the research reactor community, in order to define more realistic source terms and to improve the emergency preparedness. (author)

  14. Measurements of plume geometry and argon-41 radiation field at the BR1 reactor in Mol, Belgium

    International Nuclear Information System (INIS)

    Drews, M.; Joergensen, H.; Lauritzen, Bent; Mikkelsen, T.; Aage, H.K.; Korsbech, U.; Bargholz, K.; Rojas-Palma, C.; Ammel, R. van

    2002-02-01

    An atmospheric dispersion experiment was conducted using a visible tracer along with the routine releases of 41 Ar from the BR1 air-cooled research reactor in Mol. In the experiment, simultaneous measurements of the radiation field from the 41 Ar decay, the meteorology, the 41 Ar source term and plume geometry were performed. The visible tracer was injected into the reactor emission stack, and the plume cross section determined by Lidar scanning of the released aerosols. The data collected in the exercise provide a valuable resource for atmospheric dispersion and dose rate modeling. (au)

  15. Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system

    Science.gov (United States)

    Endres, James; Kulbak, Michael; Zhao, Lianfeng; Rand, Barry P.; Cahen, David; Hodes, Gary; Kahn, Antoine

    2017-01-01

    The inorganic lead halide perovskite CsPbBr3 promises similar solar cell efficiency to its hybrid organic-inorganic counterpart CH3NH3PbBr3 but shows greater stability. Here, we exploit this stability for the study of band alignment between perovskites and carrier selective interlayers. Using ultraviolet, X-ray, and inverse photoemission spectroscopies, we measure the ionization energy and electron affinities of CsPbBr3 and the hole transport polymer polytriarylamine (PTAA). We find that undoped PTAA introduces a barrier to hole extraction of 0.2-0.5 eV, due to band bending in the PTAA and/or a dipole at the interface. p-doping the PTAA eliminates this barrier, raising PTAA's highest occupied molecular orbital to 0.2 eV above the CsPbBr3 valence band maximum and improving hole transport. However, IPES reveals the presence of states below the PTAA lowest unoccupied molecular level. If present at the CsPbBr3/PTAA interface, these states may limit the polymer's efficacy at blocking electrons in solar cells with wide band gap materials like CsPbBr3 and CH3NH3PbBr3.

  16. New control system for BR2. Preventive approach to process control

    International Nuclear Information System (INIS)

    Van den Branden, G.; Koonen, E.

    2011-01-01

    In 1961, the BR2 reactor became critical for the first time. Yet the multi-functional research reactor at SCK-CEN is not out of date, quite the contrary. Regular upgrades and innovations keep the reactor in step with the latest advancements in technology. In 2010, the control system of BR2, a vital part of the reactor, was replaced as a preventive measure.

  17. Experimental Irradiations of Materials and Fuels in the BR2 Reactor: An Overview of Current Programmes

    International Nuclear Information System (INIS)

    Van Dyck, S.; Koonen, E.; Verwerft, M.; Wéber, M.

    2013-01-01

    The BR2 material test reactor offers a variety of experimental irradiation possibilities for testing of materials, fuels and instruments. The current paper gives an overview of the recent and ongoing programmes in order to illustrate the experimental potential of the reactor. Three domains of applications are reviewed: Irradiation of materials and fuels for pressurised water reactors (PWR); irradiation of materials for accelerator driven systems (ADS), cooled by liquid lead alloys; and irradiation of fuel for Material Test Reactors (MTR). For PWR relevant tests, a dedicated loop is available, providing a full simulation of the thermo hydraulic conditions of a PWR. ADS related tests require particular control of the irradiation environment and the necessary safety precautions in order to avoid 210 Po contamination. In-core mechanical testing of materials is done in comparison and complimentarily to post-irradiation examinations in order to assess flux related effects on the deformation behaviour of materials. (author)

  18. CeBr3 as a room-temperature, high-resolution gamma-ray detector

    International Nuclear Information System (INIS)

    Guss, Paul; Reed, Michael; Yuan Ding; Reed, Alexis; Mukhopadhyay, Sanjoy

    2009-01-01

    Cerium bromide (CeBr 3 ) has become a material of interest in the race for high-resolution gamma-ray spectroscopy at room temperature. This investigation quantified the potential of CeBr 3 as a room-temperature, high-resolution gamma-ray detector. The performance of CeBr 3 crystals was compared to other scintillation crystals of similar dimensions and detection environments. Comparison of self-activity of CeBr 3 to cerium-doped lanthanum tribromide (LaBr 3 :Ce) was performed. Energy resolution and relative intrinsic efficiency were measured and are presented.

  19. Investigating the influence of epitaxial modulation on the evolution of superhardness of the VN/TiB{sub 2} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yupeng [Energy and Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, Tianjin 300387 (China); Dong, Lei, E-mail: dlei0008@126.com [Energy and Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, Tianjin 300387 (China); Liu, Na; Yu, Jiangang; Li, Chun [Energy and Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, Tianjin 300387 (China); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Energy and Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, Tianjin 300387 (China)

    2016-12-30

    Graphical abstract: The novel VN/TiB{sub 2} multilayers were produced by a magnetron sputtering system. Reasonable modulation structure affected properties of the multilayers. The double epitaxial growth as shown in HRTEM images was newly found to be a main reason for coherent growth of the VN/TiB{sub 2} multilayers within a certain thickness. The coherent growth model of the multilayer was also used to explain the growth mechanism of the VN/TiB{sub 2} multilayers in this work, which provided a useful inspiration to understand the strategies to enhance the multilayers’ engineering applications. - Highlights: • The VN/TiB{sub 2} multilayers are produced by magnetron sputtering. • A kind of second epitaxial growth is found in multilayer. • The coherent growth model is designed to explain the growth mechanism. • Second epitaxial growth promotes to form superhardness. • Coherent growth appears twice with modulation ratios decreasing. - Abstract: A series of the VN/TiB{sub 2} nanomultilayers with different modulation ratios (t{sub VN}:t{sub TiB2}) and different modulation periods were synthesized via a magnetron sputtering system. The cross-sectional transmission electron microscopy (TEM) and x-ray diffraction (XRD) examinations indicated that in the alternately deposited monolayers of the VN and TiB{sub 2}, due to the influence of the crystal (111){sub VN} texture, TiB{sub 2} layer presented epitaxial growth on the surface of the VN layer when its t{sub VN}:t{sub TiB2} was 5:1. Moreover, the formation of the TiB{sub 2} crystal promoted the growth of (200){sub VN} and significantly improved the preferential growth of nanomultilayers. With decreasing t{sub VN}:t{sub TiB2} to 1:7, the thin VN layer was crystallized under the introduction of crystalline TiB{sub 2} layers. A type of double epitaxial growth was observed to be a main reason for the coherent growth of the VN/TiB{sub 2} nanomultilayers within a certain thickness. Consequently, the multilayers

  20. Imbedded Nanocrystals of CsPbBr3 in Cs4 PbBr6 : Kinetics, Enhanced Oscillator Strength, and Application in Light-Emitting Diodes.

    Science.gov (United States)

    Xu, Junwei; Huang, Wenxiao; Li, Peiyun; Onken, Drew R; Dun, Chaochao; Guo, Yang; Ucer, Kamil B; Lu, Chang; Wang, Hongzhi; Geyer, Scott M; Williams, Richard T; Carroll, David L

    2017-11-01

    Solution-grown films of CsPbBr 3 nanocrystals imbedded in Cs 4 PbBr 6 are incorporated as the recombination layer in light-emitting diode (LED) structures. The kinetics at high carrier density of pure (extended) CsPbBr 3 and the nanoinclusion composite are measured and analyzed, indicating second-order kinetics in extended and mainly first-order kinetics in the confined CsPbBr 3 , respectively. Analysis of absorption strength of this all-perovskite, all-inorganic imbedded nanocrystal composite relative to pure CsPbBr 3 indicates enhanced oscillator strength consistent with earlier published attribution of the sub-nanosecond exciton radiative lifetime in nanoprecipitates of CsPbBr 3 in melt-grown CsBr host crystals and CsPbBr 3 evaporated films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. On-line fast flux measurements in the BR2 reactor

    International Nuclear Information System (INIS)

    Vermeeren, L.

    2009-01-01

    Since 2001, CEA-Cadarache and the Belgian Nuclear Research Centre SCK-CEN are collaborating on the development and in-pile qualification of subminiature fission chambers (diameter of 1.5 mm). Initially, efforts concentrated on fission chambers for the in-pile measurement of thermal fluxes (with 235 U as fissile material). Meanwhile successful long-term tests of the prototypes have been performed in various environments: in low temperature (40-100 degress Celsius) BR2 pool water (up to a thermal neutron fluence of 3 1 0 21 n/cm 2 ) and in the CALLISTO PWR loop (300 degrees Celsius, 155 bars). The long-term qualification of derived industrial detectors (Photonis CFUZ53) in CALLISTO is still ongoing. However, for various types of irradiations in research reactors, the knowledge of the evolution of the fast neutron flux is even of more interest than the thermal flux data. Therefore the collaboration program was extended to the development and the in-pile qualification of subminiature or miniature fission chambers (with 3 mm diameter) for fast neutron detection, for which 242 Pu was selected as the optimal fissile material. In order to achieve the on-line in-pile measurement of fast neutron flux, the fission chambers will be operated in the Campbelling mode (based on the mean square fluctuation of the detector current). In this mode the gamma induced contribution to the signal can be efficiently suppressed. Moreover, a data processing software will take into account the evolution of the fissile deposit in order to assess on-line the fast flux sensitivity and to correct for the low energy neutron contributions. The final objective is to qualify a Fast Neutron Detector System (FNDS) able to provide on-line data for local fast neutron fluxes in Material Testing Reactors. The on-line measurement of the fast neutron flux would contribute significantly to the characterization of the irradiation conditions during test experiments with materials and innovative fuel elements

  2. Kinetics of the Br2-CH3CHO Photochemical Chain Reaction

    Science.gov (United States)

    Nicovich, J. M.; Shackelford, C. J.; Wine, P. H.

    1997-01-01

    Time-resolved resonance fluorescence spectroscopy was employed in conjunction with laser flash photolysis of Br2 to study the kinetics of the two elementary steps in the photochemical chain reaction nBr2 + nCH3CHO + hv yields nCH3CBrO + nHBr. In the temperature range 255-400 K, the rate coefficient for the reaction Br((sup 2)P(sub 3/2)) + CH3CHO yields CH3CO + HBr is given by the Arrhenius expression k(sub 6)(T) = (1.51 +/- 0.20) x 10(exp -11) exp(-(364 +/- 41)/T)cu cm/(molecule.s). At 298 K, the reaction CH3CO + Br2 yields CH3CBrO + Br proceeds at a near gas kinetic rate, k(sub 7)(298 K) = (1.08 +/- 0.38) x 10(exp -10)cu cm/(molecule.s).

  3. Facile synthesis of CsPbBr3/PbSe composite clusters

    OpenAIRE

    Nguyen, Thang Phan; Ozturk, Abdullah; Park, Jongee; Sohn, Woonbae; Lee, Tae Hyung; Jang, Ho Won; Kim, Soo Young

    2017-01-01

    Abstract In this work, CsPbBr3 and PbSe nanocomposites were synthesized to protect perovskite material from self-enlargement during reaction. UV absorption and photoluminescence (PL) spectra indicate that the addition of Se into CsPbBr3 quantum dots modified the electronic structure of CsPbBr3, increasing the band gap from 2.38 to 2.48 eV as the Cs:Se ratio increased to 1:3. Thus, the emission color of CsPbBr3 perovskite quantum dots was modified from green to blue by increasing the Se ratio ...

  4. Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers

    Science.gov (United States)

    Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru

    2018-05-01

    Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.

  5. Solvation dynamics through Raman spectroscopy: hydration of Br2 and Br3(-), and solvation of Br2 in liquid bromine.

    Science.gov (United States)

    Branigan, Edward T; Halberstadt, N; Apkarian, V A

    2011-05-07

    Raman spectroscopy of bromine in the liquid phase and in water illustrates uncommon principles and yields insights regarding hydration. In liquid Br(2), resonant excitation over the B((3)Π(0u)(+)) ← X((1)Σ(g)(+)) valence transition at 532 nm produces a weak resonant Raman (RR) progression accompanied by a five-fold stronger non-resonant (NR) scattering. The latter is assigned to pre-resonance with the C-state, which in turn must be strongly mixed with inter-molecular charge transfer states. Despite the electronic resonance, RR of Br(2) in water is quenched. At 532 nm, the homogeneously broadened fundamental is observed, as in the NR case at 785 nm. The implications of the quenching of RR scattering are analyzed in a simple, semi-quantitative model, to conclude that the inertial evolution of the Raman packet in aqueous Br(2) occurs along multiple equivalent water-Br(2) coordinates. In distinct contrast with hydrophilic hydration in small clusters and hydrophobic hydration in clathrates, it is concluded that the hydration shell of bromine in water consists of dynamically equivalent fluxional water molecules. At 405 nm, the RR progression of Br(3)(-) is observed, accompanied by difference transitions between the breathing of the hydration shell and the symmetric stretch of the ion. The RR scattering process in this case can be regarded as the coherent photo-induced electron transfer to the solvent and its radiative back-transfer.

  6. Finding the Missing Stratospheric Br(sub y): A Global Modeling Study of CHBr3 and CH2Br2

    Science.gov (United States)

    Liang, Q.; Stolarski, R. S.; Kawa, S. R.; Nielsen, J. E.; Douglass, A. R.; Rodriguez, J. M.; Blake, D. R.; Atlas, E. L.; Ott, L. E.

    2010-01-01

    Recent in situ and satellite measurements suggest a contribution of 5 pptv to stratospheric inorganic bromine from short-lived bromocarbons. We conduct a modeling study of the two most important short-lived bromocarbons, bromoform (CHBr3) and dibromomethane (CH2Br2), with the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to account for this missing stratospheric bromine. We derive a "top-down" emission estimate of CHBr3 and CH2Br2 using airborne measurements in the Pacific and North American troposphere and lower stratosphere obtained during previous NASA aircraft campaigns. Our emission estimate suggests that to reproduce the observed concentrations in the free troposphere, a global oceanic emission of 425 Gg Br yr(exp -1) for CHBr3 and 57 Gg Br yr(exp -l) for CH2Br2 is needed, with 60% of emissions from open ocean and 40% from coastal regions. Although our simple emission scheme assumes no seasonal variations, the model reproduces the observed seasonal variations of the short-lived bromocarbons with high concentrations in winter and low concentrations in summer. This indicates that the seasonality of short-lived bromocarbons is largely due to seasonality in their chemical loss and transport. The inclusion of CHBr3 and CH2Br2 contributes 5 pptv bromine throughout the stratosphere. Both the source gases and inorganic bromine produced from source gas degradation (BrSLS) in the troposphere are transported into the stratosphere, and are equally important. Inorganic bromine accounts for half (2.5 pptv) of the bromine from the inclusion of CHBr3 and CHzBr2 near the tropical tropopause and its contribution rapidly increases to 100% as altitude increases. More than 85% of the wet scavenging of Br(sub y)(sup VSLS) occurs in large-scale precipitation below 500 hPa. Our sensitivity study with wet scavenging in convective updrafts switched off suggests that Br(sub y)(sup SLS) in the stratosphere is not sensitive to convection. Convective scavenging only

  7. [Effect of 3-bromopyruvate on mitochondrial membrane potential and apoptosis of human breast carcinoma SK-BR-3 cells].

    Science.gov (United States)

    Zhang, Yuanyuan; Liu, Zhe; Zhang, Qianwen; Chao, Zhenhua; Zhang, Pei; Xia, Fei; Jiang, Chenchen; Liu, Hao; Jiang, Zhiwen

    2013-09-01

    To study the effect of glycolysis inhibitor 3-bromopyruvate (3-BrPA) in inducing apoptosis of human breast carcinoma cells SK-BR-3 and the possible mechanism. MTT assay was used to detect the growth inhibition induced by 3-BrPA in breast cancer cells SK-BR-3. The apoptotic cells were detected by flow cytometry with propidium iodide (PI). ATP levels in the cells were detected by ATP assay kit, and DHE fluorescent probe technique was used to determine superoxide anion levels; the mitochondrial membrane potential was assessed using JC-1 staining assay. MTT assay showed that the proliferation of SK-BR-3 cells was inhibited by 3-BrPA in a time- and concentration-dependent manner. Exposure to 80, 160, and 320 µmol·L(-1) 3-BrPA for 24 h resulted in cell apoptosis rates of 6.7%, 22.3%, and 79.6%, respectively, and the intracellular ATP levels of SK-BR-3 cells treated with 80, 160, 320 µmol·L(-1) 3-BrPA for 5 h were 87.7%, 60.6%, and 23.7% of the control levels. 3-BrPA at 160 µmol·L(-1) increased reactive oxygen levels and lowered mitochondrial membrane potential of SK-BR-3 cells. 3-BrPA can inhibit cell proliferation, reduce the mitochondrial membrane potential and induce apoptosis in SK-BR-3 cells, the mechanism of which may involve a reduced ATP level by inhibiting glycolysis and increasing the reactive oxygen level in the cells.

  8. Management and storage of nuclear fuel from Belgian research reactors

    International Nuclear Information System (INIS)

    Gubel, P.

    1996-01-01

    Experiences and problems with the storage of irradiated fuel at research reactors in Belgium are described. In particular, interim storage problems exist for spent fuel elements at the BR2 and the shut down BR3 reactors in Mol. (author). 1 ref

  9. Solution-Grown CsPbBr3 /Cs4 PbBr6 Perovskite Nanocomposites: Toward Temperature-Insensitive Optical Gain.

    Science.gov (United States)

    Wang, Yue; Yu, Dejian; Wang, Zeng; Li, Xiaoming; Chen, Xiaoxuan; Nalla, Venkatram; Zeng, Haibo; Sun, Handong

    2017-09-01

    With regards to developing miniaturized coherent light sources, the temperature-insensitivity in gain spectrum and threshold is highly desirable. Quantum dots (QDs) are predicted to possess a temperature-insensitive threshold by virtue of the separated electronic states; however, it is never observed in colloidal QDs due to the poor thermal stability. Besides, for the classical II-VI QDs, the gain profile generally redshifts with increasing temperature, plaguing the device chromaticity. Herein, this paper addresses the above two issues simultaneously by embedding ligands-free CsPbBr 3 nanocrystals in a wider band gap Cs 4 PbBr 6 matrix by solution-phase synthesis. The unique electronic structures of CsPbBr 3 nanocrystals enable temperature-insensitive gain spectrum while the lack of ligands and protection from Cs 4 PbBr 6 matrix ensure the thermal stability and high temperature operation. Specifically, a color drift-free stimulated emission irrespective of temperature change (20-150 °C) upon two-photon pumping is presented and the characteristic temperature is determined to be as high as ≈260 K. The superior gain properties of the CsPbBr 3 /Cs 4 PbBr 6 perovskite nanocomposites are directly validated by a vertical cavity surface emitting laser operating at temperature as high as 100 °C. The results shed light on manipulating optical gain from the advantageous CsPbBr 3 nanocrystals and represent a significant step toward the temperature-insensitive frequency-upconverted lasers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Void distributions in liquid BiBr{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, K [Faculty of Science, Niigata University, Niigata 950-2181 (Japan); Endo, H [Faculty of Science, Kyoto University, Kyoto 606-8224 (Japan); Hoshino, H [Faculty of Education, Hirosaki University, Hirosaki 036-8560 (Japan); Kawakita, Y [Faculty of Sciences, Kyushu University, Fukuoka 810-8560 (Japan); Kohara, S; Itou, M [Japan Synchrotron Radiation Research Institute(JASRI), Sayo-cho 679-5198 (Japan)

    2008-02-15

    The X-ray diffraction experiments and the reverse Monte Carlo analysis for liquid BiBr{sub 3} have been performed to clarify the distribution of Bi and Br ions around voids, comparing with previous results derived in the neutron diffraction experiments. The hexagonal cages involving voids are formed by the corner-sharing of the trigonal pyramidal BiBr{sub 3} blocks. The neighboring cages are linked together in highly correlated fashion. The observed pre-peak in S(Q) at 1.3A{sup -1} is related to the pre-peak of the void-based S'{sub CC} (Q) due to an intermediate chemical order in the structure. The pre-peak intensity increases with increasing temperature. This characteristic change for the pre-peak intensity is discussed by considering the modifications of the topology and stacking in the hexagonal cages.

  11. High Defect Tolerance in Lead Halide Perovskite CsPbBr3.

    Science.gov (United States)

    Kang, Jun; Wang, Lin-Wang

    2017-01-19

    The formation energies and charge-transition levels of intrinsic point defects in lead halide perovskite CsPbBr 3 are studied from first-principles calculations. It is shown that the formation energy of dominant defect under Br-rich growth condition is much lower than that under moderate or Br-poor conditions. Thus avoiding the Br-rich condition can help to reduce the defect concentration. Interestingly, CsPbBr 3 is found to be highly defect-tolerant in terms of its electronic structure. Most of the intrinsic defects induce shallow transition levels. Only a few defects with high formation energies can create deep transition levels. Therefore, CsPbBr 3 can maintain its good electronic quality despite the presence of defects. Such defect tolerance feature can be attributed to the lacking of bonding-antibonding interaction between the conduction bands and valence bands.

  12. Light-emitting diodes based on two-dimensional PA2(CsPbBr3)n-1PbBr4 layered perovskites%基于PA2(CsPbBr3)n-1PbBr4二维层状钙钛矿的电致发光二极管

    Institute of Scientific and Technical Information of China (English)

    孟妍; 牛连斌; 许龙; 林春燕; 熊自阳; 熊祖洪; 陈平

    2018-01-01

    进一步提高全无机卤铅钙钛矿材料CsPbBr3的发光效率,对制备高效率、高稳定性的电致发光二极管(PeLED)具有重要意义.制备纳米级的钙钛矿量子点,一方面有助于提高激子的束缚能和钙钛矿晶体的荧光效率,另一方面也有利于形成连续、致密的二维层状钙钛矿薄膜.本文采用“原位生长”的策略,将一种具有长链结构的丙基溴化胺(CH3CH2CH2NH3Br,PABr)作为添加剂,与CsPbBr3的前驱体溶液进行共混,得到PA2(CsPbBr3)n-1PbBr4钙钛矿量子点.形成的二维层状钙钛矿薄膜均匀致密,在光致发光条件下,呈现出明亮的蓝绿光发射(发光峰位于506 nm).在电致发光方面,基于PA2(CsPbBr3)n-1PbBr4的PeLED启亮电压为~4.2 V,最大亮度为~2370 cd/m2,最高电流效率为~1.06 cd/A,最高EQE为~0.57%.相较于传统方法,本工作在制作工艺、成膜质量以及PeLED的发光效率有了显著的提升,为将来进一步探索低成本、高效率的蓝光PeLEDs提供了一种可行的思路.%Solution-processed organometal halide perovskites (formulated as ABX3,where A is the methylammonium (CH3NH3+)(MA) or metal cesium cation (Cs+),B is the lead cation (Pb2+) and X is the halide anion (Br-,I-,Cl-)) are promising candidates for next generation light-emitting materials owing to their unique optoelectronic properties.These properties mainly include extremely high photoluminescence quantum yield (PLQY),easily tunable band gap and narrow emission characteristics.During the past two years,impressive progresses have been made in perovskite light-emitting diodes (PeLED) with hybrid organic-inorganic perovskite materials (i.e.,CH3NH3PbBr3).So far,the best external quantum efficiency (EQE) of CH3NH3PbBr3-based PeLED was reaching up to ~8.53% which was close to the results of organic light-emitting diodes (OLED).Despite the remarkable performance of the devices demonstrated,the stability of organic-inorganic hybrid perovskites

  13. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Science.gov (United States)

    Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca

    2016-02-01

    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  14. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Directory of Open Access Journals (Sweden)

    Wagemans Jan

    2016-01-01

    Full Text Available The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  15. Prompt $D^0$ meson $v_n$ harmonics in PbPb collisions at 5.02 TeV

    CERN Document Server

    Sun, Jian

    2016-01-01

    Because of their large mass, heavy quarks are produced primarily at early stages of heavy-ion collisions, and therefore experience the full evolution of the system and carry information about the extent of thermalization of the QGP. Azimuthal anisotropy parameters ($v_n$) of charm and bottom hadrons provide unique information about the path length dependent interactions between heavy quarks and the medium. To what extent heavy quarks at low $p_T$ flow with the medium is a good measure of the interaction strength. At high $p_T$, $v_2$ and $v_3$ from path length dependent energy loss provide a powerful tool to study heavy quark energy loss mechanisms. With the large PbPb data sample at 5.02 TeV collected by the CMS detector during the 2015 LHC run, azimuthal anisotropy $v_2$ and $v_3$ of D0 meson is measured over a wide $p_T$ range and at different centralities. In this talk, new results of D0 meson $v_n$ parameters are presented, and compared to the charged hadron $v_n$ at the same energy and the latest theore...

  16. Haloacyl complexes of boron, [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br, I).

    Science.gov (United States)

    Finze, Maik; Bernhardt, Eduard; Willner, Helge; Lehmann, Christian W

    2005-11-04

    The haloacyltris(trifluoromethyl)borate anions [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br, I) have been synthesized by reacting (CF3)3BCO with either MHal (M=K, Cs; Hal=F) in SO2 or MHal (M=[nBu4N]+, [Et4N]+, [Ph4P]+; Hal=Cl, Br, I) in dichloromethane. Metathesis reactions of the fluoroacyl complex with Me3SiHal (Hal=Cl, Br, I) led to the formation of its higher homologues. The thermal stabilities of the haloacyltris(trifluoromethyl)borates decrease from the fluorine to the iodine derivative. The chemical reactivities decrease in the same order as demonstrated by a series of selected reactions. The new [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br) salts are used as starting materials in the syntheses of novel compounds that contain the (CF3)3B-C fragment. All borate anions [(CF3)3BC(O)Hal]- (Hal=F, Cl, Br, I) have been characterized by multinuclear NMR spectroscopy (11B, 13C, 17O, 19F) and vibrational spectroscopy. [PPh4][(CF3)3BC(O)Br] crystallizes in the monoclinic space group P2/c (no. 13) and the bond parameters are compared with those of (CF3)3BCO and K[(CF3)3BC(O)F]. The interpretation of the spectroscopic and structural data are supported by DFT calculations [B3LYP/6-311+G(d)].

  17. Pathways for the OH + Br2 → HOBr + Br and HOBr + Br → HBr + BrO Reactions.

    Science.gov (United States)

    Wang, Hongyan; Qiu, Yudong; Schaefer, Henry F

    2016-02-11

    The OH radical reaction with Br2 and the subsequent reaction HOBr + Br are of exceptional importance to atmospheric chemistry and environmental chemistry. The entrance complex, transition state, and exit complex for both reactions have been determined using the coupled-cluster method with single, double, and perturbative triple excitations CCSD(T) with correlation consistent basis sets up to size cc-pV5Z and cc-pV5Z-PP. Coupled cluster effects with full triples (CCSDT) and full quadruples (CCSDTQ) are explicitly investigated. Scalar relativistic effects, spin-orbit coupling, and zero-point vibrational energy corrections are evaluated. The results from the all-electron basis sets are compared with those from the effective core potential (ECP) pseudopotential (PP) basis sets. The results are consistent. The OH + Br2 reaction is predicted to be exothermic 4.1 ± 0.5 kcal/mol, compared to experiment, 3.9 ± 0.2 kcal/mol. The entrance complex HO···BrBr is bound by 2.2 ± 0.2 kcal/mol. The transition state lies similarly well below the reactants OH + Br2. The exit complex HOBr···Br is bound by 2.7 ± 0.6 kcal/mol relative to separated HOBr + Br. The endothermicity of the reaction HOBr + Br → HBr + BrO is 9.6 ± 0.7 kcal/mol, compared with experiment 8.7 ± 0.3 kcal/mol. For the more important reverse (exothermic) HBr + BrO reaction, the entrance complex BrO···HBr is bound by 1.8 ± 0.6 kcal/mol. The barrier for the HBr + BrO reaction is 6.8 ± 0.9 kcal/mol. The exit complex (Br···HOBr) for the HBr + BrO reaction is bound by 1.9 ± 0.2 kcal/mol with respect to the products HOBr + Br.

  18. Irradiation of novel MTR fuel plates in BR2

    International Nuclear Information System (INIS)

    Verboomen, B.; Aoust, Th.; Beeckmans De Westmeerbeeck, A.; De Raedt, Ch.

    2000-01-01

    Since the end of 1999, novel MTR fuel plates with very high-density meat are being irradiated in BR2. The purpose of the irradiation is to investigate the behaviour of these fuel plates under very severe reactor operation conditions. The novel fuel plates are inserted in two standard six-tube BR2 fuel elements in the locations normally occupied by the standard outer fuel plates. The irradiation in BR2 was prepared by carrying out detailed neutron Monte Carlo calculations of the whole BR2 core containing the two experimental fuel elements for various positions in the reactor and for various azimuthal orientations of the fuel elements. Comparing the thus determined fission density levels and azimuthal profiles in the new MTR fuel plates irradiated in the various channels allowed the experimenters to choose the most appropriate BR2 channel and the most appropriate fuel element orientation. (author)

  19. Synthesis and structure of [(NH2)2CSSC(NH2)2]2[OsBr6]Br2 . 3H2O

    International Nuclear Information System (INIS)

    Rudnitskaya, O. V.; Kultyshkina, E. K.; Stash, A. I.; Glukhova, A. A.; Venskovskii, N. U.

    2008-01-01

    The complex [(NH 2 ) 2 CSSC(NH 2 ) 2 ] 2 [OsBr 6 ]Br 2 . 3H 2 O is synthesized by the reaction of K 2 OsBr 6 with thiocarbamide in concentrated HBr and characterized using electronic absorption and IR absorption spectroscopy. Its crystal structure is determined by X-ray diffraction. The crystals are orthorhombic, a = 11.730(2) A, b = 14.052(3) A, c = 16.994(3) A, space group Cmcm, and Z = 4. The [OsBr 6 ] 2- anionic complex has an octahedral structure. The Os-Br distances fall in the range 2.483-2.490 A. The α,α'-dithiobisformamidinium cation is a product of the oxidation of thiocarbamide. The S-S and C-S distances are 2.016 and 1.784 A, respectively. The H 2 O molecules, Br - ions, and NH 2 groups of the cation are linked by hydrogen bonds.

  20. Oxidation mechanisms of CF2Br2 and CH2Br2 induced by air nonthermal plasma.

    Science.gov (United States)

    Schiorlin, Milko; Marotta, Ester; Dal Molin, Marta; Paradisi, Cristina

    2013-01-02

    Oxidation mechanisms in air nonthermal plasma (NTP) at room temperature and atmospheric pressure were investigated in a corona reactor energized by +dc, -dc, or +pulsed high voltage.. The two bromomethanes CF(2)Br(2) and CH(2)Br(2) were chosen as model organic pollutants because of their very different reactivities with OH radicals. Thus, they served as useful mechanistic probes: they respond differently to the presence of humidity in the air and give different products. By FT-IR analysis of the postdischarge gas the following products were detected and quantified: CO(2) and CO in the case of CH(2)Br(2), CO(2) and F(2)C ═ O in the case of CF(2)Br(2). F(2)C ═ O is a long-lived oxidation intermediate due to its low reactivity with atmospheric radicals. It is however removed from the NTP processed gas by passage through a water scrubber resulting in hydrolysis to CO(2) and HF. Other noncarbon containing products of the discharge were also monitored by FT-IR analysis, including HNO(3) and N(2)O. Ozone, an important product of air NTP, was never detected in experiments with CF(2)Br(2) and CH(2)Br(2) because of the highly efficient ozone depleting cycles catalyzed by BrOx species formed from the bromomethanes. It is concluded that, regardless of the type of corona applied, CF(2)Br(2) reacts in air NTP via a common intermediate, the CF(2)Br radical. The possible reactions leading to this radical are discussed, including, for -dc activation, charge exchange with O(2)(-), a species detected by APCI mass spectrometry.

  1. Nd(BrO3)3-Yb(BrO3)3-H2O and Nd2(SeO4)3-Yb2(SeO4)3-H2O systems at 25 deg C

    International Nuclear Information System (INIS)

    Serebrennikov, V.V.; Batyreva, V.A.; Tsybukova, T.N.

    1981-01-01

    Using the methods of isothermal solubility the Nd(BrO 3 ) 3 - Yb(BrO 3 ) 3 -H 2 O and Nd 2 (SeO 4 ) 3 -Yb 2 (SeO 4 ) 3 -H 2 O systems are studied at 25 deg C. The compositions of the solid phases are determined by the method of ''residues''. The formation of two series of solid solutions in both systems is established. Besides, there is a crystallization region of Nd 2 (SeO 4 ) 3 in the system of selenates. The solubility diagrams of the systems are presented [ru

  2. Comparison of BR3 Surveillance and Vessel Plates to the Surrogate Plates Representative of the Yankee Rowe PWR Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G

    1998-07-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature ( 260 degrees Celsius) and their plates were austenitized a higher-than-usual temperature (970 degrees Celsius) - a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behaviour characterized by a 41 J Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rate plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares free complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63 % (A533-B) and YA9, 0.19 (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and

  3. Comparison of BR3 Surveillance and Vessel Plates to the Surrogate Plates Representative of the Yankee Rowe PWR Vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G.

    1998-07-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature ( 260 degrees Celsius) and their plates were austenitized a higher-than-usual temperature (970 degrees Celsius) - a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behaviour characterized by a 41 J Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rate plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares free complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63 % (A533-B) and YA9, 0.19 (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and

  4. Comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe PWR vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G.

    1999-01-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature (∼260 C) and their plates were austenitized at higher-than-usual temperature (∼970 C) -- a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behavior characterized by a 41J. Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program; this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel

  5. Brome isotope selective control of CF3Br molecule clustering by IR laser radiation in gas-dynamic expansion of CF3Br - Ar mixture

    Science.gov (United States)

    Apatin, V. M.; Lokhman, V. N.; Makarov, G. N.; Ogurok, N.-D. D.; Ryabov, E. A.

    2018-02-01

    We report the results of research on the experimental control of CF3Br molecule clustering under gas-dynamic expansion of the CF3Br - Ar mixture at a nozzle exit by using IR laser radiation. A cw CO2 laser is used for exciting molecules and clusters in the beam and a time-of-flight mass-spectrometer with laser UV ionisation of particles for their detection. The parameters of the gas above the nozzle are determined (compositions and pressure) at which intensive molecule clustering occurs. It is found that in the case of the CF3Br gas without carrier when the pressure P0 above the nozzle does not exceed 4 atm, molecular clusters actually are not generated in the beam. If the gas mixture of CF3Br with argon is used at a pressure ratio 1 : N, where N >= 3, and the total pressure above the nozzle is P0 >= 2 atm, then there occurs molecule clustering. We study the dependences of the efficiency of suppressing the molecule clustering on parameters of the exciting pulse, gas parameters above the nozzle, and on a distance of the molecule irradiation zone from the nozzle exit section. It is shown that in the case of resonant vibrational excitation of gas-dynamically cooled CF3Br molecules at the nozzle exit one can realise isotope-selective suppression of molecule clustering with respect to bromine isotopes. With the CF3Br - Ar mixtures having the pressure ratio 1 : 3 and 1 : 15, the enrichment factors obtained with respect to bromine isotopes are kenr ≈ 1.05 ± 0.005 and kenr ≈ 1.06 ± 0.007, respectively, under jet irradiation by laser emission in the 9R(30) line (1084.635 cm-1). The results obtained let us assume that this method can be used to control clustering of molecules comprising heavy element isotopes, which have a small isotopic shift in IR absorption spectra.

  6. Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry

    KAUST Repository

    Alias, Mohd Sharizal

    2016-07-14

    The lack of optical constants information for hybrid perovskite of CH3NH3PbBr3 in thin films form can delay the progress of efficient LED or laser demonstration. Here, we report on the optical constants (complex refractive index and dielectric function) of CH3NH3PbBr3 perovskite thin films using spectroscopic ellipsometry. Due to the existence of voids, the refractive index of the thin films is around 8% less than the single crystals counterpart. The energy bandgap is around 2.309 eV as obtained from photoluminescence and spectrophotometry spectra, and calculated from the SE analysis. The precise measurement of optical constants will be useful in designing optical devices using CH3NH3PbBr3 thin films.

  7. Postsynthesis Transformation of Insulating Cs4PbBr6 Nanocrystals into Bright Perovskite CsPbBr3 through Physical and Chemical Extraction of CsBr.

    Science.gov (United States)

    Palazon, Francisco; Urso, Carmine; De Trizio, Luca; Akkerman, Quinten; Marras, Sergio; Locardi, Federico; Nelli, Ilaria; Ferretti, Maurizio; Prato, Mirko; Manna, Liberato

    2017-10-13

    Perovskite-related Cs 4 PbBr 6 nanocrystals present a "zero-dimensional" crystalline structure where adjacent [PbBr 6 ] 4- octahedra do not share any corners. We show in this work that these nanocrystals can be converted into "three-dimensional" CsPbBr 3 perovskites by extraction of CsBr. This conversion drastically changes the optoelectronic properties of the nanocrystals that become highly photoluminescent. The extraction of CsBr can be achieved either by thermal annealing (physical approach) or by chemical reaction with Prussian Blue (chemical approach). The former approach can be simply carried out on a dried film without addition of any chemicals but does not yield a full transformation. Instead, reaction with Prussian Blue in solution achieves a full transformation into the perovskite phase. This transformation was also verified on the iodide counterpart (Cs 4 PbI 6 ).

  8. Enhanced photovoltaic performance of CH3NH3PbBrXI3-X-based perovskite solar cells via anti-solvent extraction

    Science.gov (United States)

    Jiang, Zhaoyi; Zhang, Weijia; Lu, Chaoqun; Ma, Denghao; Liu, Haixu; Yu, Wei; Zhang, Yu; Ma, Qiang; Zhang, Yulong

    2018-06-01

    In this paper, the two-step sequential deposition method was used to prepare the CH3NH3PbBrXI3-X films by introducing CH3NH3Br in the precursors. The surface morphology of the PbI2 films was controlled by anti-solvent extraction (ASE) to improve the microstructure and photo-physical properties of the perovskite films. It was noteworthy that, compared to the compact PbI2 films, the porous PbI2 films facilitated the growth of crystals and bromine incorporation in films, and the prepared perovskite films exhibited enlarged grain size, increased light absorption, enhanced Br incorporation and prolonged carrier lifetime, which resulted in excellent photo-electrical properties of the CH3NH3PbBrXI3-X films. With porous PbI2 templates, the inverted planar perovskite solar cells based on films with appropriate Br incorporation (CH3NH3Br/CH3NH3I mole ratio = 3/7) showed a photovoltaic conversion efficiency (PCE) of 14.9%, and the stability of the devices in air was elevated. Consequently, the high-quality CH3NH3PbBrXI3-X films can be obtained with porous PbI2 templates for improving the performance of the perovskite solar cells.

  9. Synthesis and Biological Evaluation of (S)-Amino-2-methyl-4-[(76)Br]bromo-3-(E)-butenoic Acid (BrVAIB) for Brain Tumor Imaging.

    Science.gov (United States)

    Burkemper, Jennifer L; Huang, Chaofeng; Li, Aixiao; Yuan, Liya; Rich, Keith; McConathy, Jonathan; Lapi, Suzanne E

    2015-11-12

    The novel compound, (S)-amino-2-methyl-4-[(76)Br]bromo-3-(E)-butenoic acid (BrVAIB, [(76)Br]5), was characterized against the known system A tracer, IVAIB ([(123)I]8). [(76)Br]5 was prepared in a 51% ± 19% radiochemical yield with high radiochemical purity (≥98%). The biological properties of [(76)Br]5 were compared with those of [(123)I]8. Results showed that [(76)Br]5 undergoes mixed amino acid transport by system A and system L transport, while [(123)I]8 had less uptake by system L. [(76)Br]5 demonstrated higher uptake than [(123)I]8 in DBT tumors 1 h after injection (3.7 ± 0.4% ID/g vs 1.5 ± 0.3% ID/g) and also showed higher uptake vs [(123)I]8 in normal brain. Small animal PET studies with [(76)Br]5 demonstrated good tumor visualization of intracranial DBTs up to 24 h with clearance from normal tissues. These results indicate that [(76)Br]5 is a promising PET tracer for brain tumor imaging and lead compound for a mixed system A and system L transport substrate.

  10. Ultrasonic irradiation-promoted one-pot synthesis of CH3NH3PbBr3 quantum dots without using flammable CH3NH2 precursor

    Science.gov (United States)

    Jiang, Han; Wang, Chunlei; Lv, Changgui; Xu, Shuhong; Zhu, Li; Zhang, Ruohu; Cui, Yiping

    2017-02-01

    At present, the CH3NH3PbBr3 quantum dots (QDs) reported in the literature usually contain two synthesis steps: the initial preparation of CH3NH3Br via the reaction of flammable CH3NH2 and HBr, together with the subsequent formation of CH3NH3PbBr3 QDs. To avoid the use of dangerous CH3NH2, this work develops a novel one-pot method for synthesizing CH3NH3PbBr3 QDs using safe and commercially available reactants (CH3NH3Cl, KBr and PbCl2). It is found that ultrasonic treatment plays a key role during the synthesis of CH3NH3PbBr3 QDs. Without ultrasonic irradiation, it is not possible to synthesize CH3NH3PbBr3 QDs under heating or vigorous stirring. Aliquots of samples taken at different ultrasonic irradiation time intervals show a time-dependent redshift in the emission wavelength. This suggests the formation of CH3NH3PbCl3 QDs first, followed by the formation of CH3NH3PbBr3 QDs through ultrasonically promoted halide exchange. Moreover, mixed CH3NH3PbCl x Br3-x QDs with a tunable emission wavelength can also be prepared through this one-pot method by controlling the ultrasonic irradiation time. In comparison to the previous two-step method, the current one-pot method is simpler, less time-consuming and does not use flammable CH3NH2. The as-prepared CH3NH3PbBr3 QDs show a comparable photoluminescence (PL) quantum yield (QY) to that of the literature. What is more, the ultrasonic time-controlled emission wavelength of CH3NH3PbCl x Br3-x QDs also provides an alternative way of tuning QD emission to the traditional way of controlling the halide ratios.

  11. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  12. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  13. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  14. Development of a BR-UASB-DHS system for natural rubber processing wastewater treatment.

    Science.gov (United States)

    Watari, Takahiro; Thanh, Nguyen Thi; Tsuruoka, Natsumi; Tanikawa, Daisuke; Kuroda, Kyohei; Huong, Nguyen Lan; Tan, Nguyen Minh; Hai, Huynh Trung; Hatamoto, Masashi; Syutsubo, Kazuaki; Fukuda, Masao; Yamaguchi, Takashi

    2015-11-21

    Natural rubber processing wastewater contains high concentrations of organic compounds, nitrogen, and other contaminants. In this study, a treatment system composed of a baffled reactor (BR), an upflow anaerobic sludge blanket (UASB) reactor, and a downflow hanging sponge (DHS) reactor was used to treat natural rubber processing wastewater in Vietnam. The BR showed good total suspended solids removal of 47.6%, as well as acidification of wastewater. The UASB reactor achieved a high chemical oxygen demand (COD) removal efficiency of 92.7% ± 2.3% and energy recovery in the form of methane with an organic loading rate of 12.2 ± 6.6 kg-COD·m -3 ·day -1 . The DHS reactor showed a high performance in residual organic matter removal from UASB effluent. In total, the system achieved high-level total COD removal of 98.6% ± 1.2% and total suspended solids removal of 98.0% ± 1.4%. Massive parallel 16S rRNA gene sequencing of the retained sludge in the UASB reactor showed the predominant microbial phyla to be Bacteroidetes, Firmicutes, Proteobacteria, WWE1, and Euryarchaeota. Uncultured bacteria belonging to the phylum Bacteroidetes and Phylum WWE1 were predominant in the UASB reactor. This microbial assemblage utilizes the organic compounds contained in natural rubber processing wastewater. In addition, the methane-producing archaea Methanosaeta sp. and Methanolinea sp. were detected.

  15. Role of irradiation reactor mock-ups

    International Nuclear Information System (INIS)

    Casali, F.; Cerles, J.M.; Debrue, J.

    1977-01-01

    A survey is given of the utilization of low power facilities in support to irradiation reactor experiments. The BRO2, ISIS and RB3 facilities are described as neutronic mock-ups of the BR2, OSIRIS and ESSOR reactors respectively

  16. Control of oleylamine to perovskite ratio in synthesis of MAPbBr3 nanoparticles

    Science.gov (United States)

    Huang, Jing; Wu, Yi-Hua; Zhu, Zhi-Gang; Shih, Wan Y.; Shih, Wei-Heng

    2018-06-01

    Methylammonium lead bromide (CH3NH3PbBr3) nanocrystals have great potentials for lighting and display applications. Previously we synthesized CH3NH3PbBr3 nanocrystals using oleylamine as capping molecule and found that by increasing the oleylamine to CH3NH3PbBr3 perovskite ratio (OPR), the photoluminescence wavelengths and morphology of CH3NH3PbBr3 nanocrystals could be varied from 530 nm (green) platelets to 460 nm (blue) particles. Here we modified the synthesis to direct injection of precursors into toluene and found that increasing OPR not only changes the wavelength and morphology of nanocrystals but also the size of the unit cells.

  17. Enhancement of photocurrent extraction and electron injection in dual-functional CH3NH3PbBr3 perovskite-based optoelectronic devices via interfacial engineering

    Science.gov (United States)

    Tsai, Chia-Lung; Lu, Yi-Chen; Hsiung Chang, Sheng

    2018-07-01

    Photocurrent extraction and electron injection in CH3NH3PbBr3 (MAPbBr3) perovskite-based optoelectronic devices are both significantly increased by improving the contact at the PCBM/MAPbBr3 interface with an extended solvent annealing (ESA) process. Photoluminescence quenching and x-ray diffraction experiments show that the ESA not only improves the contact at the PCBM/MAPbBr3 interface but also increases the crystallinity of the MAPbBr3 thin films. The optimized dual-functional PCBM-MAPbBr3 heterojunction based optoelectronic device has a high power conversion efficiency of 4.08% and a bright visible luminescence of 1509 cd m‑2. In addition, the modulation speed of the MAPbBr3 based light-emitting diodes is larger than 14 MHz, which indicates that the defect density in the MAPbBr3 thin film can be effectively reduced by using the ESA process.

  18. Homogeneous Synthesis and Electroluminescence Device of Highly Luminescent CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Wei, Song; Yang, Yanchun; Kang, Xiaojiao; Wang, Lan; Huang, Lijian; Pan, Daocheng

    2017-03-06

    Highly luminescent CsPbBr 3 perovskite nanocrystals (PNCs) are homogeneously synthesized by mixing toluene solutions of PbBr 2 and cesium oleate at room temperature in open air. We found that PbBr 2 can be easily dissolved in nonpolar toluene in the presence of tetraoctylammonium bromide, which allows us to homogeneously prepare CsPbBr 3 perovskite quantum dots and prevents the use of harmful polar organic solvents, such as N,N-dimethylformamide, dimethyl sulfoxide, and N-methyl-2-pyrrolidone. Additionally, this method can be extended to synthesize highly luminescent CH 3 NH 3 PbBr 3 perovskite quantum dots. An electroluminescence device with a maximal luminance of 110 cd/m 2 has been fabricated by using high-quality CsPbBr 3 PNCs as the emitting layer.

  19. Pb4(OH)4(BrO3)3(NO3): An Example of SHG Crystal in Metal Bromates Containing π-Conjugated Planar Triangle.

    Science.gov (United States)

    Kong, Fang; Hu, Chun-Li; Liang, Ming-Li; Mao, Jiang-Gao

    2016-01-19

    The first example of SHG crystal in the metal bromates containing π-conjugated planar triangle systems, namely, Pb4(OH)4(BrO3)3(NO3), was successfully synthesized via the hydrothermal method. Furthermore, a single crystal of centrosymmetric Pb8O(OH)6(BrO3)6(NO3)2·H2O was also obtained. Both compounds contain similar [Pb4(OH)4] cubane-like tetranuclear clusters, but they display different one-dimensional (1D) chain structures. Pb4(OH)4(BrO3)3(NO3) features a zigzag [Pb4(OH)4(BrO3)3](+) 1D chain, while Pb8O(OH)6(BrO3)6(NO3)2·H2O is composed of two different orthogonal chains: the linear [Pb4(OH)4(BrO3)2](2+) 1D chain along the b-axis and the zigzag [Pb4O2(OH)2(BrO3)4](2-) 1D chain along the a-axis. The NO3 planar triangles of the compounds are all isolated and located in the spaces of the structures. Pb4(OH)4(BrO3)3(NO3) exhibits the first example of SHG crystal in the metal bromates with π-conjugated planar triangle. The second-harmonic generation (SHG) efficiency of Pb4(OH)4(BrO3)3(NO3) is approximately equal to that of KDP and it is phase-matchable. Dipole moment and theory calculations indicate that BrO3, NO3, and PbO4 groups are the origin of its SHG efficiency, although some of the contributions cancel each other out.

  20. Stable Chloro- and Bromoxenate Cage Anions; [X3(XeO3)3]3- and [X4(XeO3)4]4- (X = Cl or Br).

    Science.gov (United States)

    Goettel, James T; Haensch, Veit G; Schrobilgen, Gary J

    2017-06-28

    The number of isolable compounds which contain different noble-gas-element bonds is limited for xenon and even more so for krypton. Examples of Xe-Cl bonds are rare, and prior to this work, no Xe-Br bonded compound had been isolated in macroscopic quantities. The syntheses, isolation, and characterization of the first compounds to contain Xe-Br bonds and their chlorine analogues are described in the present work. The reactions of XeO 3 with [N(CH 3 ) 4 ]Br and [N(C 2 H 5 ) 4 ]Br have provided two bromoxenate salts, [N(C 2 H 5 ) 4 ] 3 [Br 3 (XeO 3 ) 3 ] and [N(CH 3 ) 4 ] 4 [Br 4 (XeO 3 ) 4 ], in which the cage anions have Xe-Br bond lengths that range from 3.0838(3) to 3.3181(8) Å. The isostructural chloroxenate anions (Xe-Cl bond lengths, 2.9316(2) to 3.101(4) Å) were synthesized by analogy with their bromine analogues. The bromo- and chloroxenate salts are stable in the atmosphere at room temperature and were characterized in the solid state by Raman spectroscopy and low-temperature single-crystal X-ray diffraction, and in the gas phase by quantum-chemical calculations. They are the only known examples of cage anions that contain a noble-gas element. The Xe-Br and Xe-Cl bonds are very weakly covalent and can be viewed as σ-hole interactions, similar to those encountered in halogen bonding. However, the halogen atoms in these cases are valence electron lone pair donors, and the σ* Xe-O orbitals are lone pair acceptors.

  1. SoLid: An innovative anti-neutrino detector for searching oscillations at the SCK•CEN BR2 reactor

    Science.gov (United States)

    Abreu, Yamiel; SoLid Collaboration

    2017-02-01

    The SoLid experiment intends to search for active-to-sterile anti-neutrino oscillations at a very short baseline from the SCK•CEN BR2 research reactor (Mol, Belgium). A novel detector approach to measure reactor anti-neutrinos was developed based on an innovative sandwich of composite polyvinyl-toluene and 6LiF:ZnS(Ag) scintillators. The system is highly segmented and read out by a network of wavelength shifting fibers and SiPM. High experimental sensitivity can be achieved compared to other standard technologies thanks to the combination of high granularity, good neutron-gamma discrimination using 6LiF:ZnS(Ag) scintillator and precise localisation of the Inverse Beta Decay products. This technology can be considered as a new generation of an anti-neutrino detector. This compact system requires limited passive shielding and relies on spatial topology to determine the different classes of backgrounds. We will describe the principle of detection and the detector design. Particular focus on the neutron discrimination will be made, as well as on the capability to use cosmic muons for channel equalisation and energy calibration. The performance of the first 288 kg SoLid module (SM1), based on the data taken at BR2 from February to September 2015, will be presented. We will conclude with the next phase, which will start in 2016, and the future plans of the experiment.

  2. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  3. LaBr3:Ce crystal: The latest advance for scintillation cameras

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Cinti, M.N.; Bennati, P.; Betti, M.; Vittorini, F.; Mattioli, M.; Trotta, G.; Orsolini Cencelli, V.; Scafe, R.; Montani, L.; Navarria, F.; Bollini, D.; Baldazzi, G.; Moschini, G.; Rossi, P.; De Notaristefani, F.

    2007-01-01

    Recent availability of LaBr 3 :Ce crystal is attracting researchers for the development of new advanced SPECT e PET systems. The crystal shows excellent energy resolution values good radiation absorption properties and speed. At present, LaBr 3 :Ce crystal is available with continuous shape covering 5x5 cm 2 area with a thickness up to 1 in. With the aim of analysing the imaging performances of LaBr 3 :Ce for Single Photon Emission Tomography (SPET), we tested three continuous crystals with the same detection area of 5x5 cm 2 and various thicknesses ranging between 4 and 10 mm. Three small scintillation cameras were assembled by coupling LaBr3:Ce crystal to Hamamatsu H8500 Flat panel PMT. The results show very good imaging performances for single photon emission application with superior energy and spatial resolution up 7.5% and 0.9 mm, respectively, and a detection efficiency up to 95% at 140 keV photon energy

  4. Synthesis and single crystal growth of perovskite semiconductor CsPbBr3

    Science.gov (United States)

    Zhang, Mingzhi; Zheng, Zhiping; Fu, Qiuyun; Chen, Zheng; He, Jianle; Zhang, Sen; Chen, Cheng; Luo, Wei

    2018-02-01

    As a typical representative of all-inorganic lead halide perovskites, cesium lead bromine (CsPbBr3) has attracted significant attention in recent years. The direct band gap semiconductor CsPbBr3 has a wide band gap of 2.25 eV and high average atomic number (Cs: 55, Pb: 82 and Br: 35), which meet most of the requirements for detection of X- and γ-ray radiation, such as high attenuation, high resistivity, and significant photoconductivity response. However, the growth of large volume CsPbBr3 single crystals remains a challenge. In this paper, the synthesis of CsPbBr3 polycrystalline powders by a chemical co-precipitation method was investigated and the optimum synthesis conditions were obtained. A large CsPbBr3 single crystal of 8 mm diameter and 60 mm length was obtained by a creative electronic dynamic gradient (EDG) method. X-ray diffraction (XRD) patterns and X-ray rocking curve showed that the CsPbBr3 crystal preferentially oriented in the (1 1 0) direction and had a low dislocation density and small residual stress in the crystal. The IR and UV-Vis transmittance and temperature-dependent photoluminescence (PL) spectra showed the crystal had a good basic optical performance. The almost linear current-voltage (I-V) curves implied good ohmic contact between the electrodes and crystal surfaces. The resistivity of the crystal was calculated 109-1010 Ω cm. The above results showed that the quality of the obtained crystal had met the demand of optoelectronic applications.

  5. Monochromatic and electrochemically switchable electrochemiluminescence of perovskite CsPbBr3 nanocrystals.

    Science.gov (United States)

    Huang, Yan; Fang, Mingxiang; Zou, Guizheng; Zhang, Bin; Wang, Huaisheng

    2016-11-10

    Cubic-shaped perovskite CsPbBr 3 nanocrystals (NCs) could be electrochemically injected with holes (or electrons) to produce several charged states under different oxidizing and reducing potentials, and then bring out electrochemiluminescence (ECL) of higher color purity than traditional ECL chemicals and metal chalcogenide NCs, in both annihilation and co-reactant routes. The difference of electrochemical gaps between varied hole and electron injecting potentials displayed little effect on the ECL spectrum and colour purity of CsPbBr 3 NCs. All the excited states generated under different oxidizing and reducing potential couples in ECL of CsPbBr 3 NCs were the same as those in photoluminescence, as all the ECL spectra were almost identical to the CsPbBr 3 NCs' photoluminescence spectrum. Importantly, the ECL of CsPbBr 3 NCs was electrochemically switchable and displayed an obvious "on/off" type feature by changing the sequence of hole injecting and electron injecting processes, as strong ECL could be obtained by injecting holes onto the electron injected NCs, while no or very weak ECL was obtained in the reversed way.

  6. The carcinogenicity of 1-methyl-3(p-bromophenyl)-1-nitrosourea (Br-MPNU).

    Science.gov (United States)

    Warzok, R; Martin, J; Mendel, J; Thust, R; Schwarz, H

    1983-01-01

    In long-term experiments with Hooded rats the carcinogenic potential of 1-methyl-3(p-bromophenyl)-1-nitrosourea (Br-MPNU) could be demonstrated for the first time. Br-MPNU is formed also endogenously after combined administration of 1-methyl-3(p-bromophenyl)-urea (Br-MPU) and sodium nitrite. After repeated intragastric administration of 0.33 mmol Br-MPU and 0.73 mmol NaNO2 per kg b.w. papillomas and carcinomas of the forestomach developed in 83%. After repeated administration of 0.28 mmol Br-MPNU per kg b.w. these neoplasms were observed in 88%. The comparison of results obtained in similar experiments with 1-methyl-3-phenyl-1-nitrosourea shows that bromine substitution led to a reduction of the carcinogenic activity. The present paper is part of a complex program studying the interrelationships between structure, physico-chemical properties, mutagenicity and carcinogenicity of nitrosoureas.

  7. Metal Halide Perovskite Supercrystals: Gold-Bromide Complex Triggered Assembly of CsPbBr3 Nanocubes.

    Science.gov (United States)

    Wang, Kun-Hua; Yang, Jun-Nan; Ni, Qian-Kun; Yao, Hong-Bin; Yu, Shu-Hong

    2018-01-16

    Using nanocrystals as "artificial atoms" to construct supercrystals is an interesting process to explore the stacking style of nanoscale building blocks and corresponding collective properties. Various types of semiconducting supercrystals have been constructed via the assembly of nanocrystals driven by the entropic, electrostatic, or van der Waals interactions. We report a new type of metal halide perovskite supercrystals via the gold-bromide complex triggered assembly of newly emerged attractive CsPbBr 3 nanocubes. Through introducing gold-bromide (Au-Br) complexes into CsPbBr 3 nanocubes suspension, the self-assembly process of CsPbBr 3 nanocubes to form supercrystals was investigated with the different amount of Au-Br complexes added to the suspensions, which indicates that the driven force of the formation of CsPbBr 3 supercrystals included the van der Waals interactions among carbon chains and electrostatic interactions between Au-Br complexes and surfactants. Accordingly, the optical properties change with the assembly of CsPbBr 3 nanocubes and the variation of mesoscale structures of supercrystals with heating treatment was revealed as well, demonstrating the ionic characteristics of CsPbBr 3 nanocrystals. The fabricated CsPbBr 3 supercrystal presents a novel type of semiconducting supercrystals that will open an avenue for the assembly of ionic nanocrystals.

  8. BR2 mixed core management

    International Nuclear Information System (INIS)

    Ponsard, B.; Beeckmans, A.

    1997-01-01

    The BR2 fuel cycle management can be optimized by the fabrication and the irradiation of fuel elements with uranium recovered from the reprocessing of BR2 spent fuel. The VIn E fuel performances could be upgraded by increasing the amount of burnable poisons, the fuel mass, the fuel density, ... in order to obtain a higher reactivity effect at a burnup of about β=12% and a longer cycle duration. The preliminary results of the calculations need however to be confirmed by measurements on effective reactor loads. (author)

  9. Room-temperature synthesis of pure perovskite-related Cs4PbBr6 nanocrystals and their ligand-mediated evolution into highly luminescent CsPbBr3 nanosheets

    Science.gov (United States)

    Yang, Liu; Li, Dongmei; Wang, Cong; Yao, Wei; Wang, Hao; Huang, Kaixiang

    2017-07-01

    Currently, all-inorganic cesium lead-halide perovskite nanocrystals have attracted enormous attentions owing to their excellent optical performances. While great efforts have been devoted to CsPbBr3 nanocrystals, the perovskite-related Cs4PbBr6 nanocrystals, which were newly reported, still remained poorly understood. Here, we reported a novel room-temperature reaction strategy to synthesize pure perovskite-related Cs4PbBr6 nanocrystals. Size of the products could be adjusted through altering the amount of ligands, simply. A mixture of two good solvents with different polarity was innovatively used as precursor solvent, being one key to the high-yield Cs4PbBr6 nanocrystals synthesis. Other two keys were Cs+ precursor concentration and surface ligands. Ingenious experiments were designed to reveal the underlying reaction mechanism. No excitonic emission was observed from the prepared Cs4PbBr6 nanocrystals in our work. We considered the green emission which was observed in other reports originated from the avoidless transformation of Cs4PbBr6 into CsPbBr3 nanocrystals. Indeed, the new-prepared Cs4PbBr6 nanocrystals could transform into CsPbBr3 nanosheets with surface ligands mediated. The new-transformed two-dimensional CsPbBr3 nanosheets could evolve into large-size nanosheets. The influences of surface ligand density on the fluorescent intensity and stability of transformed CsPbBr3 nanosheets were also explained. Notably, the photoluminescence quantum yield of the as-transformed CsPbBr3 nanosheets could reach as high as 61.6% in the form of thin film. The fast large-scale synthesis of Cs4PbBr6 nanocrystals and their ligand-mediated transformation into high-fluorescent CsPbBr3 nanosheets will be beneficial to the future optoelectronic applications. Our work provides new approaches to understand the structural evolution and light-emitting principle of perovskite nanocrystals. [Figure not available: see fulltext.

  10. Composition-dependent emission linewidth broadening in lead bromide perovskite (APbBr3, A = Cs and CH3NH3) nanoparticles.

    Science.gov (United States)

    Ham, Sujin; Chung, Heejae; Kim, Tae-Woo; Kim, Jiwon; Kim, Dongho

    2018-02-01

    Lead halide perovskite nanoparticles (NPs) are attractive as they exhibit excellent color purity and have a tunable band gap, and can thus be applied in highly efficient photovoltaic and light-emitting diodes. Fundamental studies of emission linewidth broadening due to spectral shifts in perovskite NPs may suggest a way to improve their color purity. However, the carrier-induced Stark shift that causes spectral diffusion still requires investigation. In this study, we explore composition-related emission linewidth broadening by comparing CsPbBr3 and CH 3 NH 3 PbBr 3 (MAPbBr3) perovskite NPs. We find that the MAPbBr3 NPs are more sensitive to fluctuations in the local electric fields than the CsPbBr3 NPs due to an intrinsic difference in the dipole moment between the two A cations (Cs and MA), which shows a carrier-induced Stark shift. The results indicate that the compositions of perovskite NPs are closely associated with emission linewidth broadening and they also provide insights into the development of NP-based devices with high color purity.

  11. Growth mechanism of NaClO 3 and NaBrO 3 crystals from aqueous ...

    Indian Academy of Sciences (India)

    A study of growth rates of NaClO3 and NaBrO3 has been carried out using a small growth cell by in situ observation. Normal growth rates of {100} faces of NaClO3 and {111} faces of NaBrO3 along ⟨ 110 ⟩ direction are measured under relatively high supersaturation ranging from 3–8%. In the initial stages of growth, {100}, ...

  12. Decision, Annex 3[Organizational structure of the Division for reactor maintenance]; Prilog br. 3, Odluka

    Energy Technology Data Exchange (ETDEWEB)

    Pavicevic, M [Reaktor RA, Odelenje odrzavanja, Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1965-12-15

    The objective of the decision about the change in the organizational scheme of the Division for RA reactor maintenance is to achieve efficiency. The tasks are precisely defined as to divide the maintenance and repair tasks from special ones related to improvement of reactor operation its applicability. [Serbo-Croat] U cilju poboljsanja organizacije rada Odelenja odrzavanja reaktora RA, kao i efikasnijeg koriscenja raspolozivog kadra izvrsice se razgranicenje poslova odrzavanja i remonta od posebnih zadataka koji se odnose na poboljsanje rada reaktora i povecanje njegovih mogucnosti.

  13. Cyclovirus CyCV-VN species distribution is not limited to Vietnam and extends to Africa.

    Science.gov (United States)

    Garigliany, Mutien-Marie; Hagen, Ralf Matthias; Frickmann, Hagen; May, Jürgen; Schwarz, Norbert Georg; Perse, Amanda; Jöst, Hanna; Börstler, Jessica; Shahhosseini, Nariman; Desmecht, Daniel; Mbunkah, Herbert Afegenwi; Daniel, Achukwi Mbunkah; Kingsley, Manchang Tanyi; Campos, Renata de Mendonca; de Paula, Vanessa Salete; Randriamampionona, Njary; Poppert, Sven; Tannich, Egbert; Rakotozandrindrainy, Raphael; Cadar, Daniel; Schmidt-Chanasit, Jonas

    2014-12-18

    Cycloviruses, small ssDNA viruses of the Circoviridae family, have been identified in the cerebrospinal fluid from symptomatic human patients. One of these species, cyclovirus-Vietnam (CyCV-VN), was shown to be restricted to central and southern Vietnam. Here we report the detection of CyCV-VN species in stool samples from pigs and humans from Africa, far beyond their supposed limited geographic distribution.

  14. Ce3+-Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr3 Nanocrystals Based Light-Emitting Diodes.

    Science.gov (United States)

    Yao, Ji-Song; Ge, Jing; Han, Bo-Ning; Wang, Kun-Hua; Yao, Hong-Bin; Yu, Hao-Lei; Li, Jian-Hai; Zhu, Bai-Sheng; Song, Ji-Zhong; Chen, Chen; Zhang, Qun; Zeng, Hai-Bo; Luo, Yi; Yu, Shu-Hong

    2018-03-14

    Inorganic perovskite CsPbBr 3 nanocrystals (NCs) are emerging, highly attractive light emitters with high color purity and good thermal stability for light-emitting diodes (LEDs). Their high photo/electroluminescence efficiencies are very important for fabricating efficient LEDs. Here, we propose a novel strategy to enhance the photo/electroluminescence efficiency of CsPbBr 3 NCs through doping of heterovalent Ce 3+ ions via a facile hot-injection method. The Ce 3+ cation was chosen as the dopant for CsPbBr 3 NCs by virtue of its similar ion radius and formation of higher energy level of conduction band with bromine in comparison with the Pb 2+ cation to maintain the integrity of perovskite structure without introducing additional trap states. It was found that by increasing the doping amount of Ce 3+ in CsPbBr 3 NCs to 2.88% (atomic percentage of Ce compared to Pb) the photoluminescence quantum yield (PLQY) of CsPbBr 3 NCs reached up to 89%, a factor of 2 increase in comparison with the native, undoped ones. The ultrafast transient absorption and time-resolved photoluminescence (PL) spectroscopy revealed that Ce 3+ -doping can significantly modulate the PL kinetics to enhance the PL efficiency of doped CsPbBr 3 NCs. As a result, the LED device fabricated by adopting Ce 3+ -doped CsPbBr 3 NCs as the emitting layers exhibited a pronounced improvement of electroluminescence with external quantum efficiency (EQE) from 1.6 to 4.4% via Ce 3+ -doping.

  15. Facile synthesis and characterization of CsPbBr3 and CsPb2Br5 ...

    Indian Academy of Sciences (India)

    2018-03-23

    Mar 23, 2018 ... All-inorganic caesium lead-halide perovskite CsPbBr3 and ... optoelectronic materials owing to their stabilities and highly efficient photoluminescence (PL). ... chemical tenability [2], hybrid organic–inorganic lead halide-.

  16. Reactivity effects due to beryllium poisoning of BR2

    International Nuclear Information System (INIS)

    Kalcheva, S.; Ponsard, B.; Koonen, E.

    2004-01-01

    This paper illustrates the impact of the poisoning of the beryllium reflector on reactivity variations of the Belgian MTR BR2 in SCK.CEN. Detailed calculations by MCNP-4C of reactivity effects caused by strong neutron absorbers 3 He and 6 Li during reactor operation history are presented. The importance of beryllium poisoning for the accuracy of reactivity predictions is discussed. (authors)

  17. CsPbBr3:xEu3+ perovskite QD borosilicate glass: a new member of the luminescent material family.

    Science.gov (United States)

    Yuan, Rongrong; Shen, Lingli; Shen, Chenyang; Liu, Jianming; Zhou, Lei; Xiang, Weidong; Liang, Xiaojuan

    2018-03-29

    Eu3+ ions were introduced into the lattices of CsPbBr3 perovskite QDs and a tunable multicolour emission from CsPbBr3:xEu3+ perovskite QD glass was successfully obtained. Multicolour LEDs that were fabricated by combining the as-prepared CsPbBr3:xEu3+ QD glasses with a UV chip were also researched in this study.

  18. The possibilities of application of experimental Kfk results from BR2 on SNR designs

    International Nuclear Information System (INIS)

    Karsten, G.; Elbel, K.; Dienst, W.; Schaefer, L.

    1978-01-01

    A review is given of the relevant results of the technological application for the SNR300 reactor, since the BR2 reactor has been used as a test facility for the material development. Special emphasis has been laid on the fuel pin behavior under the aspect of chemical and mechanical fuel-clad interaction and on the specification of the cladding in terms of high temperature mechanical behavior in the SNR 300 reactor. A systematic analysis of urgent research topics in BR2 test facility reactor is presented. (A.F.)

  19. SoLid: An innovative anti-neutrino detector for searching oscillations at the SCK• CEN BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Yamiel, E-mail: yamiel.abreu@uantwerpen.be

    2017-02-11

    The SoLid experiment intends to search for active-to-sterile anti-neutrino oscillations at a very short baseline from the SCK• CEN BR2 research reactor (Mol, Belgium). A novel detector approach to measure reactor anti-neutrinos was developed based on an innovative sandwich of composite polyvinyl-toluene and {sup 6}LiF:ZnS(Ag) scintillators. The system is highly segmented and read out by a network of wavelength shifting fibers and SiPM. High experimental sensitivity can be achieved compared to other standard technologies thanks to the combination of high granularity, good neutron–gamma discrimination using {sup 6}LiF:ZnS(Ag) scintillator and precise localisation of the Inverse Beta Decay products. This technology can be considered as a new generation of an anti-neutrino detector. This compact system requires limited passive shielding and relies on spatial topology to determine the different classes of backgrounds. We will describe the principle of detection and the detector design. Particular focus on the neutron discrimination will be made, as well as on the capability to use cosmic muons for channel equalisation and energy calibration. The performance of the first 288 kg SoLid module (SM1), based on the data taken at BR2 from February to September 2015, will be presented. We will conclude with the next phase, which will start in 2016, and the future plans of the experiment.

  20. Structure and bonding of transition metal-boryl compounds. Theoretical study of [(PH3)2(CO)ClOs-BR2] and [(PH3)2(CO)2ClOs-BR2] (BR2 = BH2, BF2, B(OH)2, B(OCH=CHO), Bcat).

    Science.gov (United States)

    Giju, K T; Bickelhaupt, F M; Frenking, G

    2000-10-16

    Quantum chemical DFT calculations using the B3LYP functionals have been carried out for the electronically unsaturated 16 VE five-coordinate osmium boryl-complexes [(PH3)2(CO)ClOs-BR2] and the 18 VE six-coordinate complexes [(PH3)2(CO)2ClOs-BR2] with BR2 = BH2, BF2, B(OH)2, B(OHC=CHO), and Bcat (cat = catecholate O2C6H4). The bonding situation of the Os-BR2 bond was analyzed with the help of the NBO partitioning scheme. The Os-B bond dissociation energies of the 16 VE complexes are very high, and they do not change very much for the different boryl ligands. The 18 VE complexes have only slightly lower bond energies than the 16 VE species. The Os-B bond in both classes of compounds is provided by a covalent sigma-bond which is polarized toward osmium and by strong charge attraction. Os-->B pi-donation is not important for the Os-B binding interactions, except for the Os-BH2 complexes. The stability of the boryl complexes [Os]-BR2 comes mainly from BB pi-donation. The intraligand charge distribution of the BR2 group changes little when the Os-B bond is formed, except for BH2. The CO ligand in [(PH3)2(CO)2ClOs-BR2] which is trans to BR2 has a relatively weak bond to the osmium atom.

  1. [Roles of KLF5 in inhibition TNFα-induced SK-BR-3 breast cancer cell apoptosis].

    Science.gov (United States)

    Shi, Jianhong; Liu, Caiyun; Zhang, Anyi; Cui, Naipeng; Wang, Bing; Chen, Baoping; Ma, Zhenfeng

    2014-07-08

    To explore the expression levels and roles of Krüpple-like factor 5 (KLF5) in tumor necrosis factor α (TNFα)-induced SK-BR-3 breast cancer cells. SK-BR-3 breast cancer cells were stimulated by TNFα at different concentrations (0, 1, 5, 10, 20 µg/L) for specified durations (0, 6, 12, 24, 36 h). Western blot was performed to detect KLF5 protein levels. Then Western blot and quantitative real-time PCR (qRT-PCR) were used to detect the expression levels of apoptosis genes. Flow cytometry and qRT-PCR were used to observe the effects of exogenous KLF5 on TNFα-induced apoptosis of SK-BR-3 breast cancer cell. KLF5 expression levels significantly decreased in TNFα-stimulated SK-BR-3 breast cancer cells in a concentration- and time-dependent manner. Quantitative RT-PCR results showed that TNFα up-regulate apoptosis gene caspase 3, caspase 9 and bax expression levels and down-regulate bcl-1 level in SK-BR-3 cells. Adenovirus expression vectors of pAd-GFP and pAd-GFP-KLF5 were constructed and used to infect SK-BR-3 breast cancer cells. Over-expression of GFP-KLF5 inhibited apoptosis in TNFα-stimulated SK-BR-3 breast cancer cells. TNFα reduces KLF5 expression in SK-BR-3 breast cancer cells and KLF5 participates in TNFα-induced SK-BR-3 cell apoptosis.

  2. Surface structure of VN0.89(100) determined by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Gauthier, Y.; Joly, Y.; Rundgren, J.; Johansson, L.I.; Wincott, P.

    1990-01-01

    The structure of the (100) surface of substoichiometric vanadium nitride was studied by low-energy electron diffraction on a VN 0.89 (100) sample. A simple 1x1 (100) diffractogram was observed. To describe the electron scattering in substoichiometric VN we apply the averaged t-matrix approximation to the nitrogen atoms. We find that the best structural model is one having no nitrogen vacancies in the surface region. It turns out that the first layer is rippled with the N atoms displaced 0.17 A above the subplane of V atoms, that the spacing between this subplane and the second layer is 1.92 A, and that the spacing between the second and the third layer is 2.08 A. In relation to the (100) spacing of the bulk, 2.06 A, these spacings are 6.8% contracted and 1% expanded, respectively. The Debye temperature of VN is found to be 660 K in good agreement with a prediction from entropy data and from neutron diffraction and helium-ion channeling experiments

  3. Reversible light-mediated compositional and structural transitions between CsPbBr3 and CsPb2Br5 nanosheets.

    Science.gov (United States)

    Shen, Wei; Ruan, Longfei; Shen, Zhitao; Deng, Zhengtao

    2018-03-13

    This communication describes a new method to achieve reversible light-induced chemical composition and phase structural transitions from polyvinylpyrrolidone-capped orthorhombic CsPbBr 3 to tetragonal CsPb 2 Br 5 nanosheets or vice versa. This work will deepen our understanding of the controlled synthesis, post-processing, and decomposition pathway of cesium lead halide perovskite nanocrystals.

  4. The First Benchmarking of ITER BR Nb3Sn Strand of CNDA

    International Nuclear Information System (INIS)

    Long Feng; Liu Fang; Wu Yu; Ni Zhipeng

    2012-01-01

    According to the International Thermonuclear Experimental Reactor (ITER) Procurement Arrangement (PA) of Cable-In-Conduit Conductor (CICC) unit lengths for the Toroidal Field (TF) and Poloidal Field (PF) magnet systems of ITER, at the start of process qualification, the Domestic Agency (DA) shall be required to conduct a benchmarking of the room and low temperature acceptance tests carried out at the Strand Suppliers and/or at its Reference Laboratories designated by the ITER Organization (IO). The first benchmarking was carried out successfully in 2009. Nineteen participants from six DAs (China, European Union, Japan, South Korea, Russia, and the United States) participated in the first benchmarking. Bronze-route (BR) Nb 3 Sn strand and samples prepared by the ITER reference lab (CERN) were sent out to each participant by CERN. In this paper, the test facility and test results of the first benchmarking by the Chinese DA (CNDA) are presented.

  5. The post irradiation examination of a sphere-pac (UPu)C fuel pin irradiated in the BR-2 reactor (MFBS 7 experiment)

    International Nuclear Information System (INIS)

    Smith, L.; Aerne, E.T.; Buergisser, B.; Flueckiger, U.; Hofer, R.; Petrik, F.

    1979-09-01

    A pin fuelled with Swiss made (UPu)C microspheres has been successfully irradiated to a peak burn-up of 6% fima in the Belgian BR2 Reactor. The pin, rated up to 95 kW/m, was intact after irradiation and exhibited a peak strain of just over 0.5%. The results of the post irradiation examination are reported. (Auth.)

  6. Expression of BAFF and BR3 in patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    J.H. Duan

    2016-03-01

    Full Text Available The objective of this study was to examine the relationship between the expression of B cell activating factor (BAFF and BAFF receptor in patients with disease activity of systemic lupus erythematosus (SLE. Real-time RT-PCR was used to examine BAFF mRNA expression in peripheral blood monocytes of active and stable SLE patients and healthy controls. The percentage of BAFF receptor 3 (BR3 on B lymphocytes was measured by flow cytometry. Soluble BAFF levels in serum were assayed by ELISA. Microalbumin levels were assayed by an automatic immune analysis machine. BAFF mRNA and soluble BAFF levels were highest in the active SLE group, followed by the stable SLE group, and controls (P<0.01. The percentage of BR3 on B lymphocytes was downregulated in the active SLE group compared with the stable SLE group and controls (P<0.01. BAFF mRNA levels and soluble BAFF levels were higher in patients who were positive for proteinuria than in those who were negative (P<0.01. The percentage of BR3 on B lymphocytes was lower in patients who were positive for proteinuria than in those who were negative (P<0.01. The BAFF/BR3 axis may be over-activated in SLE patients. BAFF and BR3 levels may be useful parameters for evaluating treatment.

  7. Predissociation measurements of bond dissociation energies: VC, VN, and VS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Eric L.; Davis, Quincy C.; Morse, Michael D. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 (United States)

    2016-06-21

    The abrupt onset of predissociation in the congested electronic spectra of jet-cooled VC, VN, and VS has been observed using resonant two-photon ionization spectroscopy. It is argued that because of the high density of electronic states in these molecules, the predissociation threshold occurs at the thermochemical threshold for the production of separated atoms in their ground electronic states. As a result, the measured threshold represents the bond dissociation energy. Using this method, bond dissociation energies of D{sub 0}(V C) = 4.1086(25) eV, D{sub 0}(V N) = 4.9968(20) eV, and D{sub 0}(V S) = 4.5353(25) eV are obtained. From these values, enthalpies of formation are derived as Δ{sub f,0K}H°(V C(g)) = 827.0 ± 8 kJ mol{sup −1}, Δ{sub f,0K}H°(V N(g)) = 500.9 ± 8 kJ mol{sup −1}, and Δ{sub f,0K}H°(V S(g)) = 349.3 ± 8 kJ mol{sup −1}. Using a thermochemical cycle and the well-known ionization energies of V, VC, and VN, our results also provide D{sub 0}(V{sup +}–C) = 3.7242(25) eV and D{sub 0}(V{sup +}–N) = 4.6871(20) eV. These values are compared to previous measurements and to computational results. The precision of these bond dissociation energies makes them good candidates for testing computational chemistry methods, particularly those that employ density functional theory.

  8. Flexible All-Inorganic Perovskite CsPbBr3 Nonvolatile Memory Device.

    Science.gov (United States)

    Liu, Dongjue; Lin, Qiqi; Zang, Zhigang; Wang, Ming; Wangyang, Peihua; Tang, Xiaosheng; Zhou, Miao; Hu, Wei

    2017-02-22

    All-inorganic perovskite CsPbX 3 (X = Cl, Br, or I) is widely used in a variety of photoelectric devices such as solar cells, light-emitting diodes, lasers, and photodetectors. However, studies to understand the flexible CsPbX 3 electrical application are relatively scarce, mainly due to the limitations of the low-temperature fabricating process. In this study, all-inorganic perovskite CsPbBr 3 films were successfully fabricated at 75 °C through a two-step method. The highly crystallized films were first employed as a resistive switching layer in the Al/CsPbBr 3 /PEDOT:PSS/ITO/PET structure for flexible nonvolatile memory application. The resistive switching operations and endurance performance demonstrated the as-prepared flexible resistive random access memory devices possess reproducible and reliable memory characteristics. Electrical reliability and mechanical stability of the nonvolatile device were further tested by the robust current-voltage curves under different bending angles and consecutive flexing cycles. Moreover, a model of the formation and rupture of filaments through the CsPbBr 3 layer was proposed to explain the resistive switching effect. It is believed that this study will offer a new setting to understand and design all-inorganic perovskite materials for future stable flexible electronic devices.

  9. The calculation of some gamma shielding parameters for semiconductor CsPbBr3

    Science.gov (United States)

    Oto, Berna; Gulebaglan, Sinem Erden; Kanberoglu, Gulsah Saydan

    2017-02-01

    Recently, researchers produced perovskites structures used in optoelectronic devices as substrates, sensors. CsPbBr3 crystal is found in the cubic perovskite structure and its space group is Pm-3m. CsPbBr3 is a developing material for detection of X- and γ-ray radiations and the knowledge of the attenuation parameters of CsPbBr3 crystal is important. In this study, some photon shielding parameters such as mass attenuation coefficient (μρ), effective atomic number (Zeff) and electron density (Nel) have been investigated for CsPbBr3 compound. The theoretical values of μρ have been calculated in the energy range from 1 keV to 100 GeV using WinXCom computer code and these values have been used in order to calculate the values of Zeff and Nel in the same energy range.

  10. Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers

    Science.gov (United States)

    Gao, Yisheng; Wang, Shuai; Huang, Can; Yi, Ningbo; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2017-03-01

    Hybrid lead halide perovskites have made great strides in next-generation light-harvesting and light emitting devices. Recently, they have also shown great potentials in nonlinear optical materials. Two-photon absorption and two-photon light emission have been thoroughly studied in past two years. However, the three-photon processes are rarely explored, especially for the laser emissions. Here we synthesized high quality CH3NH3PbBr3 perovskite microstructures with solution processed precipitation method and studied their optical properties. When the microstructures are pumped with intense 1240 nm lasers, we have observed clear optical limit effect and the band-to-band photoluminescence at 540 nm. By increasing the pumping density, whispering-gallery-mode based microlasers have been achieved from CH3NH3PbBr3 perovskite microplate and microrod for the first time. This work demonstrates the potentials of hybrid lead halide perovskites in nonlinear photonic devices.

  11. Field-effect transistors with high mobility and small hysteresis of transfer characteristics based on CH3NH3PbBr3 films

    Science.gov (United States)

    Aleshin, A. N.; Shcherbakov, I. P.; Trapeznikova, I. N.; Petrov, V. N.

    2017-12-01

    Field-effect transistor (FET) structures based on soluble organometallic perovskites, CH3NH3PbBr3, were obtained and their electrical properties were studied. FETs made of CH3NH3PbBr3 films possess current- voltage characteristics (IVs) typical for ambipolar FETs with saturation regime. The transfer characteristics of FETs based on CH3NH3PbBr3 have an insignificant hysteresis and slightly depend on voltage at the source-drain. Mobilities of charge carriers (holes) calculated from IVs of FETs based on CH3NH3PbBr3 at 300 K in saturation and weak field regimes were 5 and 2 cm2/V s, respectively, whereas electron mobility is 3 cm2/V s, which exceeds the mobility value 1 cm2/V s obtained earlier for FETs based on CH3NH3PbI3.

  12. Preparation of 80Br or 82Br-biomolecules via excitation labelling methods

    International Nuclear Information System (INIS)

    Wong, S.; Ache, H.J.

    1975-01-01

    The direct decay-induced 82 Br (or 80 Br) labelling by exposing the solid substrate molecules, such as deoxyuridine, L-tyrosine, guanosine, deoxycytidine, phenylalanine, and acetic acid, to gaseous CF 3 82 /sup m/Br (or CF 3 80 /sup m/Br) was studied. The radiochemical yields of the brominated products are relatively small and range from 1 percent in the case of bromo deoxyuridine to 11 percent for bromoacetic acid. The modification of this technique by adding Cl 2 gas to the reaction mixture improves the yields in several cases drastically (up to 80 percent for bromo-guanosine and bromo-L-tyrosine). Similar improvement can be achieved by exposing crystalline KBrO 3 for some time to CF 3 82 /sup m/Br (or CF 3 80 /sup m/Br) and dissolving subsequently the KBrO 3 in an acidic solution of the substrate. (auth)

  13. Phase Transitions in CsSnCl3 and CsPbBr3 An NMR and NQR Study

    Science.gov (United States)

    Sharma, Surendra; Weiden, Norbert; Weiss, Alarich

    1991-04-01

    The phase transitions in CsSnCl3 and CsPbBr3 have been studied by X-ray powder diffraction, by 81Br-NQR and by 'H-, 119Sn-, and 113Cs-NMR. At room temperature in air CsSnCl3 forms a hydrate which can be dehydrated to the monoclinic phase II of CsSnCl3. The high temperature phase I has the Perovskite structure, as the X-ray and NMR experiments show. The three phases of CsPbBr3, known from literature, have been corroborated. The results are discussed in the framework of the group ABX3, A = alkalimetal ion, B = IV main group ion, and X = Halogen ion

  14. Reversible modulation of CsPbBr3 perovskite nanocrystal/gold nanoparticle heterostructures.

    Science.gov (United States)

    Chen, Shanshan; Lyu, Danya; Ling, Tao; Guo, Weiwei

    2018-04-19

    A facile strategy is illustrated to reversibly modulate CsPbBr3 perovskite nanocrystal/Au nanoparticle heterostructures with the reversible formation and fragmentation of gold nanoparticles anchored to the corners and surface of CsPbBr3 perovskite nanocrystals. The modulation process was performed under ambient conditions and could be conducted for cycles.

  15. Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core-shell-like structure lead halide perovskite nanocrystals

    Science.gov (United States)

    Qiao, Bo; Song, Pengjie; Cao, Jingyue; Zhao, Suling; Shen, Zhaohui; Gao, Di; Liang, Zhiqin; Xu, Zheng; Song, Dandan; Xu, Xurong

    2017-11-01

    Lead halide perovskite materials are thriving in optoelectronic applications due to their excellent properties, while their instability due to the fact that they are easily hydrolyzed is still a bottleneck for their potential application. In this work, water-resistant, monodispersed and stably luminescent cesium lead bromine perovskite nanocrystals coated with CsPb2Br5 were obtained using a modified non-stoichiometric solution-phase method. CsPb2Br5 2D layers were coated on the surface of CsPbBr3 nanocrystals and formed a core-shell-like structure in the synthetic processes. The stability of the luminescence of the CsPbBr3 nanocrystals in water and ethanol atmosphere was greatly enhanced by the photoluminescence-inactive CsPb2Br5 coating with a wide bandgap. The water-stable enhanced nanocrystals are suitable for long-term stable optoelectronic applications in the atmosphere.

  16. CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Science.gov (United States)

    Zhou, Yan; Hu, Zhiping; Li, Yue; Xu, Jianqiu; Tang, Xiaosheng; Tang, Yulong

    2016-06-01

    Cesium lead halide perovskite nanocrystals (CsPbX3, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr3 nanocrystal films and characterize their physical properties. Broadband linear absorption from ˜0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr3 saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr3 liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm2, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ˜216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ˜1076 nm. This work shows that CsPbBr3 films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  17. Effects of CsBr addition on the performance of CH3NH3PbI3-xClx-based solar cells

    Science.gov (United States)

    Ueoka, Naoki; Oku, Takeo; Ohishi, Yuya; Tanaka, Hiroki; Suzuki, Atsushi; Sakamoto, Hiroki; Yamada, Masahiro; Minami, Satoshi; Tsukada, Shinichiro

    2018-01-01

    Perovskite-type photovoltaic devices were prepared by a spin-coating method using a precursor solution of CH3NH3I and lead(II) chloride in N,N-dimethylformamide. Effects of cesium bromide (CsBr) addition on the photovoltaic properties and microstructures of the perovskite phase were investigated. The fill factor was increased by adding the CsBr to the CH3NH3PbI3-xClx precursor solution, which resulted in increase of the conversion efficiency. The crystallinity of the CH3NH3PbI3-xClx perovskite phase was also improved by adding the CsBr to the H3NH3PbI3-xClx precursor solution.

  18. Limited geographic distribution of the novel cyclovirus CyCV-VN

    NARCIS (Netherlands)

    Le, Van Tan; de Jong, Menno D.; Nguyen, Van Kinh; Nguyen, Vu Trung; Taylor, Walter; Wertheim, Heiman F. L.; van der Ende, Arie; van der Hoek, Lia; Canuti, Marta; Crusat, Martin; Sona, Soeng; Nguyen, Hanh Uyen; Giri, Abhishek; Nguyen, Thi Thuy Chinh Bkrong; Ho, Dang Trung Nghia; Farrar, Jeremy; Bryant, Juliet E.; Tran, Tinh Hien; Nguyen, Van Vinh Chau; van Doorn, H. Rogier

    2014-01-01

    A novel cyclovirus, CyCV-VN, was recently identified in cerebrospinal fluid (CSF) from patients with central nervous system (CNS) infections in central and southern Vietnam. To explore the geographic distribution of this novel virus, more than 600 CSF specimens from patients with suspected CNS

  19. Crystallographic Investigations into Properties of Acentric Hybrid Perovskite Single Crystals NH(CH3)3SnX3(X = Cl, Br)

    KAUST Repository

    Dang, Yangyang

    2016-10-11

    The hybrid perovskites with special optoelectronic properties have attracted more attention to the scientific and industrial applications. However, because of the toxicity and instability of lead complexes, there is interest in finding a nontoxic substitute for the lead in the halides perovskites and solving the ambiguous crystal structures and phase transition of NH(CH3)3SnX3 (X = Cl, Br). Here, we report the bulk crystal growths and different crystal morphologies of orthorhombic hybrid perovskites NH(CH3)3SnX3 (X = Cl, Br) in an ambient atmosphere by bottom-seeded solution growth (BSSG) method. More importantly, detailed structural determination and refinements, phase transition, band gap, band structure calculations, nonlinear optical (NLO) properties, XPS, thermal properties, and stability of NH(CH3)3SnX3 (X = Cl, Br) single crystals are demonstrated. NH(CH3)3SnCl3 single crystal undergoes reversible structural transformation from orthorhombic space group Cmc21 (no. 36) to monoclinic space group Cc (no. 9) and NH(CH3)3SnBr3 belongs to the orthorhombic space group Pna21 (no. 33) by DSC, single-crystal X-ray diffraction and temperature-dependent SHG measurements, which clarify the former results. These results should pave the way for further studies of these materials in optoelectronics.

  20. Operation of the BR2 Reactor

    International Nuclear Information System (INIS)

    Gubel, P.

    2006-01-01

    The BR2 is still SCK-CEN's most important nuclear facility. After an extensive refurbishment of 22 months to compensate for the ageing of the installations, to enhance the reliability of operation and to comply with modern safety standards, it was restarted in April 1997. The facility is mainly used for the irradiation and testing of fuels and materials and for commercial productions - including radioisotopes for the medical and industrial uses, and NTD-Silicon. The article describes the main achievements and activities in 2005

  1. Operation of the BR2 Reactor

    International Nuclear Information System (INIS)

    Gubel, P.

    2005-01-01

    The BR2 is still SCK-CEN's most important nuclear facility. After an extensive refurbishment of 22 months to compensate for the ageing of the installations, to enhance the reliability of operation and to comply with modern safety standards, it was restarted in April 1997. The facility is mainly used for the irradiation and testing of fuels and materials and for commercial productions - including radioisotopes for the medical and industrial uses, and NTD-Silicon. The article describes the main activities and achievements in 2004

  2. Scientific activities in support of the BR2 operation and irradiation programmes

    International Nuclear Information System (INIS)

    Koonen, E.

    2006-01-01

    One of the major characteristics of the BR2 reactor is the fact that the core configuration is essentially variable. This allows to optimize the irradiation conditions of various experiments and to minimize the fuel consumption. In order to do that, BR2 has its own autonomous reactor physics cell. In order to allow for on-line measurements of the major irradiation parameters, BR2 has extended its own proven data acquisition system to serve this purpose. This system, called BIDASSE (for BR2 Integrated Data Acquisition System for Survey and Experiments), originally designed for the follow-up of all BR2 operational parameters, is since several years extensively used for experiments. The object rives of research at the BR2 are to evaluate and adjust provisional irradiation conditions by adjustments of the environment, axial and azimuthal positioning of the samples, global power level, ... ; to deliver reliable, well defined irradiation condition and fluence data during and after irradiation; to assist the designer of new irradiation devices by simulations and neutronic optimisations of design options and o provide the experimenters with accurate on-line information on the evolution of their ongoing irradiation projects

  3. Refurbishment of BR2 (Phases 4 and 5)

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P.; Dekeyser, J.; Van Der Auwera, J

    1998-07-01

    The BR2 is a materials testing reactor and is SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In phase 4 of the refurbishment programme, various activities were performed to allow reactor start-up. In phase 5, remaining refurbishment works were carried out as well as the extra studies and upgradings required by the licensing authorities. Major achievements in 1997 are described and discussed.

  4. Refurbishment of BR2 (Phases 4 and 5)

    International Nuclear Information System (INIS)

    Gubel, P.; Dekeyser, J.; Van Der Auwera, J.

    1998-01-01

    The BR2 is a materials testing reactor and is SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In phase 4 of the refurbishment programme, various activities were performed to allow reactor start-up. In phase 5, remaining refurbishment works were carried out as well as the extra studies and upgradings required by the licensing authorities. Major achievements in 1997 are described and discussed

  5. Refurbishment of BR2 (Phases 4 and 5)

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P; Dekeyser, J; Van Der Auwera, J

    1998-07-01

    The BR2 is a materials testing reactor and is SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In phase 4 of the refurbishment programme, various activities were performed to allow reactor start-up. In phase 5, remaining refurbishment works were carried out as well as the extra studies and upgradings required by the licensing authorities. Major achievements in 1997 are described and discussed.

  6. Dissociative multiple photoionization of Br2, IBr, and I2 in the VUV and X-ray regions: a comparative study of the inner-shell processes involving Br(3d,3p,3s) and I(4d,4p,4s,3d,3p)

    International Nuclear Information System (INIS)

    Boo, Bong Hyun; Saito, Norio

    2002-01-01

    Dissociative multiple photoionization of the bromine, the iodine monobromide, and the iodine molecules in the Br(3d,3p,3s) and I(4d,4p,4s,3d,3p) inner-shell regions has been studied by using time-of-flight (TOF) mass spectrometry coupled to synchrotron radiation in the ranges of 90∼978 eV for Br 2 , 60∼133 eV for IBr, and 86∼998 eV for I 2 . Total photoion and photoion-photoion coincidence (PIPICO) yields have been recorded as functions of the photon energy. Here, giant shape resonances have been observed beyond the thresholds of the inner-shells owing to the Br(3d 10 )→Br(3d 9 -f), I(4d 10 )→I(4d 9 -f), and I(3d 10 )→I(3d 9 -f) transitions. The dissociation processes of the multiply charged parent ions have also been evaluated from variations of photoelectron-photoion coincidence (PEPICO) and PIPICO spectra with the photon energy. From each Br(3p 3/2 ) (189.9 eV) and I(4p 3/2 ) threshold (129.9 eV), quintuple ionization of the molecules begins to play important roles in the photoionization, subsequently yielding ion pairs of X 3+ -X 2+ (X=Br, I). From the I(3d 5/2 ) threshold (627.3 eV), loss of six electrons from iodine molecule additionally begins to play a minor role in the multiple photoionization, giving rise to the formation of ion pairs of either I 3+ -I 3+ or I 4+ -I 2+ . A direct comparison of the strengths and the ranges of the I(4d) and Br(3d) giant resonances was successfully made from dissociative photoionization of IBr. Over the entire energy range examined, 60< E<133 eV, biased charge spread relevant to the specific core-hole states of IBr is observed, presumably reflecting the fact that charge localizes mostly in the excited atoms, which can be accounted for mainly by a two step decay via a fast dissociation followed by autoionization upon the VUV absorption

  7. Shape and phase evolution from CsPbBr3 perovskite nanocubes to tetragonal CsPb2Br5 nanosheets with an indirect bandgap.

    Science.gov (United States)

    Li, Guopeng; Wang, Hui; Zhu, Zhifeng; Chang, Yajing; Zhang, Ting; Song, Zihang; Jiang, Yang

    2016-09-13

    Tetragonal CsPb 2 Br 5 nanosheets were obtained by an oriented attachment of orthorhombic CsPbBr 3 nanocubes, involving a lateral shape evolution from octagonal to square. Meanwhile, the experimental results, together with DFT simulation results, indicated that the tetragonal CsPb 2 Br 5 is an indirect bandgap semiconductor that is PL-inactive with a bandgap of 2.979 eV.

  8. Ge14 Br8 (PEt3 )4 : A Subhalide Cluster of Germanium.

    Science.gov (United States)

    Kunz, Tanja; Schrenk, Claudio; Schnepf, Andreas

    2018-04-03

    Heating a metastable solution of Ge I Br to room temperature led to the first structurally characterized metalloid subhalide cluster Ge 14 Br 8 (PEt 3 ) 4 (1). Furthermore 1 can be seen as the first isolated binary halide cluster on the way from Ge I Br to elemental germanium, giving insight into the complex reaction mechanism of its disproportionation reaction. Quantum chemical calculations further indicate that a classical bonding situation is realized within 1 and that the last step of the formation of 1 might include the trapping of GeBr 2 units. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fuel management of mixed reactor type power plant systems

    International Nuclear Information System (INIS)

    Csom, Gyula

    1988-01-01

    Breeding gain in symbiotic nuclear power plant system consisting of both thermal and fast breeder reactors depends on the characteristics and the ratio of thermal and fast reactors. The composition of the symbiotic power plant systems was determined for equilibrium and plutonium deficient systems. According to natural uranium utilization, symbiotic power plant systems are not less efficient than the systems containing only fast breeders. Depleted uranium can be applied in both types of systems. Reprocessing demands of the symbiotic power plant sytems were determined. (V.N.) 23 figs.; 1 tab

  10. Lead-free Perovskite Materials (NH4 )3 Sb2 Ix Br9-x.

    Science.gov (United States)

    Zuo, Chuantian; Ding, Liming

    2017-06-01

    A family of perovskite light absorbers (NH 4 ) 3 Sb 2 I x Br 9-x (0≤x≤9) was prepared. These materials show good solubility in ethanol, a low-cost, hypotoxic, and environmentally friendly solvent. The light absorption of (NH 4 ) 3 Sb 2 I x Br 9-x films can be tuned by adjusting I and Br content. The absorption onset for (NH 4 ) 3 Sb 2 I x Br 9-x films changes from 558 nm to 453 nm as x changes from 9 to 0. (NH 4 ) 3 Sb 2 I 9 single crystals were prepared, exhibiting a hole mobility of 4.8 cm 2  V -1  s -1 and an electron mobility of 12.3 cm 2  V -1  s -1 . (NH 4 ) 3 Sb 2 I 9 solar cells gave an open-circuit voltage of 1.03 V and a power conversion efficiency of 0.51 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Surfactant-promoted reactions of Cl2 and Br2 with Br- in glycerol.

    Science.gov (United States)

    Faust, Jennifer A; Dempsey, Logan P; Nathanson, Gilbert M

    2013-10-17

    Gas-liquid scattering experiments are used to explore reactions of gaseous Cl2 and Br2 with a 0.03 M solution of the surfactant tetrahexylammonium bromide (THABr) dissolved in glycerol. At thermal collision energies, 79 ± 2% of incident Cl2 molecules react with Br(-) to form Cl2Br(-) in the interfacial region. This reaction probability is three times greater than the reactivity of Cl2 with 3 M NaBr-glycerol, even though the interfacial Br(-) concentrations are similar in each solution. We attribute the high 79% uptake to the presence of surface THA(+) ions that stabilize the Cl2Br(-) intermediate as it is formed in the charged, hydrophobic pocket created by the hexyl chains. Cl2Br(-) generates the single exchange product BrCl in a 1% yield close to the surface, while the remaining 99% desorbs as the double exchange product Br2 over >0.1 s after diffusing deeply into the bulk. When NaCl is added to the surfactant solution in a 20:1 Cl(-)/Br(-) ratio, the Cl2 reaction probability drops from 79% to 46 ± 1%, indicating that Cl(-) in the interfacial region only partially blocks reaction with Br(-). In parallel, we observe that gaseous Br2 molecules dissolve in 0.03 M THABr for 10(4) times longer than in 3 M NaBr. We attribute this change to formation of stabilizing interfacial and bulk-phase THA(+)Br3(-) ion pairs, in analogy with the capture of Cl2 and formation of THA(+)Cl2Br(-) pairs. The THA(+) ion appears to be a powerful interfacial catalyst for promoting reaction of Cl2 and Br2 with Br(-) and for ferrying the resultant ions into solution.

  12. Life extension of the BR2 aluminium vessel

    International Nuclear Information System (INIS)

    Koonen, E.; Fabry, A.; Chaouadi, R.; Verwerft, M.; Raedt, C. de; Winckel, S. van; Wacquier, W.; Dadoumont, J.; Verwimp, A.

    2000-01-01

    The BR2 reactor has recently undergone a major refurbishment comprising the replacement of all vessel internals. The vessel itself however was not replaced. An important requalification programme has been executed to prove that the vessel would remain fit during the contemplated life extension period of BR2. Representative material samples could be obtained from the shroud surrounding the vessel. A comprehensive in-service inspection was carried out and a vessel surveillance programme has been established. (author)

  13. Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation

    International Nuclear Information System (INIS)

    Surti, S; Karp, J S; Muehllehner, G

    2004-01-01

    The main thrust for this work is the investigation and design of a whole-body PET scanner based on new lanthanum bromide scintillators. We use Monte Carlo simulations to generate data for a 3D PET scanner based on LaBr 3 detectors, and to assess the count-rate capability and the reconstructed image quality of phantoms with hot and cold spheres using contrast and noise parameters. Previously we have shown that LaBr 3 has very high light output, excellent energy resolution and fast timing properties which can lead to the design of a time-of-flight (TOF) whole-body PET camera. The data presented here illustrate the performance of LaBr 3 without the additional benefit of TOF information, although our intention is to develop a scanner with TOF measurement capability. The only drawbacks of LaBr 3 are the lower stopping power and photo-fraction which affect both sensitivity and spatial resolution. However, in 3D PET imaging where energy resolution is very important for reducing scattered coincidences in the reconstructed image, the image quality attained in a non-TOF LaBr 3 scanner can potentially equal or surpass that achieved with other high sensitivity scanners. Our results show that there is a gain in NEC arising from the reduced scatter and random fractions in a LaBr 3 scanner. The reconstructed image resolution is slightly worse than a high-Z scintillator, but at increased count-rates, reduced pulse pileup leads to an image resolution similar to that of LSO. Image quality simulations predict reduced contrast for small hot spheres compared to an LSO scanner, but improved noise characteristics at similar clinical activity levels

  14. FeBr3-catalyzed dibromination of alkenes and alkynes

    Institute of Scientific and Technical Information of China (English)

    Yun Fa Zheng; Jian Yu; Guo Bing Yan; Xu Li; Song Luo

    2011-01-01

    The dibromination of alkenes and alkynes with bromosuccinimide and sodium bromide catalyzed by FeBr3 under mild conditions has been developed. The trans-dibromo compounds were exclusively obtained with excellent yields.

  15. Direct Vapor Growth of Perovskite CsPbBr3 Nanoplate Electroluminescence Devices.

    Science.gov (United States)

    Hu, Xuelu; Zhou, Hong; Jiang, Zhenyu; Wang, Xiao; Yuan, Shuangping; Lan, Jianyue; Fu, Yongping; Zhang, Xuehong; Zheng, Weihao; Wang, Xiaoxia; Zhu, Xiaoli; Liao, Lei; Xu, Gengzhao; Jin, Song; Pan, Anlian

    2017-10-24

    Metal halide perovskite nanostructures hold great promises as nanoscale light sources for integrated photonics due to their excellent optoelectronic properties. However, it remains a great challenge to fabricate halide perovskite nanodevices using traditional lithographic methods because the halide perovskites can be dissolved in polar solvents that are required in the traditional device fabrication process. Herein, we report single CsPbBr 3 nanoplate electroluminescence (EL) devices fabricated by directly growing CsPbBr 3 nanoplates on prepatterned indium tin oxide (ITO) electrodes via a vapor-phase deposition. Bright EL occurs in the region near the negatively biased contact, with a turn-on voltage of ∼3 V, a narrow full width at half-maximum of 22 nm, and an external quantum efficiency of ∼0.2%. Moreover, through scanning photocurrent microscopy and surface electrostatic potential measurements, we found that the formation of ITO/p-type CsPbBr 3 Schottky barriers with highly efficient carrier injection is essential in realizing the EL. The formation of the ITO/p-type CsPbBr 3 Schottky diode is also confirmed by the corresponding transistor characteristics. The achievement of EL nanodevices enabled by directly grown perovskite nanostructures could find applications in on-chip integrated photonics circuits and systems.

  16. Pronounced cluster-size effects: gas-phase reactivity of bare vanadium cluster cations V(n)+ (n = 1-7) toward methanol.

    Science.gov (United States)

    Feyel, Sandra; Schröder, Detlef; Schwarz, Helmut

    2009-05-14

    Mass spectrometric experiments are used to examine the size-dependent interactions of bare vanadium cluster cations V(n)(+) (n = 1-7) with methanol. The reactivity patterns exhibit enormous size effects throughout the range of clusters investigated. For example, dehydrogenation of methanol to produce V(n)OC(+) is only brought about by clusters with n > or = 3. Atomic vanadium cation V(+) also is reactive, but instead of dehydrogenation of the alcohol, expulsions of either methane or a methyl radical take place. In marked contrast, the reaction efficiency of the dinuclear cluster V(2)(+) is extremely low. For the cluster cations V(n)(+) (n = 3-7), complete and efficient dehydrogenation of methanol to produce V(n)OC(+) and two hydrogen molecules prevails. DFT calculations shed light on the mechanism of the dehydrogenation of methanol by the smallest reactive cluster cation V(3)(+) and propose the occurrence of chemisorption concomitant with C-O bond cleavage rather than adsorption of an intact carbon monoxide molecule by the cluster.

  17. Fuel management of mixed reactor type power plant systems

    International Nuclear Information System (INIS)

    Csom, Gyula

    1988-01-01

    In equilibrium symbiotic power plant system containing both thermal reactors and fast breeders, excess plutonium produced by the fast breeders is used to enrich the fuel of the thermal reactors. In plutonium deficient symbiotic power plant system plutonium is supplied both by thermal plants and fast breeders. Mathematical models were constructed and different equations solved to characterize the fuel utilization of both systems if they contain only a single thermal type and a single fast type reactor. The more plutonium is produced in the system, the higher output ratio of thermal to fast reactors is achieved in equilibrium symbiotic power plant system. Mathematical equations were derived to calculate the doubling time and the breeding gain of the equilibrium symbiotic system. (V.N.) 2 figs.; 2 tabs

  18. CH3Br adsorption on MgO/Mo ultrathin films: A DFT study

    Science.gov (United States)

    Cipriano, Luis A.; Tosoni, Sergio; Pacchioni, Gianfranco

    2018-06-01

    The adsorption of methyl bromide on MgO ultrathin films supported on Mo(100) was studied by means of density functional theory calculations, in comparison to the MgO(100) and Mo(100) surfaces. The adsorption energy and geometry were shown to depend on the thickness of the supported oxide film. MgO films as thick as 2ML (or more) display adsorptive properties similar to MgO(100), i.e. the adsorption of CH3Br is mostly due to dispersion and the molecule lies in a tilted geometry almost parallel to the surface. The CH3Br HOMO-LUMO gap is almost unaltered with respect to the gas phase. On metallic Mo(100) surfaces the bonding is completely different with the CH3Br molecule strongly bound and the C-Br bond axis almost vertical with respect to the metal surface. The MgO monolayer supported on Mo exhibits somehow intermediate properties: the tilt angle is larger and the bonding is stronger than on MgO(100), due to the effect of the supporting metal. In this case, a small reduction of the HOMO-LUMO gap of the adsorbed molecule is reported. The results help to rationalize the observed behavior in photodissociation of CH3Br supported on different substrates.

  19. Fuel characteristics needed for optimal operation of the BR2 reactor

    International Nuclear Information System (INIS)

    Koonen, E.; Beeckmans, A.; Gubel, P.

    1998-01-01

    The standard BR2 fuel element contains 400 g 235 U under the form of UAl x with burnable absorbers homogeneously mixed into the fuel meat. The uranium is highly enriched with a density of ∼1.30 g U/cm 3 . This fuel element was developed in the early seventies to satisfy the irradiation conditions required by many experimental programmes: large reactivity available, cycle length, hard neutron spectrum, limited motion of the control rods during the cycle thereby stabilizing the irradiation conditions. Another benefit is the reduction of the fuel consumption by increasing the burnup at discharge. BR2 has recently been restarted after the completion of an important refurbishment programme. Future utilization will again be concentrated on engineering R and D in the field of nuclear fuels, materials and safety, and on radioisotope production. Therefore the required irradiation conditions and the corresponding fuel characteristics remain essentially the same as in the past. (author)

  20. [Roles of Y box-binding protein 1 in SK-BR-3 breast cancer proliferation].

    Science.gov (United States)

    Shi, Jianhong; Lü, Xinrui; Wang, Bing; Daudan, Lin; Yanan, Wang; Yuhui, Bu; Zhenfeng, Ma

    2014-09-30

    To explore the roles of Y box-binding protein 1 (YB-1) in breast cancer cell proliferation. Twenty cases of surgical removal of breast cancer tissue (diagnosed with invasive ductal carcinoma, stage II, by postoperative paraffin pathology) and normal breast tissues adjacent to carcinoma were collected during June 2013 to August 2013.Quantitative real-time PCR (qRT-PCR) was performed to detect the YB1 mRNA levels. Cultured mammary epithelial cells (HBL-100) and breast cancer cells (MCF7, MDA-MB-231 & SK-BR-3 cells) were harvested and qRT-PCR was performed to detect the YB1 mRNA levels.SK-BR-3 cells were stimulated with various concentrations of PDGF-BB and YB1 expression levels were detected by qRT-PCR. Down-regulation or over-expression of YB1 by si-YB1 or Ad-GFP-YB1 was detected in SK-BR-3 cells. And MTS cell proliferation assay kit was used to detect cell proliferation. YB1 mRNA levels were significantly higher in breast cancer tissues and MDA-MB-231 and SK-BR-3 breast cancer cell lines than that in adjacent normal breast tissues and HBL-100 mammary epithelial cells respectively (P BR-3 cells in a dose-dependent manner. A down-regulation of endogenous YB1 decreases and an over-expression of exogenous YB1 promotes the proliferation activity in SK-BR-3 cells.

  1. Synthesis and characterization of Ag/AgBrO{sub 3} photocatalyst with high photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Limin, E-mail: songlmnk@sohu.com [College of Environment and Chemical Engineering & State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387 (China); Li, Tongtong [College of Environment and Chemical Engineering & State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387 (China); Zhang, Shujuan [College of Science, Tianjin University of Science & Technology, Tianjin, 300457 (China)

    2016-10-01

    A new Ag/AgBrO{sub 3} photocatalyst was prepared by mixing aqueous solutions of AgNO{sub 3} and NaBrO{sub 3}. The catalyst’s structure and performance were investigated with X-ray powder diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The UV–vis absorption spectrum of Ag/AgBrO{sub 3} exhibits a band gap of 3.97 eV. The results show that the Ag/AgBrO{sub 3} semiconductor can be excited by ultraviolet–visible light. The photodegradation of Rhodamine B displayed much higher photocatalytic activity than that of N-doped TiO{sub 2} under the same experimental conditions. Moreover, ·OH and ·O{sub 2}{sup −} generated in the photocatalysis played a key role of the photodegradation of Rhodamine B. - Highlights: • Ag/AgBrO{sub 3} with higher photodegradation ability was synthesized. • ·OH and ·O{sub 2}{sup −} radicals were the main active species in the oxidation of RhB. • The possible reaction mechanism was discussed in details.

  2. On the crystal structure of colloidally prepared CsPbBr3 quantum dots.

    Science.gov (United States)

    Cottingham, Patrick; Brutchey, Richard L

    2016-04-18

    Colloidally synthesized quantum dots of CsPbBr3 are highly promising for light-emitting applications. Previous reports based on benchtop diffraction conflict as to the crystal structure of CsPbBr3 quantum dots. We present X-ray diffraction and PDF analysis of X-ray total scattering data that indicate that the crystal structure is unequivocally orthorhombic (Pnma).

  3. Characterization of LaBr{sub 3}:Ce and CeBr{sub 3} calorimeter modules for 3D imaging in gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Gostojić, A., E-mail: aleksandar.gostojic@csnsm.in2p3.fr [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Tatischeff, V.; Kiener, J.; Hamadache, C.; Peyré, J.; Karkour, N.; Linget, D.; Gibelin, L.; Lafay, X.; Grave, X.; Dosme, N.; Legay, E. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Blin, S. [OMEGA, École Polytechnique, CNRS/IN2P3, Route de Saclay, 91128 Palaiseau (France); Barrillon, P. [LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91898 Orsay (France)

    2016-10-01

    For the purpose of future space instrumentation for γ-ray astronomy, we developed a small prototype of a Compton telescope and studied novel detector modules aimed for Compton imaging. We assembled and tested 2 modules, one with a cerium-doped lanthanum(III) bromide (LaBr{sub 3}:Ce) crystal and the other with cerium(III) bromide (CeBr{sub 3}). Both crystals measure 5×5 cm{sup 2} in area and are 1 cm thick. They are coupled to and read out by 64-channel multi-anode PMTs. Our goals are to obtain the best possible energy resolution and position resolution in 3D on the first impact of an incident γ-ray within the detector. Both information are vital for successful reconstruction of a Compton image with the telescope prototype. We developed a test bench to experimentally study both modules and have utilized a customized readout electronics and data acquisition system. Furthermore, we have written a detailed Geant4 simulation of the experiment, and utilize simulated data to train an Artificial Neural Network (ANN) algorithm to create a simplified 3D impact position reconstruction method. We give experimental test results obtained by both modules and present detailed parametrization and results from the Geant4 simulation and from the ANN. We compare and discuss the performance of the modules and conclude by giving a brief overview of the future prospects for using such modules in γ-ray astronomy.

  4. Thermodynamic assessment of EuBr2 unary and LiBr-EuBr2 and NaBr-EuBr2 binary systems

    International Nuclear Information System (INIS)

    Gong, Weiping; Gaune-Escard, Marcelle

    2009-01-01

    As a basis for the design and development of molten salt mixtures, thermodynamic calculations of the phase diagrams and thermodynamic properties were carried out on the EuBr 2 unary and LiBr-EuBr 2 and NaBr-EuBr 2 binary systems over a wide temperature and composition range, respectively. The Gibbs energy of EuBr 2 was evaluated using an independent polynomial to fit the experimental heat capacity, the thermodynamic parameters for each phase in the LiBr-EuBr 2 and NaBr-EuBr 2 systems were optimized by using available experimental information on phase diagrams. A regular substitutional solution model for the liquid phase and Neumann-Kopp rule for the stoichiometric compound LiEu 2 Br 5 were adopted to reproduce the experimental data with reasonable excess Gibbs energy. Comparisons between the calculated phase diagrams and thermodynamic quantities show that all reliable experimental information is satisfactorily accounted for by the present thermodynamic description. Some thermodynamic properties were predicted to check the suitability of the present calculation.

  5. Laser-excited luminescence of trace Nd3+ impurity in LaBr3 revealed by Raman spectroscopy

    Science.gov (United States)

    Yu, Jinqiu; Cui, Lei; He, Huaqiang; Hu, Yunsheng; Wu, Hao; Zeng, Jia; Liu, Yuzhu

    2012-10-01

    Unexpected additional bands with obvious non-vibrational features were observed in Raman spectra of LaBr3. Extensive study was carried out to reveal the origin of these bands. Results indicate that the additional bands correspond to laser-excited luminescence of trace Nd3+ impurity unintentionally introduced from the La2O3 raw material, which was further confirmed by Raman spectra of specially prepared Nd3+-doped LaBr3 and LaOBr samples. The luminescence properties of Nd3+ in different matrix were compared and discussed. The ultrasensitivity of Raman spectroscopy in detecting trace luminescent lanthanide ions shows good potential for analytical applications.

  6. KARAKTERISASI DAN AKTIVITAS KATALITIK BERBAGAI VARIASI KOMPOSISI KATALIS Ni DAN ZnBr2 DALAM Γ-Al2O3 UNTUK ISOMERISASI DAN HIDROGENASI (R-(+-SITRONELAL

    Directory of Open Access Journals (Sweden)

    ED Iftitah

    2014-06-01

    -EELS. The catalysts spesific surface area and porosity determined by adsorption-desorption of dinitrogen at 77 K. Pore distribution and volume were determined by the desorption isotherm at P/Po ≥ 0.3. The result showed that there was correlation between the catalyst characteristics and catalytic activity to (R-(+-Citronellal isomerisation and hydrogenation product. The activity test were performed in a mini fixed bed reactor with 0.5 g of catalyst and 3 mL of (R-(+-Citronellal using N2 and/or H2 gas atmosphere in 5 and 24 hours at each temperature 90 and 120 oC. The catalyst composition of the choice of gas atmosphere and temperature greatly influenced the activity as well as the selectivity of isomerisation and hydrogenation product formation. The highest conversion was achieved for A3=Ni/ZnBr2/γ-Al2O3 (2:3 with complete conversion of (R-(+-Citronellal were obtained when it was running in 5 hours (4 hours N2 + 1 hour H2 at 90 oC and 24 hours (4 hours N2 + 20 hour H2 at 120 oC.

  7. Excellent green but less impressive blue luminescence from CsPbBr3 perovskite nanocubes and nanoplatelets

    Science.gov (United States)

    Ravi, Vikash Kumar; Swarnkar, Abhishek; Chakraborty, Rayan; Nag, Angshuman

    2016-08-01

    Green photoluminescence (PL) from CsPbBr3 nanocubes (˜11 nm edge-length) exhibits a high quantum yield (>80%), narrow spectral width (˜85 meV), and high reproducibility, along with a high molar extinction coefficient (3.5 × 106 M-1 cm-1) for lowest energy excitonic absorption. In order to obtain these combinations of excellent properties for blue (PL peak maximum, λ max CsPbBr3 nanocubes and nanoplatelets with various dimensions were prepared. Systematic increases in both the optical gap and transition probability for radiative excitonic recombination (PL lifetime 3-7 ns), have been achieved with the decreasing size of nanocubes. A high quantum yield (>80%) was also maintained, but the spectral width increased and became asymmetric for blue emitting CsPbBr3 nanocubes. Furthermore, PL was unstable and irreproducible for samples with λ max ˜ 460 nm, exhibiting multiple features in the PL. These problems arise because smaller (CsPbBr3 nanocubes have a tendency to form nanoplatelets and nanorods, eventually yielding inhomogeneity in the shape and size of blue-emitting nanocrystals. Reaction conditions were then modified achieving nanoplatelets, with strong quantum confinement along the thickness of the platelets, yielding blue emission. But inhomogeneity in the thickness of the nanoplatelets again broadens the PL compared to green-emitting CsPbBr3 nanocubes. Therefore, unlike high quality green emitting CsPbBr3 nanocubes, blue emitting CsPbBr3 nanocrystals of any shape need to be improved further.

  8. Hot Deformation Behavior of 1Cr12Ni3Mo2VN Martensitic Stainless Steel

    Science.gov (United States)

    He, Xiaomao; Jiang, Peng; Zhou, Leyu; Chen, Chao; Deng, Xiaochun

    2017-08-01

    1Cr12Ni3Mo2VN is a new type of martensitic stainless steel for the last-stage blades of large-capacity nuclear and thermal power turbines. The deformation behavior of this steel was studied by thermal compression experiments that performed on a Gleeble-3500 thermal simulator at a temperature range of 850°C to 1200°C and a strain rate of 0.01s-1 to 20s-1. When the deformation was performed at high temperature and low strain rate, a necklace type of microstructures was observed, the plastic deformation mechanism is grain boundary slip and migration, when at low temperature and lower strain rate, the slip bands were observed, the mechanism is intracrystalline slips, and when at strain rate of 20s-1, twins were observed, the mechanism are slips and twins. The Arrhenius equation was applied to describe the constitutive equation of the flow stress. The accuracy of the equation was verified by using the experimental data and the correlation coefficient R2 = 0.9786, and the equation can provide reasonable data for the design and numerical simulation of the forging process.

  9. CsPbBr{sub 3} nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan; Li, Yue; Xu, Jianqiu; Tang, Yulong, E-mail: yulong@sjtu.edu.cn [Key Laboratory for Laser Plasmas (MOE), Department of Physics and Astronomy, Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240 (China); Hu, Zhiping; Tang, Xiaosheng [Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2016-06-27

    Cesium lead halide perovskite nanocrystals (CsPbX{sub 3}, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr{sub 3} nanocrystal films and characterize their physical properties. Broadband linear absorption from ∼0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr{sub 3} saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr{sub 3} liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm{sup 2}, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ∼216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ∼1076 nm. This work shows that CsPbBr{sub 3} films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  10. First Principle Quantum Description of the Energetics Associated with LaBr3, LaCl3, and Ce Doped Scintillators

    International Nuclear Information System (INIS)

    Michael E. McIlwain; Da Gao; Nick Thompson

    2007-01-01

    Considerable interest is given to the excellent scintillation properties of cerium doped lanthanum chloride (LaCl3) and lanthanum bromide (LaBr3). The scintillation efficiencies are much greater than other materials, even those containing cerium. This high efficiency is attributed to the high mobility of electrons and holes, unique placement of the cerium 5d states within the band gap, and energy of the band gap. To better understand the scintillation process and better define the nature of the Self Trapped Exciton (STE) within these unique scintillation materials, density functional theory (DFT), and Ab-initio (HF-MP2) calculations are reported. DFT calculations have yielded a qualitative description of the orbital composition and energy distribution of the band structure in the crystalline material. MP2 and single configuration interaction calculations have provided quantitative values for the band gap and provided energies for the possible range of excited states created following hole and electron creation. Based on this theoretical treatment, one possible description of the STE is the combination of Vk center (Br2-1) and LaBr+1 species that recombine to form a distorted geometry LaBr3* (triplet state). Depending on the distance between the LaBr and Br2, the STE emission band can be reproduced

  11. Inhibition of Ps Formation in Benzene and Cyclohexane by CH3CI and CH3Br

    DEFF Research Database (Denmark)

    Wikander, G.; Mogensen, O. E.; Pedersen, Niels Jørgen

    1983-01-01

    Positron-annihilation lifetime spectra have been measured for mixtures of CH3Cl and CH3Br in cyclohexane and of CH3Cl in benzene. The ortho-positronium (Ps) yield decreased monotonically from 38% and 43% in cyclohexane and benzene respectively to 11% in pure CH3Cl and 6% in pure CH3Br. The strength......− anions to form Ps. while it forms a bound state with the halides. X−. CH3Cl was a roughly three times weaker Ps inhibitor in benzene than in cyclohexane, which shows that CH3Cl− does not dechlorinate in times comparable to or shorter than 400–500 ps in benzene. An improved model for the explanation of Ps...

  12. The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots

    Science.gov (United States)

    Zhang, Zhen-Yu; Wang, Hai-Yu; Zhang, Yan-Xia; Hao, Ya-Wei; Sun, Chun; Zhang, Yu; Gao, Bing-Rong; Chen, Qi-Dai; Sun, Hong-Bo

    2016-06-01

    Hybrid metal halide perovskites have been paid enormous attentions in photophysics research, whose excellent performances were attributed to their intriguing charge carriers proprieties. However, it still remains far from satisfaction in the comprehensive understanding of perovskite charge-transport properities, especially about trap-assisted recombination process. In this Letter, through time-resolved transient absorption (TA) and photoluminescence (PL) measurements, we provided a relative comprehensive investigation on the charge carriers recombination dynamics of CH3NH3PbBr3 (MAPbBr3) perovskite films and quantum dots (QDs), especially about trap-assisted recombination. It was found that the integral recombination mode of MAPbBr3 films was highly sensitive to the density distribution of generated charge carriers and trap states. Additional, Trap effects would be gradually weakened with elevated carrier densities. Furthermore, the trap-assisted recombination can be removed from MAPbBr3 QDs through its own surface passivation mechanism and this specialty may render the QDs as a new material in illuminating research. This work provides deeper physical insights into the dynamics processes of MAPbBr3 materials and paves a way toward more light-harvesting applications in future.

  13. Carbon-Based CsPbBr3 Perovskite Solar Cells: All-Ambient Processes and High Thermal Stability.

    Science.gov (United States)

    Chang, Xiaowen; Li, Weiping; Zhu, Liqun; Liu, Huicong; Geng, Huifang; Xiang, Sisi; Liu, Jiaming; Chen, Haining

    2016-12-14

    The device instability has been an important issue for hybrid organic-inorganic halide perovskite solar cells (PSCs). This work intends to address this issue by exploiting inorganic perovskite (CsPbBr 3 ) as light absorber, accompanied by replacing organic hole transport materials (HTM) and the metal electrode with a carbon electrode. All the fabrication processes (including those for CsPbBr 3 and the carbon electrode) in the PSCs are conducted in ambient atmosphere. Through a systematical optimization on the fabrication processes of CsPbBr 3 film, carbon-based PSCs (C-PSCs) obtained the highest power conversion efficiency (PCE) of about 5.0%, a relatively high value for inorganic perovskite-based PSCs. More importantly, after storage for 250 h at 80 °C, only 11.7% loss in PCE is observed for CsPbBr 3 C-PSCs, significantly lower than that for popular CH 3 NH 3 PbI 3 C-PSCs (59.0%) and other reported PSCs, which indicated a promising thermal stability of CsPbBr 3 C-PSCs.

  14. Strongly Enhanced Free-Exciton Luminescence in Microcrystalline CsPbBr3 Films

    Science.gov (United States)

    Kondo, Shin-ichi; Kakuchi, Mitsugu; Masaki, Atsushi; Saito, Tadaaki

    2003-07-01

    The luminescence properties of CsPbBr3 films prepared via the amorphous phase by crystallization are dominated by free-exciton emission, and only a weak trace of emission due to trapped excitons was observed, in contrast to the case of bulk CsPbBr3 crystals. In particular, the films in the microcrystalline state show by more than an order of magnitude stronger free-exciton emission than in the polycrystalline state. The enhanced free-exciton emission is suggestive of excitonic superradiance.

  15. Initial clinical evaluation of radiolabeled MX-DTPA humanized BrE-3 antibody in patients with advanced breast cancer.

    Science.gov (United States)

    Kramer, E L; Liebes, L; Wasserheit, C; Noz, M E; Blank, E W; Zabalegui, A; Melamed, J; Furmanski, P; Peterson, J A; Ceriani, R L

    1998-07-01

    To evaluate radiometal-labeled humanized BrE-3 (huBrE-3) monoclonal antibody as a radioimmunolocalization and therapeutic agent in breast cancer patients, tumor localization, pharmacokinetics, radiation dosimetry, and immunogenicity of (111)In-labeled combined 1-p-isothiocyanatobenzyl 3-methyl- and 1-p-isothiocyanatobenzyl 4-methyldiethylenetriamine pentaacetic acid (MX-DTPA) huBrE-3 were studied. Seven women with BrE-3 antigen-positive, metastatic breast carcinoma underwent (111)In huBrE-3 infusion (5 mCi; 50 mg), followed by serial gamma camera imaging and plasma sampling. Region of interest analysis of images was used to make radiation absorbed dose estimates for (111)In huBrE-3. Data were extrapolated to 90Y huBrE-3. Human anti-human antibody (HAHA) response was measured in serum samples obtained up to 3 months after infusion. Patients tolerated infusions well. Seventy-six percent of 105 known sites of disease were identified on planar and single-photon emission computed tomography scans. For six of seven patients, a biexponential model fit the plasma time-activity curve best with an average T1/2alpha=10.6+/-8.5 (SD) h and average T1/2beta=114.2+/-39.2 h. Radiation absorbed dose estimates for (111)In huBrE-3 for whole body averaged 0.53+/-.08 rads/mCi. Dose estimates for 90Y huBrE-3 for marrow averaged 8.4+/-11.9 rads/mCi, and for tumors, 70+/-31.5 rads/mCi. Liver radioactivity uptake averaged 19.7+/-8.8% injected dose at 24 h after infusion, translating into an average radiation absorbed dose 21.1+/-12 rads/90Y mCi administered. Only one of seven patients demonstrated a low level of HAHA response. Although the plasma half-lives are longer and marrow dose higher for radiolabeled huBrE-3 compared with the murine construct, the excellent tumor localization, good tumor dosimetry, and low immunogenicity support the use of 90Y-huBrE-3 antibody for radioimmunotherapy of breast cancer.

  16. Tunable photoluminescence of CsPbBr3 perovskite quantum dots for light emitting diodes application

    Science.gov (United States)

    Chen, Weiwei; Xin, Xing; Zang, Zhigang; Tang, Xiaosheng; Li, Cunlong; Hu, Wei; Zhou, Miao; Du, Juan

    2017-11-01

    All-inorganic cesium lead halide (CsPbBr3) perovskite quantum dots (QDs), as one kind of promising materials, have attracted considerable attention in optoelectronic applications. Herein, we synthesized the colloidal CsPbBr3 QDs with tunable photoluminescence (PL) (493-531 nm) by adjusting the reaction temperatures, which revealed narrow emission bandwidths of about 25 nm. The average diameters of the QDs could be adjusted from 7.1 to 12.3 nm as the temperature increased from 100 °C to 180 °C. Moreover, the radiative lifetimes of CsPbBr3 QDs were measured to be 2 ns, and the single QD fluorescence intensity time trace results demonstrated its suppressed blinking emission. Moreover, green light emitting diodes by using CsPbBr3 QDs casted on blue LED chips were further fabricated, which provided potential applications in the field of display and lighting technology.

  17. Single-crystal perovskite CH3NH3PbBr3 prepared by cast capping method for light-emitting diodes

    Science.gov (United States)

    Nguyen, Van-Cao; Katsuki, Hiroyuki; Sasaki, Fumio; Yanagi, Hisao

    2018-04-01

    In this study, electroluminescence from single crystals of CH3NH3PbBr3 perovskite is explored. The cast capping method was applied to fabricate simple devices with an ITO/CH3NH3PbBr3/ITO structure. The devices showed a low operation voltage of 2 V and a pure green luminescence with full width at half maximum of ∼20 nm. However, the emission occurring at the crystal edges demonstrated blinking with a subsecond time interval, which is similar to the previously reported photoluminescence behavior of nanocrystal perovskites. This electroluminescence blinking may provide new insight into the recombination processes depending on the carrier traps and defects of emission layers in perovskite light-emitting devices.

  18. Matrix isolation and computational study of isodifluorodibromomethane (F2CBr-Br): a route to Br2 formation in CF2Br2 photolysis.

    Science.gov (United States)

    George, Lisa; Kalume, Aimable; El-Khoury, Patrick Z; Tarnovsky, Alexander; Reid, Scott A

    2010-02-28

    The photolysis products of dibromodifluoromethane (CF(2)Br(2)) were characterized by matrix isolation infrared and UV/Visible spectroscopy, supported by ab initio calculations. Photolysis at wavelengths of 240 and 266 nm of CF(2)Br(2):Ar samples (approximately 1:5000) held at approximately 5 K yielded iso-CF(2)Br(2) (F(2)CBrBr), a weakly bound isomer of CF(2)Br(2), which is characterized here for the first time. The observed infrared and UV/Visible absorptions of iso-CF(2)Br(2) are in excellent agreement with computational predictions at the B3LYP/aug-cc-pVTZ level. Single point energy calculations at the CCSD(T)/aug-cc-pVDZ level on the B3LYP optimized geometries suggest that the isoform is a minimum on the CF(2)Br(2) potential energy surface, lying some 55 kcal/mol above the CF(2)Br(2) ground state. The energies of various stationary points on the CF(2)Br(2) potential energy surface were characterized computationally; taken with our experimental results, these show that iso-CF(2)Br(2) is an intermediate in the Br+CF(2)Br-->CF(2)+Br(2) reaction. The photochemistry of the isoform was also investigated; excitation into the intense 359 nm absorption band resulted in isomerization to CF(2)Br(2). Our results are discussed in view of the rich literature on the gas-phase photochemistry of CF(2)Br(2), particularly with respect to the existence of a roaming atom pathway leading to molecular products.

  19. Shape-Controlled Synthesis of All-Inorganic CsPbBr3 Perovskite Nanocrystals with Bright Blue Emission.

    Science.gov (United States)

    Liang, Zhiqin; Zhao, Suling; Xu, Zheng; Qiao, Bo; Song, Pengjie; Gao, Di; Xu, Xurong

    2016-10-26

    We developed a colloidal synthesis of CsPbBr 3 perovskite nanocrystals (NCs) at a relative low temperature (90 °C) for the bright blue emission which differs from the original green emission (∼510 nm) of CsPbBr 3 nanocubes as reported previously. Shapes of the obtained CsPbBr 3 NCs can be systematically engineered into single and lamellar-structured 0D quantum dots, as well as face-to-face stacking 2D nanoplatelets and flat-lying 2D nanosheets via tuning the amounts of oleic acid (OA) and oleylamine (OM). They exhibit sharp excitonic PL emissions at 453, 472, 449, and 452 nm, respectively. The large blue shift relative to the emission of CsPbBr 3 bulk crystal can be ascribed to the strong quantum confinement effects of these various nanoshapes. PL decay lifetimes are measured, ranging from several to tens of nanoseconds, which infers the higher ratio of exciton radiative recombination to the nonradiative trappers in the obtained CsPbBr 3 NCs. These shape-controlled CsPbBr 3 perovskite NCs with the bright blue emission will be widely used in optoelectronic applications, especially in blue LEDs which still lag behind compared to the better developed red and green LEDs.

  20. 3+ and [Sb13Se16Br2] 5+ - Double and quadruple spiro cubanes from ionic liquids

    KAUST Repository

    Ahmed, Ejaz

    2014-01-08

    The reaction of antimony and selenium in the bromine-rich Lewis acidic ionic liquid [BMIm]Br·4.7AlBr3 (BMIm: 1-butyl-3- methylimidazolium) in the presence of a small amount of NbCl5 at 160 °C yielded dark-red crystals of [Sb7Se8Br 2][AlX4]3. For X = Cl0.15(1)Br 0.85(1), the compound is isostructural to [Sb7S 8Br2][AlCl4]3 [P212 121, a = 12.5132(5) Å, b = 17.7394(6) Å, c = 18.3013(6) Å]. For a higher chlorine content, X = Cl 0.58(1)Br0.42(1), a slightly disordered variant with a bisected unit cell is found [P21212, a = 12.3757(3) Å, b = 17.4116(5) Å, c = 9.0420(2) Å]. The [Sb 7Se8Br2]3+ heteropolycation (C 2 symmetry) is a spiro double-cubane with an antimony atom on the shared corner. From this distorted octahedrally coordinated central atom, tricoordinate selenium and antimony atoms alternate in the bonding sequence. The terminal antimony atoms each bind to a bromine atom. Quantum chemical calculations confirm polar covalent Sb-Se bonding within the cubes and indicate three-center, four-electron bonds for the six-coordinate spiro atoms. The calculated charge distribution reflects the electron-donor role of the antimony atoms. The use of a chlorine-rich ionic liquid resulted in the formation of triclinic [Sb13Se16Br2][AlX4] 5 with X = Cl0.80(1)Br0.20(1) [P$\\\\bar {1}$, a = 9.0842(5) Å, b = 19.607(1) Å, c = 21.511(1) Å, α = 64.116(6), β = 79.768(7), γ = 88.499(7)]. The cationic cluster [Sb13Se16Br2]5+ is a bromine-terminated spiro quadruple-cubane. This 31 atom concatenation of four cubes is assumed to be the largest known discrete main group polycation. A similar reaction in a chloride-free system yielded [Sb7Se 8Br2][Sb13Se16Br2] [AlBr4]8. In its monoclinic structure [P2/c, a = 27.214(5) Å, b = 9.383(2) Å, c = 22.917(4) Å, β = 101.68(1)], the two types of polycations alternate in layers along the a axis. In the series [Sb4+3nSe4+4nBr2](2+n)+, these cations are the members with n = 1 and 3. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGa

  1. Visible Light Driven Nanosecond Bromide Oxidation by a Ru Complex with Subsequent Br-Br Bond Formation.

    Science.gov (United States)

    Li, Guocan; Ward, William M; Meyer, Gerald J

    2015-07-08

    Visible light excitation of [Ru(deeb)(bpz)2](2+) (deeb = 4,4'-diethylester-2,2'-bipyridine; bpz = 2,2'-bipyrazine), in Br(-) acetone solutions, led to the formation of Br-Br bonds in the form of dibromide, Br2(•-). This light reactivity stores ∼1.65 eV of free energy for milliseconds. Combined (1)H NMR, UV-vis and photoluminescence measurements revealed two distinct mechanisms. The first involves diffusional quenching of the excited state by Br(-) with a rate constant of (8.1 ± 0.1) × 10(10) M(-1) s(-1). At high Br(-) concentrations, an inner-sphere pathway is dominant that involves the association of Br(-), most likely with the 3,3'-H atoms of a bpz ligand, before electron transfer from Br(-) to the excited state, ket = (2.5 ± 0.3) × 10(7) s(-1). In both mechanisms, the direct photoproduct Br(•) subsequently reacts with Br(-) to yield dibromide, Br(•) + Br(-) → Br2(•-). Under pseudo-first-order conditions, this occurs with a rate constant of (1.1 ± 0.4) × 10(10) M(-1) s(-1) that was, within experimental error, the same as that measured when Br(•) were generated with ultraviolet light. Application of Marcus theory to the sensitized reaction provided an estimate of the Br(•) formal reduction potential E(Br(•)/Br(-)) = 1.22 V vs SCE in acetone, which is about 460 mV less positive than the accepted value in H2O. The results demonstrate that Br(-) oxidation by molecular excited states can be rapid and useful for solar energy conversion.

  2. 3+ and [Sb13Se16Br2] 5+ - Double and quadruple spiro cubanes from ionic liquids

    KAUST Repository

    Ahmed, Ejaz; Breternitz, Joachim; Groh, Matthias Friedrich; Isaeva, Anna A.; Ruck, Michael J.

    2014-01-01

    The reaction of antimony and selenium in the bromine-rich Lewis acidic ionic liquid [BMIm]Br·4.7AlBr3 (BMIm: 1-butyl-3- methylimidazolium) in the presence of a small amount of NbCl5 at 160 °C yielded dark-red crystals of [Sb7Se8Br 2][AlX4]3. For X

  3. Investigation of LaBr3:Ce probe for gamma-ray spectroscopy and dosimetry

    Science.gov (United States)

    Maghraby, Ahmed M.; Alzimami, K. S.; Alkhorayef, M. A.; Alsafi, K. G.; Ma, A.; Alfuraih, A. A.; Alghamdi, A. A.; Spyrou, N. M.

    2014-02-01

    The main thrust of this work is the investigation of performance of relatively new commercial LaBr3:Ce probe (Inspector 1000™ with LaBr3:Ce crystal) for gamma-ray spectroscopy and dosimetry measurements in comparison to LaCl3:Ce and NaI:Tl scintillators. The crystals were irradiated by a wide range of energies (57Co, 22Na, 18F, 137Cs and 60Co). The study involved recording of detected spectra and measurement of energy resolution, photopeak efficiency, internal radioactivity measurements as well as dose rate. The Monte Carlo package, Geant4 Application for Tomographic Emission (GATE) was used to validate the experiments. Overall results showed very good agreement between the measurements and the simulations. The LaBr3:Ce crystal has excellent energy resolution, energy resolutions of (3.37±0.05)% and (2.98±0.07)% for a 137Cs 662 keV and a 60Co 1332 keV gamma-ray point sources respectively, were recorded. The disadvantage of the lanthanum halide scintillators is their internal radioactivity. Inspector 1000™ with LaBr3:Ce scintillator has shown an accurate and quick dose measurements at Positron Emission Tomography (PET) Units which allows accurate assessment of the radiation dose received by staff members compared to the use of electronic personal dosimeters (EPD).

  4. LaBr3 spectrometry for environmental monitoring

    International Nuclear Information System (INIS)

    Toivonen, Harri; Vesterbacka, Kaj; Pelikan, Andreas

    2008-01-01

    Full text: In 2005-2007 Finland renewed its country-wide monitoring network of 260 stations. As a result of the process, the ambient dose rate is measured with Geiger counters and transferred in real time to the headquarters of the Radiation and Nuclear Safety Authority (STUK) and to regional Emergency Response Centres. When the renewal was initiated, the use of NaI spectrometers was considered. These, however, do not have energy resolution good enough for resolving I-131 (364 keV) from natural radiation (Pb-214 at 352 keV). It was envisaged that in future better detectors will emerge and therefore, the station infrastructure must support spectrometric measurements. Nowadays detectors based LaBr 3 are on the markets. The devices are compatible with standard nuclear electronics and they can be easily connected to a data acquisition system, such as a Linux-based computer at the monitoring stations of STUK. LaBr 3 detector has excellent properties for environmental monitoring. The detector is large enough (sensitivity) and it has good energy resolution (2.5 - 3 %) as compared with NaI (6 - 7 %). There are two major technical drawbacks which may prevent the usage of LaBr 3 detector for monitoring purposes. Firstly, the material contains impurities of La-138 and Ac-227 which give a nasty background. Secondly, the light output of the material varies as a function of temperature deteriorating the quality of the spectrum (broadening of peaks). The detector background can be measured accurately in a lead castle. Then, after live-time correction, this spectrum can be subtracted from the monitoring spectra without disturbing statistics essentially. However, absolute stability of the energy calibration is required. This was solved by fitting the La-138 contamination multiplet at 1436-1468 keV (gamma + X rays) using a novel algorithm which treats peaks as a family, not as individuals. The analysis provides peak shift in channel units. The software then adjusts the gain of the

  5. Matrix isolation and computational study of isodifluorodibromomethane (F2CBr-Br): A route to Br2 formation in CF2Br2 photolysis

    International Nuclear Information System (INIS)

    George, Lisa; Kalume, Aimable; Reid, Scott A.; El-Khoury, Patrick Z.; Tarnovsky, Alexander

    2010-01-01

    The photolysis products of dibromodifluoromethane (CF 2 Br 2 ) were characterized by matrix isolation infrared and UV/Visible spectroscopy, supported by ab initio calculations. Photolysis at wavelengths of 240 and 266 nm of CF 2 Br 2 :Ar samples (∼1:5000) held at ∼5 K yielded iso-CF 2 Br 2 (F 2 CBrBr), a weakly bound isomer of CF 2 Br 2 , which is characterized here for the first time. The observed infrared and UV/Visible absorptions of iso-CF 2 Br 2 are in excellent agreement with computational predictions at the B3LYP/aug-cc-pVTZ level. Single point energy calculations at the CCSD(T)/aug-cc-pVDZ level on the B3LYP optimized geometries suggest that the isoform is a minimum on the CF 2 Br 2 potential energy surface, lying some 55 kcal/mol above the CF 2 Br 2 ground state. The energies of various stationary points on the CF 2 Br 2 potential energy surface were characterized computationally; taken with our experimental results, these show that iso-CF 2 Br 2 is an intermediate in the Br+CF 2 Br→CF 2 +Br 2 reaction. The photochemistry of the isoform was also investigated; excitation into the intense 359 nm absorption band resulted in isomerization to CF 2 Br 2 . Our results are discussed in view of the rich literature on the gas-phase photochemistry of CF 2 Br 2 , particularly with respect to the existence of a roaming atom pathway leading to molecular products.

  6. Fluorescence Blinking and Photoactivation of All-Inorganic Perovskite Nanocrystals CsPbBr3 and CsPbBr2I.

    Science.gov (United States)

    Seth, Sudipta; Mondal, Navendu; Patra, Satyajit; Samanta, Anunay

    2016-01-21

    Study of the emission behavior of all-inorganic perovskite nanocrystals CsPbBr3 and CsPbBr2I as a function of the excitation power employing fluorescence correlation spectroscopy and conventional techniques reveals fluorescence blinking in the microsecond time scale and photoinduced emission enhancement. The observation provides insight into the radiative and nonradiative deactivation pathways of these promising substances. Because both blinking and photoactivation processes are intimately linked to the charge separation efficiency and dynamics of the nanocrystals, these key findings are likely to be helpful in realizing the true potential of these substances in photovoltaic and optoelectronic applications.

  7. Influence of cold work to increase swelling of pure iron irradiated in the BR-10 reactor to ∼6 and ∼25 dpa at ∼400 deg. C

    International Nuclear Information System (INIS)

    Dvoriashin, A.M.; Porollo, S.I.; Konobeev, Yu.V.; Garner, F.A.

    2000-01-01

    Irradiation of pure iron in several starting conditions at 400 deg. C has been conducted in the BR-10 fast reactor. Contrary to expectations, cold working appears to significantly accelerate the onset of void swelling. When compared to a similar experiment conducted in this reactor at the same time, it appears that iron experiences a rather long transient duration before the onset of steady-state swelling. The transient appears to be shortened by both cold-working and lower atomic displacement rates

  8. Interplay between organic cations and inorganic framework and incommensurability in hybrid lead-halide perovskite CH3NH3PbBr3

    Science.gov (United States)

    Guo, Yinsheng; Yaffe, Omer; Paley, Daniel W.; Beecher, Alexander N.; Hull, Trevor D.; Szpak, Guilherme; Owen, Jonathan S.; Brus, Louis E.; Pimenta, Marcos A.

    2017-09-01

    Organic-inorganic coupling in the hybrid lead-halide perovskite is a central issue in rationalizing the outstanding photovoltaic performance of these emerging materials. Here, we compare and contrast the evolution of the structure and dynamics of hybrid CH3NH3PbBr3 and inorganic CsPbBr3 lead-halide perovskites with temperature, using Raman spectroscopy and single-crystal x-ray diffraction. Results reveal a stark contrast between their order-disorder transitions, which are abrupt for the hybrid whereas smooth for the inorganic perovskite. X-ray diffraction observes an intermediate incommensurate phase between the ordered and the disordered phases in CH3NH3PbBr3 . Low-frequency Raman scattering captures the appearance of a sharp soft mode in the incommensurate phase, ascribed to the theoretically predicted amplitudon mode. Our work highlights the interaction between the structural dynamics of organic cation CH3NH3+ and the lead-halide framework, and unravels the competition between tendencies for the organic and inorganic moieties to minimize energy in the incommensurate phase of the hybrid perovskite structure.

  9. Status of the BR2 refurbishment programme

    International Nuclear Information System (INIS)

    Koonen, E.

    1995-01-01

    The operation of the BR2 reactor with its second beryllium matrix is foreseen up to mid-1995. A refurbishment programme has been established in order to allow for future operation during at least ten years. Recently a positive decision to effectively carry out this programme has been taken. The refurbishment action plan follows from a general assessment of the different systems of BR2, with respect to their actual status, the operational experience and the evolution of safety standards and criteria. Ageing considerations were of uppermost importance in those assessments, not only to assure safety of future operation, but also to guarantee future availability and reliability. (orig.)

  10. The Recombination Mechanism and True Green Amplified Spontaneous Emission in CH3NH3PbBr3 Perovskite

    KAUST Repository

    Priante, Davide

    2015-01-01

    . M. Bakr, and B. S. Ooi, "The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites", Applied Physics Letters, 106, 081902, 2015. DOI: 10.1063/1.4913463

  11. Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry

    KAUST Repository

    Alias, Mohd Sharizal; Dursun, Ibrahim; Saidaminov, Makhsud I.; Diallo, Elhadj Marwane; Mishra, Pawan; Ng, Tien Khee; Bakr, Osman; Ooi, Boon S.

    2016-01-01

    function) of CH3NH3PbBr3 perovskite thin films using spectroscopic ellipsometry. Due to the existence of voids, the refractive index of the thin films is around 8% less than the single crystals counterpart. The energy bandgap is around 2.309 eV as obtained

  12. Addition reaction of adamantylideneadamantane with Br2 and 2Br2: a computational study.

    Science.gov (United States)

    Islam, Shahidul M; Poirier, Raymond A

    2008-01-10

    Ab initio calculations were carried out for the reaction of adamantylideneadamantane (Ad=Ad) with Br2 and 2Br2. Geometries of the reactants, transition states, intermediates, and products were optimized at HF and B3LYP levels of theory using the 6-31G(d) basis set. Energies were also obtained using single point calculations at the MP2/6-31G(d)//HF/6-31G(d), MP2/6-31G(d)//B3LYP/6-31G(d), and B3LYP/6-31+G(d)//B3LYP/6-31G(d) levels of theory. Intrinsic reaction coordinate (IRC) calculations were performed to characterize the transition states on the potential energy surface. Only one pathway was found for the reaction of Ad=Ad with one Br2 producing a bromonium/bromide ion pair. Three mechanisms for the reaction of Ad=Ad with 2Br2 were found, leading to three different structural forms of the bromonium/Br3- ion pair. Activation energies, free energies, and enthalpies of activation along with the relative stability of products for each reaction pathway were calculated. The reaction of Ad=Ad with 2Br2 was strongly favored over the reaction with only one Br2. According to B3LYP/6-31G(d) and single point calculations at MP2, the most stable bromonium/Br3- ion pair would form spontaneously. The most stable of the three bromonium/Br3- ion pairs has a structure very similar to the observed X-ray structure. Free energies of activation and relative stabilities of reactants and products in CCl4 and CH2ClCH2Cl were also calculated with PCM using the united atom (UA0) cavity model and, in general, results similar to the gas phase were obtained. An optimized structure for the trans-1,2-dibromo product was also found at all levels of theory both in gas phase and in solution, but no transition state leading to the trans-1,2-dibromo product was obtained.

  13. Reactor gamma spectrometry: status

    International Nuclear Information System (INIS)

    Gold, R.; Kaiser, B.J.

    1979-01-01

    Current work is described for Compton Recoil Gamma-Ray Spectrometry including developments in experimental technique as well as recent reactor spectrometry measurements. The current status of the method is described concerning gamma spectromoetry probe design and response characteristics. Emphasis is given to gamma spectrometry work in US LWR and BR programs. Gamma spectrometry in BR environments are outlined by focussing on start-up plans for the Fast Test Reactor (FTR). Gamma spectrometry results are presented for a LWR pressure vessel mockup in the Poolside Critical Assembly (PCA) at Oak Ridge National Laboratory

  14. The probability safety assessment impact on the BR2 refurbishment

    International Nuclear Information System (INIS)

    Pouleur, Yvan

    1995-01-01

    The probabilistic safety assessment (PSA) study has proven its worth by establishing a sensitive safety screening of the reactor. It has focused engineering forces to technically improve safety systems and to measure the influence of functional modifications. In the future, the project will be developed in a living way, to reinforce the present structure along with continuous safety monitoring of the reactor and to develop engineers and operators safety skills. This paper presents the PSA impact on the BR2 (Belgian Reactor Two) refurbishment. (author)

  15. Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals

    International Nuclear Information System (INIS)

    Zhang, Xiaoyu; Bai, Xue; Wu, Hua; Zhang, Xiangtong; Sun, Chun; Zhang, Yu; Zhang, Wei; Zheng, Weitao; Yu, William W.; Rogach, Andrey L.

    2018-01-01

    Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr 3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr 3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr 3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m -2 and external quantum yield of 1.7 %. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Enhanced ionic conductivity with Li{sub 7}O{sub 2}Br{sub 3} phase in Li{sub 3}OBr anti-perovskite solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinlong, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn; Li, Shuai; Zhang, Yi; Howard, John W.; Wang, Yonggang; Kumar, Ravhi S.; Wang, Liping [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Lü, Xujie [Center for Integrated Nanotechnologies and Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Li, Yutao [Materials Research Program and The Texas Materials Institute, University of Texas at Austin, Texas 78712 (United States); Zhao, Yusheng, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Department of Physics, South University of Science and Technology of China, Guangdong 518055 (China)

    2016-09-05

    Cubic anti-perovskites with general formula Li{sub 3}OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li{sub 3}OBr and layered Li{sub 7}O{sub 2}Br{sub 3,} by solid state reaction routes. The results indicate that with the phase fraction of Li{sub 7}O{sub 2}Br{sub 3} increasing to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li{sub 3}OBr. Formation energy calculations revealed the meta-stable nature of Li{sub 7}O{sub 2}Br{sub 3}, which supports the great difficulty in producing phase-pure Li{sub 7}O{sub 2}Br{sub 3} at ambient pressure. Methods of obtaining phase-pure Li{sub 7}O{sub 2}Br{sub 3} will continue to be explored, including both high pressure and metathesis techniques.

  17. Synthesis and Luminescence Properties of Novel Ce(3+)- and Eu(2+)-Doped Lanthanum Bromothiosilicate La3Br(SiS4)2 Phosphors for White LEDs.

    Science.gov (United States)

    Lee, Szu-Ping; Liu, Shuang-De; Chan, Ting-Shan; Chen, Teng-Ming

    2016-04-13

    Novel Ce(3+)- and Eu(2+)-doped lanthanum bromothiosilicate La3Br(SiS4)2:Ce(3+)and La3Br(SiS4)2:Eu(2+) phosphors were prepared by solid-state reaction in an evacuated and sealed quartz glass ampule. The La3Br(SiS4)2:Ce(3+) phosphor generates a cyan emission upon excitation at 375 nm, whereas the La3Br(SiS4)2:Eu(2+) phosphor could be excited with extremely broad range from UV to blue region (300 to 600 nm) and generates a reddish-orange broadband emission centered at 640 nm. In addition, thermal luminescence properties of La3Br(SiS4)2:Ce(3+)and La3Br(SiS4)2:Eu(2+) phosphors from 20 to 200 °C were investigated. The combination of a 450 nm blue InGaN-based LED chip with the red-emitting La3Br(SiS4)2:Eu(2+) phosphor, and green-emitting BOSE:Eu(2+) commercial phosphor produced a warm-white light with the CRI value of ∼95 and the CCT of 5,120 K. Overall, these results show that the prepared phosphors may have potential applications in pc-WLED.

  18. PuBr3-type as high pressure modification of rare earth trihalides LnX3 (X = Cl, Br, I)

    International Nuclear Information System (INIS)

    Beck, H.P.; Gladrow, E.

    1983-01-01

    High pressure experiments in a belt-type apparatus were performed on rare earth trichlorides, -bromides and -iodides. The results underline the importance of the PuBr 3 -type arrangement. The range of existence of this structure type is considerably increased under pressure. X-ray high temperature investigations at ambient pressure on the quenched high pressure phases show a marked correlation between the transformation pressures, which rise with smaller cations, and the temperatures at which the high pressure phases are reconverted to the thermodynamically stable ones. (author)

  19. Kinetics of the R + HBr ↔ RH + Br (CH3CHBr, CHBr2 or CDBr2) equilibrium. Thermochemistry of the CH3CHBr and CHBr2 radicals

    International Nuclear Information System (INIS)

    Seetula, Jorma A.; Eskola, Arkke J.

    2008-01-01

    The kinetics of the reaction of the CH 3 CHBr, CHBr 2 or CDBr 2 radicals, R, with HBr have been investigated in a temperature-controlled tubular reactor coupled to a photoionization mass spectrometer. The CH 3 CHBr (or CHBr 2 or CDBr 2 ) radical was produced homogeneously in the reactor by a pulsed 248 nm exciplex laser photolysis of CH 3 CHBr 2 (or CHBr 3 or CDBr 3 ). The decay of R was monitored as a function of HBr concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature. The reactions were studied separately from 253 to 344 K (CH 3 CHBr + HBr) and from 288 to 477 K (CHBr 2 + HBr) and in these temperature ranges the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1σ + Student's t values, units in cm 3 molecule -1 s -1 , no error limits for the third reaction): k(CH 3 CHBr + HBr) = (1.7 ± 1.2) x 10 -13 exp[+ (5.1 ± 1.9) kJ mol -1 /RT], k(CHBr 2 + HBr) = (2.5 ± 1.2) x 10 -13 exp[-(4.04 ± 1.14) kJ mol -1 /RT] and k(CDBr 2 + HBr) = 1.6 x 10 -13 exp(-2.1 kJ mol -1 /RT). The energy barriers of the reverse reactions were taken from the literature. The enthalpy of formation values of the CH 3 CHBr and CHBr 2 radicals and an experimental entropy value at 298 K for the CH 3 CHBr radical were obtained using a second-law method. The result for the entropy value for the CH 3 CHBr radical is 305 ± 9 J K -1 mol -1 . The results for the enthalpy of formation values at 298 K are (in kJ mol -1 ): 133.4 ± 3.4 (CH 3 CHBr) and 199.1 ± 2.7 (CHBr 2 ), and for α-C-H bond dissociation energies of analogous compounds are (in kJ mol -1 ): 415.0 ± 2.7 (CH 3 CH 2 Br) and 412.6 ± 2.7 (CH 2 Br 2 ), respectively

  20. Density Functional Study of Structures and Electron Affinities of BrO4F/BrO4F-

    Directory of Open Access Journals (Sweden)

    Wei Li

    2009-07-01

    Full Text Available The structures, electron affinities and bond dissociation energies of BrO4F/BrO4F− species have been investigated with five density functional theory (DFT methods with DZP++ basis sets. The planar F-Br…O2…O2 complexes possess 3A' electronic state for neutral molecule and 4A' state for the corresponding anion. Three types of the neutral-anion energy separations are the adiabatic electron affinity (EAad, the vertical electron affinity (EAvert, and the vertical detachment energy (VDE. The EAad value predicted by B3LYP method is 4.52 eV. The bond dissociation energies De (BrO4F → BrO4-mF + Om (m = 1-4 and De- (BrO4F- → BrO4-mF- + Om and BrO4F- → BrO4-mF + Om- are predicted. The adiabatic electron affinities (EAad were predicted to be 4.52 eV for F-Br…O2…O2 (3A'← 4A' (B3LYP method.

  1. Reaction of Br/sub 3/. /sup 2 -/ with 2-deoxy-D-ribose. A preferred attack at C-1

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, B J; Schulte-Frohlinde, D; von Sonntag, C [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany, F.R.). Inst. fuer Strahlenchemie

    1978-06-01

    In the photolysis of 5-bromouracil containing DNA Br atoms are expected intermediates. In order to evaluate the possible site of attack of the Br atom at the sugar moiety of DNA the reaction of 2-deoxy-D-Ribose with the Br atom (complexed with two bromide ions) was investigated. Hydroxyl radicals generated by the radiolysis of N/sub 2/O saturated aqueous solutions were converted into Br/sub 3/./sup 2 -/-radicals by 1 M bromide ions. Br/sub 3/./sup 2 -/-reacts with 2-deoxy-D-ribose (k = 3.7 x 10/sup 4/M/sup -1/s/sup -1/, pulse radiolysis). The major product is 2-deoxy-D-erythro-pentonic acid (G = 2.4, ..gamma..-radiolysis). It is formed by hydrogen abstraction from C-1 and oxidation of this radical by other radicals. An alternative route via the radical at C-2 is neglible. It follows that Br/sub 3/./sup 2 -/ reacts preferentially at C-1 of 2-deoxy-D-ribose.

  2. Water-Assisted Size and Shape Control of CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Zhang, Xiaoyu; Bai, Xue; Wu, Hua; Zhang, Xiangtong; Sun, Chun; Zhang, Yu; Zhang, Wei; Zheng, Weitao; Yu, William W; Rogach, Andrey L

    2018-03-19

    Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr 3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr 3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr 3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m -2 and external quantum yield of 1.7 %. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A research on shape-controllable synthesis of Ag3PO4/AgBr and its degradation of ciprofloxacin.

    Science.gov (United States)

    Chen, Jingran; Yang, Xingyu; Zhu, Chenyu; Xie, Xin; Lin, Cuiping; Zhao, Yalei; Yan, Qishe

    2018-03-01

    Antibiotic ciprofloxacin is one of the commonly used broad spectrum fluoroquinolone human and veterinary drugs. Because of the overuse of human beings, the presence of ciprofloxacin has been detected in a variety of environmental matrices. To solve this problem, a facile, environmentally-friendly Ag 3 PO 4 /AgBr composite photocatalyst was synthesized by a simple precipitation method at room temperature in the presence of cetyltrimethyl ammonium bromide (CTAB). CTAB was served as surfactant and the source of bromide ions. The as-prepared Ag 3 PO 4 /AgBr microspheres were characterized by means of powder X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The results revealed that the Ag 3 PO 4 /AgBr sample (synthesized with CTAB, 0.8 g) exhibited the highest photocatalytic activity to the photodegradation rate of 96.36%. Moreover, mechanism detection experiment indicated that h + was the major active species in the degradation process. So the enhanced photocatalytic activity of Ag 3 PO 4 /AgBr composites is attributed to its excellent separation of photogenerated electron-hole pairs through Ag 3 PO 4 /AgBr heterojunction. Also, Ag 3 PO 4 /AgBr heterojunction has a lower band gap compared to pure Ag 3 PO 4 and pure AgBr, so higher efficiency of light harvesting is equipped.

  4. Molecular elimination of Br2 in photodissociation of CH2BrC(O)Br at 248 nm using cavity ring-down absorption spectroscopy.

    Science.gov (United States)

    Fan, He; Tsai, Po-Yu; Lin, King-Chuen; Lin, Cheng-Wei; Yan, Chi-Yu; Yang, Shu-Wei; Chang, A H H

    2012-12-07

    The primary elimination channel of bromine molecule in one-photon dissociation of CH(2)BrC(O)Br at 248 nm is investigated using cavity ring-down absorption spectroscopy. By means of spectral simulation, the ratio of nascent vibrational population in v = 0, 1, and 2 levels is evaluated to be 1:(0.5 ± 0.1):(0.2 ± 0.1), corresponding to a Boltzmann vibrational temperature of 581 ± 45 K. The quantum yield of the ground state Br(2) elimination reaction is determined to be 0.24 ± 0.08. With the aid of ab initio potential energy calculations, the obtained Br(2) fragments are anticipated to dissociate on the electronic ground state, yielding vibrationally hot Br(2) products. The temperature-dependence measurements support the proposed pathway via internal conversion. For comparison, the Br(2) yields are obtained analogously from CH(3)CHBrC(O)Br and (CH(3))(2)CBrC(O)Br to be 0.03 and 0.06, respectively. The trend of Br(2) yields among the three compounds is consistent with the branching ratio evaluation by Rice-Ramsperger-Kassel-Marcus method. However, the latter result for each molecule is smaller by an order of magnitude than the yield findings. A non-statistical pathway so-called roaming process might be an alternative to the Br(2) production, and its contribution might account for the underestimate of the branching ratio calculations.

  5. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction.

    Science.gov (United States)

    Xu, Yang-Fan; Yang, Mu-Zi; Chen, Bai-Xue; Wang, Xu-Dong; Chen, Hong-Yan; Kuang, Dai-Bin; Su, Cheng-Yong

    2017-04-26

    Halide perovskite quantum dots (QDs), primarily regarded as optoelectronic materials for LED and photovoltaic devices, have not been applied for photochemical conversion (e.g., water splitting or CO 2 reduction) applications because of their insufficient stability in the presence of moisture or polar solvents. Herein, we report the use of CsPbBr 3 QDs as novel photocatalysts to convert CO 2 into solar fuels in nonaqueous media. Under AM 1.5G simulated illumination, the CsPbBr 3 QDs steadily generated and injected electrons into CO 2 , catalyzing CO 2 reduction at a rate of 23.7 μmol/g h with a selectivity over 99.3%. Additionally, through the construction of a CsPbBr 3 QD/graphene oxide (CsPbBr 3 QD/GO) composite, the rate of electron consumption increased 25.5% because of improved electron extraction and transport. This study is anticipated to provide new opportunities to utilize halide perovskite QD materials in photocatalytic applications.

  6. CsPbBr3 perovskites: Theoretical and experimental investigation on water-assisted transition from nanowire formation to degradation

    Science.gov (United States)

    Akbali, B.; Topcu, G.; Guner, T.; Ozcan, M.; Demir, M. M.; Sahin, H.

    2018-03-01

    Recent advances in colloidal synthesis methods have led to an increased research focus on halide perovskites. Due to the highly ionic crystal structure of perovskite materials, a stability issue pops up, especially against polar solvents such as water. In this study, we investigate water-driven structural evolution of CsPbBr3 by performing experiments and state-of-the-art first-principles calculations. It is seen that while an optical image shows the gradual degradation of the yellowish CsPbBr3 structure under daylight, UV illumination reveals that the degradation of crystals takes place in two steps: transition from a blue-emitting to green-emitting structure and and then a transition from a green-emitting phase to complete degradation. We found that as-synthesized CsPbBr3 nanowires (NWs) emit blue light under a 254 nm UV source. Before the degradation, first, CsPbBr3 NWs undergo a water-driven structural transition to form large bundles. It is also seen that formation of such bundles provides longer-term environmental stability. In addition theoretical calculations revealed the strength of the interaction of water molecules with ligands and surfaces of CsPbBr3 and provide an atomistic-level explanation to a transition from ligand-covered NWs to bundle formation. Further interaction of green-light-emitting bundles with water causes complete degradation of CsPbBr3 and the photoluminescence signal is entirely quenched. Moreover, Raman and x-ray-diffraction measurements revealed that completely degraded regions are decomposed to PbBr2 and CsBr precursors. We believe that the findings of this study may provide further insight into the degradation mechanism of CsPbBr3 perovskite by water.

  7. The BR2 refurbishment: from concept to achievements

    International Nuclear Information System (INIS)

    Gubel, P.

    2002-01-01

    The BR2 reactor is one of the major research reactors in the world. It's operation started in the early 1960's. Two major refurbishments operation have been carried out since then. The report gives an overview of the methodology and inspections, which resulted in a refurbishment action plan. The main realizations and complementary actions required by the Licensing Authorities are summarized. Finally the operation experience feedback, four years now after start-up, is briefly discussed as well as the main aspects of the present safety reassessment [ru

  8. Development of source-less efficiency calibration procedure for CeBr3 based gamma spectrometry system

    International Nuclear Information System (INIS)

    Verma, Amit K.; Narayani, K.; Pant, Amar D.; Bhosale, Nitin; Anilkumar, S.; Palani Selvam, T.

    2018-01-01

    Scintillation spectrometers are widely used in detection and spectrometry of gamma photons. Sodium Iodide (NaI(Tl)) is the most commonly used scintillation detector for gamma ray spectrometry. However for portable application that require higher efficiency and better resolution Cerium Bromide (CeBr 3 ) crystals are more suitable than NaI(Tl) crystals. CeBr 3 detectors have high light output (∼ 68,000 photons/MeV), good proportionality, fast response and better energy resolution (<4% for 662 keV of 137 Cs), which makes it very promising detector for gamma ray spectrometry. In the present work, experimental and Monte Carlo based efficiencies for CeBr 3 detector for 137 Cs and 60 Co were evaluated

  9. Kinetics of the Reactions of O((sup 3)P) and Cl((sup 2)P) with HBr and Br2

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1997-01-01

    A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of reactions (1)-(4) as a function of temperature. (1) O((sup 3)P) + Br2 yields BrO + Br((sup 2)P(sub 3/2)) at 255-350 K; (2) Cl((sup 2)P) + Br2 yields BrCl + Br((sup 2)P(sub 3/2)) at 298-401 K; (3) O((sup 3)P) + HBr yields OH + Br((sup 2)P(sub J)) at 250-402 K; (4) Cl((sup 2)P) + HBr yields HCl + Br((sup 2)P(sub J)) at 257-404 K. In all cases, the concentration of the excess reagent, i.e, HBr or Br2, was measured in situ in the slow flow system by UV-visible photometry. Heterogeneous dark reactions between XBr (X equals H or Br) and the photolytic precursors for Cl((sup 2)P) and O((sup 3)P) (Cl2 and O3, respectively) were avoided by injecting minimal amounts of precursor into the reaction mixture immediately upstream from the reaction zone. The following Arrhenius expressions summarize our results (errors are 2 sigma and represent precision only, units are cu cm/(molecule.s): k(sub 1) = (1.76 +/- 0.80) x 10(exp -11 exp[(40 +/- 100)/T]; k(sub 2) = (2.40 +/- 1.25) x 12(exp -10) exp[-(144 +/- 176)/T]; k(sub 3) = (5.11 +/- 2.82) x 10(exp -12) exp[-(1450 +/- 160)/T]; k(sub 4) = (2.25 +/- 0.56) x 10(exp -11) exp[-(400 +/- 80)/T]. The consistency (or lack thereof) of our results with those reported in previous kinetics and dynamics studies of reactions (1)-(4) is discussed.

  10. Ab initio NMR parameters of BrCH3 and ICH3 with relativistic and vibrational corrections

    Science.gov (United States)

    Uhlíková, Tereza; Urban, Štěpán

    2018-05-01

    This study is focused on two effects identified when NMR parameters are calculated based on first principles. These effects are 1. vibrational correction of properties when using ab initio optimized equilibrium geometry; 2. relativistic effects and limits of using the Flygare equation. These effects have been investigated and determined for nuclear spin-rotation constants and nuclear magnetic shieldings for the CH3Br and CH3I molecules. The most significant result is the difference between chemical shieldings determined based on the ab initio relativistic four-component Dirac-Coulomb Hamiltonian and chemical shieldings calculated using experimental values and the Flygare equation. This difference is approximately 320 ppm and 1290 ppm for 79Br and 127I in the CH3X molecule, respectively.

  11. Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots.

    Science.gov (United States)

    Swarnkar, Abhishek; Chulliyil, Ramya; Ravi, Vikash Kumar; Irfanullah, Mir; Chowdhury, Arindam; Nag, Angshuman

    2015-12-14

    Traditional CdSe-based colloidal quantum dots (cQDs) have interesting photoluminescence (PL) properties. Herein we highlight the advantages in both ensemble and single-nanocrystal PL of colloidal CsPbBr3 nanocrystals (NCs) over the traditional cQDs. An ensemble of colloidal CsPbBr3 NCs (11 nm) exhibits ca. 90 % PL quantum yield with narrow (FWHM=86 meV) spectral width. Interestingly, the spectral width of a single-NC and an ensemble are almost identical, ruling out the problem of size-distribution in PL broadening. Eliminating this problem leads to a negligible influence of self-absorption and Förster resonance energy transfer, along with batch-to-batch reproducibility of NCs exhibiting PL peaks within ±1 nm. Also, PL peak positions do not alter with measurement temperature in the range of 25 to 100 °C. Importantly, CsPbBr3 NCs exhibit suppressed PL blinking with ca. 90 % of the individual NCs remain mostly emissive (on-time >85 %), without much influence of excitation power. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Metathesis Polymerization Reactions Induced by the Bimetallic Complex (Ph4P2[W2(μ-Br3Br6

    Directory of Open Access Journals (Sweden)

    Despoina Chriti

    2015-12-01

    Full Text Available The reactivity of the bimetallic complex (Ph4P2[W2(μ-Br3Br6] ({W 2.5 W}7+, a′2e3 towards ring opening metathesis polymerization (ROMP of norbornene (NBE and some of its derivatives, as well as the mechanistically related metathesis polymerization of phenylacetylene (PA, is presented. Our results show that addition of a silver salt (AgBF4 is necessary for the activation of the ditungsten complex. Polymerization of PA proceeds smoothly in tetrahydrofuran (THF producing polyphenylacetylene (PPA in high yields. On the other hand, the ROMP of NBE and its derivatives is more efficient in CH2Cl2, providing high yields of polymers. 13C Cross Polarization Magic Angle Spinning (CPMAS spectra of insoluble polynorbornadiene (PNBD and polydicyclopentadiene (PDCPD revealed the operation of two mechanisms (metathetic and radical for cross-linking, with the metathesis pathway prevailing.

  13. Specific non-bonding contacts in the crystal structure of [Mo33-S)(μ-S2)3(S2CNEt2)3]Cl0.53Br0.47 solid solution

    International Nuclear Information System (INIS)

    Virovets, A.V.; Volkov, O.V.

    2000-01-01

    Solid solution [Mo 3 S 7 (dtc) 3 ]Cl 0.53 Br 0.47 (dtc diethyl-dithiocarbamate) featuring the following parameters of monoclinic all: a = 14.541(2), b = 12.407(2), c = 18.117(2) A, β = 90.032(9) deg, sp.gr. P2 1 /n, Z = 4, d cal = 2.107 g/cm 3 , was studied by the method of X-ray diffraction analysis. Formation of ionic pairs with axial contact 3S ax ...Br, its length 3.028-3.105 A, in the compound structure was ascertained. For compounds [Mo 3 S 7 (dtc) 3 ] Hal (Hal = Cl, Br, I) a regular growth in S...Hal distances in the series Cl-Br-I was pointed out, meanwhile the distances remained shorted than the van-der-Waals sums of sulfur and halogen radii [ru

  14. Preferential expression of NY-BR-1 and GATA-3 in male breast cancer.

    Science.gov (United States)

    Biserni, Giovanni Battista; Di Oto, Enrico; Moskovszky, Linda Eszter; Foschini, Maria Pia; Varga, Zsuzsanna

    2018-02-01

    Male breast cancer is an uncommon disease often discovered in advanced stage; thus, in the setting of metastatic adenocarcinoma, breast origin must be taken to account. Breast markers as NY-BR-1, GATA-3, mammaglobin, and BRST-2 are established tools for labelling primary and metastatic female breast cancer; however, none of them has been sufficiently studied in male breast cancer. The aim of this study was to analyze the expression of these markers in male breast cancer. Thirty consecutive cases of male breast cancer and eight loco-regional metastases were re-revaluated, assembled in tissue micro array (TMA), and stained with immunohistochemistry (IHC) for NY-BR-1, GATA-3, mammaglobin, and BRST-2. The IHC stains were scored either positive or negative. In addition, concordant expression patterns of primary tumors and matched metastasis were noted. 30 of 30 (100%) primary tumors and 8 of 8 (100%) metastases were positive for NY-BR-1. 30 of 30 (100%) primary tumors and 6 of 8 (75%) metastases were positive for GATA-3. 22 of 30 (73.3%) primary tumors and 6 of 8 (75%) metastases were positive for Mammaglobin. 18 of 30 (60%) primary tumors and 5 of 8 (62.5%) metastases were positive for BRST-2. Differences in staining percentage were not significant with Fisher's exact test. We found a high sensitivity for all the markers analyzed. Moreover, the expression of NY-BR-1 and GATA-3 seemed the most effective for labelling male breast cancer in primary and metastatic setting.

  15. Novel Co(III)/Co(II) mixed valence compound [Co(bapen)Br2]2[CoBr4] (bapen = N,N‧-bis(3-aminopropyl)ethane-1,2-diamine): Synthesis, crystal structure and magnetic properties

    Science.gov (United States)

    Smolko, Lukáš; Černák, Juraj; Kuchár, Juraj; Miklovič, Jozef; Boča, Roman

    2016-09-01

    Green crystals of Co(III)/Co(II) mixed valence compound [Co(bapen)Br2]2[CoBr4] (bapen = N,N‧-bis(3-aminopropyl)ethane-1,2-diamine) were isolated from the aqueous system CoBr2 - bapen - HBr, crystallographically studied and characterized by elemental analysis and IR spectroscopy. Its ionic crystal structure is built up of [Co(bapen)Br2]+ cations and [CoBr4]2- anions. The Co(III) central atoms within the complex cations are hexacoordinated (donor set trans-N4Br2) with bromido ligands placed in the axial positions. The Co(II) atoms exhibit distorted tetrahedral coordination. Beside ionic forces weak Nsbnd H⋯Br intermolecular hydrogen bonding interactions contribute to the stability of the structure. Temperature variable magnetic measurements confirm the S = 3/2 behavior with the zero-field splitting of an intermediate strength: D/hc = 8.7 cm-1.

  16. JENDL-3.3 thermal reactor benchmark test

    International Nuclear Information System (INIS)

    Akie, Hiroshi

    2001-01-01

    Integral tests of JENDL-3.2 nuclear data library have been carried out by Reactor Integral Test WG of Japanese Nuclear Data Committee. The most important problem in the thermal reactor benchmark testing was the overestimation of the multiplication factor of the U fueled cores. With several revisions of the data of 235 U and the other nuclides, JENDL-3.3 data library gives a good estimation of multiplication factors both for U and Pu fueled thermal reactors. (author)

  17. Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Yang, Yuxin; Guo, Wan; Guo, Yingna; Zhao, Yahui; Yuan, Xing; Guo, Yihang

    2014-01-01

    Graphical abstract: - Highlights: • Z-scheme plasmonic photocatalyst of Ag@AgBr/g-C 3 N 4 is prepared for the first time. • Ag@AgBr/g-C 3 N 4 shows enhanced visible-light photocatalytic activity. • Photocatalytic mechanism based on the experimental results is revealed. • Photocatalytic degradation pathway of MO is put forward. - Abstract: A series of Ag@AgBr grafted graphitic carbon nitride (Ag@AgBr/g-C 3 N 4 ) plasmonic photocatalysts are fabricated through photoreducing AgBr/g-C 3 N 4 hybrids prepared by deposition–precipitation method. The phase and chemical structures, electronic and optical properties as well as morphologies of Ag@AgBr/g-C 3 N 4 heterostructures are well-characterized. Subsequently, the photocatalytic activity of Ag@AgBr/g-C 3 N 4 is evaluated by the degradation of methyl orange (MO) and rhodamin B (RB) under visible-light irradiation. The enhanced photocatalytic activity of Ag@AgBr/g-C 3 N 4 compared with g-C 3 N 4 and Ag@AgBr is obtained and explained in terms of the efficient visible-light utilization efficiency as well as the construction of Z-scheme, which keeps photogenerated electrons and holes with high reduction and oxidation capability, evidenced by photoelectrochemical tests and free radical and hole scavenging experiments. Based on the intermediates identified in the reaction system, the photocatalytic degradation pathway of MO is put forward

  18. Microcolumnar and polycrystalline growth of LaBr3:Ce scintillator

    Science.gov (United States)

    Nagarkar, V. V.; Miller, S.; Sia, R.; Gaysinskiy, V.

    2011-05-01

    While a wide variety of new scintillators are now available, cerium-doped lanthanide halide scintillators have shown a strong potential toward fulfilling the needs of highly demanding applications such as radioisotope identification at room temperature, homeland security, quantitative molecular imaging for medical diagnostics, and disease staging and research. Despite their extraordinary advantages in terms of light yield and response uniformity over a wide energy range, issues related to reliable, large volume manufacturing of these high-light-yield materials in a rapid and economic manner has not been resolved or purposefully addressed. Here we report on synthesizing LaBr3:Ce scintillator using a thermal evaporation technique, which offers the potential to synthesize large quantities of small-to-large volume, high-quality material in a time-efficient and cost-effective manner. To date we have successfully applied this method to form both microcolumnar films and thick polycrystalline slabs of LaBr3:Ce, and have characterized their light yield, response linearity, decay time and afterglow.

  19. High Br- Content CsPb(Cl yBr1- y)3 Perovskite Nanocrystals with Strong Mn2+ Emission through Diverse Cation/Anion Exchange Engineering.

    Science.gov (United States)

    Li, Fei; Xia, Zhiguo; Pan, Caofeng; Gong, Yue; Gu, Lin; Liu, Quanlin; Zhang, Jin Z

    2018-04-11

    The unification of tunable band edge (BE) emission and strong Mn 2+ doping luminescence in all-inorganic cesium lead halide perovskite nanocrystals (NCs) CsPbX 3 (X = Cl and Br) is of fundamental importance in fine tuning their optical properties. Herein, we demonstrate that benefiting from the differentiation of the cation/anion exchange rate, ZnBr 2 and preformed CsPb 1- x Cl 3 : xMn 2+ NCs can be used to obtain high Br - content Cs(Pb 1- x- z Zn z )(Cl y Br 1- y ) 3 : xMn 2+ perovskite NCs with strong Mn 2+ emission, and the Mn 2+ substitution ratio can reach about 22%. More specifically, the fast anion exchange could be realized by the soluble halide precursors, leading to anion exchange within a few seconds as observed from the strong BE emission evolution, whereas the cation exchange instead generally required at least a few hours; moreover, their exchange mechanism and dynamics process have been evaluated. The Mn 2+ emission intensity could be further varied by controlling the replacement of Mn 2+ by Zn 2+ with prolonged ion exchange reaction time. White light emission of the doped perovskite NCs via this cation/anion synergistic exchange strategy has been realized, which was also successfully demonstrated in a prototype white light-emitting diode (LED) device based on a commercially available 365 nm LED chip.

  20. BR-100 spent fuel shipping cask development

    International Nuclear Information System (INIS)

    McGuinn, E.J.; Childress, P.C.

    1990-01-01

    Continued public acceptance of commercial nuclear power is contingent to a large degree on the US Department of Energy (DOE) establishing an integrated waste management system for spent nuclear fuel. As part of the from-reactor transportation segment of this system, the B ampersand W Fuel Company (BWFC) is under contract to the DOE to develop a spent-fuel cask that is compatible with both rail and barge modes of transportation. Innovative design approaches were the keys to achieving a cask design that maximizes payload capacity and cask performance. The result is the BR-100, a 100-ton rail/barge cask with a capacity of 21 PWR or 52 BWR ten-year cooled, intact fuel assemblies. 3 figs

  1. Synthesis and the crystal and molecular structures of 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 Mono- and dibromohydrates (HL)Br . 3H2O and (H2L)Br2 . 3H2O

    International Nuclear Information System (INIS)

    Kovalchukova, O. V.; Stash, A. I.; Belsky, V. K.; Strashnova, S. B.; Zaitsev, B. E.; Ryabov, M. A.

    2009-01-01

    4-(Piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 monobromohydrate (HL)Br . 3H 2 O (I) and 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 dibromohydrate (H 2 L)Br 2 . 3H 2 O (II) are isolated in the crystalline state. The crystal structures of compounds I and II are determined using X-ray diffraction. It is established that the protonation of 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 proceeds primarily through the pyridine atom at pH 2-3. The attachment of the second proton occurs through the piperidine nitrogen atom at pH ∼ 1.

  2. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes.

    Science.gov (United States)

    Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng

    2015-12-30

    We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.

  3. Preparation and Characteristics of MAPbBr3 Perovskite Quantum Dots on NiOx Film and Application for High Transparent Solar Cells

    Directory of Open Access Journals (Sweden)

    Lung-Chien Chen

    2018-04-01

    Full Text Available In this work, a MAPbBr3 quantum dot (QD-MAPbBr3 layer was prepared by a simple and rapid method. Octylammonium bromide (OABr gives the MAPbBr3 better exciton binding energy, good surface morphology, and stability. To form a nanocrystalline thin film on indium tin oxide (ITO glass, the QD-MAPbBr3 film was coated by a spin-coating method in a nitrogen-filled glove box and the NiOx film was used as an adhesive layer and hole transport layer. The highest transmittance of MAPbBr3 on NiOx/ITO glass was around 75% at 700 nm. This study also reported a high transparent and perovskite bulk-free ITO/NiOx/QD-MAPbBr3/C60/Ag solar cell where the NiOx, QD-MAPbBr3, and C60 were used as a hole transport layer, active layer, and electron transport layer, respectively.

  4. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.

    Science.gov (United States)

    Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; Han, Junbo; Zou, Bingsuo; Dong, Yuping

    2015-04-28

    Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2-8 μm) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well as proper chemical passivations of the Br-rich surface. We further demonstrated wide-color gamut white-light-emitting diodes using green emissive CH3NH3PbBr3 quantum dots and red emissive K2SiF6:Mn(4+) as color converters, providing enhanced color quality for display technology. Moreover, colloidal CH3NH3PbX3 quantum dots are expected to exhibit interesting nanoscale excitonic properties and also have other potential applications in lasers, electroluminescence devices, and optical sensors.

  5. Polarized emission from CsPbBr3 nanowire embedded-electrospun PU fibers

    Science.gov (United States)

    Güner, Tuğrul; Topçu, Gökhan; Savacı, Umut; Genç, Aziz; Turan, Servet; Sari, Emre; Demir, Mustafa M.

    2018-04-01

    Interest in all-inorganic halide perovskites has been increasing dramatically due to their high quantum yield, band gap tunability, and ease of fabrication in compositional and geometric diversity. In this study, we synthesized several hundreds of nanometer long and ˜4 nm thick CsPbBr 3 nanowires (NWs). They were then integrated into electrospun polyurethane (PU) fibers to examine the polarization behavior of the composite fiber assembly. Aligned electrospun fibers containing CsPbBr 3 NWs showed a remarkable increase in the degree of polarization from 0.17-0.30. This combination of NWs and PU fibers provides a promising composite material for various applications such as optoelectronic devices and solar cells.

  6. Polarized Emission from CsPbBr3 Nanowires Embedded-Electrospun PU fibers.

    Science.gov (United States)

    Güner, Tugrul; Topçu, Gökhan; Savacı, Umut; Genç, Aziz; Turan, Servet; Sarı, Emre; Demir, Mustafa M

    2018-01-29

    The interest in all-inorganic halide perovskites has been increasing dramatically due to their high quantum yield, band gap tunability, and ease of fabrication in compositional and geometric diversity. In this study, we synthesized µm long and ~4 nm thick CsPbBr3 nanowires (NWs). They were, then, integrated into electrospun polyurethane (PU) fibers to examine polarization behavior of the composite fiber assembly. Aligned electrospun fibers containing CsPbBr3 nanowires show remarkable increase in degree of polarization from 0.17 to 0.30. This combination of NWs and PU fibers provides a promising composite material for various applications such as optoelectronic devices and solar cells. © 2018 IOP Publishing Ltd.

  7. Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr3 Films.

    Science.gov (United States)

    Song, Li; Guo, Xiaoyang; Hu, Yongsheng; Lv, Ying; Lin, Jie; Liu, Zheqin; Fan, Yi; Liu, Xingyuan

    2017-09-07

    Efficient inorganic perovskite light-emitting diodes (PeLEDs) with an ultrathin perovskite emission layer (∼30 nm) were realized by doping Lewis base polyethylene glycol (PEG) into CsPbBr 3 films. PEG in the perovskite films not only physically fills the crystal boundaries but also interacts with the perovskite crystals to passivate the crystal grains, reduce nonradiative recombination, and ensure efficient luminance and high efficiency. As a result, promoted brightness, current efficiency (CE), and external quantum efficiency (EQE) were achieved. The nonradiative decay rate of the PEG:CsPbBr 3 composite film is 1 order of magnitude less than that of the neat CsPbBr 3 film. After further optimization of the molar ratio between CsBr and PbBr 2 , a peak CE of 19 cd/A, a maximum EQE of 5.34%, and a maximum brightness of 36600 cd/m 2 were achieved, demonstrating the interaction between PEG and the precursors. The results are expected to offer some helpful implications in optimizing the polymer-assisted PeLEDs with ultrathin emission layers, which might have potential application in see-through displays.

  8. Design of fuel failure detection system for multipurpose reactor GA. Siwabessy

    International Nuclear Information System (INIS)

    Sujalmo Saiful; Kuntoro Iman; Sato, Mitsugu; Isshiki, Masahiko.

    1992-01-01

    A fuel failure detection system (FFDS) has been designed for the Reactor GA. Siwabessy. The FFDS is aimed to detect fuel failure by observing delayed neutron released by fission products such as N-17, I-137, Br-87 and Br-88 in the primary cooling system. The delayed neutrons will be detected by using four neutron detectors, type BF-3, which are located inside a Sampling Tank. The detector location has been determined and the location is associated with the transit time from the reactor core outlet to the Sampling Tank, which is approximately 60 seconds. The neutron detection efficiency was calculated by using a computer code named MORSE. The FFDS has the capability to detect as quickly as possible, even a small failure of a fuel element occurring in the reactor core. Therefore the presence of FFDS in a reactor must be considered, in order to prevent further progress if the fuel failure occurs. (author)

  9. pH-oscillations in the bromate-sulfite reaction in semibatch and in gel-fed batch reactors

    Science.gov (United States)

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Rábai, Gyula; Orbán, Miklós

    2015-06-01

    The simplest bromate oxidation based pH-oscillator, the two component BrO3--SO32- flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH˜3), long lasting (11-24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na2SO3 and H2SO4 was pumped into the solution of BrO3- with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na2SO3. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO3--SO32- pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  10. Balloon-borne stratospheric BrO measurements: comparison with Envisat/SCIAMACHY BrO limb profiles

    Directory of Open Access Journals (Sweden)

    M. Dorf

    2006-01-01

    Full Text Available For the first time, results of four stratospheric BrO profiling instruments, are presented and compared with reference to the SLIMCAT 3-dimensional chemical transport model (3-D CTM. Model calculations are used to infer a BrO profile validation set, measured by 3 different balloon sensors, for the new Envisat/SCIAMACHY (ENVIronment SATellite/SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY satellite instrument. The balloon observations include (a balloon-borne in situ resonance fluorescence detection of BrO (Triple, (b balloon-borne solar occultation DOAS measurements (Differential Optical Absorption Spectroscopy of BrO in the UV, and (c BrO profiling from the solar occultation SAOZ (Systeme d'Analyse par Observation Zenithale balloon instrument. Since stratospheric BrO is subject to considerable diurnal variation and none of the measurements are performed close enough in time and space for a direct comparison, all balloon observations are considered with reference to outputs from the 3-D CTM. The referencing is performed by forward and backward air mass trajectory calculations to match the balloon with the satellite observations. The diurnal variation of BrO is considered by 1-D photochemical model calculation along the trajectories. The 1-D photochemical model is initialised with output data of the 3-D model with additional constraints on the vertical transport, the total amount and photochemistry of stratospheric bromine as given by the various balloon observations. Total [Bry]=(20.1±2.5 pptv obtained from DOAS BrO observations at mid-latitudes in 2003, serves as an upper limit of the comparison. Most of the balloon observations agree with the photochemical model predictions within their given error estimates. First retrieval exercises of BrO limb profiling from the SCIAMACHY satellite instrument on average agree to around 20% with the photochemically-corrected balloon observations of the remote sensing instruments (SAOZ

  11. Water-assisted size and shape control of CsPbBr{sub 3} perovskite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyu [State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun (China); Department of Materials Science, Key Laboratory of Mobile Materials MOE, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun (China); Bai, Xue; Wu, Hua; Zhang, Xiangtong; Sun, Chun; Zhang, Yu [State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun (China); Zhang, Wei; Zheng, Weitao [Department of Materials Science, Key Laboratory of Mobile Materials MOE, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun (China); Yu, William W. [State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun (China); Department of Chemistry and Physics, Louisiana State University, Shreveport, LA (United States); Rogach, Andrey L. [Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon (China)

    2018-03-19

    Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr{sub 3} nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr{sub 3} nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr{sub 3} nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m{sup -2} and external quantum yield of 1.7 %. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3

    KAUST Repository

    Wang, Hao

    2011-03-01

    We present results from an electronic structure investigation of the chromium halides CrCl3, CrBr3, and CrI3, as obtained by the linearized augmented plane wave method of density functional theory. Our interest focuses on the chloride. While all three halides display strong ferromagnetic coupling within the halide-Cr-halide triple layers, our emphasis is on differences in the interlayer magnetic coupling. In agreement with experimental results, our calculations indicate ferromagnetic ordering for CrBr3 as well as CrI3. The antiferromagnetic state of CrCl3 can be reproduced by introducing an on-site electron-electron repulsion. However, we observe that the ground state depends critically on the specific approach used. Our results show that a low temperature structural phase transition from monoclinic to trigonal is energetically favourable for CrCl3. © 2011 IOP Publishing Ltd.

  13. Radiation induced currents in mineral-insulated cables and in pick-up coils: model calculations and experimental verification in the BR1 reactor

    Science.gov (United States)

    Vermeeren, Ludo; Leysen, Willem; Brichard, Benoit

    2018-01-01

    Mineral-insulated (MI) cables and Low-Temperature Co-fired Ceramic (LTCC) magnetic pick-up coils are intended to be installed in various position in ITER. The severe ITER nuclear radiation field is expected to lead to induced currents that could perturb diagnostic measurements. In order to assess this problem and to find mitigation strategies models were developed for the calculation of neutron-and gamma-induced currents in MI cables and in LTCC coils. The models are based on calculations with the MCNPX code, combined with a dedicated model for the drift of electrons stopped in the insulator. The gamma induced currents can be easily calculated with a single coupled photon-electron MCNPX calculation. The prompt neutron induced currents requires only a single coupled neutron-photon-electron MCNPX run. The various delayed neutron contributions require a careful analysis of all possibly relevant neutron-induced reaction paths and a combination of different types of MCNPX calculations. The models were applied for a specific twin-core copper MI cable, for one quad-core copper cable and for silver conductor LTCC coils (one with silver ground plates in order to reduce the currents and one without such silver ground plates). Calculations were performed for irradiation conditions (neutron and gamma spectra and fluxes) in relevant positions in ITER and in the Y3 irradiation channel of the BR1 reactor at SCK•CEN, in which an irradiation test of these four test devices was carried out afterwards. We will present the basic elements of the models and show the results of all relevant partial currents (gamma and neutron induced, prompt and various delayed currents) in BR1-Y3 conditions. Experimental data will be shown and analysed in terms of the respective contributions. The tests were performed at reactor powers of 350 kW and 1 MW, leading to thermal neutron fluxes of 1E11 n/cm2s and 3E11 n/cm2s, respectively. The corresponding total radiation induced currents are ranging from

  14. Inhibition of interleukin-3- and interferon- α-induced JAK/STAT signaling by the synthetic α-X-2',3,4,4'-tetramethoxychalcones α-Br-TMC and α-CF3-TMC.

    Science.gov (United States)

    Jobst, Belinda; Weigl, Julia; Michl, Carina; Vivarelli, Fabio; Pinz, Sophia; Amslinger, Sabine; Rascle, Anne

    2016-11-01

    The JAK/STAT pathway is an essential mediator of cytokine signaling, often upregulated in human diseases and therefore recognized as a relevant therapeutic target. We previously identified the synthetic chalcone α-bromo-2',3,4,4'-tetramethoxychalcone (α-Br-TMC) as a novel JAK2/STAT5 inhibitor. We also found that treatment with α-Br-TMC resulted in a downward shift of STAT5 proteins in SDS-PAGE, suggesting a post-translational modification that might affect STAT5 function. In the present study, we show that a single cysteine within STAT5 is responsible for the α-Br-TMC-induced protein shift, and that this modification does not alter STAT5 transcriptional activity. We also compared the inhibitory activity of α-Br-TMC to that of another synthetic chalcone, α-trifluoromethyl-2',3,4,4'-tetramethoxychalcone (α-CF3-TMC). We found that, like α-Br-TMC, α-CF3-TMC inhibits JAK2 and STAT5 phosphorylation in response to interleukin-3, however without altering STAT5 mobility in SDS-PAGE. Moreover, we demonstrate that both α-Br-TMC and α-CF3-TMC inhibit interferon-α-induced activation of STAT1 and STAT2, by inhibiting their phosphorylation and the expression of downstream interferon-stimulated genes. Together with the previous finding that α-Br-TMC and α-CF3-TMC inhibit the response to inflammation by inducing Nrf2 and blocking NF-κB activities, our data suggest that synthetic chalcones might be useful as anti-inflammatory, anti-cancer and immunomodulatory agents in the treatment of human diseases.

  15. Crystallographic Investigations into Properties of Acentric Hybrid Perovskite Single Crystals NH(CH3)3SnX3(X = Cl, Br)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    substitute for the lead in the halides perovskites and solving the ambiguous crystal structures and phase transition of NH(CH3)3SnX3 (X = Cl, Br). Here, we report the bulk crystal growths and different crystal morphologies of orthorhombic hybrid perovskites

  16. Photovoltaic performance of textured silicon solar cells with MAPbBr3 perovskite nanophosphors to induce luminescent down-shifting

    Science.gov (United States)

    Ho, Wen-Jeng; Li, Guan-Yi; Liu, Jheng-Jie; Lin, Zong-Xian; You, Bang-Jin; Ho, Chun-Hung

    2018-04-01

    This study employed a two-step multi-cycle spin-coating method for the application of MAPbBr3 perovskite nanophosphors on textured silicon solar cells with the aim of enhancing photovoltaic performance through luminescent down-shifting (LDS). The surface morphology and dimensions of the MAPbBr3 perovskite nanophosphors were examined using scanning electron microscopy in conjunction with ImageJ software. The LDS effects of the nanophosphors were revealed by measuring photo-luminance, optical reflectance, and external quantum efficiency. The photovoltaic performance of cells with and without MAPbBr3 perovskite nanophosphors was evaluated according to photovoltaic current density-voltage (J-V) under AM 1.5 G solar illumination. Compared to uncoated cells, two-layer and one-layer coatings of MAPbBr3 perovskite nanophosphors were shown to enhance conversion efficiency by 4.56% and 3.38%, respectively.

  17. Overexpression of YB1 C-terminal domain inhibits proliferation, angiogenesis and tumorigenicity in a SK-BR-3 breast cancer xenograft mouse model.

    Science.gov (United States)

    Shi, Jian-Hong; Cui, Nai-Peng; Wang, Shuo; Zhao, Ming-Zhi; Wang, Bing; Wang, Ya-Nan; Chen, Bao-Ping

    2016-01-01

    Y-box-binding protein 1 (YB1) is a multifunctional transcription factor with vital roles in proliferation, differentiation and apoptosis. In this study, we have examined the role of its C-terminal domain (YB1 CTD) in proliferation, angiogenesis and tumorigenicity in breast cancer. Breast cancer cell line SK-BR-3 was infected with GFP-tagged YB1 CTD adenovirus expression vector. An 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) proliferation assay showed that YB1 CTD decreased SK-BR-3 cell proliferation, and down-regulated cyclin B1 and up-regulated p21 levels in SK-BR-3 cells. YB1 CTD overexpression changed the cytoskeletal organization and slightly inhibited the migration of SK-BR-3 cells. YB1 CTD also inhibited secreted VEGF expression in SK-BR-3 cells, which decreased SK-BR-3-induced EA.hy926 endothelial cell angiogenesis in vitro. YB1 CTD overexpression attenuated the ability of SK-BR-3 cells to form tumours in nude mice, and decreased in vivo VEGF levels and angiogenesis in the xenografts in SK-BR-3 tumour-bearing mice. Taken together, our findings demonstrate the vital role of YB1 CTD overexpression in inhibiting proliferation, angiogenesis and tumorigenicity of breast cancer cell line SK-BR-3.

  18. In search of new neutrinos and dark matter. The return of fundamental research to BR2

    International Nuclear Information System (INIS)

    2015-01-01

    A consortium of three French, two British, and four Flemish universities and research institutions, including the Belgian Nuclear Research Center SCK-CEN, started in 2014 on the construction of a neutrino experiment in the BR2 reactor. A reactor such as this is an extremely intense source of neutrinos: elementary particles that are generated as a by-product of nuclear beta decay. BR2 is particularly suitable with regard to carrying out this measurement because of the compact core, the high operating capacity, sufficient space for placing a fairly large detector, and the extremely low background radiation. The article discusses recent developments.

  19. Dimensioning the EVITA semi-open loop at BR2 for qualification of full size JHR fuel elements

    International Nuclear Information System (INIS)

    Gouat, Philippe

    2011-01-01

    Research highlights: → Research reactor fuel (LEU) qualification as part of the licensing process of the JHR reactor. → Thermal-hydraulic dimensioning process of fuel irradiation installation. → We compare the predicted pressure profile in the installation with in situ measured values. - Abstract: The Jules Horowitz Reactor (JHR) is the next generation research reactor from CEA and which commissioning is foreseen in 2014. Prior to acquiring the exploitation license, the fuel elements have to be qualified for their intended functioning power. The only facility capable to perform this task is the Belgian research reactor BR2, due to its similar thermal-hydraulic parameters. At the moment, one has already tested the fuel plates separately. The preparation of the JHR safety report still needs the test of full size elements. This JHR fuel element is broader and more powerful than a standard BR2 fuel element, and one cannot perform an irradiation by simply interchanging them. However, BR2 has 200 mm channels at its disposal, which can be adapted to give the correct hydraulic diameter. One also needs an additional pump to deliver the necessary cooling flow rate for the higher power. This paper describes the dimensioning of the EVITA semi-open loop, which has been built at BR2 to irradiate full size JHR fuel elements and qualify them for the foreseen exploitation parameters. One explains here the followed methodology to quantify the required additional head for the booster pump and to determine the pressure profile along the circuit and the safety margin on the fuel. This methodology relies only on a priori calculations without any measurement on full size installation subpart as usual before the assembly in controlled zone. The article also explains how the original JHR thermal hydraulic safety calculation scheme was adapted to the BR2 environment. One also compares the measurement results on the fully built installation with our previsions. Our models compare well

  20. Production of prostate-specific antigen by a breast cancer cell line, Sk-Br-3

    International Nuclear Information System (INIS)

    Kamali Sarvestani, E.; Ghaderi, A.

    2002-01-01

    Prostate-specific antigen is a 33-KDa serine protease that is produced predominantly by prostate epithelium. However, it has been shown that about 30-40% of female breast tumors produce prostate-specific antigen and its production is associated with the presence of estrogen and progesterone receptors. We have now developed a new tissue culture system to study prostate-specific antigen production in breast cancer and its association with prognostic factors such as progesterone receptor and c-erbB-2. For this purpose we investigated the ability of prostate-specific antigen production in five different cell lines, including two breast cancer cell lines, Sk-Br-3 and MDA-MB-453. The prostate-specific antigen in tissue culture supernatant and cytoplasm of the Sk-Br-3 cell line was detected by western blotting and immunoperoxidase, respectively. Furthermore, we found lower expression of c-erbB-2 in Sk-Br-3 than non-prostate-specific antigen producer breast cancer cell line, MDA-MB-453. Progesterone receptor was expressed by both prostate-specific antigen-positive and -negative cell lines and only the intensity of staining and the number of positive cells in Sk-Br-3 population was higher than MDA-MB-453. According to our findings prostate-specific antigen can be considered as a good prognostic factor in breast cancer and we suggest that these two cell lines are a good in vitro model to study the relationship of different breast cancer prognostic factors and their regulations

  1. Characterization of LWR fuel rod irradiations with power transients in the BR2 reflector

    International Nuclear Information System (INIS)

    Ponsard, B.; Bodart, S.; Meer, K. van der; Raedt, C. de

    1996-01-01

    Fuel rod irradiations in reflector positions of the materials testing reactor BR2 are becoming increasingly important. A typical example is that of irradiation devices containing single LWR fuel rods, to be tested in the framework of a new international fuel investigation and development programme. Some of the irradiations will comprise power transients with central fuel melting (at 2800 deg. C), the power increase being obtained by decreasing the pressure in a He-3 neutron absorbing screen and/or by varying the BR2 reactor operating power. A total power variation by a factor of at least 2.5 in the fuel rod irradiated could thus be achieved. In some of the rods, central temperature measurements (up to 2000 deg. C) will be carried out. Both fresh and pre-irradiated fuel rods are concerned in the programme. For these irradiations, the accurate knowledge of the neutron-induced fission heating and of the gamma heating is required, as one of the purposes of the programme consists in establishing the correlation among the thermal conductivity, the burn-up and the irradiation temperature. Calibration work among various measuring methods and between measurements and one- and two-dimensional calculations is being pursued. (author). 10 refs, 15 figs, 3 tabs

  2. Chemical surveillance of commercial fast breeder reactors

    International Nuclear Information System (INIS)

    Stamm, H.H.; Stade, K.Ch.

    1988-01-01

    After BN-600 (USSR) and SUPERPHENIX (France) were started succesfully, the international development of LMFBRs is standing at the doorstep of commercial use. For commercial use of LMFBRs cost reductions for construction and operation are highly desirable and necessary. Several nations developing breeder reactors have joined in a common effort in order to reach this aim by standardization and harmonization. On the base of more than 20 years of operation experience of experimental reactors (EBR-II, FFTF, RAPSODIE, DFR, BR-5/BR-10, BOR-60, JOYO, KNK-II) and demonstration plants (PHENIX, PFR, BN-350), possibilities for standardization in chemical surveillance of commercial breeder reactors without any loss of availability, reliability and reactor safety will be discussed in the following chapters. Loop-type reactors will be considered as well as pool-type reactors, although all commercial plants under consideration so far (SUPERPHENIX II, BN-800, BN-1600, CFBR, SNR-2, EFR) include pool-type reactors only. Table 1 gives a comparison of the Na inventories of test reactors, prototype plants and commercial LMFBRs

  3. Substantiation of physical concepts of fast reactors in Russia: experience and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P.N. [Russian Research Center ' Kurchatov Institute' (RRC KI), 1, Kurchatov Sq., Moscow, 123182 (Russian Federation); Vasiliev, B.A. [Experimental Design Bureau of Machine Building (OKBM) 15, Burnakovskiy Pr., N. Novgorod, 603074 (Russian Federation); Kormilitsyn, M.V. [State Scientific Center of Russian Federation - Research Institute of Atomic Reactors (NIIAR) Dimitrovgrad-10, Ulianovsk Reg., 433510 (Russian Federation); Lopatkin, A.V. [N.A. Dollezhal Research and Development Institute of Power Engineering (NIKIET) 2/8, M. Krasnoselskaya Str., Moscow, 107140 (Russian Federation); Seleznev, E.F. [All-Russian Research Institute for Nuclear Power Plant Operation (VNIIAES) 25, Ferganskaya, Moscow, 109507 (Russian Federation); Khomyakov, Yu.S.; Tsybulia, A.M. [State Scientific Center of the Russian Federation - A. I. Leypunsky Institute for Physics and Power Engineering (SSC RF- IPPE) 1, Bondarenko Sq., Obninsk, Kaluga Reg., 249033 (Russian Federation); Tocheny, L.V. [International Science and Technology Center (ISTC) 32-34 Krasnoproletarskaya Ulitsa, Moscow, 127473 (Russian Federation)

    2008-07-01

    The fast reactor concept in Russia has accumulated unique experience, since its advent in the 1950's and up to the present, from the creation of the first experimental installation BR-1, experimental reactors BR-5 and BOR-60, the pilot industrial reactors BN-350 in Kazakhstan and up to the BN-600 at Beloyarsk Atomic Power Station. Investigations on the first experimental installations BR-1 and BR-5/-10 proved the propriety of the idea that it is possible to create nuclear reactors that can produce more nuclear fuel than they consume, i.e. the idea of breeding. The architecture of such reactors was also designed, producing a current leader among fast reactors with sodium coolant and oxide uranium-plutonium fuel. Operational experience of BOR-60, BN-350 and, particularly, BN-600 confirmed the engineering and technical feasibility of the concept of fast reactors, the possibility for its realization both for power production and for certain other purposes as well, such as desalinisation of sea water (BN-350) and for radionuclide production (BN-350, BN-600), and it enabled the development and verification of different models, computer methods and codes. The paper presents a review of experience in the creation of plants with fast reactors, scientific research on these installations, principal results, the current status of experimental data analysis, and prospective directions in the development of fast reactors and the corresponding experimental basis in Russia. (authors)

  4. Cs4PbBr6/CsPbBr3 Perovskite Composites with Near-Unity Luminescence Quantum Yield: Large-Scale Synthesis, Luminescence and Formation Mechanism, and White Light-Emitting Diode Application.

    Science.gov (United States)

    Chen, Yameng; Zhou, Yang; Zhao, Qing; Zhang, Junying; Ma, Ju-Ping; Xuan, Tong-Tong; Guo, Shao-Qiang; Yong, Zi-Jun; Wang, Jing; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Sun, Hong-Tao

    2018-04-18

    All-inorganic perovskites have emerged as a new class of phosphor materials owing to their outstanding optical properties. Zero-dimensional inorganic perovskites, in particular the Cs4PbBr6-related systems, are inspiring intensive research owing to the high photoluminescence quantum yield (PLQY) and good stability. However, synthesizing such perovskites with high PLQYs through an enviromentally friendly, cost-effective, scalable, and high-yield approach remains challenging, and their luminescence mechanisms has been elusive. Here, we report a simple, scalable, room-temperature self-assembly strategy for the synthesis of Cs4PbBr6/CsPbBr3 perovskite composites with near-unity PLQY (95%), high product yield (71%) and good stability, using low-cost, low-toxicity chemicals as precursors. A broad range of experimental and theoretical characterizations suggest that the high-efficiency PL originates from CsPbBr3 nanocrystals well passivated by the zero-dimensional Cs4PbBr6 matrix that forms based on a dissolution-crystallization process. These findings underscore the importance in accurately identifying the phase purity of zero-dimensional perovskites by synchrotron X-ray technique to gain deep insights into the structure-property relationship. Additionally, we demonstrate that green-emitting Cs4PbBr6/CsPbBr3, combined with red-emitting K2SiF6:Mn4+, can be used for the construction of WLEDs. Our work may pave the way for the use of such composite perovskites as highly luminescent emitters in various applications such as lighting, displays, and other optoelectronic and photonic devices.

  5. pH-oscillations in the bromate–sulfite reaction in semibatch and in gel-fed batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Orbán, Miklós, E-mail: orbanm@chem.elte.hu [Department of Analytical Chemistry, Institute of Chemistry, L. Eötvös University, P.O. Box 32, H-1518 Budapest 112 (Hungary); Rábai, Gyula [Institute of Physical Chemistry, University of Debrecen, P.O. Box 7, H-4010 Debrecen (Hungary)

    2015-06-15

    The simplest bromate oxidation based pH-oscillator, the two component BrO{sub 3}{sup −}–SO{sub 3}{sup 2–} flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH∼3), long lasting (11–24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na{sub 2}SO{sub 3} and H{sub 2}SO{sub 4} was pumped into the solution of BrO{sub 3}{sup −} with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na{sub 2}SO{sub 3}. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO{sub 3}{sup −}–SO{sub 3}{sup 2–} pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  6. Fullerene-Based Electron Transport Layers for Semi-Transparent MAPbBr3 Perovskite Films in Planar Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Lung-Chien Chen

    2016-10-01

    Full Text Available In this study, four kinds of structures—[6,6]-phenyl-C61-butyric acid methyl ester (PCBM, PCBM/fullerene (C60, C60/bathocuproine (BCP, and PCBM/C60/BCP—were used as electron transport layers, and the structure, and optical and electronic behaviors of MAPbBr3 perovskite layers after annealing treatments were observed. The experimental results indicate that PCBM/C60 bi-layer structure is acceptable for MAPbBr3 planar perovskite solar cells due to electron step transporting. Low-temperature annealing is suitable for smooth and large grain MAPbBr3 films. The semi-transparent yellow C60/PCBM/MAPbBr3/PEDOT:PSS/ITO glass-structure solar cells exhibit the best performance with a power conversion efficiency of 4.19%. The solar cells are revealed to be suitable for application in building integrated photovoltaic (BIPV systems.

  7. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3

    KAUST Repository

    Wang, Hao; Eyert, Volker; Schwingenschlö gl, Udo

    2011-01-01

    for CrBr3 as well as CrI3. The antiferromagnetic state of CrCl3 can be reproduced by introducing an on-site electron-electron repulsion. However, we observe that the ground state depends critically on the specific approach used. Our results show that a

  8. Dynamics of TRIGA-3 Salazar Reactor

    International Nuclear Information System (INIS)

    Gallardo S, L.F.

    1990-01-01

    The theoretical study of temporal behavior of a nuclear reactor is of great importance, since it allows to know, in advance, the conditions to which a reactor is going to be submitted. The reliability of two computer codes (AIREK-JEN and PLANKIN) designed to reproduce the temporal behavior of nuclear reactors, generally power reactors, when they are applied to reproduce the dynamic behavior of TRIGA-3 Salazar Reactor is analyzed. In the first chapters, the fundamental equations that solve this computer codes are deduced, and also the main characteristics of TRIGA-3 Salazar Reactor and the necessary data to run the programs are presented; later the results obtained with the computer codes and the experimental results reported in the operational logbook of the reactor are compared, with the result that such computer codes are applicable to the temporal study of TRIGA-3 Salazar Reactor. (Author)

  9. Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3−yXy single crystals and photodetector applications

    Directory of Open Access Journals (Sweden)

    L. Wang

    2016-04-01

    Full Text Available We report the synthesis of CH3NH3Pb(Br3−yXy (X=Cl and I single crystals via a stepwise temperature control approach. High-quality CH3NH3Pb(Br3−yXy crystals with a tunable bandgap from 1.92eV to 2.53eV have been prepared successfully in this way. And further experiments revealed the influence of halogen content and preparation temperature on the structural and optical properties of these crystals. It is observed that chlorine can lower the critical nucleation energy, which results in crystallizing at lower temperature with the chlorine content increasing, while the nucleation energy increases slowly with increasing iodine content. Moreover, in contrast to Frank–van der Merwe growth with low heating rate, high heating rate leads to a mass of small size single crystals and Stranski-Krastanov growth. The single crystals with tunable band gap and impressive characteristics enable us to fabricate high performance photodetectors for different wavelengths.

  10. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  11. Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment.

    Science.gov (United States)

    Koscher, Brent A; Swabeck, Joseph K; Bronstein, Noah D; Alivisatos, A Paul

    2017-05-17

    We demonstrate postsynthetic modification of CsPbBr 3 nanocrystals by a thiocyanate salt treatment. This treatment improves the quantum yield of both freshly synthesized (PLQY ≈ 90%) and aged nanocrystals (PLQY ≈ 70%) to within measurement error (2-3%) of unity, while simultaneously maintaining the shape, size, and colloidal stability. Additionally, the luminescence decay kinetics transform from multiexponential decays typical of nanocrystalline semiconductors with a distribution of trap sites, to a monoexponential decay, typical of single energy level emitters. Thiocyanate only needs to access a limited number of CsPbBr 3 nanocrystal surface sites, likely representing under-coordinated lead atoms on the surface, in order to have this effect.

  12. Synthesis of [Ru33-NPh)(Br)(CO)9]- on self-assembled monolayers of di(3-aminopropyl)viologen/ITO surfaces and its application to photoelectrochemical cells

    International Nuclear Information System (INIS)

    Lee, Deok Yeon; Lee, Mi-Sun; Lim, Iseul; Kang, Soon Hyung; Nah, Yoon-Chae; Lee, Wonjoo; Han, Sung-Hwan

    2011-01-01

    Triruthenium carbonyl clusters {[Ru 3 (Br)(CO) 11 ] - (denoted as Ru-1), [Ru 3 (μ 2 -Br)(CO) 10 ] - (denoted as Ru-2), and [Ru 33 -NPh)(Br)(CO) 9 ] - (denoted as Ru-3)} were synthesized on di(3-aminopropyl)viologen (DAPV)/indium tin oxide (ITO) using a surface reaction in a ruthenium (III) carbonyl [Ru 3 (CO) 12 ] solution, and were applied to photoelectrochemical cells (PECs) at the molecular level. The formation of DAPV on ITO was realized in the form of self-assembled monolayers. Ru 3 (CO) 12 then easily reacted with the Br - of DAPV, and a mixture of Ru-1 and Ru-2 was formed on DAPV/ITO. Furthermore, Ru-3 was successfully anchored on DAPV/ITO by adding nitrosobenzene in order to react with Ru-2 on DAPV/ITO. The photocurrents of (Ru-1 and Ru-2)/DAPV/ITO and Ru-3/DAPV/ITO in PECs at the molecular level were 6.3 nA cm -2 and 8.6 nA cm -2 , respectively. The quantum yield of Ru-3/DAPV/ITO was ∼0.8%. Time-resolved photoluminescence spectroscopy and emission spectroscopy were recorded to bring out the photoinduced charge transfer process from ruthenium clusters to DAPV.

  13. The synthetic α-bromo-2',3,4,4'-tetramethoxychalcone (α-Br-TMC) inhibits the JAK/STAT signaling pathway.

    Science.gov (United States)

    Pinz, Sophia; Unser, Samy; Brueggemann, Susanne; Besl, Elisabeth; Al-Rifai, Nafisah; Petkes, Hermina; Amslinger, Sabine; Rascle, Anne

    2014-01-01

    Signal transducer and activator of transcription STAT5 and its upstream activating kinase JAK2 are essential mediators of cytokine signaling. Their activity is normally tightly regulated and transient. However, constitutive activation of STAT5 is found in numerous cancers and a driving force for malignant transformation. We describe here the identification of the synthetic chalcone α-Br-2',3,4,4'-tetramethoxychalcone (α-Br-TMC) as a novel JAK/STAT inhibitor. Using the non-transformed IL-3-dependent B cell line Ba/F3 and its oncogenic derivative Ba/F3-1*6 expressing constitutively activated STAT5, we show that α-Br-TMC targets the JAK/STAT pathway at multiple levels, inhibiting both JAK2 and STAT5 phosphorylation. Moreover, α-Br-TMC alters the mobility of STAT5A/B proteins in SDS-PAGE, indicating a change in their post-translational modification state. These alterations correlate with a decreased association of STAT5 and RNA polymerase II with STAT5 target genes in chromatin immunoprecipitation assays. Interestingly, expression of STAT5 target genes such as Cis and c-Myc was differentially regulated by α-Br-TMC in normal and cancer cells. While both genes were inhibited in IL-3-stimulated Ba/F3 cells, expression of the oncogene c-Myc was down-regulated and that of the tumor suppressor gene Cis was up-regulated in transformed Ba/F3-1*6 cells. The synthetic chalcone α-Br-TMC might therefore represent a promising novel anticancer agent for therapeutic intervention in STAT5-associated malignancies.

  14. Ion yields of laser aligned CH3I and CH3Br from multiple orbitals

    NARCIS (Netherlands)

    He, Lanhai; Pan, Yun; Yang, Yujun; Luo, Sizuo; Lu, Chunjing; Zhao, Huifang; Li, Dongxu; Song, Lele; Stolte, Steven; Ding, Dajun; Roeterdink, Wim G.

    2016-01-01

    We have measured the alignment influence on ion yields of CH3I and CH3Br molecules in the laser intensity regime from 1013 W/cm2 to 1015 W/cm2. The hexapole state-selection technique combined with laser induced alignment has been employed to obtain aligned (〈P2(cosθ)〉=0.7) and anti-aligned

  15. The bent crystal diffraction spectrometer at the BR2 reactor in Mol

    Science.gov (United States)

    Kaerts, E.; Jacobs, L.; Vandenput, G.; Van Assche, P. H. M.

    1988-05-01

    The DuMond-type bent crystal diffraction spectrometer installed at the BR2 reactor in Mol is presented. The spectrometer is mainly designed to study nuclear γ-transitions following thermal neutron capture. It covers the energy interval 25 ≦ Eγ ≦ 1500 keV. Instead of the traditionally used quartz crystals, a highly perfect silicium crystal is chosen as analysing crystal. Diffraction occurs from the (220) plane. The "quasi-mosaic" width, introduced by bending the crystal, is as small as 0.2″. The integrated reflecting power R of the bent crystal stays constant up to 1.5 MeV in first, 680 keV in second and 300 keV in third diffraction order. For higher photon energies, only an E-1 energy dependence is observed in second and third diffraction order. Consequently, besides improving the energy resolution, the use of these silicium crystals substantially increases the spectrometer efficiency and extends the high energy limit of bent crystal diffraction spectrometers. The diffraction angles are measured with a symmetrical interferometer system which covers an angular range of -6° to +6° with a precision of about 0.01″. Minimum diffraction line widths of 0.9″ have been measured, corresponding to an energy resolution ΔE = 1.35 × 10 -6E2n-1 keV -1. The dominant contribution to the observed line widths arises from the finite extent of the source.

  16. AgBr and g-C{sub 3}N{sub 4} co-modified Ag{sub 2}CO{sub 3} photocatalyst: A novel multi-heterostructured photocatalyst with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hua, E-mail: tanghua@mail.ujs.edu.cn [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013 (China); Chang, Shufang [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013 (China); Tang, Guogang [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013 (China); School of Chemistry and Materials Engineering, Zhenjiang College, Zhenjiang, Jiangsu Province 212003 (China); Liang, Wei [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013 (China)

    2017-01-01

    Highlights: • Novel g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr nanocomposites were prepared by a facile method. • g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr-6% has superior activity in degradation of dyes. • The synergetic effect of g-C{sub 3}N{sub 4} and AgBr was the origin of the higher performance. • The photocatalytic mechanism of the g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr was proposed. - Abstract: Novel and highly efficient visible-light-driven g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr multi-heterostructured photocatalysts are achieved from the surface modification of g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3} with AgBr nanoparticles by a facile and efficient ion-exchange method. The as-prepared g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scaning electron microscopy (SEM) and UV–vis diffuse reflectance spectrometry (DRS). Compared with g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}, g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr hybrids exhibit enhanced the degradation activity for typical RhB, MB, and MO dyes under visible light excitation (>420 nm). Photoluminescence (PL), photo-induced current and electrochemical impedance spectroscopy (EIS) results demonstrate the g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr heterojunctions can effectively suppress the recombination of the generated electron–hole pairs. The higher photocatalytical performance of g-C{sub 3}N{sub 4}/Ag{sub 2}CO{sub 3}/AgBr can be ascribed to the efficient separation of photogenerated electron–hole pairs due to the formation of multi-heterojunctions, in which the Ag nanoparticles acted as the charge transmission bridge. In addition, the possible transferred and separated behavior of electron–hole pairs and photocatalytic mechanisms based on the experimental results are also proposed in detail.

  17. Production of radioisotopes with BR2 facilities

    International Nuclear Information System (INIS)

    Fallais, C.J.; Morel de Westfaver, A.; Heeren, L.; Baugnet, J.M.; Gandolfo, J.M.; Boeykens, W.

    1978-01-01

    After a brief account on the isotopes production evolution in the industrialized countries the irradiation devices and the types of standardized capsules used in the BR2 reactor are described as well as the thermal neutron flux. Production of most important radioisotopes like 131 Iodine, 60 Cobalt, 192 Iridium and 99 Molybdenum and their main utilizations (uses)are described. The mean specific activities and the limit of use for different radioisotopes are reported. (A.F.)

  18. Novel hybrid light-emitting devices based on MAPbBr3 nanoplatelets:PVK nanocomposites and zinc oxide nanorod arrays

    Science.gov (United States)

    Wang, Szu-Ping; Chang, Chun-Kai; Yang, Sheng-Hsiung; Chang, Che-Yu; Chao, Yu-Chiang

    2018-01-01

    In this research, we demonstrate inverted perovskite light-emitting devices (PeLEDs) based on zinc oxide nanorod arrays (ZnO NAs) as the electron transport layer and methylammonium lead bromide nanoplatelets (MAPbBr3 NPLs) as the emissive material for the first time. The polyethyleneimine ethoxylated (PEIE) was inserted between the ZnO NAs and the MAPbBr3 NPLs layer to reduce the energy barrier and improve the electron injection efficiency. Besides, different weight ratios of poly(N-vinylcarbazole) (PVK) were blended with MAPbBr3 NPLs to make evenly dispersed nanocomposite films, thereby enhancing the performance of devices. Meanwhile, the photoluminescence of MAPbBr3 NPLs:PVK nanocomposite film was increased due to reduced self-quenching and prolonged carrier lifetime. Inverted PeLEDs with the configuration of ITO/PEIE-modified ZnO NAs/MAPbBr3 NPLs:PVK/TFB/Au were fabricated and evaluated, using TFB as the hole transport layer. The current density of the devices containing PVK matrix was significantly suppressed compared to those without PVK. Herein, the best device revealed a max brightness of 495 cd m-2 and a low turn-on voltage of 3.1 V that shows potential use in light-emitting applications.

  19. Exciton-phonon coupling in a CsPbBr3 single nanocrystal

    Science.gov (United States)

    Ramade, Julien; Andriambariarijaona, Léon Marcel; Steinmetz, Violette; Goubet, Nicolas; Legrand, Laurent; Barisien, Thierry; Bernardot, Frédérick; Testelin, Christophe; Lhuillier, Emmanuel; Bramati, Alberto; Chamarro, Maria

    2018-02-01

    We have performed micro-photoluminescence measurements on a single CsPbBr3 nanocrystal (NC) with a size comparable to the Bohr diameter (7 nm). When the NC has an orthorhombic crystal symmetry, we observe an exciton fine structure composed of three peaks linearly polarized. We took advantage of the polarization properties of micro-photoluminescence to monitor in situ both the energy and linewidth of individual peaks when increasing temperature. We reveal that two regimes exist, at low and high temperature, which are dominated by acoustic or longitudinal optical phonon (Fröhlich term) couplings, respectively. The acoustic contribution does not change when the energy of the excitonic transition varies in the range of 2.46-2.62 eV, i.e., with NC sizes corresponding to this range. We find that line broadening is mainly ruled by the Fröhlich term, which is consistent with the polar nature of CsPbBr3.

  20. In situ Spectroscopy of Solid-State Chemical Reaction in PbBr2-Deposited CsBr Crystals

    Science.gov (United States)

    Kondo, Shin-ichi; Matsunaga, Toshihiro; Saito, Tadaaki; Asada, Hiroshi

    2003-09-01

    It is possible to measure the fundamental optical absorption spectra of CsPbBr3 and Cs4PbBr6, whose stability is predicted by the study of phase diagram in the binary system CsBr-PbBr2, by means of in situ optical absorption and reflection spectroscopy of thermally induced solid-state chemical reaction in PbBr2-deposited CsBr crystals. On heavy annealing of the crystals, the Pb2+ ions are uniformly dispersed in the crystal matrix. The present experiment provides a novel method for measuring intrinsic optical absorption of ternary metal halides and also for in situ monitoring of doping metal halide crystal with impurities (metal ions or halogen ions).

  1. Multiple Gamma-Ray Detection Capability of a CeBr3 Detector for Gamma Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. A. Naqvi

    2017-01-01

    Full Text Available The newly developed cerium tribromide (CeBr3 detector has reduced intrinsic gamma-ray activity with gamma energy restricted to 1400–2200 keV energy range. This narrower region of background gamma rays allows the CeBr3 detector to detect more than one gamma ray to analyze the gamma-ray spectrum. Use of multiple gamma-ray intensities in elemental analysis instead of a single one improves the accuracy of the estimated results. Multigamma-ray detection capability of a cylindrical 75 mm × 75 mm (diameter × height CeBr3 detector has been tested by analyzing the chlorine concentration in water samples using eight chlorine prompt gamma rays over 517 to 8578 keV energies utilizing a D-D portable neutron generator-based PGNAA setup and measuring the corresponding minimum detection limit (MDC of chlorine. The measured MDC of chlorine for gamma rays with 517–8578 keV energies varies from 0.07 ± 0.02 wt% to 0.80 ± 0.24. The best value of MDC was measured to be 0.07 ± 0.02 wt% for 788 keV gamma rays. The experimental results are in good agreement with Monte Carlo calculations. The study has shown excellent detection capabilities of the CeBr3 detector for eight prompt gamma rays over 517–8578 keV energy range without significant background interference.

  2. Polymeric anionic networks using dibromine as a crosslinker; the preparation and crystal structure of [(C4H9)4N]2[Pt2Br10].(Br2)7 and [(C4H9)4N]2[PtBr4Cl2].(Br2)6.

    Science.gov (United States)

    Berkei, Michael; Bickley, Jamie F; Heaton, Brian T; Steiner, Alexander

    2002-09-21

    The reaction of M[PtX3(CO)] (M+ = [(C4H9)4N]+, X = Br, Cl) with an excess of Br2 gives the new platinum(IV) salts, [(C4H9)4N]2[Pt2Br10].(Br2)7, 1, and [(C4H9)4N]2[PtBr4Cl2].(Br2)6, 2, which, in the solid state, contain strong Br Br interactions resulting in the formation of polymeric networks; they could provide useful solid storage reservoirs for elemental bromine.

  3. Computations on the primary photoreaction of Br2 with CO2: stepwise vs concerted addition of Br atoms.

    Science.gov (United States)

    Xu, Kewei; Korter, Timothy M; Braiman, Mark S

    2015-04-09

    It was proposed previously that Br2-sensitized photolysis of liquid CO2 proceeds through a metastable primary photoproduct, CO2Br2. Possible mechanisms for such a photoreaction are explored here computationally. First, it is shown that the CO2Br radical is not stable in any geometry. This rules out a free-radical mechanism, for example, photochemical splitting of Br2 followed by stepwise addition of Br atoms to CO2-which in turn accounts for the lack of previously observed Br2+CO2 photochemistry in gas phases. A possible alternative mechanism in liquid phase is formation of a weakly bound CO2:Br2 complex, followed by concerted photoaddition of Br2. This hypothesis is suggested by the previously published spectroscopic detection of a binary CO2:Br2 complex in the supersonically cooled gas phase. We compute a global binding-energy minimum of -6.2 kJ mol(-1) for such complexes, in a linear geometry. Two additional local minima were computed for perpendicular (C2v) and nearly parallel asymmetric planar geometries, both with binding energies near -5.4 kJ mol(-1). In these two latter geometries, C-Br and O-Br bond distances are simultaneously in the range of 3.5-3.8 Å, that is, perhaps suitable for a concerted photoaddition under the temperature and pressure conditions where Br2 + CO2 photochemistry has been observed.

  4. Physical properties of glasses in the Ag2GeS3-AgBr system

    Science.gov (United States)

    Moroz, M. V.; Demchenko, P. Yu.; Prokhorenko, S. V.; Moroz, V. M.

    2013-08-01

    Glasses have been prepared by quenching melts in the Ag2GeS3-AgBr system in a range of 0-53 mol % AgBr. The concentration dependences of density, microhardness, glass transition temperatures, and crystallization of alloys have been established. The conductivity of glasses has been investigated by the dc probe method in a range of 240-420 K. The models of the drift motion of silver and halogen ions have been proposed.

  5. The 3d84s-3d84p transitions in Br IX

    International Nuclear Information System (INIS)

    Zeng, X.T.; Jupen, C.; Livingston, A.E.; Westerlind, M.; Engstroem, L.; Martinson, I.

    1990-01-01

    The spectrum of bromine was studied in the region 450-1100 A, using the beam-foil method with 6 MeV ions from a tandem accelerator. On the basis of isoelectronic extrapolations and theoretical calculations, 32 lines were classified as transitions between the 3p 6 3d 8 4s and 3p 6 3d 8 4p configurations of Co-like BrIX. Fo the 16 possible 4s levels 13 have been located, and 11 new 4p levels have been added to the previously known ones. Only 4 of all the 4p levels (45 in total) remain to be found. (orig.)

  6. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    KAUST Repository

    Priante, Davide; Dursun, Ibrahim; Alias, M. S.; Shi, Dong; Melnikov, V. A.; Ng, Tien Khee; Mohammed, Omar F.; Bakr, Osman; Ooi, Boon S.

    2015-01-01

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative

  7. BMP9 inhibits proliferation and metastasis of HER2-positive SK-BR-3 breast cancer cells through ERK1/2 and PI3K/AKT pathways.

    Science.gov (United States)

    Ren, Wei; Liu, Yuehong; Wan, Shaoheng; Fei, Chang; Wang, Wei; Chen, Yingying; Zhang, Zhihui; Wang, Ting; Wang, Jinshu; Zhou, Lan; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-01-01

    Bone morphogenetic protein 9 (BMP9), a member of TGF-β superfamily, is reported to inhibit the growth and migration of prostate cancer, osteosarcoma and triple-negative MDA-MB-231 breast cancer cells. However, little is known about the effect of on the biological behaviors of HER2-positive SK-BR-3 breast cancer cells and the underlying mechanisms. This study aimed to investigate the effects of BMP9 on the proliferation and metastasis of SK-BR-3 cells with BMP9 over-expression or BMP9 down-regulated expression. Results indicated that exogenously expressed BMP9 inhibited the proliferation and metastasis of SK-BR-3 cells while decreased endogenous BMP9 expression in SK-BR-3 cells promoted the proliferation and migration of breast cancer cells in vitro and in vivo. In SK-BR-3 cells with BMP9 over-expression, the phosphorylation of HER2, ERK1/2 and AKT was markedly suppressed and the HER2 expression decreased at both mRNA and protein levels, while opposite results were observed in SK-BR-3 cells with BMP9 knock down. When the phosphorylation of ERK1/2 and PI3K/AKT was inhibited by PD98059 and LY294002, respectively, the decreased proliferation and invasion induced by BMP9 knock down were eliminated. These findings suggest that BMP9 can inhibit the proliferation and metastasis of SK-BR-3 cells via inactivating ERK1/2 and PI3K/AKT signaling pathways. Thus, BMP9 may serve as a useful agent in the treatment of HER-2 positive breast cancer.

  8. Balanced Photodetection in One-Step Liquid-Phase-Synthesized CsPbBr3 Micro-/Nanoflake Single Crystals.

    Science.gov (United States)

    Zheng, Wei; Xiong, Xufan; Lin, Richeng; Zhang, Zhaojun; Xu, Cunhua; Huang, Feng

    2018-01-17

    Here, we reported a low-cost and high-compatibility one-step liquid-phase synthesis method for synthesizing high-purity CsPbBr 3 micro-/nanoflake single crystals. On the basis of the high-purity CsPbBr 3 , we further prepared a low-dimensional photodetector capable of balanced photodetection, involving both high external quantum efficiency and rapid temporal response, which is barely realized in previously reported low-dimensional photodetectors.

  9. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4)...

  10. Contributions of BrCl, Br2, BrOCl, Br2O, and HOBr to regiospecific bromination rates of anisole and bromoanisoles in aqueous solution.

    Science.gov (United States)

    Sivey, John D; Bickley, Mark A; Victor, Daniel A

    2015-04-21

    When bromide-containing waters are chlorinated, conventional wisdom typically assumes HOBr is the only active brominating agent. Several additional and often-overlooked brominating agents (including BrCl, Br2, BrOCl, Br2O) can form in chlorinated waters, albeit at generally lower concentrations than HOBr. The extent to which these additional brominating agents influence bromination rates of disinfection byproduct precursors is, however, poorly understood. Herein, the influence of BrCl, Br2, BrOCl, Br2O, and HOBr toward rates of sequential bromination of anisole was quantified. Conditions affecting bromine speciation (e.g., pH, concentrations of chloride, bromide, and chlorine) were varied, and regiospecific second-order rate constants were calculated for reactions of each brominating agent with anisole, 2-bromoanisole, and 4-bromoanisole. The regioselectivity of anisole bromination changed with pH, consistent with the participation of more than one brominating agent. Under conditions representative of chlorinated drinking water, contributions to bromination rates decreased as BrCl > BrOCl > HOBr > Br2O (Br2 negligible). The second-order rate constant determined for net bromination of anisole by HOBr is up to 3000-times less than reported in previous studies (which assumed HOBr was the only active brominating agent). Accordingly, models that assume HOBr is the only kinetically relevant brominating agent in solutions of free bromine may be insufficient for reactions involving modestly nucleophilic organic compounds.

  11. Enhanced Visible Light Photocatalytic Degradation of Organic Pollutants over Flower-Like Bi2O2CO3 Dotted with Ag@AgBr

    Directory of Open Access Journals (Sweden)

    Shuanglong Lin

    2016-10-01

    Full Text Available A facile and feasible oil-in-water self-assembly approach was developed to synthesize flower-like Ag@AgBr/Bi2O2CO3 micro-composites. The photocatalytic activities of the samples were evaluated through methylene blue degradation under visible light irradiation. Compared to Bi2O2CO3, flower-like Ag@AgBr/Bi2O2CO3 micro-composites show enhanced photocatalytic activities. In addition, results indicate that both the physicochemical properties and associated photocatalytic activities of Ag@AgBr/Bi2O2CO3 composites are shown to be dependent on the loading quantity of Ag@AgBr. The highest photocatalytic performance was achieved at 7 wt % Ag@AgBr, degrading 95.18% methylene blue (MB after 20 min of irradiation, which is over 1.52 and 3.56 times more efficient than that of pure Ag@AgBr and pure Bi2O2CO3, respectively. Bisphenol A (BPA was also degraded to further demonstrate the degradation ability of Ag@AgBr/Bi2O2CO3. A photocatalytic mechanism for the degradation of organic compounds over Ag@AgBr/Bi2O2CO3 was proposed. Results from this study illustrate an entirely new approach to fabricate semiconductor composites containing Ag@AgX/bismuth (X = a halogen.

  12. Interface engineering of CsPbBr3/TiO2 heterostructure with enhanced optoelectronic properties for all-inorganic perovskite solar cells

    Science.gov (United States)

    Qian, Chong-Xin; Deng, Zun-Yi; Yang, Kang; Feng, Jiangshan; Wang, Ming-Zi; Yang, Zhou; Liu, Shengzhong Frank; Feng, Hong-Jian

    2018-02-01

    Interface engineering has become a vital method in accelerating the development of perovskite solar cells in the past few years. To investigate the effect of different contacted surfaces of a light absorber with an electron transporting layer, TiO2, we synthesize CsPbBr3/TiO2 thin films with two different interfaces (CsBr/TiO2 and PbBr2/TiO2). Both interfacial heterostructures exhibit enhanced visible light absorption, and the CsBr/TiO2 thin film presents higher absorption than the PbBr2/TiO2 interface, which is attributed to the formation of interface states and the decreased interface bandgap. Furthermore, compared with the PbBr2/TiO2 interface, CsBr/TiO2 solar devices present larger output short circuit current and shorter photoluminescence decay time, which indicates that the CsBr contacting layer with TiO2 can better extract and separate the photo-induced carriers. The first-principles calculations confirm that, due to the existence of staggered gap (type II) offset junction and the interface states, the CsBr/TiO2 interface can more effectively separate the photo-induced carriers and thus drive the electron transfer from the CsPbBr3 perovskite layer to the TiO2 layer. These results may be beneficial to exploit the potential application of all-inorganic perovskite CsPbBr3-based solar cells through the interface engineering route.

  13. An impedance spectroscopy investigation of nanocrystalline CsPbBr{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, G. [Department of Electronic Engineering and INFM, University of Rome ' Roma Tre' , Via della Vasca Navale 84, 00146 Rome (Italy); Conte, G. [Department of Electronic Engineering and INFM, University of Rome ' Roma Tre' , Via della Vasca Navale 84, 00146 Rome (Italy)]. E-mail: gconte@ele.uniroma3.it; Aloe, P. [Department of Physics and INFM, University of Rome ' Roma Tre' , Via della Vasca Navale 84, 00146 Rome (Italy); Somma, F. [Department of Physics and INFM, University of Rome ' Roma Tre' , Via della Vasca Navale 84, 00146 Rome (Italy)

    2005-12-15

    Thin films of CsPbBr{sub 3} were prepared by co-evaporation of CsBr and PbBr{sub 2} powders. Deposited materials are constituted by nanometer-sized crystals as evidenced by atomic force microscopy and X ray diffraction. Impedance spectroscopy measurements, aimed to study the dielectric relaxation processes and transport mechanisms at grain boundary and grain interior, reveal a complex response of the material both on the frequency and on the temperature variations. DC current voltage curves are ohmic for applied electric field strength up to 2 x 10{sup 6} V/cm. The DC conductivity Arrhenius plot gives a value of the activation energy equal to 0.85 eV, smaller then that expected for an intrinsic semiconductor. On the other hand, impedance measurements on a wide frequency range and at different temperatures can be reduced to a single master curve addressing hopping transport mechanism and dielectric relaxation processes being active. Finally, a simple model based on multiple Voigt's elements has been used to fit the impedance spectroscopy data and to evaluate relevant material parameters.

  14. Wide range tuning of the size and emission color of CH3NH3PbBr3 quantum dots by surface ligands

    Directory of Open Access Journals (Sweden)

    Xin Fang

    2017-08-01

    Full Text Available Organic-inorganic halide perovskite CH3NH3PbX3 (X= I, Br, Cl quantum dots (QDs possess the characters of easy solution-process, high luminescence yield, and unique size-dependent optical properties. In this work, we have improved the nonaqueous emulsion method to synthesize halide perovskite CH3NH3PbBr3 QDs with tunable sizes. Their sizes have been tailored from 5.29 to 2.81 nm in diameter simply by varying the additive amount of surfactant, n-octylamine from 5 to 120 μL. Correspondingly, the photoluminescence (PL peaks shift markedly from 520 nm to very deep blue, 436 nm due to quantum confinement effect. The PL quantum yields exceed 90% except for the smallest QDs. These high-quality QDs have potential to build high-performance optoelectronic devices.

  15. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    Science.gov (United States)

    Priante, D.; Dursun, I.; Alias, M. S.; Shi, D.; Melnikov, V. A.; Ng, T. K.; Mohammed, O. F.; Bakr, O. M.; Ooi, B. S.

    2015-02-01

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77 K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553 nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350 μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  16. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    KAUST Repository

    Priante, Davide

    2015-02-23

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  17. Resistance to {gamma} irradiation of LaBr{sub 3}:Ce and LaCl{sub 3}:Ce single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Normand, S. [CEA-Recherche Technologique, DETECS/SSTM CE Saclay F-91191 Gif Sur Yvette Cedex (France)]. E-mail: stephane.normand@cea.fr; Iltis, A. [Saint-Gobain Crystals, 104 Route de Larchant, 77140 St Pierre les Nemours (France); Bernard, F. [Saint-Gobain Crystals, 104 Route de Larchant, 77140 St Pierre les Nemours (France); Domenech, T. [CEA-Recherche Technologique, DETECS/SSTM CE Saclay F-91191 Gif Sur Yvette Cedex (France); Delacour, P. [CEA-Recherche Technologique, DETECS/SSTM CE Saclay F-91191 Gif Sur Yvette Cedex (France)

    2007-03-11

    LaBr{sub 3}:Ce (Brillance 380) and LaCl{sub 3}:Ce (Brillance 350) both exhibit a very good energy resolution and energy linearity response. They are also more sensitive to {gamma}-rays than NaI(Tl) detectors, due to their higher density. The aim of this work is to determine the behaviour of those new single crystals in comparison with NaI(Tl) under severe {gamma}-ray irradiation. Therefore we have irradiated three 25 by 25 mm cylinder crystals encapsulated in air-tight aluminium housing with {sup 60}Co beam. Crystals were tested as stand-alone material not to test the impact of radiation to our photomultiplier tube (PMT). Only encapsulated crystals (alone, without PMTs) were irradiated during several periods to achieve the final 3.4 kGy integrated dose. Intermediate measurements of {sup 137}Cs spectrum were done in order to evaluate the impact of the dose on the studied crystal performances. The radiation hardness of LaBr{sub 3}:Ce and LaCl{sub 3}:Ce was then compared to NaI(Tl). We show in this paper that up to 3.4 kGy no permanent modification of the energy resolution nor colour change is observed for LaBr{sub 3}:Ce and LaCl{sub 3}:Ce crystals. The light output also seems quite stable. This is in stark contrast with the behaviour of NaI:Tl which exhibits continuously decreasing light output, colour change and worsening of energy resolution for doses above 5 Gy.

  18. Growth of PbX2 and CsPbX3 (X = Cl, Br) mesoscopic phases in alkali halide host lattices

    Science.gov (United States)

    Polak, K.; Nitsch, K.; Nikl, M.

    Formation of PbCl2 and CsPbBr3 microphases in NaCl and CsBr respectively is studied using mainly an absorption spectroscopy. The absorption of NaCl: Pb crystal was investigated as a function of annealing temperature and duration of thermal treatment. Changes in the position and shape of the exciton band were studied in CsBr: Pb absorption spectrum. The results showed that the shape of CsPbBr3 microcrystals is far from a spherical one. The microcrystals probably grow as highly elongated discs.

  19. Thorough Chemical Decontamination with the MEDOC Process : Batch Treatment of Dismantled Pieces or Loop Treatment of Large Components Such as the BR3 Steam Generator and Pressurizer

    International Nuclear Information System (INIS)

    Ponnet, M.; Klein, M.; Massaut, V.; Davain, H.; Aleton, G.

    2003-01-01

    The dismantling of the BR3-PWR reactor leads to the production of large masses of contaminated metallic pieces, including structural materials, primary pipings, tanks and heat exchangers. One of our main objectives is to demonstrate that we can minimize the volume of radioactive waste in an economical way, by the use of alternative waste routes, such as the clearance of materials after thorough decontamination. The SCKoCEN uses its own developed chemical decontamination process, so-called MEDOC (Metal Decontamination by Oxidation with Cerium), based on the use of cerium IV as strong oxidant in sulphuric acid with continuous regeneration using ozone. An industrial installation has been designed and constructed in close collaboration with Framatome-ANP (France). This installation started operation in September 1999 for the treatment of the metallic pieces arising from the dismantling of the BR3 reactor. Since then, more than 25 tons of contaminated material including primary pipes have been treated batchwise with success. 75 % of material could be directly cleared after treatment (Activity lower than 0.1 Bq/g for 60Co) and the other 25% free released after melting activity. The SCKoCEN performed in April 2002 the closed loop decontamination of the BR3 Steam Generator by connection of the MEDOC plant after few adaptations. The decontamination was done within 30 cycles in 3 weeks with consecutive steps like decontamination steps (injection of the solution into the SG) and regeneration steps with ozone. In total, 60 hours of decontamination at 70 C and 130 hours of regeneration were needed to reach the objectives. The tube bundle (600 m2) was attacked and about 10 (micro)m representing more than 41 kg of stainless steel and 2.06 GBq of 60Co was dissolved into the solution. The residual contamination measurements made directly into the water box are still going on, however it seems that the objective to reach the free release criteria after melting is achieved. The next

  20. Fabrication of graphene oxide enwrapped Z-scheme Ag{sub 2}SO{sub 3}/AgBr nanoparticles with enhanced visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yujuan; Liang, Chunyan; Xia, Yue, E-mail: xiayue_chem@126.com; Huang, Wei; Li, Zelin

    2017-02-28

    Highlights: • A novel GO/Ag{sub 2}SO{sub 3}/AgBr composite was prepared via a solution method. • It showed enhanced photocatalytic performance to degrade dyes under visible light irradiation. • Its photocatalytic ability was effectively maintained for 4 cycles without sacrificial reagents. - Abstract: A novel graphene oxide (GO) enwrapped Ag{sub 2}SO{sub 3}/AgBr (GO/Ag{sub 2}SO{sub 3}/AgBr) composite was fabricated through a facile solution approach via electrostatic interaction and precipitation transformation reaction for the first time. The results of XRD, Raman, SEM, TEM and XPS confirmed the structure, morphology and composition of the GO/Ag{sub 2}SO{sub 3}/AgBr composite very well. The Ag{sub 2}SO{sub 3}/AgBr nanoparticles were found to be encapsulated by GO sheets. The photocatalytic activity of the composite was investigated by the degradation of methyl orange (MO), rhodamine B (RhB) and methylene blue (MB) in water under visible light. The incorporation of GO sheets not only significantly enhanced the photocatalytic activity but also improved the reusability of Ag{sub 2}SO{sub 3}/AgBr nanoparticles. The photocatalytic ability of GO/Ag{sub 2}SO{sub 3}/AgBr can be maintained at a high level for 4 times cycle experiments. The trapping experiments confirmed that holes and superoxide ion radicals were the main active species responsible for the degradation reaction. A plasmonic Z-scheme photocatalytic mechanism was proposed to illustrate the possible transferred and separated behavior of electron-hole pairs among Ag, Ag{sub 2}SO{sub 3}, AgBr and GO quaternary system under visible light irradiation.

  1. Boosting Two-Dimensional MoS2/CsPbBr3 Photodetectors via Enhanced Light Absorbance and Interfacial Carrier Separation.

    Science.gov (United States)

    Song, Xiufeng; Liu, Xuhai; Yu, Dejian; Huo, Chengxue; Ji, Jianping; Li, Xiaoming; Zhang, Shengli; Zou, Yousheng; Zhu, Gangyi; Wang, Yongjin; Wu, Mingzai; Xie, An; Zeng, Haibo

    2018-01-24

    Transition metal dichalcogenides (TMDs) are promising candidates for flexible optoelectronic devices because of their special structures and excellent properties, but the low optical absorption of the ultrathin layers greatly limits the generation of photocarriers and restricts the performance. Here, we integrate all-inorganic perovskite CsPbBr 3 nanosheets with MoS 2 atomic layers and take the advantage of the large absorption coefficient and high quantum efficiency of the perovskites, to achieve excellent performance of the TMD-based photodetectors. Significantly, the interfacial charge transfer from the CsPbBr 3 to the MoS 2 layer has been evidenced by the observed photoluminescence quenching and shortened decay time of the hybrid MoS 2 /CsPbBr 3 . Resultantly, such a hybrid MoS 2 /CsPbBr 3 photodetector exhibits a high photoresponsivity of 4.4 A/W, an external quantum efficiency of 302%, and a detectivity of 2.5 × 10 10 Jones because of the high efficient photoexcited carrier separation at the interface of MoS 2 and CsPbBr 3 . The photoresponsivity of this hybrid device presents an improvement of 3 orders of magnitude compared with that of a MoS 2 device without CsPbBr 3 . The response time of the device is also shortened from 65.2 to 0.72 ms after coupling with MoS 2 layers. The combination of the all-inorganic perovskite layer with high photon absorption and the carrier transport TMD layer may pave the way for novel high-performance optoelectronic devices.

  2. Highly Luminescent and Ultrastable CsPbBr3 Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith.

    Science.gov (United States)

    Li, Zhichun; Kong, Long; Huang, Shouqiang; Li, Liang

    2017-07-03

    We successfully prepared QDs incorporated into a silica/alumina monolith (QDs-SAM) by a simple sol-gel reaction of an Al-Si single precursor with CsPbBr 3 QDs blended in toluene solution, without adding water and catalyst. The resultant transparent monolith exhibits high photoluminescence quantum yields (PLQY) up to 90 %, and good photostability under strong illumination of blue light for 300 h. We show that the preliminary ligand exchange of didodecyl dimethyl ammonium bromide (DDAB) was very important to protect CsPbBr 3 QDs from surface damages during the sol-gel reaction, which not only allowed us to maintain the original optical properties of CsPbBr 3 QDs but also prevented the aggregation of QDs and made the monolith transparent. The CsPbBr 3 QDs-SAM in powder form was easily mixed into the resins and applied as color-converting layer with curing on blue light-emitting diodes (LED). The material showed a high luminous efficacy of 80 lm W -1 and a narrow emission with a full width at half maximum (FWHM) of 25 nm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Br2 elimination in 248-nm photolysis of CF2Br2 probed by using cavity ring-down absorption spectroscopy.

    Science.gov (United States)

    Hsu, Ching-Yi; Huang, Hong-Yi; Lin, King-Chuen

    2005-10-01

    By using cavity ring-down absorption spectroscopy technique, we have observed the channel of Br2 molecular elimination following photodissociation of CF2Br2 at 248 nm. A tunable laser beam, which is crossed perpendicular to the photolyzing laser beam in a ring-down cell, is used to probe the Br2 fragment in the B 3Piou+-X1Sigmag+ transition. The vibrational population is obtained in a nascent state, despite ring-down time as long as 500-1000 ns. The population ratio of Br2(v=1)/Br2(v=0) is determined to be 0.4+/-0.2, slightly larger than the value of 0.22 evaluated by Boltzmann distribution at room temperature. The quantum yield of the Br2 elimination reaction is also measured to be 0.04+/-0.01. This work provides direct evidence to support molecular elimination occurring in the CF2Br2 photodissociation and proposes a plausible pathway with the aid of ab initio potential-energy calculations. CF2Br2 is excited probably to the 1B1 and 3B2 states at 248 nm. As the C-Br bond is elongated upon excitation, the coupling of the 1A'(1B1) state to the high vibrational levels of the ground state X 1A'(1A1) may be enhanced to facilitate the process of internal conversion. After transition, the highly vibrationally excited CF2Br2 feasibly surpasses a transition barrier prior to decomposition. According to the ab initio calculations, the transition state structure tends to correlate with the intermediate state CF2Br+Br(CF2Br...Br) and the products CF2+Br2. A sequential photodissociation pathway is thus favored. That is, a single C-Br bond breaks, and then the free-Br atom moves to form a Br-Br bond, followed by the Br2 elimination. The formed Br-Br bond distance in the transition state tends to approach equilibrium such that the Br2 fragment may be populated in cold vibrational distribution. Observation of a small vibrational population ratio of Br2(v=1)Br2(v=0) agrees with the proposed mechanism.

  4. Germylenes: structures, electron affinities, and singlet-triplet gaps of the conventional XGeCY(3) (X = H, F, Cl, Br, and I; Y = F and Cl) species and the unexpected cyclic XGeCY(3) (Y = Br and I) systems.

    Science.gov (United States)

    Bundhun, Ashwini; Abdallah, Hassan H; Ramasami, Ponnadurai; Schaefer, Henry F

    2010-12-23

    A systematic investigation of the X-Ge-CY(3) (X = H, F, Cl, Br, and I; Y = F, Cl, Br, and I) species is carried out using density functional theory. The basis sets used for all atoms (except iodine) in this work are of double-ζ plus polarization quality with additional s- and p-type diffuse functions, and denoted DZP++. Vibrational frequency analyses are performed to evaluate zero-point energy corrections and to determine the nature of the stationary points located. Predicted are four different forms of neutral-anion separations: adiabatic electron affinity (EA(ad)), zero-point vibrational energy corrected EA(ad(ZPVE)), vertical electron affinity (EA(vert)), and vertical detachment energy (VDE). The electronegativity (χ) reactivity descriptor for the halogens (X = F, Cl, Br, and I) is used as a tool to assess the interrelated properties of these germylenes. The topological position of the halogen atom bound to the divalent germanium center is well correlated with the trend in the electron affinities and singlet-triplet gaps. For the expected XGeCY(3) structures (X = H, F, Cl, Br, and I; Y = F and Cl), the predicted trend in the electron affinities is well correlated with simpler germylene derivatives (J. Phys. Chem. A 2009, 113, 8080). The predicted EA(ad(ZPVE)) values with the BHLYP functional range from 1.66 eV (FGeCCl(3)) to 2.20 eV (IGeCF(3)), while the singlet-triplet splittings range from 1.28 eV (HGeCF(3)) to 2.22 eV (FGeCCl(3)). The XGeCY(3) (Y = Br and I) species are most often characterized by three-membered cyclic systems involving the divalent germanium atom, the carbon atom, and a halogen atom.

  5. Predictions of the thermomechanical code ''RESTA'' compared with fuel element examinations after irradiation in the BR3 reactor

    International Nuclear Information System (INIS)

    Petitgrand, S.

    1980-01-01

    A large number of fuel rods have been irradiated in the small power plant BR3. Many of them have been examined in hot cells after irradiation, giving thus valuable experimental information. On the other hand a thermomechanical code, named RESTA, has been developed by the C.E.A. to describe and predict the behaviour of a fuel pin in a PWR environment and in stationary conditions. The models used in that code derive chiefly from the C.E.A.'s own experience and are briefly reviewed in this paper. The comparison between prediction and experience has been performed for four power history classes: (1) moderate (average linear rating approximately equal to 20 kw m -1 ) and short (approximately equal to 300 days) rating, (2) moderate (approximately equal to 20 kw m -1 ) and long (approximately equal to 600 days) rating, (3) high (25-30 kw m -1 ) and long (approximately equal to 600 days) rating and (4) very high (30-40 kw m -1 ) and long (approximately equal to 600 days) rating. Satisfactory agreement has been found between experimental and calculated results in all cases, concerning fuel structural change, fission gas release, pellet-clad interaction as well as clad permanent strain. (author)

  6. Vnější ekonomické vztahy Chile

    OpenAIRE

    Horáková, Anna

    2007-01-01

    Práce se zabývá vnějšími ekonomickými vztahy Chile. V první části je charakterizována ekonomika Chile. V druhé části je zmapován vývoj obchodní politiky Chile a zapojování Chile do ekonomické integrace. Poslední kapitola nejprve analyzuje vývoj obchodu Chile, ilustruje problém jednostranného zaměření chilského exportu a analyzuje obchodní vztahy s EU, USA a Čínou. Následně jsou naznačeny nové ?role? Chile ve vztahu ke světovému obchodu.

  7. Microhardness studies on as-grown faces of NaClO3 and NaBrO3 ...

    Indian Academy of Sciences (India)

    Unknown

    studies are made on as-grown faces of these crystals at various loads. Typical cracks are ... crystals is around 1⋅6 suggesting that these are moderately harder samples. ... the values of elastic constants (C44) and are found to be close to the experimental results. ..... the structure of NaClO3 and NaBrO3 is not as simple as.

  8. Free-tropospheric BrO investigations based on GOME

    Science.gov (United States)

    Post, P.; van Roozendael, M.; Backman, L.; Damski, J.; Thölix, L.; Fayt, C.; Taalas, P.

    2003-04-01

    Bromine compounds contribute significantly to the stratospheric ozone depletion. However measurements of most bromine compounds are sparse or non-existent, and experimental studies essentially rely on BrO observations. The differences between balloon and ground based measurements of stratospheric BrO columns and satellite total column measurements are too large to be explained by measurement uncertainties. Therefore, it has been assumed that there is a concentration of BrO in the free troposphere of about 1-3 ppt. In a previous work, we have calculated the tropospheric BrO abundance as the difference between total BrO and stratospheric BrO columns. The total vertical column densities of BrO are extracted from GOME measurements using IASB-BIRA algorithms. The stratospheric amount has been calculated using chemical transport models (CTM). Results from SLIMCAT and FinROSE simulations are used for this purpose. SLIMCAT is a widely used 3D CTM that has been tested against balloon measurements. FinROSE is a 3D CTM developed at FMI. We have tried several different tropospheric BrO profiles. Our results show that a profile with high BrO concentrations in the boundary layer usually gives unrealistically high tropospheric column values over areas of low albedo (like oceans). This suggests that the tropospheric BrO would be predominantly distributed in the free troposphere. In this work, attempts are made to identify the signature of a free tropospheric BrO content when comparing cloudy and non-cloudy scenes. The possible impact of orography on measured BrO columns is also investigated.

  9. Dual-Phase CsPbBr3 -CsPb2 Br5 Perovskite Thin Films via Vapor Deposition for High-Performance Rigid and Flexible Photodetectors.

    Science.gov (United States)

    Tong, Guoqing; Li, Huan; Li, Danting; Zhu, Zhifeng; Xu, Enze; Li, Guopeng; Yu, Linwei; Xu, Jun; Jiang, Yang

    2018-02-01

    Inorganic perovskites with special semiconducting properties and structures have attracted great attention and are regarded as next generation candidates for optoelectronic devices. Herein, using a physical vapor deposition process with a controlled excess of PbBr 2 , dual-phase all-inorganic perovskite composite CsPbBr 3 -CsPb 2 Br 5 thin films are prepared as light-harvesting layers and incorporated in a photodetector (PD). The PD has a high responsivity and detectivity of 0.375 A W -1 and 10 11 Jones, respectively, and a fast response time (from 10% to 90% of the maximum photocurrent) of ≈280 µs/640 µs. The device also shows an excellent stability in air for more than 65 d without encapsulation. Tetragonal CsPb 2 Br 5 provides satisfactory passivation to reduce the recombination of the charge carriers, and with its lower free energy, it enhances the stability of the inorganic perovskite devices. Remarkably, the same inorganic perovskite photodetector is also highly flexible and exhibits an exceptional bending performance (>1000 cycles). These results highlight the great potential of dual-phase inorganic perovskite films in the development of optoelectronic devices, especially for flexible device applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br

    Science.gov (United States)

    Hsu, K.-J.; Demore, W. B.

    1994-01-01

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  11. Synthesis of 2β-carbomethoxy-3β-(4-[76Br]bromophenyl)tropane ([76Br]β-CBT), a PET tracer for in vivo imaging of the dopamine uptake sites

    International Nuclear Information System (INIS)

    Loc'h, Christian; Ottaviani, Michele; Maziere, Bernard; Mueller, Lars; Halldin, Christer; Farde, Lars

    1995-01-01

    2β-carbomethoxy-3β-(4-[ 76 Br]bromophenyl)tropane ([ 76 Br]β-CBT) was prepared either by electrophilic substitution from the tributyl-stannyl derivative and peracetic acid as oxidant or by nucleophilic substitution from the iodo analogue (β-CIT) and a Cu + assisted bromodeiodination exchange. After purification by solid phase extraction and reverse phase HPLC, the chemical and radiochemical purities of [ 76 Br]β-CBT were >98% and the specific radioactivity was 20 GBq/μmol. Using the two labelling techniques, the radiochemical yields were 80% and 60%, respectively. From the deshalogeno compound and different oxidizing conditions, the radiolabelling yields were <5%. (Author)

  12. PbCl2-tuned inorganic cubic CsPbBr3(Cl) perovskite solar cells with enhanced electron lifetime, diffusion length and photovoltaic performance

    Science.gov (United States)

    Li, Bo; Zhang, Yanan; Zhang, Luyuan; Yin, Longwei

    2017-08-01

    Inorganic CsPbBr3 perovskite is arousing great interest following after organic-inorganic hybrid halide perovskites, and is found as a good candidate for photovoltaic devices for its prominent photoelectric property and stability. Herein, we for the first time report on PbCl2-tuned inorganic Cl-doped CsPbBr3(Cl) perovskite solar cells with adjustable crystal structure and Cl doping for enhanced carrier lifetime, extraction rate and photovoltaic performance. The effect of PbCl2 on the morphologies, structures, optical, and photovoltaic performance of CsPbBr3 perovskite solar cells is investigated systemically. Compared with orthorhombic CsPbBr3, cubic CsPbBr3 demonstrates a significant improvement for electron lifetime (from 6.7 ns to 12.3 ns) and diffusion length (from 69 nm to 197 nm), as well as the enhanced electron extraction rate from CsPbBr3 to TiO2. More importantly, Cl doping benefits the further enhancement of carrier lifetime (14.3 ns) and diffusion length (208 nm). The Cl doped cubic CsPbBr3(Cl) perovskite solar cell exhibits a Jsc of 8.47 mA cm-2 and a PCE of 6.21%, superior to that of pure orthorhombic CsPbBr3 (6.22 mA cm-2 and 3.78%). The improvement of photovoltaic performance can be attributed to enhanced carrier lifetime, diffusion length and extraction rates, as well as suppressed nonradiative recombination.

  13. Synthesis, crystal structure and Raman spectrum of Ba{sub 7}[BO{sub 3}]{sub 3}Br(O{sub 1.33}F{sub 1.33})

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Dept. of Chemistry and Chemical Biology; Schulz, Armin [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2017-05-01

    In addition to amorphous material and Ba{sub 7}[BO{sub 3}]{sub 4-x}F{sub 2-3x}, air and moisture sensitive single crystals of Ba{sub 7}[BO{sub 3}]{sub 3}Br(O{sub 1.33}F{sub 1.33}) were formed from H{sub 3}BO{sub 3}, Ba(OH){sub 2}, BaF{sub 2} and BaBr{sub 2} . H{sub 2}O in alumina crucibles open to the atmosphere at 1300 K for 13 h. Ba{sub 7}[BO{sub 3}]{sub 3}Br(O{sub 1.33}F{sub 1.33}) crystallizes in the hexagonal space group P6{sub 3}mc (no. 186, Z=2) with the lattice parameters a=1118.1(2) and c=723.93(13) pm. The Raman spectrum of the title compounds was also acquired and is compared to literature data.

  14. Refurbishment of BR2 (Phase 4 and 5)

    International Nuclear Information System (INIS)

    Gubel, P.; Dekeyser, J.; Van der Auwera, J.

    1998-01-01

    The extensive refurbishment of the BR-2 materials testing reactor should allow another 10 to 15 years of continued operation. The refurbishment programme is required in order to comply with modern safety standards, to enhance the reliability of operation, and to compensate for the ageing of the installations of a facility that has reached about 35 years of intensive service. The main objectives and achievements of phase 4 and 5 are described

  15. Theoretical study and rate constant calculation for the reactions of SH (SD) with Cl2, Br2, and BrCl.

    Science.gov (United States)

    Wang, Li; Liu, Jing-Yao; Li, Ze-Sheng; Sun, Chia-Chung

    2005-01-30

    The mechanisms of the SH (SD) radicals with Cl2 (R1), Br2 (R2), and BrCl (R3) are investigated theoretically, and the rate constants are calculated using a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6-311G(d,p) and MPW1K/6-311G(d,p) levels. Higher-level energies are obtained at the approximate QCISD(T)/6-311++G(3df, 2pd) level using the MP2 geometries as well as by the multicoefficient correlation method based on QCISD (MC-QCISD) using the MPW1K geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of these reactions, which indicate that the reactions may proceed via an indirect mechanism. The enthalpies of formation for the species XSH/XSD (X = Cl and Br) are evaluated using hydrogenation working reactions method. By canonical variational transition-state theory (CVT), the rate constants of SH and SD radicals with Cl2, Br2, and BrCl are calculated over a wide temperature range of 200-2000 K at the a-QCISD(T)/6-311++G(3df, 2pd)//MP2/6-311G(d, p) level. Good agreement between the calculated and experimental rate constants is obtained in the measured temperature range. Our calculations show that for SH (SD) + BrCl reaction bromine abstraction (R3a or R3a') leading to the formation of BrSH (BrSD) + Cl in a barrierless process dominants the reaction with the branching ratios for channels 3a and 3a' of 99% at 298 K, which is quite different from the experimental result of k3a'/k3' = 54 +/- 10%. Negative activation energies are found at the higher level for the SH + Br2 and SH + BrCl (Br-abstraction) reactions; as a result, the rate constants show a slightly negative temperature dependence, which is consistent with the determination in the literature. The kinetic isotope effects for the three reactions are "inverse". The values of kH/kD are 0.88, 0.91, and 0.69 at room temperature, respectively, and they increase

  16. 248 nm photolysis of CH2Br2 by using cavity ring-down absorption spectroscopy: Br2 molecular elimination at room temperature.

    Science.gov (United States)

    Wei, Pei-Ying; Chang, Yuan-Ping; Lee, Wei-Bin; Hu, Zhengfa; Huang, Hong-Yi; Lin, King-Chuen; Chen, K T; Chang, A H H

    2006-10-07

    Following photodissociation of CH2Br2 at 248 nm, Br2 molecular elimination is detected by using a tunable laser beam, as crossed perpendicular to the photolyzing laser beam in a ring-down cell, probing the Br2 fragment in the B 3Piou+ -X 1Sigmag+ transition. The nascent vibrational population is obtained, yielding a population ratio of Br2(v = 1)Br2(v = 0) to be 0.7 +/- 0.2. The quantum yield for the Br2 elimination reaction is determined to be 0.2 +/- 0.1. Nevertheless, when CH2Br2 is prepared in a supersonic molecular beam under cold temperature, photofragmentation gives no Br2 detectable in a time-of-flight mass spectrometer. With the aid of ab initio potential energy calculations, a plausible pathway is proposed. Upon excitation to the 1B1 or 3B1 state, C-Br bond elongation may change the molecular symmetry of Cs and enhance the resultant 1 1,3A'-X 1A' (or 1 1,3B1-X 1A1 as C2v is used) coupling to facilitate the process of internal conversion, followed by asynchronous concerted photodissociation. Temperature dependence measurements lend support to the proposed pathway.

  17. Two new 3-D cadmium bromoplumbates: the only example of heterometallic bromoplumbate based on crown [Cd(Pb4O4)Br2] clusters.

    Science.gov (United States)

    Xiao, Hong; Zhou, Jian; Liu, Xing

    2018-04-03

    Two new cadmium bromoplumbates [CdPb2Br2L2]n (1, L = ethylene glycol) and [CdPb6Br6L4]n (2) have been solvothermally synthesized and structurally characterized. 1 contains 1-D neutral heterometallic chains [CdPb2Br2L2]n, which are further connected via weak Pb-Br bonds, resulting in a 3-D network structure. The 3-D framework of 2 is constructed by the interconnection of a 2-D neutral layer [CdPb6Br6L4]nvia weak Pb-Br bonds. The [CdPb6Br6L4]n layer is based on the linkages of dimeric [Pb2Br4] units and heterometallic crown [Cd(Pb4O4)Br2] clusters containing a rare eight-membered [Pb4O4] ring. Although a few heterometallic bromoplumbate clusters have been reported, they usually exhibit molecular moieties. 2 represents the only example of 3-D heterometallic bromoplumbate based on the combination of heterometallic crown [Cd(Pb4O4)Br2] clusters and dimeric [Pb2Br4] units. Their optical properties are studied and density functional theory calculations for 1 and 2 have also been performed.

  18. Dicty_cDB: FC-BR23 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available FC (Link to library) FC-BR23 (Link to dictyBase) - - - Contig-U15008-1 FC-BR23Z (Li...nk to Original site) - - FC-BR23Z 641 - - - - Show FC-BR23 Library FC (Link to library) Clone ID FC-BR23 (Li.../dictycdb.biol.tsukuba.ac.jp/CSM/FC/FC-BR/FC-BR23Q.Seq.d/ Representative seq. ID FC-BR2...3Z (Link to Original site) Representative DNA sequence >FC-BR23 (FC-BR23Q) /CSM/FC/FC-BR/FC-BR23Q.Seq....9 0.0 SLA211 (SLA211Q) /CSM/SL/SLA2-A/SLA211Q.Seq.d/ 1029 0.0 FC-BR23 (FC-BR23Q) /CSM/FC/FC-BR/FC-BR2

  19. Neurogenesis in the vomeronasal epithelium of adult garter snakes: 3. Use of 3H-thymidine autoradiography to trace the genesis and migration of bipolar neurons

    International Nuclear Information System (INIS)

    Wang, R.T.; Halpern, M.

    1988-01-01

    Use of 3H-thymidine autoradiography and unilateral vomeronasal (VN) axotomy has permitted us to demonstrate directly the existence of VN stem cells in the adult garter snake and to trace continuous bipolar neuron development and migration in the normal VN and deafferentated VN epithelium in the same animal. The vomeronasal epithelium and olfactory epithelium of adult garter snakes are both capable of incorporating 3H-thymidine. In the sensory epithelium of the vomeronasal organ, 3H-thymidine-labeled cells were initially restricted to the base of the undifferentiated cell layer in animals surviving 1 day following 3H-thymidine injection. With increasing survival time, labeled cells progressively migrated vertically within the receptor cell column toward the apex of the bipolar neuron layer. In both the normal and denervated VN epithelium, labeled cells were observed through the 56 days of postoperative survival. In the normal epithelium, labeled cells were always located within the matrix of the intact receptor cell columns. However, labeled cells of the denervated epithelium were always located at the apical front of the newly formed cell mass following depletion of the original neuronal cell population. In addition, at postoperative days 28 and 56, labeled cells of the denervated VN epithelium achieved neuronal differentiation and maturation by migrating much farther away from the base of the receptor cell column than the labeled cells on the normal, unoperated contralateral side. This study directly demonstrates that basal cells initially incorporating 3H-thymidine are indeed stem cells of the VN epithelium in adult garter snakes

  20. Broadband femtosecond nonlinear optical properties of CsPbBr3 perovskite nanocrystals.

    Science.gov (United States)

    Krishnakanth, Katturi Naga; Seth, Sudipta; Samanta, Anunay; Rao, Soma Venugopal

    2018-02-01

    We report the broadband nonlinear optical (NLO) properties of CsPbBr 3 perovskite films achieved from colloidal nanocrystals prepared following a room temperature and open atmosphere anti-solvent precipitation method. The NLO studies were performed on the films of nanocubes (NCs) and nanorods (NRs) using the Z-scan technique with 1 kHz femtosecond pulses at 600, 700, and 800 nm. Large two-photon absorption cross sections (∼10 5   GM) were retrieved by fitting the open-aperture Z-scan data. Strong third-order NLO susceptibility (∼10 -10   esu) was observed in these films. At higher peak intensities a switching of sign (in both NCs and NRs) in the real and imaginary parts of the NLO susceptibility was observed from the studies on these CsPbBr 3 nanocrystals. The obtained NLO coefficients clearly suggest that these materials are promising for ultrafast photonic applications.

  1. CH3 NH3 PbBr3 Perovskite Nanocrystals as Efficient Light-Harvesting Antenna for Fluorescence Resonance Energy Transfer.

    Science.gov (United States)

    Muthu, Chinnadurai; Vijayan, Anuja; Nair, Vijayakumar C

    2017-05-04

    Hybrid perovskites have created enormous research interest as a low-cost material for high-performance photovoltaic devices, light-emitting diodes, photodetectors, memory devices and sensors. Perovskite materials in nanocrystal form that display intense luminescence due to the quantum confinement effect were found to be particularly suitable for most of these applications. However, the potential use of perovskite nanocrystals as a light-harvesting antenna for possible applications in artificial photosynthesis systems is not yet explored. In the present work, we study the light-harvesting antenna properties of luminescent methylammonium lead bromide (CH 3 NH 3 PbBr 3 )-based perovskite nanocrystals using fluorescent dyes (rhodamine B, rhodamine 101, and nile red) as energy acceptors. Our studies revealed that CH 3 NH 3 PbBr 3 nanocrystals are an excellent light-harvesting antenna, and efficient fluorescence resonance energy transfer occurs from the nanocrystals to fluorescent dyes. Further, the energy transfer efficiency is found to be highly dependent on the number of anchoring groups and binding ability of the dyes to the surface of the nanocrystals. These observations may have significant implications for perovskite-based light-harvesting devices and their possible use in artificial photosynthesis systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Material Properties of CsSnBr3 and CsBr:Sn-1% and Their Potential as Scintillator Detector Material

    Science.gov (United States)

    2010-03-01

    Iodide or Cesium Iodide are the benchmarks for ease of use and quick identification of isotope species. This research aims to explore Cesium Bromide doped...oxidation states of 3+, 4+, 5+ and 6+ were used to identify the Pu pollution in the Rocky Flats area. The identification of the Pu4+ oxidation state...point was causing the normalization of the spectra to be much higher than what it should be. The XANES structures lineup showing the Sn in the CsSnBr3

  3. Plasmonic Perovskite Light-Emitting Diodes Based on the Ag-CsPbBr3 System.

    Science.gov (United States)

    Zhang, Xiaoli; Xu, Bing; Wang, Weigao; Liu, Sheng; Zheng, Yuanjin; Chen, Shuming; Wang, Kai; Sun, Xiao Wei

    2017-02-08

    The enhanced luminescence through semiconductor-metal interactions suggests the great potential of device performance improvement via properly tailored plasmonic nanostructures. Surface plasmon enhanced electroluminescence in an all-inorganic CsPbBr 3 perovskite light-emitting diode (LED) is fabricated by decorating the hole transport layer with the synthesized Ag nanorods. An increase of 42% and 43.3% in the luminance and efficiency is demonstrated for devices incorporated with Ag nanorods. The device with Ag introduction indicates identical optoelectronic properties to the controlled device without Ag nanostructures. The increased spontaneous emission rate caused by the Ag-induced plasmonic near-field effect is responsible for the performance enhancement. Therefore, the plasmonic Ag-CsPbBr 3 nanostructure studied here provides a novel strategy on the road to the future development of perovskite LEDs.

  4. THE INVESTIGATION OF PRODUCTIVE AND RECEPTIVE COMPETENCE IN V+N AND ADJ+N COLLOCATIONS AMONG INDONESIAN EFL LEARNERS

    Directory of Open Access Journals (Sweden)

    Saudin Saudin

    2017-05-01

    Full Text Available The important role of collocation in learners’ language proficiency has been acknowledged widely. In Systemic Functional Linguistics (SFL, collocation is known as one prominent member of the super-ordinate lexical cohesion, which contributes significantly to the textual coherence, together with grammatical cohesion and structural cohesion (Halliday & Hasan, 1985. Collocation is also viewed as the hallmark of truly advanced English learners since the higher the learners’ proficiency is, the more they tend to use collocation (Bazzaz & Samad, 2011; Hsu, 2007; Zhang, 1993. Further, knowledge of collocation is regarded as part of the native speakers’ communicative competence (Bazzaz & Samad, 2011; and lack of the knowledge is the most important sign of foreignness among foreign language learners (McArthur, 1992; McCarthy, 1990. Taking the importance of collocation into account, this study is aimed to shed light on Indonesian EFL learners’ levels of collocational competence. In the study, the collocational competence is restricted to v+n and adj+n of collocation but broken down into productive and receptive competence, about which little work has been done (Henriksen, 2013. For this purpose, 49 second-year students of an English department in a state polytechnic were chosen as the subjects. Two sets of tests (filling in the blanks and multiple-choice were administered to obtain the data of the subjects’ levels of productive and receptive competence and to gain information of which type was more problematic for the learners. The test instruments were designed by referring to Brashi’s (2006 test model, and Koya’s (2003. In the analysis of the data, interpretive-qualitative method was used primarily to obtain broad explanatory information. The data analysis showed that the scores of productive competence were lower than those of receptive competence in both v+n and adj+n collocation. The analysis also revealed that the scores of productive

  5. Origin of the Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Brennan, Michael C; Herr, John E; Nguyen-Beck, Triet S; Zinna, Jessica; Draguta, Sergiu; Rouvimov, Sergei; Parkhill, John; Kuno, Masaru

    2017-09-06

    The origin of the size-dependent Stokes shift in CsPbBr 3 nanocrystals (NCs) is explained for the first time. Stokes shifts range from 82 to 20 meV for NCs with effective edge lengths varying from ∼4 to 13 nm. We show that the Stokes shift is intrinsic to the NC electronic structure and does not arise from extrinsic effects such as residual ensemble size distributions, impurities, or solvent-related effects. The origin of the Stokes shift is elucidated via first-principles calculations. Corresponding theoretical modeling of the CsPbBr 3 NC density of states and band structure reveals the existence of an intrinsic confined hole state 260 to 70 meV above the valence band edge state for NCs with edge lengths from ∼2 to 5 nm. A size-dependent Stokes shift is therefore predicted and is in quantitative agreement with the experimental data. Comparison between bulk and NC calculations shows that the confined hole state is exclusive to NCs. At a broader level, the distinction between absorbing and emitting states in CsPbBr 3 is likely a general feature of other halide perovskite NCs and can be tuned via NC size to enhance applications involving these materials.

  6. Multi-physics design and analyses of long life reactors for lunar outposts

    Science.gov (United States)

    Schriener, Timothy M.

    event of a launch abort accident. Increasing the amount of fuel in the reactor core, and hence its operational life, would be possible by launching the reactor unfueled and fueling it on the Moon. Such a reactor would, thus, not be subject to launch criticality safety requirements. However, loading the reactor with fuel on the Moon presents a challenge, requiring special designs of the core and the fuel elements, which lend themselves to fueling on the lunar surface. This research investigates examples of both a solid core reactor that would be fueled at launch as well as an advanced concept which could be fueled on the Moon. Increasing the operational life of a reactor fueled at launch is exercised for the NaK-78 cooled Sectored Compact Reactor (SCoRe). A multi-physics design and analyses methodology is developed which iteratively couples together detailed Monte Carlo neutronics simulations with 3-D Computational Fluid Dynamics (CFD) and thermal-hydraulics analyses. Using this methodology the operational life of this compact, fast spectrum reactor is increased by reconfiguring the core geometry to reduce neutron leakage and parasitic absorption, for the same amount of HEU in the core, and meeting launch safety requirements. The multi-physics analyses determine the impacts of the various design changes on the reactor's neutronics and thermal-hydraulics performance. The option of increasing the operational life of a reactor by loading it on the Moon is exercised for the Pellet Bed Reactor (PeBR). The PeBR uses spherical fuel pellets and is cooled by He-Xe gas, allowing the reactor core to be loaded with fuel pellets and charged with working fluid on the lunar surface. The performed neutronics analyses ensure the PeBR design achieves a long operational life, and develops safe launch canister designs to transport the spherical fuel pellets to the lunar surface. The research also investigates loading the PeBR core with fuel pellets on the Moon using a transient Discrete

  7. Quantitative analysis and efficiency study of PSD methods for a LaBr{sub 3}:Ce detector

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ming; Cang, Jirong [Key Laboratory of Particle & Radiation Imaging(Tsinghua University), Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Zeng, Zhi, E-mail: zengzhi@tsinghua.edu.cn [Key Laboratory of Particle & Radiation Imaging(Tsinghua University), Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Yue, Xiaoguang; Cheng, Jianping; Liu, Yinong; Ma, Hao; Li, Junli [Key Laboratory of Particle & Radiation Imaging(Tsinghua University), Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2016-03-21

    The LaBr{sub 3}:Ce scintillator has been widely studied for nuclear spectroscopy because of its optimal energy resolution (<3%@ 662 keV) and time resolution (~300 ps). Despite these promising properties, the intrinsic radiation background of LaBr{sub 3}:Ce is a critical issue, and pulse shape discrimination (PSD) has been shown to be an efficient potential method to suppress the alpha background from the {sup 227}Ac. In this paper, the charge comparison method (CCM) for alpha and gamma discrimination in LaBr{sub 3}:Ce is quantitatively analysed and compared with two other typical PSD methods using digital pulse processing. The algorithm parameters and discrimination efficiency are calculated for each method. Moreover, for the CCM, the correlation between the CCM feature value distribution and the total charge (energy) is studied, and a fitting equation for the correlation is inferred and experimentally verified. Using the equations, an energy-dependent threshold can be chosen to optimize the discrimination efficiency. Additionally, the experimental results show a potential application in low-activity high-energy γ measurement by suppressing the alpha background.

  8. Synthesis of ultrasmall CsPbBr3 nanoclusters and their transformation to highly deep-blue-emitting nanoribbons at room temperature.

    Science.gov (United States)

    Xu, Yibing; Zhang, Qiang; Lv, Longfei; Han, Wenqian; Wu, Guanhong; Yang, Dong; Dong, Angang

    2017-11-16

    Discretely sized semiconductor clusters have attracted considerable attention due to their intriguing optical properties and self-assembly behaviors. While lead halide perovskite nanostructures have been recently intensively explored, few studies have addressed perovskite clusters and their self-assembled superstructures. Here, we report the room-temperature synthesis of sub-2 nm CsPbBr 3 clusters and present strong evidence that these ultrasmall perovskite species, obtained under a wide range of reaction conditions, possess a specific size, with optical properties and self-assembly characteristics resembling those of well-known II-VI semiconductor magic-sized clusters. Unlike conventional CsPbBr 3 nanocrystals, the as-synthesized CsPbBr 3 nanoclusters spontaneously self-assemble into a hexagonally packed columnar mesophase in solution, which can be further converted to single-crystalline CsPbBr 3 quantum nanoribbons with bright deep-blue emission at room temperature. Such a conversion of CsPbBr 3 nanoclusters to nanoribbons is found to be driven by a ligand-destabilization-induced crystallization and mesophase transition process. Our study will facilitate the investigation of perovskite nanoclusters and offer new possibilities in the low-temperature synthesis of anisotropic perovskite nanostructures.

  9. The aug-cc-pVnZ-F12 basis set family: Correlation consistent basis sets for explicitly correlated benchmark calculations on anions and noncovalent complexes.

    Science.gov (United States)

    Sylvetsky, Nitai; Kesharwani, Manoj K; Martin, Jan M L

    2017-10-07

    We have developed a new basis set family, denoted as aug-cc-pVnZ-F12 (or aVnZ-F12 for short), for explicitly correlated calculations. The sets included in this family were constructed by supplementing the corresponding cc-pVnZ-F12 sets with additional diffuse functions on the higher angular momenta (i.e., additional d-h functions on non-hydrogen atoms and p-g on hydrogen atoms), optimized for the MP2-F12 energy of the relevant atomic anions. The new basis sets have been benchmarked against electron affinities of the first- and second-row atoms, the W4-17 dataset of total atomization energies, the S66 dataset of noncovalent interactions, the Benchmark Energy and Geometry Data Base water cluster subset, and the WATER23 subset of the GMTKN24 and GMTKN30 benchmark suites. The aVnZ-F12 basis sets displayed excellent performance, not just for electron affinities but also for noncovalent interaction energies of neutral and anionic species. Appropriate CABSs (complementary auxiliary basis sets) were explored for the S66 noncovalent interaction benchmark: between similar-sized basis sets, CABSs were found to be more transferable than generally assumed.

  10. Z-(-,-)-[76Br]BrQNP: a high affinity PET radiotracer for central and cardiac muscarinic receptors

    International Nuclear Information System (INIS)

    Strijckmans, V.; Coulon, C.; Loc'h, C.; Maziere, B.; Luo, H.; McPherson, D.W.; Knapp, F.F.

    1996-01-01

    Racemic E-1-azabicyclo[2.2.2]oct-3-yl α-(1-bromo-1-1-propen-3-yl)-α -hydroxy-α-phenylacetate (BrQNP) was prepared and evaluated in vivo as a potential candidate for imaging muscarinic acetylcholinergic receptors by Positron Emission Tomography. Initial in vivo blocking studies utilizing Z-(-,-)-[ 125 I]IQNP as a radiolabelled muscarinic probe demonstrated that a preinjection of cold E-BrQNP effectively blocks the uptake of the radiolabelled probe in the brain and heart, by 71% and 86% respectively. Z-(-,-)-[ 76 Br]BrQNP was prepared by electrophilic substitution from a tributylstannyl precursor. Peracetic acid and chloramine T was evaluated as oxidizing agents. After purification by SPE and RP-HPLC, radiolabelling yields of 85% and 95% were obtained with peracetic acid and chloramine T, respectively. The final radiochemical yield was 70% for both oxidizing agents. (author)

  11. Characteristics and performance of thin LaBr3(Ce) crystal for X-ray astronomy

    Science.gov (United States)

    Manchanda, R. K.

    Lanthanum Bromide crystal is the latest among the family of the scintillation counters and has an advantage over conventional room temperature detectors. It has a high atomic number, high light yield, and fast decay time compared to NaI(Tl) crystal and therefore, the energy resolution, of LaBr3 detector is superior and it has higher detection efficiency. In recent past, laboratory studies have been generally made using thick crystal geometry (1.5×1.5-inch and 2×2-inch). Similarly, simulation studies are also in progress for the use of LaBr3 detectors in the ground based high energy physics experiments. The detector background counting rate of LaBr3 crystal is affected by the internal radioactivity and is due to naturally occurring radioisotopes 138La and 227Ac, similar to the sodium Iodide detector which is affected by the iodine isotopes. We have developed a new detector using thin lanthanum bromide crystal (3×30-mm) for use in X-ray astronomy. The instrument was launched in high altitude balloon flight on Dec. 21, 2007, which reached a ceiling altitude of 4.3 mbs. A background counting rate of 1.6 ×10-2 ct cm-2 s-1 keV-1 sr-1 was observed at the ceiling altitude. This paper describes the details of the electronics hardware, energy resolution and the background characteristics of the detector at ceiling altitude

  12. High Energy Performance Tests of Large Volume LaBr{sub 3}:Ce Detector

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A.; Gondal, M.A.; Khiari, F.Z.; Dastageer, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Maslehuddin, M.M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2015-07-01

    High energy prompt gamma ray tests of a large volume cylindrical 100 mm x 100 mm (height x diameter) LaBr{sub 3}:Ce detector were carried out using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. In this study prompt gamma-rays yield were measured from water samples contaminated with toxic elements such nickel, chromium and mercury compounds with gamma ray energies up to 10 MeV. The experimental yield of prompt gamma-rays from toxic elements were compared with the results of Monte Carlo calculations. In spite of its higher intrinsic background due to its larger volume, an excellent agreement between the experimental and calculated yields of high energy gamma-rays from Ni, Cr and Hg samples has been achieved for the large volume LaBr{sub 3}:Ce detector. (authors)

  13. The Synthetic α-Bromo-2′,3,4,4′-Tetramethoxychalcone (α-Br-TMC) Inhibits the JAK/STAT Signaling Pathway

    Science.gov (United States)

    Brueggemann, Susanne; Besl, Elisabeth; Al-Rifai, Nafisah; Petkes, Hermina; Amslinger, Sabine; Rascle, Anne

    2014-01-01

    Signal transducer and activator of transcription STAT5 and its upstream activating kinase JAK2 are essential mediators of cytokine signaling. Their activity is normally tightly regulated and transient. However, constitutive activation of STAT5 is found in numerous cancers and a driving force for malignant transformation. We describe here the identification of the synthetic chalcone α-Br-2′,3,4,4′-tetramethoxychalcone (α-Br-TMC) as a novel JAK/STAT inhibitor. Using the non-transformed IL-3-dependent B cell line Ba/F3 and its oncogenic derivative Ba/F3-1*6 expressing constitutively activated STAT5, we show that α-Br-TMC targets the JAK/STAT pathway at multiple levels, inhibiting both JAK2 and STAT5 phosphorylation. Moreover, α-Br-TMC alters the mobility of STAT5A/B proteins in SDS-PAGE, indicating a change in their post-translational modification state. These alterations correlate with a decreased association of STAT5 and RNA polymerase II with STAT5 target genes in chromatin immunoprecipitation assays. Interestingly, expression of STAT5 target genes such as Cis and c-Myc was differentially regulated by α-Br-TMC in normal and cancer cells. While both genes were inhibited in IL-3-stimulated Ba/F3 cells, expression of the oncogene c-Myc was down-regulated and that of the tumor suppressor gene Cis was up-regulated in transformed Ba/F3-1*6 cells. The synthetic chalcone α-Br-TMC might therefore represent a promising novel anticancer agent for therapeutic intervention in STAT5-associated malignancies. PMID:24595334

  14. Experimental study of the tritium inventory in the BR3 and extrapolation to a P.W.R. of 900 MWe

    International Nuclear Information System (INIS)

    Charlier, A.; Gubel, P.; Vandenberg, C.; Haas, D.

    1982-01-01

    The aim of this report is to evaluate the tritium production and diffusion in uranium and plutonium fuel in the primary circuit of a PWR and to improve the knowledge about the production difference between the two kinds of isotopes. The first part of the work is relative to the experimental PWR BR3, cycle 4A, during which a constant control of the tritium activity has been performed in the primary circuit. These experimental evaluation was compared with the the theoretical estimation of the tritium production during the cycle 4A. From these observations and calculations, a tritium release fraction was deduced and estimated to be 0.81% of the total tritium produced in the fuel. The second part of the work is devoted to post-irradiation examinations on a few uranium and plutonium rods irradiated in the BR3 reactor. The tritium content was measured in the cladding, in the fuel and in the gas plenum for various samples of fuel rods. These results show the relationship between the release rate from the fuel matrix, the linear power and the burnup. The last part of the work is the estimate of the tritium production in a PWR of 900 MWe in operating conditions. The tritium production was calculated for an uranium fuelled core and for a core containing 30% of all plutonium fuel assemblies in a generic power plant of 900 MWe. From this study, it results that the loading with 30% plutonium assemblies at equilibrium increases the tritium balance in the moderator water of less than 5%

  15. NQR and X-ray crystal structure studies of cadmium halide complexes: [C(NH2)3]CdI3 and [4-ClC6H5NH3]3CdBr5

    International Nuclear Information System (INIS)

    Gesing, Thorsten M.; Lork, Enno; Terao, Hiromitsu; Ishihara, Hideta

    2016-01-01

    The crystal structures of [C(NH 2 ) 3 ]CdI 3 (1) and [4-ClC 6 H 5 NH 3 ] 3 CdBr 5 (2) have been determined at 100 K: monoclinic, Cc, a = 828.75(3) pm, b = 1615.31(5) pm, c = 810.64(3) pm, and β = 106.5820(10) for 1; monoclinic, P2 1 /c, a = 1486.93(5) pm, b = 794.31(3) pm, c = 2290.59(7) pm, and β = 99.6830(10) for 2. The structure of 1 has an infinite chain of anions consisting of [CdI 4 ] tetrahedra sharing two corners. The structure of 2 has an infinite chain of anions consisting of [CdBr 6 ] octahedra sharing two corners in cis positions. In both structures, isolated cations are connected to the anion chains through weak hydrogen bonds Cd-X..H to result in three-dimensional network structures. In accordance with the crystal structures, three 127 I (m = ±1/2 <-> m = ±3/2), five 81 Br, and three 35 Cl nuclear quadrupole resonance (NQR) lines were observed for 1 and 2. The NQR spectra reflect the anion chain structures and their weak hydrogen bonds. The MO calculations of the models [Cd 5 I 16 ] 6- for 1 and [Cd 3 Br 16 ] 10- for 2 estimate only about half the values for the NQR frequencies but give accurate electric field gradient directions.

  16. Studies on the phase diagram of LiBr-SrBr2 system

    International Nuclear Information System (INIS)

    Mahendran, K.H.; Sujatha, K.; Sridharan, R.; Gnanasekaran, T.

    2003-01-01

    Binary LiBr-SrBr 2 system was investigated using differential scanning calorimetry (DSC) and the equilibrium phases at different compositions were identified using X-ray diffraction (XRD). This system has a compound LiSr 2 Br 5 , and exhibits a eutectic reaction between this compound and LiBr at 434 deg. C and the eutectic has a composition of 35 mol% SrBr 2 . The compound LiSr 2 Br 5 undergoes peritectic decomposition at 484 deg. C. From the DSC and XRD results, phase diagram of the LiBr-SrBr 2 system is constructed

  17. Flash photolysis and pulse radiolysis of the Co(sep)3+-X- (sep = sepulchrate; X = I, Br) systems in aqueous solution

    International Nuclear Information System (INIS)

    Pina, F.; Maestri, M.; Ballardini, R.; Mulazzani, Q.G.; D'Angelantonio, M.; Balzani, V.

    1986-01-01

    The Co(sep) 3+ complex (sep = sepulchrate = 1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]eicosane) in aqueous solution forms ion pairs with the I - and Br - anions, which exhibit a relatively intense charge-transfer absorption. In deoxygenated aqueous solution no net reaction is obtained upon continuous light excitation in the ion-pair charge-transfer bands, but formation of transient species is observed in flash photolysis experiments. For the Co(sep) 3+ -I - system, I 2 - ions are formed that decay in the 50-μs time scale to give I 3 - . The latter species disappears in a time scale of seconds, leading the system back to the preexcitation conditions. For the Co(sep) 3+ -Br - system, only formation of the Br 2 - transient is observed, followed by regeneration of the preexcitation conditions in the 20-μs time scale. In order to elucidate the kinetic aspects of the transient formation and disappearance, pulse radiolysis experiments on the Co(sep) 3+ -I - and Co(sep) 3+ -Br - systems have been carried out. The rate constants of the reactions of Co(sep) 2+ with I 2 - , I 3 - , and Br 2 - have been measured, and a complete picture of the redox processes that follow flash photolysis and pulse radiolysis excitations has been obtained. 5 figures

  18. Highly luminescent and ultrastable CsPbBr{sub 3} perovskite quantum dots incorporated into a silica/alumina monolith

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhichun; Kong, Long; Huang, Shouqiang; Li, Liang [School of Environmental Science and Engineering, Shanghai Jiao Tong University (China)

    2017-07-03

    We successfully prepared QDs incorporated into a silica/alumina monolith (QDs-SAM) by a simple sol-gel reaction of an Al-Si single precursor with CsPbBr{sub 3} QDs blended in toluene solution, without adding water and catalyst. The resultant transparent monolith exhibits high photoluminescence quantum yields (PLQY) up to 90 %, and good photostability under strong illumination of blue light for 300 h. We show that the preliminary ligand exchange of didodecyl dimethyl ammonium bromide (DDAB) was very important to protect CsPbBr{sub 3} QDs from surface damages during the sol-gel reaction, which not only allowed us to maintain the original optical properties of CsPbBr{sub 3} QDs but also prevented the aggregation of QDs and made the monolith transparent. The CsPbBr{sub 3} QDs-SAM in powder form was easily mixed into the resins and applied as color-converting layer with curing on blue light-emitting diodes (LED). The material showed a high luminous efficacy of 80 lm W{sup -1} and a narrow emission with a full width at half maximum (FWHM) of 25 nm. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. The Recombination Mechanism and True Green Amplified Spontaneous Emission in CH3NH3PbBr3 Perovskite

    KAUST Repository

    Priante, Davide

    2015-08-01

    True-green wavelength emitters at 555 nm are currently dominated by III-V semiconductor-based inorganic materials. Nevertheless, due to high lattice- and thermal-mismatch, the overall power efficiency in this range tends to decline for high current density showing the so-called efficiency droop in the green region (“green gap”). In order to fill the research green gap, this thesis examines the low cost solution-processability of organometal halide perovskites, which presents a unique opportunity for light-emitting devices in the green-yellow region owing to their superior photophysic properties such as high photoluminescence quantum efficiency, small capture cross section of defect states as well as optical bandgap tunability across the visible light regime. Specifically, the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material were investigated using low-temperature, power-dependent (77 K), temperature-dependent photoluminescence (PL) measurements. We noted three recombination peaks at 77K, one of which originated from bulk defect states, and other two from surface defect states. The latter were identified as bound-excitonic (BE) radiative transitions related to particle size inhomogeneity or grain size induced surface state in the sample. Both transitions led to PL spectra broadening as a result of concurrent blue- and red-shifts of these excitonic peaks. The blue-shift is most likely due to the Burstein-Moss (band filling) effect. Interestingly, the red-shift of the second excitonic peak becomes pronounced with increasing temperature leading to a true-green wavelength of 553 nm for CH3NH3PbBr3. On the other hand, red-shifted peak originates from the strong absorption in the second excitonic peak owed to the high density of surface states and carrier filling of these states due to the excitation from the first excitonic recombination. We also achieved amplified spontaneous emission around excitation threshold energy of 350 μJ/cm2

  20. Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6

    International Nuclear Information System (INIS)

    Dammak, T.; Elleuch, S.; Bougzhala, H.; Mlayah, A.; Chtourou, R.; Abid, Y.

    2009-01-01

    An organic-inorganic hybrid perovskite (C 4 H 9 NH 3 ) 4 Pb 3 I 4 Br 6 was synthesized and studied by X-ray diffraction, Raman and infrared spectroscopies, optical transmission and photoluminescence. The title compound, abbreviated (C 4 ) 4 Pb 3 I 4 Br 6 , crystallises in a periodic two-dimensional multilayer structure with P2 1 /a space group. The structure is built up from alternating inorganic and organic layers. Each inorganic layer consists of three sheets of PbX 6 (X=I, Br) octahedra. Raman and infrared spectra of the title compound were recorded in the 100-3500 and 400-4000 cm -1 frequency ranges, respectively. An assignment of the observed vibration modes is reported. Optical transmission measurements, performed on thin films of (C 4 ) 4 Pb 3 I 4 Br 6 , revealed two absorption bands at 474 and 508 nm. Photoluminescence measurements have shown a green emission peak at 519 nm.

  1. Study of resolution and linearity in LaBr3: Ce scintillator through digital-pulse processing

    International Nuclear Information System (INIS)

    Abhinav Kumar; Mishra, Gaurav; Ramachandran, K.

    2014-01-01

    Advent of digital pulse processing has led to a paradigm shift in pulse processing techniques by replacing analog electronics processing chain with equivalent algorithms acting on pulse profiles digitized at high sampling rates. In this paper, we have carried out offline digital pulse processing of Cerium-doped Lanthanum bromide scintillator (LaBr 3 : Ce) detector pulses, acquired using CAEN V1742 VME digitizer module. Algorithms have been written to approximate the functioning of peak sensing analog-to-digital convertor (ADC) and charge-to-digital convertor (QDC). Energy dependence of resolution and energy linearity of LaBr 3 : Ce scintillator detector has been studied by utilizing aforesaid algorithms

  2. What is the best bonding model of the (σ-H-BR) species bound to a transition metal? Bonding analysis in complexes [(H)2Cl(PMe3)2M(σ-H-BR)] (M = Fe, Ru, Os).

    Science.gov (United States)

    Pandey, Krishna K

    2012-03-21

    Density Functional Theory calculations have been performed for the σ-hydroboryl complexes of iron, ruthenium and osmium [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] (M = Fe, Ru, Os; R = OMe, NMe(2), Ph) at the BP86/TZ2P/ZORA level of theory in order to understand the interactions between metal and HBR ligands. The calculated geometries of the complexes [(H)(2)Cl(PMe(3))(2)Ru(HBNMe(2))], [(H)(2)Cl(PMe(3))(2)Os(HBR)] (R = OMe, NMe(2)) are in excellent agreement with structurally characterized complexes [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))], [(H)(2)Cl(P(i)Pr(3))(2)Os{σ-H-BOCH(2)CH(2)OB(O(2)CH(2)CH(2))}] and [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))]. The longer calculated M-B bond distance in complex [(H)(2)Cl(PMe(3))(2)M(σ-H-BNMe(2))] are due to greater B-N π bonding and as a result, a weaker M-B π-back-bonding. The B-H2 bond distances reveal that (i) iron complexes contain bis(σ-borane) ligand, (ii) ruthenium complexes contain (σ-H-BR) ligands with a stretched B-H2 bond, and (iii) osmium complexes contain hydride (H2) and (σ-H-BR) ligands. The H-BR ligands in osmium complexes are a better trans-directing ligand than the Cl ligand. Values of interaction energy, electrostatic interaction, orbital interaction, and bond dissociation energy for interactions between ionic fragments are very large and may not be consistent with M-(σ-H-BR) bonding. The EDA as well as NBO and AIM analysis suggest that the best bonding model for the M-σ-H-BR interactions in the complexes [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] is the interaction between neutral fragments [(H)(2)Cl(PMe(3))(2)M] and [σ-H-BR]. This becomes evident from the calculated values for the orbital interactions. The electron configuration of the fragments which is shown for C in Fig. 1 experiences the smallest change upon the M-σ-H-BR bond formation. Since model C also requires the least amount of electronic excitation and geometry changes of all models given by the ΔE(prep) values, it is clearly the most appropriate choice of

  3. Hydrogen Peroxide Involved Anodic Charge Transfer and Electrochemiluminescence of All-Inorganic Halide Perovskite CsPbBr3 Nanocrystals in an Aqueous Medium.

    Science.gov (United States)

    Huang, Yan; Long, Xiaoyan; Shen, Dazhong; Zou, Guizheng; Zhang, Bin; Wang, Huaisheng

    2017-09-05

    Reactive oxygen species (ROS) involved anodic charge transfer and electrochemiluminescence (ECL) of all-inorganic halide perovskite CsPbBr 3 nanocrystals (NCs) were investigated in an aqueous medium with hydrogen peroxide (H 2 O 2 ) as the model. CsPbBr 3 NCs could be electrochemically oxidized to positively charged states by injecting holes onto the highest occupied molecular orbitals and could be chemically reduced to negatively charged states by injecting electrons onto the lowest unoccupied molecular orbitals by ROS. The charge transfer between CsPbBr 3 NCs of oxidative and reductive states could bring out monochromatic ECL with onset around +0.8 V, maximum emission around 519 nm, and a full width at half-maximum around 20 nm. H 2 O 2 could selectively enhance the anodic ECL of CsPbBr 3 NCs, which not only opened a way to design a bioprocess-involved photovoltaic device with CsPbBr 3 NCs but also was promising for color-selective ECL biosensing.

  4. Enhancing Hybrid Perovskite Detectability in the Deep Ultraviolet Region with Down-Conversion Dual-Phase (CsPbBr3-Cs4PbBr6) Films.

    Science.gov (United States)

    Tong, Guoqing; Li, Huan; Zhu, Zhifeng; Zhang, Yan; Yu, Linwei; Xu, Jun; Jiang, Yang

    2018-04-05

    Hybrid perovskite photodetectors (PDs) exhibit outstanding performance in the ultraviolet-visible (UV-vis) spectrum but have poor detectability in the deep ultraviolet (DUV) region (200-350 nm). In this work, a novel inorganic-hybrid architecture that incorporates a dual-phase (CsPbBr 3 -Cs 4 PbBr 6 ) inorganic perovskite material as a down-conversion window layer and a hybrid perovskite as a light capture layer was prepared to achieve faster, highly sensitive photodetection in the DUV spectrum. A dual-phase inorganic perovskite film coated on the back surface of the photodetector enables strong light absorption and tunes the incident energy into emission bands that are optimized for the perovskite photodetector. The presence of Cs 4 PbBr 6 enhances the capture and down-conversion of the incident DUV light. Due to the down-conversion and transport of the DUV photons, a self-driven perovskite photodetector with this composite structure exhibits a fast response time of 7.8/33.6 μs and a high responsivity of 49.4 mA W -1 at 254 nm without extra power supply.

  5. METCAM/MUC18 promoted tumorigenesis of human breast cancer SK-BR-3 cells in a dosage-specific manner.

    Science.gov (United States)

    Huang, Chang-Yu; Wu, Guang-Jer

    2016-04-01

    Overexpression of METCAM/MUC18, an immunoglobulin-like cell-adhesion molecule, promotes tumorigenesis and progression of human breast cancer cells. We also observed an intriguing phenomenon that a high-expressing SK-BR-3 clone manifested a transient tumor suppression effect in vivo. The purpose of this study was to understand if this was caused by clonal variation, METCAM/MUC18-dosage effect, or the number of cells injected. Several G418-resistant clones of SK-BR-3, expressing different levels of METCAM/MUC18, were obtained for testing effects of human METCAM/MUC18 on in vitro motility, invasiveness, and anchorage-independent colony formation (in vitro tumorigenicity) and in vivo tumorigenesis in female Balb/C athymic nude mice. Tumor sections were made for histology and immunohistochemistry analyses, and tumor lysates for Western blot analysis to determine the effects of human METCAM/MUC18 expression on levels of various downstream effectors. METCAM/MUC18 promoted in vitro motility, invasiveness, and in vitro tumorigenicity of SK-BR-3 cells in a dosage-specific manner. Overexpression of METCAM/MUC18 could promote in vivo tumorigenesis of SK-BR-3 cells even when one tenth of the previously used cell number (5 × 10(5)) was injected and in vivo tumorigenesis of SK-BR-3 cells was directly proportional to the dosage of the protein. The previously observed transient tumor suppression effect from the same clone was no longer observed. The downstream effector, such as phospho-AKT/AKT ratio, was elevated in the tumors. Transient suppression observed previously in the clone was caused by injection of a high cell number (2 × 10(6)-5 × 10(6)). METCAM/MUC18 positively promotes tumorigenesis of SK-BR-3 cells by increasing the survival and proliferation pathway. Copyright © 2016. Published by Elsevier B.V.

  6. Estimation of steady-state and transcient power distributions for the RELAP analyses of the 1963 loss-of-flow and loss-of-pressure tests at BR2

    International Nuclear Information System (INIS)

    Dionne, B.; Tzanos, C.P.

    2011-01-01

    To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model and methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.

  7. Reversible air-induced optical and electrical modulation of methylammonium lead bromide (MAPbBr3) single crystals

    Science.gov (United States)

    Zhang, Huotian; Liu, Yiting; Lu, Haizhou; Deng, Wan; Yang, Kang; Deng, Zunyi; Zhang, Xingmin; Yuan, Sijian; Wang, Jiao; Niu, Jiaxin; Zhang, Xiaolei; Jin, Qingyuan; Feng, Hongjian; Zhan, Yiqiang; Zheng, Lirong

    2017-09-01

    The photoluminescence (PL) variations of organic-inorganic hybrid lead halide perovskites in different atmospheres are well documented, while the fundamental mechanism still lacks comprehensive understandings. This study reports the reversible optical and electrical properties of methylammonium lead bromide (MAPbBr3 or CH3NH3PbBr3) single crystals caused by air infiltration. With the change in the surrounding atmosphere from air to vacuum, the PL intensity of perovskite single crystals decreases, while the conductivity increases. By means of first-principles computational studies, the shallow trap states are considered as key elements in PL and conductivity changes. These results have important implications for the characterization and application of organic-inorganic hybrid lead halide perovskites in vacuum.

  8. Size- and Wavelength-Dependent Two-Photon Absorption Cross-Section of CsPbBr3 Perovskite Quantum Dots.

    Science.gov (United States)

    Chen, Junsheng; Žídek, Karel; Chábera, Pavel; Liu, Dongzhou; Cheng, Pengfei; Nuuttila, Lauri; Al-Marri, Mohammed J; Lehtivuori, Heli; Messing, Maria E; Han, Keli; Zheng, Kaibo; Pullerits, Tõnu

    2017-05-18

    All-inorganic colloidal perovskite quantum dots (QDs) based on cesium, lead, and halide have recently emerged as promising light emitting materials. CsPbBr 3 QDs have also been demonstrated as stable two-photon-pumped lasing medium. However, the reported two photon absorption (TPA) cross sections for these QDs differ by an order of magnitude. Here we present an in-depth study of the TPA properties of CsPbBr 3 QDs with mean size ranging from 4.6 to 11.4 nm. By using femtosecond transient absorption (TA) spectroscopy we found that TPA cross section is proportional to the linear one photon absorption. The TPA cross section follows a power law dependence on QDs size with exponent 3.3 ± 0.2. The empirically obtained power-law dependence suggests that the TPA process through a virtual state populates exciton band states. The revealed power-law dependence and the understanding of TPA process are important for developing high performance nonlinear optical devices based on CsPbBr 3 nanocrystals.

  9. Pressure-Induced Structural and Optical Properties of Inorganic Halide Perovskite CsPbBr3.

    Science.gov (United States)

    Zhang, Long; Zeng, Qingxin; Wang, Kai

    2017-08-17

    Perovskite photovoltaic materials are gaining sustained attention because of their excellent photovoltaic properties and extensive practical applicability. In this Letter, we discuss the changes in the structure and optical properties of CsPbBr 3 under high pressure. As the pressure increased, the band gap initially began to red shift before 1.0 GPa followed by a continuous blue shift until the crystal was completely amorphized. An isostructural phase transition at 1.2 GPa was determined by high-pressure synchrotron X-ray and Raman spectroscopy. The result could be attributed to bond length shrinkage and PbBr 6 octahedral distortion under high pressure. The amorphization of the crystal was due to the severe distortion and tilt of the PbBr 6 octahedron, leading to broken long-range order. Changes in optical properties are closely related to the evolution of the crystal structure. Our discussion shows that high-pressure study can be used as an effective means to tune the structure and properties of all-inorganic halide perovskites.

  10. The 3d8-(3d74p + 3p53d9) transitions in Br X: A striking case of configuration interaction

    International Nuclear Information System (INIS)

    Kleef, T.A.M. van; Uylings, P.H.M.; Ryabtsev, A.N.; Podobedova, L.I.; Joshi, Y.N.

    1988-01-01

    The spectrum of nine times ionized bromine (Br X) was photographed in the 90-120 A wavelength region on a variety of grazing incidence spectrographs using an open spark and a triggered spark as light sources. The analysis of the 3d 8 -(3d 7 4p + 3p 5 3d 9 ) transitions has resulted in establishing all 9 levels of the 3d 8 configuration, all 12 levels of the 3p 5 3d 9 configuration and 99 out of 110 levels of the 3d 7 4p configuration. The excitation probability of the 3p inner-shell electron increases with nuclear charge and in Br X is comparable with the excitation probability of the optical electrons resulting in a very strong configuration interaction between the 3p 5 3d 9 and 3d 7 4p configurations. Parametric calculations treating these configurations as one super configuration support the analysis. Two hundred and thirty two lines have been classified in this spectrum. (orig.)

  11. A manganese photosensitive tricarbonyl molecule [Mn(CO)3(tpa-κ3N)]Br enhances antibiotic efficacy in a multi-drug-resistant Escherichia coli.

    Science.gov (United States)

    Rana, Namrata; Jesse, Helen E; Tinajero-Trejo, Mariana; Butler, Jonathan A; Tarlit, John D; von Und Zur Muhlen, Milena L; Nagel, Christoph; Schatzschneider, Ulrich; Poole, Robert K

    2017-10-01

    Carbon monoxide-releasing molecules (CORMs) are a promising class of new antimicrobials, with multiple modes of action that are distinct from those of standard antibiotics. The relentless increase in antimicrobial resistance, exacerbated by a lack of new antibiotics, necessitates a better understanding of how such novel agents act and might be used synergistically with established antibiotics. This work aimed to understand the mechanism(s) underlying synergy between a manganese-based photoactivated carbon monoxide-releasing molecule (PhotoCORM), [Mn(CO)3(tpa-κ 3 N)]Br [tpa=tris(2-pyridylmethyl)amine], and various classes of antibiotics in their activities towards Escherichia coli EC958, a multi-drug-resistant uropathogen. The title compound acts synergistically with polymyxins [polymyxin B and colistin (polymyxin E)] by damaging the bacterial cytoplasmic membrane. [Mn(CO)3(tpa-κ 3 N)]Br also potentiates the action of doxycycline, resulting in reduced expression of tetA, which encodes a tetracycline efflux pump. We show that, like tetracyclines, the breakdown products of [Mn(CO)3(tpa-κ 3 N)]Br activation chelate iron and trigger an iron starvation response, which we propose to be a further basis for the synergies observed. Conversely, media supplemented with excess iron abrogated the inhibition of growth by doxycycline and the title compound. In conclusion, multiple factors contribute to the ability of this PhotoCORM to increase the efficacy of antibiotics in the polymyxin and tetracycline families. We propose that light-activated carbon monoxide release is not the sole basis of the antimicrobial activities of [Mn(CO)3(tpa-κ 3 N)]Br.

  12. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white LEDs.

    Science.gov (United States)

    Li, Yang; Lv, Ying; Guo, Ziquan; Dong, Liubing; Zheng, Jianghui; Chai, Chufen; Chen, Nan; Lu, Yijun; Chen, Chao

    2018-04-19

    CsPbBr3 perovskite quantum dots (PQDs)/ethylene vinyl acetate (EVA) composite films were prepared via a one-step method, based on that both supersaturated recrystallization of CsPbBr3 PQDs and dissolution of EVA were realized in toluene. The prepared films display outstanding green emitting performance with high color purity of 92% and photoluminescence quantum yield of 40.5% at appropriate CsPbBr3 PQD loading. They possess long-term stable luminescent properties in the air and in water, benefiting from the effective protection of CsPbBr3 PQDs by EVA matrix. Besides, the prepared CsPbBr3 PQDs/EVA films are flexible enough to be repeatedly bent for 1000 cycles while keeping unchanged photoluminescence intensity. Optical properties of the CsPbBr3 PQDs/EVA films in white LEDs were also studied by experiments and theoretical simulation. Overall, facile preparation process, good long-term stability and high flexibility allow our green-emitting CsPbBr3 PQDs/EVA films to be applied in lighting applications and flexible displays.

  13. Artificial intelligence in nuclear reactor operation

    International Nuclear Information System (INIS)

    Da Ruan; Benitez-Read, J.S.

    2005-01-01

    Assessment of four real fuzzy control applications at the MIT research reactor in the US, the FUGEN heavy water reactor in Japan, the BR1 research reactor in Belgium, and a TRIGA Mark III reactor in Mexico will be examined through a SWOT analysis (strengths, weakness, opportunities, and threats). Special attention will be paid to the current cooperation between the Belgian Nuclear Research Centre (SCK·CEN) and the Mexican Nuclear Centre (ININ) on AI-based intelligent control for nuclear reactor operation under the partial support of the National Council for Science and Technology of Mexico (CONACYT). (authors)

  14. First Compton telescope prototype based on continuous LaBr3-SiPM detectors

    International Nuclear Information System (INIS)

    Llosá, G.; Cabello, J.; Callier, S.; Gillam, J.E.; Lacasta, C.; Rafecas, M.; Raux, L.; Solaz, C.; Stankova, V.; La Taille, C. de; Trovato, M.; Barrio, J.

    2013-01-01

    A first prototype of a Compton camera based on continuous scintillator crystals coupled to silicon photomultiplier (SiPM) arrays has been successfully developed and operated. The prototype is made of two detector planes. The first detector is made of a continuous 16×18×5 mm 3 LaBr 3 crystal coupled to a 16-elements SiPM array. The elements have a size of 3×3 mm 3 in a 4.5×4.05 mm 2 pitch. The second detector, selected by availability, consists of a continuous 16×18×5 mm 3 LYSO crystal coupled to a similar SiPM array. The SPIROC1 ASIC is employed in the readout electronics. Data have been taken with a 22 Na source placed at different positions and images have been reconstructed with the simulated one-pass list-mode (SOPL) algorithm. Detector development for the construction of a second prototype with three detector planes is underway. LaBr 3 crystals of 32×36 mm 2 size and 5/10 mm thickness have been acquired and tested with a PMT. The resolution obtained is 3.5% FWHM at 511 keV. Each crystal will be coupled to four MPPC arrays. Different options are being tested for the prototype readout

  15. Detection efficiency of low levels of boron and cadmium with a LaBr{sub 3}:Ce scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Anezi, M.S. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Kalakada, Zameer [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.A. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Raashid, M.; Al Matouq, Faris Ahmed; Khateeb-ur-Rehman; Khiari, F.Z.; Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2011-02-11

    The response of a cylindrical 3 in. Multiplication-Sign 3 in. (height Multiplication-Sign diameter) LaBr{sub 3}:Ce detector was measured for low energy prompt gamma-rays from boron and cadmium contaminated water samples using a newly designed portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. Prompt gamma-rays were measured from water samples contaminated with 0.031, 0.125, 0.250 and 0.5 wt% boron and 0.0625, 0.125, 0.250 and 0.500 wt% cadmium. The experimental yield of boron and cadmium prompt gamma-rays measured with the LaBr{sub 3}:Ce detector based PGNAA setup were compared with the results of Monte Carlo calculations. An excellent agreement between the experimental and calculated yields of 478 keV gamma-ray from boron and 558 keV gamma-rays from cadmium from boron and cadmium contaminated water samples, indicate an excellent response of the LaBr{sub 3}:Ce detector for the low energy prompt gamma-rays.

  16. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application

    NARCIS (Netherlands)

    Chen, Junsheng; Liu, Dongzhou; Al-Marri, Mohammed J.; Nuuttila, Lauri; Lehtivuori, Heli; Zheng, Kaibo

    Due to their superior photoluminescence (PL) quantum yield (QY) and tunable optical band gap, all-inorganic CsPbBr3 perovskite quantum dots (QDs) have attracted intensive attention for the application in solar cells, light emitting diodes (LED), photodetectors and laser devices. In this scenario,

  17. Crystal structure, hydrogen bonding, and sup 8 sup 1 Br NQR of low-temperature phase of 4-aminopyridinium tetrabromoantimonate (3)

    CERN Document Server

    Hashimoto, M; Fuess, H; Svoboda, I; Ehrenberg, H

    2003-01-01

    The crystal structure of the low-temperature phase (LTP) of the title compound was determined at 220 K (monoclinic, P2 sub 1 sub / sub c). The 4-aminopyridinium cations (4-NH sub 2 C sub 5 H sub 4 NH sup +) were found to be ordered in LTP, while being severely disordered in the room-temperature phase (monoclinic, C2/c). The tetrabromoantimonate anions (SbBr sub 4 sup -) were incorporated into the infinite polyanion chains of irregular SbBr sub 6 octahedra with two-edges sharing. The trans-Br-Sb-Br moiety in the SbBr sub 4 sup - anion was approximately symmetric differing from the asymmetric Br-Sb centre dot centre dot centre dot Br moiety found in LTP of pyridinium tetrabromoantimonate (3). The N-H moieties in both of the pyridine ring and the amino (-NH sub 2) group participate in the formation of N-H centre dot centre dot centre dot Br hydrogen bonds. It was shown that the sup 8 sup 1 Br NQR spectrum of LTP is closely related to the anion structure and the hydrogen bonds. The distinctive anion structures, a...

  18. Modulation of Charge Recombination in CsPbBr3 Perovskite Films with Electrochemical Bias

    KAUST Repository

    Scheidt, Rebecca A

    2017-11-13

    The charging of mesoscopic TiO2 layer in a metal halide perovskite solar cell can influence the overall power conversion efficiency. By employing CsPbBr3 films deposited on a mesoscopic TiO2 film, we have succeeded in probing the influence of electrochemical bias on the charge carrier recombination process. The transient absorption spectroscopy experiments conducted at different applied potentials indicate a decrease in the charge carrier lifetimes of CsPbBr3 as we increase the potential from -0.6 V to + 0.6 V vs. Ag/AgCl. The charge carrier lifetime increased upon reversing the applied bias, thus indicating the reversibility of the photoresponse to charging effects. The ultrafast spectroelectrochemical experiments described here offer a convenient approach to probe the charging effects in perovskite solar cells.

  19. Modulation of Charge Recombination in CsPbBr3 Perovskite Films with Electrochemical Bias.

    Science.gov (United States)

    Scheidt, Rebecca A; Samu, Gergely F; Janáky, Csaba; Kamat, Prashant V

    2018-01-10

    The charging of a mesoscopic TiO 2 layer in a metal halide perovskite solar cell can influence the overall power conversion efficiency. By employing CsPbBr 3 films deposited on a mesoscopic TiO 2 film, we have succeeded in probing the influence of electrochemical bias on the charge carrier recombination process. The transient absorption spectroscopy experiments conducted at different applied potentials indicate a decrease in the charge carrier lifetimes of CsPbBr 3 as we increase the potential from -0.6 to +0.6 V vs Ag/AgCl. The charge carrier lifetime increased upon reversing the applied bias, thus indicating the reversibility of the photoresponse to charging effects. The ultrafast spectroelectrochemical experiments described here offer a convenient approach to probe the charging effects in perovskite solar cells.

  20. Authority investigations of the effects of Chernobylsk reactor accident

    International Nuclear Information System (INIS)

    Lun, Katalin; Varga, Gyula; Jung, Jozsef; Di Gleria, Marta

    1988-01-01

    Official activities of the Health Physics Department of the Public Health Administration (KOEJAL), Budapest during and after the Chernobylsk reactor accident comprised the organization of improved environmental control services, the information of the population and the dosimetric control of certain objectives, foodstuffs passed to the institute and of persons returned from the Soviet Union. To determine the outer and inner radiation exposure of the population in Hungary wide-spread in-situ and laboratory measurements were carried out. The surface contamination and the dose rates were determined at different sites. Till the end of 1986 more than 1000 samples including aerosol, fallout, surface and drinking water, soil, plant, milk, milk-product and meat samples were taken and analysed. The institute played an important coordinative role in sampling, sample distribution among other institutes and in the evaluation of the radiation situation of the country. (V.N.) 7 refs.; 7 figs.; 3 tabs

  1. OsBRI1 Activates BR Signaling by Preventing Binding between the TPR and Kinase Domains of OsBSK3 via Phosphorylation.

    Science.gov (United States)

    Zhang, Baowen; Wang, Xiaolong; Zhao, Zhiying; Wang, Ruiju; Huang, Xiahe; Zhu, Yali; Yuan, Li; Wang, Yingchun; Xu, Xiaodong; Burlingame, Alma L; Gao, Yingjie; Sun, Yu; Tang, Wenqiang

    2016-02-01

    Many plant receptor kinases transduce signals through receptor-like cytoplasmic kinases (RLCKs); however, the molecular mechanisms that create an effective on-off switch are unknown. The receptor kinase BR INSENSITIVE1 (BRI1) transduces brassinosteroid (BR) signal by phosphorylating members of the BR-signaling kinase (BSK) family of RLCKs, which contain a kinase domain and a C-terminal tetratricopeptide repeat (TPR) domain. Here, we show that the BR signaling function of BSKs is conserved in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) and that the TPR domain of BSKs functions as a "phospho-switchable" autoregulatory domain to control BSKs' activity. Genetic studies revealed that OsBSK3 is a positive regulator of BR signaling in rice, while in vivo and in vitro assays demonstrated that OsBRI1 interacts directly with and phosphorylates OsBSK3. The TPR domain of OsBSK3, which interacts directly with the protein's kinase domain, serves as an autoinhibitory domain to prevent OsBSK3 from interacting with bri1-SUPPRESSOR1 (BSU1). Phosphorylation of OsBSK3 by OsBRI1 disrupts the interaction between its TPR and kinase domains, thereby increasing the binding between OsBSK3's kinase domain and BSU1. Our results not only demonstrate that OsBSK3 plays a conserved role in regulating BR signaling in rice, but also provide insight into the molecular mechanism by which BSK family proteins are inhibited under basal conditions but switched on by the upstream receptor kinase BRI1. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Cs/CsPbX3 (X = Br, Cl) epitaxial heteronanocrystals with magic-angle stable/metastable grain boundary

    Science.gov (United States)

    Zhang, Yumeng; Fan, Baolu; Wu, Wenhui; Fan, Jiyang

    2017-05-01

    Metal-semiconductor heteronanostructures are crucial building blocks of nanoscale electronic and optoelectronic devices. However, the lattice misfit remains a challenge in constructing heteronanostructures. Perovskite nanocrystals are superior candidates for constructing nanodevices owing to excellent optical, ferroelectric, and superconducting properties. We report the epitaxial growth of lattice-matched Cs/CsPbBr3 metal-semiconductor heteronanocrystals in a liquid medium. The well-crystallized ultrathin Cs layers grow epitaxially on the surfaces of colloidal CsPbBr3 nanocrystals, forming heteronanocrystals with interface diameters of several nanometers. Most of them are pseudomorphic with coherent interfaces free from dislocations, and the others exhibit discrete high-angle grain boundaries. The model based on the calculation of the elastic potential energy of the epilayer and analysis of the near-coincidence sites explains well the experimental result. The analysis shows that the excellent lattice match between the metal and the semiconductor ensures the ideal epitaxial-growth of both Cs/CsPbBr3 and Cs/CsPbCl3 heteronanocrystals. Such metal/semiconductor heteronanocrystals pave the way for developing perovskite-based nanodevices.

  3. Corrosion effect of fast reactor fuel claddings on their mechanical properties

    International Nuclear Information System (INIS)

    Davydov, E.F.; Krykov, F.N.; Shamardin, V.K.

    1985-01-01

    Fast reactor fuel cladding corrosion effect on its mechanical properties was investigated. UO 2 fuel elements were irradiated in the BOP-60 reactor at the linear heat rate of 42 kw/m. Fuel cladding is made of stainless steel OKh16N15M3BR. Calculated maximum cladding temperature is 920 K. Neutron fluence in the central part of fuel elements is 6.3x10 26 m+H- 2 . To investigate the strength changes temperature dependence of corrossion depth, cladding strength reduction factors was determined. Samples plasticity reduction with corrosion layer increase is considered to be a characteristic feature

  4. Green perovskite light emitting diodes based on the ITO/Al2O3/CsPbBr3 heterojunction structure

    Science.gov (United States)

    Zhuang, Shiwei; Ma, Xue; Hu, Daqiang; Dong, Xin; Zhang, Yuantao; Zhang, Baolin

    2018-03-01

    Perovskite light emitting diodes (PeLEDs) now emerge as a promising new optoelectronic application field for these amazing semiconductors. For the purpose of investigating the device structures and light emission mechanisms of PeLEDs, we have fabricated green PeLEDs based on the ITO/Al2O3/CsPbBr3 heterojunction structure. The emission layer inorganic perovskite CsPbBr3 film with small grain sizes (∼28.9 nm) was prepared using a two-step method. The device exhibits a typical rectification behavior with turn-on voltage of ∼6 V. The EL emission band is narrow with the FWHM of ∼25 nm. The peak EQE of the device was ∼0.09%. The working mechanism of the device is also discussed. The result of the present work provides a feasible innovation idea of PeLEDs fabrication and great potentials for the development of perovskite based LEDs.

  5. Neutron diffraction instruments at the BR2 reactor and their use in the study of crystal and magnetic structures

    International Nuclear Information System (INIS)

    Legrand, E.

    1977-01-01

    The study of structural properties of condensed matted is frequently performed by means of methods based on X-ray, electron or neutron scattering. In many particular cases, the latter technique offers definite advantages which are mainly based on the following characteristics of neutron-matter interaction: The large penetration depth for neutrons in matter (with the exception of a few elements), which allow the study of large samples and the use of wavelengths from 0.5 to 5A, and even to 10 A; the absence of an atomic form factor; the irregular dependence of the scattering length for the different elements as a function of their atomic number; the large cross section for magnetic scattering; the energy of thermal neutrons which allows the direct measuremtment of the enrgy exchange between the neutrons and the scatterer. Three of the four neutron diffraction instruments for solid state research, installed at the BR2 reactor, are described in detail. (author)

  6. Acclimatization of anaerobic sludge for UASB-reactor start-up

    NARCIS (Netherlands)

    Zeeuw, de W.J.

    1984-01-01

    The Upflow Anaerobic Sludge Bed (UASB) reactor represents a high rate anaerobic wastewater treatment system. The majority of the active biomass in the reactor is present in the form of sludge granules which possess excellent settling properties.<br/>If no acclimatized (granular)

  7. Revised and extended analysis of Br IV

    International Nuclear Information System (INIS)

    Riyaz, A.; Rahimullah, K.; Tauheed, A.

    2014-01-01

    The spectrum of three-times ionized bromine Br IV has been studied in the 319–2350 Å wavelength region. The spectrum was recorded on a 3-m normal incidence vacuum spectrograph at the St. Francis Xavier University, Antigonish (Canada) and 6.65-m grazing incidence spectrograph at the Zeeman laboratory (Amsterdam). The light sources used were a triggered spark and sliding spark, respectively. The ground configuration of Br IV 3d 10 4s 2 4p 2 , the excited configurations 3d 10 4s4p 3 +3d 10 4s 2 4p (4d+5d+6d+5s+6s+7s) in the odd parity system and 3d 10 4s 2 4p (5p+4f+5f)+3d 10 4s4p 2 (4d+5s)+3d 10 4p 4 in the even parity system have been studied. Relativistic Hartree–Fock (HFR) and least squares fitted (LSF) parametric calculations were used to interpret the observed spectrum. 120 Levels of Br IV have now been established, 58 being new. Among 424 spectral lines, 277 are newly classified. The levels 4s4p 35 S 2 , 4s 2 4p4d 3 F 4 and 4p5p ( 3 P 0,1 , 3 D 1,2 , 3 S 1 ) are revised. We estimate the accuracy of our measured wavelength for sharp and unblended lines to be ±0.005 Å. The ionization limit is determined as 385,390±100 cm −1 (47.782±0.012 eV). -- Highlights: • The spectrum of Br was recorded on a 3-m spectrograph with triggered spark source. • Atomic transitions for Br IV were identified to established new energy levels. • CI calculations with relativistic corrections were made for theoretical predictions. • Weighted oscillator strength (gf) and transition probabilities (gA) were calculated. • Ionization potential of Br IV was determined experimentally

  8. La5M3X (M=Sn, Bi; X=Cl, Br, I): exploring the limit of the Mn5Si3-type hosting lattice

    International Nuclear Information System (INIS)

    Zheng Chong; Mattausch, Hansjuergen; Simon, Arndt

    2002-01-01

    Three new compounds add to the family of the Mn 5 Si 3 type host-guest lattice. These are La 5 Sn 3 X (X=Cl, Br, I) synthesized from stoichiometric mixtures of La, LaX 3 and Sn heated under Ar atmosphere in sealed Ta ampoules at 850-990 deg. C for 13-62 days. La 5 Sn 3 X crystallize in the space group P6 3 /mcm (No. 193) with lattice parameters a=9.603(1) A, 9.637(1) A and 9.673(1) A; c=6.890(1) A, 6.931(1) A and 6.987(1) A, respectively, for X=Cl, Br and I. Computational analysis using both the extended Hueckel and the local density functional methods showed that the Sn and La site acts as electron reservoir, providing electrons to the interstitials as necessary. This gives rise to a metallic behavior. Susceptibility and conductivity measurements confirmed these predictions. The single crystal structure of La 5 Bi 3 Br is also reported

  9. Construction of AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets photoelectrode and its enhanced visible light driven photocatalytic and photoelectrochemical properties

    Science.gov (United States)

    Deng, Xiaoyong; Zhang, Huixuan; Guo, Ruonan; Cheng, Xiuwen; Cheng, Qingfeng

    2018-05-01

    In the study, AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets (AgBr-Ti3+/TiO2 NRs/NSs) photoelectrode with enhanced visible light driven photocatalytic (PC) and photoelectrochemical (PECH) performance has been successfully fabricated by hydrothermal reaction, followed by sodium borohydride reduction and then successive ionic layer adsorption and reaction (SILAR) treatment. Afterwards, series of characterizations were conducted to study the physicochemical properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Results indicated that AgBr nano-cakes with sizes varying from 110 to 180 nm were uniformly decorated on the surface of Ti3+/TiO2 NRs/NSs to form AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Moreover, PC activity of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode was measured by degradation of methylene blue (MB). It was found that AgBr-Ti3+/TiO2 NRs/NSs photoelectrode exhibited higher PC activity (98.7%) than that of other samples within 150 min visible light illumination, owing to the enhancement of visible light harvesting and effective separation of photoproduced charges. Thus, AgBr nano-cakes and Ti3+ exerted a huge influence on the PC and PECH properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Furthermore, the possible enhanced visible light driven PC mechanism of AgBr-Ti3+/TiO2 NRs/NSs was proposed and confirmed.

  10. Matrix photoionization and radiolysis of the fluorobromomethanes. Infrared spectra and photochemistry of CFBr2+, CF2Br+, CF3+, and the parent cations

    International Nuclear Information System (INIS)

    Prochaska, F.T.; Andrews, L.

    1978-01-01

    The molecules CFBr 3 , CF 2 Br 2 , CF 3 Br, and C-13 enriched CF 3 Br have been subjected to matrix radiolysis and argon resonance photoionization during condensation with excess argon at 15 K. Infrared spectra showed stable and free radical products and new absorptions due to charged species. The molecular ion bands exhibited different behavior on filtered high-pressure mercury arc photolysis. Absorptions reduced by 220 to 1000-nm light are assigned to CFBr 2 + , CF 2 Br + , and CF 3 + ; other bands destroyed by photolysis are assigned to the parent cations. Li and Na atom reactions with the fluorobromomethane molecules confirmed the identification of the CFBr 2 and CF 2 Br free radicals. Other product bands destroyed by mercury arc light, some of which were generated upon photolysis of the sodium-fluorobromomethane samples, are assigned to molecular anions. 5 figures, 6 tables

  11. Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature.

    Science.gov (United States)

    Huang, He; Susha, Andrei S; Kershaw, Stephen V; Hung, Tak Fu; Rogach, Andrey L

    2015-09-01

    Emission color controlled, high quantum yield CH 3 NH 3 PbBr 3 perovskite quantum dots are obtained by changing the temperature of a bad solvent during synthesis. The products for temperatures between 0 and 60 °C have good spectral purity with narrow emission line widths of 28-36 nm, high absolute emission quantum yields of 74% to 93%, and short radiative lifetimes of 13-27 ns.

  12. Electronic and optical properties of MAPbX3 perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis.

    Science.gov (United States)

    Mosconi, Edoardo; Umari, Paolo; De Angelis, Filippo

    2016-10-05

    Materials engineering is a key for the enhancement of photovoltaics technology. This is particularly true for the novel class of perovskite solar cells. Accurate theoretical modelling can help establish general trends of behavior when addressing structural changes. Here, we consider the effects due to halide substitution in organohalide CH 3 NH 3 PbX 3 perovskites exploring the halide series with X = Cl, Br, I. For this task, we use accurate DFT and GW methods including spin-orbit coupling. We find the expected band gap increase when moving from X = I to Cl, in line with the experimental data. Most notably, the calculated absorption coefficients for I, Br and Cl are nicely reproducing the behavior reported experimentally. A common feature of all the simulated band structures is a significant Rashba effect. This is similar for MAPbI 3 and MAPbBr 3 while MAPbCl 3 shows in general a reduced Rashba interaction coefficient. Finally, a monotonic increase of the exciton reduced masses is calculated when moving from I to Br to Cl, in line with the stronger excitonic character of the lighter perovskite halides.

  13. Kinetics of the R + HBr {r_reversible} RH + Br (CH{sub 3}CHBr, CHBr{sub 2} or CDBr{sub 2}) equilibrium. Thermochemistry of the CH{sub 3}CHBr and CHBr{sub 2} radicals

    Energy Technology Data Exchange (ETDEWEB)

    Seetula, Jorma A. [Laboratory of Physical Chemistry, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 University of Helsinki, Helsinki (Finland)], E-mail: j.seetula@kolumbus.fi; Eskola, Arkke J. [Laboratory of Physical Chemistry, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 University of Helsinki, Helsinki (Finland)

    2008-07-03

    The kinetics of the reaction of the CH{sub 3}CHBr, CHBr{sub 2} or CDBr{sub 2} radicals, R, with HBr have been investigated in a temperature-controlled tubular reactor coupled to a photoionization mass spectrometer. The CH{sub 3}CHBr (or CHBr{sub 2} or CDBr{sub 2}) radical was produced homogeneously in the reactor by a pulsed 248 nm exciplex laser photolysis of CH{sub 3}CHBr{sub 2} (or CHBr{sub 3} or CDBr{sub 3}). The decay of R was monitored as a function of HBr concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature. The reactions were studied separately from 253 to 344 K (CH{sub 3}CHBr + HBr) and from 288 to 477 K (CHBr{sub 2} + HBr) and in these temperature ranges the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1{sigma} + Student's t values, units in cm{sup 3} molecule{sup -1} s{sup -1}, no error limits for the third reaction): k(CH{sub 3}CHBr + HBr) = (1.7 {+-} 1.2) x 10{sup -13} exp[+ (5.1 {+-} 1.9) kJ mol{sup -1}/RT], k(CHBr{sub 2} + HBr) = (2.5 {+-} 1.2) x 10{sup -13} exp[-(4.04 {+-} 1.14) kJ mol{sup -1}/RT] and k(CDBr{sub 2} + HBr) = 1.6 x 10{sup -13} exp(-2.1 kJ mol{sup -1}/RT). The energy barriers of the reverse reactions were taken from the literature. The enthalpy of formation values of the CH{sub 3}CHBr and CHBr{sub 2} radicals and an experimental entropy value at 298 K for the CH{sub 3}CHBr radical were obtained using a second-law method. The result for the entropy value for the CH{sub 3}CHBr radical is 305 {+-} 9 J K{sup -1} mol{sup -1}. The results for the enthalpy of formation values at 298 K are (in kJ mol{sup -1}): 133.4 {+-} 3.4 (CH{sub 3}CHBr) and 199.1 {+-} 2.7 (CHBr{sub 2}), and for {alpha}-C-H bond dissociation energies of analogous compounds are (in kJ mol{sup -1}): 415.0 {+-} 2.7 (CH{sub 3}CH{sub 2}Br) and 412.6 {+-} 2.7 (CH{sub 2}Br{sub 2}), respectively.

  14. Second LaBr3 Compton Telescope Prototype

    International Nuclear Information System (INIS)

    Llosa, Gabriela; Cabello, Jorge; Gillam, John-E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Solaz, Carles; Solevi, Paola; Stankova, Vera; Torres-Espallardo, Irene; Trovato, Marco

    2013-06-01

    A Compton telescope for dose delivery monitoring in hadron therapy is under development at IFIC Valencia within the European project ENVISION. The telescope will consist of three detector planes, each one composed of a LaBr 3 continuous scintillator crystal coupled to four silicon photomultiplier (SiPM) arrays. After the development of a first prototype which served to assess the principle, a second prototype with larger crystals has been assembled and is being tested. The current version of the prototype consists of two detector layers, each one composed of a 32.5 x 35 mm 2 crystal coupled to four SiPM arrays. The VATA64HDR16 ASIC has been employed as front-end electronics. The readout system consists of a custom made data acquisition board. Tests with point-like sources have been carried out in the laboratory, assessing the correct functioning of the device. The system optimization is ongoing. (authors)

  15. Revealing the properties of defects formed by CH3NH2 molecules in organic-inorganic hybrid perovskite MAPbBr3

    Science.gov (United States)

    Wang, Ji; Zhang, Ao; Yan, Jun; Li, Dan; Chen, Yunlin

    2017-03-01

    The properties of defects in organic-inorganic hybrid perovskite are widely studied from the first-principles calculation. However, the defects of methylamine (methylamine = CH3NH2), which would be easily formed during the preparation of the organic-inorganic hybrid perovskite, are rarely investigated. Thermodynamic properties as well as defect states of methylamine embedded MAPbX3 (MA = methyl-ammonium = CH3NH3, X = Br, I) are studied based on first-principles calculations of density functional theory. It was found that there is a shallow defect level near the highest occupied molecular orbital, which induced by the interstitial methylamine defect in MAPbBr3, will lead to an increase of photoluminescence. The calculation results showed that interstitial defect states of methylamine may move deeper due to the interaction between methylamine molecules and methyl-ammonium cations. It was also showed that the interstitial methylamine defect is stable at room temperature, and the defect can be removed easily by annealing.

  16. CsPbBr3 Perovskites: Theoretical and Experimental Investigation on Water-Assisted Transition From Nanowire Formation to Degradation

    OpenAIRE

    Akbali, Baris; Topcu, Gokhan; Guner, Tugrul; Ozcan, Mehmet; Demir, Mustafa Muammer; Sahin, Hasan

    2018-01-01

    Recent advances in colloidal synthesis methods have led to increased research focus on halide perovskites. Due to highly ionic crystal structure of perovskite materials, stability issue pops up especially against polar solvents such as water. In this study, we investigate water-driven structural evolution of CsPbBr3 by performing experiments and state-of-the-art first-principles calculations. It is seen that while optical image shows the gradual degradation of yellowish-colored CsPbBr3 struct...

  17. A comparative ab initio study of Br2*- and Br2 water clusters.

    Science.gov (United States)

    Pathak, A K; Mukherjee, T; Maity, D K

    2006-01-14

    The work presents ab initio results on structure and electronic properties of Br2*-.nH2O(n=1-10) and Br2.nH2O(n=1-8) hydrated clusters to study the effects of an excess electron on the microhydration of the halide dimer. A nonlocal density functional, namely, Becke's half-and-half hybrid exchange-correlation functional is found to perform well on the present systems with a split valence 6-31++G(d,p) basis function. Geometry optimizations for all the clusters are carried out with several initial guess structures and without imposing any symmetry restriction. Br2*-.nH2O clusters prefer to have symmetrical double hydrogen-bonding structures. Results on Br2.nH2O(n>or=2) cluster show that the O atom of one H2O is oriented towards one Br atom and the H atom of another H2O is directed to other Br atom making Br2 to exist as Br+-Br- entity in the cluster. The binding and solvation energies are calculated for the Br2*-.nH2O and Br2.nH2O clusters. Calculations of the vibrational frequencies show that the formation of Br2*- and Br2 water clusters induces significant shifts from the normal modes of isolated water. Excited-state calculations are carried out on Br2*-.nH2O clusters following configuration interaction with single electron excitation procedure and UV-VIS absorption profiles are simulated. There is an excellent agreement between the present theoretical UV-VIS spectra of Br2*-.10H2O cluster and the reported transient optical spectra for Br2*- in aqueous solution.

  18. Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3 Perovskite Nanocrystals through Cation Exchange

    Science.gov (United States)

    2017-01-01

    Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb2+ is exchanged for several isovalent cations, resulting in doped CsPb1–xMxBr3 NCs (M= Sn2+, Cd2+, and Zn2+; 0 50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb2+ for M2+ cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs. PMID:28260380

  19. Review of fast reactor operating experience gained in 1998 in Russia. General trends of future fast reactor development

    International Nuclear Information System (INIS)

    Poplavski, V.M.; Ashurko, Y.M.; Zverev, K.V.; Sarayev, O.M.; Oshkanov, N.N.; Korol'kov, A.S.

    1999-01-01

    Review of the general state of nuclear power in Russia as for 1998 is given in brief in the paper. Results of operation of BR-10, BOR-60 and BN-600 fast reactors are presented as well as of scientific and technological escort of the BN-350 reactor. The paper outlines the current status and prospects of South-Urals and Beloyarskaya power unit projects with the BN-800 reactors. The main planned development trends on fast reactors are described concerning both new projects and R and D works. (author)

  20. Morphological evolution of copper nanoparticles: Microemulsion reactor system versus batch reactor system

    Science.gov (United States)

    Xia, Ming; Tang, Zengmin; Kim, Woo-Sik; Yu, Taekyung; Park, Bum Jun

    2017-07-01

    In the synthesis of nanoparticles, the reaction rate is important to determine the morphology of nanoparticles. We investigated morphology evolution of Cu nanoparticles in this two different reactors, microemulsion reactor and batch reactor. In comparison with the batch reactor system, the enhanced mass and heat transfers in the emulsion system likely led to the relatively short nucleation time and the highly homogeneous environment in the reaction mixture, resulting in suppressing one or two dimensional growth of the nanoparticles. We believe that this work can offer a good model system to quantitatively understand the crystal growth mechanism that depends strongly on the local monomer concentration, the efficiency of heat transfer, and the relative contribution of the counter ions (Br- and Cl-) as capping agents.

  1. Investigation of anti-solvent induced optical properties change of cesium lead bromide iodide mixed perovskite (CsPbBr3-xIx) quantum dots.

    Science.gov (United States)

    Yuan, Lin; Patterson, Robert; Wen, Xiaoming; Zhang, Zhilong; Conibeer, Gavin; Huang, Shujuan

    2017-10-15

    Cesium lead halide (CsPbX 3 , X=Cl, Br, I) perovskites are a new material system that has attracted a lot of research focus. Its tunable band gap and better thermal stability than organic lead halide perovskite give it the potential for applications in optoelectronic devices such as light-emitting diodes and solar cells. Here we have synthesized CsPbBr 3-x I x perovskite quantum dots (QDs) via a solution process, and then have selected three different anti-solvents to purify the product. A significant effect on optical properties of CsPbBr 3-x I x was found after the centrifugation process. Up to a ∼40nm shift was observed in mixed halide CsPbBr 3-x I x QDs in both absorbance and PL spectra after purification while there was no obvious change in pure CsPbBr 3 when it was subjected to the same purification steps. XPS analysis shows that the Br:I ratio of the CsPbBr 3-x I x QDs had changed as a result of exposure to the anti-solvent, causing the change of the band gap and shift of the spectra. It is also shown that iodine can be removed more easily than bromine during the anti-solvent purification. Ab-initio simulations of small CsPbBr 3-x I x atomic clusters suggest that exposed Cs ions on Cs-terminated facets are the first species to be attacked by hydrophilic molecules, likely dragging halide ions into solution with them to maintain overall charge neutrality in the material. Charge carrier recombination rates were found to be unchanged and all samples maintained a good PL quantum yield which was more than 44%. Copyright © 2017. Published by Elsevier Inc.

  2. Thickness-dependent nonlinear optical properties of CsPbBr3 perovskite nanosheets.

    Science.gov (United States)

    Zhang, Jun; Jiang, Tian; Zheng, Xin; Shen, Chao; Cheng, Xiang'ai

    2017-09-01

    Halide perovskite has attracted significant attention because of excellent optical properties. Here, we study the optical properties of CsPbBr 3 perovskite nanosheets and observe that the nonlinear optical properties can be tuned by the thickness. The photoluminescence (PL) properties and nonlinear absorption effects induced by saturation absorption (SA) and two-photon absorption (TPA) in CsPbBr 3 nanosheets with different thicknesses (from 104.6 to 195.4 nm) have been studied. The PL intensity increases nearly three times with changing from the thinnest one to the thinnest under the same excitation condition. Moreover, the same phenomenon takes place no matter when SA or TPA effects happen. The PL lifetime (τ) varies inversely with the thickness. When SA happens, τ decreases from 11.54 to 9.43 ns while when TPA happens new decay channels emerge with the increase of the thickness. Besides, both saturation intensity (I sat ) and the modulation depth are proportional to the thickness (I sat rises from 3.12 to 4.79  GW/cm 2 , the modulation depth increases from 18.6% to 32.3%), while the TPA coefficient (β) is inversely proportional with the thickness (decreases from 10.94 to 4.73  cm/GW). In addition, quantum yields and thicknesses are in the direct ratio. This Letter advocates great promise for nonlinear optical property related photonics devices.

  3. Status of fast reactor activities in Russia

    International Nuclear Information System (INIS)

    Poplavski, V.M.; Ashurko, Yu.M.; Zverev, K.V.

    1998-01-01

    This paper outlines state-of-the-art of the Russian nuclear power as of 1997 and its prospects for the nearest future. Results of the BR-10, BOR-60 and BN-600 reactors operation are described, as well as activity of the Russian institutions on scientific and technological support of the BN-350 reactor. Analysis of current status of the BN-800 reactor South-Urals NPP and Beloyarskaya NPP designs is given in brief, as well as prospects of their construction and possible ways of fast reactor technology improvement. Studies on fast reactors now under way in Russia are described. (author)

  4. Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. pekinensis.

    Science.gov (United States)

    Baskar, Venkidasamy; Park, Se Won

    2015-07-01

    Glucosinolates (GSL) are one of the major secondary metabolites of the Brassicaceae family. In the present study, we aim at characterizing the multiple paralogs of aliphatic GSL regulators, such as BrMYB28 and BrMYB29 genes in Brassica rapa ssp. pekinensis, by quantitative real-time PCR (qRT-PCR) analysis in different tissues and at various developmental stages. An overlapping gene expression pattern between the BrMYBs as well as their downstream genes (DSGs) was found at different developmental stages. Among the BrMYB28 and BrMYB29 paralogous genes, the BrMYB28.3 and BrMYB29.1 genes were dominantly expressed in most of the developmental stages, compared to the other paralogs of the BrMYB genes. Furthermore, the differential expression pattern of the BrMYBs was observed under various stress treatments. Interestingly, BrMYB28.2 showed the least expression in most developmental stages, while its expression was remarkably high in different stress conditions. More specifically, the BrMYB28.2, BrMYB28.3, and BrMYB29.1 genes were highly responsive to various abiotic and biotic stresses, further indicating their possible role in stress tolerance. Moreover, the in silico cis motif analysis in the upstream regulatory regions of BrMYBs showed the presence of various putative stress-specific motifs, which further indicated their responsiveness to biotic and abiotic stresses. These observations suggest that the dominantly expressed BrMYBs, both in different developmental stages and under various stress treatments (BrMYB28.3 and BrMYB29.1), may be potential candidate genes for altering the GSL level through genetic modification studies in B. rapa ssp. pekinensis. Copyright © 2015. Published by Elsevier SAS.

  5. Wet chemical synthesis and luminescence in Ca5(PO4)3M:Eu2+ (M = Br, I) phosphors for solid state lighting

    Science.gov (United States)

    Mungmode, C. D.; Gahane, D. H.; Moharil, S. V.

    2018-05-01

    A simple wet chemical synthesis of Eu2+ activated Ca5(PO4)3Br and Ca5(PO4)3I phosphors and their photoluminescence is reported. Formation of Ca5(PO4)3Br is confirmed by X-ray diffraction (XRD). Synthesized phosphors are analyzed for photoluminescence (PL) spectrum. A bright blue emission is observed when phosphors are excited by near Ultra Violet (nUV) radiations. Photoluminescence emission spectrum for (Ca0.985Eu0.015)5(PO4)3Br is centered at 457 nm and for (Ca0.985Eu0.015)5(PO4)3 I it peaks at 455 nm when excited by 365 nm near UV radiation. Eu2+ luminescence in Ca5(PO4)3Br is reported for the first time. The phosphors can be efficiently excited by nUV radiations. This shows that phosphors may be used as blue phosphor in pcLED for Solid State Lighting.

  6. Long-term stable stacked CsPbBr3 quantum dot films for highly efficient white light generation in LEDs.

    Science.gov (United States)

    Song, Young Hyun; Yoo, Jin Sun; Kang, Bong Kyun; Choi, Seung Hee; Ji, Eun Kyung; Jung, Hyun Suk; Yoon, Dae Ho

    2016-12-01

    We report highly efficient ethyl cellulose with CsPbBr 3 perovskite QD films for white light generation in LED application. Ethyl cellulose with CsPbBr 3 quantum dots is applied with Sr 2 Si 5 N 8  : Eu 2+ red phosphor on an InGaN blue chip, achieving a highly efficient luminous efficacy of 67.93 lm W -1 under 20 mA current.

  7. Effect of an in-plane ligand on the electronic structures of bromo-bridged nano-wire Ni-Pd mixed-metal complexes, [Ni(1-x)Pd(x)(bn)2Br]Br2 (bn = 2S,3S-diaminobutane).

    Science.gov (United States)

    Sasaki, Mari; Wu, Hashen; Kawakami, Daisuke; Takaishi, Shinya; Kajiwara, Takashi; Miyasaka, Hitoshi; Breedlove, Brian K; Yamashita, Masahiro; Kishida, Hideo; Matsuzaki, Hiroyuki; Okamoto, Hiroshi; Tanaka, Hisaaki; Kuroda, Shinichi

    2009-08-03

    Single crystals of quasi-one-dimensional bromo-bridged Ni-Pd mixed-metal complexes with 2S,3S-diaminobutane (bn) as an in-plane ligand, [Ni(1-x)Pd(x)(bn)(2)Br]Br(2), were obtained by using an electrochemical oxidation method involving mixed methanol/2-propanol (1:1) solutions containing different ratios of [Ni(II)(bn)(2)]Br(2) and [Pd(II)(bn)(2)]Br(2). To investigate the competition between the electron-correlation of the Ni(III) states, or Mott-Hubbard states (MH), and the electron-phonon interaction of the Pd(II)-Pd(IV) mixed valence states, or charge-density-wave states (CDW), in the Ni-Pd mixed-metal compounds, X-ray structure analyses, X-ray oscillation photograph, and Raman, IR, ESR, and single-crystal reflectance spectra were analyzed. In addition, the local electronic structures of Ni-Pd mixed-metal single crystals were directly investigated by using scanning tunneling microscopy (STM) at room temperature and ambient pressure. The oxidation states of [Ni(1-x)Pd(x)(bn)(2)Br]Br(2) changed from a M(II)-M(IV) mixed valence state to a M(III) MH state at a critical mixing ratio (x(c)) of approximately 0.8, which is lower than that of [Ni(1-x)Pd(x)(chxn)(2)Br]Br(2) (chxn = 1R,2R-diaminocyclohexane) (x(c) approximately 0.9) reported previously. The lower value of x(c) for [Ni(1-x)Pd(x)(bn)(2)Br]Br(2) can be explained by the difference in their CDW dimensionalities because the three-dimensional CDW ordering in [Pd(bn)(2)Br]Br(2) observed by using X-ray diffuse scattering stabilizes the Pd(II)-Pd(IV) mixed valence state more than two-dimensional CDW ordering in [Pd(chxn)(2)Br]Br(2) does, which has been reported previously.

  8. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    GharibDoust, Seyed Hosein Payandeh; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4...... with increasing lattice parameter, that is, increasing size of the halide ion in the structure. Thus, we conclude that the sizes of both windows are important for the lithium ion conduction in LiLa(BH4)3X compounds. The lithium ion conductivity is measured over one to three heating cycles and with different...

  9. Luminescence of CsPbBr3 films under high-power excitation

    OpenAIRE

    高橋, 一彰; 斎藤, 忠昭; 近藤, 新一; 浅田, 拡志

    2004-01-01

    Highly excited photoluminescence of CsPbBr3 has been measured for thin films prepared by crystallization from the amorphous phase into microcrystalline/ polycrystalline states. With the increase of excitation intensity, there occurs jumping of the dominant emission band from a free-exciton band to a new band originating from exciton-exciton inelastic collision. Stimulated emission is observed for the new band at very low threshold excitation intensities of the order of 10kW/cm2.

  10. X-ray diffraction, vibrational and photoluminescence studies of the self-organized quantum well crystal H3N(CH2)6NH3PbBr4

    International Nuclear Information System (INIS)

    Dammak, T.; Fourati, N.; Boughzala, H.; Mlayah, A.; Abid, Y.

    2007-01-01

    We have prepared new semiconductor H 3 N(CH 2 ) 6 NH 3 PbBr 4 crystals which are self-assembled organic-inorganic hybrid materials. The grown crystals have been studied by X-ray diffraction, infrared absorption and Raman spectroscopy scattering. We found that the title compound, abbreviated 2C 6 PbBr 4 , crystallizes in a two-dimensional (2D) structure with a P2 1 /a space group. In the inorganic semiconductor sub-lattice, the corner sharing PbBr 6 octahedra form infinite 2D chains. The organic C 6 H 18 N 2 + ions form the insulator barriers between the inorganic semiconductor layers. Such a packing leads to a self-assembled multiple quantum well structure. Raman and infrared spectra of the title compound were recorded in the 50-500 and 400-4000 cm -1 frequency regions, respectively. The assignment of the observed Raman lines was performed by comparison with the homologous compounds. Transmission measurements on thin films of 2C 6 PbBr 4 , obtained by the spin coating method, revealed a strong absorption peak at 380 nm. Luminescence measurements showed an emission line at 402 nm associated with radiative recombinations of excitons confined within the PbBr 6 layers. The electron-hole binding energy is estimated at 180 meV

  11. The determination of thermal neutron cross section of 81Br

    International Nuclear Information System (INIS)

    Kovacs, Luciana; Zamboni, Cibele B.; Dalaqua Junior, Leonardo

    2009-01-01

    In this investigation several standard materials were used to determine the thermal neutron cross section of 81 Br. This nuclear parameter is an important data to perform several quantitative investigations, mainly in medical area. In other to confirm and to reduce the uncertainty, a new measurement was preformed using thermal neutron at IEA-R1 nuclear reactor of IPEN/CNEN-SP. The result obtained is compatible with the tabulated value and present small uncertainly. (author)

  12. Measurement of $v_n$ - mean $p_T$ correlations in lead-lead collisions at $\\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector.

    CERN Document Server

    The ATLAS collaboration

    2018-01-01

    The lead-lead data collected by the ATLAS detector at the LHC provide new opportunities to study dynamic properties of quark-gluon plasma. A tool to study these properties is the recently proposed modified Pearson's correlation coefficient, $\\rho$, that quantifies the correlation between the mean transverse momentum in the event, $[p_T]$, and the square of the flow harmonic magnitude, $v_n^2$. The measurement of $\\rho$ for $n$=2, 3 and 4 is performed using 22~$\\mu \\mathrm{b}^{-1}$ of minimum-bias Pb+Pb data at $\\sqrt{s_{NN}}$ = 5.02 TeV collected with the ATLAS detector at the LHC. To suppress non-flow effects, $v_n^2$ is calculated by correlating charged particles from two sub-events covering opposite pseudorapidity ranges of 0.75 $< |\\eta| <$ 2.5 while $[p_T]$ is evaluated for particles with $|\\eta|<$ 0.5. Significant (non-zero) values of $\\rho$ coefficients for all studied harmonics are obtained. The $\\rho$ coefficient as a function of centrality is observed to weakly depend on the transverse mome...

  13. Composition-dependent hot carrier relaxation dynamics in cesium lead halide (CsPbX{sub 3}, X=Br and I) perovskite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Heejae; Jung, Seok Il; Kim, Hyo Jin; Cha, Wonhee; Sim, Eunji; Kim, Dongho [Department of Chemistry, Yonsei University, Seoul (Korea, Republic of); Koh, Weon-Kyu [Device Laboratory, Samsung Advanced Institute of Technology, Suwon (Korea, Republic of); Kim, Jiwon [School of Integrated Technology and Underwood International College, Yonsei University, Incheon (Korea, Republic of)

    2017-04-03

    Cesium-based perovskite nanocrystals (NCs) have outstanding photophysical properties improving the performances of lighting devices. Fundamental studies on excitonic properties and hot-carrier dynamics in perovskite NCs further suggest that these materials show higher efficiencies compared to the bulk form of perovskites. However, the relaxation rates and pathways of hot-carriers are still being elucidated. By using ultrafast transient spectroscopy and calculating electronic band structures, we investigated the dependence of halide in Cs-based perovskite (CsPbX{sub 3} with X=Br, I, or their mixtures) NCs on the hot-carrier relaxation processes. All samples exhibit ultrafast (<0.6 ps) hot-carrier relaxation dynamics with following order: CsPbBr{sub 3} (310 fs)>CsPbBr{sub 1.5}I{sub 1.5} (380 fs)>CsPbI{sub 3} NC (580 fs). These result accounts for a reduced light emission efficiency of CsPbI{sub 3} NC compared to CsPbBr{sub 3} NC. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Et2NH2C6H3(CO23SnBr2.4H2O: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    DAOUDA NDOYE

    2014-01-01

    Full Text Available The title compound has been obtained on allowing [C6H3(CO23(Et2NH23] to react with SnBr4. The molecular structure of Et2NH2C6H3(CO23SnBr2.4H2O has been determined on the basis of the infrared data. The suggested structure is a dimer in which each tin atom is hexacoordinated by two chelating C6H3(CO233- anions and two Br atoms. Cy2NH2+cations are involved through hydrogen bonds with non-coordinating CO2 groups. The suggested structure is a cage.

  15. Simplified Perovskite Solar Cell with 4.1% Efficiency Employing Inorganic CsPbBr3 as Light Absorber.

    Science.gov (United States)

    Duan, Jialong; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2018-04-17

    Perovskite solar cells with cost-effectiveness, high power conversion efficiency, and improved stability are promising solutions to the energy crisis and environmental pollution. However, a wide-bandgap inorganic-semiconductor electron-transporting layer such as TiO 2 can harvest ultraviolet light to photodegrade perovskite halides, and the high cost of a state-of-the-art hole-transporting layer is an economic burden for commercialization. Here, the building of a simplified cesium lead bromide (CsPbBr 3 ) perovskite solar cell with fluorine-doped tin oxide (FTO)/CsPbBr 3 /carbon architecture by a multistep solution-processed deposition technology is demonstrated, achieving an efficiency as high as 4.1% and improved stability upon interfacial modification by graphene quantum dots and CsPbBrI 2 quantum dots. This work provides new opportunities of building next-generation solar cells with significantly simplified processes and reduced production costs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Syntheses of halogenated polyhedral phosphaboranes: crystal structure of conjuncto-3,3{sup '}-(closo-1,2-P{sub 2}B{sub 4}Br{sub 3}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Willi [Institut fuer Chemie, Universitaet Hohenheim, Garbenstrasse 30, 70599, Stuttgart (Germany)

    2017-04-18

    Co-pyrolysis of B{sub 2}Br{sub 4} with PBr{sub 3} at 480 C gave, in addition to the main product closo-1,2-P{sub 2}B{sub 4}Br{sub 4}, conjuncto-3,3{sup '}-(1,2-P{sub 2}B{sub 4}Br{sub 3}){sub 2} (1) and the twelve-vertex closo-1,7-P{sub 2}B{sub 10}Br{sub 10} (2), both in low yields. X-ray structure determination for 1 [triclinic, space-group P1 with a = 7.220(2) Aa, b = 7.232(2) Aa, c = 8.5839(15) Aa, α = 97.213(15) , β = 96.81(2) , γ = 94.07(2) and Z = 1] confirmed that 1 adopts a structure consisting of two symmetrically boron-boron linked distorted octahedra with the bridging boron atoms in the 3,3{sup '}-positions and the phosphorus atoms in the 1,2-positions. The intercluster 2e/2c B-B bond length is 1.61(3) Aa. The shortest boron-boron bond within the cluster framework is 1.68(2) Aa located between the boron atoms antipodal to the phosphorus atoms. The icosahedral phosphaborane 2 was characterized by {sup 11}B-{sup 11}B COSY NMR spectroscopy showing cross peaks indicative for the isomer with the phosphorus atoms in 1,7-positions. Both the X-ray data of 1 and the NMR spectroscopic data of 1 and 2 give further evidence for the influence of an antipodal effect of heteroatoms to cross-cage boron atoms and, vice versa, of an additional shielding of the phosphorus atoms caused by B-Hal substitution at the boron positions trans to phosphorus. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Annealing Effect on (FAPbI31−x(MAPbBr3x Perovskite Films in Inverted-Type Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Lung-Chien Chen

    2016-09-01

    Full Text Available This study determines the effects of annealing treatment on the structure and the optical and electronic behaviors of the mixed (FAPbI31−x(MAPbBr3x perovskite system. The experimental results reveal that (FAPbI31−x(MAPbBr3x (x ~ 0.2 is an effective light-absorbing material for use in inverted planar perovskite solar cells owing to its large absorbance and tunable band gap. Therefore, good band-matching between the (FAPbI31−x(MAPbBr3x and C60 in photovoltaic devices can be controlled by annealing at various temperatures. Accordingly, an inverted mixed perovskite solar cell with a record efficiency of 12.0% under AM1.5G irradiation is realized.

  18. Periodic changes in the oxidation states of the center ion in the cobalt-histidine complex induced by the BrO3- - SO32- pH-oscillator

    Science.gov (United States)

    Kurin-Csörgei, Krisztina; Poros, Eszter; Csepiova, Julianna; Orbán, Miklós

    2018-05-01

    The coupling of acid-base type pH-dependent equilibria to pH-oscillators expanded significantly the number and type of species which can participate in oscillatory chemical processes. Here, we report a new version of oscillatory phenomena that can appear in coupled oscillators. Oscillations in the oxidation states of the center ion bound in a chelate complex were generated in a combined system, when the participants of the oscillator as dynamical unit and the components of the complex formation interacted with each other through redox reaction. It was demonstrated, when the BrO3- - SO32- pH-oscillator and the Co2+ - histidine complex were mixed in a continuous stirred tank reactor, periodic changes in the pH were accompanied with periodic transitions in the oxidation number of the cobalt ion between +2 and +3. The oscillatory build up and removal of the Co(III)-complex were followed by recording the light absorption at the wavelength characteristic for this species with simultaneous monitoring the pH-oscillations. The dual role of the SO32- ion in the explanation of this observation was pointed out. Its partial and consecutive total oxidations by BrO3- give rise to and maintain sustained pH-oscillations in the combined system and its presence induces the rapid conversion of the Co2+ to a highly inert Co(III)-histidine chelate when the system jumps to and remains in the high pH-state. The oscillatory cycle is completed when the Co(III)-complex is washed out from the reactor and the reagents are replenished by the flow during the time the system spends in the acidic range of pH. The idea, to couple a core oscillator to an equilibrium through a redox reaction that takes place between the constituents of the oscillator and the target species of the linked subsystem, may be generally used to bring about forced oscillations in many other combined chemical systems.

  19. Dielectric Study of the Phase Transitions in [P(CH3)4]2CuY4 (Y = Cl, Br)

    Science.gov (United States)

    Gesi, Kazuo

    2002-05-01

    Phase transitions in [P(CH3)4]2CuY4 (Y = Cl, Br) have been studied by dielectric measurements. In [P(CH3)4]2CuCl4, a slight break and a discontinuous jump on the dielectric constant vs. temperature curve are seen at the normal-incommensurate and the incommensurate-commensurate phase transitions, respectively. A small peak of dielectric constant along the b-direction exists just above the incommensurate-to-commensurate transition temperature. The anisotropic dielectric anomalies of [P(CH3)4]2CuBr4 at phase transitions were measured along the three crystallographic axes. The pressure-temperature phase diagram of [P(CH3)4]2CuCl4 was determined. The initial pressure coefficients of the normal-to-incommensurate and the incommensurate-to-commensurate transition temperatures are 0.19 K/MPa and 0.27 K/MPa, respectively. The incommensurate phase in [P(CH3)4]2CuCl4 disappears at a triple point which exists at 335 MPa and 443 K. The stability and the pressure effects of the incommensurate phases are much different among the four [Z(CH3)4]2CuY4 crystals (Z = N, P; Y = Cl, Br).

  20. The BR2 refurbishment programme: achievements and two years operation feedback

    International Nuclear Information System (INIS)

    Gubel, P.; Dekeyser, J.; Koonen, E.; Van der Auwera, J.

    1999-01-01

    The BR2 reactor was shutdown end of June 1995 for an extensive refurbishment after more than 30 years utilization. The beryllium matrix needed to be replaced and the aluminium vessel inspected for an envisaged 15 year life extension. Other aspects of the refurbishment programme aimed at the reliability and availability of the installations, safety of operation and compliance with modern safety standards. The reactor was started again in' April '97 and operated only for three cycles in 1997. These first irradiation cycles were intended as a demonstration of the safety and reliability of all components and systems after refurbishment. Also during the extended shutdowns non-critical refurbishment tasks were allowed to be continued and finalized. At the request of the Safety Authorities, some modifications and studies are still in progress without perturbation of the reactor operation. (author)

  1. Preparation and characterization of (R,S)-[76Br]BrQNB: an analogue of QNB for PET

    International Nuclear Information System (INIS)

    Strijckmans, V.; Loc'h, C.; Ottaviani, M.; Maziere, B.; Lee, K.S.; Zeeberg, B.R.

    1997-01-01

    (R,S)-[ 76 Br]BrQNB was prepared for imaging mAChR by PET . (R,S)QNB was labelled with bromine-76 by electrophilic substitution of the tributylstannyl precursor using peracetic acid as oxidizing agent. The exchange between bromine-76 and the leaving group occurred in 20 min at room temperature. A chemically and radiochemically pure product was obtained with a final radiolabelling yield of 30%. Preliminary evaluation of pharmacological properties was performed in rats. In brain, biodistribution and autoradiography studies showed that the preferential localization of (R,S)-[ 76 Br]BrQNB was m-AChR rich structures. 6 h p.i. the radioactivity uptake in the posterior cortex was 1% ID/g and the striatum to cerebellum radioactivity ratio was 13.5. Metabolite study revealed that the radiotracer remains unchanged in brain for at least 3 h. (Author)

  2. Technetium(I) complexes Tc(CO)3BrL2 (L = phosphine, pyridine, isocyanide)

    International Nuclear Information System (INIS)

    Lorenz, B.; Findeisen, M.; Olk, B.; Schmidt, K.

    1988-01-01

    Technetium pentacarbonyl bromide reacts with π-acceptor ligands L (L = phosphine, pyridine, isocyanide) to form disubstituted compounds of the type Tc(CO) 3 BrL 2 . The stereochemistry of the complexes was established by infrared and 1 H-NMR measurement. Chemical shifts and the half-widths of the 99 Tc-NMR signals are discussed. (author)

  3. Modulation of Charge Recombination in CsPbBr3 Perovskite Films with Electrochemical Bias

    KAUST Repository

    Scheidt, Rebecca A; Samu, Gergely F.; Janá ky, Csaba; Kamat, Prashant V.

    2017-01-01

    The charging of mesoscopic TiO2 layer in a metal halide perovskite solar cell can influence the overall power conversion efficiency. By employing CsPbBr3 films deposited on a mesoscopic TiO2 film, we have succeeded in probing the influence

  4. Integral test of JENDL-3.3 for fast reactors

    International Nuclear Information System (INIS)

    Chiba, Gou

    2003-01-01

    An integral test of JENDL-3.3 was performed for fast reactors. Various types of fast reactors were analyzed. Calculation values of the nuclear characteristics were greatly especially affected by the revisions of the cross sections of U-235 capture and elastic scattering reactions. The C/E values were improved for ZPPR cross where plutonium is mainly fueled, but not for BFS cores where uranium is mainly fueled. (author)

  5. Corrosion of type 316 stainless steel in molten LiF-LiCl-LiBr

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.; Keiser, J.R.

    1981-01-01

    The properties of LiF-LiCl-LiBr salt make it attractive as a solvent for extracting tritium from a fusion reactor lithium blanket. Consequently, the corrosion of type 316 stainless steel by flowing (about 15 mm/s) LiF-LiCl-LiBr at a maximum temperature of 535 0 C was studied to determine whether compatibility with the structural material would be limiting in such a system. The corrosion rate was found to be low ( 0 C (approximately that of type 316 stainless steel exposed to lithium flowing at a similar velocity). At the proposed operating temperature (less than or equal to approx. 535 0 C), however, it appears that type 316 stainless steel has acceptable compatibility with the tritium-processing salt LiF-LiCl-LiBr for use with a lithium blanket

  6. Feasibility study of a highly sensitive LaBr{sub 3} PET scanner based on the DOI-dependent extended-energy window

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji [Naitonal Institute of Radiological Sciences, Chiba (Japan)], E-mail: rush@nirs.go.jp; Kitamura, Keishi [Shimadzu Corporation, Kyoto (Japan); Nishikido, Fumihiko; Shibuya, Kengo [Naitonal Institute of Radiological Sciences, Chiba (Japan); Hasegawa, Tomoyuki [Kitasato University, Kanagawa (Japan); Yamaya, Taiga; Inadama, Naoko; Murayama, Hideo [Naitonal Institute of Radiological Sciences, Chiba (Japan)

    2009-06-01

    Conventionally, positron emission tomograph (PET) scanners use scintillators which have a high effective atomic number. Recently, novel scintillators like LaBr{sub 3} have been developed which have excellent timing and energy resolutions. LaBr{sub 3} has a high performance for PET scanner use, but its effective atomic number is lower than that of lutetium oxyorthosilicate (LSO). As an alternative, we have developed a scatter reduction method using depth-of-interaction (DOI) information and energy information to increase the sensitivity. The sensitivity of the PET scanner with LaBr{sub 3} can be improved using the DOI-dependent extended-energy window (DEEW) method. In this work, our method is applied to the whole-body LSO/LaBr{sub 3} PET scanner using the GATE simulation toolkit. Simulation results show the number of true coincidences can be increased while minimizing the scatter and random coincidences by using the DEEW method. Noise equivalent count rate (NECR) can be improved by 20-70% for the whole-body DOI-PET scanner. Sensitivity of the PET scanner with a scintillator of low-effective atomic number can be improved by the DEEW method.

  7. Growth of MAPbBr3 perovskite crystals and its interfacial properties with Al and Ag contacts for perovskite solar cells

    Science.gov (United States)

    Najeeb, Mansoor Ani; Ahmad, Zubair; Shakoor, R. A.; Alashraf, Abdulla; Bhadra, Jolly; Al-Thani, N. J.; Al-Muhtaseb, Shaheen A.; Mohamed, A. M. A.

    2017-11-01

    In this work, the MAPbBr3 perovskite crystals were grown and the interfacial properties of the poly-crystalline MAPbBr3 with Aluminum (Al) and Silver (Ag) contacts has been investigated. MAPbBr3 crystals are turned into the poly-crystalline pellets (PCP) using compaction technique and the Al/PCP, Al/interface layer/PCP, Ag/PCP, and Ag/interface layer/PCP contacts were investigated. Scanning Electron Microscopic (SEM), Energy-dispersive X-ray spectroscopy (EDX) and current-voltage (I-V) characteristic technique were used to have an insight of the degradation mechanism happening at the Metal/perovskite interface. The Ag/PCP contact appears to be stable, whereas Al is found to be highly reactive with the MAPbBr3 perovskite crystals due to the infiltration setback of Al in to the perovskite crystals. The interface layer showed a slight effect on the penetration of Al in to the perovskite crystals however it does not seem to be an appropriate solution. It is noteworthy that the stability of the underlying metal/perovskite contact is very crucial towards the perovskite solar cells with extended device lifetime.

  8. Computer simulation of the structure of liquid metal halides RbBr, CuCl, CuBr, CuI, and AgBr

    International Nuclear Information System (INIS)

    Belashchenko, D.K.; Ostrovskij, O.I.

    2003-01-01

    The computerized models of the RbBr, AgBr, CuCl, CuBr and CuI liquid ion systems of 498 ions dimension are simulated at the temperatures of 753-960 K on the basis of the known diffraction data through the BELION algorithm. Good agreement of diffraction and model partial pair correlation functions (PPCF), excluding the PPCF first peaks heights, is obtained in all the cases. The simulation is carried out by the varied ion charges (the atomization energy values, close to the real ones, are obtained by ion charges ±1.00 for the RbBr, ±1.15 for AgBr, ±1.20 for CuCl, ±1.48 for CuBr and ±1.367 for CuI). The noncoulomb contributions in the interparticle potentials are calculated [ru

  9. Mesoporous C/CrN and C/VN Nanocomposites Obtained by One-Pot Soft-Templating Process

    Directory of Open Access Journals (Sweden)

    Julien Kiener

    2016-07-01

    Full Text Available Nanocomposites of ordered mesoporous carbon associated with chromium nitride (CrN or vanadium nitride (VN nanoparticles were obtained by a simple one-pot synthesis based on the solvent evaporation induced self-assembly (EISA process using Pluronic triblock surfactant as soft-template and a phenol-based resin (resol as carbon precursor. These nanocomposites were characterized by X-ray diffraction, nitrogen physisorption and Transmission Electron Microscopy (TEM techniques. Electron tomography (or 3D-TEM technique was particularly useful for providing direct insight on the internal architecture of C/CrN nanocomposite. Nanocomposites showed a very well organized hexagonal mesoporous carbon structure and a relatively high concentration of nanoparticles well distributed in the porous network. The chromium and vanadium nitrides/mesoporous carbon nanocomposites could have many potential applications in catalysis, Li-ion batteries, and supercapacitors.

  10. Dendrimer ligands-capped CH3NH3PbBr3 perovskite nanocrystals with delayed halide exchange and record stability against both moisture and water

    Science.gov (United States)

    Xu, Yiren; Xu, Shuhong; Shao, Haibao; Jiang, Han; Cui, Yiping; Wang, Chunlei

    2018-06-01

    CH3NH3PbBr3 perovskite nanocrystals (NCs) suffer from poor stability because of their high sensitivity to environmental moisture and water. To solve this problem, previous works mainly focus on embedding perovskite NCs into water-resistant matrix to form large composites (size of microns or larger). As an alternative solution without serious changing of NC size, enhancing the stability of perovskite NCs themselves by ligand engineering is rarely reported. In this work, we used hyperbranched polyamidoamine (PAMAM) dendrimers with two different generations (G0 and G4) to synthesize CH3NH3PbBr3 perovskite NCs with high photoluminescence (PL) quantum yields (QY) above 70% and a new record stability. A novel dendrimers generation-dependent stability of perovskite NCs was observed. The water-resistance time is 18 h (27 h) for perovskite NCs capped by G0 (G4) generation of PAMAM, which is 7 times (11 times) longer than that of traditional oleic acid-capped NCs. Similar PAMAM generation-related stability is also observed in moisture-resistance tests. The stability time against moisture is 500 h (800 h) for G0 (G4) generation of PAMAM-capped perovskite NCs, which is a new record stability time against moisture for CH3NH3PbBr3 perovskite NCs. In addition, our results also indicate that PAMAM ligands outside perovskite NCs can dramatically slow down the speed of halide exchange. Even for the mixture of perovskite NCs with two different halide composition, the original luminescence properties of PAMAM-capped perovskite NCs can retain after mixing. In view of slow halide exchange speed, excellent water and moisture stability, PAMAM dendrimers-capped perovskite NCs and their mixture are available as color conversion single layer in fabrication of light-emitting diodes (LED).

  11. Dendrimer ligands-capped CH3NH3PbBr3 perovskite nanocrystals with delayed halide exchange and record stability against both moisture and water.

    Science.gov (United States)

    Xu, Yiren; Xu, Shuhong; Shao, Haibao; Jiang, Han; Cui, Yiping; Wang, Chunlei

    2018-06-08

    CH 3 NH 3 PbBr 3 perovskite nanocrystals (NCs) suffer from poor stability because of their high sensitivity to environmental moisture and water. To solve this problem, previous works mainly focus on embedding perovskite NCs into water-resistant matrix to form large composites (size of microns or larger). As an alternative solution without serious changing of NC size, enhancing the stability of perovskite NCs themselves by ligand engineering is rarely reported. In this work, we used hyperbranched polyamidoamine (PAMAM) dendrimers with two different generations (G0 and G4) to synthesize CH 3 NH 3 PbBr 3 perovskite NCs with high photoluminescence (PL) quantum yields (QY) above 70% and a new record stability. A novel dendrimers generation-dependent stability of perovskite NCs was observed. The water-resistance time is 18 h (27 h) for perovskite NCs capped by G0 (G4) generation of PAMAM, which is 7 times (11 times) longer than that of traditional oleic acid-capped NCs. Similar PAMAM generation-related stability is also observed in moisture-resistance tests. The stability time against moisture is 500 h (800 h) for G0 (G4) generation of PAMAM-capped perovskite NCs, which is a new record stability time against moisture for CH 3 NH 3 PbBr 3 perovskite NCs. In addition, our results also indicate that PAMAM ligands outside perovskite NCs can dramatically slow down the speed of halide exchange. Even for the mixture of perovskite NCs with two different halide composition, the original luminescence properties of PAMAM-capped perovskite NCs can retain after mixing. In view of slow halide exchange speed, excellent water and moisture stability, PAMAM dendrimers-capped perovskite NCs and their mixture are available as color conversion single layer in fabrication of light-emitting diodes (LED).

  12. Rate constant for the reaction SO + BrO yields SO2 + Br

    Science.gov (United States)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  13. Dye adsorbates BrPDI, BrGly, and BrAsp on anatase TiO2(001) for dye-sensitized solar cell applications

    Science.gov (United States)

    Çakır, D.; Gülseren, O.; Mete, E.; Ellialtıoǧlu, Ş.

    2009-07-01

    Using the first-principles plane-wave pseudopotential method within density functional theory, we systematically investigated the interaction of perylenediimide (PDI)-based dye compounds (BrPDI, BrGly, and BrAsp) with both unreconstructed (UR) and reconstructed (RC) anatase TiO2(001) surfaces. All dye molecules form strong chemical bonds with surface in the most favorable adsorption structures. In UR-BrGly, RC-BrGly, and RC-BrAsp cases, we have observed that highest occupied molecular orbital and lowest unoccupied molecular orbital levels of molecules appear within band gap and conduction-band region, respectively. Moreover, we have obtained a gap narrowing upon adsorption of BrPDI on the RC surface. Because of the reduction in effective band gap of surface-dye system and possibly achieving the visible-light activity, these results are valuable for photovoltaic and photocatalytic applications. We have also considered the effects of hydration of surface to the binding of BrPDI. It has been found that the binding energy drops significantly for the completely hydrated surfaces.

  14. Hexadecyltrimethylammonium bromide (CTA-Br) and 1-butyl-3-methylimidazolium tetrafluoroborate (bmim-BF4) in aqueous solution: An ephemeral binary system.

    Science.gov (United States)

    Comelles, Francesc; Ribosa, Isabel; Gonzalez, Juan José; Garcia, M Teresa

    2017-03-15

    Mixtures of the cationic surfactant hexadecyltrimethylammonium bromide (CTA-Br) and the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (bmim-BF 4 ) in aqueous solutions are expected to behave as typical binary cationic surfactant system taking into account the surface activity displayed by the ionic liquid, instead of considering the IL as a water cosolvent. Surface tension and conductivity measurements have been conducted as a function of the total concentration of the mixtures at different surfactant mole fraction (α CTA-Br ) to investigate the surface active properties. Turbidity immediately appearing when the compounds are mixed in water suggests the spontaneous formation of the low soluble compound hexadecyltrimethylammonium tetrafluoroborate (CTA-BF 4 ), together with the salt formed by the respective counterions bmim + and Br - in solution. For α CTA-Br ≠0.5, furthermore of the mentioned compounds, the spare bmim-BF 4 (for α CTA-Br Br (for α CTA-Br >0.5), are also present in the aqueous solution. Systems containing excess of bmim-BF 4 show a low critical aggregate concentration (cac), but an unexpected high surface tension at cac (γ cac ≈53-56mN/m), as pure CTA-BF 4 . For systems containing excess of CTA-Br, cac increases but γ cac decreases up to 36mN/m. Mixtures of pure CTA-BF 4 and bmim-BF 4 or CTA-Br behave as typical binary surfactant systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Lattice potential energy and standard molar enthalpy in the formation of 1-dodecylamine hydrobromide(1-C12H25NH3·Br)(s)

    Institute of Scientific and Technical Information of China (English)

    Liu Yu-Pu; Di You-Ying; Dan Wen-Yan; He Dong-Hua; Kong Yu-Xia; Yang Wei-Wei

    2011-01-01

    This paper reports that 1-dodecylamine hydrobromide (1-C12H25NH3·Br)(s) has been synthesized using the liquid phase reaction method. The lattice potential energy of the compound 1-C12H25NH3·Br and the ionic volume and radius of the 1-C12H25NH3+ cation are obtained from the crystallographic data and other auxiliary ther-modynamic data. The constant-volume energy of combustion of 1-C12H25NH3·Br(s) is measured to be △cUm°(1-C12H25NH3·Br, s) =-(7369.03±3.28) kJ·mol-1 by means of an RBC-Ⅱ precision rotating-bomb combustion calorimeter at T=(298.15±0.001) K. The standard molar enthalpy of combustion of the compound is derived to be △cHm°(1-C12H25NH3·Br, s)=-(7384.52±3.28) kJ·mol-1 from the constant-volume energy of combustion. The standard molar enthalpy of formation of the compound is calculated to be △fHm°(1-C12H25NH3·Br, s)=-(1317.86±3.67) kJ·mol-1 from the standard molar enthalpy of combustion of the title compound and other auxiliary thermodynamic quantities through a thermochemical cycle.

  16. Enhanced Size Selection in Two-Photon Excitation for CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Chen, Junsheng; Chábera, Pavel; Pascher, Torbjörn; Messing, Maria E; Schaller, Richard; Canton, Sophie; Zheng, Kaibo; Pullerits, Tõnu

    2017-10-19

    Cesium lead bromide (CsPbBr 3 ) perovskite nanocrystals (NCs), with large two-photon absorption (TPA) cross-section and bright photoluminescence (PL), have been demonstrated as stable two-photon-pumped lasing medium. With two-photon excitation, red-shifted PL spectrum and increased PL lifetime is observed compared with one-photon excitation. We have investigated the origin of such difference using time-resolved laser spectroscopies. We ascribe the difference to the enhanced size selection of NCs by two-photon excitation. Because of inherent nonlinearity, the size dependence of absorption cross-section under TPA is stronger. Consequently, larger size NCs are preferably excited, leading to longer excited-state lifetime and red-shifted PL emission. In a broad view, the enhanced size selection in two-photon excitation of CsPbBr 3 NCs is likely a general feature of the perovskite NCs and can be tuned via NC size distribution to influence their performance within NC-based nonlinear optical materials and devices.

  17. Directional Growth of Ultralong CsPbBr3 Perovskite Nanowires for High-Performance Photodetectors.

    Science.gov (United States)

    Shoaib, Muhammad; Zhang, Xuehong; Wang, Xiaoxia; Zhou, Hong; Xu, Tao; Wang, Xiao; Hu, Xuelu; Liu, Huawei; Fan, Xiaopeng; Zheng, Weihao; Yang, Tiefeng; Yang, Shuzhen; Zhang, Qinglin; Zhu, Xiaoli; Sun, Litao; Pan, Anlian

    2017-11-08

    Directional growth of ultralong nanowires (NWs) is significant for practical application of large-scale optoelectronic integration. Here, we demonstrate the controlled growth of in-plane directional perovskite CsPbBr 3 NWs, induced by graphoepitaxial effect on annealed M-plane sapphire substrates. The wires have a diameter of several hundred nanometers, with lengths up to several millimeters. Microstructure characterization shows that CsPbBr 3 NWs are high-quality single crystals, with smooth surfaces and well-defined cross section. The NWs have very strong band-edge photoluminescence (PL) with a long PL lifetime of ∼25 ns and can realize high-quality optical waveguides. Photodetectors constructed on these individual NWs exhibit excellent photoresponse with an ultrahigh responsivity of 4400 A/W and a very fast response speed of 252 μs. This work presents an important step toward scalable growth of high-quality perovskite NWs, which will provide promising opportunities in constructing integrated nanophotonic and optoelectronic systems.

  18. Assessment of the French and US embrittlement trend curves applied to RPV materials irradiated in the BR2 materials test reactor

    International Nuclear Information System (INIS)

    Chaouadi, R.; Gerard, R.; Boagaerts, A.S.

    2011-01-01

    The irradiation embrittlement of reactor pressure vessels (RPVs) in monitored through the surveillance programs associated with predictive formulas, the so-called embrittlement trend curves. These formulas are generally empirically derived and contain the major embrittlement-inducing elements such as copper, nickel and phosphorus. There are a number of such trend curves used in various regulatory guides used in the US, France, Germany, Russia and Japan. These trend curves are often supported by surveillance data and regularly assessed in view of updated surveillance databases. With the recent worldwide move towards life extension of existing reactors above their initially-scheduled lifetime of 40 years, adequate and accurate modeling of irradiation embrittlement becomes a concern for long term operation. The aim of this work is to assess the performance of the embrittlement trend curves used in a regulatory perspective. The work presented here is limited to US and French trend curves because the reactor pressure vessels of the Belgian nuclear power plants are either Westinghouse or Framatome design. The chemical composition of the Belgian RPVs being very close to the one of the French 900 MW units, the French trend curve is used except for the Doel 1-2 units for which these curves are not applicable due to the higher copper content of the welds. In this case, the U.S. trend curves are used. The aim of this work is to evaluate the performance of the embrittlement trend curves used in a regulatory perspective to represent the experimental data obtained in the BR2 reactor. In particular, the French (FIM, FIS) and the US (Reg. Guide 1.99 Rev. 2, ASTM E900-02, EWO and EONY) formulas are of prime interest. The results obtained clearly show that the French trend curves tend to over-estimate the actual irradiation hardening while the US curves under-estimate it. Within the long term operation perspective, both over- and under-estimating are undesirable and therefore the

  19. Ancillary Ligand Effects upon the Photochemistry of Mn(bpy)(CO)3X Complexes (X = Br-, PhCC-).

    Science.gov (United States)

    Yempally, Veeranna; Moncho, Salvador; Hasanayn, Faraj; Fan, Wai Yip; Brothers, Edward N; Bengali, Ashfaq A

    2017-09-18

    The photochemistry of two Mn(bpy)(CO) 3 X complexes (X = PhCC - , Br - ) has been studied in the coordinating solvents THF (terahydrofuran) and MeCN (acetonitrile) employing time-resolved infrared spectroscopy. The two complexes are found to exhibit strikingly different photoreactivities and solvent dependencies. In MeCN, photolysis of 1-(CO)(Br) [1 = Mn(bpy)(CO) 2 ] affords the ionic complex [1-(MeCN) 2 ]Br as a final product. In contrast, photolysis of 1-(CO)(CCPh) in MeCN results in facial to meridional isomerization of the parent complex. When THF is used as solvent, photolysis results in facial to meridional isomerization in both complexes, though the isomerization rate is larger for X = Br - . Pronounced differences are also observed in the photosubstitution chemistry of the two complexes where both the rate of MeCN exchange from 1-(MeCN)(X) by THFA (tetrahydrofurfurylamine) and the nature of the intermediates generated in the reaction are dependent upon X. DFT calculations are used to support analysis of some of the experiments.

  20. Synthesis, purification, and characterization of perovskite semiconductor CsPbBr3 as a new candidate for y-ray detector(Conference Presentation)

    Science.gov (United States)

    Chung, Duck Young; Kanatzidis, Mercouri G.; Meng, Fang; Malliakas, Christos D.

    2016-09-01

    CsPbBr3 has direct band gap (orange color, 2.25 eV), high density (4.85 g/cm3), attenuation coefficient comparable to CZT, and high resistivity 10^9 ohm•cm. These fundamental physical properties of CsPbBr3well meet the requirements for gamma-ray detector materials. CsPbBr3 exhibits the carrier mobility-lifetime product in the order of 10^-4 cm2/V promising enough to be further developed for practical applications. The major challenge in the process to further enhance the detection performance is the carrier traps present at a deep level of the energy gap which should be minimized. We report the synthesis, purification, crystal growth and physical characterization of the CsPbBr3 crystals obtained by new processes we developed for highly pure materials with reduced carrier traps. The starting binary materials were prepared by reaction of Cs2CO3/HBr and Pb(ac)2/HBr in aqueous solution. Purification of materials was performed by sublimation, bromination with HBr gas, and filtration of molten materials. Large single crystals were grown by the vertical Bridgman and EelectroDynamic Gradient method and cut to the dimensions appropriate for assessment of the material for gamma-ray detector applications. All characterization including optical characteristics, charge transport properties, photoconductivity, and gamma-ray spectroscopy from the new single crystals of CsPbBr3 will be presented. In addition, the charge carrier traps profile has been studied for this compound by Deep-Level Transient Spectroscopy (DLTS), Thermally Stimulated Luminescence (TSL), and Photoluminescence (PL) and will be presented.

  1. Single crystal growth and surface chemical stability of KPb2Br5

    Science.gov (United States)

    Atuchin, V. V.; Isaenko, L. I.; Kesler, V. G.; Tarasova, A. Yu.

    2011-03-01

    Single crystal of KPb2Br5 has been grown using the Bridgman technique. Initially the synthesis of stoichiometric KPb2Br5 compound was performed from high purity bromide salts. Electronic structure of KPb2Br5 has been determined with X-ray photoelectron spectroscopy for powdered sample fabricated by grinding in air. Drastic chemical interaction of KPb2Br5 with atmosphere has not been detected. Chemical bonding in potassium- and lead-containing bromides is considered using binding energy differences ΔK=(BE K 2p3/2-BE Br 3d) and ΔPb=(BE Pb 4f7/2-BE Br 3d), respectively, as representative parameters.

  2. Is the 'Bromine Explosion' generated from the reaction BrO HO2 alone?

    Science.gov (United States)

    Behnke, Wolfgang; Zetzsch, Cornelius

    2010-05-01

    We observed bromine explosions (a fast production of atomic Br and Cl under tropospheric conditions) in various smog chamber experiments in Teflon bags at room temperature at a relative humidity of about 80% in the presence of NaCl/NaBr-aerosol, simulated sunlight and ozone (200 - 400 ppb). Time profiles of ozone and hydrocarbons (HCs: n-butane, 2,2-dimethylbutane, tetramethylbutane and toluene, initially about 2 ppb each) were monitored to determine concentrations and source strengths of OH radicals, atomic Cl and Br and the corresponding time profiles of BrCl and Br2 as their photolytic precursors. The number and size of aerosols are measured as well as their chemical composition (Br-, Cl- and oxalic acid). Full records of raw data from the smog chamber runs are available at www.eurochamp.org for potential users. Chemical box model calculations deliver concentrations of various intermediates, such as aldehydes, HO2 and RO2 radicals and the inorganic halogen compounds ClO, BrO, HOCl and HOBr, where HOBr from O3 + Br- => BrO- + O2 in the aqueous/adsorbed phase induces the following gas-phase/ heterogeneous chain reaction Br + O3 => BrO + O2(1) BrO + HO2 => HOBr + O2(2a) HOBr + (Aerosol) => HOBrad(3) Surface-adsorbed HOBr reacts with Br- or Cl- to produce Br2 or BrCl, both of which are released and photolysed. Formation of Br2 should prevail up to Cl-/Br- -ratios of about 104 (Fickert, S., J.W. Adams, J.N. Crowley, J. Geophys. Res., D104, 23719-23727, 1999). A maximum of this ratio is reached about 30 minutes after the beginning and decreases during the next hours - probably by reaction of Br2 with oxalate and absorption of HBr, formed from the reaction of Br with aldehydes. Parallel to chain reaction (1)-(3) a chain reaction replacing Br by Cl seems possible but can not be realized, since the main sink of atomic Cl is its reaction with hydrocarbons - leading to chain termination - in contrast to atomic Br (ratio of rates: kCl[O3]/kCl[HC] ~ 0.1; kBr[O3]/kBr

  3. Status of fast reactor activities in the USSR

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Rinejskij, A.A.

    1990-01-01

    Four fast reactors are in operation in the USSR now: BR-10, BOR-60, BN-350 and BN-600. Load factor of BN-600 reactor was in 1989 about 76%. On the basis of operational experience of running reactors design of more powerful commercial size BN-800 power reactor has been completed recently and construction work has started at two sites. The BN-1600 reactor is considered to be the prototype of future commercial reactors. In 1990, it was decided to extend its design approach with the aim to find some additional solutions to provide higher safety and better economics. (author). Figs and tabs

  4. $\\beta$-delayed neutrons from oriented $^{137,139}$I and $^{87,89}$Br nuclei

    CERN Multimedia

    We propose a world-first measurement of the angular distribution of $\\beta$‐delayed n and $\\gamma$-radiation from oriented $^{137, 139}$I and $^{87,89}$Br nuclei, polarised at low temperature at the NICOLE facility. $\\beta$­-delayed neutron emission is an increasingly important decay mechanism as the drip line is approached and its detailed understanding is essential to phenomena as fundamental as the r‐process and practical as the safe operation of nuclear power reactors. The experiments offer sensitive tests of theoretical input concerning the allowed and first­‐forbidden $\\beta$‐decay strength, the spin-density of neutron emitting states and the partial wave barrier penetration as a function of nuclear deformation. In $^{137}$I and $^{87}$Br the decay feeds predominantly the ground state of the daughters $^{136}$Xe and $^{86}$Kr whereas in $^{139}$I and $^{89}$Br we will explore the use of n-$\\gamma$- coincidence to study neutron transitions to the first and second excited states in the daughters...

  5. Structure determination of K2ZnBr4 at 291 and 144 K

    International Nuclear Information System (INIS)

    Fabry, J.; Breczewski, T.; Zuniga, F.J.; Arnaiz, A.R.

    1993-01-01

    The room-temperature phase of K 2 ZnBr 4 is isomorphous with Sr 2 GeS 4 (P2 1 /m) while the low-temperature structure (P2 1 ) is slightly distorted [the phase transition occurs at 155 K]. Both structures contain highly deformed tetrahedral [ZnBr 4 ] 2- molecules with Br(3)-Zn-Br(3') angles of 103.06(5) and 102.49(9) at 291 and 144 K, respectively. This distortion is caused by the repulsion of Br atoms whose distance 3.712(1) and 3.661(2) A at 291 and 144 K, respectively, is below the Br-Br van der Waals distance (3.9 A). The phase transition is accompanied by minor shifts of cations and [ZnBr 4 ] 2- tetrahedra which are simultaneously rotated about a small angle. Below the phase transition point an inversion twin develops whose twin-fraction parameter was refined to 0.459(65). (orig.)

  6. Nuclear reactor control with fuzzy logic approaches - strengths, weakness, opportunities, and threats

    International Nuclear Information System (INIS)

    Ruan, Da

    2004-01-01

    As part of the special track on 'Lessons learned from computational intelligence in nuclear applications' at the forthcoming FLINS 2004 conference on Applied Computational Intelligence (Blankenberge, Belgium, September 1-3, 2004), research experiences on fuzzy logic techniques in applications of nuclear reactor control operation are critically reviewed in this presentation. Assessment of four real fuzzy control applications at the MIT research reactor in the US, the FUGEN heavy water reactor in Japan, the BR1 research reactor in Belgium, and a TRIGA Mark III reactor in Mexico will be examined thought a SWOT analysis (strengths, weakness, opportunities, and threats). Special attention will be paid to the current cooperation between the Belgian Nuclear Research Centre (SCK-CEN) and the Mexican Nuclear Centre (ININ) on the fuzzy logic control for nuclear reactor control project under the partial support of the National Council for Science and Technology of Mexico (CONACYT). (Author)

  7. Alloy-Controlled Work Function for Enhanced Charge Extraction in All-Inorganic CsPbBr3 Perovskite Solar Cells.

    Science.gov (United States)

    Ding, Jie; Zhao, Yuanyuan; Duan, Jialong; He, Benlin; Tang, Qunwei

    2018-03-25

    All-inorganic CsPbX 3 (X=I, Br) perovskite solar cells are regarded as cost-effective and stable alternatives for next-generation photovoltaics. However, sluggish charge extraction at CsPbX 3 /charge-transporting material interfaces, which arises from large interfacial energy differences, have markedly limited the further enhancement of solar cell performance. In this work, the work function (WF) of the back electrode is tuned by doping alloyed PtNi nanowires in carbon ink to promote hole extraction from CsPbBr 3 halides, while an intermediate energy by setting carbon quantum dots (CQDs) at TiO 2 /CsPbBr 3 interface bridges electron transportation. The preliminary results demonstrate that the matching WFs and intermediate energy level markedly reduce charge recombination. A power conversion efficiency of 7.17 % is achieved for the WF-tuned all-inorganic perovskite solar cell, in comparison with 6.10 % for the pristine device, and this is further increased to 7.86 % by simultaneously modifying with CQDs. The high efficiency and improved stability make WF-controlled all-inorganic perovskite solar cells promising to develop advanced photovoltaic platforms. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Steering dissociation of Br2 molecules with two femtosecond pulses via wave packet interference.

    Science.gov (United States)

    Han, Yong-Chang; Yuan, Kai-Jun; Hu, Wen-Hui; Yan, Tian-Min; Cong, Shu-Lin

    2008-04-07

    The dissociation dynamics of Br2 molecules induced by two femtosecond pump pulses are studied based on the calculation of time-dependent quantum wave packet. Perpendicular transition from X 1Sigma g+ to A 3Pi 1u+ and 1Pi 1u+ and parallel transition from X 1Sigma g+ to B 3Pi 0u+, involving two product channels Br (2P3/2)+Br (2P3/2) and Br (2P3/2)+Br* (2P1/2), respectively, are taken into account. Two pump pulses create dissociating wave packets interfering with each other. By varying laser parameters, the interference of dissociating wave packets can be controlled, and the dissociation probabilities of Br2 molecules on the three excited states can be changed to different degrees. The branching ratio of Br*/(Br+Br*) is calculated as a function of pulse delay time and phase difference.

  9. $^{80}$Br $^{80}$Br-a new electron-gamma PAC probe

    CERN Document Server

    Correia, J G; Araújo, J P; Marques, J G; Soares, J C; Melo, A A

    2001-01-01

    Conversion electron-gamma PAC measurements of the 49-37 keV cascade in /sup 80/Br through the intermediate 2/sup -/ state with T/sub 1/2 /=7.4 ns were performed with a system of two magnetic lens spectrometers and two BaF/sub 2/ scintillation detectors. The parent /sup 80m/Br activity with a halflife of 4.4 hrs was implanted into Ni, Zn and graphite at the ISOLDE separator at CERN. The observed interaction frequency in the nickel matrix is in good agreement with the known value of the hyperfine field for Br in Ni and the magnetic moment of the 2/sup -/ state. From the measured quadrupole interaction in Zn and graphite the electric field gradients at Br were obtained. (7 refs).

  10. One-pot oxidation and bromination of 3,4-diaryl-2,5-dihydrothiophenes using Br2: synthesis and application of 3,4-diaryl-2,5-dibromothiophenes.

    Science.gov (United States)

    Dang, Yizhe; Chen, Yi

    2007-08-31

    A class of 3,4-diaryl-2,5-dibromothiophenes (1b-5b) was synthesized by a one-pot reaction of 3,4-diaryl-2,5-dihydrothiophenes with Br2 reagent in excellent yield (83-92%). It was found that Br2 performed a double function (oxidation and bromination) during the conversion of 3,4-diaryl-2,5-dihydrothiophenes to 3,4-diaryl-2,5-dibromothiophenes. The application of 3,4-diaryl-2,5-dibromothiophenes used as building blocks was also investigated. Employing 3,4-diphenyl-2,5-dibromothiophene (1b) as a template, a class of 2,3,4,5-tetraarylthiophenes was prepared by the Suzuki coupling reaction. This provided a new and simple approach to the preparation of 2,3,4,5-tetraarylthiophenes.

  11. Preparation of AgBr Nanoparticles in Microemulsions Via Reaction of AgNO3 with CTAB Counterion

    International Nuclear Information System (INIS)

    Husein, Maen M.; Rodil, Eva; Vera, Juan H.

    2007-01-01

    Nanoparticles of AgBr were prepared by precipitating AgBr in the water pools of microemulsions consisting of CTAB, n-butanol, isooctane and water. An aqueous solution of AgNO 3 added to the microemulsion was the source of Ag + ions. The formation of AgBr nanoparticles in microemulsions through direct reaction with the surfactant counterion is a novel approach aimed at decreasing the role of intermicellar nucleation on nanoparticle formation for rapid reactions. The availability of the surfactant counterion in every reverse micelle and the rapidity of the reaction with the counterion trigger nucleation within individual reverse micelles. The effect of the following variables on the particle size and size distribution was investigated: the surfactant and cosurfactant concentrations, moles of AgNO 3 added, and water to surfactant mole ratio, R. High concentration of the surfactant or cosurfactant, or high water content of the microemulsion favored intermicellar nucleation and resulted in the formation of large particles with broad size distribution, while high amounts of AgNO 3 favored nucleation within individual micelles and resulted in small nanoparticles with narrow size distribution. A blue shift in the UV absorption threshold corresponding to a decrease in the particle size was generally observed. Notably, the variation of the absorption peak size with the nanoparticle size was opposite to those reported by us in previous studies using different surfactants

  12. The First Organic-Inorganic Hybrid Luminescent Multiferroic: (Pyrrolidinium)MnBr3.

    Science.gov (United States)

    Zhang, Yi; Liao, Wei-Qiang; Fu, Da-Wei; Ye, Heng-Yun; Liu, Cai-Ming; Chen, Zhong-Ning; Xiong, Ren-Gen

    2015-07-08

    A hybrid organic-inorganic compound, (pyrrolidinium)MnBr3 , distinguished from rare earth (RE)-doped inorganic perovskites, is discovered as a new member of the ferroelectrics family, having excellent luminescent properties and relatively large spontaneous polarization of 6 μC cm(-2) , as well as a weak ferromagnetism at about 2.4 K. With a quantum yield of >28% and emission lifetime >0.1 ms, such multiferroic photoluminescence is a suitable candidate for future applications in luminescence materials, photovoltaics, and magneto-optoelectronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Novel ternary g-C3N4/Ag3VO4/AgBr nanocomposites with excellent visible-light-driven photocatalytic performance for environmental applications

    Science.gov (United States)

    Barzegar, Javid; Habibi-Yangjeh, Aziz; Akhundi, Anise; Vadivel, S.

    2018-04-01

    Novel visible-light-induced photocatalysts were fabricated by integration of Ag3VO4 and AgBr semiconductors with graphitic carbon nitride (g-C3N4) through a facile refluxing method. The fabricated photocatalysts were extensively characterized by XRD, EDX, SEM, TEM, FT-IR, UV-vis DRS, BET, TGA, and PL instruments. The photocatalytic performance of these samples was studied by degradations of three dye contaminants under visible-light exposure. Among the ternary photocatalysts, the g-C3N4/Ag3VO4/AgBr (10%) nanocomposite displayed the maximum activity for RhB degradation with rate constant of 1366.6 × 10-4 min-1, which is 116, 7.23, and 38.5 times as high as those of the g-C3N4, g-C3N4/AgBr (10%), and g-C3N4/Ag3VO4 (30%) photocatalysts, respectively. The effects of synthesis time and calcination temperature were also investigated and discussed. Furthermore, according to the trapping experiments, it was found that superoxide anion radicals were the predominant reactive species in this system. Finally, the ternary photocatalyst displayed superlative activity in removal of the contaminants under visible-light exposure, displaying great potential of this ternary photocatalyst for environmental remediation, because of a facile synthesis route and outstanding photocatalytic performance.

  14. A Study of Inverted-Type Perovskite Solar Cells with Various Composition Ratios of (FAPbI31−x(MAPbBr3x

    Directory of Open Access Journals (Sweden)

    Lung-Chien Chen

    2016-10-01

    Full Text Available This work presents mixed (FAPbI31−x(MAPbBr3x perovskite films with various composition ratios, x (x = 0–1, which are formed using the spin coating method. The structural, optical, and electronic behaviors of the mixed (FAPbI31−x(MAPbBr3x perovskite films are discussed. A device with structure glass/indium tin oxide (ITO/poly(3,4-ethylenedioxythiophene polystyrene sulfonate (PEDOT:PSS/mixed perovskite/C60/BCP/Ag was fabricated. The mixed perovskite film was an active light-harvesting layer. PEDOT:PSS was a hole transporting layer between the ITO and perovskite. Both C60 and bathocuproine (BCP were electron transporting layers. MAPbBr3 was added to FAPbI3 with a composition ratio of x = 0.2, stabilizing the perovskite phase, which exhibited a uniform and dense morphology. The optimal device exhibited band matching with C60, resulting in a low series resistance (Rsh and a high fill factor (FF. Therefore, the device with composition (FAPbI31−x(MAPbBr3x and x = 0.2 exhibited outstanding performance.

  15. Feasibility study of a high-performance LaBr{sub 3}(Ce) calorimeter for future lepton flavor violation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Papa, A., E-mail: angela.papa@psi.ch [Paul Scherrer Institut PSI, CH-5232 Villigen (Switzerland); De Gerone, M. [INFN Sezione di Genova, Largo Dodecaneso 33, 16146 Italy (Italy); Dussoni, S. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Galli, L. [Paul Scherrer Institut PSI, CH-5232 Villigen (Switzerland); INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Nicolò, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica dell' Università degli studi di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Signorelli, G. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy)

    2014-03-01

    LaBr{sub 3}(Ce) is a very attractive material due to its ultra high light output and its fast response, resulting in a good candidate as a crystal for a calorimeter able to provide simultaneously very high energy and timing performances. We report here a first test with a cylindrical 3{sup ″}×3{sup ″} LaBr{sub 3}(Ce) crystal coupled to PMT (Photonics XP53A2B), where we explore the detector performances at relative high energies, on the region of interest for future charged Lepton Flavor Violation (cLFV) experiments, using photons in the interval of 55 ÷ 83 MeV from π{sup 0} decays up to 129 MeV from the radiative capture of negative pions on protons.

  16. Multiphoton Absorption Order of CsPbBr3 As Determined by Wavelength-Dependent Nonlinear Optical Spectroscopy.

    Science.gov (United States)

    Saouma, Felix O; Stoumpos, Constantinos C; Kanatzidis, Mercouri G; Kim, Yong Soo; Jang, Joon I

    2017-10-05

    CsPbBr 3 is a direct-gap semiconductor where optical absorption takes place across the fundamental bandgap, but this all-inorganic halide perovskite typically exhibits above-bandgap emission when excited over an energy level, lying above the conduction-band minimum. We probe this bandgap anomaly using wavelength-dependent multiphoton absorption spectroscopy and find that the fundamental gap is strictly two-photon forbidden, rendering it three-photon absorption (3PA) active. Instead, two-photon absorption (2PA) commences when the two-photon energy is resonant with the optical gap, associated with the level causing the anomaly. We determine absolute nonlinear optical dispersion over this 3PA-2PA region, which can be explained by two-band models in terms of the optical gap. The polarization dependence of 3PA and 2PA is also measured and explained by the relevant selection rules. CsPbBr 3 is highly luminescent under multiphoton absorption at room temperature with marked polarization and wavelength dependence at the 3PA-2PA crossover and therefore has potential for nonlinear optical applications.

  17. RESONANCE CARS IN BR2 MOLECULES AND BR-ATOMS

    NARCIS (Netherlands)

    Aben, I.; Levelt, P.; Ubachs, W.M.G.; Hogervorst, W.

    1991-01-01

    Resonance-enhanced CARS processes were studied in molecular bromine. On the basis of the known spectroscopic constants of the two electronic states involved, the features in the spectra could be identified. CARS signals from Br-atoms produced from dissociation of Br2 were obtained by tuning (omega-1

  18. MgO reflectance data for Monte Carlo simulation of LaBr{sub 3}:Ce scintillation crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scafè, Raffaele, E-mail: raffaele.scafe@uniroma1.it [Dept. of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, I-00161 Rome (Italy); Pani, Roberto; Pellegrini, Rosanna; Cinti, Maria Nerina [Dept. of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, I-00161 Rome (Italy); Bennati, Paolo [INFN-Roma I, Italian National Institute of Nuclear Physics, Piazzale Aldo Moro 5, I-00185 Rome (Italy); Lo Meo, Sergio [National Institution for Insurance against Accidents at Work, Via Fontana Candida 1, I-00040, Monte Porzio Catone (Italy)

    2013-02-11

    Present paper is aimed to estimate the spectral reflectance of MgO as a function of layer thickness around LaBr{sub 3}:5%Ce crystals. A reference emission spectrum of scintillator was calculated averaging 15 experimental trends from literature. A survey on MgO reflectance provided experimental data in the wavelength region of interest without thickness information, while trends with dimensional facts were found in the adjacent wavelength region. An algorithm was developed for interpolating spectral data in the wavelength region of interest for given thickness. A comparison between reflectors for LaBr{sub 3}:Ce is summarized in Appendix A. Results are presented in form of weighted average values as well as numerical trends suitable, in particular, as input for Monte Carlo simulations of encapsulated crystals.

  19. Production of 77 Br for medical application

    International Nuclear Information System (INIS)

    Bastos, M.A.V.

    1982-01-01

    Bromine-77 is produced with the variable energy cyclotron (CV-28) at the Instituto de Engenharia Nuclear, via the 75 As. (α, 2 n) 77 Br reaction, by bombarding arsenic trioxide with 28 MeV alpha-particles. The thick target yield is 0.3 mCi/μAh. The target is dissolved in concentrated N H 4 OH and 77 Br, separated from arsenic, by an anionic exchange resin, is obtained carrier-free with a separation yield greater than 90%. All the process is remotely controlled using electric and pneumatic systems, manipulators and tongs. The quality control is made by atomic absorption and gamma-ray spectroscopy. The present production rate of Br-77 is 2.3 mCi per irradiation. (author)

  20. Static and dynamic magnetic properties of two synthetic francisites Cu3La(SeO3)2O2X (X = Br and Cl)

    Science.gov (United States)

    Markina, M. M.; Zakharov, K. V.; Zvereva, E. A.; Denisov, R. S.; Berdonosov, P. S.; Dolgikh, V. A.; Kuznetsova, E. S.; Olenev, A. V.; Vasiliev, A. N.

    2017-04-01

    The formation of long-range magnetic order at low temperatures was established in francisite—type compounds Cu3La(SeO3)2O2X (X = Br and Cl) through measurements of magnetic susceptibility, magnetization, specific heat and X-band electron spin resonance. The significantly enhanced critical index p = 1.0 ± 0.1 in Cu3La(SeO3)2Br and p = 0.8 ± 0.1 in Cu3La(SeO3)2Cl in the temperature dependence of the width of ESR signal evidence the reduced dimensionality of the kagome-type francisite's magnetic subsystem. Under action of external magnetic field, the presumably non-collinear six-sublattices antiferromagnetic structure of these compounds experiences the first-order metamagnetic transformation. The B- T magnetic phase diagrams were established from the positions of singularities in temperature and field dependences of thermodynamic properties. Contrary to pristine mineral Cu3Bi(SeO3)2Cl, no signature of structural phase transition was detected.