WorldWideScience

Sample records for br-2 zero power mock-up reactor

  1. Absolute determination of power density in the VVER-1000 mock-up on the LR-0 research reactor.

    Science.gov (United States)

    Košt'ál, Michal; Švadlenková, Marie; Milčák, Ján

    2013-08-01

    The work presents a detailed comparison of calculated and experimentally determined net peak areas of selected fission products gamma lines. The fission products were induced during a 2.5 h irradiation on the power level of 9.5 W in selected fuel pins of the VVER-1000 Mock-Up. The calculations were done with deterministic and stochastic (Monte Carlo) methods. The effects of different nuclear data libraries used for calculations are discussed as well. The Net Peak Area (NPA) may be used for the determination of fission density across the mock-up. This fission density is practically identical to power density.

  2. Irradiation capabilities of LR-0 reactor with VVER-1000 Mock-Up core.

    Science.gov (United States)

    Košťál, Michal; Rypar, Vojtěch; Svadlenková, Marie; Cvachovec, František; Jánský, Bohumil; Milčák, Ján

    2013-12-01

    Even low power reactors, such as zero power reactors, are sufficient for semiconductor radiation hardness effect investigation. This reflects the fact that fluxes necessary for affecting semiconductor electrical resistance are much lower than fluxes necessary to affect material parameters. The paper aims to describe the irradiation possibilities of the LR-0 reactor with a special core arrangement corresponding to VVER-1000 dosimetry Mock-Up.

  3. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given

  4. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2002-04-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system.

  5. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  6. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  7. Analysis of the BN-600 fast-spectrum core mock-up at BFS-2 zero-power facility using MCNPX

    International Nuclear Information System (INIS)

    Highlights: ► We model the BFS-62-3A experiment with the MCNPX code and four nuclear libraries. ► We show the impact on reactivity of heterogeneous structures in the reactor. ► We model experimental uncertainties, e.g. in materials dimension and density. ► The model agrees with experiments on k-eff, CR worth, Na voids and fission rates. ► The analysis questions experimental data measured in the reflector region. - Abstract: A 3D full-core heterogeneous model of the BFS-62-3A critical benchmark experiment was developed and validated using the Monte Carlo MCNPX-2.4.0 code. The BFS-2 critical facility at the Institute of Physics and Power Engineering (IPPE) was designed for simulation of fast reactor core neutronics, and for the validation of codes and nuclear data. The BFS-62-3A critical benchmark experiment was set-up as a mock-up of the BN-600 reactor core with (U, Pu) O2 fuel of 17% Pu content and stainless-steel reflectors. It was operated to measure the effective multiplication factor, spectral indices, radial fission rate distributions, control rod worths and sodium void effects. In the present study, special care was taken to run the MCNPX model to make Monte-Carlo confidence intervals comparable with uncertainties reported in the experiments; such as in material dimensions, number densities and isotopic compositions. In addition to the effective multiplication factor, sodium void effect, fission rate distributions and control rod worth were calculated. Simulations were carried out with four different modern nuclear data libraries; the primary aim being to estimate sensitivity of the results to the nuclear data. This task, besides being a library comparison, is also meant as a first step towards a code-to-code verification with deterministic methods. Results agree well with experimental values on most of the nuclear characteristics, even though a discrepancy up to more than 20% was found on the flux distribution in the stainless-steel reflector

  8. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3He, 6Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  9. Comparison of various hours living fission products for absolute power density determination in VVER-1000 mock up in LR-0 reactor.

    Science.gov (United States)

    Košťál, Michal; Švadlenková, Marie; Koleška, Michal; Rypar, Vojtěch; Milčák, Ján

    2015-11-01

    Measuring power level of zero power reactor is a quite difficult task. Due to the absence of measurable cooling media heating, it is necessary to employ a different method. The gamma-ray spectroscopy of fission products induced within reactor operation is one of possible ways of power determination. The method is based on the proportionality between fission product buildup and released power. The (92)Sr fission product was previously preferred as nuclide for LR-0 power determination for short-time irradiation experiments. This work aims to find more appropriate candidates, because the (92)Sr, however suitable, has a short half-life, which limits the maximal measurable amount of fuel pins within a single irradiation batch. The comparison of various isotopes is realized for (92)Sr, (97)Zr, (135)I, (91)Sr, and (88)Kr. The comparison between calculated and experimentally determined (C/E-1 values) net peak areas is assessed for these fission products. Experimental results show that studied fission products, except (88)Kr, are in comparable agreement with (92)Sr results. Since (91)Sr has notably higher half-life than (92)Sr, (91)Sr seems to be more appropriate marker in experiments with a large number of measured fuel pins.

  10. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  11. The application and comparison of 97Zr and 92Sr in the absolute determination of the contribution of power density and cladding activation in a VVER-1000 Mock-Up on the LR-0 Research Reactor

    Science.gov (United States)

    Košťál, Michal; Švadlenková, Marie; Milčák, Ján

    2014-02-01

    97Zr is a relatively high-yield fission product that can be used for zero reactor power determination. The technique is not widely used because in the case of reactors that use zirconium metal in the fuel cladding, it is not only a fission product but is also produced by activation. In an appropriately chosen time interval, results obtained using 97Zr can be compared to those of power determination performed using 92Sr. The knowledge of the ratio between fission-induced 97Zr and the portion of 97Zr activated in the cladding can be used not only for power-density determination but also as an important indication of fuel failures.

  12. Numerical evaluation of weld overlay applied to a pressurized water reactor nozzle mock-up

    Energy Technology Data Exchange (ETDEWEB)

    Rabello, Emerson G.; Silva, Luiz L.; Gomes, Paulo T.V., E-mail: egr@cdtn.b, E-mail: silvall@cdtn.b, E-mail: gomespt@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Integridade Estrutural

    2011-07-01

    The primary water stress corrosion cracking (PWSCC) is a major mechanism of failure in the primary circuit of PWR type nuclear power plants. The PWSCC is associated with the presence of corrosive environment, the susceptibility to corrosion cracking of the materials involved and the tensile stresses presence. Residual stresses generated during dissimilar materials welding can contribute to PWSCC. An alternative to the PWSCC mitigation is the application of external weld layers in the regions of greatest susceptibility to corrosion cracking. This process, called Weld Overlay (WOL), has been widely used in regions of dissimilar weld (low alloy steel and stainless steel with nickel alloy addition) of nozzles and pipes on the primary circuit in order to promote internal compressive stresses on the wall of these components. This paper presents the steps required to the numerical stress evaluation (by finite element method) during the dissimilar materials welding as well as application of Weld Overlay process in a nozzle mock-up. Thus, one can evaluate the effectiveness of the application of weld overlay process to internal compressive stress generation on the wall nozzle. (author)

  13. The BR2 high-flux reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ponsard, Bernard [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium). BR2 Reactor

    2012-10-15

    The BR2 reactor is a 100 MW{sub th} High-Flux 'Material Testing Reactor' which first became operational in 1963 and has since been refurbished in 1995 to 1997. It is operated by the Belgian Nuclear Research Centre, SCK CEN, in the framework of programmes related to the development of structural materials and nuclear fuels for fission and fusion reactors. Serious maintenance efforts are currently made by SCK CEN to secure its safe operation until at least 2023. This would guarantee the continuity of the activities in which the BR2 reactor is involved through its replacement by an Accelerator Driven System (ADS), MYRRHA, scheduled to be operated by SCK CEN from 2023. (orig.)

  14. Control-room mock-up for the Philippsburg nuclear power plant, Unit 2

    International Nuclear Information System (INIS)

    The paper describes the major aspects of the construction of a full-scale control-room mock-up for Unit 2 (1300 MW PWR) of the Philippsburg nuclear power plant. The multitude of monitoring and control systems, co-operative control-room modelling by the planning staff as well as the operating staff, including the feedback of experience gained during operation, and the practice-oriented application of human factors engineering, especially the optimization of the man/machine interface, are emphasized. The control-room complex is subdivided into three functional areas: the entrance area, the central shift supervisor desk and, as a focal point, the process instrumentation and control area which includes the master control console (operator main control console and associated information board) and the system control consoles. The most important improvements in the application of human factors engineering in process instrumentation and control are listed. The consequent structuring of mimic diagrams and instruments both by colour and shape is a fundamental step. A computerized operator support system has been installed with the aim of improving the man/machine interface. (author)

  15. Fast Neutron Transport in the Biological Shielding Model and Other Regions of the VVER-1000 Mock-Up on the LR-0 Research Reactor

    Science.gov (United States)

    Košťál, Michal; Milčák, Ján; Cvachovec, František; Jánský, Bohumil; Rypar, Vojtěch; Juříček, Vlastimil; Novák, Evžen; Egorov, Alexander; Zaritskiy, Sergey

    2016-02-01

    A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1-10 MeV) and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1). Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.

  16. Fast Neutron Transport in the Biological Shielding Model and Other Regions of the VVER-1000 Mock-Up on the LR-0 Research Reactor

    Directory of Open Access Journals (Sweden)

    Košťál Michal

    2016-01-01

    Full Text Available A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1–10 MeV and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1. Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.

  17. The Swedish Zero Power Reactor R0

    Energy Technology Data Exchange (ETDEWEB)

    Landergaard, Olof; Cavallin, Kaj; Jonsson, Georg

    1961-05-15

    The reactor R0 is a critical facility built for heavy water and natural uranium or fuel of low enrichment,, The first criticality was achieved September 25, 1959. During a first period of more than two years the R0 will be operated as a bare reactor in order to simplify interpretation of results. The reactor tank is 3. 2 m high and 2. 25 m in diameter. The fuel suspension system is quite flexible in order to facilitate fuel exchange and lattice variations. The temperature of the water can be varied between about 10 and 90 C by means of a heater and a cooler placed in the external circulating system. The instrumentation of the reactor has to meet the safety requirements not only during operation but also during rearrangements of the core in the shut-down state. Therefore, the shut-down state is always defined by a certain low 'safe' moderator level in the reactor tank. A number of safety rods are normally kept above the moderator ready for action. For manual or automatic control of the reactor power a specially designed piston pump is needed, by which the moderator level is varied. The pump speed is controlled from the reactor power error by means of a Ward-Leonard system. Moderator level measurement is made by means of a water gauge with an accuracy of {+-} 0. 1 mm.

  18. Material test reactor fuel research at the BR2 reactor

    International Nuclear Information System (INIS)

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  19. Optimized Control Rods of the BR2 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kalcheva, Silva; Koonen, E.

    2007-09-15

    At the present time the BR-2 reactor uses control elements with cadmium as neutron absorbing part. The lower section of the control element is a beryllium assembly cooled by light water. Due to the burn up of the lower end of the cadmium section during the reactor operation, the presently used rods for reactivity control of the BR-2 reactor have to be replaced by new ones. Considered are various types Control Rods with full active part of the following materials: cadmium (Cd), hafnium (Hf), europium oxide (Eu2O3) and gadolinium (Gd2O3). Options to decrease the burn up of the control rod material in the hot spot, such as use of stainless steel in the lower active part of the Control Rod are discussed. Comparison with the characteristics of the presently used Control Rods types is performed. The changing of the characteristics of different types Control Rods and the perturbation effects on the reactor neutronics during the BR-2 fuel cycle are investigated. The burn up of the Control Rod absorbing material, total and differential control rods worth, macroscopic and effective microscopic absorption cross sections, fuel and reactivity evolution are evaluated during approximately 30 operating cycles.

  20. Recent activities at the zero-power teaching reactor CROCUS

    Energy Technology Data Exchange (ETDEWEB)

    Girardin, G.; Chawla, R., E-mail: gaetan.girardin@epfl.ch [Swiss Polytechnical School of Lausanne, Lausanne (Switzerland)

    2011-07-01

    CROCUS is a zero-power critical facility used mainly for educational purposes at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland. It is a low-enriched-uranium fuelled, light-water moderated reactor, with the fission power limited to 100 W. The presentation will discuss the crucial role of CROCUS in teaching -- both as framework for reactor practicals offered to physics students at EPFL and as key educational tool in the recently established Swiss Master of Science in Nuclear Engineering. Regular development work is needed for the various instruments and components associated with the facility. As illustration, the recently completed refurbishment of the control rod system and the related calibration experiments will also be discussed.

  1. Neutron dose estimation in a zero power nuclear reactor

    Science.gov (United States)

    Triviño, S.; Vedelago, J.; Cantargi, F.; Keil, W.; Figueroa, R.; Mattea, F.; Chautemps, A.; Santibañez, M.; Valente, M.

    2016-10-01

    This work presents the characterization and contribution of neutron and gamma components to the absorbed dose in a zero power nuclear reactor. A dosimetric method based on Fricke gel was implemented to evaluate the separation between dose components in the mixed field. The validation of this proposed method was performed by means of direct measurements of neutron flux in different positions using Au and Mg-Ni activation foils. Monte Carlo simulations were conversely performed using the MCNP main code with a dedicated subroutine to incorporate the exact complete geometry of the nuclear reactor facility. Once nuclear fuel elements were defined, the simulations computed the different contributions to the absorbed dose in specific positions inside the core. Thermal/epithermal contributions of absorbed dose were assessed by means of Fricke gel dosimetry using different isotopic compositions aimed at modifying the sensitivity of the dosimeter for specific dose components. Clear distinctions between gamma and neutron capture dose were obtained. Both Monte Carlo simulations and experimental results provided reliable estimations about neutron flux rate as well as dose rate during the reactor operation. Simulations and experimental results are in good agreement in every positions measured and simulated in the core.

  2. Study of reactor parameters of on critical systems, Phase I: Safety report for RB zero power reactor

    International Nuclear Information System (INIS)

    In addition to the safety analysis for the zero power RB reactor, this report contains a general description of the reactor, reactor components, auxiliary equipment and the reactor building. Reactor Rb has been reconstructed during 1961-1962 and supplied with new safety-control system as well as with a complete dosimetry instrumentation. Since RB reactor was constructed without shielding special attention is devoted to safety and protection of the staff performing experiments. Due to changed circumstances in the Institute ( start-up of the RA 7 MW power reactor) the role of the RB reactor was redefined

  3. Hot zero power reactor calculations using the Insilico code

    Science.gov (United States)

    Hamilton, Steven P.; Evans, Thomas M.; Davidson, Gregory G.; Johnson, Seth R.; Pandya, Tara M.; Godfrey, Andrew T.

    2016-06-01

    In this paper we describe the reactor physics simulation capabilities of the Insilico code. A description of the various capabilities of the code is provided, including detailed discussion of the geometry, meshing, cross section processing, and neutron transport options. Numerical results demonstrate that Insilico using an SPN solver with pin-homogenized cross section generation is capable of delivering highly accurate full-core simulation of various pressurized water reactor problems. Comparison to both Monte Carlo calculations and measured plant data is provided.

  4. Transients and safety testing of LMFBR fuel pins in the reactor BR2

    International Nuclear Information System (INIS)

    Testing of the behaviour of LMFBR fuel pins under operational transients has been performed in the reactor BR2 at S.C.K./C.E.N.-Mol (Belgium) since 1981 in the framework of the DEBENE programme ''SNR-Betriebstransienten-experimente''. A special purpose sodium loop, called ''VIC'', has therefore been developed to allow off-nominal and transient experiments on single fuel pins under realistic fast reactor operating conditions. Two basic types of tests can be run, either separately or simultaneously: fission power alteration, e.g. steady overpower runs, power cycling and fast transient overpower (TOP); mismatch of the sodium cooling, e.g. operation with reduced sodium flow and transient loss of flow (LOF). The loop allows the loading and testing of pre-irradiated fuel pins. In the field of safety oriented tests, the programme ''MOL 7 C'' investigates the LMFBR fuel element behaviour under locally blocked cooling conditions and the possible failure propagation. The work is jointly carried out by the Karlsruhe center KfK (FRG) and S.C.K./C.E.N.-Mol (Belgium). The related in-pile tests in the reactor BR2 have started in 1977 and are performed in a fully integrated sodium loop. The test section contains a 30-rod bundle with fresh or pre-irradiated fuel pins. A local porous blockage within the fuel bundle initiates severe local damage to the central rods. Important informations are obtained with respect to the problems of pin to pin propagation and the long term behaviour of a fuel subassembly with defect pins. The MOL 7 C loop system can also be used to run operational transients on a fuel bundle with representative fuel pins. The paper describes the irradiation devices VIC and MOL 7 C from their technological point of view and depicts their field of testing applications. Also the major experiments already performed and relevant irradiation data are reviewed

  5. The control-and-instrumentation system of the IEA zero power reactor and its reliability calculation

    International Nuclear Information System (INIS)

    The control-and instrumentation system for the Instituto de Energia Atomica Zero Power Reactor is described and the design criteria are presented and discussed. The reliability analysis for the reactor protection system was performed using the fault tree method. This was done using a computer code based on the Monte Carlo simulation. That code is an adaptation of the SAFTE-I, for the IBM 360/155 IEA Computer. (Author)

  6. A simulated test of physical starting and reactor physics on zero power facility of PWR

    International Nuclear Information System (INIS)

    The core neutron economics has been verified through experiments conducted at a zero power reactor with baffles of various thickness. A simulated test of physical starting of Qinshan PWR has been introduced. The feasibility and safety of the programme are verified. The research provides a valuable foundation for developing physical starting programme

  7. Design of the zero power reactor core of Instituto de Energia Atomica, SP, Brazil

    International Nuclear Information System (INIS)

    The main characteristics of a graphite moderated core of a critical assembly to be installed in the zero power reactor of the Instituto de Energia Atomica have been defined. Several simple geometric configurations have been selected and criticality studies have been made. The necessary quantity of fissile uranium has been calculated. (author)

  8. Strength of Mock-up Trial Grout

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report describes tests carried out on samples taken and cast during the execution of a mock-up trial placement of the high performance grout MASTERFLOW 9500 on January 21, 2009.......The present report describes tests carried out on samples taken and cast during the execution of a mock-up trial placement of the high performance grout MASTERFLOW 9500 on January 21, 2009....

  9. Feasibility study of the thermo-siphon mock-up test

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Woon; Kim, Young Jin; Lee, Kye Hong; Kim, Young Ki; Jeong, Sang Kwon

    2004-09-01

    Described is the feasibility of the thermo-siphon mock-up test for the HANARO-CNS facility. The purposes of the mock-up tests are discussed in detail as the three concepts: for the detailed design, for the operation of the CNS facility, for the safety assurance of itself. This report considers the two stages of mock-up tests in terms of the experimental schedule and plan. As the first stage, the small-size mock-up test using Argon will be implemented to obtain the experience in the cryogenic fluid and to understand the basic concept of the CNS thermo-siphon. In the second stage, two kinds of mock-up tests are discussed: the full-scale mock-up test using liquid hydrogen or the integrated final test using hydrogen outside the reactor after the full-scale mock-up test using Freon gas. The contents discussed in this report will be the basis or the guide lines for the mock-up test. In addition, the results of the mock-up test will be the foundation for the safe operation of the HANARO-CNS facility.

  10. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    Science.gov (United States)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.

  11. Modeling of a double fission chamber using MCNPX for power calibration at the zero-power teaching reactor CROCUS

    International Nuclear Information System (INIS)

    MCNPX-2.5 simulations and experiments were performed to improve the power prediction of the zero-power teaching reactor CROCUS at the Ecole Polytechnique Federale de Lausanne (EPFL) using a calibrated double fission chamber (DFC). The CROCUS facility is a zero-power critical reactor used for educational purposes. Traditionally, the core power is determined by irradiating thin gold foils placed along the core centre and by measuring the 411 keV γ-rays on HPGe detectors. The average 197Au(n,γ) self-shielded macroscopic cross-section obtained with the deterministic BOXER code (1σ - 10%) is employed to determine the flux and the reactor power. To benchmark the BOXER calculations, a DFC containing known amounts of enriched 235U and 239Pu deposits was installed within the reflector core and simulated with MCNPX-2.5/JEF-2.2. Particular care was taken to model the fissile deposits allowing to reduce the power uncertainty to 2% compared to the gold foil technique. A code-to-code comparison (BOXER vs. MCNPX) was performed and the results have shown a good agreement (2 to 5%) for most of the quantities calculated (flux, reaction rates). However, the normalization factor differed by 17% (flux-to-power ratio). Consequently, the core power was overestimated by 17% until now. Finally, the current investigations lead to an improved fission power determination and contribute to better core safety standard. (author)

  12. Pulsed Neutron Measurements on a Heavy Water Power Reactor (MZFR) at Zero Energy

    International Nuclear Information System (INIS)

    The pulsed neutron method was used for zero-power measurements in the core of a heavy water reactor. Various methods were used for the evaluation of the pulsed measurements. The so-called ''integral'' evaluation methods are based on theories published by Sjöstrand and Gozani; so far they have been applied mainly to light water reactors. These methods use not only the prompt neutron decay constant but also the information contained in the delayed neutron tails to determine the reactivity. For measurements on the heavy water reactor, however, the methods had to be modified so as to adequately take into account the time dependence of the delayed neutrons. The fraction of the delayed neutrons was calculated using a reasonable assumption for its time dependence. All the information needed could be obtained from the measurements. These methods are well suited for hand calculations to yield the reactivity with proper accuracy. An analytical procedure was applied to check the results of the integral methods. This essentially involves the exact calculation of the time dependence of the delayed neutron fraction by an iteration procedure. The results of the different evaluation methods mentioned above are compared by plotting them as functions of the D2O level and of the boron concentration. Due to the inclined control rods the flux distribution is distorted in a rather complicated manner when the rods are inserted. Therefore the time dependence of this distribution was measured for different positions of the pulsed neutron source. It was possible to find one position for which the influence of higher modes on the measurements of the shutdown reactivity was sufficiently small. Finally it is shown that the values of (δρ(H, ci)/δ(l/H2)) H = Hi and (δρ(Hi, c)/δc) c = ci (ρ reactivity, Hi critical D2O level for boron concentration c1) obtained by period measurements in the slightly supercritical state and pulsed measurements in the subcritical state are in excellent

  13. Detaching test of an irradiated mock-up containing with tritium from the core of JMTR

    International Nuclear Information System (INIS)

    The second in-situ irradiation experiment using a mock-up (ORIENT-II, JMTR capsule Number: 99M-54J) with a tritium breeder (Li2TiO3) pebble bed in the Japan Materials Testing Reactor (JMTR) was finished on Aug. 1, 2006. Correspondingly an investigation on the detaching procedure of the irradiated mock-up containing with tritium was carried out, followed by the actual detaching test of this mock-up. Firstly, tritium removal characteristics were studied for the irradiated mock-up, the sweep gas tube, the protective tube and the junction box, Out-of pile melting/enclosing tests of the sealing plug were also carried out for prevention of tritium leakage from sweep gas lines of Li2TiO3 pebble bed. From the results, tritium release amount were estimated during the detaching test of the real irradiated mock-up was estimated, and the melting/enclosing procedures of sealing plug were fixed. Then, the actual detaching test of the Li2TiO3 pebble bed was carried out. The tritium release to the area of detaching test was favorably suppressed, decreased, and the irradiated mock-up was safely detached from the core of JMTR as planned. This report describes the results of 1) tritium removal tests for the sweep gas line and the protective tube, 2) out-of pile melting/enclosing test of the sealing plug, 3) examination of the detaching procedure before the detaching test of the irradiated mock-up, and 4) the actual detaching test, as well as knowledge obtained from these tests and works. (author)

  14. How tangible mock-ups support design collaboration

    DEFF Research Database (Denmark)

    Brandt, Eva

    2007-01-01

    differences in these affected the dialogue. Reflective conversations were established by using tangible mock-ups as 'things-to-think with'. They served as boundary objects that spanned the gap between the different competencies and interests of participants in design. The design mock-ups evoked different...

  15. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [SCK CEN (Belgium); Kalcheva, S. [SCK CEN (Belgium); Sikik, E. [SCK CEN (Belgium); Koonen, E. [SCK CEN (Belgium)

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.

  16. SoLid: Search for Oscillation with a 6Li Detector at the BR2 research reactor

    CERN Document Server

    Michiels, Ianthe

    2016-01-01

    In the past decades, various nuclear reactor neutrino experiments have measured a deficit in the flux of antineutrinos coming from the reactor at short reactor-detector distances, when compared to theoretical calculations. One of the experiments designed to investigate this reactor antineutrino anomaly is the SoLid experiment. It uses the compact BR2 research reactor from the SCK-CEN in Mol, Belgium, to perform reactor antineutrino flux measurements at very short baseline. These proceedings discuss the general detection concepts of the SoLid experiment and its novel detector technology. The performance of the SoLid design is demonstrated with some results of the analysis of the data gathered with the experiment's first large scale test module, SM1.

  17. Mock-up experiments for the project of high dose irradiation on the RPV concrete

    International Nuclear Information System (INIS)

    Aging of NPP's concrete structures comes into growing interest in connection with solution of life extension programmes of operated units. Securing continued safe operation of NPPs calls for additional proofs of suitable long term behaviour of loaded reinforced concrete structures. An irradiation test of concrete samples was performed in the core of the LVR-15 reactor. The irradiation capsule was hung in the irradiation channel and the cooling of the capsule was ensured through direct contact of the capsule wall with the primary circuit water. Cylindrical, serpentine concrete samples (50 mm in diameter and 100 mm in length), representing composition of WWER RPV cavity, was chosen as a compromise of mechanical properties testing needs and dimension limitations of reactor irradiation channel. Heating during irradiation test was maintained under 93 Celsius degrees by cooling and was controlled by embedded thermocouple. Design of the cooling management was supported by computational analysis. The dependencies of heated concrete samples to the neutron fluence and the gamma heating were obtained by changing the thermal power of the reactor and by changing the vertical position of the sample in the irradiation channel. The irradiation capsule was filled with inert gas (helium) to allow the measurement of generated gas. The determination of concrete samples activity for long-term irradiation was performed on the principles of the Neutron Activation Analysis. Preliminary mock-up tests have proved the ability to fulfill technical needs for planned high dose irradiation experiment

  18. Fuel characteristics needed for optimal operation of the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koonen, E.; Beeckmans, A.; Gubel, P. [SCK-CEN, B-2400 Mol (Belgium)

    1998-07-01

    The standard BR2 fuel element contains 400 g {sup 235}U under the form of UAl{sub x} with burnable absorbers homogeneously mixed into the fuel meat. The uranium is highly enriched with a density of {approx}1.30 g U/cm{sup 3}. This fuel element was developed in the early seventies to satisfy the irradiation conditions required by many experimental programmes: large reactivity available, cycle length, hard neutron spectrum, limited motion of the control rods during the cycle thereby stabilizing the irradiation conditions. Another benefit is the reduction of the fuel consumption by increasing the burnup at discharge. BR2 has recently been restarted after the completion of an important refurbishment programme. Future utilization will again be concentrated on engineering R and D in the field of nuclear fuels, materials and safety, and on radioisotope production. Therefore the required irradiation conditions and the corresponding fuel characteristics remain essentially the same as in the past. (author)

  19. Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Sikik, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration (Figure 1). The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration (Figure 2), based on current reactor use, has been defined for the fuel conversion analyses [1]. The code RELAP5/Mod 3.3 [2] was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.

  20. First results of the deployment of a SoLid detector module at the SCK-CEN BR2 reactor

    CERN Document Server

    Ryder, Nick

    2015-01-01

    The SoLid experiment aims to resolve the reactor neutrino anomaly by searching for electron-to-sterile anti-neutrino oscillations. The search will be performed between 5.5 and 10 m from the highly enriched uranium core of the BR2 reactor at SCK-CEN. The experiment utilises a novel approach to anti-neutrino detection based on a highly segmented, composite scintillator detector design. High experimental sensitivity can be achieved using a combination of high neutron-gamma discrimination using 6 LiF:ZnS(Ag) and precise localisation of the inverse beta decay products. This compact detector system requires limited passive shielding as it relies on spacial topology to determine the different classes of backgrounds. The first full scale, 288 kg, detector module was deployed at the BR2 reactor in November 2014. A phased three tonne experimental deployment will begin in the second half of 2016, allowing a precise search for oscillations that will resolve the reactor anomaly using a three tonne detector running for thr...

  1. EVALUATION OF ZERO-POWER, ELEVATED-TEMPERATURE MEASUREMENTS AT JAPAN’S HIGH TEMPERATURE ENGINEERING TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Nozomu Fujimoto; James W. Sterbentz; Luka Snoj; Atsushi Zukeran

    2011-03-01

    The High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Agency (JAEA) is a 30 MWth, graphite-moderated, helium-cooled reactor that was constructed with the objectives to establish and upgrade the technological basis for advanced high-temperature gas-cooled reactors (HTGRs) as well as to conduct various irradiation tests for innovative high-temperature research. The core size of the HTTR represents about one-half of that of future HTGRs, and the high excess reactivity of the HTTR, necessary for compensation of temperature, xenon, and burnup effects during power operations, is similar to that of future HTGRs. During the start-up core physics tests of the HTTR, various annular cores were formed to provide experimental data for verification of design codes for future HTGRs. The experimental benchmark performed and currently evaluated in this report pertains to the data available for two zero-power, warm-critical measurements with the fully-loaded HTTR core. Six isothermal temperature coefficients for the fully-loaded core from approximately 340 to 740 K have also been evaluated. These experiments were performed as part of the power-up tests (References 1 and 2). Evaluation of the start-up core physics tests specific to the fully-loaded core (HTTR-GCR-RESR-001) and annular start-up core loadings (HTTR-GCR-RESR-002) have been previously evaluated.

  2. Optimization strategies for sustainable fuel cycle of the BR2 Reactor

    International Nuclear Information System (INIS)

    The objective of the present study is to achieve a sustainable fuel cycle in a long term of reactor operation applying advanced in-core loading strategies. The optimization criteria concern mainly enhancement of nuclear safety by means of reactivity margins and minimization of the operational fuel cycle cost at a given (constant) power level and same or longer cycle length. An important goal is also to maintain the same or to improve the experimental performances. Current developments are focused on optimization of control rods localization; optimization of fresh and burnt fuel assemblies in-core distribution; optimization of azimuth and axial fuel burn up strategies, including fuel assembly rotating and flipping upside down. (authors)

  3. Design and optimization of W/Cu divertor mock-ups

    Institute of Scientific and Technical Information of China (English)

    Qiong Li; Weiping Shen

    2007-01-01

    Tungsten is a promising candidate for plasma-facing materials to cover the surface of the divertor plate in the design of an international thermonuclear experimental reactor (ITER). Copper as a heat sink material serves to transfer heat excellently. Divertor mock-ups with W/Cu graded interlayers were designed to reduce thermal stresses. Thermally induced stresses and temperature in a W/Cu divertor mock-up were analyzed using the finite element method. The graded structures with different exponents p and thicknesses were designed and discussed. The conclusions drawn from these analyses are that thermal stresses reach the minimum and the temperature is suitable when exponent p is 1.5 and the thickness of five graded interlayers is 5 mm.

  4. Digital Mock-up Technology in Product Development and Research

    Institute of Scientific and Technical Information of China (English)

    CHEN Xu; ZHANG Pandeng; YANG Cheng; XU Zhongming

    2006-01-01

    After introducing the present status of digital mock-up (DMU) technology in product development and research, the modeling and its key technologies in product design are described. The architecture of digital design platform system for main DMU model is developed. Based on the architecture, a method of skeleton design has been applied to the development of digital design system.

  5. Demonstration of the LHC Safety Training Tunnel Mock-Up

    CERN Multimedia

    Brice, Maximilien

    2014-01-01

    Members of CERN's management visit the LHC tunnel mock-up at the Safety Training Centre on the Prévessin site. The facility is used to train personnel in emergency responses including the use of masks and safe evacuation.

  6. Theoretical Work for the Fast Zero-Power Reactor FR-0

    International Nuclear Information System (INIS)

    The theoretical part of the fast reactor physics work in Sweden, has mainly been connected with the FR-0 reactor. The report describes the principal features of this reactor, evaluation of cross sections, calculations of critical masses, reactivity of the air gap and of control rods and calculations of neutron generation time and effective beta values. Carlson codes in spherical and in cylindrical geometry are used to evaluate critical masses and fluxes. In cases when reactivity changes are calculated, complementary methods are perturbation theory and variational calculus. The agreement with experiments is in some cases good, especially the determination of critical mass, but in other cases discrepancies are observed, e.g. the activation of U-238 in the reflector is much larger than the theoretical spectrum predicts

  7. Benchmark Evaluation of Start-Up and Zero-Power Measurements at the High-Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments

  8. A new magnet for the LHC mock-up

    CERN Multimedia

    HSE Unit

    2013-01-01

    This year, the safety training centre on the Prévessin site acquired a mock-up of the LHC, which simulates the work and safety conditions in the tunnel.   Photo: Christoph Balle. A new dummy quadrupole has just been added to the magnet chain, making the mock-up even more realistic. The new facility, which was a joint endeavour by the TE, GS, BE and EN Departments, will significantly improve the quality of the various training courses held at the centre, particularly the course on the use of self-rescue masks. To consult the safety training catalogue and/or sign up for radiation protection training, please go to: https://cta.cern.ch. For further information, please contact the Safety Training and Awareness service by telephone on 73811 or 79935 or by e-mail to safety-training@cern.ch.  

  9. China Overseas Plaza Mock-up Floor Grand Openning

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Global Leasing launched on Full Scale Beijing, November 6, 2008- China Overseas Plaza, located at the heart of the Beijing CBD with Chang'an Avenue to the south and China World Trade Center PhasenⅢto the east, is constructed including two international Grade-A office towers with a commercial podium. The developer held a grand opening ceremony on the completed mock-up floor the sixth floor of the South Tower.

  10. A Coupled THMC model of FEBEX mock-up test

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liange; Samper, Javier

    2008-09-15

    FEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project for the engineered barrier system (EBS) of a radioactive waste repository in granite. It includes two full-scale heating and hydration tests: the in situ test performed at Grimsel (Switzerland) and a mock-up test operating at CIEMAT facilities in Madrid (Spain). The mock-up test provides valuable insight on thermal, hydrodynamic, mechanical and chemical (THMC) behavior of EBS because its hydration is controlled better than that of in situ test in which the buffer is saturated with water from the surrounding granitic rock. Here we present a coupled THMC model of the mock-up test which accounts for thermal and chemical osmosis and bentonite swelling with a state-surface approach. The THMC model reproduces measured temperature and cumulative water inflow data. It fits also relative humidity data at the outer part of the buffer, but underestimates relative humidities near the heater. Dilution due to hydration and evaporation near the heater are the main processes controlling the concentration of conservative species while surface complexation, mineral dissolution/precipitation and cation exchanges affect significantly reactive species as well. Results of sensitivity analyses to chemical processes show that pH is mostly controlled by surface complexation while dissolved cations concentrations are controlled by cation exchange reactions.

  11. Preparation and properties of CVD-W coated W/Cu FGM mock-ups

    International Nuclear Information System (INIS)

    Highlights: • CVD-W coating was deposited at high deposition rate about 0.7 mm/h. • CVD-W coating has high density, purity and thermal conductivity. • Graded W/Cu composite was used as a transition layer between W coating and CuCrZr. • CVD-W mock-ups have good thermal–mechanical properties. -- Abstract: Tungsten was coated on a W/Cu functionally graded material (FGM) by chemical vapor deposition technique (CVD), and then the tungsten coated tile was brazed on the CuCrZr heat sink with a cooling channel. The thickness of CVD-W was 2 mm deposited by a fast rate of about 0.7 mm/h. The features of the CVD-W coating including morphology, element composition and thermal properties were characterized. A tungsten coating with high density, purity and thermal conductivity is achieved. The bonding strength between the CVD-W layer and FGM was measured using bonding tensile tests. Thermal screening and fatigue tests were performed on the CVD-W mock-ups under fusion relevant conditions using an electron beam device. Experimental results showed that the CVD-W mock-up failed by melting of Cu beneath the tungsten layer under a high heat load of 14.5 MW/m2 and 30 s pulse duration. Thermal fatigue tests showed that the CVD-W mock-up could sustain 1000 cycles at a heat load of 11.7 MW/m2 absorbed power density and 15 s pulse duration without visible failure

  12. Preparation and properties of CVD-W coated W/Cu FGM mock-ups

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Youyun, E-mail: lianyy@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, 610041 Chengdu (China); Liu, Xiang; Xu, Zengyu [Southwestern Institute of Physics, P.O. Box 432, 610041 Chengdu (China); Song, Jiupeng; Yu, Yang [Xiamen Honglu Tungsten and Molybdenum Industry Co. Ltd., 361021 Xiamen (China)

    2013-10-15

    Highlights: • CVD-W coating was deposited at high deposition rate about 0.7 mm/h. • CVD-W coating has high density, purity and thermal conductivity. • Graded W/Cu composite was used as a transition layer between W coating and CuCrZr. • CVD-W mock-ups have good thermal–mechanical properties. -- Abstract: Tungsten was coated on a W/Cu functionally graded material (FGM) by chemical vapor deposition technique (CVD), and then the tungsten coated tile was brazed on the CuCrZr heat sink with a cooling channel. The thickness of CVD-W was 2 mm deposited by a fast rate of about 0.7 mm/h. The features of the CVD-W coating including morphology, element composition and thermal properties were characterized. A tungsten coating with high density, purity and thermal conductivity is achieved. The bonding strength between the CVD-W layer and FGM was measured using bonding tensile tests. Thermal screening and fatigue tests were performed on the CVD-W mock-ups under fusion relevant conditions using an electron beam device. Experimental results showed that the CVD-W mock-up failed by melting of Cu beneath the tungsten layer under a high heat load of 14.5 MW/m{sup 2} and 30 s pulse duration. Thermal fatigue tests showed that the CVD-W mock-up could sustain 1000 cycles at a heat load of 11.7 MW/m{sup 2} absorbed power density and 15 s pulse duration without visible failure.

  13. Development of An Embedded FPGA-Based Data Acquisition System Dedicated to Zero Power Reactor Noise Experiments

    Directory of Open Access Journals (Sweden)

    Arkani Mohammad

    2014-08-01

    Full Text Available An embedded time interval data acquisition system (DAS is developed for zero power reactor (ZPR noise experiments. The system is capable of measuring the correlation or probability distribution of a random process. The design is totally implemented on a single Field Programmable Gate Array (FPGA. The architecture is tested on different FPGA platforms with different speed grades and hardware resources. Generic experimental values for time resolution and inter-event dead time of the system are 2.22 ns and 6.67 ns respectively. The DAS can record around 48-bit x 790 kS/s utilizing its built-in fast memory. The system can measure very long time intervals due to its 48-bit timing structure design. As the architecture can work on a typical FPGA, this is a low cost experimental tool and needs little time to be established. In addition, revisions are easily possible through its reprogramming capability. The performance of the system is checked and verified experimentally.

  14. Flow test for the full scale core mock-up to the KUHFR, (2)

    International Nuclear Information System (INIS)

    The Research Reactor Institute, Kyoto University, has carried out a variety of research and development in support of the high flux reactor (KUHFR) project. As for the thermal-hydraulic design of the reactor core, the flow test with a full scale mock-up of the core was performed in order to verify the design calculation. This report shows the result of measurement of the vibration of the core vessel and core itself obtained during the flow test. The flow rate through the core mock-up reached up to 1920 m3/h, which is approximately 1.3 times as much as the normal flow rate. Non-contact displacement sensors and piezoelectric accelerometers were used to measure the vibration of the core vessel, core components and outer fuel elements. The traces of the vibration were reproduced on charts to read the maximum amplitude. The data were analyzed by FFT method to find the characteristics of the vibration. The observations of the corrosion and deformation of the components were made. The results obtained are as follows. The vibration of the core vessel was excited by coolant flow. The predominant frequency was about 7 Hz, which is nearly equal to that of the free vibration of the core vessel. The maximum displacement was 300 mu m, and the maximum acceleration was 1.8 g. (Kako, I.)

  15. Estimation of steady-state and transcient power distributions for the RELAP analyses of the 1963 loss-of-flow and loss-of-pressure tests at BR2.

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.; Tzanos, C. P. (Nuclear Engineering Division)

    2011-05-23

    To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model and methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.

  16. Digital mock-up for the spent fuel disassembly processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Kim, S. H.; Song, T. G.; Kim, Y. H.; Hong, D. H.; Yoon, J. S

    2000-12-01

    In this study, the graphical design system is developed and the digital mock-up is implemented for designing the spent fuel handling and disassembly processes. The system consists of a 3D graphical modeling system, a devices assembling system, and a motion simulation system. This system is used throughout the design stages from the conceptual design to the motion analysis. By using this system, all the process involved in the spent fuel handling and disassembly processes are analyzed and optimized. Also, this system is used in developing the on-line graphic simulator which synchronously simulates the motion of the equipment in a real time basis by connecting the device controllers with the graphic server through the TCP/IP network. This simulator can be effectively used for detecting the malfunctions of the process equipment which is remotely operated. Thus, the simulator enhances the reliability and safety of the spent fuel handling process by providing the remote monitoring function of the process. The graphical design system and the digital mock-up system can be effectively used for designing the process equipment, as well as the optimized process and maintenance process. And the on-line graphic simulator can be an alternative of the conventional process monitoring system which is a hardware based system.

  17. Fabrication of an instrumented fuel rod mock-up using a precise drilling machine

    International Nuclear Information System (INIS)

    When a new nuclear fuel is developed, Irradiation test needs to carried out in the research reactor to analyze the performance of the new nuclear fuel. In addition, to check the performance of the nuclear fuel during the burn up test in the test loop, it is necessary to attach sensors near the fuel rod and connect them with instrumentation cables to the measuring device located outside of the reactor pool. In particular, to check the temperature fluctuation of a nuclear fuel during the irradiation test, a thermocouple should be instrumented at the center of the nuclear fuel. Therefore, A hole needs to be made at the center of a fuel pellet to put in the thermocouple. However, because the hardness and density of a sintered UO2 pellet are very high, it is difficult to make a small fine hole on the sintered UO2 pellet with a simple drilling machine. In this study, an instrumented fuel rod mock-up was fabricated using an automated precise drilling machine. Four sintered alumina were drilled off and assembled into the zircaloy tube and a K-type thermocouple was instrumented in the fuel rod mock-up

  18. Safety evaluation report related to the renewal of the operating license for the Zero-Power Reactor at Cornell University, Docket No. 50-97

    International Nuclear Information System (INIS)

    This Safety Evaluation Report for the application filed by Cornell University (CU) for a renewal of Operating License R-80 to continue to operate a zero-power reactor (ZPR) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by Cornell University and is located on the Cornell campus in Ithaca, New York. The staff concludes that the ZPR facility can continue to be operated by CU without endangering the health and safety of the public

  19. Engineering and manufacturing of ITER first mirror mock-ups.

    Science.gov (United States)

    Joanny, M; Travère, J M; Salasca, S; Corre, Y; Marot, L; Thellier, C; Gallay, G; Cammarata, C; Passier, B; Fermé, J J

    2010-10-01

    Most of the ITER optical diagnostics aiming at viewing and monitoring plasma facing components will use in-vessel metallic mirrors. These mirrors will be exposed to a severe plasma environment and lead to an important tradeoff on their design and manufacturing. As a consequence, investigations are carried out on diagnostic mirrors toward the development of optimal and reliable solutions. The goals are to assess the manufacturing feasibility of the mirror coatings, evaluate the manufacturing capability and associated performances for the mirrors cooling and polishing, and finally determine the costs and delivery time of the first prototypes with a diameter of 200 and 500 mm. Three kinds of ITER candidate mock-ups are being designed and manufactured: rhodium films on stainless steel substrate, molybdenum on TZM substrate, and silver films on stainless steel substrate. The status of the project is presented in this paper.

  20. Pressure tests of two KBS-3 canister mock-ups

    International Nuclear Information System (INIS)

    The Swedish concept for geological disposal of spent nuclear fuel, the so-called KBS-3 concept, relies on a multibarrier system with the copper/cast iron canister as the first barrier. The canister is designed to retain its integrity for at least 100,000 years, which means that future glaciations need to be considered. A 3 km thick ice block together with hydrostatic pressure from groundwater and swelling of the buffer material would produce hydrostatic compressive stresses of maximum 44 MPa (440 bar). Although the canister is loaded globally in compression, tensile stresses develop at fuel channel surface with increasing load. Tensile tests of the insert material in the development phase of the KBS-3 canister indicated a large scatter and relatively low values of the inserts' ductility. An important issue was whether this could lead to mechanical failure of canisters at the 44 MPa iso-static load either by plastic collapse or fracture from the defects in the regions with tensile stresses. SKB therefore initiated a project together with the European commission's Joint Research Centre (JRC) Institute of Energy in Petten and a number of Swedish partners to evaluate the probability of mechanical failure during glaciation. Three inserts manufactured by different Swedish foundries and referred to as 1, 125 and 126 were used in the project. A large statistical test programme was developed to determine statistical distributions of various material parameters and defect distributions. These data were subsequently used in probabilistic analysis to determine the probability for local plastic collapse or fracture. The main conclusion was that the failure probability is extremely low at the design load (44 MPa) provided some basic geometrical requirements are fulfilled. In parallel to the statistical test programme and the associated analysis, the group decided also to perform two pressure tests of canister mock-ups to demonstrate the actual safety margins. The fractographic

  1. Engineering and manufacturing of ITER first mirror mock-ups

    International Nuclear Information System (INIS)

    Most of the ITER optical diagnostics aiming at viewing and monitoring plasma facing components will use in-vessel metallic mirrors. These mirrors will be exposed to a severe plasma environment and lead to an important tradeoff on their design and manufacturing. As a consequence, investigations are carried out on diagnostic mirrors toward the development of optimal and reliable solutions. The goals are to assess the manufacturing feasibility of the mirror coatings, evaluate the manufacturing capability and associated performances for the mirrors cooling and polishing, and finally determine the costs and delivery time of the first prototypes with a diameter of 200 and 500 mm. Three kinds of ITER candidate mock-ups are being designed and manufactured: rhodium films on stainless steel substrate, molybdenum on TZM substrate, and silver films on stainless steel substrate. The status of the project is presented in this paper.

  2. Advanced smile diagnostics using CAD/CAM mock-ups.

    Science.gov (United States)

    Sancho-Puchades, Manuel; Fehmer, Vincent; Hämmerle, Christoph; Sailer, Irena

    2015-01-01

    Diagnostics are essential for predictable restorative dentistry. Both patient and clinician must agree on a treatment goal before the final restorations are delivered to avoid future disappointments. However, fully understanding the patient's desires is difficult. A useful tool to overcome this problem is the diagnostic wax-up and mock-up. A potential treatment outcome is modeled in wax prior to treatment and transferred into the patient's mouth using silicon indexes and autopolymerizing resin to obtain the patient's approval. Yet, this time-consuming procedure only produces a single version of the possible treatment outcome, which can be unsatisfactory for both the patient and the restorative team. Contemporary digital technologies may provide advantageous features to aid in this diagnostic treatment step. This article reviews opportunities digital technologies offer in the diagnostic phase, and presents clinical cases to illustrate the procedures. PMID:26171442

  3. X-15 mock-up with test pilot Milt Thompson

    Science.gov (United States)

    1993-01-01

    NASA research pilot Milt Thompson stands next to a mock-up of X-15 number 3 that was later installed at the NASA Dryden Flight Research Center, Edwards, California. Milton 0. Thompson was a research pilot, Chief Engineer and Director of Research Projects during a long career at the NASA Dryden Flight Research Center. Thompson was hired as an engineer at the flight research facility on 19 March 1956, when it was still under the auspices of NACA. He became a research pilot on 25 May 1958. Thompson was one of the 12 NASA, Air Force, and Navy pilots to fly the X-15 rocket-powered research aircraft between 1959 and 1968. He began flying X-15s on 29 October 1963. He flew the aircraft 14 times during the following two years, reaching a maximum speed of 3723 mph (Mach 5.42) and a peak altitude of 214,100 feet on separate flights. Thompson concluded his active flying career in 1968, becoming Director of Research Projects. In 1975 he was appointed Chief Engineer and retained the position until his death on 8 August 1993. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as

  4. Project W-314 performance mock-up test procedure

    Energy Technology Data Exchange (ETDEWEB)

    CARRATT, R.T.

    1999-06-24

    The purpose of this Procedure is to assist construction in the pre-operational fabrication and testing of the pit leak detection system and the low point drain assembly by: (1) Control system testing of the pit leak detection system will be accomplished by actuating control switches and verifying that the control signal is initiated, liquid testing and overall operational requirements stated in HNF-SD-W314-PDS-003, ''Project Development Specification for Pit Leak Detection''. (2) Testing of the low point floor drain assembly by opening and closing the drain to and from the ''retracted'' and ''sealed'' positions. Successful operation of this drain will be to verify that the seal does not leak on the ''sealed'' position, the assembly holds liquid until the leak detector actuates and the assembly will operate from on top of the mock-up cover block.

  5. Research Nuclear Reactors

    International Nuclear Information System (INIS)

    Published in English and in French, this large report first proposes an overview of the use and history of research nuclear reactors. It discusses their definition, and presents the various types of research reactors which can be either related to nuclear power (critical mock-ups, material test reactors, safety test reactors, training reactors, prototypes), or to research (basic research, industry, health), or to specific particle physics phenomena (neutron diffraction, isotope production, neutron activation, neutron radiography, semiconductor doping). It reports the history of the French research reactors by distinguishing the first atomic pile (ZOE), and the activities and achievements during the fifties, the sixties and the seventies. It also addresses the development of instrumentation for research reactors (neutron, thermal, mechanical and fission gas release measurements). The other parts of the report concern the validation of neutronics calculations for different reactors (the EOLE water critical mock-up, the MASURCA air critical mock-up dedicated to fast neutron reactor study, the MINERVE water critical mock-up, the CALIBAN pulsed research reactor), the testing of materials under irradiation (OSIRIS reactor, laboratories associated with research reactors, the Jules Horowitz reactor and its experimental programs and related devices, irradiation of materials with ion beams), the investigation of accident situations (on the CABRI, Phebus, Silene and Jules Horowitz reactors). The last part proposes a worldwide overview of research reactors

  6. Assessment of the French and US embrittlement trend curves applied to RPV materials irradiated in the BR2 materials test reactor

    International Nuclear Information System (INIS)

    The irradiation embrittlement of reactor pressure vessels (RPVs) in monitored through the surveillance programs associated with predictive formulas, the so-called embrittlement trend curves. These formulas are generally empirically derived and contain the major embrittlement-inducing elements such as copper, nickel and phosphorus. There are a number of such trend curves used in various regulatory guides used in the US, France, Germany, Russia and Japan. These trend curves are often supported by surveillance data and regularly assessed in view of updated surveillance databases. With the recent worldwide move towards life extension of existing reactors above their initially-scheduled lifetime of 40 years, adequate and accurate modeling of irradiation embrittlement becomes a concern for long term operation. The aim of this work is to assess the performance of the embrittlement trend curves used in a regulatory perspective. The work presented here is limited to US and French trend curves because the reactor pressure vessels of the Belgian nuclear power plants are either Westinghouse or Framatome design. The chemical composition of the Belgian RPVs being very close to the one of the French 900 MW units, the French trend curve is used except for the Doel 1-2 units for which these curves are not applicable due to the higher copper content of the welds. In this case, the U.S. trend curves are used. The aim of this work is to evaluate the performance of the embrittlement trend curves used in a regulatory perspective to represent the experimental data obtained in the BR2 reactor. In particular, the French (FIM, FIS) and the US (Reg. Guide 1.99 Rev. 2, ASTM E900-02, EWO and EONY) formulas are of prime interest. The results obtained clearly show that the French trend curves tend to over-estimate the actual irradiation hardening while the US curves under-estimate it. Within the long term operation perspective, both over- and under-estimating are undesirable and therefore the

  7. Practical limitations for the release of fission products during the operation of a research reactor: a case study of BR2

    International Nuclear Information System (INIS)

    Failure of the cladding of a fuel element is an event occurring from time to time while operating a research reactor. As a consequence, fission products are released in the primary circuit of the reactor. This contamination means no direct hazard for the workers or for the environment in case the reactor has a closed primary circuit. The operator can decide to continue the irradiation to finish a scientific experiment or a commercial isotope production program. However, the operator cannot prolong the cycle regardless the concentration fission products in the primary loop. Beside the limitations imposed by the regulatory authorities, ALARA considerations should be taken into account. An untimely stop of the reactor can have serious financial consequences and prolonged operation causes higher radiation doses. This paper gives an overview of decision process applied in case of detection of fission products in the primary circuit of BR2. (author)

  8. Practical limitations for the release of fission products during the operation of a research reactor: a case study of BR2

    Energy Technology Data Exchange (ETDEWEB)

    Joppen, F. [Health Physics and Safety Department, SCK-CEN, B-2400 Mol (Belgium)

    1998-07-01

    Failure of the cladding of a fuel element is an event occurring from time to time while operating a research reactor. As a consequence, fission products are released in the primary circuit of the reactor. This contamination means no direct hazard for the workers or for the environment in case the reactor has a closed primary circuit. The operator can decide to continue the irradiation to finish a scientific experiment or a commercial isotope production program. However, the operator cannot prolong the cycle regardless the concentration fission products in the primary loop. Beside the limitations imposed by the regulatory authorities, ALARA considerations should be taken into account. An untimely stop of the reactor can have serious financial consequences and prolonged operation causes higher radiation doses. This paper gives an overview of decision process applied in case of detection of fission products in the primary circuit of BR2. (author)

  9. Characterization of flaws in a tube bundle mock-up for reliability studies

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D.S.; Bakhtiari, S. [Argonne National Lab., IL (United States)

    1997-02-01

    As part of an assessment of in-service inspection of steam generator tubes, the authors will assemble a steam generator mock-up for round robin studies and use as a test bed in evaluating emerging technologies. Progress is reported on the characterization of flaws that will be part of the mock-up. Eddy current and ultrasonic techniques are being evaluated as a means to characterize the flaws in the mock-up tubes before final assembly. Twenty Inconel 600 tubes with laboratory-grown cracks, typical of those to be used in the mock-up, were provided by Pacific Northwest National Laboratory for laboratory testing. After the tubes were inspected with eddy current and ultrasonic techniques, they were destructively analyzed to establish the actual depths, lengths, and profiles of the cracks. The analysis of the results will allow the best techniques to be used for characterizing the flaws in the mock-up tubes.

  10. Residual stress measurement inside a dissimilar metal weld mock-up of the pressurizer safety and relief nozzle

    International Nuclear Information System (INIS)

    Residual stresses are present in materials or structural component in the absence of external loads or changes in temperatures. The most common causes of residual stresses being present are the manufacturing or assembling processes. All manufacturing processes, such as casting, welding, machining, molding, heat treatment, among others, introduces residual stresses into the manufactured object. The residual stresses effects could be beneficial or detrimental, depending on its distribution related to the component or structure, its load service and if it is compressive or tensile. In this work, the residual strains and stresses inside a mock-up that simulates the safety and relief nozzle of Angra 1 Nuclear Power Plant pressurizer were studied. The current paper presents a blind hole-drilling method residual stress measurements both at the inner surface of dissimilar metal welds of dissimilar metal weld nozzle mock-up. (author)

  11. Report on material tests and mock-up tests for fabrication of the KUHFR reflector tank

    International Nuclear Information System (INIS)

    The Kyoto University high flux reactor (KUHFR) is designed to have a pair of cylindrical core vessels made of aluminum A 6061 and a spherical reflector tank made of stainless steel SUS 316 L containing the core vessels. The cooling and moderating light water flows downward. The reflector tank is filled with heavy water which is a good neutron moderator to offer a proper thermal neutron field for various irradiation and beam experiments. Many kinds of the test on SUS 316 L specimens treated under various conditions were carried out, such as metallographic microstructure observation, mechanical test and corrosion test. The results are summarized as follows. Most of the specimens showed good microstructure and excellent Huey corrosion resistance. The zone with reduced Cr at grain boundary was not observed in the specimens treated above 920 deg C. The specimens prepared after a commercial plate was treated according to the normal fabrication procedure showed good mechanical properties. A mock-up of actual size with typical nozzles was made of SUS 316 L plates and pipes. After the actual heat treatment, the change of the size and shape, residual stress, microstructure and corrosion resistance were examined to establish the fabrication procedure and heat treatment. (Kako, I.)

  12. Design study of a fast spectrum zero-power reactor dedicated to source driven sub-critical experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mercatali, L.; Serikov, A. [Forschungszentrum Karlsruhe, Institute for Neutron Physics and Reactor Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Baeten, P.; Uyttenhove, W. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lafuente, A. [Univerisdad Politecnica de Madrid, 28006 Madrid (Spain); Teles, P. [Instituto Tecnologico e Nuclear, EN 10, 2680-953 Sacavem (Portugal)

    2010-09-15

    In the framework of the European P and T program (IFP6-EUROTRANS), the Generation of Uninterrupted Intense NEutrons pulses at the lead VEnus REactor (GUINEVERE) project consists of an Accelerator Driven System (ADS) that is composed by a fast lead simulated-cooled reactor operated in sub-critical conditions, coupled with an updated version of the GENEPI neutron generator previously used for the MUSE experiments. The GUINEVERE facility aims at developing and improving different techniques for the reactivity monitoring of sub-critical ADS's. As such, the GUINEVERE project will comprise a series of major experiments that will be performed in the near future. The GUINEVERE facility will be located at the VENUS light water moderated research reactor at the SCK-CEN site of Mol (Belgium), which needs to be modified in order to accommodate a completely different and new type of core. A series of constraints were taken into account in the technical design of the GUINEVERE core, in order to properly conjugate the technical feasibility of this facility and the necessity to comply with the envisioned experimental program and its associated scientific outcome. The complete design study of the GUINEVERE core is the subject of this paper. The final design of the fuel assemblies, safety and control rods is provided. Also, the critical core configuration, to be used as reference for absolute reactivity measurements, is presented along with its associated reactor physics parameters, calculated by means of Monte Carlo methodologies. Finally, for licensing purposes, the GUINEVERE facility must satisfy the required nuclear safety criteria of the Belgian safety authorities, and in this paper, an overview of the safety analysis that has been performed with regard to the core physics, thermal assessment and shielding issues is also provided. (author)

  13. Water Mock-up for the Sodium Waste Treatment Process

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ho Yun; Kim, Jong Man; Kim, Byung Ho; Lee, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    It is important to safely treat the waste sodium which was produced from the sodium cooled fast reactors and the sodium facilities. About 1.3 tons of sodium waste has accumulated at KAERI from the sodium experiments which have been carried out since 1990. Also, large scaled sodium experiments are scheduled to verify the design of the sodium cooled fast reactor. As a treatment method for the waste sodium produced at the sodium facility, an investigation of the reaction procedure of the waste sodium with the sodium hydroxide aqueous has been developed. The NOAH process was developed in France for the treatment of waste sodium produced from sodium facilities and reactors. In the NOAH process, a small amount of sodium waste is continuously injected into the upper space which is formed on the free surface of the aqueous and slowly reacted with sodium hydroxide aqueous. Since the density of the sodium is lower than that of the aqueous, the injected sodium waste sometimes accumulates above the free surface of the sodium hydroxide aqueous, and its reaction rate becomes slow or suddenly increases. In the improved process, the sodium was injected into a reaction vessel filled with a sodium hydroxide aqueous through an atomizing nozzle installed on a lower level than that of the aqueous to maintain the reaction uniformly. Fig.1 shows the sodium waste process which was proposed in KAERI. The aqueous is composed of 60% sodium hydroxide, and its temperature is about 60 .deg. C. The process is an exothermic reaction. The hydrogen gas is generated, and the concentration of the sodium hydroxide increases in this process. It needs several systems for the process, i.e. a waste sodium injection, a cooling of the aqueous, hydrogen ventilation, and neutralization with nitric acid. The atomizing nozzle was designed to inject the sodium with the nitrogen gas which supplies a heat to the sodium to prevent its solidification and to uniformly mix the sodium with the aqueous. There are

  14. Intercomparison of liquid metal fast reactor seismic analysis codes. V. 2: Verification and improvement of reactor core seismic analysis codes using core mock-up experiments. Proceedings of a research co-ordination meeting held in Vienna, 26-28 September 1994

    International Nuclear Information System (INIS)

    This report (Volume II) contains the papers summarizing the verification of and improvement to the codes on the basis of the French and Japanese data. Volume I: ''Validation of the Seismic Analysis Codes Using the Reactor Code Experiments'' (IAEA-TECDOC-798) included the Italian PEC reactor data. Refs, figs and tabs

  15. MASURCA, a Fast-Neutron Critical Mock-Up: Operation and Uses

    International Nuclear Information System (INIS)

    Under the EURATOMCEA Association project a fast-neutron critical mock-up, Masurca, is now being built at the Cadarache Nuclear Research Centre. The main purpose of this extremely versatile facility is the study of non-moderated, plutonium critical assemblies of large volume and hence having a relatively soft neutron spectrum. The paper explains what these studies are for. The facility must satisfy certain conditions and, in essence, combine great versatility with almost absolute operational safety. The safety problem was dealt with by: (1) Seeking inherent safety: with simulated fuel elements it was possible to obtain (a) a negative reactivity coefficient from the cumulative longitudinal expansion of these elements: (b) a negative Doppler coefficient; (2) Using a set of shim-safety rods which can be placed in a square lattice with spacings of about 30cm; (3) A pressure vessel, containing reserves of argon in case of fire: and (4) Strict administrative supervision. A U-Pu-Fe metallic alloy being chosen as the basic element in the fuel simulation, provision for cooling large-volume critical assemblies must be incorporated in the facility. Sodium, the coolant used in simulated reactors, will be represented by sodium strips clad in stainless steel. The facility is designed as a vertical single-block unit in view of the maximum volume of the cores to be simulated (about 5000 1). The simulated elements are shaped like a right prism with a square base (except in the case of fuel elements which have a circular base) with an outer side (or diameter) of 12.7 mm and a height of 102 mm. They are placed in tubes having an over- all length of about 4 m and square sections whose outer side is 10.6 mm. These tubes are placed side by side and suspended. Smaller tubes can be placed in the central area of the suspension plate so that smaller cores can be made. A special heating loop can also be placed in the central part of the facility to measure the Doppler coefficient. The paper

  16. Fuel swelling and interaction layer formation in the SELENIUM Si and ZrN coated U(Mo) dispersion fuel plates irradiated at high power in BR2

    Energy Technology Data Exchange (ETDEWEB)

    Leenaers, A., E-mail: aleenaer@sckcen.be [Nuclear Materials Science Institute, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Van den Berghe, S.; Koonen, E.; Kuzminov, V. [Nuclear Materials Science Institute, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Detavernier, C. [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent (Belgium)

    2015-03-15

    In the framework of the SELENIUM project two full size flat fuel plates were produced with respectively Si and ZrN coated U(Mo) particles and irradiated in the BR2 reactor at SCK• CEN. Non-destructive analysis of the plates showed that the fuel swelling profiles of both SELENIUM plates were very similar to each other and none of the plates showed signs of pillowing or excessive swelling at the end of irradiation at the highest power position (local maximum 70% {sup 235}U). The microstructural analysis showed that the Si coated fuel has less interaction phase formation at low burn-up but at the highest burn-ups, defects start to develop on the IL–matrix interface. The ZrN coated fuel, shows a virtual absence of reaction between the U(Mo) and the Al, up to high fission densities after which the interaction layer formation starts and defects develop in the matrix near the U(Mo) particles. It was found and is confirmed by the SELENIUM (Surface Engineering of Low ENrIched Uranium–Molybdenum) experiment that there are two phenomena at play that need to be controlled: the formation of an interaction layer and swelling of the fuel. As the interaction layer formation occurs at the U(Mo)–matrix interface, applying a diffusion barrier (coating) at that interface should prevent the interaction between U(Mo) and the matrix. The U(Mo) swelling, observed to proceed at an accelerating rate with respect to fission density accumulation, is governed by linear solid state swelling and fission gas bubble swelling due to recrystallization of the fuel. The examination of the SELENIUM fuel plates clearly show that for the U(Mo) dispersion fuel to be qualified, the swelling rate at high burn-up needs to be reduced.

  17. Tests of load resilient matching procedures for the ITER ICRH system on a mock-up and layout proposals

    International Nuclear Information System (INIS)

    The ICRH antenna of ITER consists of an array of 24 radiating straps and must radiate 20 MW with resilience to load variations due to the ELMs. Because of its compactness the mutual coupling effects between the straps are far from negligible. Moreover they considerably increase the difficulty of matching and lead to coupling between the generators. Different external matching system layouts are under consideration. A reduced scale (1/5) mock-up loaded by a movable water tank is used for their experimental investigation. A first layout using full passive power distribution among the straps and a single matching circuit with one '' Conjugate-T '' (CT) or one hybrid has already been successfully tested. Its drawbacks are the difficulty of changing the toroidal phasing and the use of a single 20 MW feeding line section. In this paper we describe the mock-up tests of a second layout based on two 10 MW CT circuits, and allowing switching between heating or current drive phasings without any hardware modification. Two decouplers are used to minimize the effect of mutual coupling on matching. A robust four-parameter CT matching procedure has been developed based on adjusting the two first parameters - the positions of the line stretchers in the CT branches - of each CT in vacuum conditions (this is done once for all for each frequency). High load resilience, i.e. a VSWR remaining < 1.5 for an 8-fold increase of antenna resistance, can be obtained for the 4 toroidal phasing configurations considered: (0π/2π3π/2), (0-π/2-π-3π/2), (00ππ) and (0ππ0). The change of phasing only requires the adjustment of the phase difference between the two power sources and of the two last parameters (stub and line stretcher in the common line) of each of the two CT circuits. These properties have first been derived from the experimental scattering matrix of the antenna array and are verified by reflection measurements on the mock-up. Feedback control of the phasing and the last two

  18. Thermo-mechanical tests of a CFC divertor mock-up

    Science.gov (United States)

    Cardella, A.; Akiba, M.; Duwe, R.; Di Pietro, E.; Suzuki, S.; Satoh, K.; Reheis, N.

    1994-04-01

    Thermo-mechanical tests have been performed on a divertor mock-up consisting of a metallic tube armoured with five carbon fibre composite tiles. The tube is inserted inside the tiles and brazed with TiCuSil braze (monoblock concept). The tube material is TZM, a molybdenum alloy, and the armour material is SEP CARB N112, a high conductivity carbon-carbon composite. Using special surface preparation consisting of laser drilling, small (˜- 500 μm) holes in the composite have been made to increase the surface wetted by the braze and the resistance. The mock-up has been tested at the JAERI 400 kW electron beam test facility JEBIS. The aim of the test was to assess the performance of the mock-up in screening and thermal fatigue tests with particular attention to the behaviour of the armour to heat sink joint.

  19. Fabrication results of full scale mock-up for ITER VV port in Korea

    International Nuclear Information System (INIS)

    After a contract with Hyundai Heavy Industries Co. Ltd. (HHI) on January 2010 for the manufacture of the ITER equatorial and lower ports, manufacturing preparation activities have been performed. As part of the preparation activities, a full scale mock-up of the lower port stub extension (LPSE) #16 was fabricated by HHI in order to verify fabrication feasibility and set up the fabrication sequence for the LPSE. In this paper, major technical results from fabrication of a full scale mock-up will be presented with emphasis on the main manufacturing procedure, welding, nondestructive examination (NDE) and 3D dimensional inspection. Afterwards, progress of real product manufacturing is introduced

  20. Effective use of plant simulators and mock-up facilities for cultivation and training of younger regulators

    International Nuclear Information System (INIS)

    In order to achieve effective safety regulation, the staff members of a regulatory body who are engaged in regulatory work are requested to be well familiar with the characteristics, operations and maintenances of nuclear power plants at a practical level as far as possible. Although the regulators are not always required to have the same level of skills as those of plant designers or operators, the skills of the regulatory staff are essential elements to achieve high quality of the national nuclear safety regulation. Especially understanding of fundamentals such as operations, transient behaviors, trouble responses and plant inspections is indispensable not only to practical regulatory work but also to the establishment of the trust and confidence in safety regulation. To acquire these skills, the use of facilities such as plant simulators and inspection mock-up facilities is very effective to back up classroom lectures on theories and procedures. Practical training using these facilities under the guidance of well-experienced instructors inspires motivations and enhances capabilities of younger regulators. To support the countries newly embarking on nuclear power programs, JNES will continue to cooperate with those countries in cultivating and training younger regulators, by focusing on the training by veteran instructors using full-scale plant simulators and inspection mock-up facilities to give the trainees more practical skills and knowledge difficult to obtain through classroom lectures or textbooks. (author)

  1. Structural-hydraulic test of the liquid metal EURISOL target mock-up

    Energy Technology Data Exchange (ETDEWEB)

    Milenkovic, Rade Z. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)], E-mail: rade.milenkovic@psi.ch; Dementjevs, Sergejs; Samec, Karel [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Platacis, Ernests; Zik, Anatolij; Flerov, Aleksej [Institute of Physics of University of Latvia, LV-2156 Salaspils (Latvia); Manfrin, Enzo; Thomsen, Knud [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2009-08-11

    Structural-hydraulic tests of the European Isotope Separation On-Line (EURISOL) neutron converter target mock-up, named MErcury Target EXperiment 1 (METEX 1), have been conducted by Paul Scherrer Institut (PSI, Switzerland) in cooperation with Institute of Physics of University of Latvia (IPUL, Latvia). PSI proceeded with extensive thermal-hydraulic and structural computational studies, followed by the target mock-up tests carried out on the mercury loop at IPUL. One of the main goals of the METEX 1 test is to investigate the hydraulic and structural behaviour of the EURISOL target mock-up for various inlet flow conditions (i.e. mass flow rates) and, in particular, for nominal operating flow rate and pressure in the system. The experimental results were analysed by advanced time-frequency methods such as Short-Time Fourier Transform in order to check the vibration characteristics of the mock-up and the resonance risk. The experimental results (obtained in METEX 1), which include inlet flow rate, pressure of the cover gas, total pressure loss, structural acceleration, sound and strain data, were jointly analysed together with numerical data obtained from Computational Fluid Dynamics (CFD)

  2. Wax-up and mock-up. A guide for anterior periodontal and restorative treatments.

    Science.gov (United States)

    Gurrea, Jon; Bruguera, August

    2014-01-01

    When starting a case, having the end result in mind is the basis in any kind of treatment, even more so in those where the anterior teeth morphology, size and proportion will be changed. Here is where a good treatment plan based on a diagnostic wax-up that is tried in with a mock-up and approved by the patient becomes crucial. This case report exemplifies how transferring the information from the diagnostic wax up to the patient's mouth is of help not only to the restorative dentist and the laboratory technician, but also to the surgeon when performing the crown lengthening. This treatment plan cannot be seen as a sequence of isolated procedures but as a single workflow. The wax-up/mock-up binomial is a guide even for the periodontist in a novel approach to surgical crown lengthening.

  3. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    Science.gov (United States)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  4. Measurements in the Functional Mock Up Test of the NAL QSTOL Aircraft Control System

    OpenAIRE

    TADA, Akira; Ogawa,Toshio; YAMATO, Hiroyuki; Uchida, Tadao; Okada, Noriaki; 多田, 章; 小川, 敏雄; 大和, 裕幸; 内田, 忠夫; 岡田, 典秋

    1987-01-01

    In the functional mock up test of NAL QSTOL Research Aircraft control system, measurements were planned and conducted with the intention of obtaining both real time results to support the development immediately, and reserved data suitable for academically rigorous and detailed analyses from various points of view. The physical quantities of 208 system variables were converted to analogue voltage signals, and supplied from junction boxes to devices for recordings and analyses. The system char...

  5. An experimental study of the characteristics of a mock up of a centrifugal conduction magnetohydrodynamic pump

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, V.A.; Frolov, V.V.; Kolesnikov, Yu.B.; Kolokolov, V.Ye.; Polyakov, N.N.

    1984-01-01

    The design of a mock up of a centrifugal conduction magnetohydrodynamic (MGD) pump is described. The dependences of the pressure developed by the pump in a locked mode on the magnetic induction and the operational current are cited, along with the flow rate and pressure characteristics of the pump. The dependences of the characteristics of the pump on the dimensions of the operational zone and the conductivity of the facial walls are experimentally studied.

  6. Achievements and projects in Belgium in the field of reactor shielding

    International Nuclear Information System (INIS)

    Four reactors are in operation in Belgium: the BR-1 and BR-2 which are research and materials testing reactors, the BR-3 which has a power output of 11 MW(e) and the BR-02 which is the nuclear mock-up of the BR-2. In 1965 the BR-3 will be operating on the spectral-shift principle. The VENUS reactor, the critical mock-up of the future BR-3 core, should commence operation in April 1964. By the end of 1964, the University of Ghent will have at its disposal a swimming-pool type reactor. The fast reactors MASURCA and HARMONIE were studied on behalf of the French Atomic Energy Commission and EURATOM. Most of these reactors raise no shielding problems other than the conventional ones. The VULCAIN prototype shield will be designed in accordance with the specifications characteristic of naval reactors, in which an optimization of volume, weight and cost is of primary interest. Study of these problems has begun. The radiation damage of the BR-3 pressure vessel is a problem when equipped with the future spectral-shift core. The level and spectrum of neutron irradiation will be experimentally determined in the VENUS facility. All shielding studies were carried out by conventional methods and in no case was any research project, either experimental or theoretical, undertaken along these lines. Works were accepted on the basis of their practical utility and no specific experiment for the verification of the theoretical studies was ever carried out. Among the main theoretical problems encountered in shielding design, the following should be cited: Gamma and neutron attenuation along straight and stepped ducts; Back-scattering of gammas and neutrons from air (skyshine), solid and liquid materials, and shielding of the reflected radiations; Gamma and neutron propagation at long distance in air; Capture gamma spectra as a function of the energy of the incident neutron; and Gamma radiations from neutron inelastic scattering. In conjunction with a Ferranti-Mercury computer, the

  7. A zero-power radio receiver.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2004-09-01

    This report describes both a general methodology and some specific examples of passive radio receivers. A passive radio receiver uses no direct electrical power but makes sole use of the power available in the radio spectrum. These radio receivers are suitable as low data-rate receivers or passive alerting devices for standard, high power radio receivers. Some zero-power radio architectures exhibit significant improvements in range with the addition of very low power amplifiers or signal processing electronics. These ultra-low power radios are also discussed and compared to the purely zero-power approaches.

  8. Performance test results of helium gas circulator of mock-up test facility with full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Akira; Kato, Michio; Hayashi, Koji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Hydrogen production system by steam reforming of methane will be connected to the High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Research Institute (JAERI) against development of nuclear heat utilization system. To obtain design and safety database of the HTTR hydrogen production system, mock-up test facility with full-scale reaction was constructed in FY 2001 and hydrogen of 120m{sup 3}N{sub /}h was successfully produced in overall performance test. This report describes performance test results of a helium gas circulator in this facility. The circulator performance curves regarding to pressure-rise, input power and adiabatic thermal efficiency at standard revolution number were made based on the measured flow-rate, temperature and pressure data in overall performance test. The circulator performance prediction code was made based on these performance curves. The code can calculate revolution number, electric power and temperature-rise of the circulator using flow-rate, inlet temperature, inlet pressure and pressure-rise data. The verification of the code was carried out with the test data in FY 2002. Total pressure loss of the helium gas circulation loop was also evaluated. The circulator should be operated in conditions such as pressure from 2.7MPa to 4.0MPa and flow-rate from 250g/s to 400g/s and at maximum pressure-rise of 250 kPa in test operation. It was confirmed in above verification and evaluations that the circulator had performance to satisfy above conditions within operation limitation of the circulator such as maximum input-power of 150 kW and maximum revolution number of 12,000 rpm. (author)

  9. NDE of explosion welded copper stainless steel first wall mock-up

    International Nuclear Information System (INIS)

    The study showed that reflection type C-mode scanning acoustic microscope (C-SAM) and internal ultrasonic inspection (IRIS) equipment can be applied for ultrasonic examination of copper stainless steel compound structures of ITER first wall mock-ups. Explosive welding can be applied to manufacture fully bonded copper stainless steel compound plates. However, explosives can be applied only for mechanical tightening of stainless steel cooling tubes within copper plate. If metallurgical bonding between stainless steel tubes and copper plate is required Hot Isostatic Pressing (HIP) method can be applied. (orig.)

  10. Structural-hydraulic test of the liquid metal EURISOL target mock-up

    CERN Document Server

    Milenković, Rade Ž; Platacis, Ernests; Flerov, Aleksej; Samec, Karel; Dementjevs, Sergejs; Manfrin, Enzo; Thomsen, Knud

    2009-01-01

    Structural-hydraulictestsoftheEuropeanIsotopeSeparationOn-Line(EURISOL)neutronconverter target mock-up,namedMErcuryTargetEXperiment1(METEX1),havebeenconductedbyPaulScherrer Institut(PSI,Switzerland)incooperationwithInstituteofPhysicsoftheUniversityofLatvia(IPUL, Latvia).PSIproceededwithextensivethermal-hydraulicandstructuralcomputationalstudies,followed by thetargetmock-uptestscarriedoutonthemercuryloopatIPUL. One ofthemaingoalsoftheMETEX1testistoinvestigatethehydraulicandstructuralbehaviour of theEURISOLtargetmock-upforvariousinletflowconditions(i.e.massflowrates)and,inparticular, for nominaloperatingflowrateandpressureinthesystem.Theexperimentalresultswereanalysedby advancedtime–frequencymethodssuchasShort-TimeFourierTransforminordertocheckthe vibration characteristicsofthemock-upandtheresonancerisk.Theexperimentalresults(obtainedin METEX 1),whichincludeinletflowrate,pressureofthecovergas,totalpressureloss,structural acceleration,soundandstraindata,werejointlyanalysedtogetherwithnumericaldataobtainedfrom ...

  11. Import and Export of Functional Mock-up Units in JModelica.org

    OpenAIRE

    Andersson, Christian; Åkesson, Johan; Führer, Claus; Gäfvert, Magnus

    2011-01-01

    Different simulation and modeling tools often use their own definition of how a model is represented and how model data is stored. Complications arise when trying to model parts in one tool and importing the resulting model in another tool or when trying to verify a result by using a different simulation tool. The Functional Mock-up Interface (FMI) is a standard to provide a unified model execution interface. In this paper we present an implementation of the FMI specification in the JModelica...

  12. Design, construction, monitoring & control of a mock-up building module for testing new components and systems

    OpenAIRE

    Sánchez Labrador, Raúl

    2011-01-01

    In view of the difficulties with implementing the innovative components and systems conceived in the I3CON project on a dwelled building (because of their early stage of development), one of the main demonstration activities was building a Mock-up module to test the feasibility (in terms of physical integration and logical interoperability) of these components and systems, and evaluate their overall performance. The design of all the systems involved in the Mock-up has the aim to develop new ...

  13. Manufacturing and testing of a copper/CFC divertor mock-up for JET

    International Nuclear Information System (INIS)

    An actively cooled divertor is a possible option for future developments at The Joint European Torus (JET). A proof of principle actively cooled tile has been produced in order to qualify the relevant manufacturing technologies and the non destructive control processes. In this frame Ansaldo Ricerche (ARI) has been involved in the construction of a mock-up comprising 6 OFHC copper tubes for water cooling that are brazed to a plate made out of carbon fibre composite (CFC). The final objective was the high heat flux testing of the mock-up at JET in order to evaluate the general behaviour of the component under relevant operating conditions. The key point of the work was the realisation of a sound joint by adapting the expertise gained in ARI in previous R and D activities on brazing heterogeneous materials. Reliable methods for ultrasonic examinations of the pieces were also set up. For successful application to the JET pumped divertor a water-cooled CFC target plate must show surface temperatures of 2. Furthermore, global hydraulic considerations specific to JET limit the system pressure to 0.7 MPa. In such a design, critical heat flux is not the key limit, rather the reliability of the CFC-copper joint in terms of extent of wetting. First tests in the neutral beam test bed at JET show an adequate response for fluxes up to 15 MW/m2. (orig.)

  14. Program mock-up of a system for NPP prompt monitoring

    International Nuclear Information System (INIS)

    The increase of safety of NPP operation requires the promotion of automation means for the plant control. The system of operator support are the means intensively developed today to increase monitoring quality. The program mockup is designed to check and debug the principles of designing the system for prompt monitoring, being one of a variant of the operator support system. The mock-up is based on the DVK-2 microcomputer or SM-4 minicomputer and is the program package operating under the control of a special monitor. The system can operate in two regimes: tuning and diagnosis. During tuning the system preparation to operation and adoptation to the certain installation occurs. Data acquisition and correction, file record, primary processing, state identification, diagnostic information and recommendation output are made during diagnostics. All mock-up programs are connected through the data base and a general region of immediate access store. Such a structure of the system permits to change the system composition flexibly when the programs are independent of data and each other

  15. Parallel Execution of Functional Mock-up Units in Buildings Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Ozgur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nutaro, James J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); New, Joshua Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-30

    A Functional Mock-up Interface (FMI) defines a standardized interface to be used in computer simulations to develop complex cyber-physical systems. FMI implementation by a software modeling tool enables the creation of a simulation model that can be interconnected, or the creation of a software library called a Functional Mock-up Unit (FMU). This report describes an FMU wrapper implementation that imports FMUs into a C++ environment and uses an Euler solver that executes FMUs in parallel using Open Multi-Processing (OpenMP). The purpose of this report is to elucidate the runtime performance of the solver when a multi-component system is imported as a single FMU (for the whole system) or as multiple FMUs (for different groups of components as sub-systems). This performance comparison is conducted using two test cases: (1) a simple, multi-tank problem; and (2) a more realistic use case based on the Modelica Buildings Library. In both test cases, the performance gains are promising when each FMU consists of a large number of states and state events that are wrapped in a single FMU. Load balancing is demonstrated to be a critical factor in speeding up parallel execution of multiple FMUs.

  16. ORNL mock-up tests of inside launch pellet injection on JET and LHD

    International Nuclear Information System (INIS)

    In experiments on ASDEX-Upgrade and DIII-D tokamaks, the injection of D2 pellets from the magnetic high-field side of the plasma resulted in deeper pellet penetration and improved fueling efficiency. Based on those successful experiments, fusion researchers at the Joint European Torus and the Large Helical Device decided to implement inside launch pellet injection. These injection schemes require the use of curved guide tubes to route the pellets from the acceleration devices to the inside launch locations, and the pellets are subjected to stresses from centrifugal and impact forces in traversing the tubes. Before the installations on the large experimental fusion devices, mock-ups of the guide tubes were constructed and tested at the Oak Ridge National Laboratory to determine the pellet speed limit for reliable operation without pellet fracturing. In laboratory testing of the mock-ups, it was found that the pellet speed had to be limited to a few hundreds of meters per second for intact pellets. In this paper, the test equipment and experimental results are described

  17. TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY

    Energy Technology Data Exchange (ETDEWEB)

    Stefanko, D.; Langton, C.

    2011-11-04

    The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology

  18. Experiment on the Water Mock-up for a Sodium Waste Treatment Process

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ho Yun; Lee, Yong Bum; Kim, Jong Man; Kim, Byung Ho [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    As a treatment method of the waste sodium which was produced from a sodium facility, an investigation for a reaction procedure of the waste sodium with the sodium hydroxide has been developed. The sodium was injected into a reaction vessel filled with a caustic soda through an atomizing nozzle to maintain the reaction uniformly. There were complex reacting phenomena in the system to observe with a naked eye. Therefore, a water mock-up was carried out for a practical use the data got in the waste sodium treatment test. The major experimental parameters are the flowrate of water through an atomizing nozzle and the recirculation rate. In addition, the positions and flow directions of the nozzles are important parameters, also. From this experiment, 300 sets of data were obtained by analyses of the phenomena of the photographic records, and the optimum flowing conditions

  19. AP1000® PWR reactor physics analysis with VERA-CS and KENO-VI. Part 1. Zero power physics tests

    International Nuclear Information System (INIS)

    Westinghouse has applied the Core Simulator of the Virtual Environment for Reactor Applications, VERA-CS, under development by the Consortium for Advanced Simulation of LWRs (CASL) to the core physics analysis of the AP1000® PWR. The AP1000 PWR features and advanced first core with radial and axial heterogeneities, including enrichment zoning, multiple burnable absorbers, and a combination of light and heavy control banks to enable the MSHIMTM advanced operational strategy. These advanced features make application of VERA-CS to the AP1000 PWR first core especially relevant to qualify VERA performance. A companion paper at this conference describes the power distribution analysis of the AP1000 PWR with VERA-CS and the KENO Monte-Carlo code. This paper describes the results obtained for the startup physics tests simulations of the AP1000 PWR first core (critical boron, rod worth and reactivity coefficients), supporting the excellent numerical agreement reported in the companion paper for the power distribution. (author)

  20. BR2: Some aspects of structural mechanics

    International Nuclear Information System (INIS)

    This article discusses some of the important aspects of structural mechanics of BR2, namely: the follow-up of the beryllium matrix and of the reactor vessel and the seismic qualification. According the licence, a follow up program for the beryllium matrix is mandatory. This inspection is necessary because of the swelling of beryllium during irradiation. Due to this swelling, the individual beryllium blocks make contact between each other. This results in mechanical stresses and, because beryllium is a brittle material, cracks. At regular intervals inspection are made to evaluate the evolution of the swelling and the cracks. The maximum allowed neutron fluence is 6.4 1022 fast neutrons (energy more than 1 MeV) per cm2 . After this time the matrix has to be replaced. This has been done already twice. During the replacement an inspection of the reactor pressure vessel must be made. Last inspection was performed in 1996, using ultrasonic and eddy current inspections. On this occasion a fracture mechanics calculation was made and the minimum allowed fracture toughness of material was determined. Since very little information on irradiated aluminium 5052-O is available, a number of samples were cut out of a second wall around the vessel. This aluminium had received nearly the fluence. Out of the samples test pieces (tensile and charpy) were made. A number of them were tested immediately, while the other was loaded in the reactor for accelerated irradiation. In this way a material follow up program was started. This program still continues. During the period safety reassessment the authorities requested a seismic qualification. It was decided to make a full dynamic calculation, with input a 0.1g zero period peak ground acceleration and a regulatory guide 1.60 spectrum. The installation can withstand this earthquake, considered as a safe shutdown earthquake. A few structural reinforcements were necessary. The main ones were the primary piping outside the containment

  1. Thermodynamic analysis of the advanced zero emission power plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-03-01

    Full Text Available The paper presents the structure and parameters of advanced zero emission power plant (AZEP. This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i oxygen separation from the air through the membrane, (ii combustion of the fuel, and (iii heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC through the main heat recovery steam generator (HRSG. Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.

  2. Thermodynamic analysis of the advanced zero emission power plant

    Science.gov (United States)

    Kotowicz, Janusz; Job, Marcin

    2016-03-01

    The paper presents the structure and parameters of advanced zero emission power plant (AZEP). This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i) oxygen separation from the air through the membrane, (ii) combustion of the fuel, and (iii) heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC) through the main heat recovery steam generator (HRSG). Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.

  3. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  4. Design and testing of a 5 GHz TE10–TE30 mode converter mock-up for the lower hybrid antenna proposed for ITER

    International Nuclear Information System (INIS)

    Highlights: ► Design and validation of a 5 GHz TE10–TE30 mode converter. ► This mode converter is a RF element of a 20 MW CW LH system proposed for ITER. ► A low power mock-up has been manufactured at CEA/IRFM. ► RF measurements indicate a return loss of 40 dB and a transmission loss of 4.78 dB ± 0.03 dB for the three outputs. ► The forward conversion efficiency has been measured from electric field probing to 99.9%. - Abstract: The design and overall dimensions of a 5 GHz TE10–TE30 mode converter are presented. This mode converter is a RF element of a 20 MW CW lower hybrid system proposed for ITER. A low power mock-up of this device has been manufactured at CEA/IRFM and measured at low power. RF measurements indicate a return loss of 40 dB and a transmission loss of 4.78 dB ± 0.03 dB for the three outputs. The forward conversion efficiency from TE10 mode to TE30 has been measured from electric field probing to 99.9%. The good RF performances obtained validate the RF design of this element.

  5. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude

  6. Designing a zero emissions power switch locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, J.; Hines, J. [National Instruments, Austin, TX (United States)

    2009-07-01

    In addition to providing electric power and drinking water in manned spacecraft, fuel cell power plants have provided safe, clean electric power to hospitals, universities and other facilities since the early 1990s. This paper described a zero emissions hydrogen and battery-powered hybrid switching locomotive designed for use in rail, port and military base applications. Designed in partnership with a consortium, the prototype hybrid switching locomotive is comprised of a number of proven commercial technologies and includes a control system developed by National Instruments. New applications for hydrogen fuel cell use in industrial vehicles were also discussed. The new design was scheduled for field testing at the end of 2008.

  7. ITER first mirror mock-ups exposed in Magnum-PSI

    Science.gov (United States)

    Marot, L.; De Temmerman, G.; van den Berg, M. A.; Renault, P.-O.; Covarel, G.; Joanny, M.; Travère, J. M.; Steiner, R.; Mathys, D.; Meyer, E.

    2016-06-01

    The goal of this work was to investigate coated first mirrors under very harsh erosion conditions. Mock-up mirrors were exposed to high-flux hydrogen/argon plasma in the linear plasma facility Magnum-PSI. Rhodium (Rh) and molybdenum (Mo) coated mirrors of different coating thicknesses, with or without water cooling, exhibited different responses to this exposure. Failures of Rh films were demonstrated for 5 micron thick film, 1 micron film revealed 10% decrease in the specular reflectivity only in the exposed area. In comparison, water cooled Mo mock-ups showed a significant diffuse reflectivity on the entire surface leading to more than 50% specular reflectivity losses in the visible range. The losses for non-cooled Mo samples did not exceed 7% in the whole studied wavelength range of 250-2500 nm. Three phenomena were proposed to explain these results. First the mechanical properties of the films as characterized by scratch and hardness measurements as well as residual stress analysis measured by x-ray diffraction. Rh films showed a high compressive stress value of 2.5  ±  0.4 GPa leading to poor adhesion of the thick films deposited on stainless steel substrate due to the high amount of available energy per area stored in the unbuckled film i.e. {{G}0}>30 J m-2. It was confirmed by ANSYS simulation that the von Mises stress for the Rh coating was twice as high as that for the Mo coating due to different mechanical properties. Moreover, the maximum stress for thick Rh film (261 MPa) was higher than the critical buckling stress calculated with a buckle clamped Euler column model demonstrating the failure mode of the film. The second phenomenon was roughening of the mirror surface which was flux and temperature dependent, i.e. at low temperatures the surface would roughen randomly without any oriented surface morphology and at higher temperatures the surface diffusion constants would dominate the process and smoothen the surface. The last phenomenon

  8. Critical experiments in support of the CNPS [Compact Nuclear Power Source] program

    International Nuclear Information System (INIS)

    Zero-power static and kinetic measurements have been made on a mock-up of the Compact Nuclear Power Source (CNPS), a graphite moderated, graphite reflected, U(19.9% 235U) fueled reactor design. Critical configurations were tracked from a first clean configuration (184 most central fuel channels filled and all control rod and heat pipe channels empty) to a fully loaded configuration (all 492 fuel channels filled, core-length stainless steel pipe in the twelve heat-pipe channels, and approximately half-core-length boron carbide in the outer 4 control rod channels. Reactor physics data such as material worths and neutron lifetime are presented only for the clean and fully loaded configurations

  9. Ultimate tensile strength testing campaign on ITER pre-compression ring mock-ups

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, 00044 Frascati (Rome) (Italy); Capobianchi, Mario; Crescenzi, Fabio; Massimi, Alberto; Mugnaini, Giampiero; Nardi, Claudio; Pizzuto, Aldo [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, 00044 Frascati (Rome) (Italy); Bettinali, Livio [Consorzio CREATE, Via Claudio 21, 80125 Napoli (Italy); Knaster, Juan [ITER, Route de Vinon-sur-Verdon CS 90 046, 13067, St. Paul-lez-Durance Cedex (France); Rajainmaki, Hannu [FUSION FOR ENERGY, Josep Pla no 2, Torres Diagonal Litoral Edificio B3, 08019 Barcelona (Spain); Evans, David [Advanced Cryogenic Materials, Abingdon, Oxon (United Kingdom)

    2011-10-15

    ENEA has developed and characterized a high strength glass fibre-epoxy composite as reference material for the manufacture of the two sets of 3 pre-compression rings located at top and bottom of the inner straight leg region of the ITER Toroidal Field (TF) coils. These rings will provide a radial force of about 70 MN/coil at cryogenic temperature pulling the TF coils into contact and reducing toroidal tension in the four outer intercoil structures. The paper describes the ultimate tensile strength (UTS) testing campaign carried out at ENEA Frascati laboratories on six different rings manufactured winding S2 glass fibers on a diameter of 1 m (1/5 of the full scale) by both vacuum pressure epoxy impregnation and filament wet winding techniques. The volumetric glass content was around 70%. The rings were expanded with radial steps of 0.1 mm into a dedicated hydraulic testing machine consisting of 18 radial actuators working in position control with a total capability of 1000 tons. All the mock-ups showed very high tensile strength (1550 MPa is the average of the mean hoop stresses at failure) and a practically constant tensile modulus. The test results are reported and discussed.

  10. Non destructive examination of primary wall small scale mock-up PHS-1F

    International Nuclear Information System (INIS)

    Ultrasonic and eddy current examination of primary wall small scale mock up PHS-1F before thermal testing showed no major defects on studied interfaces. However, some small indications were found on copper to copper interface. After thermal test numerous small cracks on copper surface were observed in visual inspection. Crack depth was about 0.6 mm. The corresponding ultrasonic examination showed a strong effect on ultrasonic attenuation properties and on leaky Rayleigh waves on outer surface of copper layer. This strong attenuation caused by the high density of cracks on the copper surface disturbed the examination of interfaces below the heat treated surface. However, some small indications were found on copper to copper interface. No indication were found on copper to stainless steel interface. Clear indications were found on stainless steel tube to copper interfaces. Eddy current measurements showed no volumetric or crack like defects on the inner surfaces of stainless steel tubes but some indications were found corresponding to copper to copper interface around stainless steel tubes. (orig.)

  11. Mock-up Test for Isotope Target Transport and Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang-pil; Kwon, Hyeok-jung; Kim, Han-sung; Cho, Yong-sub; Chung, Bo-hyun; Seol, Kyung-tae; Song, Young-gi; Kim, Dae-il; Min, Yi-sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-10-15

    In this paper, we described the design and fabrication of the test mock-up of target transport and cooling system for the isotope production by using the 100-MeV proton irradiation. For Sr-82 production, RbCl target and aluminum dummy target was prepared. These targets are contained in the target carrier, which could transported by drive chain and guide rail system. Korea multi-purpose Accelerator Complex (KOMAC) has a plan to construct the new proton beam irradiation facility for the production of radioisotopes. Sr-82 and Cu-67 were selected as the target isotope in this facility, they are promising isotope for the PET imaging and cancer therapy. To produce Sr-82 by 100- MeV proton irradiation, RbCl were chosen as a target material due to their high melting point and easy separation. For the facility construction, we have designed targetry system which consists of target, target transport system and target cooling system. This paper describes the details of targetry system.

  12. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    A tokamak experimental power reactor has been designed that is capable of producing net electric power over a wide range of possible operating conditions. A net production of 81 MW of electricity is expected from the design reference conditions that assume a value of 0.07 for beta-toroidal, a maximum toroidal magnetic field of 9 T and a thermal conversion efficiency of 30%. Impurity control is achieved through the use of a low-Z first wall coating. This approach allows a burn time of 60 seconds without the incorporation of a divertor. The system is cooled by a dual pressurized water/steam system that could potentially provide thermal efficiencies as high as 39%. The first surface facing the plasma is a low-Z coated water cooled panel that is attached to a 20 cm thick blanket module. The vacuum boundary is removed a total of 22 cm from the plasma, thereby minimizing the amount of radiation damage in this vital component. Consideration is given in the design to the possible use of the EPR as a materials test reactor. It is estimated that the total system could be built for less than 550 million dollars

  13. Power calibrations for TRIGA reactors

    International Nuclear Information System (INIS)

    The purpose of this paper is to establish a framework for the calorimetric power calibration of TRIGA reactors so that reliable results can be obtained with a precision better than ± 5%. Careful application of the same procedures has produced power calibration results that have been reproducible to ± 1.5%. The procedures are equally applicable to the Mark I, Mark II and Mark III reactors as well as to reactors having much larger reactor tanks and to TRIGA reactors capable of forced cooling up to 3 MW in some cases and 15 MW in another case. In the case of forced cooled TRIGA reactors, the calorimetric power calibration is applicable in the natural convection mode for these reactors using exactly the same procedures as are discussed below for the smaller TRIGA reactors (< 2 MW)

  14. Structural analysis, design and evaluation of mock-up platform, monorail, and tank plate cut-out

    International Nuclear Information System (INIS)

    Platform - Structural analyses were performed for design seismic, live and dead load combinations for the freestanding platform over the partial DST mock-up section. The platform is to be used for Robotic ultrasonic inspection of the tank wall. It is a free standing structure anchored to floor slab with Hilti Kwik bolts

  15. Fabrication of W/FMS joint mock-ups using a hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il, E-mail: yijung@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeokdearo, Yuseong, Daejeon 305-353 (Korea, Republic of); Park, Jeong-Yong; Choi, Byoung-Kwon; Lee, Dong-Won [Korea Atomic Energy Research Institute, 989-111 Daedeokdearo, Yuseong, Daejeon 305-353 (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, 169-148 Gwahangno, Yuseong, Daejeon 305-806 (Korea, Republic of)

    2014-10-15

    Highlights: • Tungsten was joined on a ferritic–martensitic steel using a hot isostatic pressing method. • A double-stage HIP was performed to avoid the edge-delamination during a post HIP heat-treatment. • Ti foil was used to minimize the thermal expansion difference between W and ferritic–martensitic steel. • Mo foil was used as a separator not to form a bonding between W and canned materials. • No significant defects or a brittle failure were observed along the joint interface. - Abstract: Blocks of tungsten and ferritic–martensitic steel (FMS) were joined without any interfacial defects or cracks. For the joining, two times of a hot isostatic pressing (HIP) were performed. The first HIP (900 °C, 100 MPa, 1.5 h) facilitates the diffusion bonding between W and FMS. The second HIP (750 °C, 70 MPa, 2 h) corresponds to a tempering process to retain the mechanical properties of the FMS. As an interlayer material, titanium foil that can mitigate the thermal expansion difference between W and FMS was used. In addition, a molybdenum foil was inserted to prevent an unwanted bonding of W to a canning material. The lateral cracks in W plates, which were usually observed in the case of a conventional HIP process, were not observed when the molybdenum separator was used. W/FMS joint mock-ups with a dimension of 50 mm × 50 mm × 32 mm (T) were successfully fabricated. The shear strength of the joints was 89 MPa on average.

  16. Power Reactors. Appendix VIII

    International Nuclear Information System (INIS)

    Decommissioning of nuclear facilities in many countries has evolved into a mature industry that has benefited from experience gained from previous projects and decommissioning costs can now be estimated to a good degree of accuracy. As a result of lessons learned, future decommissioning projects can be performed with higher levels of efficiency. Decommissioning of old power reactors is in progress in several countries. In some cases, decommissioning has been completed (i.e. plant sites have been released from regulatory control), while in other countries decommissioning is still in progress. Several large power reactors have been successfully decommissioned since 1995. The key areas of particular importance for decommissioning are decontamination, radiation protection, dismantling and demolition. The technologies which can be used for these tasks are commonly available on the market, but effective decommissioning still depends on an optimal choice of technologies, including site specific developments. It is not possible to recommend the use of a single specific technology for dismantling, demolition, segmentation or decontamination; rather, it is good practice to take into account as much information as possible from other decommissioning projects and to draw comparisons between various techniques in order to choose the one with the best performance in a particular situation. The exchange of information on all types of decommissioning experience, including decommissioning techniques and their applicability as well as disadvantages for specific tasks, is taking place on various levels, such as: — Collaborative working groups established by international organizations such as the IAEA, the OECD Nuclear Energy Agency and the European Commission and the publication of technical reports by such organizations; — National and international conferences; — Bilateral or multilateral cooperation and information exchange between organizations with responsibilities for

  17. Inspection of heat transfer tubes after mock-up tests of miniaturized apparatus for the acid recovery evaporator. Contract research

    International Nuclear Information System (INIS)

    The demonstration test for the acid recovery evaporator and the dissolver used in the major equipment of Rokkasho Reprocessing Plant (RRP), has been carried out. The mock-up miniature equipment has been employed to it. This test had been performed from April in 1998. The total time of demonstration test using the mock-up equipment is about two and half years, which corresponds to about 20,000 hours. After that, four of the seven heat transfer tubes used in the evaporator were drawn out and the corrosion level and the mechanical properties were evaluated for one of them. As a result, intergranular corrosion was recognized in the inner surface of the heat transfer tube and the corrosion depth at the grain boundary was statistically shown to be about one grain from the inner surface. Further, no change in mechanical properties was observed and growth of intergranular cracks in the inner surface of the specimen was found after flattering test. (author)

  18. Mock-up facilities for the development of an advanced spent fuel management process using molten salt technology

    International Nuclear Information System (INIS)

    The Korea Atomic Energy Research Institute (KAERI) has investigated a new approach to spent fuel storage technology that would reduce the total storage volume and the amount of decay heat. The technology utilizes the reduction of oxide fuel to a metal to reduce the volume and preferentially removing the fission products to reduce the decay heat. The uranium oxide is reduced to uranium metal by Li metal in a molten LiCl salt bath. During the reduction process, fission products are dissolved into the LiCl bath and some of the highly radioactive elements, such as Sr and Cs, are preferentially removed from the bath. The reduced uranium metal is cast into an ingot, put into a storage capsule, and stored using conventional storage methods. The fission products are treated as high level radioactive wastes. Each process of the technology has been studied and analyzed for technical feasibility, and has come to the point for designing and constructing of the mock-up for a demonstration of the technology. This paper presents the detailed design of the mock-up of the system and operational characteristics, along with all the details of the equipment for the system. KAERI plans to use the mock-up for the demonstration using an in-active spent fuel specimen. (authors)

  19. Manufacture of first wall mock-ups with calibrated defects for fabrication control methods: Development of UT detectable defects

    International Nuclear Information System (INIS)

    A Research and Development program for the ITER Blanket-First Wall has been implemented in Europe to provide input data for the manufacture of the full-scale production components. In this frame, FW mock-ups have been fabricated according to ITER FW design requirements. In order to define acceptance criteria for non-destructive examination (NDE) for the series production, FW mock-ups (FWMU) representative of ITER FW are manufactured with calibrated defects to be validated by heat flux tests to assess the critical defect dimensions able to degrade fatigue performance and lifetime, when located at Be/CuCrZr joint corners and beryllium tile edges, and at the CuCrZr/CuCrZr and CuCrZr/316L SS joints. In order to create the defects of given dimensions, two techniques were studied: alumina and zirconia coating using a PVD technique in one hand; and on the another hand alumina and quartz thicker inserts. The paper describes the different approaches used to manufacture test samples with calibrated defects, before applying on FW mock-ups, and related non-destructive examination (NDE) by ultrasonic examination (UT). High heat flux (HHF) testing is not part of this work.

  20. Re-analysis of HCPB/HCLL Blanket Mock-up Experiments Using Recent Nuclear Data Libraries

    International Nuclear Information System (INIS)

    We have re-analysed the two breeding blankets experiments performed previously in the frame of the European fusion program on two mock-ups of the European Helium-Cooled-Lithiium Lead (HCLL) and Helium-Cooled-Pebble-Bed (HCPB) test blanket modules for ITER. The tritium production rate and the neutron and photon spectra measured in these mock-ups were compared with calculations using FENDL-3 Starter Library, release 4 and state-of-the-art nuclear data evaluations, JEFF-3.1.2, JENDL-4.0 and ENDF/B-VII.0. The tritium production calculated for the HCPB mock-up underestimates the experimental result by about 10%. The result calculated with FENDL-3/SLIB4 gives slightly smaller tritium production by 2% than the one with FENDL-2.1. The difference attributes to the slight modification of the total and elastic scattering cross section of Be. For the HCLL experiment, all libraries reproduce the experimental results well. FENDL-3/SLIB4 gives better result both for the measured spectra and the tritium production compared to FENDL-2.1

  1. Experiments of multichannel least-square methods for sound field reproduction inside aircraft mock-up: Objective evaluations

    Science.gov (United States)

    Gauthier, P.-A.; Camier, C.; Lebel, F.-A.; Pasco, Y.; Berry, A.; Langlois, J.; Verron, C.; Guastavino, C.

    2016-08-01

    Sound environment reproduction of various flight conditions in aircraft mock-ups is a valuable tool for the study, prediction, demonstration and jury testing of interior aircraft sound quality and annoyance. To provide a faithful reproduced sound environment, time, frequency and spatial characteristics should be preserved. Physical sound field reproduction methods for spatial sound reproduction are mandatory to immerse the listener's body in the proper sound fields so that localization cues are recreated at the listener's ears. Vehicle mock-ups pose specific problems for sound field reproduction. Confined spaces, needs for invisible sound sources and very specific acoustical environment make the use of open-loop sound field reproduction technologies such as wave field synthesis (based on free-field models of monopole sources) not ideal. In this paper, experiments in an aircraft mock-up with multichannel least-square methods and equalization are reported. The novelty is the actual implementation of sound field reproduction with 3180 transfer paths and trim panel reproduction sources in laboratory conditions with a synthetic target sound field. The paper presents objective evaluations of reproduced sound fields using various metrics as well as sound field extrapolation and sound field characterization.

  2. The GUINEVERE-project: the first zero-power fast lead reactor coupled to a 14 MeV neutron generator (GENEPI)

    International Nuclear Information System (INIS)

    The GUINEVERE project is an European project in the framework of FP6 IP-EUROTRANS. The IP-EUROTRANS project aims at addressing the main issues for ADS development in the framework of partitioning and transmutation for nuclear waste volume and radio toxicity reduction. The GUINEVERE-project is carried out in the context of domain 2 of IP-EUROTRANS, ECATS, devoted to specific experiments for the coupling of an accelerator, a target and a subcritical core. These experiments should provide an answer to the questions of on-line reactivity monitoring, sub-criticality determination and operational procedures (loading, start-up, shut-down) in an ADS by 2009-2010. During the definition of the experimental programme ECATS, it was judged that there was a strong need for a European managed experiment in the line of the FP5 MUSE-project. Reanalyzing the outcome of MUSE, two points were left open for significant improvement. To validate the methodology for reactivity monitoring, a continuous beam is needed, which was not present in the MUSE-project. In the definition of the MUSE-project, from the beginning a strong request was made for a lead core in order to have representative conditions of a lead-cooled ADS which was only partially answered by the MUSE-programme. Therefore, there is a need for a lead fast critical facility connected to a continuous beam accelerator. Since such a programme/installation is not present at the European nor at the international level, SCK-CEN has proposed to use a modified VENUS critical facility located at its Mol-site and to couple it to a modified GENEPI deuteron accelerator (used in MUSE) working in current mode delivering 14 MeV neutrons by bombardment of deuterons on a tritium-target: the GUINEVERE-project (Generator of Uninterrupted Intense NEutrons at the lead VEnus REactor). This proposal was formally accepted by the Governing Council of IP-Eurotrans in December 2006. This project represents a close collaboration between SCK-CEN, CEA and

  3. Fractals in Power Reactor Noise

    International Nuclear Information System (INIS)

    In this work the non- lineal dynamic problem of power reactor is analyzed using classic concepts of fractal analysis as: attractors, Hausdorff-Besikovics dimension, phase space, etc. A new non-linear problem is also analyzed: the discrimination of chaotic signals from random neutron noise signals and processing for diagnosis purposes. The advantages of a fractal analysis approach in the power reactor noise are commented in details

  4. Power reactor information system (PRIS)

    International Nuclear Information System (INIS)

    Since the very beginning of commercial operation of nuclear power plants, the nuclear power industry worldwide has accumulated more than 5000 reactor years of experience. The IAEA has been collecting Operating Experience data for Nuclear Power Plants since 1970 which were computerized in 1980. The Agency has undertaken to make Power Reactor Information System (PRIS) available on-line to its Member States. The aim of this publication is to provide the users of PRIS from their terminals with description of data base and communication systems and to show the methods of accessing the data

  5. MTR fuel testing in BR2

    International Nuclear Information System (INIS)

    New fuel design for MTR 's requires to be qualified under representative conditions, that is geometry, neutron spectrum, heat flux and thermo hydraulic conditions. An irradiation device for fuel plates has been designed to derive the maximum benefit from the BR2 irradiation capacities. The fuel plates can be easily extracted from their support during a shutdown to undergo additional tests. One of these tests is the measurement of the thickness changes along the fuel plate. To that purpose, a facility in the reactor water pool has been designed to measure the fuel swelling with an accuracy of 5 μm using inductive probes. At SCK-CEN, the full range of destructive and non-destructive PIE can be performed, including γ-scanning, wet sipping, surface examination and other methods. (author)

  6. Zero CO2 emission SOLRGT power system

    International Nuclear Information System (INIS)

    A novel hybrid power system with zero CO2 emission (ZE-SOLRGT) has been proposed and analyzed in this paper. It consists of a high temperature Brayton-like topping cycle and a high pressure-ratio Rankine-like bottoming cycle, integrated with methane-steam reforming, solar heat-assisted steam generation and CO2 capture and compression. Water is selected to be the working fluid. Solar heat input enhances the steam generation and power output, and reduces fossil fuel consumption. Besides CO2 capture with oxy-fuel combustion and cascade recuperation of turbine exhaust heat, the system is featured with indirect upgrading of low-mid temperature solar heat and cascade release of fossil fuel chemical exergy, which is described by the energy level concept. With nearly 100% CO2 capture, the system attains a net energy efficiency of 50.7% (including consideration of the energy needed for oxygen separation). The cost of generated electricity and the payback period of ZE-SOLRGT are found to be $0.056/kWh and 11.3 years, respectively. The system integration accomplishes the complementary utilization of fossil fuel and solar heat, and attains their high efficiency conversion into electricity. -- Highlights: ► A novel hybrid power system ZE-SOLRGT has been proposed and analyzed. ► The system integrates power generation with methane-steam reforming, solar heat driven steam generation and CO2 capture. ► The system is featured with indirect upgrading of solar heat and cascade release of fossil fuel chemical exergy. ► The system thermodynamic and economic performances have been investigated.

  7. 2D numerical modelling of the gas temperature in a high-temperature high-power strontium atom laser excited by nanosecond pulsed longitudinal discharge in a He-SrBr2 mixture

    Science.gov (United States)

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2014-05-01

    Assuming axial symmetry and a uniform power input, a 2D model (r, z) is developed numerically for determination of the gas temperature in the case of a nanosecond pulsed longitudinal discharge in He-SrBr2 formed in a newly-designed large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge-free zone, in order to find the optimal thermal mode for achievement of maximal output laser parameters. The model determines the gas temperature of a nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  8. Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    The IAEA has been collecting Operating Experience data for Nuclear Power Plants of the IAEA Member States since 1970. In order to facilitate an analysis of nuclear power plant performance as well as to produce relevant publications, all previously collected data supplied from the questionnaires were computerized in 1980 and the Power Reactor Information System was implemented. PRIS currently contains production records for the years up to and including 1990 and about 98% of the reactors-years operating experience in the world is contained in PRIS. (orig.)

  9. Tritium breeding mock-up experiments containing lithium titanate ceramic pebbles and lead irradiated with DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Jakhar, Shrichand; Abhangi, M.; Tiwari, S. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Makwana, R. [Department of Physics, MS University, Vadodara (India); Chaudhari, V.; Swami, H.L.; Danani, C.; Rao, C.V.S.; Basu, T.K. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Mandal, D.; Bhade, Sonali; Kolekar, R.V.; Reddy, P.J. [Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Bhattacharyay, R.; Chaudhuri, P. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2015-06-15

    Highlights: • Breeding benchmark experiment on LLCB TBM in ITER was performed. • Nuclear responses measured are TPR and reaction rate of {sup 115}In(n, n′){sup 115m}In reaction. • Measured responses are compared with calculations by MCNP and FENDL 2.1 library. • TPR measurements agree with calculations in the estimated error bar. • Measured {sup 115}In(n, n′){sup 115m}In reaction rates are underestimated by the calculations. - Abstract: Experiments were conducted with breeding blanket mock-up consisting of two layers of breeder material lithium titanate pebbles and three layers of pure lead as neutron multiplier. The radial dimensions of breeder, neutron multiplier and structural material layers are similar to the current design of the Indian Lead–Lithium cooled Ceramic Breeder (LLCB) blanket. The mock-up assembly was irradiated with 14 MeV neutrons from DT neutron generator. The local tritium production rates (TPR) from {sup 6}Li and {sup 7}Li in breeder layers were measured with the help of two different compositions of Li isotopes (60.69% {sup 6}Li and 7.54% {sup 6}Li) in Li{sub 2}CO{sub 3}. Tritium production in the multiplication layers were also measured with above mentioned two types of pellets to compare the experimental tritium production with calculations. TPR from {sup 6}Li at one location in the breeder layer was also measured by direct online measurement of tritons from {sup 6}Li(n, t){sup 4}He reaction using silicon surface barrier detector and {sup 6}Li to triton converter. Additional verification of neutron spectra (E{sub n} > 0.35 MeV) in the mock-up zones were obtained by measuring {sup 115}In(n, n′){sup 115m}In reaction rate and comparing it with calculated values in all five layers of mock-up. All the measured nuclear responses were compared with transport calculations using code MCNP with FENDL2.1 and FENDL3.0 cross-section libraries. The average C/E ratio for tritium production in enriched Li{sub 2}CO{sub 3} pellets was 1

  10. LMFBR type reactor and power generation system using the same

    Energy Technology Data Exchange (ETDEWEB)

    Otsubo, Akira.

    1994-02-25

    A reactor core void reactivity of a reactor main body is set to negative or zero. A heat insulation structure is disposed on the inner wall surface of a reactor container. Oxide fuels or nitride fuels are used. A fuel pin cladding tube has a double walled structure having an outer side of stainless steel and an inner side of niobium alloy. Upon imaginary event, boiling is allowed. Even if boiling of coolants should occur by temperature elevation of fuels upon imaginary event, since reactor core fuels comprises oxides or nitrides, they have a heat resistance, further, and since the fuel pin cladding tube has super heat resistance, it has a high temperature strength, so that it is not ruptured and durable to the coolant boiling temperature. Since the reactor core void reactivity is negative or zero, the reactor core is in a subcritical state by the boiling, and the reactor core power is reduced to several % of the rated power. Accordingly, boiling and non-boiling are repeated substantially permanently in the reactor core, during which safety can be kept with no operator's handling. Further, heat generated in the reactor core is gradually removed by an air cooling system for the reactor container. (N.H.).

  11. Design and validation of the THMC China-Mock-Up test on buffer material for HLW disposal

    Directory of Open Access Journals (Sweden)

    Yuemiao Liu

    2014-04-01

    Full Text Available According to the preliminary concept of the high-level radioactive waste (HLW repository in China, a large-scale mock-up facility, named China-Mock-Up was constructed in the laboratory of Beijing Research Institute of Uranium Geology (BRIUG. A heater, which simulates a container of radioactive waste, is placed inside the compacted Gaomiaozi (GMZ-Na-bentonite blocks and pellets. Water inflow through the barrier from its outer surface is used to simulate the intake of groundwater. The numbers of water injection pipes, injection pressure and the insulation layer were determined based on the numerical modeling simulations. The current experimental data of the facility are herein analyzed. The experiment is intended to evaluate the thermo-hydro-mechano-chemical (THMC processes occurring in the compacted bentonite-buffer during the early stage of HLW disposal and to provide a reliable database for numerical modeling and further investigation of engineered barrier system (EBS, and the design of HLW repository.

  12. Design and validation of the THMC China-Mock-Up test on buffer material for HLW disposal

    Institute of Scientific and Technical Information of China (English)

    Yuemiao Liu; Like Ma; Dan Ke; Shengfei Cao; Jingli Xie; Xingguang Zhao; Liang Chen; Panpan Zhang

    2014-01-01

    According to the preliminary concept of the high-level radioactive waste (HLW) repository in China, a large-scale mock-up facility, named China-Mock-Up was constructed in the laboratory of Beijing Research Institute of Uranium Geology (BRIUG). A heater, which simulates a container of radioactive waste, is placed inside the compacted Gaomiaozi (GMZ)-Na-bentonite blocks and pellets. Water inflow through the barrier from its outer surface is used to simulate the intake of groundwater. The numbers of water injection pipes, injection pressure and the insulation layer were determined based on the nu-merical modeling simulations. The current experimental data of the facility are herein analyzed. The experiment is intended to evaluate the thermo-hydro-mechano-chemical (THMC) processes occurring in the compacted bentonite-buffer during the early stage of HLW disposal and to provide a reliable database for numerical modeling and further investigation of engineered barrier system (EBS), and the design of HLW repository.

  13. 2D numerical modelling of gas temperature in a nanosecond pulsed longitudinal He-SrBr2 discharge excited in a high temperature gas-discharge tube for the high-power strontium laser

    Science.gov (United States)

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2016-05-01

    An active volume scaling in bore and length of a Sr atom laser excited in a nanosecond pulse longitudinal He-SrBr2 discharge is carried out. Considering axial symmetry and uniform power input, a 2D model (r, z) is developed by numerical methods for determination of gas temperature in a new large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge free zone, in order to find out the optimal thermal mode for achievement of maximal output laser parameters. A 2D model (r, z) of gas temperature is developed by numerical methods for axial symmetry and uniform power input. The model determines gas temperature of nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  14. Low power unattended defense reactor

    International Nuclear Information System (INIS)

    A small, low power, passive, nuclear reactor electric power supply has been designed for unattended defense applications. Through innovative utilization of existing proven technologies and components, a highly reliable, walk-away safe design has been obtained. Operating at a thermal power level of 200 kWt, the reactor uses low enrichment uranium fuel in a graphite block core to generate heat that is transferred through heat pipes to a thermoelectric (TE) converter. Waste heat is removed from the TEs by circulation of ambient air. Because such a power supply offers the promise of minimal operation and maintenance (O and M) costs as well as no fuel logistics, it is particularly attractive for remote, unattended applications such as the North Warning System

  15. Experimental power reactor

    International Nuclear Information System (INIS)

    The following five topics are discussed using figures and diagrams: (1) energy storage and transfer program, (2) thermomechanical analysis, (3) a steam dual-cycle power conversion system for the EPR, (4) EPR tritium facility scoping studies, and (5) vacuum systems

  16. Qualification of the numerical simulation of a core disruptive accident on the mars mock-up

    Energy Technology Data Exchange (ETDEWEB)

    Robbe, M.F.; Lepareux, M. [CEA Saclay, Dept. de Mecanique et de Technologie, 91 - Gif-sur-Yvette (France); Cariou, Y. [Novatome, NVPM, 69 - Lyon (France); Treille, E. [Socotec Industrie, 78 - Montigny le Bretonneux (France)

    2001-07-01

    In case of a Hypothetical Core Disruptive Accident (HCDA) in a Liquid Metal Reactor, the interaction between fuel and liquid sodium creates a high pressure gas bubble in the core. The violent expansion of this bubble loads the vessel and the internal structures, whose deformation is important. A simulation was undertaken using the fluid-structure improvements and the description of the peripheral structures (heat exchangers and pumps) by means of the porosity model. This paper presents the comparison of the results of the third numerical simulation with the experimental results and the numerical results of the previous simulations, as well as a synthesis of all the results of the simulation. (authors)

  17. Refurbishment of BR2 (Phases 4 and 5)

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P.; Dekeyser, J.; Van Der Auwera, J

    1998-07-01

    The BR2 is a materials testing reactor and is SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In phase 4 of the refurbishment programme, various activities were performed to allow reactor start-up. In phase 5, remaining refurbishment works were carried out as well as the extra studies and upgradings required by the licensing authorities. Major achievements in 1997 are described and discussed.

  18. Neutronics of nuclear power reactors

    International Nuclear Information System (INIS)

    This review, prepared on the occasion of 25th ETAN Conference describes the research activities in the field of neutronics which started in 1947. A number of researchers in Yugoslav Institutes was engaged in development of neutronics theory and calculation methods related to power reactors since 1960. To illustrate the activities of Yugoslav authors, this review contains the list of the most important relevant papers published in international journals

  19. Detection of Signals of Mock-up Pipes of Carbon Steel and Stainless Steel using Guided Ultrasonic Waves due to Magnetostrictive Sensors

    International Nuclear Information System (INIS)

    A piping mock-up with a diameter of 6 inch and schedule number 80 of carbon steel and stainless steel were fabricated. The signals of weldments of these pipes were detected with a torsional vibration mode of frequency of 32 kHz using sensors, such as a pure Ni or a 49Fe-49Co-2V alloy strip. The signals from the 49Fe-49Co-2V alloy strip sensor were more detectable than those from the Ni strip sensor. The signals of 49Fe-49Co-2V alloy strip sensor of tile stainless steel piping mock-up were more detectable than those of 49Fe-49Co-2V alloy strip sensor of the carbon steel piping mock-up.

  20. HHF test with 80x80x1 Be/Cu/SS Mock-ups for verifying the joining technology of the ITER blanket First Wall

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Bae, Young Dug; Kim, Suk Kwon; Hong, Bong Guen; Jeong, Yong Hwan; Park, Jeong Yong; Choi, Byung Kwon; Jung, Hyun Kyu

    2008-11-15

    Through the fabrication of the Cu/SS and Be/Cu joint specimens, fabrication procedure such as material preparation, canning, degassing, HIP (Hot Isostatic Pressing), PHHT (Post HIP heat treatment) was established. The HIP conditions (1050 .deg. C, 100 MPa 2 hr for Cu/SS, 580 .deg. C 100 MPa 2 hr for Be/Cu) were developed through the investigation on joint specimen fabricated with the various HIP conditions; the destructive tests of joint include the microstructure observation of the interface with the examination of the elemental distribution, tension test, bend test, Charpy impact test and fracture toughness test. However, since the joint should be tested under the High Heat Flux (HHF) conditions like the ITER operation for verifying its joint integrity, several HHF tests were performed like the previous HHF test with the Cu/SS, Be/Cu, Be/Cu/SS Mock-ups. In the present study, the HHF test with Be/Cu/SS Mock-ups, which have 80 mm x 80 mm single Be tile and each material depths were kept to be the same as the ITER blanket FW. The Mock-ups fabricated with three kinds of interlayers such as Cr/Ti/Cu, Ti/Cr/Cu, Ti/Cu, which were different from the developed interlayer (Cr/Cu), total 6 Mock-ups were fabricated. Preliminary analysis were performed to decide the test conditions; they were tested with up to 2.5 MW/m2 of heat fluxes and 20 cycles for each Mock-up in a given heat flux. They were tested with JUDITH-1 at FZJ in Germany. During tests, all Mock-ups showed delamination or full detachment of Be tile and it can be concluded that the joints with these interlayers have a bad joining but it can be used as a good data for developing the Be/Cu joint with HIP.

  1. HHF test with 80x80x1 Be/Cu/SS Mock-ups for verifying the joining technology of the ITER blanket First Wall

    International Nuclear Information System (INIS)

    Through the fabrication of the Cu/SS and Be/Cu joint specimens, fabrication procedure such as material preparation, canning, degassing, HIP (Hot Isostatic Pressing), PHHT (Post HIP heat treatment) was established. The HIP conditions (1050 .deg. C, 100 MPa 2 hr for Cu/SS, 580 .deg. C 100 MPa 2 hr for Be/Cu) were developed through the investigation on joint specimen fabricated with the various HIP conditions; the destructive tests of joint include the microstructure observation of the interface with the examination of the elemental distribution, tension test, bend test, Charpy impact test and fracture toughness test. However, since the joint should be tested under the High Heat Flux (HHF) conditions like the ITER operation for verifying its joint integrity, several HHF tests were performed like the previous HHF test with the Cu/SS, Be/Cu, Be/Cu/SS Mock-ups. In the present study, the HHF test with Be/Cu/SS Mock-ups, which have 80 mm x 80 mm single Be tile and each material depths were kept to be the same as the ITER blanket FW. The Mock-ups fabricated with three kinds of interlayers such as Cr/Ti/Cu, Ti/Cr/Cu, Ti/Cu, which were different from the developed interlayer (Cr/Cu), total 6 Mock-ups were fabricated. Preliminary analysis were performed to decide the test conditions; they were tested with up to 2.5 MW/m2 of heat fluxes and 20 cycles for each Mock-up in a given heat flux. They were tested with JUDITH-1 at FZJ in Germany. During tests, all Mock-ups showed delamination or full detachment of Be tile and it can be concluded that the joints with these interlayers have a bad joining but it can be used as a good data for developing the Be/Cu joint with HIP

  2. Analysis of higher power research reactors' parameters

    International Nuclear Information System (INIS)

    The objective of this monograph was to analyze and compare parameters of different types of research reactors having higher power. This analysis could be used for decision making and choice of a reactor which could possibly replace the existing ageing RA reactor in Vinca. Present experimental and irradiation needs are taken into account together with the existing reactors operated in our country, RB and TRIGA reactor

  3. Enhancement of the use of digital mock-ups in the verification and validation process for ITER remote handling systems

    Energy Technology Data Exchange (ETDEWEB)

    Sibois, R., E-mail: romain.sibois@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland); Salminen, K.; Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland); Mattila, J. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T. [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland)

    2013-10-15

    Highlights: • Verification and validation process for ITER remote handling system. • Verification and validation framework for complex engineering systems. • Verification and validation roadmap for digital modelling phase. • Importance of the product life-cycle management in the verification and validation framework. -- Abstract: The paper is part of the EFDA's programme of European Goal Oriented Training programme on remote handling (RH) “GOT-RH”. The programme aims to train engineers for activities supporting the ITER project and the long-term fusion programme. This paper is written based on the results of a project “verification and validation (V and V) of ITER RH system using digital mock-ups (DMUs)”. The purpose of this project is to study efficient approach of using DMU for the V and V of the ITER RH system design utilizing a system engineering (SE) framework. This paper reviews the definitions of DMU and virtual prototype and overviews the current trends of using virtual prototyping in the industry during the early design phase. Based on the survey of best industrial practices, this paper proposes ways to improve the V and V process for ITER RH system utilizing DMUs.

  4. Enhancement of the use of digital mock-ups in the verification and validation process for ITER remote handling systems

    International Nuclear Information System (INIS)

    Highlights: • Verification and validation process for ITER remote handling system. • Verification and validation framework for complex engineering systems. • Verification and validation roadmap for digital modelling phase. • Importance of the product life-cycle management in the verification and validation framework. -- Abstract: The paper is part of the EFDA's programme of European Goal Oriented Training programme on remote handling (RH) “GOT-RH”. The programme aims to train engineers for activities supporting the ITER project and the long-term fusion programme. This paper is written based on the results of a project “verification and validation (V and V) of ITER RH system using digital mock-ups (DMUs)”. The purpose of this project is to study efficient approach of using DMU for the V and V of the ITER RH system design utilizing a system engineering (SE) framework. This paper reviews the definitions of DMU and virtual prototype and overviews the current trends of using virtual prototyping in the industry during the early design phase. Based on the survey of best industrial practices, this paper proposes ways to improve the V and V process for ITER RH system utilizing DMUs

  5. Reactor Division semestrial progress report July - December 1987

    International Nuclear Information System (INIS)

    This report covers the activities of the reactor division at the SCK-CEN during the second semester of 1987. It deals with the BR-2 materials testing reactor, the BR-3 power plant, reactor physics, water cooled reactors, fast neutron reactors, fusion, non nuclear programmes, testing and commissioning, high and medium activities, and informatics. (MCB)

  6. Reactor Division semestrial progress report January - June 1987

    International Nuclear Information System (INIS)

    This report covers the activities of the reactor division at the SCK-CEN during the first semester of 1987. It deals with the BR-2 materials testing reactor, the BR-3 power plant, reactor physics, water cooled reactors, fast neutron reactors, fusion, non nuclear programmes, testing and commissioning, high and medium activities, and informatics. (MCB)

  7. Manufacturing and testing of W/Cu mono-block small scale mock-up for EAST by HIP and HRP technologies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China); Qin, Sigui [Advanced Technology and Materials Co., Ltd, Beijing (China); Wang, Wanjing; Qi, Pan [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China); Roccella, Selanna; Visca, Eliseo [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Liu, Guohui [Advanced Technology and Materials Co., Ltd, Beijing (China); Luo, Guang-Nan, E-mail: liqiang577@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China)

    2013-10-15

    ITER-like W/Cu mono-block plasma-facing components (PFCs) will be used in vertical target regions of the experimental advanced superconducting tokamak (EAST) divertor. The first W/Cu mono-block small scale mock-up with five W mono-blocks has been manufactured successfully by technological combination of hot isostatic pressing (HIP) and hot radial pressing (HRP). The joining of a W mono-block and a pure copper interlayer was achieved by means of HIP technology and the bonding strength was over 150 MPa. The good bonding between the pure copper interlayer and a CuCrZr cooling tube was obtained by means of HRP technology. In order to understand deeply the process of HRP, the stress distribution of the mock-up during HRP process was simulated using ANSYS code. Ultrasonic Nondestructive Testing (NDT) of the W/Cu and Cu/CuCrZr interfaces was performed, showing that excellent bonding of the W/Cu and Cu/CuCrZr interfaces. The thermal cycle fatigue testing of the mock-up has been carried out by means of an e-beam device in Southwest Institute of Physics, Chengdu (SWIP) and the mock-up withstood 1000 cycles of heat loads up to 8.4 MW/m{sup 2} with the cooling water of 2 m/s, 20 °C, 0.2 MPa.

  8. The possibilities of application of experimental Kfk results from BR2 on SNR designs

    International Nuclear Information System (INIS)

    A review is given of the relevant results of the technological application for the SNR300 reactor, since the BR2 reactor has been used as a test facility for the material development. Special emphasis has been laid on the fuel pin behavior under the aspect of chemical and mechanical fuel-clad interaction and on the specification of the cladding in terms of high temperature mechanical behavior in the SNR 300 reactor. A systematic analysis of urgent research topics in BR2 test facility reactor is presented. (A.F.)

  9. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  10. Measurement of residual stresses in the dissimilar metal weld joint of a safe-end nozzle mock-up

    International Nuclear Information System (INIS)

    Knowledge of the origin, magnitude and distribution of residual stresses generated during the manufacture of nuclear power plants is of vital importance to their structural integrity assessment. The overall aim of this work was to measure welding residual stresses in components prone to primary water stress corrosion cracking in nuclear reactor pressure vessels. This paper describes the on-site application of the Deep-Hole Drilling (DHD) technique to measure the through-thickness residual stress distributions through a safe-end nozzle component containing a dissimilar metal weld joint at different stages of manufacture

  11. Magnet powering with zero downtime - a dream?

    CERN Document Server

    Zerlauth, Markus

    2012-01-01

    Despite a number of improvements already applied in the course of the year, the magnet powering system of the LHC still accounts for around 50% of the premature beam dumps. This number might even further increase when moving to higher beam energies in the next years. With mitigations of radiation effects and the prospects for beam induced magnet quenches being discussed elsewhere, we aim at identifying possible mid- and long-term improvements within the various equipment systems to further reduce the number of equipment failures leading to a loss of the particle beams. Amongst others, this includes the sensitivity of equipment to external causes such as electromagnetic perturbations or perturbations on the electrical network. To conclude, the gain of the identified mitigations will have to be balanced against the potential impact on schedule and cost.

  12. Response to high heat fluxes and metallurgical examination of a brazed carbon-fiber-composite/refractory-metal divertor mock-up

    International Nuclear Information System (INIS)

    As a feasibility-study an actively cooled divertor mock-up has been subjected to high heat flux loading in electron beam simulation. The divertor design concept is based on a carbon-fiber-composite material (Aerolor 05) brazed onto a TZM/Mo41Re heat sink. The plasma facing carbon armor is divided in seven tiles to allow variable loading parameters - and repeated destructive tests. The mock-up has survived high heat flux loading up to about 12 MW/m2 surface heat flux in steady-state conditions. One armor tile showed no change in the thermal response even after 500 s at ∝14 MW/m2. To estimate the general thermal response of the mock-up design, numerical methods were applied. The predicted behavior was confirmed by the experimental results. The loading experiments were followed by a detailed metallurgical investigation of the loaded sample regions and the braze joints. The typical damages after high heat flux testing and cycling were failure (i.e. detachment) in the Zr brazed carbon/TZM joint, and failure in the CuPd bonded TZM/TZM joint due to an excess of the melting temperature of the brazes. The microstructural changes in the braze regions and the recrystallization behavior of the refractory alloys are discussed. Only in one case the loaded surface of the carbon armor shows considerable erosion, caused by a partial detachment along a braze joint and thus loss of the good thermal contact during the last applied loading shots. The thermal analyses and high heat flux performance of the Aerolor-05 armored mock-up are compared to the thermal response of a previously tested mock-up of corresponding geometry with armor tiles of isotropic graphite. (orig.)

  13. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  14. Performance indicators for power reactors

    International Nuclear Information System (INIS)

    A review of Canadian and worldwide performance indicator definitions and data was performed to identify a set of indicators that could be used for comparison of performance among nuclear power plants. The results of this review are to be used as input to an AECB team developing a consistent set of performance indicators for measuring Canadian power reactor safety performance. To support the identification of performance indicators, a set of criteria was developed to assess the effectiveness of each indicator for meaningful comparison of performance information. The project identified a recommended set of performance indicators that could be used by AECB staff to compare the performance of Canadian nuclear power plants among themselves, and with international performance. The basis for selection of the recommended set and exclusion of others is provided. This report provides definitions and calculation methods for each recommended performance indicator. In addition, a spreadsheet has been developed for comparison and trending for the recommended set of indicators. Example trend graphs are included to demonstrate the use of the spreadsheet. (author). 50 refs., 11 tabs., 3 figs

  15. Measurement of prompt neutron multiplication on the zero power

    International Nuclear Information System (INIS)

    Using a set of ST-PMT detector, the prompt neutron multiplication on the zero power is measured by the reliable and effective shielding methods. The results are compared with the results of Rossi-α method and 252Cf fission chamber technique. (authors)

  16. Initial RattleSnake Calculations of the Hot Zero Power BEAVRS

    Energy Technology Data Exchange (ETDEWEB)

    M. Ellis; J. Ortensi; Y. Wang; K. Smith; R.C. Martineau

    2014-01-01

    The validation of the Idaho National Laboratory's next generation of reactor physics analysis codes is an essential and ongoing task. The validation process requires a large undertaking and includes detailed, realistic models that can accurately predict the behavior of an operational nuclear reactor. Over the past few years the INL has developed the RattleSnake application and supporting tools on the MOOSE framework to perform these reactor physics calculations. RattleSnake solves the linearized Boltzmann transport equation with a variety of solution meth­ ods. Various traditional reactor physics benchmarks have already been performed, but a more realistic light water reactor comparison was needed to solidify the status of the code and deter­ mine its fidelity. The INL team decided to use the Benchmark for Evaluation and Validation of Reactor Simulations, which was made available in early 2013. This benchmark is a one­ of-a-kind document assembled by the Massachusetts Institute of Technology, which includes two cycles of detailed, measured PWR operational data. The results from this initial study of the hot zero power conditions show the current INL analysis procedure with DRAGON4 cross section preparation and using the low order diffusion solver in RattleSnake for the whole core calculations yield very encouraging results for PWR analysis. The radial assembly power distributions, radial detector measurements and control rod worths were computed with good accuracy. The computation of the isothermal temperature coefficients of reactivity require further study.

  17. Fast reactors: potential for power

    International Nuclear Information System (INIS)

    The subject is discussed as follows: basic facts about conventional and fast reactors; uranium economy; plutonium and fast reactors; cooling systems; sodium coolant; safety engineering; handling and recycling plutonium; safeguards; development of fast reactors in Britain and abroad; future progress. (U.K.)

  18. Power Control Method for Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Baang, Dane; Suh, Yongsuk; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Considering safety-oriented design concept and other control environment, we developed a simple controller that provides limiting function of power change- rate as well as fine tracking performance. The design result has been well-proven via simulation and actual application to a TRIGA-II type research reactor. The proposed controller is designed to track the PDM(Power Demand) from operator input as long as maintaining the power change rate lower than a certain value for stable reactor operation. A power control method for a TRIGA-II type research reactor has been designed, simulated, and applied to actual reactor. The control performance during commissioning test shows that the proposed controller provides fine control performance for various changes in reference values (PDM), even though there is large measurement noise from neutron detectors. The overshoot at low power level is acceptable in a sense of reactor operation.

  19. ZERO SET OF SOBOLEV FUNCTIONS WITH NEGATIVE POWER OF INTEGRABILITY

    Institute of Scientific and Technical Information of China (English)

    姜惠强; 林芳华

    2004-01-01

    Here the authors are interested in the zero set of Sobolev functions and functions of bounded variation with negative power of integrability. The main result is a general Hausdorff dimension estimate on the size of zero set. The research is motivated by the model on van der waal force driven thin film, which is a singular elliptic equation.After obtaining some basic regularity result, the authors get an estimate on the size of singular set; such set corresponds to the thin film rupture set in the thin film model.

  20. Higher power density TRIGA research reactors

    International Nuclear Information System (INIS)

    The uranium zirconium hydride (U-ZrH) fuel is the fundamental feature of the TRIGA family of reactors that accounts for its widely recognized safety, good performance, economy of operation, and its acceptance worldwide. Of the 65 TRIGA reactors or TRIGA fueled reactors, several are located in hospitals or hospital complexes and in buildings that house university classrooms. These examples are a tribute to the high degree of safety of the operating TRIGA reactor. In the early days, the majority of the TRIGA reactors had power levels in the range from 10 to 250 kW, many with pulsing capability. An additional number had power levels up to 1 MW. By the late 1970's, seven TRIGA reactors with power levels up to 2 MW had been installed. A reduction in the rate of worldwide construction of new research reactors set in during the mid 1970's but construction of occasional research reactors has continued until the present. Performance of higher power TRIGA reactors are presented as well as the operation of higher power density reactor cores. The extremely safe TRIGA fuel, including the more recent TRIGA LEU fuel, offers a wide range of possible reactor configurations. A long core life is assured through the use of a burnable poison in the TRIGA LEU fuel. In those instances where large neutron fluxes are desired but relatively low power levels are also desired, the 19-rod hexagonal array of small diameter fuel rods offers exciting possibilities. The small diameter fuel rods have provided extremely long and trouble-free operation in the Romanian 14 MW TRIGA reactor

  1. Power source device for reactor recycling pump

    International Nuclear Information System (INIS)

    The device of the present invention prevents occurrence of an accident of a reactor forecast upon spontaneous power stoppage, loss of power source or trip of the reactor. Namely, a AC/DC converter and a DC/AC connector having an AC voltage frequency controller are connected in series between an AC (bus) in the plant and reactor recycling pumps. A DC voltage controller, a superconductive energy storing device and an excitation power source are connected to the input of the DC/AC converter. The control device receives signals of the spontaneous power stoppage, loss of power source or trip of the reactor to maintain the output voltage of the superconductive energy storing device to a predetermined value. Further, the ratio of AC power voltage and the frequency of AC voltage to be supplied to the reactor recycling pumps is constantly varied to control the flow rate of the pump to a predetermined value. With such procedures, a power source device for the reactor recycling pumps compact in size, easy for maintenance and having high reliability can be realized by adopting a static-type superconductive energy storing device as an auxiliary power source for the reactor recycling pumps. (I.S.)

  2. Containment Evaluation under Severe Accidents (CESA): synthesis of the predictive calculations and analysis of the first experimental results obtained on the Civaux mock-up

    International Nuclear Information System (INIS)

    In 1996, EDF decided to build a containment model at the scale 1:3, the MAEVA mock-up, in order to check and study the behaviour of a pre-stressed concrete containment vessel without a liner in terms of mechanical strength and leaktightness, for loadings corresponding to its design and beyond design conditions. In parallel with the construction and testing of the mock-up, a cost-shared R and D action supported by the European Union, the CESA project, is dealing with quantification of leak rates through concrete cracks and porosity, predictive calculations of the behaviour of the mock-up and analysis of the experimental results. In this paper, we propose a synthesis of the main theoretical and experimental results, obtained after 2.5 years. It should however be noted that, due to some unexpected delays in the experimental programme, quite natural with such a huge and unique experimental set-up, only the design-basis accident sequences, already performed, have been reported in this paper. The first results are nevertheless very interesting, both from a scientific and nuclear utility point of view

  3. Tool coupling for the design and operation of building energy and control systems based on the Functional Mock-up Interface standard

    Energy Technology Data Exchange (ETDEWEB)

    Nouidui, Thierry Stephane; Wetter, Michael

    2014-03-01

    This paper describes software tools developed at the Lawrence Berkeley National Laboratory (LBNL) that can be coupled through the Functional Mock-up Interface standard in support of the design and operation of building energy and control systems. These tools have been developed to address the gaps and limitations encountered in legacy simulation tools. These tools were originally designed for the analysis of individual domains of buildings, and have been difficult to integrate with other tools for runtime data exchange. The coupling has been realized by use of the Functional Mock-up Interface for co-simulation, which standardizes an application programming interface for simulator interoperability that has been adopted in a variety of industrial domains. As a variety of coupling scenarios are possible, this paper provides users with guidance on what coupling may be best suited for their application. Furthermore, the paper illustrates how tools can be integrated into a building management system to support the operation of buildings. These tools may be a design model that is used for real-time performance monitoring, a fault detection and diagnostics algorithm, or a control sequence, each of which may be exported as a Functional Mock-up Unit and made available in a building management system as an input/output block. We anticipate that this capability can contribute to bridging the observed performance gap between design and operational energy use of buildings.

  4. Specific power of liquid-metal-cooled reactors

    International Nuclear Information System (INIS)

    Calculations of the core specific power for conceptual space-based liquid-metal-cooled reactors, based on heat transfer considerations, are presented for three different fuel types: (1) pin-type fuel; (2) cermet fuel; and (3) thermionic fuel. The calculations are based on simple models and are intended to provide preliminary comparative results. The specific power is of interest because it is a measure of the core mass required to produce a given amount of power. Potential problems concerning zero-g critical heat flux and loss-of-coolant accidents are also discussed because these concerns may limit the core specific power. Insufficient experimental data exists to accurately determine the critical heat flux of liquid-metal-cooled reactors in space; however, preliminary calculations indicate that it may be a concern. Results also indicate that the specific power of the pin-type fuels can be increased significantly if the gap between the fuel and the clad is eliminated. Cermet reactors offer the highest specific power because of the excellent thermal conductivity of the core matrix material. However, it may not be possible to take fuel advantage of this characteristic when loss-of-coolant accidents are considered in the final core design. The specific power of the thermionic fuels is dependent mainly on the emitter temperature. The small diameter thermionic fuels have specific powers comparable to those of pin-type fuels. 11 refs., 12 figs, 2 tabs

  5. Small and medium power reactors 1987

    International Nuclear Information System (INIS)

    This TECDOC follows the publication of TECDOC-347 Small and Medium Power Reactors Project Initiation Study - Phase I published in 1985 and TECDOC-376 Small and Medium Power Reactors 1985 published in 1986. It is mainly intended for decision makers in Developing Member States interested in embarking on a nuclear power programme. It consists of two parts: 1) Guidelines for the Introduction of Small and Medium Power Reactors in Developing Countries. These Guidelines were established during the Advisory Group Meeting held in Vienna from 11 to 15 May 1987. Their purpose is to review key aspects relating to the introduction of Small and Medium Power Reactors in developing countries; 2) Up-dated Information on SMPR Concepts Contributed by Supplier Industries. According to the recommendations of the Second Technical Committee Meeting on SMPRs held in Vienna in March 1985, this part contains the up-dated information formerly published in Annex I of the above mentioned TECDOC-347. Figs

  6. Optical properties of CdBr2:Eu and CdBr2:Eu, Mn crystals

    International Nuclear Information System (INIS)

    Optical and luminescent properties of the CdBr:Eu and CdBr2:Eu, Mn crystals, grown through the Stockbarger-Bridgman method in evacuated quartz ampoules, are studied within the temperature range of 85-295 K. The results obtained are compared with spectral characteristics of the CdBr2 and CdBr2:Mn crystals. The band with the maximum about 254 nm, observed in the absorption spectra of mono- and polyactivated crystals of cadmium bromide, is attributed to the 4f7 -> 4f65d electron transitions in the Eu2+ ions. The manganese sensitized luminescence is identified by excitation of the CdBr2:Eu, Mn crystals by the light from the area of this band. The nature of the capture centers, responsible for thermostimulated fluorescence, and excitation mechanisms of recombination luminescence in the studied crystals are considered

  7. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  8. Estudos etnoictiológicos sobre o pirarucu Arapaima gigas na Amazônia Central Ethnoictiology studies on Pirarucu (Arapaima mock-ups in Central Amazon

    Directory of Open Access Journals (Sweden)

    Liane Galvão de Lima

    2012-09-01

    Full Text Available O presente estudo visou identificar saberes comuns entre o conhecimento científico e o conhecimento local sobre a ecologia e biologia do pirarucu (Arapaima gigas, contribuindo com informações úteis para a implementação e consolidação de projetos de manejo participativo pesqueiro na região. Foram realizadas 57 entrevistas semi-estruturadas, com pescadores profissionais de Manaus e pescadores de subsistência de Manacapuru durante o período de junho a dezembro do ano de 2002. Foi observado que os pescadores profissionais possuem informações igualmente precisas e abrangentes em relação aos saberes dos pescadores ribeirinhos de subsistência nos aspectos de reprodução, predação, migração, crescimento e mortalidade. Os aspectos que não são equivalentes entre os pescadores profissionais comerciais citadinos e ribeirinhos de subsistência são nos aspectos de tipo de alimentação e no tamanho de recrutamento pesqueiro. Concluímos que os pescadores da Amazônia central possuem os conhecimentos necessários que possibilitam o manejo participativo do pirarucu, como um profundo saber nos aspectos comportamentais, biológicos e ecológicos desta espécie, podendo assim contribuir de fato com a participação de gestão nos recursos pesqueiros locais.Present study it aimed at to identify to know common between scientific knowledge and local knowledge on ecology and biology of pirarucu (Arapaima mock-ups, contributing with useful information for implementation and consolidation of projects of participative handling fishing boat in region. 57 half-structuralized interviews had been carried through, with fishing of Manaus and Manacapuru during period of June to December of year 2002. It was observed that professional fishermen also have accurate and comprehensive information in relation to knowledge of subsistence fishermen in coastal aspects of reproduction, predation, migration, growth and mortality. Aspects that are not equivalent

  9. Thermionic reactors for space nuclear power

    Science.gov (United States)

    Griaznov, Georgii M.; Zhabotinskii, Evgenii E.; Serbin, Victor I.; Zrodnikov, Anatolii V.; Pupko, Victor Ia.; Ponomarev-Stepnoi, Nikolai N.; Usov, V. A.; Nikolaev, Iu. V.

    Compact thermionic nuclear reactor systems with satisfactory mass performance are competitive with space nuclear power systems based on the organic Rankine and closed Brayton cycles. The mass characteristics of the thermionic space nuclear power system are better than that of the solar power system for power levels beyond about 10 kWe. Longlife thermionic fuel element requirements, including their optimal dimensions, and common requirements for the in-core thermionic reactor design are formulated. Thermal and fast in-core thermionic reactors are considered and the ranges of their sensible use are discussed. Some design features of the fast in-core thermionic reactors cores (power range to 1 MWe) including a choice of coolants are discussed. Mass and dimensional performance for thermionic nuclear power reactor system are assessed. It is concluded that thermionic space nuclear power systems are promising power supplies for spacecrafts and that a single basic type of thermionic fuel element may be used for power requirements ranging to several hundred kWe.

  10. MIT research reactor. Power uprate and utilization

    International Nuclear Information System (INIS)

    The MIT Research Reactor (MITR) is a university research reactor located on MIT campus. and has a long history in supporting research and education. Recent accomplishments include a 20% power rate to 6 MW and expanding advanced materials fuel testing program. Another important ongoing initiative is the conversion to high density low enrichment uranium (LEU) monolithic U-Mo fuel, which will consist of a new fuel element design and power increase to 7 MW. (author)

  11. New generation of reactors for space power

    International Nuclear Information System (INIS)

    Space nuclear reactor power is expected to enable many new space missions that will require several times to several orders of magnitude anything flown in space to date. Power in the 100-kW range may be required in high earth orbit spacecraft and planetary exploration. The technology for this power system range is under development for the Department of Energy with the Los Alamos National Laboratory responsible for the critical components in the nuclear subsystem. The baseline design for this particular nuclear sybsystem technology is described in this paper; additionally, reactor technology is reviewed from previous space power programs, a preliminary assessment is made of technology candidates covering an extended power spectrum, and the status is given of other reactor technologies

  12. Evaluation of residual stresses in electron-beam welded Zr2.5Nb0.9Hf Zircadyne flange mock-up of a reflector vessel beam tube flange

    Science.gov (United States)

    Muránsky, O.; Holden, T. M.; Kirstein, O.; James, J. A.; Paradowska, A. M.; Edwards, L.

    2013-07-01

    The dual-phase alloy Zr2.5Nb alloy is an important nuclear material, because of its use in current and possible use in future nuclear reactors. It is, however, well-known that Zr2.5Nb weldments can fail through a time-dependent mechanism called delayed hydride cracking which is typically driven by the presence of tensile residual stresses. With a view to understanding the development of residual stresses associated with Zr2.5Nb welds the current study focuses on the evaluation of the residual stresses in a mock-up of a reactor beam tube flange made from Zr2.5Nb0.9Hf. The present results suggests that, like ferritic welds which undergo a solid-state phase transformation upon welding, Zr2.5Nb0.9Hf welds also develop high tensile residual stresses in the heat-affected zone whereas the stresses closer to the weld tip are reduced by the effects of the β → α solid-state phase transformation.

  13. Evaluation of residual stresses in electron-beam welded Zr2.5Nb0.9Hf Zircadyne flange mock-up of a reflector vessel beam tube flange

    International Nuclear Information System (INIS)

    The dual-phase alloy Zr2.5Nb alloy is an important nuclear material, because of its use in current and possible use in future nuclear reactors. It is, however, well-known that Zr2.5Nb weldments can fail through a time-dependent mechanism called delayed hydride cracking which is typically driven by the presence of tensile residual stresses. With a view to understanding the development of residual stresses associated with Zr2.5Nb welds the current study focuses on the evaluation of the residual stresses in a mock-up of a reactor beam tube flange made from Zr2.5Nb0.9Hf. The present results suggests that, like ferritic welds which undergo a solid-state phase transformation upon welding, Zr2.5Nb0.9Hf welds also develop high tensile residual stresses in the heat-affected zone whereas the stresses closer to the weld tip are reduced by the effects of the β → α solid-state phase transformation

  14. Evaluation of residual stresses in electron-beam welded Zr2.5Nb0.9Hf Zircadyne flange mock-up of a reflector vessel beam tube flange

    Energy Technology Data Exchange (ETDEWEB)

    Muránsky, O., E-mail: ondrej.muransky@ansto.gov.au [Institute of Material Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, 2234 NSW (Australia); Holden, T.M. [Northern Stress Technologies, Deep River, Ontario, Canada K0J 1P0 (Canada); Kirstein, O. [European Spallation Source, EES AB, Tunavagen 24, SE-211 00 Lund (Sweden); James, J.A. [Open University, Materials Engineering, Milton Keynes MK7 6BJ (United Kingdom); Paradowska, A.M. [Bragg Institute, ANSTO, Locked Bag 2001, Kirrawee DC, 2234 NSW (Australia); Edwards, L. [Institute of Material Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, 2234 NSW (Australia)

    2013-07-15

    The dual-phase alloy Zr2.5Nb alloy is an important nuclear material, because of its use in current and possible use in future nuclear reactors. It is, however, well-known that Zr2.5Nb weldments can fail through a time-dependent mechanism called delayed hydride cracking which is typically driven by the presence of tensile residual stresses. With a view to understanding the development of residual stresses associated with Zr2.5Nb welds the current study focuses on the evaluation of the residual stresses in a mock-up of a reactor beam tube flange made from Zr2.5Nb0.9Hf. The present results suggests that, like ferritic welds which undergo a solid-state phase transformation upon welding, Zr2.5Nb0.9Hf welds also develop high tensile residual stresses in the heat-affected zone whereas the stresses closer to the weld tip are reduced by the effects of the β → α solid-state phase transformation.

  15. Characterization of the TRIGA Mark II reactor full-power steady state

    OpenAIRE

    Cammi, Antonio; Zanetti, Matteo; Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Magrotti, Giovanni; Prata, Michele; Salvini, Andrea

    2015-01-01

    In this work, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor of the University of Pavia is performed by coupling Monte Carlo (MC) simulation for neutronics with "Multiphysics" model for thermal-hydraulics. Neutronic analyses have been performed starting from a MC model of the entire reactor system, based on the MCNP5 code, that was already validated in fresh fuel and zero-power configuration (in which thermal effects are negligible) using the availabl...

  16. A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye wastewater.

    Science.gov (United States)

    Zhang, Yaobin; Jing, Yanwen; Quan, Xie; Liu, Yiwen; Onu, Pascal

    2011-01-01

    Waste scrap iron was packed into an upflow anaerobic sludge blanket (UASB) reactor to form a zero valent iron (ZVI) - UASB reactor system for treatment of azo dye wastewater. The ZVI acted as a reductant to decrease ORP in the reactor by more than 40 mv and functioned as an acid buffer to increase the pH in the reactor from 5.44 to 6.29, both of which improved the performance of the anaerobic reactor. As a result, the removal of color and COD in this reactor was 91.7% and 53%, respectively, which was significantly higher than that of a reference UASB reactor without ZVI. The UV-visible spectrum demonstrated that absorption bands of the azo dye from the ZVI-UASB reactor were substantially reduced. The ZVI promoted methanogenesis, which was confirmed by an increase in CH(4) content in the biogas from 47.9% to 64.8%. The ZVI bed was protected well from rusting, which allowed it to function stably. The effluent could be further purified only by pH adjustment because the Fe(2+) released from ZVI served as a flocculent.

  17. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  18. Thorium utilization in power reactors

    International Nuclear Information System (INIS)

    In this work the recent (prior to Aug, 1976) literature on thorium utilization is reviewed briefly and the available information is updated. After reviewing the nuclear properties relevant to the thorium fuel cycle we describe briefly the reactor systems that have been proposed using thorium as a fertile material. (author)

  19. Heat pipe reactors for space power applications

    Science.gov (United States)

    Koenig, D. R.; Ranken, W. A.; Salmi, E. W.

    1977-01-01

    A family of heat pipe reactors design concepts has been developed to provide heat to a variety of electrical conversion systems. Three power plants are described that span the power range 1-500 kWe and operate in the temperature range 1200-1700 K. The reactors are fast, compact, heat-pipe cooled, high-temperature nuclear reactors fueled with fully enriched refractory fuels, UC-ZrC or UO2. Each fuel element is cooled by an axially located molybdenum heat pipe containing either sodium or lithium vapor. Virtues of the reactor designs are the avoidance of single-point failure mechanisms, the relatively high operating temperature, and the expected long lifetimes of the fuel element components.

  20. Power Nuclear Reactors: technology and innovation for development in future

    International Nuclear Information System (INIS)

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view

  1. Liquid Metal Cooled Reactor for Space Power

    Science.gov (United States)

    Weitzberg, Abraham

    2003-01-01

    The conceptual design is for a liquid metal (LM) cooled nuclear reactor that would provide heat to a closed Brayton cycle (CBC) power conversion subsystem to provide electricity for electric propulsion thrusters and spacecraft power. The baseline power level is 100 kWe to the user. For long term power generation, UN pin fuel with Nb1Zr alloy cladding was selected. As part of the SP-100 Program this fuel demonstrated lifetime with greater than six atom percent burnup, at temperatures in the range of 1400-1500 K. The CBC subsystem was selected because of the performance and lifetime database from commercial and aircraft applications and from prior NASA and DOE space programs. The high efficiency of the CBC also allows the reactor to operate at relatively low power levels over its 15-year life, minimizing the long-term power density and temperature of the fuel. The scope of this paper is limited to only the nuclear components that provide heated helium-xenon gas to the CBC subsystem. The principal challenge for the LM reactor concept was to design the reactor core, shield and primary heat transport subsystems to meet mission requirements in a low mass configuration. The LM concept design approach was to assemble components from prior programs and, with minimum change, determine if the system met the objective of the study. All of the components are based on technologies having substantial data bases. Nuclear, thermalhydraulic, stress, and shielding analyses were performed using available computer codes. Neutronics issues included maintaining adequate operating and shutdown reactivities, even under accident conditions. Thermalhydraulic and stress analyses calculated fuel and material temperatures, coolant flows and temperatures, and thermal stresses in the fuel pins, components and structures. Using conservative design assumptions and practices, consistent with the detailed design work performed during the SP-100 Program, the mass of the reactor, shield, primary heat

  2. Gas-core reactor power transient analysis.

    Science.gov (United States)

    Kascak, A. F.

    1972-01-01

    The nuclear fuel in the gas-core reactor concept is a ball of uranium plasma radiating thermal photons. The photons are met by an inflowing hydrogen stream, which is seeded with submicron size, depleted uranium particles. A 'wall-burnout' condition exists if the thermal photons can reach the cavity liner because of insufficient absorption by the hydrogen. An analysis was conducted in order to determine the time for which the maximum steady state reactor power could be exceeded without damage to the cavity liner due to burnout. Wall-burnout time as a function of the power increase above the initial steady state condition is shown in a graph.

  3. Power Reactors in Small Packages

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R.

    1968-10-01

    This booklet discusses the introduction of nuclear power to remote places on earth where the resources of civilization are almost scarce. It also discusses nuclear power plants designed for use when warfare or natural catastrophes have wiped out the usual sources of energy, and in places beyond the reach of oil pipelines and coal trains. It also discusses how nuclear power may one day be used to manufacture chemical fuels for the world's vehicles when fossil fuels begin to run out.

  4. Fusion experimental power reactor (EPR) design tasks

    International Nuclear Information System (INIS)

    Several key physics and technology problem areas which were identified in a previous Experimental Power Reactor study were investigated. These were plasma confinement, plasma heating, reactor refueling, and reactor first wall regeneration. The plasma confinement experimental studies showed no instabilities or enhanced transport in the trapped ion regime. The RF heating experiments indicated that RF could produce highly efficient plasma heating. Two reactor refueling schemes were considered in a theoretical analysis: the first was the convective transport from the cold plasma blanket to the plasma interior and the second was the use of high speed frozen pellets to carry the fuel to the plasma interior. Both schemes were shown to be feasible. Finally, the ''in-situ'' replacement of first walls using atomic coating processes were considered. The vapor deposition of carbon was shown to be promising

  5. Fusion experimental power reactor (EPR) design tasks

    International Nuclear Information System (INIS)

    Several key physics and technology problem areas which were identified in the previous Experimental Power Reactor study were investigated. These were plasma confinement, plasma heating, reactor refueling, and reactor first wall regeneration. The plasma confinement experimental studies showed no instabilities or enhanced transport in the trapped ion regime. The RF heating experiments indicated that RF could produce highly efficient plasma heating. Two reactor refueling schemes was considered in a theoretical analysis: the first was the convective transport from the cold plasma blanket to the plasma interior and the second was the use of high speed frozen pellets to carry the fuel to the plasma interior. Both schemes were shown to be feasible. Finally, the in-situ replacement of first walls using atomic coating processes was considered. The vapor deposition of carbon was shown to be promising

  6. First measurements of the kinetic response of the muse-4 fast Ads mock-up to fast neutron pulse

    International Nuclear Information System (INIS)

    The MUSE-4 experiment has started its first commissioning measurements at the beginning of the year 2001 at CEA/Cadarache (France). This international experiment co-ordinated by CEA, included in the 5FWP of the European Union and GEDEON, is intended to study the physics of fast sub-critical assemblies coupled with a pulsed external source. To achieve this objective, the GENEPI accelerator, a (d,d) or (d,t) neutron source developed at CRNS/IN2P3/ISN (Grenoble), has been coupled with the MASURCA reactor, a uranium-plutonium MOX-based fast reactor, with solid sodium simulating a liquid metal coolant and a lead buffer to simulate a spallation target. The very short neutron pulse (1 μs) provided by GENEPI, together with the possibility to change the pulse repetition rate up to 5 kHz and the different levels of sub-criticality available will facilitate a study of the reactor kinetic parameters in situations close to most of the proposed accelerator-driven Systems (ADS). The paper presents the first experimental results for dynamic measurements performed in MUSE-4 configurations. Several pulsed neutron source experiments have been carried out using the (d,d) GENEPI neutron source in configurations going from USD 1,33 to USD 12,6. In addition, noise techniques (Rossi and Feynman-alpha) have been applied to stationary states in the same range of sub-criticalities. Reactivity levels obtained by these techniques have been compared with more classic rod drop/source multiplication measurements. The kinetic parameters, β(which ranges between 330 and 360 pcm) and β/Λ (with a value of approximately 6270 s-1), have been determined by Monte Carlo and/or deterministic codes. (author)

  7. The program of reactors and nuclear power plants

    International Nuclear Information System (INIS)

    Into de framework of the program of research reactors and nuclear power plants, the operating Argentine reactors are described. The uses of the research reactors in Argentina are summarized. The reactors installed by Argentina in other countries (Peru, Algeria, Egypt) are briefly described. The CAREM project for the design and construction of an innovator small power reactor (27 MWe) is also described in some detail. The next biennial research and development program for reactor is briefly outlined

  8. Utilization of thorium in power reactors

    International Nuclear Information System (INIS)

    The IAEA convened a Panel on the utilization of thorium in power reactors from 14 to 18 June 1965. 45 scientists from 14 countries and two international organizations took part in it. The proceedings of the Panel include 23 survey papers and brief reviews which stress the importance of utilizing thorium. A separate abstract was prepared for each of these papers. Refs, tabs, figs

  9. Simulation of power excursions - Osiris reactor

    International Nuclear Information System (INIS)

    Following the experimental work accomplished in the U.S.A. on Borax 1 and SPERT 1 and the accident of SL 1, the 'Commissariat a l'Energie Atomique' started a research program about the safety of its own swimming Pool reactors, with regard to power excursions. The first research work led to the design of programmed explosive charges, adapted to the simulation of a power excursion. This report describes the application of these methods to the investigation of Osiris safety. (author)

  10. Assessment of the thorium fuel cycle in power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Homan, F.J.; Allen, E.J.

    1977-01-01

    A study was conducted at Oak Ridge National Laboratory to evaluate the role of thorium fuel cycles in power reactors. Three thermal reactor systems were considered: Light Water Reactors (LWRs); High-Temperature Gas-Cooled Reactors (HTGRs); and Heavy Water Reactors (HWRs) of the Canadian Deuterium Uranium Reactor (CANDU) type; most of the effort was on these systems. A summary comparing thorium and uranium fuel cycles in Fast Breeder Reactors (FBRs) was also compiled.

  11. Ion Beam Analysis methods applied to the examination of Be//Cu joints in hipped Be tiles for ITER first wall mock- ups

    International Nuclear Information System (INIS)

    A proposed fabrication route for ITER first wall components implies a diffusion welding step of Be tiles onto a Cu-based substrate. However, Be has a tendency to form particularly brittle intermetallics with Cu and a lot of other elements. Insertion of interlayers may be a solution to increase bond quality. Applying traditional analyses to this study can be problematic because of Be toxicity and low atomic number Z. Ion Beam Analysis methods have thus been considered together with scanning electron microscopy (SEM) and electron back-scattering diffraction (EBSD) as complementary techniques. The following work aims at demonstrating how such techniques (used in micro-beam mode), and in particular NRA (Nuclear Reaction Analysis) and PIXE (Particle Induced X-ray Emission) techniques, coupled with SEM/EBSD data, can bring valuable information in this area. Quantification of data allow to obtain concentration values (provided the hypotheses on the initial junction composition are valuable), then phase diagrams give clues about the composition and structure of the junction. SEM retro-diffused electrons chemical contrast images and EBSD allow to characterize the presence of the awaited intermetallics, and finally confirm or refine the conclusions of Ion Beam Analysis data quantification. A series of reference first wall mock-ups have been analysed. Interlayer-free mock-ups reveal intermetallics which are mainly BeCu (apparently mixed with lower quantities of BeCu2 compound). While Cr or Ti interlayers seem to behave as good Be diffusion barriers in the sense that they prevent the formation of BeCu, they strongly interact with Cu to form CuTi2 or Cr2Ti intermetallics. In the case of Cr, Be seems to be incorporated into the Cr layer. PIXE analysis has however been unable to characterize Al-based interlayers (Z=13, close to the lower PIXE sensibility limit) and emphasizes one limitation of Ion Beam Analysis methods for lighter metals, justifying the use of other complementary

  12. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor

    International Nuclear Information System (INIS)

    Highlights: • Zero-valent iron (ZVI) was used firstly to enhance the aerobic granulation. • ZVI significantly decreased the start-up time of the aerobic granulation. • ZVI had the function of enhancing organic material diversity identified by 3-D EEM. • ZVI could enhance the diversity of microbial community. - Abstract: This study elucidates the enhancement of aerobic granulation by zero-valent iron (ZVI). A reactor augmented with ZVI had a start-up time of aerobic granulation (43 days) that was notably less than that for a reactor without augmentation (64 days). The former reactor also had better removal efficiencies for chemical oxygen demand and ammonium. Moreover, the mature granules augmented with ZVI had better physical characteristics and produced more extracellular polymeric substances (especially of protein). Three-dimensional-excitation emission matrix fluorescence showed that ZVI enhanced organic material diversity. Additionally, ZVI enhanced the diversity of the microbial community. Fe2+ dissolution from ZVI helped reduce the start-up time of aerobic granulation and increased the extracellular polymeric substance content. Conclusively, the use of ZVI effectively enhanced aerobic granulation

  13. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Qiang, E-mail: kongqiang0531@hotmail.com [College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong (China); Ngo, Huu Hao [School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Shu, Li [School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria 3216 (Australia); Fu, Rong-shu; Jiang, Chun-hui [College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong (China); Miao, Ming-sheng, E-mail: mingshengmiao@163.com [College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong (China)

    2014-08-30

    Highlights: • Zero-valent iron (ZVI) was used firstly to enhance the aerobic granulation. • ZVI significantly decreased the start-up time of the aerobic granulation. • ZVI had the function of enhancing organic material diversity identified by 3-D EEM. • ZVI could enhance the diversity of microbial community. - Abstract: This study elucidates the enhancement of aerobic granulation by zero-valent iron (ZVI). A reactor augmented with ZVI had a start-up time of aerobic granulation (43 days) that was notably less than that for a reactor without augmentation (64 days). The former reactor also had better removal efficiencies for chemical oxygen demand and ammonium. Moreover, the mature granules augmented with ZVI had better physical characteristics and produced more extracellular polymeric substances (especially of protein). Three-dimensional-excitation emission matrix fluorescence showed that ZVI enhanced organic material diversity. Additionally, ZVI enhanced the diversity of the microbial community. Fe{sup 2+} dissolution from ZVI helped reduce the start-up time of aerobic granulation and increased the extracellular polymeric substance content. Conclusively, the use of ZVI effectively enhanced aerobic granulation.

  14. Issues and Feasibility Demonstration of Positioning Closed Loop Control for the CLIC Supporting System Using a Test Mock-up with Five Degrees of Freedom

    CERN Document Server

    Sosin, M; Chritin, N; Griffet, S; Kemppinen, J; Mainaud Durand, H; Rude, V; Sterbini, G

    2012-01-01

    Since several years, CERN is studying the feasibility of building a high energy e+ e- linear collider: the CLIC (Compact LInear Collider). One of the challenges of such a collider is the pre-alignment precision and accuracy requirement on the transverse positions of the linac components, which is typically 14 μm over a window of 200 m. To ensure the possibility of positioning within such tight constraints, CERN Beams Department’s Survey team has worked intensively at developing the methods and technology needed to achieve that objective. This paper describes activities which were performed on a test bench (mock-up) with five degrees of freedom (DOF) for the qualification of control algorithms for the CLIC supporting system active-pre-alignment. Present understanding, lessons learned (“know how”), issues of sensors noise and mechanical components nonlinearities are presented.

  15. Comparison of zero-dimensional and one-dimensional thermonuclear burn computations for the reversed-field pinch reactor (RFPR)

    International Nuclear Information System (INIS)

    Conceptual fusion reactor designs of the Reversed-Field Pinch Reactor (RFPR) have been based on profile-averaged zero-dimensional (point) plasma models. The plasma response/performance that has been predicted by the point plasma model is re-examined by a comprehensive one-dimensional (radial) burn code that has been developed and parametrically evaluated for the RFPR. Agreement is good between the zero-dimensional and one-dimensional models, giving more confidence in the RFPR design point reported previously from the zero-dimensional analysis

  16. 间冷回热循环发动机电子样机设计%Digital mock- up design of the intercooled recuperated cycle aero- engine

    Institute of Scientific and Technical Information of China (English)

    曾庆万; 冯松涛; 马健

    2016-01-01

    Based on the tracking and analysis of the application of intercooled recuperated technology on aero-engine overseas, according to the domestic research status, experiment research of intercooler and re⁃cuperator was carried out. The general structure of the intercooled recuperated aero-engine was primarily studied and built as digital mock-up. The layout rules of components, systems, and special intercooler pipe⁃line and recuperator pipeline were summarized. By building the mock-up, the characteristics of project de⁃sign for the intercooled recuperated aero-engine were grasped, and the layout of components and systems were explored, which provide a basement for the optimization of engineering design.%在追踪和分析国外间冷回热技术在航空发动机领域应用的基础上,根据国内研究现状,对间冷器和回热器进行了模拟实验研究。初步拟定了间冷回热发动机总体结构方案,并将此结构方案建立为电子样机。总结了间冷回热发动机中各部件、系统,以及特有的间冷器管路系统和回热器管路系统的布局规律。通过样机建模,初步掌握了间冷回热发动机总体结构方案设计特点,探索了各部件、系统的布局,为间冷回热发动机的进一步研究积累了经验。

  17. Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept

    Science.gov (United States)

    Chen, Lei; Liu, Xiang; Lian, Youyun; Cai, Laizhong

    2015-09-01

    The hypervapotron (HV), as an enhanced heat transfer technique, will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels. W-Cu brazing technology has been developed at SWIP (Southwestern Institute of Physics), and one W/CuCrZr/316LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux (HHF) tests. Before that a relevant analysis was carried out to optimize the structure of divertor component elements. ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal-mechanical calculations. Commercial code FE-SAFE was adopted to compute the fatigue life of the component. The tile size, thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor (ITER) loading conditions were simulated. One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP, where ITER-like flat-tile divertor components are adopted. This optimized design is expected to supply valuable data for HL-2M tokamak. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB110001 and 2011GB110004)

  18. Renewal of safety circuitry on a zero-energy research reactor using microprocessor units

    International Nuclear Information System (INIS)

    The conventional hard-wired safety-circuitry of the zero-energy research reactor at the Central Electricity Generating Board's Berkeley Nuclear Laboratories is being replaced by microprocessor-based units. The Paper describes how levels of reliability that are necessary for safety circuitry have been achieved by the use of two entirely different guard line systems based on a Motorola 6800 microprocessor and an Intel 8085A microprocessor. The two systems operate in parallel and either will trip the reactor. Each has been programmed by a different programmer using different philosophies. The two units and the test programme involving over 106 simulated guard line trips are described. An overall reliability of better than 10-6 per annum is claimed. (author)

  19. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... COMMISSION Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION... regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power Reactors.'' This guide describes a method NRC... decommissioning process for nuclear power reactors. The revision takes advantage of the 13 years...

  20. Neutron Diffraction Residual Strain Tensor Measurements Within The Phase IA Weld Mock-up Plate P-5

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Camden R [ORNL

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has worked with NRC and EPRI to apply neutron and X-ray diffraction methods to characterize the residual stresses in a number of dissimilar metal weld mockups and samples. The design of the Phase IA specimens aimed to enable stress measurements by several methods and computational modeling of the weld residual stresses. The partial groove in the 304L stainless steel plate was filled with weld beads of Alloy 82. A summary of the weld conditions for each plate is provided in Table 1. The plates were constrained along the long edges during and after welding by bolts with spring-loaded washers attached to the 1-inch thick Al backing plate. The purpose was to avoid stress relief due to bending of the welded stainless steel plate. The neutron diffraction method was one of the methods selected by EPRI for non-destructive through thickness strain and stress measurement. Four different plates (P-3 to P-6) were studied by neutron diffraction strain mapping, representing four different welding conditions. Through thickness neutron diffraction strain mappings at NRSF2 for the four plates and associated strain-free d-zero specimens involved measurement along seven lines across the weld and at six to seven depths. The mountings of each plate for neutron diffraction measurements were such that the diffraction vector was parallel to each of the three primary orthogonal directions of the plate: two in-plane directions, longitudinal and transverse, and the direction normal to the plate (shown in left figure within Table 1). From the three orthogonal strains for each location, the residual stresses along the three plate directions were calculated. The principal axes of the strain and stress tensors, however, need not necessarily align with the plate coordinate system. To explore this, plate P-5 was selected for examination of the possibility that the principal axes of strain are not along the sample coordinate system axes. If adequate data could

  1. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors.

    Science.gov (United States)

    Liu, Yiwen; Zhang, Yaobin; Ni, Bing-Jie

    2015-05-15

    Zero valent iron (ZVI) packed anaerobic granular sludge reactors have been developed for improved anaerobic wastewater treatment. In this work, a mathematical model is developed to describe the enhanced methane production and sulfate reduction in anaerobic granular sludge reactors with the addition of ZVI. The model is successfully calibrated and validated using long-term experimental data sets from two independent ZVI-enhanced anaerobic granular sludge reactors with different operational conditions. The model satisfactorily describes the chemical oxygen demand (COD) removal, sulfate reduction and methane production data from both systems. Results show ZVI directly promotes propionate degradation and methanogenesis to enhance methane production. Simultaneously, ZVI alleviates the inhibition of un-dissociated H2S on acetogens, methanogens and sulfate reducing bacteria (SRB) through buffering pH (Fe(0) + 2H(+) = Fe(2+) + H2) and iron sulfide precipitation, which improve the sulfate reduction capacity, especially under deterioration conditions. In addition, the enhancement of ZVI on methane production and sulfate reduction occurs mainly at relatively low COD/ [Formula: see text] ratio (e.g., 2-4.5) rather than high COD/ [Formula: see text] ratio (e.g., 16.7) compared to the reactor without ZVI addition. The model proposed in this work is expected to provide support for further development of a more efficient ZVI-based anaerobic granular system.

  2. Scaled Facility Design Approach for Pool-Type Lead-Bismuth Eutectic Cooled Small Modular Reactor Utilizing Natural Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangrok; Shin, Yong-Hoon; Lee, Jueun; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    In low carbon era, nuclear energy is the most prominent energy source of electricity. For steady ecofriendly nuclear energy supply, Generation IV reactors which are future nuclear reactor require safety, sustainability, economics and non-proliferation as four criteria. Lead cooled fast reactor (LFR) is one of these reactor type and Generation IV international forum (GIF) adapted three reference LFR systems which are a small and movable systems with long life without refueling, intermediate size and huge electricity generation system for power grid. NUTRECK (Nuclear Transmutation Energy Center of Korea) has been designed reactor called URANUS (Ubiquitous, Rugged, Accident-forgiving, Non-proliferating, and Ultra-lasting Sustainer) which is small modular reactor and using lead-bismuth eutectic coolant. To prove natural circulation capability of URANUS and analyze design based accidents, scaling mock-up experiment facility will be constructed. In this paper, simple specifications of URANUS will be presented. Then based on this feature, scaling law and scaled facility design results are presented. To validate safety feature and thermodynamics characteristic of URANUS, scaled mockup facility of URANUS is designed based on the scaling law. This mockup adapts two area scale factors, core and lower parts of mock-up are scaled for 3D flow experiment. Upper parts are scaled different size to reduce electricity power and LBE tonnage. This hybrid scaling method could distort some thermal-hydraulic parameters, however, key parameters for experiment will be matched for up-scaling. Detailed design of mock-up will be determined through iteration for design optimization.

  3. A series of lectures on operational physics of power reactors

    International Nuclear Information System (INIS)

    This report discusses certain aspects of operational physics of power reactors. These form a lecture series at the Winter College on Nuclear Physics and Reactors, Jan. - March 1980, conducted at the International Centre for Theoretical Physics, Trieste, Italy. The topics covered are (a) the reactor physics aspects of fuel burnup (b) theoretical methods applied for burnup prediction in power reactors (c) interpretation of neutron detector readings in terms of adjacent fuel assembly powers (d) refuelling schemes used in power reactors. The reactor types chosen for the discussion are BWR, PWR and PHWR. (author)

  4. Modular stellarator reactor: a fusion power plant

    International Nuclear Information System (INIS)

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment

  5. Modular stellarator reactor: a fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  6. Crystal Power: Piezo Coupling to the Quantum Zero Point

    CERN Document Server

    November, Laurence J

    2011-01-01

    We consider electro-optical constructions in which the Casimir force is modulated in opposition to piezo-crystal elasticity, as in a stack of alternating tunably conductive and piezo layers. Adjacent tunably conducting layers tuned to conduct, attract by the Casimir force compressing the intermediate piezo, but when subsequently detuned to insulate, sandwiched piezo layers expand elastically to restore their original dimension. In each cycle some electrical energy is made available from the quantum zero point (zp). We estimate that the maximum power that could be derived at semiconductor THz modulation rates is megawatts/cm3. Similarly a permittivity wave generated by a THz acoustic wave in a single crystal by the acousto-optic effect produces multiple coherent Casimir wave mode overtones and a bulk mode. We model the Casimir effect in a sinusoidally graded medium finding it to be very enhanced over what is found in a multilayer stack for the equivalent permittivity contrast, and more slowly decreasing with s...

  7. Compact approach to fusion power reactors

    International Nuclear Information System (INIS)

    The potential of the Reversed-Field Pinch (RFP) for development into an efficient, compact, copper-coil fusion reactor has been quantified by comprehensive parametric tradeoff studies. These compact systems promise to be competitive in size, power density, and cost to alternative energy sources. Conceptual engineering designs that largely substantiate these promising results have since been completed. This 1000-MWe(net) design is described along with a detailed rationale and physics/technology assessment for the compact approach to fusion

  8. Small and medium power reactors 1985

    International Nuclear Information System (INIS)

    This report is intended for designers and planners concerned with Small and Medium Power Reactors. It provides a record of the presentations during the meetings held on this subject at the Agency's General Conference in September 1985. This information should be useful as it indicates the principal findings and main conclusions and recommendations resulting from these meetings. A separate abstract was prepared for each of the 10 presentations in this report

  9. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  10. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  11. Power reactor noise studies and applications

    International Nuclear Information System (INIS)

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  12. Power reactor noise studies and applications

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, V

    2002-03-01

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  13. Residual stress measurements in the dissimilar metal weld in pressurizer safety nozzle of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Rabello, Emerson G.; Mansur, Tanius R.; Scaldaferri, Denis H.B.; Paula, Raphael G., E-mail: wrcc@cdtn.br, E-mail: egr@cdtn.br, E-mail: tanius@cdtn.br, E-mail: dhbs@cdtn.br, E-mail: tanius@cdtn.br, E-mail: raphaelmecanica@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Souto, Joao P.R.S.; Carvalho Junior, Ideir T., E-mail: joprocha@yahoo.com.br, E-mail: ideir_engenharia@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica

    2013-07-01

    Weld residual stresses have a large influence on the behavior of cracking that could possibly occur under normal operation of components. In case of an unfavorable environment, both stainless steel and nickel-based weld materials can be susceptible to stress-corrosion cracking (SCC). Stress corrosion cracks were found in dissimilar metal welds of some pressurized water reactor (PWR) nuclear plants. In the nuclear reactor primary circuit the presence of tensile residual stress and corrosive environment leads to so-called Primary Water Stress Corrosion Cracking (PWSCC). The PWSCC is a major safety concern in the nuclear power industry worldwide. PWSCC usually occurs on the inner surface of weld regions which come into contact with pressurized high temperature water coolant. However, it is very difficult to measure the residual stress on the inner surfaces of pipes or nozzles because of inaccessibility. A mock-up of weld parts of a pressurizer safety nozzle was fabricated. The mock-up was composed of three parts: an ASTM A508 C13 nozzle, an ASTM A276 F316L stainless steel safe-end, an AISI 316L stainless steel pipe and different filler metals of nickel alloy 82/182 and AISI 316L. This work presents the results of measurements of residual strain from the outer surface of the mock-up welded in base metals and filler metals by hole-drilling strain-gage method of stress relaxation. (author)

  14. Electrolysers as a load management mechanism for power systems with wind power and zero-carbon thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Troncoso, E. [School of Industrial Engineering, Universidad Las Palmas de Gran Canaria (Spain); Newborough, M. [ITM Power Research Ltd., Mill House, Royston Road, Wendens Ambo, Saffron Walden CB11 4JX (United Kingdom)

    2010-01-15

    For an isolated power system the deployment of a large stock of electrolysers is investigated as a means for increasing the penetrations of wind power plant and zero-carbon thermal power plant. Consideration is given to the sizing and utilization of an electrolyser stock for three electrolyser implementation cases and three operational strategies, installed capacity ranges of 20-100% for wind power and 10-35% for zero-carbon thermal power plant (as proportions of the power system's maximum electrical demand) were investigated. Relative to wind-hydrogen alone, hydrogen yields are substantially increased especially on low-wind days. The average load placed on fossil-fuelled power plant is substantially decreased (while achieving a virtually flat load profile) and the carbon intensity of electricity can be reduced to values of <0.1 kg CO{sub 2}/kWh{sub e}. The trade-offs between the carbon intensity of the electricity delivered, the carbon intensity of the hydrogen produced and the daily hydrogen yield are explored. For example (on the variable wind day for Strategy C with respective wind power and zero-carbon thermal power penetrations of 100% and 35%), if the carbon intensity of hydrogen is relaxed from 0 to 3 kg CO{sub 2}/kg H{sub 2}, the hydrogen yield can be increased from 435 tonnes to 1115 tonnes (which is the energy equivalent of 120% of consumer demand for electricity on that day). The findings suggest that the deployment of electrolysers on both the supply and demand-side of the power system can contribute nationally-significant amounts of zero or low-carbon hydrogen without exceeding the power system's current maximum system demand. (author)

  15. Safety systems of heavy water reactors and small power reactors

    International Nuclear Information System (INIS)

    After introductional descriptions of heavy water reactors and natural circulation boiling water reactors the safety philosophy and safety systems like ECCS, residual heat removal, protection systems etc., are described. (RW)

  16. U.S. Nuclear Power Reactor Plant Status

    Data.gov (United States)

    Nuclear Regulatory Commission — Demographic data on U.S. commercial nuclear power reactors, including: plant name/unit number, docket number, location, licensee, reactor/containment type, nuclear...

  17. REACTOR-FLASH BOILER-FLYWHEEL POWER PLANT

    Science.gov (United States)

    Loeb, E.

    1961-01-17

    A power generator in the form of a flywheel with four reactors positioned about its rim is described. The reactors are so positioned that steam, produced in the reactor, exists tangentially to the flywheel, giving it a rotation. The reactors are incompletely moderated without water. The water enters the flywheel at its axis, under sufficient pressure to force it through the reactors, where it is converted to steam. The fuel consists of parallel twisted ribbons assembled to approximate a cylinder.

  18. Manufacturing and high heat-flux testing of brazed actively cooled mock-ups with Ti-doped graphite and CFC as plasma-facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rosales, C; Ordas, N; Lopez-Galilea, I [CEIT and Tecnun (University of Navarra), 20018 San Sebastian (Spain); Pintsuk, G; Linke, J [Forschungszentrum Juelich GmbH, EURATOM Association, 52425 Juelich (Germany); Gualco, C; Grattarola, M; Mataloni, F [Ansaldo Ricerche S.p.A., I-16152 Genoa (Italy); Ramos Fernandez, J M; MartInez Escandell, M [Departamento de Quimica Inorganica, University of Alicante, E-03690 Alicante (Spain); Centeno, A; Blanco, C [Instituto Nacional del Carbon (CSIC), Apdo. 73, E-33080 Oviedo (Spain)], E-mail: cgrosales@ceit.es

    2009-12-15

    In the frame of the EU project ExtreMat new Ti-doped isotropic graphites and carbon fibre-reinforced carbons (CFCs) with high thermal conductivity and reduced chemical erosion were brazed to a CuCrZr heat-sink to produce flat-tile actively cooled mock-ups (MUs). Brazing was done using a low CTE interlayer to shift the stresses to the metal-metal interface. These MUs were exposed to high heat-fluxes in the electron beam facility JUDITH. Screening tests were conducted increasing the heat load stepwise up to 15 MW m{sup -2}, followed by 100 cycles at 15 MW m{sup -2}, subsequent screening up to 20 MW m{sup -2} and 100 cycles at 20 MW m{sup -2}. All MUs withstood screening at 15 MW m{sup -2} and most of them survived screening at 20 MW m{sup -2}. Ti-doped CFC MUs showed a significant improvement compared with the undoped reference CFC, surviving several cycles at 20 MW m{sup -2} on all tiles. One of the Ti-doped graphite MUs withstood 100 cycles at 20 MW m{sup -2} on one tile, representing a promising result.

  19. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH{sub 4} + H{sub 2}O {yields} 3H{sub 2}O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m{sup 3}{sub N}/h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  20. Numerical benchmarks TRIPOLI - MCNP with use of MCAM on FNG ITER bulk shield and FNG HCLL TBM mock-up experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fausser, Clement, E-mail: clement.fausser@cea.fr [CEA, DEN, Saclay, DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette (France); Lee, Yi-Kang [CEA, DEN, Saclay, DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette (France); Villari, Rosaria [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Zeng Qin; Zhang Junjun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Serikov, Arkady [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology (Germany); Trama, Jean-Christophe; Gabriel, Franck [CEA, DEN, Saclay, DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette (France)

    2011-10-15

    3D Monte Carlo (MC) transport codes are of first importance for the assessment of breeding blankets neutronic performances. This article supported by the EFDA Goal Oriented Training Program Eurobreed presents the difference in results between the CEA MC code TRIPOLI-4 and MCNP on two fusion neutronics benchmarks, assessing therefore TRIPOLI-4 calculation capabilities on shielding and tritium production rate (TPR). The first selected benchmark, assessing the shielding capability, is the Frascati neutron generator (FNG) ITER bulk shield experiment whereas the second benchmark, assessing the TPR calculation, is the preliminary design of the FNG helium cooled lithium-lead (HCLL) test blanket module (TBM) mock-up. To ensure the consistency of the geometry description, MCAM tool is used for automatic TRIPOLI - MCNP geometry conversions and check. A good coherence between TRIPOLI-4 and MCNP for neutron flux, reaction rates and TPR calculations is obtained. Moreover, it appears that MCAM performs fast, automatic and appropriate TRIPOLI - MCNP geometry conversions and finally that the tabulated FNG neutron source model from KIT is appropriate for TRIPOLI-4 calculations.

  1. Cascade: a high-efficiency ICF power reactor

    International Nuclear Information System (INIS)

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d

  2. ATMEA and medium power reactors. The ATMEA joint venture and the ATMEA1 medium power reactor

    International Nuclear Information System (INIS)

    This Power Point presentation presents the ATMEA company (a joint venture of Areva and Mitsubishi), the main features of its medium power reactor (ATMEA1) and its building arrangement, indicates the general safety objectives. It outlines the features of its robust design which aim at protecting, cooling down and containing. It indicates the regulatory and safety frameworks, comments the review of the safety options by the ASN and the results of this assessment

  3. Oregon State TRIGA reactor power calibration study

    International Nuclear Information System (INIS)

    As a result of a recent review of the Oregon State TRIGA Reactor (OSTR) power calibration procedure, an investigation was performed on the origin and correctness of the OSTR tank factor and the calibration method. It was determined that there was no clear basis for the tank factor which was being used (0.0525 deg. C/kwh) and therefore a new value was calculated (0.0493 deg. C/kwh). The calculational method and likely errors are presented in the paper. In addition, a series of experimental tests were conducted to decide if the power calibration was best performed with or without a mixer, at 100 KW or at 1 MW. The results of these tests along with the final recommendation are presented. (author)

  4. Neutron measurements at nuclear power reactors [55

    CERN Document Server

    Scherpelz, R I

    2002-01-01

    Staff from the Pacific Northwest National Laboratory (operated by Battelle Memorial Institute), have performed neutron measurements at a number of commercial nuclear power plants in the United States. Neutron radiation fields at light water reactor (LWR) power plants are typically characterized by low-energy distributions due to the presence of large amounts of scattering material such as water and concrete. These low-energy distributions make it difficult to accurately monitor personnel exposures, since most survey meters and dosimeters are calibrated to higher-energy fields such as those produced by bare or D sub 2 O-moderated sup 2 sup 5 sup 2 Cf sources. Commercial plants typically use thermoluminescent dosimeters in an albedo configuration for personnel dosimetry and survey meters based on a thermal-neutron detector inside a cylindrical or spherical moderator for dose rate assessment, so their methods of routine monitoring are highly dependent on the energy of the neutron fields. Battelle has participate...

  5. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U3O8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  6. Zero-emission fuel-fired power plants with ion transport membrane

    NARCIS (Netherlands)

    Yantovski, E.; Gorski, J.; Smyth, B.; Elshof, ten J.

    2004-01-01

    Firstly, some points in relation to the history of zero-emissions power cycles are highlighted. Amongst the many schemes, only one which deals with the combustion of a fuel in “artificial air” (i.e. a mixture of oxygen and re-circulated carbon dioxide), is selected. This paper describes the zero em

  7. Instrumentation and control for reactor power setback in PFBR

    International Nuclear Information System (INIS)

    In Prototype Fast Breeder Reactor (PFBR), a 500 MWe plant, Reactor Power Setback is a special operation envisaged for bulk power reduction on occurrence of certain events in Balance of Plant. The bulk power reduction requires a large negative reactivity perturbation if reactor is operating on nominal power. This necessitates a reliable monitoring system with fault tolerant I and C architecture in order to inhibit reactor SCRAM on negative reactivity trip signal. The impact of above events on the process is described. Design of a functional prototype module to carry out RPSB logic operation and its interface with other instruments has been discussed. (author)

  8. The effect of biological shielding on fast neutron and photon transport in the VVER-1000 mock-up model placed in the LR-0 reactor.

    Science.gov (United States)

    Košťál, Michal; Cvachovec, František; Milčák, Ján; Mravec, Filip

    2013-05-01

    The paper is intended to show the effect of a biological shielding simulator on fast neutron and photon transport in its vicinity. The fast neutron and photon fluxes were measured by means of scintillation spectroscopy using a 45×45 mm(2) and a 10×10 mm(2) cylindrical stilbene detector. The neutron spectrum was measured in the range of 0.6-10 MeV and the photon spectrum in 0.2-9 MeV. The results of the experiment are compared with calculations. The calculations were performed with various nuclear data libraries.

  9. The state of the art report on the development of manufacturing technology of fusion reactor FW blanket and mock-up in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. Y.; Jeong, Y. H.; Baek, J. H.; Kim, J. H.; Kim, H. G

    2004-08-15

    The joining technology of first wall blanket has been developed by JAERI in collaboration with Kawasaki Heavy Industry, Isuau Motors and University of Tsukuba in Japan. A variety of joining technologies including HIP, brazing, casing and friction welding was applied to the manufacturing of SS/SS and Cu/SS joint. In Be/Cu joining, it was emphasized to find the optimal HIP temperature lower than 650 .deg. C in order to avoid excessive SS sensitization because the joining of Be tile to Cu heat sink is a final processing step in the manufacturing of FW blanket. The selected HIP condition were 620 .deg. C, 150MPa and 2hr with Cu interlayer. Sample tests for joints was completed by 1995. The small scale mockup was manufactured and its performance was qualified by end of 2000. From 2001, the manufacturing and the characterization has been carried out for the larger scale mockup.

  10. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 1: Electron beam irradiation tests

    International Nuclear Information System (INIS)

    Highlights: • Clear evidence of microscopic damage and crack formation at the notch root in the early stage of the fatigue loading (50–100 load cycles). • Propagation of fatigue crack at the notch root in the course of subsequent cyclic heat-flux loading followed by saturation after roughly 600 load cycles. • No sign of damage on the notch-free surface up to 800 load cycles. • No obvious effect of the pulse time duration on the crack extension. • Slight change in the grain microstructure due to the formation of sub-grain boundaries by plastic deformation. - Abstract: Recently, the idea of bare steel first wall (FW) is drawing attention, where the surface of the steel is to be directly exposed to high heat flux loads. Hence, the thermo-mechanical impacts on the bare steel FW will be different from those of the tungsten-coated one. There are several previous works on the thermal fatigue tests of bare steel FW made of austenitic steel with regard to the ITER application. In the case of reduced-activation steel Eurofer97, a candidate structural material for the DEMO FW, there is no report on high heat flux tests yet. The aim of the present study is to investigate the thermal fatigue behavior of the Eurofer-based bare steel FW under cyclic heat flux loads relevant to DEMO operation. To this end, we conducted a series of electron beam irradiation tests with heat flux load of 3.5 MW/m2 on water-cooled mock-ups with an engraved thin notch on the surface. It was found that the notch root region exhibited a marked development of damage and fatigue cracks whereas the notch-free surface manifested no sign of crack formation up to 800 load cycles. Results of extensive microscopic investigation are reported

  11. Validation of finite element code DELFIN by means of the zero power experiences at the nuclear power plant of Atucha I

    International Nuclear Information System (INIS)

    Code DELFIN, developed in CNEA, treats the spatial discretization using heterogeneous finite elements, allowing a correct treatment of the continuity of fluxes and currents among elements and a more realistic representation of the hexagonal lattice of the reactor. It can be used for fuel management calculation, Xenon oscillation and spatial kinetics. Using the HUEMUL code for cell calculation (which uses a generalized two dimensional collision probability theory and has the WIMS library incorporated in a data base), the zero power experiences performed in 1974 were calculated. (author). 8 refs., 9 figs., 3 tabs

  12. Reactor/Brayton power systems for nuclear electric spacecraft

    International Nuclear Information System (INIS)

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system

  13. Comparison of Pickering NGS performance with world power reactors, 1977

    International Nuclear Information System (INIS)

    Pickering NGS performance is compared, in highly graphic form, with the perfomance of other nuclear power plants around the world. The four Pickering reactors score in the top six, rated by gross capacity factor. Major system suppliers for world power reactors above 500 MW are cataloged. (E.C.B.)

  14. Project WAGR: The UK demonstration project for power reactor decommissioning - removing the core and looking to completion

    Energy Technology Data Exchange (ETDEWEB)

    Benest, T. G. [United Kingdom Atomic Energy Authority, Headquarters, London (United Kingdom)

    2003-07-01

    The United Kingdom Atomic Energy Authority (UKAEA) has built and operated a wide range of nuclear facilities since the late 1940's. UKAEA's present mission is to restore the environment of these facilities in a safe and environmentally responsible manner. This restoration includes the decommissioning of a number of redundant research and power reactors, one of which is the Windscale Advanced Gas-cooled Reactor (WAGR). Following shut down, UKAEA decided to continue the prototype function of the reactor into the decommissioning phase to develop dismantling techniques and establish waste routes. The reactor core and pressure vessel are now being dismantled in a programme of 10 campaigns, seven of which have been completed since 1998. It is anticipated that the current programme will be completed by summer 2005. This paper outlines the history of the reactor, the operation of the waste-processing route, the installed dismantling equipment and the successful completion of the first seven campaigns. This earlier work has been described in a number of publications and conferences, so this paper concentrates on recent work to select and develop cutting equipment to dismantle the core support structures and the pressure vessel. The decommissioning of the Windscale Advance Gas-cooled reactor is being undertaken to demonstrate that a power reactor can be decommissioned shortly after shutdown. The removal of the core and pressure vessel has been broken down into a series of 10 campaigns associated with particular core components. The first 7 campaigns have been successfully completed and the 8., is expected to commence in September 2003 17 months earlier than planned. Dismantling methodologies and tools have been developed specifically for each of these campaigns. Full-scale mock-ups have been used to test the tools, train the operators and assess the duration of operations. However, despite successful trials, operational experience has shown that some of these tools

  15. Hybrid zero-voltage switching (ZVS) control for power inverters

    Science.gov (United States)

    Amirahmadi, Ahmadreza; Hu, Haibing; Batarseh, Issa

    2016-11-01

    A power inverter combination includes a half-bridge power inverter including first and second semiconductor power switches receiving input power having an intermediate node therebetween providing an inductor current through an inductor. A controller includes input comparison circuitry receiving the inductor current having outputs coupled to first inputs of pulse width modulation (PWM) generation circuitry, and a predictive control block having an output coupled to second inputs of the PWM generation circuitry. The predictive control block is coupled to receive a measure of Vin and an output voltage at a grid connection point. A memory stores a current control algorithm configured for resetting a PWM period for a switching signal applied to control nodes of the first and second power switch whenever the inductor current reaches a predetermined upper limit or a predetermined lower limit.

  16. Zero-Net Power, Low-Cost Sensor Platform

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J.E.

    2005-04-15

    Numerous national studies and working groups have identified very low-power, low-cost sensors as a critical technology for increasing energy efficiency, reducing waste, and optimizing processes. This research addressed that need by developing an ultra low-power, low-cost sensor platform based on microsensor (MS) arrays that includes MS sensors, very low-power electronics, signal processing, and two-way data communications, all integrated into a single package. MSs were developed to measure carbon dioxide and room occupancy. Advances were made in developing a coating for detecting carbon dioxide and sensing thermal energy with MSs with a low power electrical readout. In addition, robust algorithms were developed for communications within buildings over power lines and an integrated platform was realized that included gas sensing, temperature, humidity, and room occupancy with on-board communications.

  17. On the Reaction Mechanism of Br2 with OCS

    Institute of Scientific and Technical Information of China (English)

    Hai Tao YU; Hua ZHONG; Ming Xia LI; Hong Gang FU; Jia Zhong SUN

    2005-01-01

    The reaction mechanism of photochemical reaction between Br2 ( 1 ∑ ) and OCS ( 1 ∑ ) is predicted by means of theoretical methods. The calculated results indicate that the direct addition of Br2 to the CS bond of OCS molecule is more favorable in energy than the direct addition of Br2to the CO bond. Furthermore, the intermediate isomer syn-BrC(O)SBr is more stable thermodynamically and kinetically than anti-BrC(O)SBr. The original resultant anti-BrC(O)SBr formed in the most favorable reaction channel can easily isomerize into the final product syn-BrC(O)SBr with only 31.72 kJ/mol reaction barrier height. The suggested mechanism is in good agreement with previous experimental study.

  18. Raman spectra of ZnBr2-based glasses

    International Nuclear Information System (INIS)

    Raman spectra of ZnBr2-KBr and ZnBr2-KBr-CaBr2 glasses contain strong bands at 60 cm-1 and 155 or 174 cm-1 and some weak bands between 200-300 cm-1. From the compositional dependence of the spectra and comparison with vibrational modes of molten mixtures and crystals, the 155 and 174 cm-1 bands are assigned to symmetric stretching modes of tetrahedra consisting of four bridging and four non-bridging bromines, respectively. It is revealed that tetrahedra of bridging bromines exist in the glasses even at the composition of so large amount of bromine that the theoretical number of non-bridging bromine per zinc is beyond 4. (author) 6 refs., 4 figs

  19. Axial power monitoring uncertainty in the Savannah River Reactors

    International Nuclear Information System (INIS)

    The results of this analysis quantified the uncertainty associated with monitoring the Axial Power Shape (APS) in the Savannah River Reactors. Thermocouples at each assembly flow exit map the radial power distribution and are the primary means of monitoring power in these reactors. The remaining uncertainty in power monitoring is associated with the relative axial power distribution. The APS is monitored by seven sensors that respond to power on each of nine vertical Axial Power Monitor (APM) rods. Computation of the APS uncertainty, for the reactor power limits analysis, started with a large database of APM rod measurements spanning several years of reactor operation. A computer algorithm was used to randomly select a sample of APSs which were input to a code. This code modeled the thermal-hydraulic performance of a single fuel assembly during a design basis Loss-of Coolant Accident. The assembly power limit at Onset of Significant Voiding was computed for each APS. The output was a distribution of expected assembly power limits that was adjusted to account for the biases caused by instrumentation error and by measuring 7 points rather than a continuous APS. Statistical analysis of the final assembly power limit distribution showed that reducing reactor power by approximately 3% was sufficient to account for APS variation. This data confirmed expectations that the assembly exit thermocouples provide all information needed for monitoring core power. The computational analysis results also quantified the contribution to power limits of the various uncertainties such as instrumentation error

  20. Static and dynamic performance tests of nuclear powered ship Mutsu reactor (report on nuclear ship Mutsu power-up tests)

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Ochiai, Masa-aki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tanaka, Yoshimi; Inoue, Kimio; Yao, Toshiaki; Kamai, Satoshi; Kitamura, Toshikatsu

    1992-08-01

    The power-up tests of the Mutsu reactor were performed from March 29th 1990 to December 14th. The tests were divided into six phases: The tests Phase 0 and Phase 1 were done in the state that the ship was moored at the quay of Sekinehama port in March and April; The tests Phase 2, Phase 3, Phase 4, and Phase 5 were done on the Pacific Ocean from July to December. Present report describes the test results on the static and dynamic plant performance. On static plant performance tests, there are 13 test items including measurements of primary system heat balance at low and high power levels, a virgin run of feed water pump with SG steam, a change-over test of steam supply of auxiliary boiler to SG. On the dynamic plant performance, there are 11 test items including a test of reactor power auto-control system, a test of main feed water auto-control system, a test of small load variation, a load increasing test, a turbine trip test, tests of ahead and astern maneuvering, a test of single loop operation, and a reactor scram test. The reactor power for each item`s test was increased step by step from zero power to the goal of rated power of 100 %, 36 MWt. In order to confirm proper reactor system performance, criteria were laid down for the static and dynamic tests: for example, (1) reactor scram shall not occur, (2) pressurizer relief valve and steam generator safety valve shall not work, and (3) after the transients reactor systems shall become the steady state without manual adjustment of the reactor control system. The test results satisfied these criteria and some of test data showed that reactor had much more margin in any performance for design. It is verified, therefore, that the Mutsu reactor systems have adequate performances as a marine reactor and that one is capable to respond smoothly and safely to the load of ship`s demand. (author).

  1. Static and dynamic performance tests of nuclear powered ship Mutsu reactor (report on nuclear ship Mutsu power-up tests)

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Ochiai, Masa-aki (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment); Tanaka, Yoshimi; Inoue, Kimio; Yao, Toshiaki; Kamai, Satoshi; Kitamura, Toshikatsu.

    1992-08-01

    The power-up tests of the Mutsu reactor were performed from March 29th 1990 to December 14th. The tests were divided into six phases: The tests Phase 0 and Phase 1 were done in the state that the ship was moored at the quay of Sekinehama port in March and April; The tests Phase 2, Phase 3, Phase 4, and Phase 5 were done on the Pacific Ocean from July to December. Present report describes the test results on the static and dynamic plant performance. On static plant performance tests, there are 13 test items including measurements of primary system heat balance at low and high power levels, a virgin run of feed water pump with SG steam, a change-over test of steam supply of auxiliary boiler to SG. On the dynamic plant performance, there are 11 test items including a test of reactor power auto-control system, a test of main feed water auto-control system, a test of small load variation, a load increasing test, a turbine trip test, tests of ahead and astern maneuvering, a test of single loop operation, and a reactor scram test. The reactor power for each item's test was increased step by step from zero power to the goal of rated power of 100 %, 36 MWt. In order to confirm proper reactor system performance, criteria were laid down for the static and dynamic tests: for example, (1) reactor scram shall not occur, (2) pressurizer relief valve and steam generator safety valve shall not work, and (3) after the transients reactor systems shall become the steady state without manual adjustment of the reactor control system. The test results satisfied these criteria and some of test data showed that reactor had much more margin in any performance for design. It is verified, therefore, that the Mutsu reactor systems have adequate performances as a marine reactor and that one is capable to respond smoothly and safely to the load of ship's demand. (author).

  2. Consumption of the electric power inside silent discharge reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yehia, Ashraf, E-mail: yehia30161@yahoo.com [Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Arab Republic of Egypt and Department of Physics, College of Science and Humanitarian Studies at Alkharj, Salman bin Abdulaziz University, P.O. Box 83, Alkharj 11942 (Saudi Arabia)

    2015-01-15

    An experimental study was made in this paper to investigate the relation between the places of the dielectric barriers, which cover the surfaces of the electrodes in the coaxial cylindrical reactors, and the rate of change of the electric power that is consumed in forming silent discharges. Therefore, silent discharges have been formed inside three coaxial cylindrical reactors. The dielectric barriers in these reactors were pasted on both the internal surface of the outer electrode in the first reactor and the external surface of the inner electrode in the second reactor as well as the surfaces of the two electrodes in the third reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at normal temperature and pressure, in parallel with the application of a sinusoidal ac voltage between the electrodes of the reactor. The electric power consumed in forming the silent discharges inside the three reactors was measured as a function of the ac peak voltage. The validity of the experimental results was investigated by applying Manley's equation on the same discharge conditions. The results have shown that the rate of consumption of the electric power relative to the ac peak voltage per unit width of the discharge gap improves by a ratio of either 26.8% or 80% or 128% depending on the places of the dielectric barriers that cover the surfaces of the electrodes inside the three reactors.

  3. Power start up of the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    After accomplishing the physical start-up of the reactor, the power start-up was carried out in February 1984. The power of the reactor has reached: 10 KW on 6/2/1984, 100 KW on 7/2/1984, 200 KW and 300 KW on 8/2/1984; 400 KW and nominal power 500 KW on 9/2/1984. The reactivity temperature coefficient and the xenon poisoning were determined. 3 figs., 12 tabs

  4. Burnup analysis of the power reactor, 1

    International Nuclear Information System (INIS)

    Several years of endeavors has been devoted to development of three-dimensional nuclear-thermal-hydro-dynamic simulators and research by basing the progress on the merits and demerits of the variational method, the functional approximation method, etc. As the result, the three-dimensional nuclear-thermal-hydro-dynamic code FLORA has been prepared. It has the following features. (1) The executive time is one third -- half as much as that by the convensional programs. (2) Numerical error is small when neutron spectrum mismatches. (3) In the fuels in which the distributions of Gd2O3 and enrichments are localized axially in the reactor core, three-dimensional nuclear-thermal-hydro-dynamic calculations are possible. (4) The transport kernel can be obtained by the coarse mesh method and the functional approximation method. (5) Albedo can be calculated by the two-group diffusion theory. (6) Power distribution can be obtained in the case of partial control rods inserted in the core. The course taken to the preparation, the theoretical background and example calculations with FLORA are described. The present report can be also used as a manual. (auth.)

  5. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    The technology for cobalt-60 production in CANDU reactors, designed and developed by MDS Nordion and AECL, has been safely,economically and successfully employed in CANDU reactors with over 195 reactor years of production. Today over forty percent of the world's disposable medical supplies are made safer through sterilization using cobalt-60 sources from MDS Nordion. Over the past 40 years, MDS Nordion with its CANDU reactor owner partners, has safely and reliably shipped more than 500 million curies of cobalt-60 sources to customers around the world

  6. The BR2 refurbishment programme: achievements and two years operation feedback

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P.; Dekeyser, J.; Koonen, E.; Van der Auwera, J. [SCK/CEN, Belgian Nuclear Research Center, Mol (Belgium)

    1999-08-01

    The BR2 reactor was shutdown end of June 1995 for an extensive refurbishment after more than 30 years utilization. The beryllium matrix needed to be replaced and the aluminium vessel inspected for an envisaged 15 year life extension. Other aspects of the refurbishment programme aimed at the reliability and availability of the installations, safety of operation and compliance with modern safety standards. The reactor was started again in' April '97 and operated only for three cycles in 1997. These first irradiation cycles were intended as a demonstration of the safety and reliability of all components and systems after refurbishment. Also during the extended shutdowns non-critical refurbishment tasks were allowed to be continued and finalized. At the request of the Safety Authorities, some modifications and studies are still in progress without perturbation of the reactor operation. (author)

  7. Intercomparison of liquid metal fast reactor seismic analysis codes. V.1: Validation of seismic analysis codes using reactor core experiments. Proceedings of a research co-ordination meeting held in Vienna, 16-17 November 1993

    International Nuclear Information System (INIS)

    The Research Co-ordination Meeting held in Vienna, 16-17 November 1993, was attended by participants from France, India, Italy, Japan and the Russian Federation. The meeting was held to discuss and compare the results obtained by various organizations for the analysis of Italian tests on PEC mock-up. The background paper by A. Martelli, et al., Italy, entitled Fluid-Structure Interaction Experiments of PEC Core Mock-ups and Numerical Analysis Performed by ENEA presented details on the Italian PEC (Prova Elementi di Combustibile, i.e. Fuel Element Test Facility) test data for the benchmark. Several papers were presented on the analytical investigations of the PEC reactor core experiments. The paper by M. Morishita, Japan, entitled Seismic Response Analysis of PEC Reactor Core Mock-up, gives a brief review of the Japanese data on the Monju mock-up core experiment which had been distributed to the participating countries through the IAEA. Refs, figs and tabs

  8. Experimental study of the IPR-R1 TRIGA reactor power channels responses

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Henrique F.A.; Ferreira, Andrea V., E-mail: hfam@cdtn.br, E-mail: avf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The IPR-R1 nuclear reactor installed at Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil, is a Mark I TRIGA reactor (Training, Research, Isotopes, General Atomics) and became operational on November of 1960. The reactor has four irradiation devices: a rotary specimen rack with 40 irradiation channels, the central tube, and two pneumatic transfer tubes. The nuclear reactor is operated in a power range between zero and 100 kW. The instrumentation for IPR-R1 operation is mainly composed of four neutronic channels for power measurements. The aim of this work is to investigate the responses of neutronic channels of IPR-R1, Linear, Log N and Percent Power channels, and to check their linearity. Gold foils were activated at low powers (0.125-1.000 kW), and cobalt foils were activated at high powers (10-100kW). For each sample irradiated at rotary specimen rack, another one was irradiated at the same time at the pneumatic transfer tube-2. The obtained results allowed evaluating the linearity of the neutronic channels responses. (author)

  9. Characterization of the TRIGA Mark II reactor full-power steady state

    CERN Document Server

    Cammi, Antonio; Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Magrotti, Giovanni; Prata, Michele; Salvini, Andrea

    2015-01-01

    In this work, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor of the University of Pavia is performed by coupling Monte Carlo (MC) simulation for neutronics with "Multiphysics" model for thermal-hydraulics. Neutronic analyses have been performed starting from a MC model of the entire reactor system, based on the MCNP5 code, that was already validated in fresh fuel and zero-power configuration (in which thermal effects are negligible) using the available experimental data as benchmark. In order to describe the full-power reactor configuration, the temperature distribution in the core is necessary. To evaluate it, a thermal-hydraulic model has been developed, using the power distribution results from MC simulation as input. The thermal-hydraulic model is focused on the core active region and takes into account sub-cooled boiling effects present at full reactor power. The obtained temperature distribution is then introduced in the MC model and a benchmark analysis is carr...

  10. Nuclear Power Reactors in the World. 2016 Ed

    International Nuclear Information System (INIS)

    Nuclear Power Reactors in the World is an annual publication that presents the most recent data pertaining to reactor units in IAEA Member States. This thirty-sixth edition of Reference Data Series No. 2 provides a detailed comparison of various statistics up to and including 31 December 2015. The tables and figures contain the following information: — General statistics on nuclear reactors in IAEA Member States; — Technical data on specific reactors that are either planned, under construction or operational, or that have been shut down or decommissioned; — Performance data on reactors operating in IAEA Member States, as reported to the IAEA. The data compiled in this publication is a product of the IAEA’s Power Reactor Information System (PRIS). The PRIS database is a comprehensive source of data on all nuclear power reactors in the world. It includes specification and performance history data on operational reactors as well as on reactors under construction or in the decommissioning process. Data is collected by the IAEA via designated national correspondents in Member States

  11. Small size modular fast reactors in large scale nuclear power

    International Nuclear Information System (INIS)

    The report presents an innovative nuclear power technology (NPT) based on usage of modular type fast reactors (FR) (SVBR-75/100) with heavy liquid metal coolant (HLMC) i. e. eutectic lead-bismuth alloy mastered for Russian nuclear submarines' (NS) reactors. Use of this NPT makes it possible to eliminate a conflict between safety and economic requirements peculiar to the traditional reactors. Physical features of FRs, an integral design of the reactor and its small power (100 MWe), as well as natural properties of lead-bismuth coolant assured realization of the inherent safety properties. This made it possible to eliminate a lot of safety systems necessary for the reactor installations (RI) of operating NPPs and to design the modular NPP which technical and economical parameters are competitive not only with those of the NPP based on light water reactors (LWR) but with those of the steam-gas electric power plant. Multipurpose usage of transportable reactor modules SVBR-75/100 of entirely factory manufacture assures their production in large quantities that reduces their fabrication costs. The proposed NPT provides economically expedient change over to the closed nuclear fuel cycle (NFC). When the uranium-plutonium fuel is used, the breeding ratio is over one. Use of proposed NPT makes it possible to considerably increase the investment attractiveness of nuclear power (NP) with fast neutron reactors even today at low costs of natural uranium. (authors)

  12. Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality

    Institute of Scientific and Technical Information of China (English)

    Yaobin Zhang; Yiwen Liu; Yanwen Jing; Zhiqiang Zhao; Xie Quan

    2012-01-01

    Zero valent iron (ZVI) is expected to help create an enhanced anaerobic environment that might improve the performance of anaerobic treatment.Based on this idea,a novel ZVI packed upflow anaerobic sludge blanket (ZVI-UASB) reactor was developed to treat azo dye wastewater with variable influent quality.The results showed that the reactor was less influenced by increases of Reactive Brilliant Red X-3B concentration from 50 to 1000 mg/L and chemical oxygen demand (COD) from 1000 to 7000 mg/L in the feed than a reference UASB reactor without the ZVI.The ZVI decreased oxidation-reduction potential in the reactor by about 80 mV.Iron ion dissolution from the ZVI could buffer acidity in the reactor,the amount of which was related to the COD concentration.Fluorescence in situ hybridization test showed the abundance of methanogens in the sludge of the ZVI-UASB reactor was significantly greater than that of the reference one.Denaturing gradient gel electrophoresis showed that the ZVI increased the diversity of microbial strains responsible for high efficiency.

  13. Service hall in Number 1 Fukushima Nuclear Power Station, Tokyo Electric Power Company, Inc

    International Nuclear Information System (INIS)

    There are six BWR type nuclear power plants in the Number 1 Fukushima Nuclear Power Station, Tokyo Electric Power Company, Inc. The service hall of the station is located near the entrance of the station. In the center of this service hall, there is the model of a nuclear reactor of full scale. This mock-up shows the core region in the reactor pressure vessel for the number one plant. The diameter and the thickness of the pressure vessel are about 5 m and 16 cm, respectively. The fuel assemblies and control rods are set just like the actual reactor, and the start-up operation of the reactor is shown colorfully and dynamically by pushing a button. When the control rods are pulled out, the boiling of water is demonstrated. The 1/50 scale model of the sixth plant with the power generating capacity of 1100 MWe is set, and this model is linked to the mock-up of reactor written above. The operations of a recirculating loop, a turbine and a condenser are shown by switching on and off lamps. The other exhibitions are shielding concrete wall, ECCS model, and many kinds of panels and models. This service hall is incorporated in the course of study and observation of civics. The good environmental effects to fishes and shells are explained in this service hall. Official buildings and schools are built near the service hall utilizing the tax and grant concerning power generation. This service hall contributes to give much freedom from anxiety to the public by the tour. (Nakai, Y.)

  14. Gas core reactor power plants designed for low proliferation potential

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, L.L. (comp.)

    1977-09-01

    The feasibility of gas core nuclear power plants to provide adequate power while maintaining a low inventory and low divertability of fissile material is studied. Four concepts were examined. Two used a mixture of UF/sub 6/ and helium in the reactor cavities, and two used a uranium-argon plasma, held away from the walls by vortex buffer confinement. Power levels varied from 200 to 2500 MWth. Power plant subsystems were sized to determine their fissile material inventories. All reactors ran, with a breeding ratio of unity, on /sup 233/U born from thorium. Fission product removal was continuous. Newly born /sup 233/U was removed continuously from the breeding blanket and returned to the reactor cavities. The 2500-MWth power plant contained a total of 191 kg of /sup 233/U. Less than 4 kg could be diverted before the reactor shut down. The plasma reactor power plants had smaller inventories. In general, inventories were about a factor of 10 less than those in current U.S. power reactors.

  15. Facility for a Low Power Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chalker, R. G.

    1949-09-14

    Preliminary investigation indicates that a reactor facility with ample research provisions for use by University or other interested groups, featuring safety in design, can be economically constructed in the Los Angeles area. The complete installation, including an underground gas-tight reactor building, with associated storage and experiment assembly building, administration offices, two general laboratory buildings, hot latoratory and lodge, can be constructed for approxinately $1,500,000. This does not include the cost of the reactor itself or of its auxiliary equipment,

  16. Power distribution control of CANDU reactors based on modal representation of reactor kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Lingzhi, E-mail: lxia4@uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Jiang, Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Luxat, John C., E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2014-10-15

    Highlights: • Linearization of the modal synthesis model of neutronic kinetic equations for CANDU reactors. • Validation of the linearized dynamic model through closed-loop simulations by using the reactor regulating system. • Design of a LQR state feedback controller for CANDU core power distribution control. • Comparison of the results of this new controller against those of the conventional reactor regulation system. - Abstract: Modal synthesis representation of a neutronic kinetic model for a CANDU reactor core has been utilized in the analysis and synthesis for reactor control systems. Among all the mode shapes, the fundamental mode of the power distribution, which also coincides with the desired reactor power distribution during operation, is used in the control system design. The nonlinear modal models are linearized around desired operating points. Based on the linearized model, linear quadratic regulator (LQR) control approach is used to synthesize a state feedback controller. The performance of this controller has been evaluated by using the original nonlinear models under load-following conditions. It has been demonstrated that the proposed reactor control system can produce more uniform power distribution than the traditional reactor regulation systems (RRS); in particular, it is more effective in compensating the Xenon induced transients.

  17. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  18. Natural uranium fueled light water moderated breeding hybrid power reactors

    International Nuclear Information System (INIS)

    The feasibility of fission-fusion hybrid reactors based on breeding light water thermal fission systems is investigated. The emphasis is on fuel-self-sufficient (FSS) hybrid power reactors that are fueled with natural uranium. Other LWHRs considered include FSS-LWHRs that are fueled with spent fuel from LWRs, and LWHRs which are to supplement LWRs to provide a tandem LWR-LWHR power economy that is fuel-self-sufficient

  19. Self-operation type power control device for nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru.

    1993-07-23

    The device of the present invention operates by sensing the temperature change of a reactor core in all of LMFBR type reactors irrespective of the scale of the reactor core power. That is, a region where liquid poison is filled is disposed at the upper portion and a region where sealed gases are filled is disposed at the lower portion of a pipe having both ends thereof being closed. When the pipe is inserted into the reactor core, the inner diameter of the pipe is determined smaller than a predetermined value so that the boundary between the liquid poison and the sealed gases in the pipe is maintained relative to an assumed maximum acceleration. The sealed gas region is disposed at the reactor core region. If the liquid poison is expanded by the elevation of the reactor core exit temperature, it is moved to the lower gas region, to control the reactor power. Since high reliability can be maintained over a long period of time by this method, it is suitable to FBR reactors disposed in such environments that maintenance can not easily be conducted, such as desserts, isolated islands and undeveloped countries. Further, it is also suitable to ultra small sized nuclear reactors disposed at environments that the direction and the magnitude of gravity are different from those on the ground. (I.S.).

  20. Research and development into power reactor fuel performance

    International Nuclear Information System (INIS)

    The nuclear fuel in a power reactor must perform reliably during normal operation, and the consequences of abnormal events must be researched and assessed. The present highly reliable operation of the natural UO2 in the CANDU power reactors has reduced the need for further work in this area; however a core of expertise must be retained for purposes such as training of new staff, retaining the capability of reacting to unforeseen circumstances, and participating in the commercial development of new ideas. The assessment of fuel performance during accidents requires research into many aspects of materials, fuel and fission product behaviour, and the consolidation of that knowledge into computer codes used to evaluate the consequences of any particular accident. This work is growing in scope, much is known from out-reactor work at temperatures up to about 1500 degreesC, but the need for in-reactor verification and investigation of higher-temperature accidents has necessitated the construction of a major new in-reactor test loop and the initiation of the associated out-reactor support programs. Since many of the programs on normal and accident-related performance are generic in nature, they will be applicable to advanced fuel cycles. Work will therefore be gradually transferred from the present, committed power reactor system to support the next generation of thorium-based reactor cycles

  1. Power instability and stochastic dynamics of periodic pulsed reactors

    International Nuclear Information System (INIS)

    This paper reports that physicists dealing with conventional reactor dynamics recognize two types of instability and reactor behavior beyond the stability region: asymptotic excursions and nonlinear periodic oscillations. A periodically pulsed reactor (PPR) has another peculiar instability: Under certain conditions, its power tends to oscillate at a frequency just twice less than the reactor pulsation frequency. The PPR dynamics far beyond the stability region are analyzed by using a discrete nonlinear model. A PPR with a negative temperature reactivity effect inevitably shows the chaotic power pulse energy behavior known as deterministic chaos. The way by which a reactor goes to chaos is defined by the time dependence of the feedback and by the kind of dynamics model used

  2. Technology and use of low power research reactors

    International Nuclear Information System (INIS)

    The report contains a summary of discussions and 10 papers presented at the Consultants' Meeting on the Technology and Use of Low Power Research Reactors organized by the IAEA and held in Beijing (China) during 30 April - 3 May 1985. The following topics have been covered: reactor utilization in medicine and biology, in universities, for training, as a neutron source for radiography and some remarks on the safety of low power research reactors. A separate abstract was prepared for each paper presented at the meeting

  3. Measurement of the power and temperature reactivity coefficients of the RTP TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rabir, Mohamad Hairie, E-mail: m_hairie@nuclearmalaysia.gov.my

    2013-12-15

    This paper presents the experimental results of the power and temperature coefficients of reactivity of the RTP TRIGA reactor at the Malaysian Nuclear Agency. The power coefficient of reactivity obtained was approximately −0.26 ¢ kW{sup −1} (−1.81 × 10{sup −5} kW{sup –1}), and the measured temperature reactivity coefficient of the reactor was −0.82 ¢ °C{sup −1} (−5.77 × 10{sup −5} °C{sup −1}) and −1.15 ¢ °C{sup −1} (−8.08 × 10{sup −5} °C{sup −1}) in IFE C12 and IFE F16, respectively. The power defect, which is the change in reactivity taking place between zero power and the power of 850 kW was ∼2.19 $. Because of the negative temperature coefficient, a significant amount of reactivity is needed to compensate for the temperature change and allows the reactor to operate at the higher power levels in steady state. Throughout this experiment, it is the temperature of the fuel that was measured, not the isothermal temperature coefficient (ITC), which comprises both moderator and fuel.

  4. Regulation concerning installation and operation of reactors for power generation

    International Nuclear Information System (INIS)

    The regulation is defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and provisions concerning installation and operation of reactors for power generation in the order for execution of the law. Basic concepts and terms are explained, such as: radioactive waste; fuel assembly; exposure dose; accumulative dose; controlled area; safeguarded area; inspected surrounding area and employee. The application for permission of installation of reactors shall include location and general structure of reactor facilities, structure and equipment of reactors, handling and storing facilities of nuclear fuel materials and facilities for measurement and control, etc. Operation program of reactors shall be prepared for each reactor according to the form attached and filed every fiscal year from that one when the operation is expected to begin. Records shall be made for each reactor and kept for particular periods on inspection of reactor facilities, operation, fuel assembly, control of radiation and maintenance, etc. Entrance to the controlled area shall be limited through specified measures. Exposure dose, inspection, check up, independent examination and operation of reactors, transport and disposal in the works or the enterprise and others are in detail stipulated. Reports shall be submitted to the Minister of International Trade and Industry on concentration of radioactive materials, exposure dose of employees and other designated matters. (Okada, K.)

  5. Analysis on Zero Power Experiment of High Flux Engineering Test Reactor with Three-Dimensional Continuous Energy Monte Carlo Code%三维堆芯连续能量蒙特卡罗程序用于HFETR零功率物理实验计算分析研究

    Institute of Scientific and Technical Information of China (English)

    彭钢

    2012-01-01

    采用三维堆芯连续能量蒙特卡罗程序( MCNP)对高通量工程试验堆(HFETR)零功率物理实验进行计算分析.从计算结果可以看出,在零功率反应堆上,径向铍反射层应当考虑金属铍中的杂质和密度修正,同时需要考虑控制棒过渡段的10B含量修正;而HFETR上的铍块则可以认为是纯金属铍,控制棒过渡段中10B含量也需另作考虑.从计算结果来看,多数参数(堆芯中子有效增殖系数keff、中子通量密度相对分布、γ剂量率相对分布以及多数部件反应性价值)均较好满足误差要求,而个别小反应性部件计算误差较大可能与MCNP程序模型有关.%Three-dimensional, continuous energy Monte Carlo code (MCNP) is adopted to carry out the analysis of zero power experiment of HFETR. From the results, the impurity, density of Beryllium block and the B concentration in control rod transition part should be carefully determined in the analysis of zero power experiment. While in the experiment of HFETR, the Beryllium block is considered as pure metal and the 10B concentration in control rod transition part is different from that of zero power experiment. From the calculation results, these parameters (effective neutron multiplication factor Keff relative distribution of neutron flux density, y dose rate distribution and component reactivity) are quite fit with the experiment. The difference of small reactivity between calculation and experiment is quite large, and may be related to the deficiency of MCNP model.

  6. Analysis of TRIGA reactor thermal power calibration method

    International Nuclear Information System (INIS)

    Analysis of thermal power method of the nuclear instrumentation of the TRIGA reactor in Ljubljana is described. Thermal power calibration was performed at different power levels and at different conditions. Different heat loss processes from the reactor pool to the surrounding are considered. It is shown that the use of proper calorimetric calibration procedure and the use of heat loss corrections improve the accuracy of the measurement. To correct the position of the control rods, perturbation factors are introduced. It is shown that the use of the perturbation factors enables power readings from nuclear instrumentation with accuracy better than without corrections.(author)

  7. An overview of future sustainable nuclear power reactors

    Directory of Open Access Journals (Sweden)

    Andreas Poullikkas

    2013-01-01

    Full Text Available In this paper an overview of the current and future nuclear power reactor technologies is carried out. In particular, the nuclear technology is described and the classification of the current and future nuclear reactors according to their generation is provided. The analysis has shown that generation II reactors currently in operation all around the world lack significantly in safety precautions and are prone to loss of coolant accident (LOCA. In contrast, generation III reactors, which are an evolution of generation II reactors, incorporate passive or inherent safety features that require no active controls or operational intervention to avoid accidents in the event of malfunction, and may rely on gravity, natural convection or resistance to high temperatures. Today, partly due to the high capital cost of large power reactors generating electricity and partly due to the consideration of public perception, there is a shift towards the development of smaller units. These may be built independently or as modules in a larger complex, with capacity added incrementally as required. Small reactors most importantly benefit from reduced capital costs, simpler units and the ability to produce power away from main grid systems. These factors combined with the ability of a nuclear power plant to use process heat for co-generation, make the small reactors an attractive option. Generally, modern small reactors for power generation are expected to have greater simplicity of design, economy of mass production and reduced installation costs. Many are also designed for a high level of passive or inherent safety in the event of malfunction. Generation III+ designs are generally extensions of the generation III concept, which include advanced passive safety features. These designs can maintain the safe state without the use of any active control components. Generation IV reactors, which are future designs that are currently under research and development, will

  8. Investigation of materials for fusion power reactors

    Science.gov (United States)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  9. Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN

    NARCIS (Netherlands)

    Czyperek, M.; Zapp, P.; Bouwmeester, H.J.M.; Modigell, M.; Ebert, K.; Voigt, I.; Meulenberg, W.A.; Singheiser, L.; Stöver, D.

    2010-01-01

    The objective of the “MEM-BRAIN” project is the development and integration of ceramic and polymeric gas separation membranes for zero-emission fossil power plants. This will be achieved using membranes with a high permeability and selectivity for either CO2, O2 or H2, for the three CO2 capture proc

  10. MEM-BRAIN gas separation membranes for zero-emission fossil power plants

    NARCIS (Netherlands)

    Czyperek, M.; Zapp, P.; Bouwmeester, H.J.M.; Modigell, M.; Peinemann, K.-V.; Voigt, I.; Meulenberg, W.A.; Singheiser, L.; Stöver, D.

    2009-01-01

    The aim of the MEM-BRAIN project is the development and integration of gas separation membranes for zero-emission fossil power plants. This will be achieved by selective membranes with high permeability for CO2, O2 or H2, so that high-purity CO2 is obtained in a readily condensable form. The project

  11. Design of megawatt power level heat pipe reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mcclure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

  12. Analysis of Nigeria research reactor-1 thermal power calibration methods

    Energy Technology Data Exchange (ETDEWEB)

    Agbo, Sunday Arome; Ahmed, Yusuf Aminu; Ewa, Ita Okon; Jibrin, Yahaya [Ahmadu Bello University, Zaria (Nigeria)

    2016-06-15

    This paper analyzes the accuracy of the methods used in calibrating the thermal power of Nigeria Research Reactor-1 (NIRR-1), a low-power miniature neutron source reactor located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. The calibration was performed at three different power levels: low power (3.6 kW), half power (15 kW), and full power (30 kW). Two methods were used in the calibration, namely, slope and heat balance methods. The thermal power obtained by the heat balance method at low power, half power, and full power was 3.7 ± 0.2 kW, 15.2 ± 1.2 kW, and 30.7 ± 2.5 kW, respectively. The thermal power obtained by the slope method at half power and full power was 15.8 ± 0.7 kW and 30.2 ± 1.5 kW, respectively. It was observed that the slope method is more accurate with deviations of 4% and 5% for calibrations at half and full power, respectively, although the linear fit (slope method) on average temperature-rising rates during the thermal power calibration procedure at low power (3.6 kW) is not fitting. As such, the slope method of power calibration is not suitable at lower power for NIRR-1.

  13. Small reactor power systems for manned planetary surface bases

    International Nuclear Information System (INIS)

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options

  14. Sealing device for nuclear power reactor

    International Nuclear Information System (INIS)

    The sealing device is to stop a leak on a reactor pressure vessel where control of the output of reactor is arranged by control rods which are handled by drives connected to control rods and bars in tubes which penetrate the reactor wall. Each tube has a supporting case on the inside of the wall opened to the hole and welded to the tube. The weld may crack and leak. Then an inner sealing tube made of soft metallic material whose outer surface is conical is drawn on to the tube over which an outer sealing tube made of hard metallic material and conical inner surface is placed. On both sides of the crack special adhering planes are formed between the inner sealing tube and the tubes or the supporting case. When the outer sealing tube is pressed over the inner sealing tube, the conical surfaces tighten it against the tube and the supporting case

  15. Automatic power control for a pressurized water reactor

    International Nuclear Information System (INIS)

    During a normal operation of a pressurized water reactor (PWR), the reactivity is controlled by control rods, boron, and the average temperature of the primary coolant. Especially in load follow operation, the reactivity change is induced by changes in power level and effects of xenon concentration. The control of the core power distribution is concerned, mainly, with the axial power distribution which depends on insertion and withdrawal of the control rods resulting in additional reactivity compensation. The utilization of part strength control element assemblies (PSCEAs) is quite appropriate for a control of the power distribution in the case of Yonggwang Nuclear Unit 3 (YGN Unit 3). However, control of the PSCEAs is not automatic, and changes in the boron concentration by dilution/boration are done manually. Thus, manual control of the PSCEAs and the boron concentration require the operator's experience and knowledge for a successful load follow operation. In this thesis, the new concepts have been proposed to adapt for an automatic power control in a PWR. One of the new concepts is the mode K control, another is a fuzzy power control. The system in mode K control implements a heavy-worth bank dedicated to axial shape control, independent of the existing regulating banks. The heavy bank provides a monotonic relationship between its motion and the axial power shape change, which allows automatic control of the axial power distribution. And the mode K enables precise regulation, by using double closed-loop control of the reactor coolant temperature and the axial power difference. Automatic reactor power control permits the nuclear power plant to accommodate the load follow operations, including frequency control, to respond to the grid requirements. The mode K reactor control concepts were tested using simulation responses of a Korean standardized 1000-MWe PWR which is a reference plant for the YGN Unit 3. The simulation results illustrate that the mode K would be

  16. 多领域功能样机可交换模型规范实现研究%Research on Functional Mock-up Interface for Multi-domain Model Exchange

    Institute of Scientific and Technical Information of China (English)

    吴紫俊; 赵建军

    2012-01-01

    针对不同领域仿真工具模型的重用互换需求,欧洲仿真界提出了功能样机可交换接口规范Functional Mock-up Interfacefor Model Exchange(FMI)。基于FMI接口规范,详细分析了功能样机可交换模型的结构与功能,研究了规范对仿真模型变量、方程和仿真算法的描述,并在多领域物理系统建模仿真平台MWorks中设计7FMl接口,实现7MWorks模型的重用,扩展7MWorks模型的使用范围。目前,MWorks是国内唯一支持该规范的建模仿真工具。%According to the needs of model reuse and exchange between different modeling tools, the standard of Functional Mock-up Interface for model exchange was proposed. Based on the FMI standard, the structure and the function of Functional Mock-up Unit were studied, and the description of variables, equations and algorithms of model were investigated. The FMI interface was designed for the multi-domain modeling and simulation platform MWorks. The reuse of the model which was built in MWorks was achieved. The application of MWorks models was expanded. Recently, MWorks is the only simulation tool which supports the FMI standard.

  17. Laser fusion power reactor system (LFPRS)

    International Nuclear Information System (INIS)

    This report gives detailed information for each of the following areas: (1) reference concept description, (2) nuclear design, (3) structural design, (4) thermal and fluid systems design, (5) materials design and analysis, (6) reactor support systems and balance of plant, (7) instrumentation and control, (8) environment and safety, (9) economics assessment, and (10) development requirements

  18. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  19. Laser fusion power reactor system (LFPRS)

    Energy Technology Data Exchange (ETDEWEB)

    Kovacik, W. P.

    1977-12-19

    This report gives detailed information for each of the following areas: (1) reference concept description, (2) nuclear design, (3) structural design, (4) thermal and fluid systems design, (5) materials design and analysis, (6) reactor support systems and balance of plant, (7) instrumentation and control, (8) environment and safety, (9) economics assessment, and (10) development requirements. (MOW)

  20. Special Nuclear Material Control by the Power Reactor Operator

    International Nuclear Information System (INIS)

    A relatively new and extremely valuable fuel for electric power production, uranium, requires very careful inventory control from the time the reactor operator assumes financial responsibility for this material until, as partially expended fuel, it is transferred to another facility and the remaining part of its initial value is recovered. Most power reactor operators were operating fossil-fuelled power plants before the advent of nuclear power and have long since established rather complete and adequate controls for these fossil fuels. The reactor operator must have no less adequate controls for the special nuclear material used in his nuclear plant. Power reactor, operation is not an ancient science and during its relatively short history our engineers and scientists have been constantly improving plant designs and methods of operation to reduce costs and make our nuclear plants competitive with fossil-fuelled conventional plants. Nuclear material management must be as modern and efficient as is humanly possible to ensure that technological advances leading to reduced costs are not lost by poor handling of nuclear fuel and the records pertaining to fuel inventory. Nuclear material management requires the maintaining of complete and informative records by the power reactor operator. These records need not be complex to satisfy the criteria of completeness and adequacy. In fact, simplicity is extremely desirable. Despite the fact that nuclear fuel is new and completely different to our conventional fuels no mystery should be attached thereto. Nuclear material control as part of nuclear material management is not limited to simple inventory work but it is the basis for a great deal of other activity that is an inherent part of any power reactor operations such as irradiated fuel shipments, reprocessing of spent fuel, with its associated accounting for reclaimed fuel and material produced during reactor operation, and the establishing and maintaining of an adequate

  1. Refurbishment of BR2 (Phase 4 and 5)[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P.; Dekeyser, J.; Van der Auwera, J.

    1998-07-01

    The extensive refurbishment of the BR-2 materials testing reactor should allow another 10 to 15years of continued operation. The refurbishment programme is required in order to comply with modern safety standards, to enhance the reliability of operation, and to compensate for the ageing of the installations of a facility that has reached about 35 years of intensive service. The main objectives and achievements of phase 4 and 5 are described.

  2. Power Reactor Fuel Reprocessing: Mechanical Phase

    Energy Technology Data Exchange (ETDEWEB)

    Klima, B. B.

    1959-07-01

    The major events in the mechanical phase of the Power Reactor fuels reprocessing program during June were: 1. Feasibility of shearing of fuel elements without disassembly has been demonstrated in tests using porcelain-loaded prototype fuel elements. 2. Further work with the Manco shear was not deemed tb be advisable since permission has been granted to use another shear for cutting UO{sub 2}-loaded fuel elements. 3. Necessity to strip the windows in Building 3048, to sandblast, and repaint them has seriously disrupted occupancy of the cell by July 1. Start of installation probably will not be before August 1. 4. A cold SRE element should be received during July which will permit a direct look a t the problems associated with processing of these irradiated fuel elements. 5. Concurrence with AEC, Atomics International, and ORNL people on the fabrication of a poisoned carrier was obtained and all criteria for the carrier were released and the design was completed. 6. A decision was made to install and use a 24-inch Ty-Sa-Man saw which is on hand and was originally purchased for use in the Segmenting Facility for the SRE reprocessing. This will be used instead of the multipurpose saw to allow more time to refine the design of that saw. The multipurpose saw will be installed for use in subsequent reprocessing programs. This report will chronicle the changes in status which occurred during the calendar month of June. A complete description of each item is not included and may be found in the parent report. The dates indicated on the schedule have slipped since the last report primarily due to increase in scope of the work and postponement on all phases of the work except for the SRE preparations. Twenty-four new items have been added to the schedule. The status of procurement is shown. A total of 93 purchase requests have been turned in to t% Purchasing Department. A total of $199,261.83 has been committed by purchase orders, and a total of 56 purchase orders have been

  3. Research Reactor Power Control System Design by MATLAB/SIMULINK

    Energy Technology Data Exchange (ETDEWEB)

    Baang, Dane; Suh, Yong Suk; Kim, Young Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Im, Ki Hong [Samsung Electronics, Suwon (Korea, Republic of)

    2013-07-01

    In this study it is presented that MATLAB/SIMULINK can be efficiently used for modeling and power control system design for research reactors. The presented power control system deals with various functions including reactivity control, signals processing, reactivity calculation, alarm request generation, etc., thus it is required to test all the software logic using proper model for reactor, control rods, and field instruments. In MATLAB/SIMULINK tool, point kinetics, thermal model, control absorber rod model, and other instrument models were developed based on reactor parameters and known properties of each component or system. The software for power control system was invented and linked to the model to test each function. From the simulation result it is shown that the power control performance and other functions of the system can be easily tested and analyzed in the proposed simulation structure.

  4. Research Reactor Power Control System Design by MATLAB/SIMULINK

    International Nuclear Information System (INIS)

    In this study it is presented that MATLAB/SIMULINK can be efficiently used for modeling and power control system design for research reactors. The presented power control system deals with various functions including reactivity control, signals processing, reactivity calculation, alarm request generation, etc., thus it is required to test all the software logic using proper model for reactor, control rods, and field instruments. In MATLAB/SIMULINK tool, point kinetics, thermal model, control absorber rod model, and other instrument models were developed based on reactor parameters and known properties of each component or system. The software for power control system was invented and linked to the model to test each function. From the simulation result it is shown that the power control performance and other functions of the system can be easily tested and analyzed in the proposed simulation structure

  5. Total loss of AC power analysis for EPR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Darnowski, Piotr, E-mail: piotr.darnowski@itc.pw.edu.pl [Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw (Poland); Skrzypek, Eleonora, E-mail: eleonora.skrzypek@ncbj.gov.pl [Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw (Poland); National Centre for Nuclear Research (NCBJ), A. Sołtana 7, 05-400 Otwock-Świerk (Poland); Mazgaj, Piotr, E-mail: piotr.mazgaj@itc.pw.edu.pl [Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw (Poland); Świrski, Konrad [Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw (Poland); Gandrille, Pascal [AREVA NP SAS, Tour AREVA, 1 place Jean Millier, 92084 Paris La Défense (France)

    2015-08-15

    Highlights: • Total loss of AC power (Station Blackout) was simulated for the EPR reactor model. • In-vessel phase of the accident is under consideration. • Comparison of MELCOR and MAAP results is presented. • MELCOR and MAAP results are comparable. - Abstract: In this paper the results of severe accident simulations for the EPR reactor in the case of loss of offsite power combined with total failure of all diesel generators (total loss of AC power) are presented. Calculations were performed with MELCOR 2.1 computer code for in-vessel phase of the accident. In this scenario, the unavailability of all offsite and onsite power sources and the lack of cooling leads directly to core degradation, material relocation to the lower plenum and rupture of the reactor pressure vessel. MELCOR results were compared qualitatively and quantitatively with MAAP4 code results and show a good agreement.

  6. Influence of radiation on maintenance in a nuclear power station

    International Nuclear Information System (INIS)

    Maintenance in nuclear power plant differs from that in fossil fuel power plant in many aspects because the maintenance in the former has to be carried out in radiation area. These aspects are : (1) manpower planning to minimise time of repair in order to reduce the radiation dose received by the maintenance crew, (2) difficulties in isolating components to be repaired from reactor which is normally filled with water, (3) shielding and decontamination to reduce radiation fields around equipment and (4) need to write the detailed procedures and use special tools, brief and train personnel before-hand on similar equipment or mock-ups. These aspects are discussed. Two of the major repair jobs carried out at the Tarapur Atomic Power Station are described in brief. The jobs were : (1) tube plugging of secondary steam generators and (2) repair to the guide brackets of dryer -separator assembly in the reactor vessel. (M.G.B.)

  7. Protective actions as a factor in power reactor siting

    Energy Technology Data Exchange (ETDEWEB)

    Gant, K.S.; Schweitzer, M.

    1984-06-01

    This report examines the relationship between a power reactor site and the ease of implementing protective actions (emergency measures a serious accident). Limiting populating density around a reactor lowers the number of people at risk but cannot assure that all protective actions are possible for those who reside near the reactor. While some protective measures can always be taken (i.e., expedient respiratory protection, sheltering) the ability to evacuate the area or find adequate shelter may depend on the characteristics of the area near the reactor site. Generic siting restrictions designed to identify and eliminate these site-specific constraints would be difficult to formulate. The authors suggest identifying possible impediments to protective actions at a proposed reactor site and addressing these problems in the emergency plans. 66 references, 6 figures, 8 tables.

  8. Protective actions as a factor in power reactor siting

    International Nuclear Information System (INIS)

    This report examines the relationship between a power reactor site and the ease of implementing protective actions (emergency measures a serious accident). Limiting populating density around a reactor lowers the number of people at risk but cannot assure that all protective actions are possible for those who reside near the reactor. While some protective measures can always be taken (i.e., expedient respiratory protection, sheltering) the ability to evacuate the area or find adequate shelter may depend on the characteristics of the area near the reactor site. Generic siting restrictions designed to identify and eliminate these site-specific constraints would be difficult to formulate. The authors suggest identifying possible impediments to protective actions at a proposed reactor site and addressing these problems in the emergency plans. 66 references, 6 figures, 8 tables

  9. Nuclear safety. Concerns about the nuclear power reactors in Cuba

    International Nuclear Information System (INIS)

    In 1976, the Soviet Union and Cuba concluded an agreement to construct two 440-megawatt nuclear power reactors near Cienfuegos on the south central coast of Cuba, about 180 miles south of Key West, Florida. The construction of these reactors, which began around 1983, was a high priority for Cuba because of its heavy dependence on imported oil. Cuba is estimated to need an electrical generation capacity of 3,000 megawatts by the end of the decade. When completed, the first reactor unit would provide a significant percentage (estimated at over 15 percent) of Cuba's need for electricity. It is uncertain when Cuba's nuclear power reactors will become operational. On September 5, 1992, Fidel Castro announced the suspension of construction at both of Cuba's reactors because Cuba could not meet the financial terms set by the Russian government to complete the reactors. Cuban officials had initially planned to start up the first of the two nuclear reactors by the end of 1993. However, before the September 5 announcement, it was estimated that this reactor would not be operational until late 1995 or early 1996. The civil construction (such as floors and walls) of the first reactor is currently estimated to be about 90 percent to 97 percent complete, but only about 37 percent of the reactor equipment (such as pipes, pumps, and motors) has been installed. The civil construction of the second reactor is about 20 percent to 30 percent complete. No information was available about the status of equipment for the second reactor. According to former Cuban nuclear power and electrical engineers and a technician, all of whom worked at the reactor site and have recently emigrated from Cuba, Cuba's nuclear power program suffers from poor construction practices and inadequate training for future reactor operators. One former official has alleged, for example, that the first reactor containment structure, which is designed to prevent the accidental release of radioactive material into

  10. Fast-power-reactor optimization by the game theory

    International Nuclear Information System (INIS)

    In the first stage of the use of fast breeder reactor - because fissile-material amounts are small - we are interested in fast breeder reactors which achieve minimum fissile-material mass, with maximum power. This problem shows a two-matrix-game structure. First, we determine a competive-game solution and second, a cooperative-game solution, obtaining in this way the optimum distribution of the fissile and fertile materials in the multizone fast reactors. Another optimization problem which is solved in this paper is finding the reactor structure for which the power non-uniformity factor and the flux non-uniformity factor are minimum. This is, also, a mathematical two-matrix game and it is solved as above. The two optimization problems have different solutions. (author)

  11. The optimum shielding for a power reactor using local components

    International Nuclear Information System (INIS)

    Some local concrete mixtures have been picked out (selected) to be studied as shielding concrete for prospective nuclear power reactor in Syria. This research has interested in the attenuation of gamma radiation and neutron fluxes by these local concretes in the ordinary conditions. In addition to the heat effect on the shielding and physical properties of local concrete. Furthermore the neutron activation of the elements of the local concrete mixtures have been studied that for selection the low-activation materials (low dose rate and short half life radioisotopes). In this way biological shielding for nuclear reactor can be safe during operation of nuclear power reactor, in addition to be low radioactive waste after decommissioning the reactor. (author)

  12. BN-800 reactor is a new stage in transition to innovative nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Poplavsky, V.M.; Chebeskov, A.N.; Matveev, V.I. [State Scientific Center of the Russian Federation, Institute for Physics and Power Engineering named after A.I. Leypunsky, Obninsk Kaluga region (Russian Federation)

    2007-07-01

    This paper presents the perspectives of nuclear power development in Russia and the reasons why it is necessary to use for that fast reactor technology. Some features of fast reactor technology and main ideas and technical approaches that have been used in the design of the BN-800 sodium cooled fast reactor are given as well. The BN-800 design is based on the BN-600 design with a series of innovative modifications: -) changing the size and structure of the upper axial blanket in order to get a zero or negative sodium void reactivity effect, -) the addition of scram rods based on passive activation, -) the addition of passive system of emergency cooling with sodium-air heat exchangers, -) a special in-vessel catcher envisaged under the core to catch and retain fragments of the core in case of core disruptive accident, and -) an improved earthquake resistance of all the structures. Such issues as possible options of fuel cycle, closing fuel cycle, transuranium element burning, disposal of plutonium being withdrawn from military programs, etc. are discussed as applied to the BN-800 reactor. Some economic considerations in general outline of the BN-800 unit are presented in the paper. It is important to note that the commissioning of the BN-800 reactor was included into the Federal Goal-Oriented Program - Development of nuclear energy-industrial complex of Russia for 2007-2010 and for perspective up to 2015 -, which was approved by the Russian Government in October 2006.

  13. A Discharge-Excited SrBr2 Vapour Laser

    Institute of Scientific and Technical Information of China (English)

    潘佰良; 姚志欣; 陈钢

    2002-01-01

    A new-style discharge tube for a metal vapour laser has been designed and built. SrBr2 was successfullyused to replace the metal strontium as a working medium. Multi-line laser oscillations from resonance tometastable transition of strontium atoms (6.45um), ions (1.03um/1.O9um) and from strontium ion recombi-nation (416.2nm/430.5nm) have been obtained through longitudinal pulsed discharge. The problem of an in-compatibility reaction between metallic strontium and the discharge tube in the strontium vapour laser has beensolved. Some proposals are presented for further developments of strontium halide lasers.

  14. Inhibition of hydrogen oxidation by HBr and Br2

    DEFF Research Database (Denmark)

    Dixon-Lewis, Graham; Marshall, Paul; Ruscic, Branko;

    2012-01-01

    on laminar, premixed hydrogen flames. Our work shows that hydrogen bromide and molecular bromine act differently as inhibitors in flames. For HBr, the reaction HBr+H⇌H2+Br (R2) is rapidly equilibrated, depleting HBr in favor of atomic Br, which is the major bromine species throughout the reaction zone......O. Ab initio calculations were used to obtain rate coefficients for selected reactions of HBr and HOBr, and the hydrogen/bromine/oxygen reaction mechanism was updated. The resulting model was validated against selected experimental data from the literature and used to analyze the effect of HBr and Br2...

  15. Heavy-Water Power Reactors. Proceedings Of A Symposium

    International Nuclear Information System (INIS)

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 11-15 September 1967. The timeliness of the meeting was underlined by the large gathering of over 225 participants from 28 countries and three international organizations. Contents: Experience with heavy-water power and experimental reactors and projects (14 papers); New and advanced power reactor designs and concepts (8 papers); Development programmes and thorium cycle (9 papers); Economics and prospects of heavy-water power reactors (7 papers); Physics and fuel management (8 papers); Fuels (5 papers); Safety, control and engineering (6 papers); Panel discussion. Except for one Russian paper, which is published in English, each paper is in its original language (49 English and 8 French) and is preceded by an abstract in English with a second one in the original language if this is not English. Discussions are in English. (author)

  16. New reactor technology: safety improvements in nuclear power systems.

    Science.gov (United States)

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  17. New reactor technology: safety improvements in nuclear power systems.

    Science.gov (United States)

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems. PMID:18049233

  18. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    Science.gov (United States)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-01

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors. Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat. The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  19. Transportation and storage of foreign spent power reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-30

    This report describes the generic actions to be taken by the Department of Energy, in cooperation with other US government agencies, foreign governments, and international organizations, in support of the implementation of Administration policies with respect to the following international spent fuel management activities: bilateral cooperation related to expansion of foreign national storage capacities; multilateral and international cooperation related to development of multinational and international spent fuel storage regimes; fee-based transfer of foreign spent power reactor fuel to the US for storage; and emergency transfer of foreign spent power reactor fuel to the US for storage.

  20. Transportation and storage of foreign spent power reactor fuel

    International Nuclear Information System (INIS)

    This report describes the generic actions to be taken by the Department of Energy, in cooperation with other US government agencies, foreign governments, and international organizations, in support of the implementation of Administration policies with respect to the following international spent fuel management activities: bilateral cooperation related to expansion of foreign national storage capacities; multilateral and international cooperation related to development of multinational and international spent fuel storage regimes; fee-based transfer of foreign spent power reactor fuel to the US for storage; and emergency transfer of foreign spent power reactor fuel to the US for storage

  1. Multivariable robust control of an integrated nuclear power reactor

    OpenAIRE

    Etchepareborda A.; Flury C.A.

    2002-01-01

    The design of the main control system of the CAREM nuclear power plant is presented. This plant is an inherently safe low-power nuclear reactor with natural convection on the primary coolant circuit and is self-pressurized with a steam dome on the top of the pressure vessel (PV). It is an integrated reactor as the whole primary coolant circuit is within the PV. The primary circuit transports the heat to the secondary circuit through once-through steam generators (SG). There is a feedwater val...

  2. Detecting, locating and identifying failed fuel in Canadian power reactors

    International Nuclear Information System (INIS)

    This document summarizes how defected fuel elements are detected, located and identified in Canadian CANDU power reactors. Fuel defects are detected by monitoring the primary coolant for gaseous fission products and radioiodines, while location in core is usually performed on-power by delayed neutron monitoring of coolant samples from individual fuel channels or off-power by gamma-ray monitoring of the channel feeder pipes. The systems and techniques used to detect and locate defected fuel in both Ontario Hydro and CANDU 6 power stations are described, along with examples provided by station experience. The ability to detect and locate defected fuel in power stations was greatly enhanced by a fundamental R and D program, which provided an understanding and models of fission-product release and transport, and the post-defect deterioration of failed fuel. Techniques and equipment used to identify and store defected fuel after it has been discharged from the reactor are briefly reviewed

  3. Measurements of reaction rate ratios as indexes of breeding performance in mock-up cores of FCA simulating metallic-fueled LMFBR and MOX-fueled LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Takeshi; Nemoto, Tatsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kobayashi, Keiji; Unesaki, Hironobu

    1999-08-01

    Measurements and analysis for reaction rate ratio of {sup 238}U capture to {sup 239}Pu fission (C8/F9) and that of {sup 238}U capture to {sup 235}U fission (C8/F5), which are important as indexes of breeding behavior of a fast breeder reactor, were made at Fast Critical Assembly (FCA) of Japan Atomic Energy Research Institute. The measurements were made by a foil activation technique at two assemblies simulating metallic-fueled liquid metal fast breeder reactor and an assembly simulating a MOX-fueled one. The analysis was made based on JENDL3.2 nuclear data file. Calculation to experiment ratios of C8/F9 and C8/F5 were 0.99-1.02 and 1.0-1.03 respectively. Furthermore, the {sup 238}U capture rate and the {sup 235}U fission rate were measured in a thermal neutron standard field in Heavy Water Facility of Kyoto University Research Reactor to verify accuracy of the present foil activation technique itself and to confirm these C/E values. (author)

  4. Future zero-carbon energy systems in Japan with different nuclear power development scenarios

    International Nuclear Information System (INIS)

    An integrated scenario analysis has been conducted toward zero-carbon energy system from 2010 to 2100 in Japan, wherein the effect of Fukushima nuclear accident happened in March, 2011 is more or less taken into account. In the study, various service demands are firstly estimated based on social-economic data and then best technology and energy mixes are obtained using the optimization model to meet the service demand. On the conductance of integrated scenario analysis towards the year 2100 when zero-carbon energy system will be attained, three different scenarios of nuclear power development are taken, i.e., (1) no further introduction of nuclear, (2) fixed portion and (3) no limit of nuclear. The results show that, in the end user side, zero-carbon energy scenario can be attained at 2100 with electricity supplies 75% of total energy utilization. And for the electricity supply, three different power generation scenarios are proposed: (Scenario 1) 30% renewable and 70% gas-CCS (Carbon Capture and Storage), (Scenario 2) every one third by nuclear, by renewable and by gas-CCS, and (Scenario 3) 60% nuclear power, 20% renewable and 10% gas-CCS. Lastly by the inter-comparison of the three scenarios from the four aspects of cost, CO2 emission, risk and diversity, Scenario 2 is rated as the most balanced scenario among the three by putting emphasis on the availability of diversified electric source of nuclear, renewable and gas-CCS. (author)

  5. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    Directory of Open Access Journals (Sweden)

    Vladimir Petrochenko

    2012-09-01

    Full Text Available On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing mode. The reactor is distinct in that it has a high level of self-protection and passive safety, it is factory manufactured and the assembled reactor can be transported by railway. Multipurpose application of the reactor is presumed, primarily, it can be used for regional power to produce electricity, heat and for water desalination. The Project is being realized within the framework of state-private partnership with joint venture OJSC “AKME-Engineering” established on a parity basis by the State Atomic Energy Corporation “Rosatom” and the Limited Liability Company “EuroSibEnergo”.

  6. Preapplication safety evaluation report for the Power Reactor Innovative Small Module (PRISM) liquid-metal reactor

    International Nuclear Information System (INIS)

    This preapplication safety evaluation report (PSER) presents the results of the preapplication desip review for die Power Reactor Innovative Small Module (PRISM) liquid-mew (sodium)-cooled reactor, Nuclear Regulatory Commission (NRC) Project No. 674. The PRISM conceptual desip was submitted by the US Department of Energy in accordance with the NRC's ''Statement of Policy for the Regulation of Advanced Nuclear Power Plants'' (51 Federal Register 24643). This policy provides for the early Commission review and interaction with designers and licensees. The PRISM reactor desip is a small, modular, pool-type, liquid-mew (sodium)-cooled reactor. The standard plant design consists of dim identical power blocks with a total electrical output rating of 1395 MWe- Each power block comprises three reactor modules, each with a thermal rating of 471 MWt. Each module is located in its own below-grade silo and is co to its own intermediate heat transport system and steam generator system. The reactors utilize a metallic-type fuel, a ternary alloy of U-Pu-Zr. The design includes passive reactor shutdown and passive decay heat removal features. The PSER is the NRC's preliminary evaluation of the safety features in the PRISM design, including the projected research and development programs required to support the design and the proposed testing needs. Because the NRC review was based on a conceptual design, the PSER did not result in an approval of the design. Instead it identified certain key safety issues, provided some guidance on applicable licensing criteria, assessed the adequacy of the preapplicant's research and development programs, and concluded that no obvious impediments to licensing the PRISM design had been identified

  7. Evaluation of plate type fuel options for small power reactors

    International Nuclear Information System (INIS)

    Plate type fuels are generally used in research reactor. The utilization of this kind of configuration improves significantly the overall performance fuel. The conception of new fuels for small power reactors based in plate-type configuration needs a complete review of the safety criteria originally used to conduce power and research reactor projects. In this work, a group of safety criteria is established for the utilization of plate-type fuels in small power reactors taking into consideration the characteristics of power and research reactors. The performance characteristics of fuel elements are strongly supported by its materials properties and the adopted configuration for its fissile particles. The present work makes an orientated bibliographic investigation searching the best material properties (structural materials and fuel compounds) related to the performance fuel. Looking for good parafermionic characteristics and manufacturing exequibility associated to existing facilities in national research centres, this work proposes several alternatives of plate type fuels, considering its utilization in small power reactors: dispersions of UO2 in stainless steel, of UO2 in zircaloy, and of U-Mo alloy in zircaloy, and monolithic plates of U-Mo cladded with zircaloy. Given the strong dependency of radiation damage with temperature increase, the safety criteria related to heat transfer were verified for all the alternatives, namely the DNBR; coolant temperature lower than saturation temperature; peak meat temperature to avoid swelling; peak fuel temperature to avoid meat-matrix reaction. It was found that all alternatives meet the safety criteria including the 0.5 mm monolithic U-Mo plate cladded with zircaloy. (author)

  8. Background Radiation Measurements at High Power Research Reactors

    CERN Document Server

    Ashenfelter, J; Baldenegro, C X; Band, H R; Barclay, G; Bass, C D; Berish, D; Bowden, N S; Bryan, C D; Cherwinka, J J; Chu, R; Classen, T; Davee, D; Dean, D; Deichert, G; Dolinski, M J; Dolph, J; Dwyer, D A; Fan, S; Gaison, J K; Galindo-Uribarri, A; Gilje, K; Glenn, A; Green, M; Han, K; Hans, S; Heeger, K M; Heffron, B; Jaffe, D E; Kettell, S; Langford, T J; Littlejohn, B R; Martinez, D; McKeown, R D; Morrell, S; Mueller, P E; Mumm, H P; Napolitano, J; Norcini, D; Pushin, D; Romero, E; Rosero, R; Saldana, L; Seilhan, B S; Sharma, R; Stemen, N T; Surukuchi, P T; Thompson, S J; Varner, R L; Wang, W; Watson, S M; White, B; White, C; Wilhelmi, J; Williams, C; Wise, T; Yao, H; Yeh, M; Yen, Y -R; Zhang, C; Zhang, X

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including $\\gamma$-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  9. Power flow control using distributed saturable reactors

    Science.gov (United States)

    Dimitrovski, Aleksandar D.

    2016-02-13

    A magnetic amplifier includes a saturable core having a plurality of legs. Control windings wound around separate legs are spaced apart from each other and connected in series in an anti-symmetric relation. The control windings are configured in such a way that a biasing magnetic flux arising from a control current flowing through one of the plurality of control windings is substantially equal to the biasing magnetic flux flowing into a second of the plurality of control windings. The flow of the control current through each of the plurality of control windings changes the reactance of the saturable core reactor by driving those portions of the saturable core that convey the biasing magnetic flux in the saturable core into saturation. The phasing of the control winding limits a voltage induced in the plurality of control windings caused by a magnetic flux passing around a portion of the saturable core.

  10. MEASUREMENT ERROR EFFECT ON THE POWER OF CONTROL CHART FOR ZERO-TRUNCATED POISSON DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Ashit Chakraborty

    2013-09-01

    Full Text Available Measurement error is the difference between the true value and the measured value of a quantity that exists in practice and may considerably affect the performance of control charts in some cases. Measurement error variability has uncertainty which can be from several sources. In this paper, we have studied the effect of these sources of variability on the power characteristics of control chart and obtained the values of average run length (ARL for zero-truncated Poisson distribution (ZTPD. Expression of the power of control chart for variable sample size under standardized normal variate for ZTPD is also derived.

  11. Process Modelling of Chemical Reactors: Zero- versus Multi-dimensional Models

    Directory of Open Access Journals (Sweden)

    Bjørn H. Hjertager

    1997-01-01

    Full Text Available Trends in modelling of flow processes in the chemical reactors are presented. Particular emphasis is given to models that use the multi-dimensional multi-fluid techniques. Examples are given for both gas/liquid as well as gas/particle reators.

  12. Electric power from near-term fusion reactors

    International Nuclear Information System (INIS)

    Near-term fusion reactors such as FED or INTOR will probably have primary cooling systems which operate at temperatures lower than is optimal for power production using a conventional steam cycle. This limitation may be imposed by uncertainties in materials behavior or structural limitations. There are economic motivations to demonstrate electric power production from fusion at the earliest possible date. A greater motivation is the elicitation of public interest in and support of fusion as a viable power source. This paper examines requirements and possibilities of electric power production on near-term fusion reactors using low temperature cycle technology similar to that used in some geothermal power systems. Requirements include the need for a working fluid with suitable thermodynamic properties and which is free of oxygen and hydrogen to facilitate tritium management. Thermal storage will also be required due to the short system thermal time constants on near-term reactors. It is possible to use the FED shield in a binary power cycle, and results are presented of thermodynamic analyses of this system. Thermal storage is accomplished by using the latent heat of fusion of a PbBi eutectic. The secondary loop can use R-11, R-113, or hexafluorobenzene as a working fluid. Such a system would cost about $50 million and would generate about 10 MW of electric power

  13. Design considerations for an inertial confinement fusion reactor power plant

    International Nuclear Information System (INIS)

    To further define the engineering and economic concerns for inertial confinement fusion reactors (ICR's), a conceptual design study was performed by Bechtel Group Incorporated under the direction of Lawrence Livermore National Laboratory (LLNL). The study examined alternatives to the LLNL HYLIFE concept and expanded the previous balance of plant design to incorporate information from recent liquid metal cooled fast breeder reactor (LMFBR) power plant studies. The majority of the effort was to incorporate present laser and target physics models into a reactor design with a low coolant flowrate and a high driver repetition rate. An example of such a design is the LLNL JADE concept. In addition to producing a power plant design for LLNL using the JADE example, Bechtel has also examined the applicability of the EAGLE (Energy Absorbing Gas Lithium Ejector) concept

  14. Sodium fast reactor power monitoring using gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.; Normand, S.; Barbot, L.; Domenech, T.; Kondrasovs, V.; Corre, G.; Frelin, A.M. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, CEA - Saclay DRT/LIST/DETECS/SSTM, Batiment 516 - P.C. no 72, Gif sur Yvette, F-91191 (France); Montagu, T.; Dautremer, T.; Barat, E. [CEA, LIST, Laboratoire Processus Stochastiques et Spectres (France); Ban, G. [ENSICAEN (France)

    2009-06-15

    This work deals with the use of high flux gamma spectrometry to monitor the fourth generation of sodium fast reactor (SFR) power. The simulation study part of this work has shown that power monitoring in a short time response and with a good accuracy is possible. An experimental test is under preparation at the French SFR Phenix experimental reactor to validate simulation studies. First, physical calculations have been done to correlate gamma activity to the released thermal power. Gamma emitter production rate in the reactor core was calculated with technical and nuclear data as the sodium velocity, the atomic densities, Phenix neutron spectrum and incident neutron cross-sections of reactions producing gamma emitters. A thermal hydraulic transfer function was used for modeling primary sodium flow in our calculations. For the power monitoring problematic, use of a short decay period gamma emitter will allow to have a very fast response system without cumulative effect. We have determined that the best tagging agent is 20F which emits 1634 keV energy photons with a decay period of 11 s. The gamma spectrum was determined by flux point and a pulse high tally MCNP5.1.40 simulation and shown the possibility to measure the signal of this radionuclide. The experiment will be set during the reactor 'end life testing'. The Delayed Neutron Detection (DND) room has been chosen as the best available location on Phenix reactor to measure this kind of radionuclide due to a short transit time from reactor core to measurement sample. This location is optimum for global power measurement because homogenized sampling in the reactor hot pool. The main spectrometer is composed of a coaxial high purity germanium diode (HPGe) coupled with a transistor reset preamplifier. The HPGe diode signal will be processed by the Adonis digital signal processing due to high flux and fast activity measurement. Post-processing softwares will be used to limit statistical problems of the

  15. Integral physics data for fast-reactor design

    International Nuclear Information System (INIS)

    Integral physics data for fast-reactor design. The recent compilation of the section on fast-reactor physics for the forthcoming second edition of 'Reactor Physics Constants' has necessitated a survey of the available experimental integral data. The choice of fast-reactor-physics integral data to be included in the compilation was based upon two criteria besides availability: (a) the data arise from relatively simple systems which lend themselves to simple theoretical analyses; and (b) complicated systems representing prototypes or mock-ups having general interest in terms of fast-power reactors. The first criterion was decided upon so as to list integral data for those systems of most general utility for the verification of cross-section parameters and calculational procedures. The second criterion is based upon presentation of current data on actual fast power breeder reactor systems. These are too complicated for simple theoretical analysis. They demonstrate the complexity of the actual reactor versus the more idealized and easily analysed critical experiment. Integral physics data for reactor design refer to measurements on reactor systems, critical or otherwise, of the various reactor physics quantities of practical and/or theoretical importance. These characterize and lead to an understanding of the system. The measurements are represented by critical mass, core shape factor, detector ratios, neutron spectra, material replacement experiments, reflector savings, neutron lifetime, Rossi-α, and similar quantities. These data are reviewed and the range of applicability is described. Limitations of experimental and analytical results are shown to exist in certain spectral and criticality analyses. Experimental and analytical investigations are suggested for future work. These will tend to narrow the gap between theory and experiment on 'known' systems. They also include investigations to 'firm up' the physics of large conceptual, fast power-breeder reactor

  16. Power stabilization in CREN-K TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    In order to eliminate power oscillations in the TRIGA MARK II reactor at the 'Centre Regional d'Etudes Nucleaires de Kinshasa' (CREN-K), Zaire, specially made adapters were put around the control rods in the top grid plate. The paper briefly describes how investigations were made to find out the basic reason of the power oscillations and the way these adapters were conceived and installed. (author)

  17. Fast neutron reactor fuel elements and power grid duty cycling

    International Nuclear Information System (INIS)

    The PHENIX power grid cycling operation in 1982-1983 will allow verification of the models and criteria developed in the interim. It will provide indispensible statistical data and will open the way to power grid duty for Super PHENIX beginning in 1986. Although at the present time it is impossible to resolve the question of weekly or daily load variations, it is felt that fast neutron reactor fuel subassemblies should provide satisfactory performance for primary and secondary frequency adjustments

  18. Enhanced treatment of wastewater from the vitamin C biosynthesis industry using a UASB reactor supplemented with zero-valent iron.

    Science.gov (United States)

    Shi, Rongjiu; Xu, Hui; Zhang, Ying

    2011-12-01

    The effects of zero-valent iron (Fe0) on the performance of a mesophilic upflow anaerobic sludge blanket (UASB) reactor treating high-strength wastewater from the vitamin C biosynthesis industry (VCW) was investigated during a 200-day period. The results showed that the chemical oxygen demand (COD) removal efficiency, CH4 content in biogas, specific methanogenic activity of sludge, and phosphate removal efficiency were significantly improved up to 81.8-96.1%, 76.5-79.6%, 1.71-2.87 g CH4-COD g(-1) VSS d(-1) and 68.5-85.2%, respectively, at elevated organic loading rates (OLRs) in the Fe0-amended reactor (RFe). In contrast, the corresponding values of 65.3-83.4%, 69.1-70.8%, 1.12-1.95 g CH4-COD g(-1) VSS d(-1) and 1.4-1.6%, respectively, were recorded in the control (R0). Elevated ferrous concentration of nearly 400 mg L(-1) in sludge was detected in RFe, whereas in the effluent of both reactors it was low (< 1.0 mg L(-1)). Batch tests further showed that Fe0 significantly enhanced the biodegradability of the VCW as shown by an increase in BOD/COD ratio from 0.41 to 0.65, and could serve as the electron donor for methanogenesis by anaerobic sludge, which were responsible for the differences between RFe and R0. The results suggest this integrated Fe0-microbial system is promising in facilitating the anaerobic digestion of VCW in UASB reactors. PMID:22439574

  19. Improvement of maintenance at French power reactors

    International Nuclear Information System (INIS)

    By the end of 1984 an availability of 83.2% had been achieved with the thirty-one 900 MW reactors operated by the Electricite de France (EDF) since the beginning of commercial operation. Outages occurred for the following reasons: shutdowns for refuelling and other planned shutdowns, repairs following incidents, and trips. Improvements in maintenance have an impact mainly on the first two causes mentioned above, and their principal objectives are to reduce plant outages, to cut down the overall dosimetry costs involved in interventions, and to improve the quality of the interventions. This is achieved by staff training and feedback from plant outages. Among the resources employed, mention should be made in particular of the methods used for preparing shutdowns and monitoring shutdown plans, which have reached an advanced stage of development. EDF has developed or arranged for the development of much special equipment for routine maintenance, control operations and repairs on PWR plant components; a management catalogue lists 132 operational pieces of equipment and 20 under development. (author)

  20. Study of the power margins of RBMK-1000 reactor when operating at nominal power

    International Nuclear Information System (INIS)

    This work presents a reliability and control study of the RBMK-1000 reactor. This study consists in determining the power margin of this plant when operating at nominal power in comparison with the physical phenomena limiting power extraction by a coolant fluid.49 figs., 8 tabs., 11 refs. (author)

  1. Estimates of power requirements for a manned Mars rover powered by a nuclear reactor

    Science.gov (United States)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are met using an SP-100 type reactor. The primary electric power needs, which include 30-kWe net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine (FPSE) yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle (CBC) using He/Xe as the working fluid. The specific mass of the nuclear reactor power systrem, including a man-rated radiation shield, ranged from 150-kg/kWe to 190-kg/kWe and the total mass of the Rover vehicle varied depend upon the cruising speed.

  2. Operating Experience with Power Reactors. Proceedings of the Conference on Operating Experience with Power Reactors. Vol. II

    International Nuclear Information System (INIS)

    At the beginning of 1963 nuclear power plants produced some 3 500 000 kW of electrical power to different distribution grids around the world. Much significant operating experience has been gained with these power reactors, but this experience is often not collected in such a way as to make it easily available. The International Atomic Energy Agency convened a Conference on Operating Experience with Power Reactors in Vienna from 4 -8 June 1963 which was attended by 240 participants representing 27 of the Agency's Member States and six international organizations. At the Conference, 42 papers giving detailed experience with more than 20 nuclear power stations were discussed. Although similar meetings on a national or regional scale have been held earlier in various countries, this is the first arranged by the Agency on a world-wide basis. Some of the detailed material may have been given earlier but for the most part it represents new and recently acquired experience, and for the first time it has been possible to compile in one place such extensive material on the operating experience with power reactors. The Conference discussed the experience gained both generally in the context of national and international nuclear power development programmes, and more specifically in the detailed operating experience with different power reactor stations. In addition, various plant components, fuel cycles, staffing of nuclear plants and licensing of such staff were treated. It is hoped that these Proceedings will be of interest not only to nuclear , plant designers and operators who daily encounter problems similar to those discussed by the Conference, but also to those guiding the planning and implementation of power development programmes

  3. Operating Experience with Power Reactors. Proceedings of the Conference on Operating Experience with Power Reactors. Vol. I

    International Nuclear Information System (INIS)

    At the beginning of 1963 nuclear power plants produced some 3 500 000kW of electrical power to different distribution grids around the world. Much significant operating experience has been gained with these power reactors, but this experience is often not collected in such a way as to make it easily available. The International Atomic Energy Agency convened a Conference on Operating Experience with Power Reactors in Vienna from 4-8 June 1963 which was attended by 240 participants representing 27 of the Agency's Member States and six international organizations. At the Conference, 42 papers giving detailed experience with more than 20 nuclear power stations were discussed. Although similar meetings on a national or regional scale have been held earlier in various countries, this is the first arranged by the Agency on a world-wide basis. Some of the detailed material may have been given earlier but for the most part it represents new and recently acquired experience, and for the first time it has been possible to compile in one place such extensive material on the operating experience with power reactors. The Conference discussed the experience gained both generally in the context of national and international nuclear power development programmes, and more specifically in the detailed operating experience with different power reactor stations. In addition, various plant components, fuel cycles, staffing of nuclear plants and licensing of such staff were treated. It is hoped that these Proceedings will be of interest not only to nuclear plant designers and operators who daily encounter problems similar to those discussed by the Conference, but also to those guiding the planning and implementation of power development programmes.

  4. Characterization of radioactive waste from nuclear power reactors

    International Nuclear Information System (INIS)

    Different kinds of radioactive waste are generated as result of the operation of nuclear power reactors and in all cases the activity concentration of several radionuclides had to be determined in order to optimize resources, particularly when dealing with final disposal or long-term storage. This paper describes the three basic approaches usually employed for characterizing nuclear power reactor wastes, namely the direct methods, the semi-empirical methods and the analytical methods. For some radionuclides or kind of waste, the more suitable method or combination of methods applicable is indicated, stressing that these methods shall be developed and applied during the waste generation step, i.e. during the operation of the reactor. In addition, after remarking the long time span expected from waste generation to their final disposal, the importance of an appropriate record system is pointed out and some basic requirements that should be fulfilled for such system are presented. It is concluded that the tools for a proper characterization of nuclear reactor radioactive waste are available though such tools should be tailored to each specific reactor and their history. (author)

  5. A gas-cooled reactor surface power system

    Science.gov (United States)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  6. Long operation life reactor for lunar surface power

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed S., E-mail: mgenk@unm.edu [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States); Chemical and Nuclear Engineering Dept., University of New Mexico, Albuquerque, NM (United States); Mechanical Engineering Dept, University of New Mexico, Albuquerque, NM (United States); Schriener, Timothy M. [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States); Chemical and Nuclear Engineering Dept., University of New Mexico, Albuquerque, NM (United States)

    2011-06-15

    Highlights: > We developed a nuclear reactor with >66 year operation life for surface power. > The reactor, placed below grade and surrounded by regolith, is loaded with fuel pellet on the Moon. > Fuel pellets are launched in separate subcritical canisters. > Examined is the effect of using lunar regolith reflector on the launch mass. - Abstract: The Pellet Bed Reactor (PeBR) with an operational life of 66 full-power years is developed for lunar surface power. It has Inconel X750 structure and vessel and would be launched unfueled then loaded with spherical fuel pellets ({approx}1.0 cm dia.) on the lunar surface after being placed below grade and surrounded with regolith. The pellets, comprised of ZrC-coated UC particles ({approx}850 {mu}m in dia.) dispersed in ZrC matrix, are delivered to the lunar surface in subcritical canisters. The canisters are designed to remain sufficiently subcritical during launch and when submerged in wet sand and flooded with seawater in the unlikely event of a launch abort accident. The PeBR power system nominally generates {approx}100 kW{sub e} at a thermal efficiency of {approx}21% and a reactor exit temperature of 910 K. It employs three separate closed Brayton cycle (CBC) loops each with a turbo-machine unit for energy conversion and two water heat pipes radiator panels for heat rejection. The reactor coolant and CBC working fluid is He-Xe binary gas mixture (40 g/mol). Estimates of the hot-clean excess reactivity and the full-power operation life are obtained using neutronics and fuel depletion analyses. In addition, estimates of the total radioactivity in post-operation PeBR, while being stored below grade on the lunar surface, are determined for up to 1000 years.

  7. Economic risks of nuclear power reactor accidents

    International Nuclear Information System (INIS)

    Models to be used for analyses of economic risks from events which occur during US LWR plant operation are developed in this study. The models include capabilities to estimate both onsite and offsite costs of LWR events ranging from routine plant forced outages to severe core-melt accidents resulting in large releases of radioactive material to the environment. The models have been developed for potential use by both the nuclear power industry and regulatory agencies in cost/benefit analyses for decision-making purposes. The new onsite cost models estimate societal losses from power production cost increases, plant capital losses, plant decontamination costs, and plant repair costs which may be incurred after LWR operational events. Early decommissioning costs, plant worker health impact costs, electric utility business costs, nuclear power industry costs, and litigation costs are also addressed. The newly developed offsite economic consequence models estimate The costs of post-accident population protective measures and public health impacts. The costs of population evacuation and temporary relocation, agricultural product disposal, land and property decontamination, and land interdiction are included in the economic models for population protective measures. Costs of health impacts and medical care costs are also included in the models

  8. High density operation for reactor-relevant power exhaust

    Science.gov (United States)

    Wischmeier, M.

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  9. A novel reactor concept for boron neutron capture therapy: annular low-low power reactor (ALLPR)

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, B.; Levine, S.H. [Department of Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    1998-07-01

    Boron Neutron Capture Therapy (BNC), originally proposed in 50's, has been getting renewed attention over the last {approx}10 years. This is in particular due to its potential for treating deep-seated brain tumors by employing epithermal neutron beams. Large (several MW) research reactors are currently used to obtain epithermal beams for BNCT, but because of cost and licensing issues it is not likely that such high-power reactors can be placed in regular medical centers. This paper describes a novel reactor concept for BNCT devised to overcome this obstacle. The design objective was to produce a beam of epithermal neutrons of sufficient intensity for BNCT at <50 kW using low enriched uranium. It is achieved by the annular reactor design, which is called Annular Low-Low Power Reactor (ALLPR). Preliminary studies using Monte Carlo simulations are summarized in this paper. The ALLPR should be relatively economical to build, and safe and easy to operate. This novel concept may increase the viability of using BNCT in medical centers worldwide. (author)

  10. Methods of power reactor decommissioning cost recovery

    International Nuclear Information System (INIS)

    This paper analyzes rate-regulatory tax, accounting and cost recovery factors, and these analyses lead to the following overall conclusions in connection with decommissioning cost recovery. 1) The internal use of accumulated decommissioning funds is strongly recommended because it results in the lowest net ratepayer cost of decommissioning, and 2) The most equitable decommissioning cost recovery method is based on current costs and on the prompt and continuous maintenance of the purchasing power of accumulated funds. Finally, it is noted that the cost recovery approach recommended for decommissioning would have similar advantage if applied to spent fuel cost recovery as well

  11. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  12. Delayed gamma power measurement for sodium-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R., E-mail: romain.coulon@cea.f [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Normand, S., E-mail: stephane.normand@cea.f [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Ban, G., E-mail: ban@lpccaen.in2p3.f [ENSICAEN, 6 Boulevard Marechal Juin, F-14050 Caen Cedex 4 (France); Barat, E.; Montagu, T.; Dautremer, T. [CEA, LIST, Laboratoire Modelisation Simulation et Systemes, F-91191 Gif-sur-Yvette (France); Brau, H.-P. [ICSM, Centre de Marcoule, BP 17171 F-30207 Bagnols sur Ceze (France); Dumarcher, V. [AREVA NP, SET, F-84500 Bollene (France); Michel, M.; Barbot, L.; Domenech, T.; Boudergui, K.; Bourbotte, J.-M. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Jousset, P. [CEA, LIST, Departement des Capteurs, du Signal et de l' Information, F-91191 Gif-sur-Yvette (France); Barouch, G.; Ravaux, S.; Carrel, F. [CEA, LIST, Laboratoire Modelisation Simulation et Systemes, F-91191 Gif-sur-Yvette (France); Saurel, N. [CEA, DAM, Laboratoire Mesure de Dechets et Expertise, F-21120 Is-sur-Tille (France); Frelin-Labalme, A.-M.; Hamrita, H. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France)

    2011-01-15

    Graphical abstract: Display Omitted Research highlights: {sup 20}F and {sup 23}Ne tagging agents are produced by fast neutron flux. {sup 20}F signal has been measured at the SFR Phenix prototype. A random error of only 3% for an integration time of 2 s could be achieved. {sup 20}F and {sup 23}Ne power measurement has a reduced temperature influence. Burn-up impact could be limited by simultaneous {sup 20}F and {sup 23}Ne measurement. - Abstract: Previous works on pressurized water reactors show that the nitrogen 16 activation product can be used to measure thermal power. Power monitoring using a more stable indicator than ex-core neutron measurements is required for operational sodium-cooled fast reactors, in order to improve their economic efficiency at the nominal operating point. The fluorine 20 and neon 23 produced by (n,{alpha}) and (n,p) capture in the sodium coolant have this type of convenient characteristic, suitable for power measurements with low build-up effects and a potentially limited temperature, flow rate, burn-up and breeding dependence. This method was tested for the first time during the final tests program of the French Phenix sodium-cooled fast reactor at CEA Marcoule, using the ADONIS gamma pulse analyzer. Despite a non-optimal experimental configuration for this application, the delayed gamma power measurement was pre-validated, and found to provide promising results.

  13. Delayed gamma power measurement for sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted Research highlights: →20F and 23Ne tagging agents are produced by fast neutron flux. →20F signal has been measured at the SFR Phenix prototype. → A random error of only 3% for an integration time of 2 s could be achieved. →20F and 23Ne power measurement has a reduced temperature influence. → Burn-up impact could be limited by simultaneous 20F and 23Ne measurement. - Abstract: Previous works on pressurized water reactors show that the nitrogen 16 activation product can be used to measure thermal power. Power monitoring using a more stable indicator than ex-core neutron measurements is required for operational sodium-cooled fast reactors, in order to improve their economic efficiency at the nominal operating point. The fluorine 20 and neon 23 produced by (n,α) and (n,p) capture in the sodium coolant have this type of convenient characteristic, suitable for power measurements with low build-up effects and a potentially limited temperature, flow rate, burn-up and breeding dependence. This method was tested for the first time during the final tests program of the French Phenix sodium-cooled fast reactor at CEA Marcoule, using the ADONIS gamma pulse analyzer. Despite a non-optimal experimental configuration for this application, the delayed gamma power measurement was pre-validated, and found to provide promising results.

  14. Reactor power cutback system test experience at YGN 4

    International Nuclear Information System (INIS)

    YGN 3 and 4 are the nuclear power plants having System 80 characteristics with a rated thermal output of 2815 MWth and a nominal net electrical output of 1040 MWe. YGN 3 achieved commercial operation on March 31, 1995 and YGN 4 completed Power Ascension Test (PAT) at 20%, 50%, 80% and 100% power by September 23, 1995. YGN 3 and 4 design incorporates the Reactor POwer Cutback System (RPCS) which reduces plant trips caused by Loss of Load (LOL)/ Turbine Trip and Loss of One Main Feedwater Pump (LOMFWP). The key design objective of the RPCS is to improve overall plant availability and performance, while minimizing challenges to the plant safety systems. The RPCS is designed to rapidly reduce reactor power by dropping preselected Control Element Assemblies (CEAs) while other NSSS control systems maintain process parameters within acceptable ranges. Extensive RPCS related tests performed during the initial startup of YGN 4 demonstrated that the RPCS can maintain the reactor on-line without opening primary or secondary safety valves and without actuating the Engineered Safety Features Actuation System (ESFAS). It is expected that use of the RPCS at YGN will increase the overall availability of the units and reduce the number of challenges to plant safety systems

  15. Extension of incompressible algorithms to compressible flows: validation on a governing valve mock up; Extension des algorithmes pour ecoulements incompressibles aux ecoulements compressibles: validation sur une maquette de vanne regulatrice

    Energy Technology Data Exchange (ETDEWEB)

    Baron, F.; Caruso, A.; Duplex, J.; Lefevre, L.

    1993-12-01

    The capacity of turbogenerators in PWR is regulated with governing valves located at the admission of the high-pressure turbine. In this paper we present a comparison between measurements and a numerical simulation of the flow in a 2D mock up of this governing valve. To predict and simulate transonic flow at low Mach numbers, we present a new extension of two codes initially devoted to incompressible and unsteady flows (pressure based method). The codes use either FInite Difference Method or, for complex geometry, Finite Element Method. Predicting those kinds of flows is difficult due to strong coupling between physical phenomena like turbulence on one hand, and the complexity of industrial geometry on the other hand. The comparison of numerical results with pressure measurements and also with Schlieren photographs confirms the validation of this approach. The results show clearly how the method correctly captures the structure of the jet. (authors). 10 figs., 11 refs.

  16. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.''...

  17. EURACOS II facility in the modified thermal column of the TRIGA Mark II reactor at the University of Pavia LENA Laboratory

    International Nuclear Information System (INIS)

    The EURACOS II (Enriched Uranium Converter Source) project foresees the installation of an U--Al alloy converter plate at the end of the thermal column in the Pavia University LENA reactor. The incident thermal flux on the 5 Kg of 235U generates a fast neutron source whose power is 0.4 kW. The fast flux near the center exceeds 109 neutrons/cm2-sec. The fission plate is cooled by a forced air flow of 500 m3/h; the use of air instead of water reduces to a minimum the initial spectrum deformation of source neutrons. An irradiation chamber of 3.75 x 1.5 x 1.8 m3 is placed in front of the source and contains the mock-up under investigation. The facility is principally intended for benchmark-and mock-up-experiments in the reactor shielding field, but irradiations to different types and materials not directly related to shielding can be extended. The modification of the TRIGA thermal column, the characteristics of the EURACOS II facility, and the experiments now in preparation are described. The source intensity allows the study of neutron attenuation factor of 105 for fast, and 108 for thermal neutrons. The neutron spectra are investigated with the sandwich technique in the epithermal range, and with threshold detectors, organic and telescopic spectrometers in the fast energy range. (U.S.)

  18. Recent results on PEC reactor HCDA containment investigations

    International Nuclear Information System (INIS)

    The response of PEC reactor containement structures and of tank supporting arms to HCDA has been investigated by an explosive test on a refined 1:6 scaled mock-up. Experimental strains and pressures are compared with Astarte code calculations. (orig.)

  19. Automatic Meter Reading using Power Line Signaling and Voltage Zero-crossing Detection

    Directory of Open Access Journals (Sweden)

    C.L. Vasu

    2015-06-01

    Full Text Available In India, the electric power transmission and distribution loss is very high, about 7% in transmission and 26% in distribution. Though deployment of automated meter reading system will reduce losses, particularly in distribution, penetration of automated meter reading is low due to high costs involved. World over, the Two-Way Automatic Communications System (TWACS is the most widely used power line communications technology offering two-way communication between substation and end users. The TWACS introduces disturbance on the power system voltage for short durations near zero-crossing to generate the outbound (from substation to end user signal. To generate the inbound (from end user to substation signal, short duration current pulses are introduced, near voltage zero-crossings. Information is generated as a sequential combination of voltage disturbances for the outbound signal and current pulses for the inbound signal. The current study proposes a low-cost modification of the TWACS to reduce voltage and current harmonics. The proposed system has been modelled and simulated using SIMULINK/SIMPOWER Systems. The simulation results show that there is a reduction in voltage harmonics from 0.84 to 0.17% and in current harmonics from 2.07 to 1.10%.

  20. Selection of power plant elements for future reactor space electric power systems

    International Nuclear Information System (INIS)

    Various types of reactor designs, electric power conversion equipment, and reject-heat systems to be used in nuclear reactor power plants for future space missions were studied. The designs included gas-cooled, liquid-cooled, and heat-pipe reactors. For the power converters, passive types such as thermoelectric and thermionic converters and dynamic types such as Brayton, potassium Rankine, and Stirling cycles were considered. For the radiators, heat pipes for transfer and radiating surface, pumped fluid for heat transfer with fins as the radiating surface, and pumped fluid for heat transfer with heat pipes as the radiating surface were considered. After careful consideration of weights, sizes, reliabilities, safety, and development cost and time, a heat-pipe reactor design, thermoelectric converters, and a heat-pipe radiator for an experimental program were selected

  1. Selection of power plant elements for future reactor space electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Bennett, G.A.; Copper, K.

    1979-09-01

    Various types of reactor designs, electric power conversion equipment, and reject-heat systems to be used in nuclear reactor power plants for future space missions were studied. The designs included gas-cooled, liquid-cooled, and heat-pipe reactors. For the power converters, passive types such as thermoelectric and thermionic converters and dynamic types such as Brayton, potassium Rankine, and Stirling cycles were considered. For the radiators, heat pipes for transfer and radiating surface, pumped fluid for heat transfer with fins as the radiating surface, and pumped fluid for heat transfer with heat pipes as the radiating surface were considered. After careful consideration of weights, sizes, reliabilities, safety, and development cost and time, a heat-pipe reactor design, thermoelectric converters, and a heat-pipe radiator for an experimental program were selected.

  2. The evaluation of operator reliability factors on power reactor

    International Nuclear Information System (INIS)

    The sophisticated technology system was not assured the reliability system itself because it has contained a part of human dependence affected successfully of reactor operation either how work smoothly and safe or failure ac cured and then accident appears promptly. The evaluation of operator reliability factor on ABWR power reactor has been carried out which consist of criterion skill and workload according to NUREG/CR-2254, NUREG/CR-4016 and NUREG-0835 the reactor operation reliability emphasize to the operator are synergic between skill and workload themselves. The employee's skill will affect to the type and level of their tasks. The operator's skill depend on education and experiences, position or responsibility of tasks, physical conditions (age uninvalid of physic/mental

  3. ELMO Bumpy Torus Reactor and power plant: conceptual design study

    International Nuclear Information System (INIS)

    A complete power plant design of a 1200-MWe ELMO Bumpy Torus Reactor (EBTR) is presented. An emphasis is placed on those features that are unique to the EBT confinement concept, with subsystems and balance-of-plant items that are more generic to magnetic fusion being adapted from past, more extensive tokamak reactor designs. Similar to the latter tokamak studies, this conceptual EBTR design also emphasizes the use of conventional or near state-of-the-art engineering technology and materials. An emphasis is also placed on system accessibility, reliability, and maintainability, as these crucial and desirable characteristics relate to the unique high-aspect-ratio configuration of EBTs. Equal and strong emphasis is given to physics, engineering/technology, and costing/economics components of this design effort. Parametric optimizations and sensitivity studies, using cost-of-electricity as an object function, are reported. Based on these results, the direction for future improvement on an already attractive reactor design is identified

  4. Determination of the Effectiveness of Control Rods in the VVER Reactor Fuel Assemblies

    International Nuclear Information System (INIS)

    The paper describes experiments done in homogeneous mock-ups of the fuel assemblies from the VVER Reactor (at one level of enrichment) to determine the effectiveness of absorbing systems comprising shim fuel assemblies or water cavities and of absorbing rods clad in jackets made of differing materials. The paper also gives data on some experiments that have been done in mock-ups of assemblies with differing levels of enrichment. These experiments make it possible to verify the methods used in calculation and to evaluate the prospects of using them for heterogeneous reactors. (author)

  5. Building America Case Study: New Town Builders' Power of Zero Energy Center, Denver, Colorado (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential homebuyers to its energy efficient homes, New Town Builders created a 'Power of Zero Energy Center' linked to its model home in the Stapleton community of Denver. This case study presents New Town Builders' marketing approach, which is targeted to appeal to homebuyers' emotions rather than overwhelming homebuyers with scientific details about the technology. The exhibits in the Power of Zero Energy Center focus on reduced energy expenses for the homeowner, improved occupant comfort, the reputation of the builder, and the lack of sacrificing the homebuyers' desired design features to achieve zero net energy in the home. The case study also contains customer and realtor testimonials related to the effectiveness of the Center in influencing homebuyers to purchase a zero energy home.

  6. New Whole-House Solutions Case Study: New Town Builders' Power of Zero Energy Center - Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-01

    New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential homebuyers to its energy efficient homes, New Town Builders created a "Power of Zero Energy Center" linked to its model home in the Stapleton community. This case study presents New Town Builders' marketing approach, which is targeted to appeal to homebuyers' emotions rather than overwhelming homebuyers with scientific details about the technology. The exhibits in the Power of Zero Energy Center focus on reduced energy expenses for the homeowner, improved occupant comfort, the reputation of the builder, and the lack of sacrificing the homebuyers' desired design features to achieve zero net energy in the home. This case study also contains customer and realtor testimonials related to the effectiveness of the Center in influencing homebuyers to purchase a zero energy home.

  7. Watts Bar Unit 1 cycle 1 zero power physics tests analysis with VERA-CS

    International Nuclear Information System (INIS)

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications, including a core simulation capability called VERA-CS. A key milestone for this endeavor is to validate VERA against measurements from operating nuclear power reactors. The first step in validation against plant data is to determine the ability of VERA to accurately simulate the initial startup physics tests for Watts Bar Nuclear Power Station, Unit 1 (WBN1) cycle 1. VERA-CS calculations were performed with the Insilico code developed at Oak Ridge National Laboratory using cross section processing from the SCALE system and the transport capabilities within the Denovo transport code using the SPN method. The calculations were performed with ENDF/B-VII.0 cross sections in 252 groups (collapsed to 23 groups for the 3D transport solution). The key results of the comparison of calculations with measurements include initial criticality, control rod worth critical configurations, control rod worth, differential boron worth, and isothermal temperature reactivity coefficient (ITC). The VERA results for these parameters show good agreement with measurements, with the exception of the ITC, which requires additional investigation. Results are also compared to those obtained with Monte Carlo methods and a current industry core simulator. (author)

  8. A CANDU-type small/medium power reactor

    International Nuclear Information System (INIS)

    The assembly known as a CANDU power reactor consists of a number of standardized fuel channels or 'power modules'. Each of these channels produces about 5 thermal megawatts on average. Within practical limitations on fuel enrichment and ultimately on economics, the number of these channels is variable between about 50 and approximately 700. Small reactors suffer from inevitable disadvantages in terms of specific cost of design/construction as well as operating cost. Their natural 'niche' for application is in remote off-grid locations. At the same time this niche application imposes new and strict requirements for staff complement, power system reliability, and so on. The distinct advantage of small reactors arises if the market requires installation of several units in a coordinated installation program - a feature well suited to power requirements in Canada's far North. This paper examines several of the performance requirements and constraints for installation of these plants and presents means for designers to overcome the consequent negative feasibility factors.

  9. Gas-core reactor power transient analysis. Final report

    International Nuclear Information System (INIS)

    The gas core reactor is a proposed device which features high temperatures. It has applications in high specific impulse space missions, and possibly in low thermal pollution MHD power plants. The nuclear fuel is a ball of uranium plasma radiating thermal photons as opposed to gamma rays. This thermal energy is picked up before it reaches the solid cavity liner by an inflowing seeded propellant stream and convected out through a rocket nozzle. A wall-burnout condition will exist if there is not enough flow of propellant to convect the energy back into the cavity. A reactor must therefore operate with a certain amount of excess propellant flow. Due to the thermal inertia of the flowing propellant, the reactor can undergo power transients in excess of the steady-state wall burnout power for short periods of time. The objective of the study was to determine how long the wall burnout power could be exceeded without burning out the cavity liner. The model used in the heat-transfer calculation was one-dimensional, and thermal radiation was assumed to be a diffusion process. (auth)

  10. 77 FR 8902 - Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2012-02-15

    ... COMMISSION Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors AGENCY... ``Decommissioning of Nuclear Power Reactors.'' This guide describes a method NRC considers acceptable for use in... Revision 1 of Regulatory Guide 1.184, ``Decommissioning of Nuclear Power Reactors,'' dated July 2000....

  11. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear... requirements for immediate notification of the NRC by licensed operating nuclear power reactors are...

  12. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a...

  13. Power distribution monitoring and control in the RBMK type reactors

    International Nuclear Information System (INIS)

    Considered are the structures of monitoring and control systems for the RBMK-1000 reactor including three main systems with high independence: the control and safety system (CSS); the system for physical control of energy distribution (SPCED) as well as the Scala system for centralized control (SCC). Main functions and peculiarities of each system are discussed. Main attention is paid to new structural solutions and new equipment components used in these systems. Described are the RBMK operation software and routine of energy distribution control in it. It is noted that the set of reactor control and monitoring systems has a hierarchical structure, the first level of which includes analog systems (CSS and SPCED) normalizing and transmitting detector signals to the systems of the second level based on computers and realizing computer data processing, data representation to the operator, automatic (through CSS) control for energy distribution, diagnostics of equipment condition and local safety with provision for existing reserves with respect to crisis and thermal loading of fuel assemblies. The third level includes a power computer carrying out complex physical and optimization calculations and providing interconnections with the external computer of power system. A typical feature of the complex is the provision of local automatic safety of the reactor from erroneous withdrawal of any control rod. The complex is designed for complete automatization of energy distribution control in reactor in steady and transient operation conditions

  14. Space craft thermal thermionic reactors with flat power distribution

    International Nuclear Information System (INIS)

    The nuclear reactors are potential candidates for energy generation in space missions over longer periods where high power output is required. Among different nuclear energy conversion options, the statical ones, such as thermo-electric or thermionic reactors, are preferable in order to avoid the kinetic disturbances of the space craft and furthermore in order to reduce the failure probabilities to a minimum, caused by lubricants and seals. In the present study, the main parameters of different types of thermal thermionic reactors are discussed which are fueled with U-233 or U-235 and moderated with ZrH1.7 or Beryllium. The investigated thermionic reactors will be layed out to have a constant heat production density on the emitter surface over the space variable, so as to achieve a maximum engineering efficiency with respect to the electrical conversion, nuclear fuel utilization, material damage, thermal and radiation gradients. The power flattening procedure is performed by varying the moderator to fuel ratio, both in axial and radial directions

  15. A dynamic analysis of circulating fuel reactor with zero dimensional modeling

    International Nuclear Information System (INIS)

    The molten salt reactor is characterised by circulation of fuel salt (an appropriate mixture of molten salt and fissile-fertile isotopes). The circulation of fuel salt serves the purpose of coolant as well as fuel simultaneously. This results in strongly coupled neutronics and thermo-hydraulics system. These special features require a modification to mathematical models applicable to static fuel system. In this paper, the modified point kinetics equations have been adopted which takes into account for delayed neutron precursors drift and the subsequent decay in the primary loop. The MSRE design data for both 232Th-233U and 238U-235U fertile-fissile based fuel has been used to validate the developed simplified simulation tool. (author)

  16. Reactor Power for Large Displacement Autonomous Underwater Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-24

    This is a PentaChart on reactor power for large displacement autonomous underwater vehicles. Currently AUVs use batteries or combinations of batteries and fuel cells for power. Battery/fuel cell technology is limited by duration. Batteries and cell fuels are a good match for some missions, but other missions could benefit greatly by a longer duration. The goal is the following: to design nuclear systems to power an AUV and meet design constraints including non-proliferation issues, power level, size constraints, and power conversion limitations. The action plan is to continue development of a range of systems for terrestrial systems and focus on a system for Titan Moon as alternative to Pu-238 for NASA.

  17. Imperatives for using plutonium in commercial power reactors

    International Nuclear Information System (INIS)

    The use of reprocessed or newly produced plutonium as a fissile fuel in commercial nuclear reactors in the US has been actively suppressed by the current US Administration. Yet, many other advanced nations have already adopted mixed oxide fuels which are manufactured from a mixture of plutonium and natural uranium compounds. These nations have successfully proven the use of such nuclear fuel in their commercial power reactors for many years. The full consequence of the restrictive nuclear policy in the US will greatly limit the lifetime of the nuclear fuel resources in the US from a nominal potential of 100 centuries or more of potential energy supply to about 50 years or less at economical prices for uranium. This paper addresses both the imperatives and the potential and the perceived hazards of plutonium utilization and examines the consequences of government policy regarding utilization of nuclear power

  18. Characteristics of a reactor with power reactivity feedback

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The point-reactor model with power reactivity feedback becomes a nonlinear system. Its dynamic characteristic shows great complexity. According to the mathematic definition of stability in differential equa-tion qualitative theory, the model of a reactor with power reactivity feedback is judged unstable. The equilib-rium point is a saddle-node point. A portion of the trajectory in the neighborhood of the equilibrium point is parabolic fan curve, and the other is hyperbolic fan curve. Based on phase locus near the equilibrium point, it is pointed out that the model is still stable within physical limits. The difference between stabilities in the mathematical sense and in the physical sense is indicated.

  19. Technological implications of SNAP reactor power system development on future space nuclear power systems

    International Nuclear Information System (INIS)

    Nuclear reactor systems are one method of satisfying space mission power needs. The development of such systems must proceed on a path consistent with mission needs and schedules. This path, or technology roadmap, starts from the power system technology data base available today. Much of this data base was established during the 1960s and early 1970s, when government and industry developed space nuclear reactor systems for steady-state power and propulsion. One of the largest development programs was the Systems for Nuclear Auxiliary Power (SNAP) Program. By the early 1970s, a technology base had evolved from this program at the system, subsystem, and component levels. There are many implications of this technology base on future reactor power systems. A review of this base highlights the need for performing a power system technology and mission overview study. Such a study is currently being performed by Rockwell's Energy Systems Group for the Department of Energy and will assess power system capabilities versus mission needs, considering development, schedule, and cost implications. The end product of the study will be a technology roadmap to guide reactor power system development

  20. Circuit for power variation rate measurements in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moisin, L.H.

    1980-01-01

    An asychronous digital circuit for the power variation rate of a nuclear reactor is proposed. The circuit is based on the fact that the variation rate can be obtained by a simple division between the difference of two time normalized adjacent measurements of the neutron flux and the total value of the first measurement. The circuit maintains a constant precision of the counting rate due to the effect of an automatic time constant switch. 4 references.

  1. Summary of space nuclear reactor power systems, 1983--1992

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  2. Dynamic power behavior of a PWR type nuclear reactor

    International Nuclear Information System (INIS)

    A methodology for the power level evaluation (dynamic behavior) in a Pressurized Water Reactor, during a transient is developed, by solving the point kinetic equation related to the control rod insertion effects and fuel or moderator temperature 'feed-back'. A new version of the thermal-hydraulic code COBRA III P/MIT, is used. In this new version was included, as an option, the methodology developed. (E.G.)

  3. Summary of space nuclear reactor power systems, 1983--1992

    International Nuclear Information System (INIS)

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power

  4. Autonomous Control Capabilities for Space Reactor Power Systems

    Science.gov (United States)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  5. Economic evaluation of nuclear reactor operation utilizing power effect

    International Nuclear Information System (INIS)

    The operation of a reactor at the so-called power effect may substantially increase the burnup of fuel to be removed. The aim of the evaluation of such reactor operation is the optimal determination of the time over which the yield of the higher use of fuel exceeds economic losses resulting from the increased share of constant expenditure of the price of generated kWh of electric power which ensues from such operation. A mathematical model is presented for such evaluation of reactor operation with regard to benefits for the national economy which is the basis of the ESTER 2 computer program. The calculations show that the prices of generated and delivered kWh are minimally 2% less than the prices of generated power without the power effect use. The minimum ranges in the interval of 30 to 50 days. The dependence of the price of generated and delivered kWh from the point of view of the operator of the power plant as well as the component of fuel price of generated kWh will not reach the minimum even after 50 days of operation. From the operating and physical points of view the duration of power effect is not expected to exceed 20 to 30 days which means that from the point of view of the national economy the price of generated and delivered kWh will be 1.6 to 2% less and the fuel component of the price of the generated kWh will be 3 to 4.5% lower. (Z.M.). 5 figs., 3 refs

  6. Environmental impacts of nonfusion power systems. [Data on environmental effects of all power sources that may be competitive with fusion reactor power plants

    Energy Technology Data Exchange (ETDEWEB)

    Brouns, R.J.

    1976-09-01

    Data were collected on the environmental effects of power sources that may be competitive with future fusion reactor power plants. Data are included on nuclear power plants using HTGR, LMBR, GCFR, LMFBR, and molten salt reactors; fossil-fuel electric power plants; geothermal power plants; solar energy power plants, including satellite-based solar systems; wind energy power plants; ocean thermal gradient power plants; tidal energy power plants; and power plants using hydrogen and other synthetic fuels as energy sources.

  7. The safety of Ontario's nuclear power reactor. A scientific and technical review. Report to the Minister

    International Nuclear Information System (INIS)

    In December 1986 a study of the safety of the design, operating procedures and emergency plans associated with Ontario Hydro's nuclear generating plants was commissioned by the government of the province of Ontario. After receiving briefs from many interested groups and individuals, visiting the power plants, and consulting with nuclear industry and regulatory representatives in Canada and other countries, the commissioner presented this report to the Minister of Energy for Ontario. His major conclusion is that Ontario Hydro reactors are being operated safely and at high standards of technical performance. No significant adverse impact has been detected in either the work force or the public. The risk of accidents serious enough to affect the public adversely can never be zero, but is very remote. Major recommendations are that: Ontario Hydro re-examine its operational organization closely and commission a study of factors affecting human performance; and, that priority be given to finding a solution to pressure tube performance problems and to improving in-reactor monitoring. Sixteen other recommendations are presented relating to research and development, information exchange with other organizations, reactor performance, training, severe accident analysis, the provincial nuclear emergency plan, epidemiological studies, the Atomic Energy Control Board, public hearings, and women in the nuclear industry

  8. New designs of medium power WWER reactor plants

    International Nuclear Information System (INIS)

    The task of constructing NPPs as the objects of regional power industry is included into the Federal Target Program on nuclear power technologies of new generation for the period till 2020. Such NPPs are considered as perspective sources of energy for solution of the problems concerning provision of electric energy, household and industrial heat to the regions with limited capabilities of the power grid. OKB 'GIDROPRESS' present the conceptual study of RP design for the Unit of 600 MW (el.) power, taking into account their long-term experience in the field of development and operation of WWER reactor plants. Practical implementation of WWER-600 and WWER-300 RP designs seems to be feasible: practice in manufacturing the main equipment is available; cooperation of design, scientific organizations and manufacturers of equipment; is established; basic design solutions for equipment are of reference character

  9. Reactor Power for Large Displacement Autonomous Underwater Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-24

    This is a PentaChart on reactor power for large displacement autonomous underwater vehicles. Currently AUVs use batteries or combinations of batteries and fuel cells for power. Battery/fuel cell technology is limited by duration. Batteries and cell fuels are a good match for some missions, but other missions could benefit greatly by a longer duration. The goal is the following: to design nuclear systems to powr an AUV and meet design constraints including non-proliferation issues, power level, size constraints, and power conversion limitations. The action plan is to continue development of a range of systems for terrestrial systems and focus on a system for TItan Moon as alternative to Pu-238 for NASA.

  10. Supercritical Water Reactor Cycle for Medium Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    BD Middleton; J Buongiorno

    2007-04-25

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  11. Power Excursion Accident Analysis of Research Water Reactor

    International Nuclear Information System (INIS)

    A three-dimensional neutronic code POWEX-K has been developed, and it has been coupled with the sub-channel thermal-hydraulic core analysis code SV based on the Single Mass Velocity Model. This forms the integrated neutronic/thermal hydraulics code system POWEX-K/SV for the accident analysis. The Training and Research Reactors at Budapest University of Technology and Economics (BME-Reactor) has been taken as a reference reactor. The cross-section generation procedure based on WIMS. The code uses an implicit difference approach for both the diffusion equations and thermal-hydraulics modules, with reactivity feedback effects due to coolant and fuel temperatures. The code system was applied to analyzing power excursion accidents initiated by ramp reactivity insertion of 1.2 $. The results show that the reactor is inherently safe in case of such accidents i.e. no core melt is expected even if the safety rods do not fall into the core

  12. Design Concept for a Nuclear Reactor-Powered Mars Rover

    Science.gov (United States)

    Elliott, John O.; Lipinski, Ronald J.; Poston, David I.

    2003-01-01

    A study was recently carried out by a team from JPL and the DOE to investigate the utility of a DOE-developed 3 kWe surface fission power system for Mars missions. The team was originally tasked to perform a study to evaluate the usefulness and feasibility of incorporation of such a power system into a landed mission. In the course of the study it became clear that the application of such a power system was enabling to a wide variety of potential missions. Of these, two missions were developed, one for a stationary lander and one for a reactor-powered rover. This paper discusses the design of the rover mission, which was developed around the concept of incorporating the fission power system directly into a large rover chassis to provide high power, long range traverse capability. The rover design is based on a minimum extrapolation of technology, and adapts existing concepts developed at JPL for the 2009 Mars Science Laboratory (MSL) rover, lander and EDL systems. The small size of the reactor allowed its incorporation directly into an existing large MSL rover chassis design, allowing direct use of MSL aeroshell and pallet lander elements, beefed up to support the significantly greater mass involved in the nuclear power system and its associated shielding. This paper describes the unique design challenges encountered in the development of this mission architecture and incorporation of the fission power system in the rover, and presents a detailed description of the final design of this innovative concept for providing long range, long duration mobility on Mars.

  13. Evaluation of the qualification of SPERT [Special Power Excursion Reactor Test] fuel for use in non-power reactors

    International Nuclear Information System (INIS)

    This report summarizes the US Nuclear Regulatory Commission staff's evaluation of the qualification of the stainless-steel-clad uranium/oxide (UO2) fuel pins for use in non-power reactors. The fuel pins were originally procured in the 1960's as part of the Special Power Excursion Reactor Test (SPERT) program. Argonne National Laboratory (ANL) examined 600 SPERT fuel pins to verify that the pins were produced according to specification and to assess their present condition. The pins were visually inspected under 6X magnification and by X-radiographic, destructive, and metallographic examinations. Spectrographic and chemical analyses were performed on the UO2 fuel. The results of the qualification examinations indicated that the SPERT fuel pins meet the requirements of Phillips Specification No. F-1-SPT and have suffered no physical damage since fabrication. Therefore, the qualification results give reasonable assurance that the SPERT fuel rods are suitable for use in non-power reactors provided that the effects of thin-wall defects in the region of the upper end cap and low-density fuel pellets are evaluated for the intended operating conditions. 1 ref., 4 figs., 11 tabs

  14. [Oxidation of mercury by CuBr2 decomposition under controlled-release membrane catalysis condition].

    Science.gov (United States)

    Hu, Lin-Gang; Qu, Zan; Yan, Nai-Qiang; Guo, Yong-Fu; Xie, Jiang-Kun; Jia, Jin-Ping

    2014-02-01

    CuBr2 in the multi-porous ceramic membrane can release Br2 at high temperature, which was employed as the oxidant for Hg0 oxidation. Hg0 oxidation efficiency was studied by a membrane catalysis device. Meanwhile, a reaction and in situ monitoring device was designed to avoid the impact of Br2 on the downstream pipe. The result showed that the MnO(x)/alpha-Al2O3 catalysis membrane had a considerable "controlled-release" effect on Br2 produced by CuBr2 decomposition. The adsorption and reaction of Hg0 and Br2 on the surface of catalysis membrane obeyed the Langmuir-Hinshelwood mechanism. The removal efficiency of Hg0 increased with the rising of Br2 concentration. However, when Br2 reached a certain concentration, the removal efficiency was limited by adsorption rate and reaction rate of Hg0 and Br2 on the catalysis membrane. From 473 K to 573 K, the variation of Hg0 oxidation efficiency was relatively stable. SO2 in flue gas inhibited the oxidation of Hg0 while NO displayed no obvious effect.

  15. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  16. Operational margin monitoring system for boiling water reactor power plants

    International Nuclear Information System (INIS)

    This paper reports on an on-line operational margin monitoring system which has been developed for boiling water reactor power plants to improve safety, reliability, and quality of reactor operation. The system consists of a steady-state core status prediction module, a transient analysis module, a stability analysis module, and an evaluation and guidance module. This system quantitatively evaluates the thermal margin during abnormal transients as well as the stability margin, which cannot be evaluated by direct monitoring of the plant parameters, either for the current operational state or for a predicted operating state that may be brought about by the intended operation. This system also gives operator guidance as to appropriate or alternate operations when the operating state has or will become marginless

  17. PR-EDB: Power Reactor Embrittlement Database - Version 3

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Subramani, Ranjit [ORNL

    2008-03-01

    The aging and degradation of light-water reactor pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel materials depends on many factors, such as neutron fluence, flux, and energy spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Large amounts of data from surveillance capsules are needed to develop a generally applicable damage prediction model that can be used for industry standards and regulatory guides. Furthermore, the investigations of regulatory issues such as vessel integrity over plant life, vessel failure, and sufficiency of current codes, Standard Review Plans (SRPs), and Guides for license renewal can be greatly expedited by the use of a well-designed computerized database. The Power Reactor Embrittlement Database (PR-EDB) is such a comprehensive collection of data for U.S. designed commercial nuclear reactors. The current version of the PR-EDB lists the test results of 104 heat-affected-zone (HAZ) materials, 115 weld materials, and 141 base materials, including 103 plates, 35 forgings, and 3 correlation monitor materials that were irradiated in 321 capsules from 106 commercial power reactors. The data files are given in dBASE format and can be accessed with any personal computer using the Windows operating system. "User-friendly" utility programs have been written to investigate radiation embrittlement using this database. Utility programs allow the user to retrieve, select and manipulate specific data, display data to the screen or printer, and fit and plot Charpy impact data. The PR-EDB Version 3.0 upgrades Version 2.0. The package was developed based on the Microsoft .NET framework technology and uses Microsoft Access for

  18. ELAWD GROUT HOPPER MOCK-UP TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Pickenheim, B.; Hansen, E.; Leishear, R.; Marzolf, A.; Reigel, M.

    2011-10-27

    A 10-inch READCO mixer is used for mixing the premix (45 (wt%) fly ash, 45 wt% slag, and 10 wt% portland cement) with salt solution in the Saltstone Production Facility (SPF). The Saltstone grout free falls into the grout hopper which feeds the suction line leading to the Watson SPX 100 duplex hose pump. The Watson SPX 100 pumps the grout through approximately 1500 feet of piping prior to being discharged into the Saltstone Disposal Facility (SDF) vaults. The existing grout hopper has been identified by the Saltstone Enhanced Low Activity Waste Disposal (ELAWD) project for re-design. The current nominal working volume of this hopper is 12 gallons and does not permit handling an inadvertent addition of excess dry feeds. Saltstone Engineering has proposed a new hopper tank that will have a nominal working volume of 300 gallons and is agitated with a mechanical agitator. The larger volume hopper is designed to handle variability in the output of the READCO mixer and process upsets without entering set back during processing. The objectives of this task involve scaling the proposed hopper design and testing the scaled hopper for the following processing issues: (1) The effect of agitation on radar measurement. Formation of a vortex may affect the ability to accurately measure the tank level. The agitator was run at varying speeds and with varying grout viscosities to determine what parameters cause vortex formation and whether measurement accuracy is affected. (2) A dry feeds over addition. Engineering Calculating X-ESR-Z-00017 1 showed that an additional 300 pounds of dry premix added to a 300 gallon working volume would lower the water to premix ratio (W/P) from the nominal 0.60 to 0.53 based on a Salt Waste Processing Facility (SWPF) salt simulant. A grout with a W/P of 0.53 represents the upper bound of grout rheology that could be processed at the facility. A scaled amount of dry feeds will be added into the hopper to verify that this is a recoverable situation. (3) The necessity of baffles in the hopper. The preference of the facility is not to have baffles in the hopper; however, if the initial testing indicates inadequate agitation or difficulties with the radar measurement, baffles will be tested.

  19. ELAWD Grout Hopper Mock-Up Testing

    International Nuclear Information System (INIS)

    A 10-inch READCO mixer is used for mixing the premix (45 (wt%) fly ash, 45 wt% slag, and 10 wt% portland cement) with salt solution in the Saltstone Production Facility (SPF). The Saltstone grout free falls into the grout hopper which feeds the suction line leading to the Watson SPX 100 duplex hose pump. The Watson SPX 100 pumps the grout through approximately 1500 feet of piping prior to being discharged into the Saltstone Disposal Facility (SDF) vaults. The existing grout hopper has been identified by the Saltstone Enhanced Low Activity Waste Disposal (ELAWD) project for re-design. The current nominal working volume of this hopper is 12 gallons and does not permit handling an inadvertent addition of excess dry feeds. Saltstone Engineering has proposed a new hopper tank that will have a nominal working volume of 300 gallons and is agitated with a mechanical agitator. The larger volume hopper is designed to handle variability in the output of the READCO mixer and process upsets without entering set back during processing. The objectives of this task involve scaling the proposed hopper design and testing the scaled hopper for the following processing issues: (1) The effect of agitation on radar measurement. Formation of a vortex may affect the ability to accurately measure the tank level. The agitator was run at varying speeds and with varying grout viscosities to determine what parameters cause vortex formation and whether measurement accuracy is affected. (2) A dry feeds over addition. Engineering Calculating X-ESR-Z-00017 1 showed that an additional 300 pounds of dry premix added to a 300 gallon working volume would lower the water to premix ratio (W/P) from the nominal 0.60 to 0.53 based on a Salt Waste Processing Facility (SWPF) salt simulant. A grout with a W/P of 0.53 represents the upper bound of grout rheology that could be processed at the facility. A scaled amount of dry feeds will be added into the hopper to verify that this is a recoverable situation. (3) The necessity of baffles in the hopper. The preference of the facility is not to have baffles in the hopper; however, if the initial testing indicates inadequate agitation or difficulties with the radar measurement, baffles will be tested.

  20. SWR 1000: The new boiling water reactor power plant concept

    International Nuclear Information System (INIS)

    Siemens' Power Generation Group (KWU) is currently developing - on behalf of and in close co-operation with the German nuclear utilities and with support from various European partners - the boiling water reactor SWR 1000. This advanced design concept marks a new era in the successful tradition of boiling water reactor technology in Germany and is aimed, with an electric output of 1000 MW, at assuring competitive power generating costs compared to large-capacity nuclear power plants as well as coal-fired stations, while at the same time meeting the highest of safety standards, including control of a core melt accident. This objective is met by replacing active safety systems with passive safety equipment of diverse design for accident detection and control and by simplifying systems needed for normal plant operation on the basis of past operating experience. A short construction period, flexible fuel cycle lengths of between 12 and 24 months and a high fuel discharge burnup all contribute towards meeting this goal. The design concept fulfils international nuclear regulatory requirements and will reach commercial maturity by the year 2000. (author)

  1. Modularity of the MIT Pebble Bed Reactor for use by the commercial power industry

    OpenAIRE

    Hanlon-Hyssong, Jaime E.

    2008-01-01

    CIVINS The Modular Pebble Bed Reactor is a small high temperature helium cooled reactor that is being considered for both electric power and hydrogen production. Pebble bed reactors are being developed in South Africa, China and the US. To make smaller 120 Mwe reactors economically competitive with larger 1500 Mwe traditional light water reactors changes in the way these plants are built are needed. Economies of production need to be sufficiently large to compete with economies of sca...

  2. Small space reactor power systems for unmanned solar system exploration missions

    International Nuclear Information System (INIS)

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model

  3. Demographic statistics pertaining to nuclear power reactor sites

    International Nuclear Information System (INIS)

    Population statistics are presented for 145 nuclear power plant sites. Summary tables and figures are included that were developed to aid in the evaluation of trends and general patterns associated with the various parameters of interest, such as the proximity of nuclear plant sites to centers of population. The primary reason for publishing this information at this time is to provide a factual basis for use in discussions on the subject of reactor siting policy. The report is a revised and updated version of a draft report published in December 1977. Errors in the population data base have been corrected and new data tabulations added

  4. A MICRO ZERO HEAD TURBINE POWER GENERATION FOR BUILDING’S WATER TANK OVER FLOW & ROOF RAIN WATER FLOW SYSTEM

    OpenAIRE

    Pasupuleti Sreenivasulu*, Dr. G. Prasanthi

    2016-01-01

    Energy is a major input for overall socio-economic development of any society. Hydel energy is the fastest growing renewable energy. From Decades man has been trying to convert Hydel power to mechanical &, more recently, electric power. Hydel technology has improved significantly over the past two decades, and Hydel energy has become increasingly competitive with other power generation options. A zero head water turbine can be used as a Hydro-Electricity device referring to generate the e...

  5. HAZARDS SUMMARY REPORT FOR THE ARMY PACKAGE POWER REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    None

    1955-07-27

    The APPR-I is described and the various hazards are reviewed. Because of the reactor's location near the nation's Capitol, containment is of the utmost importance. The maximum energy release in any possible accident is 7.4 million Btu's which is completely contained within a 7/8 inch thick steel cylindrical shell with hemispherical ends. The vapor container is 60 ft high and 32 ft in diameter and is lined on the inside with 2 ft of reinforced concrete which provides missile protection and is part of the secondary shield. All possible nuclear excursions are reviewed and the energy from any of these is insignificant compared to the stored energy in the water. The maximum credible accident is caused hy the reactor running constantly at its maximum power of 10 Mw and through an extremely unlikely sequence of failures, causing the temperature of the water in the primary and secondary systeras to rise to saturation; whereupon a rupture occurs releasing the stored energy of 7.4 million Btu's into the vapor container. If the reactor core melts during the incident, a maximum of 10/sup 8/ curies of activity is released. While it appears impossible for a rupture of the vapor container to oecur except by sabotage or bombing, the hazards to the surrounding area are discussed in the event of such a rupture occurring simultaneously with the maximum credible accident. (auth)

  6. 10 CFR Appendix J to Part 50 - Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

    Science.gov (United States)

    2010-01-01

    ... CFR 50.12, are still applicable to Option B of this appendix if necessary, unless specifically revoked...-Cooled Power Reactors J Appendix J to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. J Appendix J to Part 50—Primary Reactor...

  7. Utilization of Minor Actinides (Np, Am, Cm) in Nuclear Power Reactor

    Science.gov (United States)

    Gerasimov, A.; Bergelson, B.; Tikhomirov, G.

    2014-06-01

    Calculation research of the utilization process of minor actinides (transmutation with use of power released) is performed for specialized power reactor of the VVER type operating on the level of electric power of 1000 MW. Five subsequent cycles are considered for the reactor with fuel elements containing minor actinides along with enriched uranium. It was shown that one specialized reactor for the one cycle (900 days) can utilize minor actinides from several VVER-1000 reactors without any technological and structural modifications. Power released because of minor actinide fission is about 4% with respect to the total power

  8. Francois Leblond, Prefect of the Auvergne Region, Prefect of the Puy-de-Dome, Jacques Fontaine, President of Blaise Pascal University, Clermond Ferrand, Prof. Jean-Claude Montret, former director of the Corpuscular Laboratory in front of the ATLAS mock-up

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    Francois Leblond, Prefect of the Auvergne Region, Prefect of the Puy-de-Dome, Jacques Fontaine, President of Blaise Pascal University, Clermond Ferrand, Prof. Jean-Claude Montret, former director of the Corpuscular Laboratory in front of the ATLAS mock-up

  9. Optimal Power Distribution Control for Multicode MC-CDMA with Zero-Forcing Successive Interference Cancellation

    Directory of Open Access Journals (Sweden)

    Yeheskel Bar-Ness

    2005-04-01

    Full Text Available Multicarrier CDMA (MC-CDMA has become a promising candidate for future wireless multimedia communications for its robustness to frequency-selective fading and its flexibility for handling multiple data rates. Among different multirate access schemes, multicode MC-CDMA is attractive for its high performance, good flexibility in rate matching, and low complexity. However, its performance is limited by self-interference (SI and multiuser interference (MUI. In this paper a zero-forcing successive interference cancellation (ZF-SIC receiver is used to mitigate this problem for multicode MC-CDMA. Furthermore, optimal power distribution control (PDC, which minimizes each user's bit error rate (BER, is considered. Our results show that, in correlated Rayleigh fading channels, the ZF-SIC receiver integrated with the optimal PDC dramatically improves the performance of the multicode MC-CDMA system in comparison to other receivers proposed in the literature. Moreover, the optimal PDC significantly outperforms the PDC based on equal BER criterion, particularly under a short-term transmit power constraint.

  10. The investigation of the zero temperature coefficient point of power MOSFET

    Science.gov (United States)

    Bowen, Zhang; Xiaoling, Zhang; Wenwen, Xiong; Shuojie, She; Xuesong, Xie

    2016-06-01

    The paper investigates the zero temperature coefficient (ZTC) point of power MOSFET, based on the output characteristic of power MOSFET, the temperature coefficient of threshold voltage and the carrier mobility. It is found that the gate voltage has a big effect on the ZTC point. The result indicates that there are three types of temperature coefficient under different gate voltage. When the gate voltage is near the threshold voltage, both the linear region and saturation region shows a large positive temperature coefficient. With the increase of gate voltage, the temperature coefficient of the linear region changes from positive to negative, when the saturation region still remains positive, giving rise to the ZTC point. When the gate voltage is high enough, the negative temperature coefficient is present on both the linear and saturation region, resulting in no ZTC point. According to the experimental result, the change of ZTC point as a function of temperature is larger when the gate voltage is higher. The carrier mobility is also discussed, displaying a positive temperature coefficient at low gate voltage due to the free charge screen effect.

  11. Robust reactor power control system design by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)

    1997-12-31

    The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)

  12. Pressurized heavy water reactor fuel behaviour in power ramp conditions

    Science.gov (United States)

    Ionescu, S.; Uţă, O.; Pârvan, M.; Ohâi, D.

    2009-03-01

    In order to check and improve the quality of the Romanian CANDU fuel, an assembly of six CANDU fuel rods has been subjected to a power ramping test in the 14 MW TRIGA reactor at INR. After testing, the fuel rods have been examined in the hot cells using post-irradiation examination (PIE) techniques such as: visual inspection and photography, eddy current testing, profilometry, gamma scanning, fission gas release and analysis, metallography, ceramography, burn-up determination by mass spectrometry, mechanical testing. This paper describes the PIE results from one out of the six fuel rods. The PIE results concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the sheath, the fission-products activity distribution in the fuel column, the pressure, volume and composition of the fission gas, the burn-up, the isotopic composition and structural changes of the fuel enabled the characterization of the behaviour of the Romanian CANDU fuel in power ramping conditions performed in the TRIGA materials testing reactor.

  13. Oak Ridge Tokamak experimental power reactor study scoping report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.

    1977-03-01

    This report presents the scoping studies performed as the initial part of the program to produce a conceptual design for a Tokamak Experimental Power Reactor (EPR). The EPR as considered in this study is to employ all systems necessary for significant electric power production at continuous high duty cycle operation; it is presently scheduled to be the final technological step before a Demonstration Reactor Plant (Demo). The scoping study tasks begin with an exploration and identification of principal problem areas and then concentrate on consideration and evaluation of alternate design choices for each of the following major systems: Plasma Engineering and Physics, Nuclear, Electromagnetics, Neutral Beam Injection, and Tritium Handling. In addition, consideration has been given to the integration of these systems and requirements arising out of their incorporation into an EPR. One intent of this study is to document the paths explored in search of the appropriate EPR characteristics. To satisfy this intent, the explorations are presented in chart form outlining possible options in key areas with extensive supporting footnotes. An important result of the scoping study has been the development and definition of an EPR reference design to serve as (1) a common focus for the continuing design study and (2) a guide for associated development programs. In addition, the study has identified research and development requirements essential to facilitate the successful conceptual design, construction, and operation of an EPR.

  14. Review of the status of low power research reactors and considerations for its development

    Energy Technology Data Exchange (ETDEWEB)

    Lim, In Cheol; Wu, Sang Ik; Lee, Byung Chul; Ha, Jae Joo [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    At present, 232 research reactors in the world are in operation and two thirds of them have a power less than 1 MW. Many countries have used research reactors as the tools for educating and training students or engineers and for scientific service such as neutron activation analysis. As the introduction of a research reactor is considered a stepping stone for a nuclear power development program, many newcomers are considering having a low power research reactor. The IAEA has continued to provide forums for the exchange of information and experiences regarding low power research reactors. Considering these, the Agency is recently working on the preparation of a guide for the preparation of technical specification possibly for a member state to use when wanting to purchase a low power research reactor. In addition, ANS has stated that special consideration should be given to the continued national support to maintain and expand research and test reactor programs and to the efforts in identifying and addressing the future needs by working toward the development and deployment of next generation nuclear research and training facilities. Thus, more interest will be given to low power research reactors and its role as a facility for education and training. Considering these, the status of low power research reactors was reviewed, and some aspects to be considered in developing a low power research reactor were studied.

  15. New dynamic method to measure rod worths in zero power physics test at PWR startup

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E.K. [Korea Electric Power Research Institute, 103-16 Munji Yusung, Daejeon 305 380 (Korea, Republic of)]. E-mail: lek@kepri.re.kr; Shin, H.C. [Korea Electric Power Research Institute, 103-16 Munji Yusung, Daejeon 305 380 (Korea, Republic of); Bae, S.M. [Korea Electric Power Research Institute, 103-16 Munji Yusung, Daejeon 305 380 (Korea, Republic of); Lee, Y.K. [Korea Electric Power Research Institute, 103-16 Munji Yusung, Daejeon 305 380 (Korea, Republic of)

    2005-09-15

    To measure and validate the worth of control (or shutdown) bank in zero power physics test at PWRs, a dynamic control rod reactivity measurement (DCRM) technique has been developed and applied to six startups of Westinghouse plants as well as Korea Standard Nuclear power Plants based on the Combustion Engineering System 80 NSSS. With this technique, just one test bank is inserted into the bottom of the core at maximum stepping rate and withdrawn immediately to the all rod-out position. Specially designed inverse point kinetics equations are used to determine the test bank worth from the measured ex-core detector signals, which are controlled by the neutron-to-response conversion factor and the dynamic-to-static conversion factor. These two parameters are predetermined by the three-dimensional neutron adjoint flux distribution for both the top and bottom ex-core detector and the three-dimensional steady and transient core power distribution for test bank movement. To eliminate the gamma-ray effect on ex-core detector signals, a simple method, using reactivity curve characteristics, was also developed. To verify the DCRM method, a total of 28 bank worths of six different PWRs was measured by the DCRM and compared with those of conventional method. Results show that the DCRM method has a similar accuracy as the conventional technique. However, with the DCRM method, it only takes {approx}15 min per bank from the beginning of rod insertion to the determination of measured static worth. From its performance, one can conclude that the DCRM method is an effective replacement for the conventional rod worth measurement method.

  16. New applications of neutron noise theory in power reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, Vasiliy

    2000-04-01

    The present thesis deals with neutron noise theory as applied to three comparatively different topics (or problems) in power reactor physics. Namely they are: theoretical investigation of the possibility to use a newly proposed current-flux (C/F) detector in Pressurized Water Reactors (PWRs) for the localisation of anomalies; both definition and studies on the point kinetic and adiabatic approximations for the relatively recently proposed Accelerator Driven Systems (ADS); development of the general theory of linear reactor kinetics and neutron noise in systems with varying size. One important practical problem is to detect and localise a vibrating control rod pin. The significance comes from the operational experience which indicates that individual pins can execute excessive mechanical vibrations that may lead to damage. Such mechanical vibrations induce neutron noise that can be detected. While the detection is relatively easy, the localisation of a vibrating control rod is much more complicated because only one measuring position is available and one needs to have at least three measured quantities. Therefore it has currently been proposed that the fluctuations of the neutron current vector, called the current noise, can be used in addition to the scalar noise in reactor diagnostic problems. The thesis investigates the possibility of the localization of a vibrating control rod pin in a PWR control assembly by using the scalar neutron noise and the 2-D radial current noise as measured at one central point in the control assembly. An explicit localisation technique is elaborated in which the searched position is determined as the absolute minimum of a minimisation function. The technique is investigated in numerical simulations. The results of the simulation tests show the potential applicability of the method. By design accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and

  17. Compensation by RGMS for misreading reactor power in case of D2O dilution

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sang Hoon; Park, Jae Yoon; Choi, Young San; Kim, Young Ki [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    In a research reactor Neutron Measurement System (NMS) which uses wide range fission chamber as neutron detector is applied to measure the reactor power. This system has rapid response to power and stable accuracy for wide range. But this has some concerns of relative measured values depending on the installed location of neutron detector and also may cause the loss of accuracy when dilution of heavy water in the D2O tank happens. The NMS is not only used for reactor control and but also used for reactor protection system. Accordingly faulted reactor power with high deviation for second case may lead unexpected increase of the reactor power. In order to prevent this occurrence, Reactor Gamma Measurement System (RGMS) is necessarily applied. Herein the structure, measuring method and application of RGMS will be introduced.

  18. A preliminary investigation of the Topaz II reactor as a lunar surface power supply

    Energy Technology Data Exchange (ETDEWEB)

    Polansky, G.F. [Sandia National Labs., Albuquerque, NM (United States); Houts, M.G. [Los Alamos National Lab., NM (United States)

    1995-12-31

    Reactor power supplies offer many attractive characteristics for lunar surface applications. The Topaz II reactor resulted from an extensive development program in the former Soviet Union. Flight quality reactor units remain from this program and are currently under evaluation in the United States. This paper examines the potential for applying the Topaz II, originally developed to provide spacecraft power, as a lunar surface power supply.

  19. KARAKTERISASI DAN AKTIVITAS KATALITIK BERBAGAI VARIASI KOMPOSISI KATALIS Ni DAN ZnBr2 DALAM Γ-Al2O3 UNTUK ISOMERISASI DAN HIDROGENASI (R-(+-SITRONELAL

    Directory of Open Access Journals (Sweden)

    ED Iftitah

    2014-06-01

    -EELS. The catalysts spesific surface area and porosity determined by adsorption-desorption of dinitrogen at 77 K. Pore distribution and volume were determined by the desorption isotherm at P/Po ≥ 0.3. The result showed that there was correlation between the catalyst characteristics and catalytic activity to (R-(+-Citronellal isomerisation and hydrogenation product. The activity test were performed in a mini fixed bed reactor with 0.5 g of catalyst and 3 mL of (R-(+-Citronellal using N2 and/or H2 gas atmosphere in 5 and 24 hours at each temperature 90 and 120 oC. The catalyst composition of the choice of gas atmosphere and temperature greatly influenced the activity as well as the selectivity of isomerisation and hydrogenation product formation. The highest conversion was achieved for A3=Ni/ZnBr2/γ-Al2O3 (2:3 with complete conversion of (R-(+-Citronellal were obtained when it was running in 5 hours (4 hours N2 + 1 hour H2 at 90 oC and 24 hours (4 hours N2 + 20 hour H2 at 120 oC.

  20. General Atomic Company fusion experimental power reactor conceptual design

    International Nuclear Information System (INIS)

    The results of a two-year, conceptual design study of a fusion experimental power reactor (EPR) are presented. For this study, the primary objectives of the EPR are to obtain plasma ignition conditions and produce net electrical power. The design features a Doublet plasma configuration with a major radius of 4.5 meters. The average plasma beta is 10 percent which yields a thermonuclear power level of 410 MW during a 105 second burn period. With a duty factor of 0.84, the gross electrical output is 124 MW(e) while the net output is 37 MW(e). The design features a 25 cm thick, helium cooled, modular, stainless steel blanket with a 1 cm thick, thermal radiation-cooled silicon carbide first wall. Sufficient shielding is provided to permit contact maintenance outside the shield envelop within 24 hours after shutdown. An overall facility concept was developed, including a superheated steam cycle power conversion system. Preliminary cost estimates and construction schedules were also developed

  1. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Science.gov (United States)

    2010-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which...

  2. Energy analysis and carbon dioxide emission of Tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Energy gain and carbon dioxide (CO2) emission of tokamak fusion power reactors are evaluated in this study compared with other reactor types, structural materials, and other Japanese energy sources currently in use. The reactors treated in this study are (1) a conventional physics performance international thermonuclear experimental reactor (ITER), like a reactor based upon the ITER engineering design activity (ITER-EDA), (2) a RS (reversed shear) reactor using the reversed shear safety-factor/plasma current profile, and (3) a ST (spherical torus) reactor based upon the final version of the advanced reactor innovative engineering study ST (ARIES-ST). The input energy and CO2 emission from these reactors are calculated by multiplying the weight or cost of the fusion reactor components by the energy intensity and/or with the CO2 intensity data, which are updated as often as possible. The ITER cost estimation is estimated based on the component unit costs. The following results were obtained: (1) The RS and the ST reactor can double the energy gain and reduce CO2 emission by one-half compared with the ITER-like reactor. (2) Silicon carbide (SiC) used as the structural material of inner vessel components is best for energy gain and CO2 emission reduction. (3) The ITER-like reactor is slightly superior to a photovoltaic (PV) with regard to CO2 emission. (4) The energy gain and CO2 emission intensity of the RS reactor and the ST reactor are as excellent as those of a fission reactor and a hydro-powered generator. These results indicate that a tokamak fusion power reactor can be one of the most effective power-generating technologies both in high-energy payback gains and reduction of CO2

  3. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  4. Calculations on heavy-water moderated and cooled natural uranium fuelled power reactors

    International Nuclear Information System (INIS)

    One of the codes that the Instituto Nacional de Investigaciones Nucleares (Mexico) has for the nuclear reactors design calculations is the LEOPARD code. This work studies the reliability of this code in reactors design calculations which component materials are the same of the heavy water moderated and cooled, natural uranium fuelled power reactors. (author)

  5. Preliminary Development of Thermal Power Calculation Code H-Power for a Supercritical Water Reactor

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2014-01-01

    Full Text Available SCWR (Supercritical Water Reactor is one of the promising Generation IV nuclear systems, which has higher thermal power efficiency than current pressurized water reactor. It is necessary to perform the thermal equilibrium and thermal power calculation for the conceptual design and further monitoring and calibration of the SCWR. One visual software named H-Power was developed to calculate thermal power and its uncertainty of SCWR, in which the advanced IAPWS-IF97 industrial formulation was used to calculate the thermodynamic properties of water and steam. The ISO-5167-4: 2003 standard was incorporated in the code as the basis of orifice plate to compute the flow rate. New heat balance model and uncertainty estimate have also been included in the code. In order to validate H-Power, an assessment was carried out by using data published by US and Qinshan Phase II. The results showed that H-Power was able to estimate the thermal power of SCWR.

  6. A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring

    Science.gov (United States)

    Huang, Haiyu; Chen, Pai-Yen; Hung, Cheng-Hsien; Gharpurey, Ranjit; Akinwande, Deji

    2016-01-01

    Autonomous liquid-volume monitoring is crucial in ubiquitous healthcare. However, conventional approach is based on either human visual observation or expensive detectors, which are costly for future pervasive monitoring. Here we introduce a novel approach based on passive harmonic transponder antenna sensor and frequency hopping spread spectrum (FHSS) pattern analysis, to provide a very low cost wireless μL-resolution liquid-volume monitoring without battery or digital circuits. In our conceptual demonstration, the harmonic transponder comprises of a passive nonlinear frequency multiplier connected to a metamaterial-inspired 3-D antenna designed to be highly sensitive to the liquid-volume within a confined region. The transponder first receives some FHSS signal from an interrogator, then converts such signal to its harmonic band and re-radiates through the antenna sensor. The harmonic signal is picked up by a sniffer receiver and decoded through pattern analysis of the high dimensional FHSS signal strength data. A robust, zero power, absolute accuracy wireless liquid-volume monitoring is realized in the presence of strong direct coupling, background scatters, distance variance as well as near-field human-body interference. The concepts of passive harmonic transponder sensor, metamaterial-inspired antenna sensor, and FHSS pattern analysis based sensor decoding may help establishing cost-effective, energy-efficient and intelligent wireless pervasive healthcare monitoring platforms.

  7. Key Technology for Digital Mock-up Research and Development of Complex Product%复杂产品数字样机开发的关键技术

    Institute of Scientific and Technical Information of China (English)

    南长峰; 孟祥海; 蔡真

    2011-01-01

    In order to study the key technology involved in the digital mock-up research and development of complex products, aeroengine is taken as example to analyze the methods of modeling parts, assembly and associated design in the digital prototype. Firstly, 3D models of aeroengine parts are established through the CAD software. Then, for the purpose of studying the lightweight, constrains, interference and other problems occurred in the assembly process, the sub-assemblies and full assembly of the engine prototype are conducted based on those 3D models. Finally, by means of utilizing WAVE technology,the associated parametric design of the blisk is achieved.By replacing the physical prototype with the digital mockup,it promotes the design and manufacturing development of high-quality, high-efficiency and low-cost products.%为研究复杂产品数字样机开发中的关键技术,本文以航空发动机为例,对其数字样机的建模、装配和关联设计方法进行了分析.首先,基于CAD软件,建立了航空发动机零部件三维模型;其次,对上述零部件进行了子装配与整机装配,并对其过程中的轻量化模型、约束关系和干涉检查等问题进行了研究;最后,通过WAVE技术,实现整体叶盘的关联参数设计,使数字样机最优地取代物理样机,推进了高质、高效、低成本的产品设计和制造技术的发展.

  8. Questions to the reactors power upgrade of the Nuclear Power Plant of Laguna Verde

    International Nuclear Information System (INIS)

    The two reactors of the Nuclear Power Plant of Laguna Verde (NPP-L V) were subjected to power upgrade labors with the purpose of achieving 20% upgrade on the original power; these labors concluded in August 24, 2010 for the Reactor 1 and in January 16, 2011 for the Reactor 2, however in January of 2014, the NNP-L V has not received by part of the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) the new Operation License to be able to work with the new power, because it does not fulfill all the necessary requirements of safety. In this work is presented and analyzed the information obtained in this respect, with data provided by the Instituto Federal de Acceso a la Informacion Publica y Proteccion de Datos (IFAI) and the Comision Federal de Electricidad (CFE) in Mexico, as well as the opinion of some workers of the NPP-L V. The Governing Board of the CFE announcement that will give special continuation to the behavior on the operation and reliability of the NPP-L V, because the frequency of not announced interruptions was increased 7 times more in the last three years. (Author)

  9. Determination of critical assembly absolute power using post-irradiation activation measurement of week-lived fission products.

    Science.gov (United States)

    Košťál, Michal; Švadlenková, Marie; Milčák, Ján; Rypar, Vojtěch; Koleška, Michal

    2014-07-01

    The work presents a detailed comparison of calculated and experimentally determined net peak areas of longer-living fission products after 100 h irradiation on a reactor with power of ~630 W and several days cooling. Specifically the nuclides studied are (140)Ba, (103)Ru, (131)I, (141)Ce, (95)Zr. The good agreement between the calculated and measured net peak areas, which is better than in determination using short lived (92)Sr, is reported. The experiment was conducted on the VVER-1000 mock-up installed on the LR-0 reactor. The Monte Carlo approach has been used for calculations. The influence of different data libraries on results of calculation is discussed as well.

  10. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    International Nuclear Information System (INIS)

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive ''box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs

  11. Zero power protection of generator%发电机零功率保护

    Institute of Scientific and Technical Information of China (English)

    乔永成; 寇海荣; 王云辉; 张道农

    2011-01-01

    大型汽轮发电机组突然甩负荷,会使汽轮机组超速、发电机变压器组过电压.利用发电机有功功率作为特征量,通过判断发电机机端有功功率值在极短时间内从一高值(PF>)降至一低值(PF),以机组快速减负荷(RB)工况有功功率的1/3为参考值;有功功率低值(PR<)以发电机组厂用电作为参考值,再加上发电机低电压与主汽门关闭闭锁判据,就能正确区分发电机组是否发生了甩负荷工况.由此判据构成的发电机零功率保护可在发电机组甩负荷初始时间内做出快速反应,能够在发电机突然甩负荷时关闭主汽门、灭磁,将机组转速、端电压升高幅度降至最低.结合某电厂在送出系统中断导致发电机功率不能送出,发电机零功率保护快速动作于全停来保障机组安全的实例,论证了发电机组装设零功率保护的必要性.%Sudden load rejection will lead to the overspeed of turbo-generator and the overvoltage of unit-generator. The sudden drop of generator output active power from PF> to PF< is taken as the criteria,together with the blocking condition of low voltage of generator or close of main steam valve,to detect the load rejection. The PF> is set as onethird of the active power of unit in RB operation and the PF< as the plant power consumption. According to it,the zero power protection can response at the very beginning of load rejection. It shuts down the main steam valve and deexcites the generator to limit the increase of generator rotating speed and terminal voltage. Site operation shows its necessity for the secure operation of unit.

  12. Method of locating a leaking fuel element in a fast breeder power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Honekamp, John R. (Downers Grove, IL); Fryer, Richard M. (Idaho Falls, ID)

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  13. Method of locating a leaking fuel element in a fast breeder power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Honekamp, J.R.; Fryer, R.M.

    1978-03-21

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of /sup 134/Xe to /sup 133/Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  14. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    Science.gov (United States)

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  15. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    Science.gov (United States)

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-10-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  16. Power conversion systems based on Brayton cycles for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J.I., E-mail: linares@upcomillas.es [Rafael Marino Chair on New Energy Technologies. Comillas Pontifical University, Alberto Aguilera, 25-28015 Madrid (Spain); Herranz, L.E. [Unit of Nuclear Safety Research. CIEMAT, Madrid (Spain); Moratilla, B.Y.; Serrano, I.P. [Rafael Marino Chair on New Energy Technologies. Comillas Pontifical University, Alberto Aguilera, 25-28015 Madrid (Spain)

    2011-10-15

    This paper investigates Brayton power cycles for fusion reactors. Two working fluids have been explored: helium in classical configurations and CO{sub 2} in recompression layouts (Feher cycle). Typical recuperator arrangements in both cycles have been strongly constrained by low temperature of some of the energy thermal sources from the reactor. This limitation has been overcome in two ways: with a combined architecture and with dual cycles. Combined architecture couples the Brayton cycle with a Rankine one capable of taking advantage of the thermal energy content of the working fluid after exiting the turbine stage (iso-butane and steam fitted best the conditions of the He and CO{sub 2} cycles, respectively). Dual cycles set a specific Rankine cycle to exploit the lowest quality thermal energy source, allowing usual recuperator arrangements in the Brayton cycle. The results of the analyses indicate that dual cycles could reach thermal efficiencies around 42.8% when using helium, whereas thermal performance might be even better (46.7%), if a combined CO{sub 2}-H{sub 2}O cycle was set.

  17. Reactivity control rod for controlling reactor power distribution

    International Nuclear Information System (INIS)

    Since a cladding tube is situated at the outer side, it undergoes neutron irradiation in a reactor core and also undergoes compression force due to high pressure of reactor coolants to cause a creep phenomenon, and the diameter is reduced as it is used. Then, neutron absorbing rods as reactivity control rods for controlling the power distribution are constituted with a cladding tube, a spacer tube disposed at the central portion of the cladding tube and a borosilicate glass tube disposed between the cladding tube and the spacer tube. The gap between the borosilicate glass tube and the spacer tube is gradually changed so that the inner diameter of the borosilicate glass is increased as it comes closer to the lower end plug. The time of contact between the cladding tube and the spacer tube in the inside is delayed by the constitution of the borosilicate glass tube disposed in the cladding tube of the neutron absorbing rod as the reactivity control rod thereby capable of extending the integral working life time with no rupture of the cladding tube. (N.H.)

  18. Proceedings of the Conference on research reactors application in Yugoslavia

    International Nuclear Information System (INIS)

    The Conference on research reactors operation was organised on the occasion of 20 anniversary of the RB zero power reactor start-up. The presentations showed that research reactors in Yugoslavia, RB, RA and TRIGA had an important role in development of nuclear sciences and technology in Yugoslavia. The reactors were applied in non-destructive testing of materials and fuel elements, development of reactor noise techniques, safety analyses, reactor control methods, neutron activation analysis, neutron radiography, dosimetry, isotope production, etc

  19. Radioactivity effects of Pb-17Li in fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Rocco, P. (Commission of the European Communities, Joint Research Centre, Ispra (Italy)); Zucchetti, M. (Dipt. di Energetica, Politecnico Turin (Italy))

    1991-12-01

    Research on the eutectic Pb-17Li is part of the blanket studies carried out in Europe for fusion power reactors. The use of this breeder makes easier some safety problems as compared to the case of lithium as a consequence of the lower chemical reactivity of Pb-17Li. On the other hand, it increases the radioactivity problems due to the neutron activation of lead and impurities. This paper presents both short-term (accidents) and long-term (waste disposal and recycling) aspects of the Pb-17Li activation products. They include the production, mobilization, release and environmental impact. Concerning accidents, a particular attention is given to Po-210 and Hg-203. Questions related to waste management are also revised. The most attractive solution seems that of recycling the spent Pb-17Li. This will be possible about 20 y after removal from service. As an alternative to recycling, the breeder disposal as radioactive waste is discussed. (orig.).

  20. Non-Power Reactor Operator Licensing Examiner Standards

    International Nuclear Information System (INIS)

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR Part 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, this standard will be revised periodically to accommodate comments and reflect new information or experience

  1. Non-Power Reactor Operator Licensing Examiner Standards. Revision 1

    International Nuclear Information System (INIS)

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, these standards will be revised periodically to accommodate comments and reflect new information or experience

  2. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  3. A Basic LEGO Reactor Design for the Provision of Lunar Surface Power

    Energy Technology Data Exchange (ETDEWEB)

    John Darrell Bess

    2008-06-01

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for

  4. Spin-orbit relaxation of Br ((2)P(sub 1/2))

    Science.gov (United States)

    Johnson, R. O.; Katapski, S. M.; Perram, G. P.; Roh, W. B.; Tate, R. F.

    Pulsed and steady-state photolysis experiments have been conducted to determine the rate coefficients for collisional deactivation of the spin-orbit excited state atomic bromine, Br ((2)P(sub 1/2)). Pulsed lifetime studies for quenching by Br2 and CO2 established absolute rate coefficients at room temperature of k(sub Br2) = 1.2 +/- 10(exp -12) and k(sub CO2) = 1.5 +/- 0.3 x 10(exp -11)/cc/molecule-s. Steady-state photolysis methods were used to determine the quenching rates for the rare gases, N2, O2, H2, D2, NO, NO2, N2O, SF6, CF4, CH4, CO, CO2, COS, SO2, H2S, HBr, HCl, and HI relative to that for Br2.

  5. Outline of the safety research results, in the power reactor field, fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has promoted the safety research in fiscal year of 1996 according to the Fundamental Research on Safety Research (fiscal year 1996 to 2000) prepared on March, 1996. Here is described on the research results in fiscal year 1996, the first year of the 5 years programme, and whole outline of the fundamental research on safety research, on the power reactor field (whole problems on the new nuclear converter and the fast breeder reactor field and problems relating to the power reactor in the safety for earthquake and probability theoretical safety evaluation field). (G.K.)

  6. Development of Power Controller System based on Model Reference Adaptive Control for a Nuclear Reactor

    International Nuclear Information System (INIS)

    The Reactor TRIGA PUSPATI (RTP)-type TRIGA Mark II was installed in the year 1982. The Power Controller System (PCS) or Automated Power Controller System (APCS) is very important for reactor operation and safety reasons. It is a function of controlled reactivity and reactor power. The existing power controller system is under development and due to slow response, low accuracy and low stability on reactor power control affecting the reactor safety. The nuclear reactor is a nonlinear system in nature, and it is power increases continuously with time. The reactor parameters vary as a function of power, fuel burnup and control rod worth. The output power value given by the power control system is not exactly as real value of reactor power. Therefore, controller system design is very important, an adaptive controller seems to be inevitable. The method chooses is a linear controller by using feedback linearization, for example Model Reference Adaptive Control. The developed APCS for RTP will be design by using Model Reference Adaptive Control (MRAC). The structured of RTP model to produce the dynamic behaviour of RTP on entire operating power range from 0 to 1MWatt. The dynamic behavior of RTP model is produced by coupling of neutronic and thermal-hydraulics. It will be developed by using software MATLAB/Simulink and hardware module card to handle analog input signal. A new algorithm for APCS is developed to control the movement of control rods with uniformity and orderly for RTP. Before APCS test to real plant, simulation results shall be obtained from RTP model on reactor power, reactivity, period, control rod positions, fuel and coolant temperatures. Those data are comparable with the real data for validation. After completing the RTP model, APCS will be tested to real plant on power control system performance by using real signal from RTP including fail-safe operation, system reliable, fast response, stability and accuracy. The new algorithm shall be a satisfied

  7. Repair of the NRU Reactor Vessel: Technical Challenges and Lessons Learned

    International Nuclear Information System (INIS)

    Full text: In May 2009, following a Class 4 power outage that affected most of Eastern Ontario, including the Chalk River Laboratories site, Atomic Energy of Canada Limited (AECL) announced to its various stakeholders that a small heavy-water leak in the NRU reactor had been detected during routine monitoring while the reactor was being readied for return to service. Over the next 15 months AECL located, inspected, repaired and returned the NRU reactor to service. This presentation will focus on the extensive efforts required to support the unique activities associated with reactor vessel inspection and repair including initial assessment, repair site challenges, repair preparation and finally repair execution. The presentation will summarize: - Initial leak search and assessment of the vessel condition through the use of specialized tooling and non-destructive evaluation which resulted in one of the largest single NDE inspection campaigns ever carried out in the nuclear industry; - Challenges of executing a repair through 12 cm access ports at a distance of nine meters including the development of the specialized tooling; - The importance of development of repair techniques through mock up testing to perform welding repairs on a thin wall aluminium vessel and the measures taken and engineering challenges overcome to achieve a successful repair; - The final repair process, including site preparation, weld execution and final NDE inspection techniques; - Challenges encountered and lesson learned during the execution of weld repair, NDE inspections, and return-to-service of the reactor. (author)

  8. Response of pressurized water reactor (PWR) to network power generation demands

    International Nuclear Information System (INIS)

    The flexibility of the PWR type reactor in terms of response to the variations of the network power demands, is demonstrated. The factors that affect the transitory flexibility and some design prospects that allow the reactor fits the requirements of the network power demands, are also discussed. (M.J.A.)

  9. 76 FR 74630 - Making Changes to Emergency Plans for Nuclear Power Reactors

    Science.gov (United States)

    2011-12-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION 10 CFR Parts 50 and 52 RIN 3150-AI10 Making Changes to Emergency Plans for Nuclear Power Reactors... Emergency Plans for Nuclear Power Reactors.'' This guide describes a method that the NRC staff...

  10. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control for nuclear power reactors. (a) Definitions—(1) Inerted atmosphere means a containment atmosphere...

  11. Development of a Robust Tri-Carbide Fueled Reactor for Multimegawatt Space Power and Propulsion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Samim Anghaie; Travis W. Knight; Johann Plancher; Reza Gouw

    2004-08-11

    An innovative reactor core design based on advanced, mixed carbide fuels was analyzed for nuclear space power applications. Solid solution, mixed carbide fuels such as (U,Zr,Nb)c and (U,Zr, Ta)C offer great promise as an advanced high temperature fuel for space power reactors.

  12. MEASUREMENT ERROR EFFECT ON THE POWER OF THE CONTROL CHART FOR ZERO-TRUNCATED BINOMIAL DISTRIBUTION UNDER STANDARDIZATION PROCEDURE

    Directory of Open Access Journals (Sweden)

    Anwer Khurshid

    2014-12-01

    Full Text Available Measurement error effect on the power of control charts for zero truncated Poisson distribution and ratio of two Poisson distributions are recently studied by Chakraborty and Khurshid (2013a and Chakraborty and Khurshid (2013b respectively. In this paper, in addition to the expression for the power of control chart for ZTBD based on standardized normal variate is obtained, numerical calculations are presented to see the effect of errors on the power curve. To study the sensitivity of the monitoring procedure, average run length (ARL is also considered.

  13. Fission power: a search for a ''second-generation'' reactor

    International Nuclear Information System (INIS)

    This report touches on the history of US fission reactors and explores the current technical status of such reactors around the world, including experimental reactors. Its purpose is to identify, evaluate, and rank the most promising concepts among existing reactors, proposed but unadopted designs, and what can be described as ''new'' concepts. Also discussed are such related concerns as utility requirements and design considerations. The report concludes with some recommendations for possible future LLNL involvement

  14. Tokamak experimental power reactor conceptual design. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 years. The EPR operates in a pulsed mode at a frequency of approximately 1/min., with an approximate 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2-cm thick stainless steel, and has 2-cm thick detachable, beryllium-coated coolant panels mounted on the interior. An 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H/sub 2/O. Sixteen niobium-titanium superconducting toroidal-field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic-heating and equilibrium-field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam-injectors, which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-converters.

  15. Tokamak experimental power reactor conceptual design. Volume I

    International Nuclear Information System (INIS)

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 years. The EPR operates in a pulsed mode at a frequency of approximately 1/min., with an approximate 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2-cm thick stainless steel, and has 2-cm thick detachable, beryllium-coated coolant panels mounted on the interior. An 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H2O. Sixteen niobium-titanium superconducting toroidal-field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic-heating and equilibrium-field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam-injectors, which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-converters

  16. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    International Nuclear Information System (INIS)

    Burnable poisons are used in all modern nuclear reactors to permit higher loading of fuel without the necessity of an overly large control rod system. This not only permits a longer core life but can also be used to level the power distribution. Commercial nuclear reactors commonly use B4C in separate non-fueled rods and more recently, zirconium boride coatings on the fuel pellets or gadolinium oxide mixed with the fuel. Although the advantages are great, there are problems with using these materials. Boron, which is an effective neutron absorber, transmutes to lithium and helium upon absorption of a neutron. Helium is insoluble and is eventually released to the interior of the fuel rod, where it produces an internal pressure. When sufficiently high, this pressure stress could cause separation of the cladding from the fuel, causing overly high centerline temperatures. Gadolinium has several very strongly absorbing isotopes, but not all have large cross sections and result in residual burnable poison reactivity worth at the end of the fuel life. Even if the amount of this residual absorber is small and the penalty in operation small, the cost of this penalty, even if only several days, can be very high. The objective of this investigation was to study the performance of single isotopes in order to reduce the residual negative reactivity left over at the end of the fuel cycle. Since the behavior of burnable poisons can be strongly influenced by their configuration, four forms for the absorbers were studied: homogeneously mixed with the fuel, mixed with only the outer one-third of the fuel pellet, coated on the perimeter of the fuel pellets, and alloyed with the cladding. In addition, the numbers of fuel rods containing burnable poison were chosen as 8, 16, 64, and 104. Other configurations were chosen for a few special cases. An enrichment of 4.5 wt% 235U was chosen for most cases for study in order to achieve a 4-year fuel cycle. A standard pressurized water reactor

  17. Evaluation of CO2 emission in the life cycle of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Global warming problem is one of the most serious problems which human beings are currently face. Carbon Dioxide (CO2) from power plants is considered one of the major causes of the global warming this study, CO2 emission from Tokamak fusion power plants are compared with those from conventional present power generating technologies. Plasma parameters are calculated by a systems code couples the ITER physics, TF coil shape, and cost calculation. CO2 emission from construction and operation is evaluated from summing up component volume times CO2 emission intensities of the composing materials. The uncountable components on such as reactor building, balance of plants, etc., are scaled from the ITER referenced power reactor (ITER-like) by use of Generomak model. Two important findings are revealed. Most important finding- is that CO2 emissions from fusion reactors are less than that from PV, and less than double of that from fission reactor. The other findings are that (i) most CO2 emissions from fusion reactors are from materials, (ii) CO2 emissions from reactor construction becomes almost 60% to 70%, rest from reactor operation, and (m) the RS reactor can reduce CO2 emission half compared with the ITER-like reactor. In conclusion, tokamak fusion reactors are excellent because of their small CO2 emission intensity, and they can be one of effective energy supply technologies to solve global warming. (author)

  18. Study of power peak migration due to insertion of control bars in a PWR reactor

    International Nuclear Information System (INIS)

    This paper aims to present a study on the power distribution behavior in a PWR reactor, considering the intensity and the migration of power peaks as is the insertion of control rods in the core banks. For this, the study of the diffusion of neutrons in the reactor was adopted by computer simulation that uses the finite difference method for numerically solving the neutron diffusion equation to two energy groups in steady state and in symmetry of a fourth quarter core. We decided to add the EPRI-9R 3D benchmark thermal-hydraulic parameters of a typical power PWR. With a new configuration for the reactor, the positions of the control rods banks were also modified. Due to the new positioning of these banks in the reactor, there was intense power gradients, favoring the occurrence of critical situations and logically unconventional for operation of a nuclear reactor. However, these facts have led interesting times for the study on the power distribution behavior in the reactor, showing axial migration of power peaks and mainly the effect of the geometry of the core on the latter. Based on the distribution of power was evident the increase of the power in elements located in the central region of the reactor core and, concomitantly, the reduction in elements of its periphery. Of course, the behavior exhibited by the simulated reactor is not in agreement with that expected in an actual reactor, where the insertion of control rods banks should lead to reduced power throughout the core as evenly as possible, avoiding sharp power peaks, standardizing the burning fuel, controlling reactivity deviations and acting in reactor shutdown

  19. The Improvement of Plant Efficiency by Testing and Revising of the Reactor Thermal Power Calculation Program

    International Nuclear Information System (INIS)

    Since the uncertainty of flow measurement mostly affects the result of reactor thermal power calculation, reactor power in most of Nuclear Power Plants(NPPs) is controlled by excore Nuclear Instrumentation System(NIS) based on SPPC which has less uncertainty of flow measurement by using venture-meter. Real time monitoring system for reactor thermal power of Kori unit 3 and 4 has been established since 1992, and plant efficiency was improved by detecting errors and revising the program in 2012 following the engineering judgement that reactor thermal power varies according to steam generator blowdown flow change, unit conversion constant, and thermal expansion coefficient, etc. The reactor thermal power calculation program for Kori unit 3 and 4 was developed in 1992 and operated for 20 years without any correction or revision. Based on the engineering judgement that reactor thermal power varies according to change of steam generator blowdown flow, we conducted a research and found a couple of errors in steam generator blowdown specific volume, unit conversion constants for differential pressure of main feed water inlet flow, and thermal expansion coefficient of venture-meter which measures main feed water flow for steam generator. By correcting the errors in reactor thermal power program, generator power increased by 3.2 MWe for two units, Kori 3 and 4. Considering recent capacity factor of the plant, additional net electricity of 26,434 MWh was produced annually

  20. Neutronics and pumping power analyses on the Tokamak reactor for the fusion-biomass hybrid concept

    International Nuclear Information System (INIS)

    Highlights: • MCNP analyses on a Tokamak with LiPb-cooled components shows concentrations of nuclear heating at the in-board region in addition to the out-board region. • Required pumping power of LiPb coolants for the nuclear heating exponentially increases as fusion power increases. • Pumping power analysis for the divertor also indicates the increasing pumping power as the fusion power increases. -- Abstract: The authors aim to develop a fusion-biomass combined plant concept with a small power fusion reactor. A concern for the small power reactor is the coolant pumping power which may significantly decreases the apparent energy outcome. Thus pressure loss and corresponding pumping power were studied for a designed Tokamak reactor: GNOME. First, 3-D Monte-Carlo Neutron transport analysis for the reactor model with dual-coolant blankets was taken in order to simulate the tritium breeding ability and the distribution of nuclear heat. Considering calculated concentration of nuclear heat on the in-board blankets, pressure loss of the liquid LiPb at coolant pipes due to MHD and friction forces was analyzed as a function of fusion power. It was found that as the fusion power increases, the pressure loss and corresponding pumping power exponentially increase. Consequently, the proportion of the pumping power to the fusion power increases as the fusion power increases. In case of ∼360 MW fusion power operation, pumping power required for in-board cooling pipes was estimated as ∼1% of the fusion power

  1. Tokamak power systems studies, FY 1986: A second stability power reactor

    International Nuclear Information System (INIS)

    This report presents the results of the work at Argonne National Laboratory (ANL) during FY-1986 on the Tokamak Power Systems Study (TPSS). The purpose of the TPSS is to explore and develop ideas that would lead to improvements in the tokamak as a power reactor concept. The work at ANL concentrated on plasma engineering, impurity control, and the blanket/first wall/shield system. The work in FY-1986 extended these studies and focused them on a reference design point. The key features of the design point include: second stability regime with higher β and larger aspect ratio, steady-state operation with fast wave current drive, impurity control via a self-pumped slot limiter, a self-cooled liquid lithium, vanadium alloy blanket with simplified poloidal flow, and reduced reactor building volume with vertical lift maintenance. Sufficient work was carried out to report a preliminary cost estimate. In addition, reactor implications of steady-state operation in the first stability regime were also studied. 174 refs., 124 figs., 65 tabs

  2. Design features of Advanced Power Reactor (APR) 1400 steam generator

    International Nuclear Information System (INIS)

    Advanced Power Reactor 1400 (APR 1400) which is to achieve the improvement of the safety and economical efficiency has been developed by Korea Hydro and Nuclear Power Co., Ltd. (KHNP) with the support from industries and research institutes. The steam generator for APR 1400 is an evolutionary type from System 80+, which is the recirculating U-tube heat exchanger with integral economizer. Compared to the System 80+ steam generator, it is focused on the improved design features, operating and design conditions of APR 1400 steam generator. Especially, from the operation experience of Korean Standard Nuclear Power Plant (KSNP) steam generator, the lessons-learned measures are incorporated to prevent the tube wear caused by flow-induced vibration (FIV). The concepts for the preventive design features against FIV are categorized to two fields; flow distribution and dynamic response characteristics. From the standpoint of flow distribution characteristics, the egg-crate flow distribution plate (EFDP) is installed to prevent the local excessive flow loaded on the most susceptible tube to wear. The parametric study is performed to select the optimum design with the efficient mitigation of local excessive flow. ATHOS3 Mod-01 is used and partly modified to analyze the flow field of the APR 1400 steam generator. In addition, the upper tube bundle support is designed to eliminate the presence of tube with a low natural frequency. Based on the improved upper tube bundle support, the modal analysis is performed and compared with that of System 80+. Using the results of flow distribution and modal analysis, the two mechanisms of flow-induced vibration are investigated; fluid-elastic instability (FEI) and random turbulence excitation (RTE). (authors)

  3. Thorium fuel cycle in VBER reactor for floating nuclear power plants

    International Nuclear Information System (INIS)

    Construction of Floating Nuclear Power Plants, FNPPs, is currently under way for supplying power in remote regions in the coastal zone, power-generating units as components of nuclear water desalination complexes and for supplying power for marine oil drilling platforms, etc. In this paper the innovative small sized VBER-150 reactor plant, based on the experience in design and operation of marine modular reactors and NPPs with reactors of the VVER type, is reviewed and their neutron-physical characteristics for Thorium based fuel cycles are calculated with the well-known MCNP computational code. (Author)

  4. Development of technical requirements on the in-reactor control system (SVRK) in WWER reactor with medium output power

    International Nuclear Information System (INIS)

    General concepts of in-reactor control in WWER reactors with medium output power and development of requirements on in-reactor control starting with the first generation of WWER-440 up WWER-640 with regard to the assurance of monitoring core conditions are dealt within the paper. The basis of WWER in-reactor control is provided by in-reactor sensors distributed in a stationary pattern (thermocouples for control of coolant temperature at assembly exits and sensors of local energy generation of self-powered detectors of SPD type). A new generation of WWER reactors with medium output is planned to operate both in basic load mode, as well as in maneuverability mode and SVRK systems in WWER-640 thus have to ensure the implementation of the following new requirements:generation of control signals for local core parameters;complex diagnostics of core conditions;prognosis of core characteristics. The new requirements on in-core control system (including class B from IEC 1226) need also a modernization and development of basic elements including in-reactor sensors for coolant temperature control. Issues and experience from in-core control system modernization at existing WWER reactors are also analyzed in the paper. While modernizing the existing WWER in relation to the use of new fuel cycles, up rating of thermal output and maneuverability of power units, it is advisable to perform a complete modernization and assure a possibility for phased implementation of current technical requirements on the in-core control system and on its basic elements. (Authors)

  5. Design and fabrication of steam generators (superheaters) for the prototype fast breeder reactor 'MONJU'

    International Nuclear Information System (INIS)

    In liquid metal-cooled fast breeder reactors, steam generators are one of the important equipments, and emphasis has been placed on their development in various countries in the world. Also in Japan, centering around the Power Reactor and Nuclear Fuel Development Corp., the research and development in the wide range from the fundamentals on heat transfer and flow, materials and strength for steam generators to the manufacture, operation and various tests of large mock-ups including a 50 MW steam generator have been carried out. Further, as for the manufacture and inspection, the improvement of the method of welding tubes and tube plates, the adoption of a fine focus X-ray inspection apparatus and others were carried out. Moreover, as the maintenance technique, the ultrasonic flaw detection probes for the heating tubes were developed. The steam generators (superheaters) for the FBR 'Monju' power station are the heat exchangers of helical coil tube-shell type using SUS 321 steel as the heating tube material. Based on the results of these research and development, the design and manufacture of these superheaters and their installation in the reactor auxiliary building of the FBR 'Monju' power station were completed. The outline of the design, the research and development and the manufacture of the steam generators (superheaters) are reported. (K.I.)

  6. Preapplication safety evaluation report for the Power Reactor Innovative Small Module (PRISM) liquid-metal reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Donoghue, J.E.; Donohew, J.N.; Golub, G.R.; Kenneally, R.M.; Moore, P.B.; Sands, S.P.; Throm, E.D.; Wetzel, B.A. [Nuclear Regulatory Commission, Washington, DC (United States). Associate Directorate for Advanced Reactors and License Renewal

    1994-02-01

    This preapplication safety evaluation report (PSER) presents the results of the preapplication desip review for die Power Reactor Innovative Small Module (PRISM) liquid-mew (sodium)-cooled reactor, Nuclear Regulatory Commission (NRC) Project No. 674. The PRISM conceptual desip was submitted by the US Department of Energy in accordance with the NRC`s ``Statement of Policy for the Regulation of Advanced Nuclear Power Plants`` (51 Federal Register 24643). This policy provides for the early Commission review and interaction with designers and licensees. The PRISM reactor desip is a small, modular, pool-type, liquid-mew (sodium)-cooled reactor. The standard plant design consists of dim identical power blocks with a total electrical output rating of 1395 MWe- Each power block comprises three reactor modules, each with a thermal rating of 471 MWt. Each module is located in its own below-grade silo and is co to its own intermediate heat transport system and steam generator system. The reactors utilize a metallic-type fuel, a ternary alloy of U-Pu-Zr. The design includes passive reactor shutdown and passive decay heat removal features. The PSER is the NRC`s preliminary evaluation of the safety features in the PRISM design, including the projected research and development programs required to support the design and the proposed testing needs. Because the NRC review was based on a conceptual design, the PSER did not result in an approval of the design. Instead it identified certain key safety issues, provided some guidance on applicable licensing criteria, assessed the adequacy of the preapplicant`s research and development programs, and concluded that no obvious impediments to licensing the PRISM design had been identified.

  7. Quantitative analysis of economy and environmental compatibility of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    The current worth of the economy, energy gain, carbon dioxide (CO2) emission, and waste disposal of tokamak fusion power reactors are quantitatively evaluated compared with other current Japanese energy sources. The following results were obtained : (1) CO2 emission intensity (i.e., CO2 emission per unit kWh) from the International Thermonuclear Experimental Reactor-Engineering Design Activity (ITER-EDA) scale power reactor (referred to here as the ITER-like reactor), whose physics performance is conventional, can be 25% lower than that of a common household photovoltaic. The energy gain of the ITER-like reactor is comparable to that of a coalfired power plant. The cost is four times higher than that of a fission reactor; however, note that this cost evaluation is based upon FOAK (first-of-a-kind) cost evaluation. (2) The CO2 emission intensities and energy gains of RS and ST reactors are comparable to those of fission reactors. (3) Radioactive waste disposal volume for the ITER-like reactor is similar to that for a fission reactor. We believe that continuing tokamak fusion research and development is worthy, since tokamak fusion is an environmentally compatible future technology. (author)

  8. Application of short-term INAA on the VR-1 VRABEC zero-power reactor

    International Nuclear Information System (INIS)

    Iodine was determined in the thyroid by INAA. In order to eliminate the inhomogeneity problem when using aliquots, the whole organ/lobe was exposed. Technical details of the procedure are given. (P.A.)

  9. Estimated decommissioning cost for the 23 operating nuclear power reactors in Korea

    International Nuclear Information System (INIS)

    The decommissioning of nuclear power reactors requires considerable funds and is carried out over a long period. In order to forecast the total decommissioning funds needed by the licensee as well as provide a basis for industrial strategy and decommissioning activity planning, hence, this paper estimates the annual costs for decommissioning the 23 nuclear power plants in Korea between 2014 and 2083. For this estimation, 4 scenarios for decommissioning the 23 nuclear power reactors were developed and evaluated. (orig.)

  10. Alteration in reactor installation (addition of Unit 2) in the Sendai Nuclear Power Station of Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    The deliveration by the Nuclear Safety Commission was commenced on the alteration in reactor installation, as it had been inquired by the Ministry of International Trade and Industry. The alteration is the additional installation of the reactor No. 2 in the Sendai Nuclear Power Station, Kyushu Electric Power Co., Inc. It is a PWR power plant with thermal output of about 2,660 MW (electric output of 890 MW), to be installed, adjoining to the reactor No. 1 of the same type and capacity under construction. In the examination by MITI, it was confirmed that the technological capabilities for its construction and operation and the radiation protection measures in power generation are both sufficient. The contents of the examination include the siting conditions, the location and construction of reactor facilities, etc. (J.P.N.)

  11. Hydrogen in water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    The Commission of the European Community (CEC) and the International Atomic Energy Agency (IAEA) decided in 1989 to update the state of the art concerning hydrogen in water cooled nuclear power reactors by commissioning a report which would review, all the available information to-date and make recommendations for the future. This joint report was prepared by committees formed by the IAEA and by the CEC. The aim of this report is to review the current understanding on the areas in which the research on hydrogen in LWR is conventionally presented, taking into account the results of the latest reported research developments. The main reactions through which hydrogen is produced are assessed together with their timings. An estimation of the amount of hydrogen produced by each reaction is given, in order to reckon their relative contribution to the hazard. An overview is then given of the state of knowledge of the most important phenomena taking place during its transport from the place of production and the phenomena which control the hydrogen combustion and the consequences of combustion under various conditions. Specific research work is recommended in each sector of the presented phenomena. The last topics reviewed in this report are the hydrogen detection and the prevent/mitigation of pressure and temperature loads on containment structures and structures and safety related equipment caused by hydrogen combustion

  12. Design study of toroidal magnets for tokamak experimental power reactors

    International Nuclear Information System (INIS)

    This report contains the results of a six-month study of superconducting toroidal field coils for a Tokamak Experimental Power Reactor to be built in the late 1980s. The designs are for 8 T and 12 T maximum magnetic field at the superconducting winding. At each field level two main concepts were generated; one in which each of the 16 coils comprising the system has an individual vacuum vessel and the other in which all the coils are contained in a single vacuum vessel. The coils have a D shape and have openings of 11.25 m x 7.5 m for the 8 T coils and 10.2 m x 6.8 m for the 12 T coils. All the designs utilize rectangular cabled conductor made from copper stabilized Niobium Titanium composite which operates at 4.2 K for the 8 T design and at 2.5 K for the 12 T design. Manufacturing procedures, processes and schedule estimates are also discussed

  13. Small and medium power reactors: project initiation study, Phase 1

    International Nuclear Information System (INIS)

    In conformity with the Agency's promotional role in the peaceful uses of nuclear energy, IAEA has provided, over the past 20 years, assistance to Member States, particularly developing countries, in planning for the introduction of nuclear power plants in the Small and Medium range (SMPR). However these efforts did not produce any significant results in the market introduction of these reactors, due to various factors. In 1983 the Agency launched a new SMPR Project Initiation Study with the objective of surveying the available designs, examining the major factors influencing the decision-making processes in Developing Countries and thereby arriving at an estimate of the potential market. Two questionnaires were used to obtain information from possible suppliers and prospective buyers. The Nuclear Energy Agency of OECD assisted in making a study of the potential market in industrialized countries. The information gained during the study and discussed during a Technical Committee Meeting on SMPRs held in Vienna in March 1985, along with the contribution by OECD-NEA is embodied in the present report

  14. Nuclear analysis of a tokamak experimental power reactor conceptual design

    International Nuclear Information System (INIS)

    Detailed nuclear analysis of a reference conceptual design for a tokamak experimental power reactor (EPR) is presented. The reference EPR has a 6.25-m major radius and a 2.1-m minor radius circular plasma with a nominal neutron wall loading of 0.5 MW/m2. A 0.28-m-thick blanket of stainless steel surrounds a stainless-steel vacuum vessel. The inner shield consists of stainless steel and B4C and is 0.58 m thick. The 0.97-m-thick outer shield employs lead mortar, stainless steel, and graphite. The neutronics results in the first wall and blanket vary significantly in the poloidal direction due to an outward shift in the deuterium-tritium neutron source distribution and the toroidal curvature. The infinite cylinder approximation overestimates response rates in the first wall compared with toroidal geometry calculations. Neutral beam lines, vacuum ducts, and other penetrations of the blanket and bulk shield represent large (approximately 0.6- to 1.0-m2 cross section) streaming paths for neutrons and require special shielding. A special 0.75-m-thick annular shield surrounds the neutral beam duct after it exists from the bulk shield and extends beyond the toroidal field coil and out to the beam injectors. A pneumatically operated movable shield plug, opening during the pumpdown phase and closing during the plasma burn, is selected as the principal design option for shielding the evacuation ducts

  15. Desalination of seawater with nuclear power reactors in cogeneration

    International Nuclear Information System (INIS)

    The growing demand for energy and hydraulic resources for satisfy the domestic, industrial, agricultural activities, etc. has wakened up the interest to carry out concerning investigations to study the diverse technologies guided to increase the available hydraulic resources, as well as to the search of alternatives of electric power generation, economic and socially profitable. In this sense the possible use of the nuclear energy is examined in cogeneration to obtain electricity and drinkable water for desalination of seawater. The technologies are analysed involved in the nuclear cogeneration (desalination technology, nuclear and desalination-nuclear joining) available in the world. At the same time it is exemplified the coupling of a nuclear reactor and a process of hybrid desalination that today in day the adult offers and economic advantages. Finally, the nuclear desalination is presented as a technical and economically viable solution in regions where necessities of drinkable water are had for the urban, agricultural consumption and industrial in great scale and that for local situations it is possible to satisfy it desalinating seawater. (Author)

  16. Storage of spent fuel from power reactors. 2003 conference proceedings

    International Nuclear Information System (INIS)

    An International Conference on Storage of Spent Fuel from Power Reactors was organized by the IAEA in co-operation with the OECD Nuclear Energy Agency. The conference gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts and international co-operation in this area should take. The conference confirmed that the primary spent fuel management solution for the next decades will be interim storage. While the next step can be reprocessing or disposal, all spent fuel or high level waste from reprocessing must sooner or later be disposed of. The duration of interim storage is now expected to be much longer than earlier projections (up to 100 years and beyond). The storage facilities will have to be designed for these longer storage times and also for receiving spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in the different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made storage a real necessity in the nuclear power industry. Utilities, vendors and regulators alike are addressing this adequately. The IAEA wishes to express appreciation to all chairs and co-chairs as well as all authors for their presentations to the conference and papers included in these proceedings

  17. Nuclear Power Station Kalkar, 300 MWe Nuclear Prototype Power Station with Fast Sodium Cooled Reactor (SNR-300), Short Description of the Reactor Core Mark-Ia

    International Nuclear Information System (INIS)

    The nuclear power station Kalkar is a prototype with a sodium cooled fast reactor (SNR-300) and a thermal power of 762 MW. The initial licensing procedure in 1972 was based on the so-called Mark-I core. During the following years, this core underwent some changes, for instance the thickness of the radial blanket was reduced to lower the electricity generation costs, the design of the absorber systems had been further optimized, and it became clear, that a full core with plutonium from MAGNOX-reactors could not be realized and that fuel from light-water reactors had also to be used. In this licensing document the modified reactor core Mark-Ia is described, and the radiological consequences of the core modification are quantified to be tolerable

  18. Three-Phase High-Power and Zero-Current-Switching OBC for Plug-In Electric Vehicles

    OpenAIRE

    Cheng-Shan Wang; Wei Li; Zhun Meng; Yi-Feng Wang; Jie-Gui Zhou

    2015-01-01

    In this paper, an interleaved high-power zero-current-switching (ZCS) onboard charger (OBC) based on the three-phase single-switch buck rectifier is proposed for application to plug-in electric vehicles (EVs). The multi-resonant structure is used to achieve high efficiency and high power density, which are necessary to reduce the volume and weight of the OBC. This study focuses on the border conditions of ZCS converting with a battery load, which means the variation ranges of the output volta...

  19. Thermodynamic and structural properties of high temperature solid and liquid EuBr2

    DEFF Research Database (Denmark)

    Rycerz, L.; Gadzuric, S.; Ingier-Stocka, E.;

    2005-01-01

    Heat capacity of solid and liq. EuBr2 was measured by differential scanning calorimetry in the temp. range 300-1100 K. The temp. and enthalpy of fusion were also detd. exptl. By combination of these results with the literature data on the entropy at 298.15 K, S(o,m) (EuBr2, s, 298.15 K) , and the......Heat capacity of solid and liq. EuBr2 was measured by differential scanning calorimetry in the temp. range 300-1100 K. The temp. and enthalpy of fusion were also detd. exptl. By combination of these results with the literature data on the entropy at 298.15 K, S(o,m) (EuBr2, s, 298.15 K......) , and the std. molar enthalpy of formation, Delta form H (o,m)(EuBr2, s, 298.15 K), the thermodn. functions of europium dibromide were calcd. up to T = 1300 K. Preliminary structural investigations were conducted both by reflectometry and Raman spectroscopy....

  20. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Approvals § 50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium...

  1. 10 CFR 73.55 - Requirements for physical protection of licensed activities in nuclear power reactors against...

    Science.gov (United States)

    2010-01-01

    ... nuclear power reactors licensed under 10 CFR parts 50 or 52 and authorized to use special nuclear material... activities in nuclear power reactors against radiological sabotage. 73.55 Section 73.55 Energy NUCLEAR... power reactors against radiological sabotage. (a) Introduction. (1) By March 31, 2010, each...

  2. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... analysis for liquid and gaseous radwaste system components for light water nuclear power reactors... COMMISSION Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors AGENCY... Systems for Light-Water-Cooled Nuclear Power Reactors,'' in which the NRC made editorial corrections...

  3. Output Feedback Dissipation Control for the Power-Level of Modular High-Temperature Gas-Cooled Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2011-11-01

    Full Text Available Because of its strong inherent safety features and the high outlet temperature, the modular high temperature gas-cooled nuclear reactor (MHTGR is the chosen technology for a new generation of nuclear power plants. Such power plants are being considered for industrial applications with a wide range of power levels, thus power-level regulation is very important for their efficient and stable operation. Exploiting the large scale asymptotic closed-loop stability provided by nonlinear controllers, a nonlinear power-level regulator is presented in this paper that is based upon both the techniques of feedback dissipation and well-established backstepping. The virtue of this control strategy, i.e., the ability of globally asymptotic stabilization, is that it takes advantage of the inherent zero-state detectability property of the MHTGR dynamics. Moreover, this newly built power-level regulator is also robust towards modeling uncertainty in the control rod dynamics. If modeling uncertainty of the control rod dynamics is small enough to be omitted, then this control law can be simplified to a classical proportional feedback controller. The comparison of the control performance between the newly-built power controller and the simplified controller is also given through numerical study and theoretical analysis.

  4. Civilian Power Program. Part 1, Summary, Current status of reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Author, Not Given

    1959-09-01

    This study group covered the following: delineation of the specific objectives of the overall US AEC civilian power reactor program, technical objectives of each reactor concept, preparation of a chronological development program for each reactor concept, evaluation of the economic potential of each reactor type, a program to encourage the the development, and yardsticks for measuring the development. Results were used for policy review by AEC, program direction, authorization and appropriation requests, etc. This evaluation encompassed civilian power reactors rated at 25 MW(e) or larger and related experimental facilities and R&D. This Part I summarizes the significant results of the comprehensive effort to determine the current technical and economic status for each reactor concept; it is based on the 8 individual technical status reports (Part III).

  5. Efforts to control occupational radiation exposure at Rajasthan Atomic Power Station-1 and 2

    International Nuclear Information System (INIS)

    Station collective dose at Rajasthan Atomic Power Station -1 and 2 was high compared to other new generation Pressurised Heavy Water Reactors (PHWRs). Due to aging of the plant, system radiation levels and radioactivity of the system heavy water have been increasing. In addition maintenance has also increased. Various efforts were initiated to keep the occupational exposures As Low As Reasonably Achievable (ALARA). A number of ways were identified to reduce the radiation levels and collective doses. Important among them were administrative control, indigenous way of shielding, system decontamination, system modification, training, mock-up and pre job briefing. Previous operating experiences, ALARA review, increased radiation protection surveillance, emphasis on use of personnel protective equipment's, good housekeeping and ventilation improvement have also helped in reduction of station collective dose. (author)

  6. Educational laboratory based on a multifunctional analyzer of a reactor of a nuclear power plant with a water-moderated water-cooled reactor

    International Nuclear Information System (INIS)

    Authors presents an educational laboratory Safety and Control of a Nuclear Power Facility established by the Department of Automation for students and specialists of the nuclear power industry in the field of control, protection, and safe exploitation of reactor facilities at operating, constructing, and designing nuclear power plants with water-moderated water-cooled reactors

  7. Application of bilinear control technology in nuclear reactor power adjustment system

    International Nuclear Information System (INIS)

    Bilinear control technology of modern control theory is applied to nuclear reactor engineering. One group point reactor model is used as a bilinear model of nuclear fission. This bilinear system is assured of being globe stability with Lyapunov's stability theorem. And Riccati equation is adopted to realize the optimal control of the system. The simulation results show that a better control effect can be obtained when using the bilinear control of the nuclear reactor power adjustment system

  8. Calculation of the optimum fuel distribution which maximizes the power output of a reactor

    International Nuclear Information System (INIS)

    Using optimal control techniques, the optimum fuel distribution - which maximizes the power output of a thermal reactor - is obtained. The nuclear reactor is described by a diffusion theory model with four energy groups and by assuming plane geometry. Since the analytical solution is impracticable, by using a perturbation method, a FORTRAN program was written, in order to obtain the numerical solution. Numerical results, for a thermal reactor light water moderated, non reflected, are shown. The fissile fuel material considered is Uranium-235. (Author)

  9. Neutron noise analysis techniques in nuclear power reactors

    International Nuclear Information System (INIS)

    The main techniques used in neutron noise analysis of BWR and PWR nuclear reactors are reviewed. Several applications such as control of vibrations in both reactor types, determination of two phase flow parameters in BWR and stability control in BWR are discussed with some detail. The paper contains many experimental results obtained by the main author of this paper. (author)

  10. Reactor dynamics and stability analysis of a burst-mode gas core reactor, Brayton cycle space power system

    International Nuclear Information System (INIS)

    Reactor dynamics and system stability studies are performed on a conceptual burst-mode gaseous core reactor space nuclear power system. This concept operates on a closed Brayton cycle in the burst mode (on the order of 100-MW output for a few thousand seconds) using a disk magnetohydrodynamic generator for energy conversion. The fuel is a gaseous mixture of UF4 or UF6 and helium. Nonlinear dynamic analysis is performed using circulating-fuel, point-reactor-kinetics equations along with thermodynamic, lumped-parameter heat transfer and one-dimensional isentropic flow equations. The gaseous nature of the fuel plus the fact that the fuel is circulating lead to dynamic behavior that is quite different from that of conventional solid-core systems. For the transients examined, Doppler fuel temperature and moderator temperature feedbacks are insignificant when compared with reactivity feedback associated with fuel gas density variations. The gaseous fuel density power coefficient of reactivity is capable of rapidly stabilizing the system, within a few seconds, even when large positive reactivity insertions are imposed; however, because of the strength of this feedback, standard external reactivity insertions alone are inadequate to bring about significant power level changes during normal reactor operation. Additional methods of reactivity control, such as changes in the gaseous of fuel mass flow rate or core inlet pressure, are required to achieve desired power level control. Finally, linear stability analysis gives results that are qualitatively in agreement with the nonlinear analysis

  11. Impact of membrane characteristics on the performance and cycling of the Br-2-H-2 redox flow cell

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, MC; Cho, KT; Spingler, FB; Weber, AZ; Lin, GY

    2015-06-15

    The Br-2/H-2 redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br-2/H-2 redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and addition of a microporous separator layer on this tradeoff is assessed. NR212 (50 mu m) pretreated by soaking in 70 degrees C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm(-2), with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane. (C) 2015 Elsevier B.V. All rights reserved.

  12. Limitations of power conversion systems under transient loads and impact on the pulsed tokamak power reactor

    Science.gov (United States)

    Sager, G. T.; Wong, C. P. C.; Kapich, D. D.; McDonald, C. F.; Schleicher, R. W.

    1993-11-01

    The impact of cyclic loading of the power conversion system of a helium-cooled, pulsed tokamak power plant is assessed. Design limits of key components of heat transport systems employing Rankine and Brayton thermodynamic cycles are quantified based on experience in gas-cooled fission reactor design and operation. Cyclic loads due to pulsed tokamak operation are estimated. Expected performance of the steam generator is shown to be incompatible with pulsed tokamak operation without load leveling thermal energy storage. The close cycle gas turbine is evaluated qualitatively based on performance of existing industrial and aeroderivative gas turbines. Advances in key technologies which significantly improve prospects for operation with tokamak fusion plants are reviewed.

  13. Equipment and piping for nuclear power plants, test and research reactors, and nuclear installations

    International Nuclear Information System (INIS)

    The standard concerns the primary and secondary circuits as well as the safety and protection equipment in nuclear power plants with PWR or LWGR type reactors. Rules for design, manufacturing, erection, operation, and maintenance of the reactors, steam generators, vessels, pumps and housings, and pressure pipes are provided

  14. Safety system challenges in US commercial power reactors

    International Nuclear Information System (INIS)

    United States operating experience, especially the events at Three Mile Island Unit 2 in 1979, Salem Unit 1 in 1983, and Davis-Besse in 1985, has demonstrated that human errors should be expected, that multiple failures can occur, and that the frequency of challenge to safety systems is becoming an important consideration in the probability of a serious transient. To reduce challenges to plant safety, emphasis is shifting from just the mitigation of transients to attention to plant operating systems, the operator, and the routine activities of technicians. Since that date, over 300 reactor years of experience have been accumulated. The United States Nuclear Regulatory Commission (USNRC) has analysed that experience and this paper presents the safety system challenge information for that period (approximately three years). This experience and the root causes for the various challenges are discussed along with the efforts of the NRC and the US operating industry to reduce the frequency. Nuclear steam supply system (NSSS) vendors, utilities, and the Institute of Nuclear Power Operations of the US industry have formulated various programmes to reduce operational transients. Some of the highlights of these programmes are discussed. In addition to reducing the challenge frequency for the matured US plants, both the NRC and the utilities are engaged in programmes to improve substantially the learning curve in the first few years of plant operation. The NRC recently completed an evaluation of the causes for this behaviour. Selected results of this work are discussed. Invariably, these analyses of the US operating experience lead to an identification of the unreliability of some balance-of-plant systems. These balance-of-plant systems in some plants had little redundancy. NRC regulation strategy has not previously focused on this equipment since it was not directly considered to be safety related. Moreover, US plants vary in design, with little or no attention to

  15. Modular reactor strategy as new-generation nuclear power

    International Nuclear Information System (INIS)

    Nuclear industries of the U.S. have been plaqued by serious loss of new orders due to the disturbed construction schedule, the uncertainty of public requirement, etc. It is in the midst of this gloomy environment that the modular reactor strategy emerged out in the U.S. as a new step toward recovering self-supporting nuclear industries. Given the clear incentive to revitalize the sluggish nuclear industries, their modular reactor approach is intended to create trouble-less, low management-risk reactors. Their major goals seem to be a low management risk, suitability for export, and shortened construction schedule. Modular reactors appear to have many advantages over large reactors that can apply not only to the U.S. but to Japan as well, serving for improvement of manufactures' productivity, significant saving of engineering costs, design simplification, reduction of licensing procedures and plant site work, improvement of plant availability, high export potential, significant reduction of total learning costs, expanded selection of plant sites, market-proximate and dispersed siting, reasonable reduction of required isolation distance, and creation of competitive environs. In Japan, most of the R and D items scheduled for the next decade are geared towards large reactors. The advantages of modular reactors, however, would be far-reaching even in Japan, and it would be desirable that their design details and characteristics be evaluated immediately, based on which appropriate follow-on activities should be initiated. (Nogami, K.)

  16. The behavior of reactor power and flux resulting from changes in core-coolant temperature for a miniature neutron source reactor

    International Nuclear Information System (INIS)

    In this work, measurements were performed to verify the theoretical predictions of reactor power and flux parameters that result from changes in core inlet temperature (Tin) and the temperature difference between the coolant inlet and outlet (ΔT) in the Nigeria Research Reactor-1 (NIRR-1), which is a Miniature Neutron Source Reactor (MNSR). The measured data shows that there is a strong dependence of the reactor power on coolant temperature in agreement with the design of MNSR. The experimental parameters were found to be in good agreement with data obtained using a semi-empirical relationship between the reactor power, flux parameters, core inlet temperature, and the coolant temperature rise. The relationship was therefore used to predict the power level of NIRR-1 from its neutron flux parameters to which it has been found to be proportional. The variation of Tin and ΔT with the reactor power and flux was also investigated and the results obtained are hereby discussed

  17. Effective switching mode power supplies common mode noise cancellation technique with zero equipotential transformer models

    OpenAIRE

    Pong, MH; Chan, YP; Poon, NK; Liu, CP

    2010-01-01

    In this paper a transformer construction technique is proposed that effectively cut off the Common Mode (CM) noise voltage passing across the isolated primary and secondary windings. This technique employs the Zero Equipotential Line theory to construct an anti-phase winding. It effectively cuts down CM noise by eliminating the noise voltage across the isolated primary and secondary windings. The concept of maintaining an equipotential line along the bobbin and quiet node connections are just...

  18. Classification of systems for passive afterheat removal from reactor containment of nuclear power plant with water-cooled power reactor

    OpenAIRE

    Khaled, N.; D. V. Shevelev; A. S. Balashevsky

    2014-01-01

    A classification on systems for passive afterheat removal from reactor containment has been developed in the paper.  The classification permits to make a detailed analysis of various concepts pertaining to systems for passive afterheat removal from reactor containment of new generation. The paper considers main classification features of the given systems.

  19. CLASSIFICATION OF SYSTEMS FOR PASSIVE AFTERHEAT REMOVAL FROM REACTOR CONTAINMENT OF NUCLEAR POWER PLANT WITH WATER-COOLED POWER REACTOR

    Directory of Open Access Journals (Sweden)

    N. Khaled

    2014-01-01

    Full Text Available A classification on systems for passive afterheat removal from reactor containment has been developed in the paper.  The classification permits to make a detailed analysis of various concepts pertaining to systems for passive afterheat removal from reactor containment of new generation. The paper considers main classification features of the given systems.

  20. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    International Nuclear Information System (INIS)

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description

  1. Experience of the standardization of the vibratory condition pipe line when working the reactor on powers

    International Nuclear Information System (INIS)

    Analysis of the experience of the standardization of the vibratory condition pipe line and considered approaches of the motivation of the normative requirements is organized in article to vibratory load on pipe lines when working the reactor on powers

  2. Searching for full power control rod patterns in a boiling water reactor using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Jose Luis [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: jlmt@nuclear.inin.mx; Ortiz, Juan Jose [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: jjortiz@nuclear.inin.mx; Requena, Ignacio [Departamento Ciencias Computacion e I.A. ETSII, Informatica, Universidad de Granada, C. Daniel Saucedo Aranda s/n. 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es; Perusquia, Raul [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: rpc@nuclear.inin.mx

    2004-11-01

    One of the most important questions related to both safety and economic aspects in a nuclear power reactor operation, is without any doubt its reactivity control. During normal operation of a boiling water reactor, the reactivity control of its core is strongly determined by control rods patterns efficiency. In this paper, GACRP system is proposed based on the concepts of genetic algorithms for full power control rod patterns search. This system was carried out using LVNPP transition cycle characteristics, being applied too to an equilibrium cycle. Several operation scenarios, including core water flow variation throughout the cycle and different target axial power distributions, are considered. Genetic algorithm fitness function includes reactor security parameters, such as MLHGR, MCPR, reactor k{sub eff} and axial power density.

  3. Thermohydraulic assessment of the RP-10 reactor core to determine the maximum power

    International Nuclear Information System (INIS)

    Thermohydraulic parameters assessment of the RP-10 reactor core from the most thermally demanded (hot channel). Determination of the operation thermal maximum power considering security margins and statistical treatment of uncertainty factors

  4. Welding of stainless steel pool of pressurized water reactor nuclear power station

    International Nuclear Information System (INIS)

    The construction of stainless steel lining of million kilowatt grade pressurized water reactor nuclear power station is a new technology. The author introduces its welding method, parameter verification measure and key factors of construction quality control and so on

  5. Acceptance criteria for the evaluation of nuclear power reactor security plans

    International Nuclear Information System (INIS)

    This guidance document contains acceptance criteria to be used in the NRC license review process. It contains specific criteria for use in evaluating the acceptability of nuclear power reactor security programs as detailed in security plans

  6. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Technical specifications on effluents from nuclear power...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power...

  7. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    Science.gov (United States)

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  8. Nuclear power engineering development on the basis of new conceptions of nuclear reactor and fuel cycle

    International Nuclear Information System (INIS)

    One analyzes the status of nuclear power industry (NPI) and lists the excuses explaining the modest progress of NPI in contrast to the predicted one. It is shown that progress of NPI equivalent to the expansion of power consumers may be ensured by construction of large breeder NPPs. One lists the requirements for reactor and for fuel cycle technologies. The design of the BREST fast UN-PuN fuel and lead-cooling reactor enables to meet the listed requirements

  9. Advanced-power-reactor design concepts and performance characteristics

    Science.gov (United States)

    Davison, H. W.; Kirchgessner, T. A.; Springborn, R. H.; Yacobucci, H. G.

    1974-01-01

    Five reactor cooling concepts which allow continued reactor operation following a single rupture of the coolant system are presented for application with the APR. These concepts incorporate convective cooling, double containment, or heat pipes to ensure operation after a coolant line rupture. Based on an evaluation of several control system concepts, a molybdenum clad, beryllium oxide sliding reflector located outside the pressure vessel is recommended.

  10. Tritium instrumentation for a fusion reactor power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shank, K.E.; Easterly, C.E.

    1976-09-01

    A review of tritium instrumentation is presented. This includes a discussion of currently available in-plant instrumentation and methods required for sampling stacks, monitoring process streams and reactor coolants, analyzing occupational work areas for air and surface contamination, and personnel monitoring. Off-site instrumentation and collection techniques are also presented. Conclusions are made concerning the adequacy of existing instrumentation in relation to the monitoring needs for fusion reactors.

  11. Study of the Utilization BWR Type Nuclear Power Reactor for Desalination Process

    International Nuclear Information System (INIS)

    The needs of fresh water increased by rapid population growth and industrials expansion, but these demands can not be prepared naturally. Following this case, seawater desalination becomes the primer option which can fulfill the need through the nuclear desalination technology. The coupled nuclear power reactor enables to supply thermal energy for auxiliary equipment and pumps operation. The utilization study of power reactor type BWR coupled with desalination process has been performed. The goal of study is to obtain characteristic data of desalted water specification which desalination system coupling with nuclear power plant produced energy for desalination process. The study is carried out by browsing data and information, and comprehensive review of thermal energy correlation between NPP with desalination process installation. According to reviewing are found that the thermal energy and electric power utilization from the nuclear power reactor are enable to remove the seawater to produce desalted water and also to operate auxiliary equipments. The assessment results is VK-300 reactor prototype, BWR type 250 MW(e) power are cogeneration unit can supplied hot steam temperature 285 °C to the extraction turbine to empower 150 MW electric power, and a part of hot steam 130 °C is use to operate desalination process and remind heat is distribute to the municipal and offices at that region. The coupled of VK-300 reactor power type BWR with desalination installation of MED type enable to produce desalted water with high quality distillate. Based on the economic calculation that the VK-300 reactor power of BWR type produced water distillate capacity is 300.000 m3/hour with cost US$ 0.58/m3. The coupling VK-300 reactor power type BWR with MED desalination plant is competitive economically. (author)

  12. Thermal power evaluation of the TRIGA nuclear reactor at CDTN in operations of long duration

    International Nuclear Information System (INIS)

    The standard operations of nuclear research reactor IPR-R1 TRIGA located at CDTN (Belo Horizonte) usually have duration of not more than 8h. However in 2009 two operations for samples irradiations lasted about 12 hours each at a power of 100 kW. These long lasting operations started in the evening and most of them were carried out at night, when there are only small fluctuations in atmosphere temperature. Therefore the conditions were ideal for evaluating the thermal balance of the power dissipated by the reactor core through the forced cooling system. Heat balance is the standard methodology for power calibration of the IPR-R1 reactor. As in any reactor operation, the main operating parameters were monitored and stored by the Data Acquisition System developed for the reactor. These data have been used for the analysis and calculation of the evolution of several neutronic and thermalhydraulic parameters involved in the reactor operation. This paper analyzes the two long lasting operations of the IPR-R1 TRIGA and compares the recorded results for the power dissipated through the primary cooling loop with the results of the power calibration conducted in March 2009. The results corresponded to those of the thermal power calibration within the uncertainty of this methodology, indicating system stability over a period of six months. (author)

  13. Continuous thermal balance monitoring for IEA-R1 nuclear research reactor power determination

    International Nuclear Information System (INIS)

    This research deals with thermal balance calculation for real time power level determination of IEA-R1 nuclear research reactor. It is also shown the development of a supervision software (Visual Basic) of operation parameters. The assembled data acquisition system allows data analysis during reactor operation, giving a reliable measurement of reactor power, and the organization of a data base allows a back-up surveillance of reactor operation whenever necessary. Results obtained from temperature and primary flow are shown in a continuous form and also the Data Base implementation for further studies and analysis of energy balance behavior of the many reactor components. Besides it is planned to manage N-16 activity measurement channel (monitoring) for comparison of acquired data results for thermal calculations. The results of this acquisition and related thermal balance calculations are shown in a continuous shape (On-Line) by means of windows operational system using Visual Basic VB6 software for development. (author)

  14. 77 FR 40092 - License Amendment To Increase the Maximum Reactor Power Level, Florida Power & Light Company, St...

    Science.gov (United States)

    2012-07-06

    ... and limit high temperatures to the mixing zone area specified in the IWFP. The NRC also analyzed the... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION License Amendment To Increase the Maximum Reactor Power Level, Florida Power & Light Company,...

  15. Direct reduction of some benzoic acids to alcohols via NaBH4-Br2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Direct reduction of seven benzoic acids to alcohols via sodium borohydride-bromine (NaBH4-Br2) reagent was developed. The isolated yields for the seven acids to reduce reached 60.6-90.1 %. This new synthesis route has the advantages of simple of application, low cost, mild nature, and satisfactory yields.

  16. Performance evaluation on reactor power control by H{sup {infinity}} controller with gain scaling

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Nobuyuki; Suzuki, Katsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-05-01

    A `gain scaling method` is proposed to improve the performance of reactor power control by the controller based on linear control theory. The method is derived from the simple nonlinearity of the neutron kinetics of reactor that is caused by the cross term of input reactivity and neutronic output. It is the main idea to scale down the control input generated by the linear controller with respect to the reactor power level. The evaluation of the performance of H{sup {infinity}} control system with the gain scaling in time and frequency domains indicates the effectiveness of the proposed method. (author)

  17. PRIS-STATISTICS: Power Reactor Information System Statistical Reports. User's Manual

    International Nuclear Information System (INIS)

    The IAEA developed the Power Reactor Information System (PRIS)-Statistics application to assist PRIS end users with generating statistical reports from PRIS data. Statistical reports provide an overview of the status, specification and performance results of every nuclear power reactor in the world. This user's manual was prepared to facilitate the use of the PRIS-Statistics application and to provide guidelines and detailed information for each report in the application. Statistical reports support analyses of nuclear power development and strategies, and the evaluation of nuclear power plant performance. The PRIS database can be used for comprehensive trend analyses and benchmarking against best performers and industrial standards.

  18. Reactor-Capaсitor Device for Flexible Link Between Non-Synchronous Power Systems

    Directory of Open Access Journals (Sweden)

    Bosneaga V.

    2016-04-01

    Full Text Available In present flexible interconnections for transmission of required active power between different power systems is used, as a rule, so-called DC back-to-back link. The aim of this work is the investigation of proposed reactor-capacitor device for flexible connection of asynchronously alternating current power systems with the same nominal values of frequencies for parallel operation. The reactor-capacitor device was elaborated. The installation develops the idea of controlled reactor alternating current link, and provides reactive power balance in the unit and needed value of the output voltage module. The basic characteristics of reactor-capacitor device for controlled power transmission were investigated. Analytical expressions for device elements parameters were derived. These ensure necessary ratio of voltages modules of linked power systems and reactive power balance of the device at circular output voltage vector rotation for a given load admittance. Obtained parameters ensure constant active power flow between linked asynchronously power systems and device reactive power internal balance.

  19. Sodium coolant purification systems for a nuclear power station equipped with a BN-1200 reactor

    Science.gov (United States)

    Alekseev, V. V.; Kovalev, Yu. P.; Kalyakin, S. G.; Kozlov, F. A.; Kumaev, V. Ya.; Kondrat'ev, A. S.; Matyukhin, V. V.; Pirogov, E. P.; Sergeev, G. P.; Sorokin, A. P.; Torbenkova, I. Yu.

    2013-05-01

    Both traditional coolant purification methods (by means of traps and sorbents for removing cesium), the use of which supported successful operation of nuclear power installations equipped with fast-neutron reactors with a sodium coolant, and the possibility of removing oxygen from sodium through the use of hot traps are analyzed in substantiating the purification system for a nuclear power station equipped with a BN-1200 reactor. It is shown that a cold trap built into the reactor vessel must be a mandatory component of the reactor plant primary coolant circuit's purification system. The use of hot traps allows oxygen to be removed from the sodium coolant down to permissible concentrations when the nuclear power station operates in its rated mode. The main lines of works aimed at improving the performance characteristics of cold traps are suggested based on the results of performed investigations.

  20. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    International Nuclear Information System (INIS)

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations