WorldWideScience

Sample records for bpe pillars thermal

  1. Synthesis, Crystal Structure and Thermal Stability Study of [Cu2(bpe)X2]n (bpe=1,2-trans-bi(4-pyridyl)ethene, X=Cl, Br, I)

    Institute of Scientific and Technical Information of China (English)

    CHEN San-Ping; FAN Guang; GAO Sheng-Li

    2008-01-01

    A series of copper(Ⅰ) halide complexes bridged by bpe (bpe=1,2-trans-bi(4-pyridyl)ethene), [Cu2(bpe)Cl2]n (1),[Cu2(bpe)Br2]n (2) and [Cu2(bpe)I2]n (3) were successfully synthesized and complex 1 has been structurally characterizod by a single crystal X-ray diffraction method.Crystal data for 1 are monoclinic, space group P2(1)/c, a=0.3788(8) nm, b=1.5059(3) nm, c=1.0875(2) nm, β=96.262(4)°, V=0.6165(2) nm3, Z=2, S=1.002, final R indices [I>2σ(I)] R1=0.0288, wR2=0.0579, R index (all data) R1=0.0509, wR2=0.0615.Elemental analyses and IR spectra reveal that the complexes are of isomorphic compounds.In addition, thermogravimetric analyses were also applied to research of the thermal stability of the title complexes.

  2. Pillarization

    NARCIS (Netherlands)

    Maussen, M.; Stone, J.; Dennis, R.M.; Rizova, P.S.; Smith, A.D.; Hou, X.

    2016-01-01

    Pillarization describes a society as divided into a number of "pillars," being compartments standing for the networks of organizations belonging to religious and ideological subcultures. Typically the associations cover a broad range of societal domains (education, media, political parties). The Net

  3. Gamma discrimination in pillar structured thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Q; Radev, R P; Conway, A M; Voss, L F; Wang, T F; Nikolic, R J; Deo, N; Cheung, C L

    2012-03-26

    Solid-state thermal neutron detectors are desired to replace {sup 3}He tube based technology for the detection of special nuclear materials. {sup 3}He tubes have some issues with stability, sensitivity to microphonics and very recently, a shortage of {sup 3}He. There are numerous solid-state approaches being investigated that utilize various architectures and material combinations. By using the combination of high-aspect-ratio silicon PIN pillars, which are 2 {micro}m wide with a 2 {micro}m separation, arranged in a square matrix, and surrounded by {sup 10}B, the neutron converter material, a high efficiency thermal neutron detector is possible. Besides intrinsic neutron detection efficiency, neutron to gamma discrimination is an important figure of merit for unambiguous signal identification. In this work, theoretical calculations and experimental measurements are conducted to determine the effect of structure design of pillar structured thermal neutron detectors including: intrinsic layer thickness, pillar height, substrate doping and incident gamma energy on neutron to gamma discrimination.

  4. Numerical Simulations of Pillar Structured Solid State Thermal Neutron Detector Efficiency and Gamma Discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Conway, A; Wang, T; Deo, N; Cheung, C; Nikolic, R

    2008-06-24

    This work reports numerical simulations of a novel three-dimensionally integrated, {sup 10}boron ({sup 10}B) and silicon p+, intrinsic, n+ (PIN) diode micropillar array for thermal neutron detection. The inter-digitated device structure has a high probability of interaction between the Si PIN pillars and the charged particles (alpha and {sup 7}Li) created from the neutron - {sup 10}B reaction. In this work, the effect of both the 3-D geometry (including pillar diameter, separation and height) and energy loss mechanisms are investigated via simulations to predict the neutron detection efficiency and gamma discrimination of this structure. The simulation results are demonstrated to compare well with the measurement results. This indicates that upon scaling the pillar height, a high efficiency thermal neutron detector is possible.

  5. Experimental determination of gamma-ray discrimination in pillar-structured thermal neutron detectors under high gamma-ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Qinghui [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Conway, Adam M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Voss, Lars F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Radev, Radoslav P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikolić, Rebecca J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dar, Mushtaq A. [King Saud Univ., Riyadh (Saudi Arabia); Cheung, Chin L. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry

    2015-08-04

    Silicon pillar structures filled with a neutron converter material (10B) are designed to have high thermal neutron detection efficiency with specific dimensions of 50 μm pillar height, 2 μm pillar diameter and 2 μm spacing between adjacent pillars. In this paper, we have demonstrated such a detector has a high neutron-to-gamma discrimination of 106 with a high thermal neutron detection efficiency of 39% when exposed to a high gamma-ray field of 109 photons/cm2s.

  6. Experimental determination of gamma-ray discrimination in pillar-structured thermal neutron detectors under high gamma-ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Qinghui [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Conway, Adam M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Voss, Lars F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Radev, Radoslav P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikolić, Rebecca J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dar, Mushtaq A. [King Saud Univ., Riyadh (Saudi Arabia); Cheung, Chin L. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry

    2015-08-04

    Silicon pillar structures filled with a neutron converter material (10B) are designed to have high thermal neutron detection efficiency with specific dimensions of 50 μm pillar height, 2 μm pillar diameter and 2 μm spacing between adjacent pillars. In this paper, we have demonstrated such a detector has a high neutron-to-gamma discrimination of 106 with a high thermal neutron detection efficiency of 39% when exposed to a high gamma-ray field of 109 photons/cm2s.

  7. Synthesis and Characterization of Al-Cr-Pillared Montmorillonite with High Thermal Stability and Adsorption Capacity

    Institute of Scientific and Technical Information of China (English)

    CAO Ming-li; LIU Shi-zhen; YU Yong-fu

    2004-01-01

    Al-Cr-pillared montmorillonite was synthesized by using bentonite and Al-Cr pillaring solutionsas starting materials. The basal spacing and specific surface areas of the materials were significantly increased rela-tive to those of untreated clays. When the Al/Cr molar ratio ( R ) was 0.10, the d (001) value and specific surfacearea of pillared montmorillonite were 1.9194 nm and 165.7 m2 g- 1 , respectively. Thermal stability of the mate-rials was determined using calcined tests and X- ray diffraction (XRD) analysis. The materials formed at differentR(0.05;0.10;0.15;0.25) exhibit a high thermal stability at 300℃ , especially at initial R = 0.10, the basalinterlayer spacing of materials is stabilized at 1.7313 nm after calcined at 500℃ for 2 h. Adsorption behavior ofthe materials was studied by adsorption experiments. The results show that the Al- Cr-pillared montmorillonites ex-hibit much stronger adsorption capacity on Cr6+ in aqueous solution than untreated clays do.

  8. Impacts of thermal annealing temperature on memory properties of charge trapping memory with NiO nano-pillars

    Science.gov (United States)

    Yan, Xiaobing; Yang, Tao; Jia, Xinlei; Zhao, Jianhui; Zhou, Zhenyu

    2017-03-01

    In this work, Au/SiO2/NiO/SiO2/Si structure charge trapping memory using NiO as the charge trapping layer was fabricated, and the impacts of the annealing temperature on the charge trapping memory performance were investigated in detail. The sample thermal annealed at 750 °C indicated a large memory window of 2.07 V under a low sweeping voltage of ± 5 V, which also has excellent charge retention properties with only small charge loss of ∼4.9% after more than 104 s retention. The high resolved transmission electron microscopy shows that the NiO films grew as nano-pillars structure. It is proposed that the excellent memory characteristics of the device are attributed to the inherent atomic defects and oxygen vacancies accumulated by the grain boundaries around NiO nano-pillars. Meanwhile the interface inter-diffusion formed by thermal annealing process is also an indispensable factor for the excellent memory characteristics of the device.

  9. Associations of sonographic abnormalities of the shoulder with various grades of biceps peritendinous effusion (BPE).

    Science.gov (United States)

    Chang, Ke-Vin; Chen, Wen-Shiang; Wang, Tyng-Guey; Hung, Chen-Yu; Chien, Kuo-Liong

    2014-02-01

    Bicipital peritendinous effusion (BPE), a common ultrasonographic finding of the long head of the biceps tendon, may be associated with shoulder joint derangement, but supporting evidence from large-scale studies is lacking. The aim of this cross-sectional study was to determine the strength of the association between BPE and sonographic abnormalities of the shoulder joint. We reviewed the sonographic reports of patients with suspected shoulder disorders investigated ultrasonographically between January 2011 and January 2012. BPE was graded according to its measured thickness as absent (3 mm). The associations between BPE and sonographic abnormalities were examined using multinomial logistic regression adjusted for age, gender, affected side and clinical diagnosis of frozen shoulder. The prevalence rates of absent, mild, moderate and severe BPE among the 907 shoulders examined were 64.1%, 17.8%, 10.4% and 7.7%, respectively. Frozen shoulder was associated with mild BPE (relative risk [RR] vs. participants without BPE = 1.83, 95% confidence interval [CI] = 1.28-2.50). Sonographic findings of biceps tendinopathy, subdeltoid bursitis and full-thickness tears of the supraspinatus tendon were significantly associated with the entire spectrum of BPE, whereas subscapularis tendon tears were significantly associated with moderate (RR = 2.47, 95% CI = 1.29-4.69) and severe (RR = 3.11, 95% CI = 1.51-6.33) BPE. Severe BPE was associated with articular-sided partial-thickness tears of the supraspinatus tendon (RR = 14.32, 95% CI = 4.30-34.35), posterior recess effusion (RR, 7.98, 95% CI = 1.44-34.93) and biceps medial subluxation (RR = 7.25, 95% CI = 1.90-22.33). Our study indicates that BPE is related to various shoulder abnormalities and that the strengths of these associations depend on the severity of BPE. Clinicians encountering BPE should grade its severity and be alert for hidden lesions of the shoulder joint.

  10. Coal pillar design procedures

    CSIR Research Space (South Africa)

    York, G

    2000-03-01

    Full Text Available . The 99 per cent confidence interval for the in situ contact friction angle is 21.0° to 24.8°. The results of these investigations have been put together to form the basis of a new methodology for pillar design. A pillar design flowchart has been... calculated using the Salamon & Munro equation and after adjusting for the effect of jointing................52 Figure 2-2 Graph showing the effect of discontinuity orientation and frequency on the strength of pillars with a width to height ratio of 2.0...

  11. Physicochemical of pillared clays prepared by several metal oxides

    Science.gov (United States)

    Rinaldi, Nino; Kristiani, Anis

    2017-03-01

    Natural clays could be modified by the pillarization method, called as Pillared Clays (PILCs). PILCs have been known as porous materials that can be used for many applications, one of the fields is catalysis. PILCs as two dimensional materials are interesting because their structures and textural properties can be controlled by using a metal oxide as the pillar. Different metal oxide used as the pillar causes different properties results of pillared clays. Usually, natural smectite clays/bentonites are used as a raw material. Therefore, a series of bentonite pillared by metal oxides was prepared through pillarization method. Variation of metals pillared into bentonite are aluminium, chromium, zirconium, and ferro. The physicochemical properties of catalysts were characterized by using X-ray Diffraction (XRD), Thermo Gravimetric Analysis (TGA), Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) analysis, and Fourier transform infrared spectroscopy (FTIR) measurement. Noteworthy characterization results showed that different metals pillared into bentonite affected physical and chemical properties, i.e. basal spacing, surface area, pore size distribution, thermal stability and acidity.

  12. An Emerging Pillar Industry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    China’s cultural industry is geared to grow from a new engine into a pillar of the national economy The Fifth Beijing International Cultural and Creative Industry Exposition(ICCIE), held November 17-21 in Beijing, was a feast for the eyes and

  13. Preparation and enantiosorption of L-aspartic acid pillared hydrotalcites

    Institute of Scientific and Technical Information of China (English)

    PENG Xia-hui; HUANG Ke-long

    2007-01-01

    L-aspartic acid (Asp) pillared hydrotalcites were prepared by direct reaction of the L-Asp anion with layered double hydroxides (LDHs). The obtained samples were characterized by X-ray diffractometry (XRD), Fourier transform infrared (FTIR),and thermogravimetric and differential thermal analysis (TG/DTA). The results show that the initial interlayer carbonate ions can be completely replaced by the L-Asp anion under the controlled conditions. The pillared hydrotalcites have a crystallized supramolecular structure and thermal stability. The L-Asp pillared LDHs were used in the enantiosorption of enantiopure phenylalanine (Phe), the results suggest that L-Asp pillared LDHs exhibit an excellent enantiosorption capability for D-Phe, and the adsorption isotherm fits Freundlich equation.

  14. Neglect of the third pillar

    Directory of Open Access Journals (Sweden)

    Manisha Thomas

    2007-12-01

    Full Text Available The UN-led humanitarian reform is described as havingthree pillars: clusters, financing and the HumanitarianCoordinator (HC system. Unfortunately the HC pillar has beengiven the least attention – despite the central role of theHC in humanitarian response – and only recently receiveddedicated support from OCHA for a longer-term strategy.

  15. Preparation and characterization of carbon pillared clay material

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Carbon pillared clay material was prepared from montmorillonite modified by C19H42BrN and C10H16ClN. SEM, FT-IR, XRD, N2 adsorption-desorption, thermal-gravimetric analysis and differential scanning calorimetry were employed to characterize the pore structure and test the effect of surfactant. The results show that organic modifier combines with montmorillonite particles by covalent bond and ion embedded. The microstructure of carbon pillared material looks like needle slice. The most probable pore size distribution is about 1.7 nm. The clay material slice mainly consists of two-dimensional aperture supported by a carbonization pillar. The high-temperature stability of carbon pillared clay is im- proved.

  16. Preparation and characterization of carbon pillared clay material

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZengZhi; YANG ChunWei; NIU JunJie

    2009-01-01

    Carbon pillared clay material was prepared from montmorillonite modified by C19H42BrN and C10H16CIN.SEM, FT-IR, XRD, N2 adsorption-desorption, thermal-gravimetric analysis and differential scanning calorimetry were employed to characterize the pore structure and test the effect of surfactant. The re-sults show that organic modifier combines with montmorillonite particles by covalent bond and ion embedded. The microstructure of carbon pillared material looks like needle slice. The most probable pore size distribution is about 1.7 nm, The clay material slice mainly consists of two-dimensional ap-erture supported by a carbonization pillar. The high-temperature stability of carbon pillared clay is im-proved.

  17. Argilas pilarizadas - uma introdução An introduction to pillared clays

    Directory of Open Access Journals (Sweden)

    Fernando J. Luna

    1999-02-01

    Full Text Available The synthesis, characterization and some applications in catalysis of pillared clays are described at an introductory level. The use of x-ray diffraction, surface area measurements, thermal analysis, IR spectrophotometry and solid-state NMR in the characterization of pillared clays is briefly discussed. Pillarization followed by doping or introduction of metal clusters into clays could lead to the development of selective heterogeneous catalysts.

  18. Stress reduction for pillar filled structures

    Science.gov (United States)

    Nikolic, Rebecca J.; Conway, Adam; Shao, Qinghui; Voss, Lars; Cheung, Chin Li; Dar, Mushtaq A.

    2015-09-01

    According to one embodiment, an apparatus for detecting neutrons includes an array of pillars, wherein each of the pillars comprises a rounded cross sectional shape where the cross section is taken perpendicular to a longitudinal axis of the respective pillar, a cavity region between each of the pillars, and a neutron sensitive material located in each cavity region.

  19. INFLUENCE OF SYNTHESIS PARAMETERS ON MORPHOLOGICAL PROPERTIES OF ALUMINUM(III-PILLARED BENTONITES

    Directory of Open Access Journals (Sweden)

    ANA-MARIA GEORGESCU

    2016-10-01

    Full Text Available Al-pillared interlayered clays (Al-PILCs have been prepared from Romanian natural calcium bentonite (Orasu Nou deposit and the effect of some parameters on the morphological properties has been investigated. The synthesis of Al-pillared bentonite consists in the following five steps: bentonite purification, ionic exchange of bentonite with Cu(II ions, preparation of pillaring agent, intercalation of ionic exchanged bentonite with pillaring agent and calcination. The pillared clays present a rigid structure, a high thermal stability given by the oxido-metallic pillars formed after calcination. The raw material and the obtained nanomaterials were characterized by scanning electron microscopy (SEM coupled with energy-dispersive X-ray spectroscopy (EDX and transmission electron microscopy (TEM. The intercalation of the Al-polyhydroxocations into the interlayer of montmorillonite strongly modified the morphology of the Al-PILCs. The material with the best characteristics will be chosen in the aim of its using in liquid effluents remediation.

  20. Densification effects of the carbon nanotube pillar array on field-emission properties

    Science.gov (United States)

    Wang, Kuang-Yu; Chou, Chia-Hsin; Liao, Chan-Yu; Li, Yu-Ren; Cheng, Huang-Chung

    2016-06-01

    In this study, a simple densification method for carbon nanotube (CNT) pillars is proposed to achieve high-performance field emission characteristics and stable emission. Through capillary force during solution evaporation, the CNT density in each pillar can be increased by about six times without causing damage to the crystallinity of CNTs. The densified CNT pillars exhibit lower series resistance, sharper pillars, better contacts, higher thermal conductivity, and better mechanical stiffness than as-grown ones. Therefore, the threshold field of the field emitter with such CNT pillars of 50 µm height can be reduced to 1.98 V/µm, as compared with 2.2 V/µm for the undensified ones. Moreover, the fluctuation of field-emission current decreases from 15.5 to 9.4% after the stress tests at a field of 2 V/µm for 1800 s. These findings imply that the densified CNT pillars are promising for the field-emission applications.

  1. ROPE Registry Project to Determine the Safety and Efficacy of Prostate Artery Embolisation (PAE) for Lower Urinary Tract Symptoms Secondary to Benign Prostatic Enlargement (LUTS BPE).

    Science.gov (United States)

    2016-08-03

    Lower Urinary Tract Symptoms Caused by Benign Prostatic Enlargement (LUTS BPE); Prostate Artery Embolisation (PAE); Transurethral Resection of the Prostate (TURP); Open Prostatectomy; Laser Enucleation or Ablation of the Prostate

  2. Calculation of heat transfer for corner heat bridge pillars system model of energy-saving fired thermal block%节能烧结砌块墙角热桥柱系统的传热模型计算

    Institute of Scientific and Technical Information of China (English)

    孙孟琪; 蹇守卫; 宋方方; 何桂海; 张阳; 郅真真

    2015-01-01

    The paper studies the influence of the type and thickness of insulation material on the heat bridge of wall corner heat bridge system, and calculates quantitatively the change rule of temperature distribution and heat transfer variation for wall model in 10-40mm thickness by Ansys software, when the wall model is treated by insulation materials of polyurethane (PU), polystyrene (EPS) and insulation mortar. The result shows that the heat flow is maximum of the intersection between inner wall and constructional column when the heat bridge is not insulated. With the increase of the thermal conductivity of insulating material, the temperature between insulating layer and heat bridge pillar is increasing gradually;With the increase of the insulating layer's thickness, the temperature between insulating layer and heat bridge pillar is decreasing gradually but slowering. The overall balance thickness is 20 mm.%主要研究保温材料种类和厚度对墙角热桥柱系统热桥的影响规律,采用Ansys软件定量计算了保温材料为聚氨酯(PU)、模塑聚苯板(EPS)和保温抹面砂浆,保温层厚度为10 mm~40 mm时砖墙模型温度分布、热量传递的变化规律.结果表明:不对热桥进行保温处理时,在内墙与构造柱相交的地方,热流量最大,随着保温材料导热系数的增加,保温层与热桥柱接触的温度逐渐增加,随保温材料厚度的增加,保温层和热桥柱接触点的温度逐渐下降,但下降幅度逐渐减小,其综合平衡厚度为20 mm.

  3. Pillared clays as catalysts for hydrocracking of heavy liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gyftopoulou, M.E.; Bridgwater, A.V. [Bio-Energy Research Group, Chemical Engineering and Applied Chemistry, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET (United Kingdom); Millan, M.; Dugwell, D.; Kandiyoti, R. [Department of Chemical Engineering and Chemical Technology Imperial College London, London SW7 2BY (United Kingdom); Hriljac, J.A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2005-03-30

    Two sets of pillared clays (PILCs), chromia and tin-oxide-pillared montmorillonites and laponites, were successfully prepared at Aston University using both conventional and microwave-assisted methods and characterised by X-ray diffraction and thermogravimetric analysis. Microwave irradiation enabled the preparation of the PILCs in a fraction of time of the conventional methods. X-ray powder diffraction was not a suitable method for characterizing laponite or pillared laponites due to the lack of first order reflections attributed to the small size of individual particles and the random rather than uniform face-to-face orientation of the clay platelets. Laponite appeared to be more thermally stable than montmorillonite. For pillared montmorillonites, dehydroxylation shifted to a lower temperature compared to the starting materials, whereas for tin-oxide-pillared laponites such a shift did not occur. On the other hand for chromia laponite dehydroxylation took place over a much wider temperature range compared to all other materials. The prepared PILCs were employed as catalysts in the hydrocracking of coal-derived liquids in a conventional microbomb reactor at Imperial College exhibiting high-quality performance and remaining active after 4h utilization regardless of high coke deposition. They actually showed an increase in the total conversion when reused.

  4. The Pillar Industries in Tibet

    Institute of Scientific and Technical Information of China (English)

    Lhagpa; Tsering

    2008-01-01

    In recent years,the pillar industries in Tibet,such as agricul- tural and animal husbandry products,now include tourism,Tibetan traditional medicine and handicrafts have also been expanding at a fast pace. In 2007 the total produc- tion value of Tibet reached 34.2 billion Yuan,an in-

  5. The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells.

    Science.gov (United States)

    Arriola Benitez, Paula Constanza; Rey Serantes, Diego; Herrmann, Claudia Karina; Pesce Viglietti, Ayelén Ivana; Vanzulli, Silvia; Giambartolomei, Guillermo Hernán; Comerci, Diego José; Delpino, María Victoria

    2015-12-14

    The liver is frequently affected in patients with active brucellosis. In the present study, we identified a virulence factor involved in the modulation of hepatic stellate cell function and consequent fibrosis during Brucella abortus infection. This study assessed the role of BPE005 protein from B. abortus in the fibrotic phenotype induced on hepatic stellate cells during B. abortus infection in vitro and in vivo. We demonstrated that the fibrotic phenotype induced by B. abortus on hepatic stellate (LX-2) cells was dependent on BPE005, a protein associated with the type IV secretion system (T4SS) VirB from B. abortus. Our results indicated that B. abortus inhibits matrix metalloproteinase 9 (MMP-9) secretion through the activity of the BPE005-secreted protein and induces concomitant collagen deposition by LX-2 cells. BPE005 is a small protein containing a cyclic nucleotide monophosphate binding domain (cNMP) that modulates the LX-2 cell phenotype through a mechanism that is dependent on the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway. Altogether, these results indicate that B. abortus tilts LX-2 cells to a profibrogenic phenotype employing a functional T4SS and the secreted BPE005 protein through a mechanism that involves the cAMP and PKA signaling pathway.

  6. Nanoscale pillar hypersonic surface phononic crystals

    Science.gov (United States)

    Yudistira, D.; Boes, A.; Graczykowski, B.; Alzina, F.; Yeo, L. Y.; Sotomayor Torres, C. M.; Mitchell, A.

    2016-09-01

    We report on nanoscale pillar-based hypersonic phononic crystals in single crystal Z-cut lithium niobate. The phononic crystal is formed by a two-dimensional periodic array of nearly cylindrical nanopillars 240 nm in diameter and 225 nm in height, arranged in a triangular lattice with a 300-nm lattice constant. The nanopillars are fabricated by the recently introduced nanodomain engineering via laser irradiation of patterned chrome followed by wet etching. Numerical simulations and direct measurements using Brillouin light scattering confirm the simultaneous existence of nonradiative complete surface phononic band gaps. The band gaps are found below the sound line at hypersonic frequencies in the range 2-7 GHz, formed from local resonances and Bragg scattering. These hypersonic structures are realized directly in the piezoelectric material lithium niobate enabling phonon manipulation at significantly higher frequencies than previously possible with this platform, opening new opportunities for many applications in plasmonic, optomechanic, microfluidic, and thermal engineering.

  7. Capacitance reduction for pillar structured devices

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Qinghui; Conway, Adam; Nikolic, Rebecca J.; Voss, Lars; Bhat, Ishwara B.; Harrison, Sara E.

    2017-05-09

    In one embodiment, an apparatus includes: a first layer including a n+ dopant or p+ dopant; an intrinsic layer formed above the first layer, the intrinsic layer including a planar portion and pillars extending above the planar portion, cavity regions being defined between the pillars; and a second layer deposited on a periphery of the pillars thereby forming coated pillars, the second layer being substantially absent on the planar portion of the intrinsic layer between the coated pillars. The second layer includes an n+ dopant when the first layer includes a p+ dopant. The second layer includes a p+ dopant when the first layer includes an n+ dopant. The apparatus includes a neutron sensitive material deposited between the coated pillars and above the planar portion of the intrinsic layer. In additional embodiments, an upper portion of each of the pillars includes a same type of dopant as the second layer.

  8. Stress-state monitoring of coal pillars during room and pillar extraction

    Directory of Open Access Journals (Sweden)

    Petr Waclawik

    2016-01-01

    To determine pillar stability, vertical stress was measured in two adjacent coal pillars which are diamond in shape and located within a row of pillars forming the panel. Two pillars diamond in shape and slightly irregular sides were approximately 860 m2 and 1200 m2 in size and 3.5 m high To measure the increase in vertical stress due to mining, four stress cells were installed in each coal pillar. Four 5-level multipoint rib extensometers measured displacements of all sides within each monitored pillar. The results of stress-state and pillar displacement monitoring allowed pillar loading and yielding characteristics to be described. This data and other analyses are essential to establishing procedures for a safe room and pillar method of mining within the Upper Silesian Coal Basin.

  9. First Synthesis of Zirconia-pillared Layered Lanthanum Niobate

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A zirconia-pillared layered lanthanum niobate was prepared by first preswelling layered HLaNb2O7 with n-hexadecylamine(n-C16H33NH2), then further reacting with zirconyl chloride aqueous solution, and finally calcining the resultant solid product in air. The obtained new material has an interlayer spacing of 1.36nm, and a high thermal stability above 700°C.

  10. Preparation and Microstructure of Al-pillared Interlayered Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    CAO Ming-li; ZHU Ying-bo; YU Yong-fu

    2002-01-01

    Al-pillared interlayered montmorillonite ( Al-PILM) was prepared using the artificial Na-montmorillonite from the Qingfengshan bentonite mine as a starting material mixed with Al-pillaring solutions. The microstructure of the materials was stndied by an X-ray powder diffractometer and a Fourier transform infrared ( FTIR ) spectrometer. The results indicated that the basal spacing [ d (001) value ] of the materials was increased significantly to 1.9194 nm relative to Na-montmorillonite (1.2182 nm). After calcined for 2 h at 300℃, the basal spacing was stabilized at 1. 8394 nm and the layered structure of the materials was not destroyed. Thermal analysis was conducted by a thermal gravimetry and differential thermal analysis ( TG - DTA ) instrument, it showed that Al - PILM lost physically adsorbed water below 230.6℃ and water formed by dehydroxylation of the pillars at around 497.1℃, with a peak of the phase transformation at 903.0℃.

  11. Underground gasification of coal pillars

    Energy Technology Data Exchange (ETDEWEB)

    Koranda, J.; Haas, K. (Ustav pro Vyzkum a Vyuziti Paliv, Prague (Czechoslovakia))

    1989-10-01

    Gives details of a feasibility study of underground gasification of the remaining non-extractable pillars at the Merkur coal mine, Tusimice. Briefly describes geological conditions and explains calculation of amount of heat held in coal pillars: seam is on average 11.7 m thick and generator area contains 7,182,300 t of coal with mean ash content of 29.71% and calorific value of 10.49 MJ/kg. Assuming losses of 15%, generator should be able to produce about 70,000 m{sup 3}/h of gas, equal to a lifetime of 20 years for coal pillars at the Merkur mine. Reviews gasification techniques and describes design of underground generator, which is to produce 70,000 m{sup 3}/h of gas at pressure of 0.4-0.45 MPa, temperature 350 C, humidity up to 0.25 kg/m{sup 3}. Describes equipment for compressing, cleaning and cooling gas and construction of access roads for positioning equipment and pipelines. It would not be viable to transport the type of gas produced over long distances; it should be used within the immediate area, e.g. at the Prunerov II power plant 2 km away. Concludes by calculating manpower required to operate gasification scheme (122) and cost benefit of scheme, which should provide gas at 31.1 Crowns per GJ (town gas currently costs 46.4 Crowns per GJ and imported natural gas costs 35.58 Crowns per GJ). 4 refs.

  12. Suspension of Water Droplets on Individual Pillars

    DEFF Research Database (Denmark)

    Tóth, T.; Ferraro, D.; Chiarello, E.

    2011-01-01

    We report results of extensive experimental and numerical studies on the suspension of water drops deposited on cylindrical pillars having circular and square cross sections and different wettabilities. In the case of circular pillars, the drop contact line is pinned to the whole edge contour until...... the drop collapses due to the action of gravity. In contrast, on square pillars, the drops are suspended on the four corners and spilling along the vertical walls is observed. We have also studied the ability of the two geometries to sustain drops and found that if we compare pillars with the same...

  13. Domino instability effect of surrounding rock-coal pillars in a room-and-pillar gob

    Institute of Scientific and Technical Information of China (English)

    Li Chong; Xu Jinhai; Wang Zhongliang; Qin Shuai

    2013-01-01

    To discuss the domino instability effect and large area roof falling and roof accidents of surrounding rock-coal pillars in a room-and-pillar gob, the equilibrium equation for a roof-coal pillar-floor system with the influence of mining floor was developed based on the engineering conditions of the surrounding rock in a room-and-pillar gob in the 3-2 coal seam of Tanggonggou mine. The conditions of system instability and the relationship between system stability and system stiffness were analyzed from an energetic point of view. Numerical simulation using the discrete element software UDEC was also carried out to simulate conditions causing the domino effect on surrounding rock-coal pillars in a 3-2 room-and-pillar gob. The results show that:if we want the system to destabilize, the collective energy in roof-and-floor must be larger than that in the coal pillar. When the stiffness of the coal pillars and the roof-and-floor are both greater than zero, the system is stable. When the stiffness of the coal pillars is negative but the summed stiffness of the coal pillars and roof-and-floor is larger than or equal to zero, the system is statically destroyed. When the sum of the coal pillars and the roof-floor stiffness is negative, the system suffers from severe damages. For equal advance distances of the coal mining face, the wider coal pillars can reduce the probability of domino type instability. Conversely, the smaller width pillars can increase the instability probability. Domino type instability of surrounding rock-coal pillars is predicted to be unli-kely when the width of coal pillars is not less than 8 m.

  14. Assessing potential fire hazard presented by coal pillars and blocks

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Eh.M.; Zakharov, E.I.; Shklover, S.V.; Panferova, I.V.

    1985-11-01

    An improved method is presented for predicting fire hazard in coal masses based on analytical studies of spontaneous combustion of coal. The origins and development of endogenic fires in coal pillars and blocks of coal in the roofs of underground roadways are described; particular reference is made to conditions in the Podmoskovnyi coalfield. Spontaneous combustion risk is greatest when spontaneous heatings progress from the stage of slow, low-temperature oxidation to the medium-temperature stage, which immediately precedes ignition and the characteristic rapid rise in heat generation. The critical temperature threshold between the two stages is studied as the pointer to spontaneous combustion risk. Factors also considered are: non-uniform oxidation of the coal in the pillar or block; coal fissure oxygen content; spasmodic fluctuations in the oxidation process once critical temperature is reached; thermal conductivity of coal and rock strata; roadway air temperature. 5 references.

  15. 30 CFR 75.207 - Pillar recovery.

    Science.gov (United States)

    2010-07-01

    ... practicable; and (ii) Across each opening leading into an area where full or partial pillar extraction has... conducted in the following manner, unless otherwise specified in the roof control plan: (a) Full and partial... the roadway shall not exceed 14 feet. (d) During open-end pillar extraction, at least 2 rows...

  16. Adsorption of Environmental Pollutants on Pillared Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Both inorganic and organic pillared montmorillonites were used to adsorb phenol.Batch kinetics and isotherm studies were carried out to evaluate the effect of equilibrium time and pH on adsorption of phenol by montmorillouites and re-adsorbing characteristics of pillared montmorillonites.The adsorption of phenol increased with increasing solution pH values.The elimination ratio of phenol from the solution by the absorption of organic modified pillared montmorillonite (OrPMt) reached equilibrium quickly after vibrating for 5 minutes.Meanwhile for organic montmorillonite (OrMt),pillared montmorillouite (PMt) and montmorillonite (Mt),the time to reach phenol-absorption equilibrium were 20,30 and 90 minutes,respectively.The adsorbing capacity of the pillared montmorillonite modified with surfactant improved greatly.The phenol-adsorbing capacity of pillared montmorillonites mainly depended on microporous structure and surface component of the modified clays.After calcination at 500 ℃,the pillar structure and the basal spacing (1.83 nm) were still stable.So the pillared montmorillonite could be recycled,and it was a potential material for adsorbing environmental pollutants.

  17. Reassessment of coal pillar design procedure

    CSIR Research Space (South Africa)

    Madden, BJ

    1995-12-01

    Full Text Available The SIMRAC project COL 021A entitled “a reassessment of coal pillar design procedures” set out to achieve a coal pillar design procedure that takes cognisance of different geological and structural factors as well as the influence...

  18. Aespoe Pillar Stability Experiment. Acoustic emission and ultrasonic monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon; Pettitt, Will; Young, R. Paul [Applied Seismology Consultants Ltd., Shrewsbury (United Kingdom)

    2005-12-15

    This report describes the results from acoustic emission (AE) and ultrasonic monitoring of the Aespoe Pillar Stability Experiment (APSE) at SKB's Hard Rock Laboratory (HRL), Sweden. The APSE is being undertaken to demonstrate the current capability to predict spalling in a fractured rock mass using numerical modelling techniques, and to demonstrate the effect of backfill and confining pressure on the propagation of micro-cracks in rock adjacent to deposition holes within a repository. An ultrasonic acquisition system has provided acoustic emission and ultrasonic survey monitoring throughout the various phases of the experiment. Results from the entire data set are provided with this document so that they can be effectively compared to several numerical modelling studies, and to mechanical and thermal measurements conducted around the pillar volume, in an 'integrated analysis' performed by SKB staff. This document provides an in-depth summary of the AE and ultrasonic survey results for future reference. The pillar has been produced by excavating two 1.8 m diameter deposition holes 1 m apart. These were bored in 0.8 m steps using a Tunnel Boring Machine specially adapted for vertical drilling. The first deposition hole was drilled in December 2003. Preceding this a period of background monitoring was performed so as to obtain a datum for the results. The hole was then confined to 0.7 MPa internal over pressure using a specially designed water-filled bladder. The second deposition hole was excavated in March 2004. Heating of the pillar was performed over a two month period between ending in July 2004, when the confined deposition hole was slowly depressurised. Immediately after depressurisation the pillar was allowed to cool with cessation of monitoring occurring a month later. A total of 36,676 AE triggers were recorded over the reporting period between 13th October 2003 and 14th July 2004. Of these 15,198 have produced AE locations. The AE data set

  19. Aespoe Pillar Stability Experiment. Acoustic emission and ultrasonic monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon; Pettitt, Will; Young, R. Paul [Applied Seismology Consultants Ltd., Shrewsbury (United Kingdom)

    2005-12-15

    This report describes the results from acoustic emission (AE) and ultrasonic monitoring of the Aespoe Pillar Stability Experiment (APSE) at SKB's Hard Rock Laboratory (HRL), Sweden. The APSE is being undertaken to demonstrate the current capability to predict spalling in a fractured rock mass using numerical modelling techniques, and to demonstrate the effect of backfill and confining pressure on the propagation of micro-cracks in rock adjacent to deposition holes within a repository. An ultrasonic acquisition system has provided acoustic emission and ultrasonic survey monitoring throughout the various phases of the experiment. Results from the entire data set are provided with this document so that they can be effectively compared to several numerical modelling studies, and to mechanical and thermal measurements conducted around the pillar volume, in an 'integrated analysis' performed by SKB staff. This document provides an in-depth summary of the AE and ultrasonic survey results for future reference. The pillar has been produced by excavating two 1.8 m diameter deposition holes 1 m apart. These were bored in 0.8 m steps using a Tunnel Boring Machine specially adapted for vertical drilling. The first deposition hole was drilled in December 2003. Preceding this a period of background monitoring was performed so as to obtain a datum for the results. The hole was then confined to 0.7 MPa internal over pressure using a specially designed water-filled bladder. The second deposition hole was excavated in March 2004. Heating of the pillar was performed over a two month period between ending in July 2004, when the confined deposition hole was slowly depressurised. Immediately after depressurisation the pillar was allowed to cool with cessation of monitoring occurring a month later. A total of 36,676 AE triggers were recorded over the reporting period between 13th October 2003 and 14th July 2004. Of these 15,198 have produced AE locations. The AE data set

  20. Key technology study on pillar mining under the system of room and pillar mining

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-xiao; GUO Wei-jia; CHEN Lian-jun; ZHU Xue-jun

    2007-01-01

    Taken taifeng coal mine in Mongolia for example, discussed the stability and controllability about advance pillars which locate at the front of working face and makes simulation on pillar with the software UDEC3.1. The failure styles of advance pillars are shear failure and compression failure through analyzing the stability of advance pillars.The paper concludes that can protect advance pillars from shear failure by controlling coefficient of volumetric expansion of mining field rock and supports' working resistance and can also protect it from compression failure by advance supporting, increasing setting pressure and working resistance. Two advance pillars are influenced and the main failure form is compression failure through the numerical simulation.

  1. Cobalt sorption in silica-pillared clays.

    Science.gov (United States)

    Sampieri, A; Fetter, G; Bosch, P; Bulbulian, S

    2006-01-03

    Silicon pillared samples were prepared following conventional and microwave irradiation methods. The samples were characterized and tested in cobalt sorption. Ethylenediammine was added before cobalt addition to improve the amount of cobalt retained. The amount of cobalt introduced in the original clay in the presence of ethylenediammine was the highest. In calcined pillared clays the cobalt retention with ethylenediammine was lower (ca. 40%). In all cases the presence of ethylenediammine increased twice the amount of cobalt sorption measured for aqueous solutions.

  2. Discussing three pillars of corporate governance

    OpenAIRE

    Andrei STĂNCULESCU; Eugen MITRICĂ

    2015-01-01

    This paper is a meaningful attempt to critically analyze the cohesion and relationship between three fundamental pillars of the corporate governance system: the shareholders, the board of directors and the employees. We present the characteristics of each pillar and discuss its relevance in corporate governance. A couple of world-renowned corporate governance models are considered. A synthetic conclusion is drawn based on information presented.

  3. Comparison of Conventional and Microwave-assisted Synthesis and Characteristics of Aluminum-pillared Rectorite

    Institute of Scientific and Technical Information of China (English)

    DU Dongyun; ZHAO Xiaorong; LU Xiaohua

    2005-01-01

    The synthesis and characterization of aluminum-pillared rectorite were studied. The synthesis was conducted with both conventional heating and microwave irradiation. Microwave irradiation was found to enhance the intercalation and ion-exchange during synthesis, and to be able to produce the rectorite with a larger d001 and a better uniformity. The specific surface area is 180 m2/g and basal spacing is 3.2 nm. The texture change and thermal and hydrothermal stability of cross-linked rectorite were examined using XRD, FTIR, nitrogen-adsorption and TGA. The experimental results show that the aluminum-pillared rectorite, after calcined at 800 ℃ for 3 hours, can keep the basal aluminum-silicate texture and would not disperse in water at room or an elevated temperature. The aluminum-pillared rectorite shows a high specific surface area, good thermal and hydrothermal stability, and is promising in applications as catalyst carriers and adsorbents for waste treatment.

  4. Imaging of the cervical articular pillar

    Energy Technology Data Exchange (ETDEWEB)

    Yeomans, E. [Orange Base Hospital, Orange, NSW (Australia)

    1998-12-01

    The cervical articular pillar, due to the complex anatomical structure of the cervical spine, is not well demonstrated in routine plain radiographic views. Dedicated views have been devised to demonstrate the pillar, yet their performance has abated considerably since the inception of Computed Tomography (CT) in the 1970`s. It is the consideration that CT does not image the articular pillar with a 10 per cent accuracy that poses the question: Is there still a need for plain radiography of the cervical articular pillar? This paper studies the anatomy, plain radiography, and incidence of injury to the cervical articular pillar. It discusses (with reference to current and historic literature) the efficacy of current imaging protocols in depicting this injury. It deals with plain radiography, CT, complex tomography, and Magnetic Resonance Imaging (MRI) of the cervical spine to conclude there may still be a position in current imaging protocols for plain radiography of the cervical articular pillar. Copyright (1998) Australian Institute of Radiography 43 refs., 5 figs.

  5. 3D Heat Transfer Analysis of a Miniature Copper-Water Vapor Chamber with Wicked Pillars Array

    OpenAIRE

    Yong Jiang; Gerardo Carbajal; Sobhan, C.B.; Ji Li

    2013-01-01

    A three-dimensional analysis of the heat and mass transfer phenomena inside a vapor chamber is essential for correctly understanding its thermal performance limitations and structural optimization. This paper presents a complete three-dimensional numerical analysis and comparative study of two different miniature vapor chambers designs with identical external geometry and dimensions but different internal structures: one having a wicked pillar array and the other one without the wicked pillar...

  6. Catalytic Combustion of Methane over Ti-Pillared Clay Supported Copper Catalysts

    Institute of Scientific and Technical Information of China (English)

    Xiufeng Xu; Yanfei Pan; Xiaoyan Cui; Zhanghuai Suo

    2004-01-01

    A natural montmorillonite, produced from Laiyang of Shandong Province, was pillared by Tipolycations to form Ti-pillared clay (Ti-PILC), and characterized by BET surface area, infrared spectra and thermal analysis. The characterization results show that Ti-PILC has a larger surface area and more hydroxyl groups than that of the natural clay, thus was used as the catalytic carriers to prepare supported Cu catalysts (Cu/Ti-PILC). The 20%Cu/Ti-PILC with 10mmol/g of Ti/clay shows a high catalytic performance of methane combustion in the temperature range of 400-500 ℃.

  7. Active containment systems incorporating modified pillared clays

    Energy Technology Data Exchange (ETDEWEB)

    Lundie, P. [Envirotech (Scotland) Ltd., Aberdeen (United Kingdom)]|[Environmental Resource Industries Disposal Pty Ltd., Perth (Australia); McLeod, N. [Envirotreat Ltd., Kingswinford (United Kingdom)

    1997-12-31

    The application of treatment technologies in active containment systems provides a more advanced and effective method for the remediation of contaminated sites. These treatment technologies can be applied in permeable reactive walls and/or funnel and gate systems. The application of modified pillared clays in active containment systems provides a mechanism for producing permeable reactive walls with versatile properties. These pillared clays are suitably modified to incorporate reactive intercalatants capable of reacting with both a broad range of organic pollutants of varying molecular size, polarity and reactivity. Heavy metals can be removed from contaminated water by conventional ion-exchange and other reactive processes within the clay structure. Complex contamination problems can be addressed by the application of more than one modified clay on a site specific basis. This paper briefly describes the active containment system and the structure/chemistry of the modified pillared clay technology, illustrating potential applications of the in-situ treatment process for contaminated site remediation.

  8. Preparation and Properties of Pillared Montmorillonite by Polyhydroxyl-aluminum-manganese Cations

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Al-Mn-pillared montmorillonite(AMPM) was prepared by using the artificial Na-montmorillonite from the Qingfengshan bentonite mine as starting materials mixed with Al-Mn pillaring solutions at different Al/Mn molar ratios(R).The basal spacing and specific surface area of the materials were increased significantly compared with untreated clays.When R=0.5, the d(001) value and specific surface area of pillared montmorillonite were 1.8987 nm and 146.01 m2 g-1,respectively.The thermal stability was determined using calcined tests,X-ray diffraction(XRD) analysis, thermal gravimetry and differential thermal analysis(TG-DTA).The materials formed at initial R=0.5 exhibited a high stability,the basal interlayer spacing was stabilized at 1.7859 nm after calcined for 2 h at 300℃.The adsorption behavior of the materials was studied by adsorption experiments.The results show the AMPM and calcined Al-Mn-pillared montmorillonite(CAMPM) exhibit a strong capacity of adsorbing the Zn(II) in aqueous solution at pH 10.0.

  9. Construction of microcanonical entropy on thermodynamic pillars.

    Science.gov (United States)

    Campisi, Michele

    2015-05-01

    A question that is currently highly debated is whether the microcanonical entropy should be expressed as the logarithm of the phase volume (volume entropy, also known as the Gibbs entropy) or as the logarithm of the density of states (surface entropy, also known as the Boltzmann entropy). Rather than postulating them and investigating the consequence of each definition, as is customary, here we adopt a bottom-up approach and construct the entropy expression within the microcanonical formalism upon two fundamental thermodynamic pillars: (i) The second law of thermodynamics as formulated for quasistatic processes: δQ/T is an exact differential, and (ii) the law of ideal gases: PV=k(B)NT. The first pillar implies that entropy must be some function of the phase volume Ω. The second pillar singles out the logarithmic function among all possible functions. Hence the construction leads uniquely to the expression S=k(B)lnΩ, that is, the volume entropy. As a consequence any entropy expression other than that of Gibbs, e.g., the Boltzmann entropy, can lead to inconsistencies with the two thermodynamic pillars. We illustrate this with the prototypical example of a macroscopic collection of noninteracting spins in a magnetic field, and show that the Boltzmann entropy severely fails to predict the magnetization, even in the thermodynamic limit. The uniqueness of the Gibbs entropy, as well as the demonstrated potential harm of the Boltzmann entropy, provide compelling reasons for discarding the latter at once.

  10. Methane layering in bord and pillar workings.

    CSIR Research Space (South Africa)

    Creedy, DP

    1997-08-01

    Full Text Available on the results of fundamental work completed in the 1960’s in the UK. These studies involved simple tunnels, consistent with longwall situations, and their applicability to bord-and-pillar arrangements is often assumed but has not been tested. Experimental work...

  11. Extending and implementing the Persistent ID pillars

    Science.gov (United States)

    Car, Nicholas; Golodoniuc, Pavel; Klump, Jens

    2017-04-01

    The recent double decade anniversary of scholarly persistent identifier use has triggered journal special editions such as "20 Years of Persistent Identifiers". For such a publication, it is apt to consider the longevity of some persistent identifier (PID) mechanisms (Digital Object Identifiers) and the partial disappearance of others (Life Sciences IDs). We have previously postulated a set of "PID Pillars" [1] which are design principles aimed at ensuring PIDs can survive technology and social change and thus persist for the long term that we have drawn from our observations of PIDs at work over many years. The principles: describe how to ensure identifiers' system and organisation independence; codify the delivery of essential PID system functions; mandate a separation of PID functions from data delivery mechanisms; and require generation of policies detailing how change is handled. In this presentation, first we extend on our previous work of introducing the pillars by refining their descriptions, giving specific suggestions for each and presenting some work that addresses them. Second, we propose a baseline data model for persistent identifiers that, if used, would assist the separation of PID metadata and PID system functioning. This would allow PID system function specifics to change over time (e.g. resolver services or even resolution protocols) and yet preserve the PIDs themselves. Third, we detail our existing PID system — the PID Service [2] — that partially implements the pillars and describe both its successes and shortcomings. Finally, we describe our planned next-generation system that will aim to use the baseline data model and fully implement the pillars.

  12. Aespoe Pillar Stability Experiment. Final coupled 3D thermo-mechanical modeling. Preliminary particle mechanical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wanne, Toivo; Johansson, Erik; Potyondy, David [Saanio and Riekkola Oy, Helsinki (Finland)

    2004-02-01

    SKB is planning to perform a large-scale pillar stability experiment called APSE (Aespoe Pillar Stability Experiment) at Aespoe HRL. The study is focused on understanding and control of progressive rock failure in hard crystalline rock and damage caused by high stresses. The elastic thermo-mechanical modeling was carried out in three dimensions because of the complex test geometry and in-situ stress tensor by using a finite-difference modeling software FLAC3D. Cracking and damage formation were modeled in the area of interest (pillar between two large scale holes) in two dimensions by using the Particle Flow Code (PFC), which is based on particle mechanics. FLAC and PFC were coupled to minimize the computer resources and the computing time. According to the modeling the initial temperature rises from 15 deg C to about 65 deg C in the pillar area during the heating period of 120 days. The rising temperature due to thermal expansion induces stresses in the pillar area and after 120 days heating the stresses have increased about 33% from the excavation induced maximum stress of 150 MPa to 200 MPa in the end of the heating period. The results from FLAC3D model showed that only regions where the crack initiation stress has exceeded were identified and they extended to about two meters down the hole wall. These could be considered the areas where damage may occur during the in-situ test. When the other hole is pressurized with a 0.8 MPa confining pressure it yields that 5 MPa more stress is needed to damage the rock than without confining pressure. This makes the damaged area in some degree smaller. High compressive stresses in addition to some tensile stresses might induce some AE (acoustic emission) activity in the upper part of the hole from the very beginning of the test and are thus potential areas where AE activities may be detected. Monitoring like acoustic emissions will be measured during the test execution. The 2D coupled PFC-FLAC modeling indicated that

  13. Calculation and analysis of stress in strata under gob pillars

    Institute of Scientific and Technical Information of China (English)

    杨敬轩; 刘长友; 于斌; 吴锋锋

    2015-01-01

    Aiming at the difficulty in stress analysis for strata under pillars with actual bearing conditions, an approach was proposed to apply multi-sectional linear approximation to the characteristic curves of pillar loads, and stress of strata was calculated under pillars with linear load by calculation method for uniform load. This approach leads to a rapid analyzing method for strata stress under pillars with any form of loads. Through theoretical analysis, strata stress expressions for pillars under linear bearing conditions are obtained. In addition, two concepts, stress increase factor and stress factor, are proposed for the approximate analysis of strata stress by uniform load approximation method. It is also found that the stress increase factor of strata is related to the strata stress factor and the ratio of the minimum load on the pillar’ two ends to the maximum one;and the distribution features of stress factors and the sizes of their influencing areas in strata influenced by overlying pillars are obtained. Combining with the gob pillar conditions of Jurassic coal seam in Tongxin Coal Mine, it is demonstrated that the results obtained by stress distribution analysis of the strata stress in non-influencing areas of pillars with linear bearing through uniform load approximation are in basic accordance with the results obtained for pillars under linear bearing condition. Therefore, it is feasible and accurate to calculate stress in non-influencing area in strata under pillars with linear bearing condition by uniform load calculation method.

  14. Preparation of Tunable 3D Pillared Carbon Nanotube-Graphene Networks for High-Performance Capacitance

    Science.gov (United States)

    2011-01-01

    Reserve University, Cleveland, Ohio 44106, United States ‡Thermal Sciences and Materials Branch, Materials & Manufacturing Directorate, Air Force...offering new materials /systems with unique architectures and properties.13,14 As a result of the presence of strong covalent bonding in the carbon plane...of iron phthalocyanine (FePc),24 we have created tunable 3D pillared VACNT graphene architectures through intercalated growth of VACNTs into

  15. Architecture Specification for PAVE PILLAR Avionics

    Science.gov (United States)

    1987-01-01

    3.2.5.2 Abort Rate The goal for abort rate shall be 1% or less. 3.2.5.3 Combat Turnaround Time The PAVE PILLAR design will impose no system re...where stringent environmental requirements ars imposed . Class IV - For utilization where class II modules may be exposed to radiation. 2.0 REFERENCED...5-7 Figure 5-2. Header Word A Format - Data Lines .. .......... 5-13 Figura 5-3. SIngle Slave Acknowledge Word Format - Date

  16. CONTROLLING FACTOR IN ALUMINA PILLARED SAPONITE AND ALUMINA PILLARED MONTMORILLONITE SYNTHESIS

    Directory of Open Access Journals (Sweden)

    Is Fatimah

    2010-06-01

    Full Text Available The effect of synthesis parameters to the physical properties of pillared saponite and pillared montmorillonite was examined. Mol ratio of Al to clay mass in the range 1.0 - 5.0 and two different calcination methods; conventional calcination and microwave irradiation method are evaluated as controlling factors to evolution of basal spacing d001 , surface acidity, specific surface area, pore distribution and catalytic activity in phenol hydroxylation reaction. XRD, FTIR, and N2-adsorption/desorption analysis were used to characterize the materials. Results showed that pillarization produced higher basal spacing d001 and surface acidity and crystalinity of materials in all Al/clay ratio and in both of the calcination methods. In general, Al to clay mass ratio and calcination method remarkably influence to the basal spacing d001, surface acidity and material crystallinity, but the effect of these factors to catalyst activity in phenol hydroxylation depends on nature of clay. It is concluded that the activity as catalyst is affected by the presence of ionic species and surface acidity in the minerals.     Keywords: Pillared smectite, surface acidity, calcination

  17. Synthesis, structure and photoluminescent behavior of a novel pillar-layered {Zn3}-based metal-organic framework

    Science.gov (United States)

    Song, Xue-Zhi; Mu, Wen-Sheng; Han, Bing-Yan; Yan, Yang

    2016-09-01

    A novel 3D metal-organic framework (MOF) {[Zn3(bpdc)3 (p-4-bpmb)](DMF)2}n ( 1) (H2bpdc=biphenyl-4,4‧-dicarboxylic acid; p-4-bpmb=1,4-bis(pyridine-4-ylmethoxy)benzene) has been solvothermally synthesized and structurally characterized. Compound 1 exhibits a 3D pillar-layered framework based on the trinuclear {Zn3} building blocks, consisting of Zn-dicarboxylate layers and bipyridyl-derivative pillars. Furthermore, it features three-fold interpenetrating 8-connected hex-type topology. In addition, its thermal stability and luminescent property have also been investigated.

  18. The role of the nature of pillars in the structural and magnetic properties of magnetic pillared vlays

    DEFF Research Database (Denmark)

    Bachir, Cherifa; Lan, Yanhua; Mereacre, Valeriu;

    2011-01-01

    -PILCs, respectively) were produced at different calcination temperatures and then magnetic pillared clays (Ti-M-PILCs, Al-M-PILCs, and Zr-M-PILCs) were prepared at ambient temperature. The synthesis involves a reduction in aqueous solution of the original Fe-exchanged pillared clay using NaBH4. The structural...... properties of pillared clays and their magnetic forms were investigated using X-ray diffraction, N-2 adsorption, cation exchange capacity determination, and X-ray fluorescence (XRF) measurements. The properties of the magnetic pillared clays were investigated by superconducting quantum interference devices...

  19. Supercapacitors based on pillared graphene nanostructures.

    Science.gov (United States)

    Lin, Jian; Zhong, Jiebin; Bao, Duoduo; Reiber-Kyle, Jennifer; Wang, Wei; Vullev, Valentine; Ozkan, Mihrimah; Ozkan, Cengiz S

    2012-03-01

    We describe the fabrication of highly conductive and large-area three dimensional pillared graphene nanostructure (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils for applications in electric double layer capacitors (EDLC). The PGN films synthesized via a one-step chemical vapor deposition process on flexible copper foils exhibit high conductivity with sheet resistance as low as 1.6 ohms per square and possessing high mechanical flexibility. Raman spectroscopy indicates the presence of multi walled carbon nanotubes (MWCNT) and their morphology can be controlled by the growth conditions. It was discovered that nitric acid treatment can significantly increase the specific capacitance of the devices. EDLC devices based on PGN electrodes (surface area of 565 m2/g) demonstrate enhanced performance with specific capacitance value as high as 330 F/g extracted from the current density-voltage (CV) measurements and energy density value of 45.8 Wh/kg. The hybrid graphene-CNT nanostructures are attractive for applications including supercapacitors, fuel cells and batteries.

  20. Pillar Design in the Hard Rock Mines of South Africa

    Directory of Open Access Journals (Sweden)

    D.F. Malan

    2012-12-01

    Full Text Available This paper gives an overview of the difficulties associated with the design of hard rock pillars in South African mines. Recent examples of large scale pillar collapses in South Africa suggest that these were caused by weak partings which traversed the pillars. Currently two different methods are used to determine the strength of pillars, namely, empirical equations derived from back analyses of failed and stable cases and numerical modeling tools using appropriate failure criteria. It is illustrated in the paper that both techniques have their limitations and additional work is required to obtain a better understanding of pillar strength.Empirical methods based on observations of pillar behaviour in a given geotechnical setting are popular and easy to use, but care should be exercised that the results are not inappropriately extrapolated beyond the environment in which they are established. An example is the Hedley and Grant formula (derived for the Canadian uranium mines that has been used for many years in the South African platinum and chrome mines (albeit with some adaptation of the K-value. Very few collapses have been reported in South Africa for layouts designed using this formula, suggesting that in some cases it might yield estimates of pillar strength that are too conservative.As an alternative, some engineers strongly advocate the use of numerical techniques to determine pillar strength. A close examination unfortunately reveals that these techniques also rely on many assumptions. An area where numerical modeling is invaluable, however, is to determine pillar stresses accurately and to study specific pillar failure mechanisms, such as the influence of weak partings on pillar strength.

  1. Numerical Analysis of Warpage Induced by Thermo-Compression Bonding Process of Cu Pillar Bump Flip Chip Package

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Young; Jung, Hoon Sun; Lee, Jung Hoon; Choa, Sung-Hoon [Seoul Nat’l Univ. of Science and Technology, Seoul (Korea, Republic of)

    2017-06-15

    In flip chip technology, the conventional solder bump has been replaced with a copper (Cu) pillar bump owing to its higher input/output (I/O) density, finer pitch, and higher reliability. However, Cu pillar bump technology faces several issues, such as interconnect shorting and higher low-k stress due to stiffer Cu pillar structure when the conventional reflow process is used. Therefore, the thermal compression bonding (TCB) process has been adopted in the flip chip attachment process in order to reduce the package warpage and stress. In this study, we investigated the package warpage induced during the TCB process using a numerical analysis. The warpage of the TCB process was compared with that of the reflow process.

  2. Surface properties of pillared acid-activated bentonite as catalyst for selective production of linear alkylbenzene

    Science.gov (United States)

    Faghihian, Hossein; Mohammadi, Mohammad Hadi

    2013-01-01

    Acid-activated and pillared montmorillonite were prepared as novel catalysts for alkylation of benzene with 1-decene for production of linear alkylbenzene. The catalysts were characterized by X-ray diffraction, FT-IR spectroscopy, N2 adsorption isotherms, temperature programmed desorption of NH3, scanning electron microscopy and elemental and thermal analysis techniques. It was found that acid-activation of clays prior to pillaring increased the porosity, total specific surface area, total pore volume and surface acidity of the catalysts. Optimization of the reaction conditions was performed by varying catalyst concentration (0.25-1.75 wt%), reactants ratio (benzene to 1-decene of 8.75, 12 and 15) and temperature (115-145 °C) in a batch slurry reactor. Under optimized conditions more than 98% conversion of 1-decene, and complete selectivity for monoalkylbenzenes were achieved.

  3. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn...

  4. Freely suspended actin cortex models on arrays of microfabricated pillars

    NARCIS (Netherlands)

    Roos, Wouter H.; Roth, Alexander; Konle, Johannes; Presting, Hartmut; Sackmann, Erich; Spatz, Joachim P.

    2003-01-01

    Actin networking across pillar-tops: Actin filaments have been self-assembled onto microscopic silicon pillars, forming quasi-two-dimensional networks (see graphic) and creating novel possibilities for mimicking functions of the cellular actin cortex on solid-state devices.

  5. Creep in model pillars. [Salt, trona, and potash ore

    Energy Technology Data Exchange (ETDEWEB)

    Obert, L.

    1965-03-01

    A study was made of the deformational behavior (creep) of pillars made from three quasi-plastic rock--salt, trona, and potash ore. The first phase of this study considers the design of a model pillar suitable for creep tests; in the second phase, six model pillars were prepared from salt from two sources, from trona, and from potash ore. The pillars in each group were subjected to a different but constant axial stress, and the axial strain was measured for 1,000 hours. An analysis of the data shows that in general the creep rate for these model pillars can be expressed by the relationship .epsilon = K/sub 1/ sigma/sub 0//sup n/, where .epsilon is the strain rate, sigma/sub 0/ is the applied stress, and K/sub 1/ and n are constants. For the rocks included in this test, n ranged from 2.4 to 3.3.

  6. Synthesis and Photocatalytic Activity of Ti-pillared Bentonite

    Institute of Scientific and Technical Information of China (English)

    TANG Jianwen; WU Pingxiao; ZHENG Shaoyan; LIU Yun; WANG Feifei; XIE Xianfa

    2006-01-01

    Ti-pillared bentonite has been successfully prepared using a modified method that can induce the transformation of TiO2 pillar from amorphous to anatase phase at a low temperature (150℃). The value of d001 =1.94 nm obtained by Ti-pillared bentonite is larger than that of corresponding raw clay (1.56 nm). Due to large numbers of Ti-pillars formed, the Ti-pillared bentonite shows an excellent ability in adsorbing Rhodamine B (RB). The photocatalytic activity and kinetic equation are investigated by decomposing RB solution under the UV irradiation. It is found that the Tipillared bentonite shows super photocatalytic activity for the degradation of RB solution compared with the untreated bentonite and pure TiO2, and the kinetic equation of the degradation of RB solution is a 1.5-oder equation.

  7. Mach-Zehnder Interferometer Based on Coupled Dielectric Pillars

    Institute of Scientific and Technical Information of China (English)

    GAO Ding-Shan; HAO Ran; ZHOU Zhi-Ping

    2007-01-01

    We propose a Mach-Zehnder interferometer (MZI) based on coupled dielectric pillars. It is composed of single-row pillar coupled waveguide modulating arms and three-row pillar waveguide 3 dB couplers. The slow light property and transmission loss of the single-row pillar modulating arm are optimized by the plane wave expansion method. A short 3dB coupler is designed based on the modes transformation in three-row pillar waveguide. Finite difference time domain simulations prove the validity of this MZI and show that it has low insertion loss of<1.1 dB and high extinction ratio of>12 dB.

  8. Characterizing the Dense Gas in the Eagle and Pelican Pillars

    Science.gov (United States)

    Grand, Erin; Pound, M. W.; Mundy, L. G.

    2014-01-01

    We observed two regions with molecular pillars, the Eagle and the Pelican, in order to understand the morphology of dense gas in these structures. Molecular pillars are formed in HII regions at the boundary between ionized gas and molecular clouds through the effects of photoionization, ablation, and recombination. Two sets of models exist for the formation mechanism of the pillars: (1) the growth of radiative hydrodynamic instabilities and (2) shadowing of the ionization front due to clumps in the molecular cloud. We have CARMA observations of the two sources in HCN J=1-0, N2H+ J=1-0, HCO+ J=1-0 and CS J=2-1 with resolutions of 9x6’’ for the Eagle and 4x4’’ for the Pelican. The dense gas follows the structure outlined in the optical images and seen in CO emission, throughout the pillars, with an increase in emission in the heads of the pillars. The differencing morphologies among the molecules are consistent with typical photo-disassociation region behavior. The velocity field shows a distinct gradient from head-to-tail for the majority of the pillars. We find that the morphology and the kinematics of the pillars are consistent with the shadowing model.

  9. Fold catastrophe model of dynamic pillar failure in asymmetric mining

    Institute of Scientific and Technical Information of China (English)

    PAN Yue; LI Ai-wu; QI Yun-song

    2009-01-01

    A rock burst disaster not only destroys the pit facilities and results in economic loss but it also threatens the life of the miners. Pillar rock burst has a higher frequency of occurrence in the pit compared to other kinds of rock burst. Understanding the cause, magnitude and prevention of pillar rock burst is a significant undertaking. Equations describing the bending moment and displacement of the rock beam in asymmetric mining have been deduced for simplified asymmetric beam-pillar systems. Using the symbolic operation software MAPLE 9.5 a catastrophe model of the dynamic failure of an asymmetric rock-beam pillar system has been established. The differential form of the total potential function deduced from the law of conservation of energy was used for this deduction. The critical conditions and the initial and final positions of the pillar during failure have been given in analytical form. The amount of elastic energy released by the rock beam at the instant of failure is determined as well as. A diagrammatic form showing the pillar failure was plotted using MATLAB software. This plot contains a wealth of information and is important for understanding the behavior during each deformation phase of the rock-beam pillar system. The graphic also aids in distinguishing the equivalent stiffness of the rock beam in different directions.

  10. Experimental and Numerical Investigation on the Bearing and Failure Mechanism of Multiple Pillars Under Overburden

    Science.gov (United States)

    Zhou, Zilong; Chen, Lu; Zhao, Yuan; Zhao, Tongbin; Cai, Xin; Du, Xueming

    2017-04-01

    To reveal the mechanical response of a multi-pillar supporting system under external loads, compressive tests were carried out on single-pillar and double-pillar specimens. The digital speckle correlation method and acoustic emission technique were applied to record and analyse information of the deformation and failure processes. Numerical simulations with the software programme PFC2D were also conducted. In the compressive process of the double-pillar system, if both individual pillars have the same mechanical properties, each pillar deforms similarly and reaches the critical stable state almost simultaneously by sharing equal loads. If the two individual pillars have different mechanical properties, the pillar with higher elastic modulus or lower strength would be damaged and lose its bearing capacity firstly. The load would then be transferred to the other pillar under a load redistribution process. When the pillar with higher strength is strong enough, the load carried by the pillar system would increase again. However, the maximum bearing load of the double-pillar system is smaller than the sum of peak load of individual pillars. The study also indicates that the strength, elastic modulus, and load state of pillars all influence the supporting capacity of the pillar system. In underground space engineering, the appropriate choice of pillar dimensions and layout may play a great role in preventing the occurrence of cascading pillar failure.

  11. Influence of swelling on reaction efficiency in intercalated clay minerals. 2. Pillared clays

    Energy Technology Data Exchange (ETDEWEB)

    Politowicz, P.A.; San Leung, L.B.; Kozak, J.J. (Australian National Univ., Canberra)

    1989-01-26

    Methods for intercalating thermally stable, polynuclear hydroxy metal cations and/or metal cluster cations in smectite clays have been developed in recent years as a means of keeping separate the silicate layers in the absence of a swelling solvent. Since the pillaring cations are space filling, the interlamellar reaction space will be broken up into an interconnected set of channels through which a diffusing species can migrate. In this paper, a lattice model is designed to determine how different spatial distributions of pillaring agents and different interlamellar spacings can influence the efficiency of reaction between a fixed target molecule and a diffusing coreactant. The authors study two regular distributions of pillaring cations and calculate the mean reaction time (as calibrated by the mean walklength ) of the diffusing coreactant as a function of the separation between silicate layers. All other factors being held constant, they find a significant increase in the reaction efficiency with increase in the number of channels available to the coreactant. They also find that for each distribution there is a decrease in reaction efficiency as one increases the interlayer spacing, with the surprising result that for large arrays the addition of one or two layers above the basal plane (where the target molecule is anchored at the centrosymmetric site) leads to essentially the same relative changes in the reaction efficiency regardless of the spatial distribution considered.

  12. POROUS MEMBRANE TEMPLATED SYNTHESIS OF POLYMER PILLARED LAYER

    Institute of Scientific and Technical Information of China (English)

    Zhong-wei Niu; Dan Li; Zhen-zhong Yang

    2003-01-01

    The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates to synthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and the layer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm the methodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.

  13. PS buildings : reinforced concrete structure for shielding "bridge" pillar

    CERN Document Server

    CERN PhotoLab

    1956-01-01

    The PS ring traverses the region between the experimental halls South and North (buildings Nos 150 and 151) under massive bridge-shaped concrete beams. This pillar stands at the S-W end of the structure.

  14. Catastrophe analysis on pillar instability considered mining effect

    Institute of Scientific and Technical Information of China (English)

    LI Jiang-teng; CAO Ping

    2005-01-01

    The instability of the pillar was discussed based on the potential energy principle and the cusp catastrophe theory, and a simplified mechanical model of the pillar was established considering the mining effect. The necessary-sufficient conditions, the jump value of displacement of pillar and the released energy expressions were deduced. The results show that the instability of the pillar is related to the properties of the rock, the external force and the relative stiffness of the elastic area to the plastic area. The instability of system is like to occur with the enlarging of the softening area or the decreasing of E/λ. The calculation done shows that the estimated results correspond to practical experience.

  15. On the existence of localized states in quantum pillars

    Science.gov (United States)

    Asvesta, F.; Xanthakis, J. P.; Tigelis, I. G.

    2013-08-01

    We have investigated the localization of electrons in quantum pillars, i.e. in nanometric structures in which electrons are confined by 5 sides, but are free to communicate with a bulk substrate of the same material through the 6th side and hence can be considered as open from this side. All nanopillars produced by an etching top-down process conform to this physical model. At first sight, electrons in such structures should have an equal probability of being everywhere, so confinement effects and consequently band-gap changes should not be present. However, experimentally, confinement effects are observed. We show, by a proper effective mass equation analysis of the combined pillars and substrate system, that eigenstates with a high degree of localization exist in the pillars - irrespective of the height of the pillar. Moreover, the eigenenergies of these states are extremely close to the energies of the quantum boxes that would be produced if the pillars were closed by all six sides. This analysis provides the justification for the previous application of effective mass calculations on the pillars alone.

  16. Cloud Disruption via Ionized Feedback: Tracing Pillar Dynamics in Vulpecula

    CERN Document Server

    Klaassen, P D; Dale, J E; Juhasz, A

    2014-01-01

    The major physical processes responsible for shaping and sculpting pillars in the clouds surrounding massive stars (i.e. the `Pillars of Creation') are now being robustly incorporated into models quantifying the ionizing radiation from massive stars. The detailed gas dynamics within these pillars can now be compared with observations. Our goal is to quantify the gas dynamics in a pillar being sculpted by a nearby massive star. To do this, we use the CO, $^{13}$CO, and C$^{18}$O J=1-0 emission towards a pillar in the Vulpecula Rift. These data are a combination of CARMA and FCRAO observations providing high resolution ($\\sim5''$) imaging of large scale pillar structures ($>100''$). We find that this cold ($\\sim18$ K), low density material ($8\\times10^3$ cm$^{-3}$) material is fragmenting on Jeans scales, has very low velocity dispersions ($\\sim0.5$ km s$^{-1}$), and appears to be moving away from the ionizing source. We are able to draw direct comparisons with three models from the literature, and find that th...

  17. Size Switchable Supramolecular Nanoparticle Based on Azobenzene Derivative within Anionic Pillar[5]arene

    Science.gov (United States)

    Zhang, Cai-Cai; Li, Sheng-Hua; Zhang, Cui-Fang; Liu, Yu

    2016-11-01

    A photo/thermal-switchable supramolecular nanoparticles assembly has been constructed based on an inclusion complex between anionic pillar[5]arene 2C-WP5A and azobenzene derivative Azo-py-OMe (G). The novel anionic pillar[5]arene-based host-guest inclusion complexation was investigated by the 1H NMR titration, 2D ROESY and isothermal titration microcalorimetry (ITC) showing high association constant (Ka) of (2.60 ± 0.06) × 104 M‑1 with 1:1 binding stoichiometry. Furthermore, the supramolecular nanoparticles assembly can be conveniently obtained from G and a small amount of 2C-WP5A in aqueous solution, which was so-called “host induced aggregating (HIA)”. The size and morphology of the supramolecular nanoparticles assembly were characterized by TEM and DLS. As a result of the photo/thermal-isomerization of G included in the cavity of 2C-WP5A, the size of these nanoparticles could reversibly change from ~800 nm to ~250 nm, which could switch the solution of this assembly from turbid to clear.

  18. Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries

    Science.gov (United States)

    Reddy, M. Jeevan Kumar; Ryu, Sung Hun; Shanmugharaj, A. M.

    2015-12-01

    With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors followed by its calcination at 500 °C for 2 h. While the grafted alkylamine induces crystalline growth of SnO2 pillars, thermal annealing of alkylamine grafted graphene oxide results in the formation of amorphous carbon coated graphene. Field emission scanning electron microscopy (FE-SEM) results reveal the successful formation of SnO2 pillared carbon on the graphene surface. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy characterization corroborates the formation of rutile SnO2 crystals on the graphene surface. A significant rise in the BET surface area is observed for SnO2 pillared carbon, when compared to pristine GO. Electrochemical characterization studies of SnO2 pillared carbon based anode materials showed an enhanced lithium storage capacity and fine cyclic performance in comparison with pristine GO. The initial specific capacities of SnO2 pillared carbon are observed to be 1379 mA h g-1, 1255 mA h g-1 and 1360 mA h g-1 that decrease to 750 mA h g-1, 643 mA h g-1 and 560 mA h g-1 depending upon the chain length of grafted alkylamine on the graphene surface respectively. Electrochemical impedance spectral analysis reveals that the exchange current density of SnO2 pillared carbon based electrodes is higher, corroborating its enhanced electrochemical activity in comparison with GO based electrodes.With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors

  19. Effects of PCB Pad Metal Finishes on the Cu-Pillar/Sn-Ag Micro Bump Joint Reliability of Chip-on-Board (COB) Assembly

    Science.gov (United States)

    Kim, Youngsoon; Lee, Seyong; Shin, Ji-won; Paik, Kyung-Wook

    2016-06-01

    While solder bumps have been used as the bump structure to form the interconnection during the last few decades, the continuing scaling down of devices has led to a change in the bump structure to Cu-pillar/Sn-Ag micro-bumps. Cu-pillar/Sn-Ag micro-bump interconnections differ from conventional solder bump interconnections in terms of their assembly processing and reliability. A thermo-compression bonding method with pre-applied b-stage non-conductive films has been adopted to form solder joints between Cu pillar/Sn-Ag micro bumps and printed circuit board vehicles, using various pad metal finishes. As a result, various interfacial inter-metallic compounds (IMCs) reactions and stress concentrations occur at the Cu pillar/Sn-Ag micro bumps joints. Therefore, it is necessary to investigate the influence of pad metal finishes on the structural reliability of fine pitch Cu pillar/Sn-Ag micro bumps flip chip packaging. In this study, four different pad surface finishes (Thin Ni ENEPIG, OSP, ENEPIG, ENIG) were evaluated in terms of their interconnection reliability by thermal cycle (T/C) test up to 2000 cycles at temperatures ranging from -55°C to 125°C and high-temperature storage test up to 1000 h at 150°C. The contact resistances of the Cu pillar/Sn-Ag micro bump showed significant differences after the T/C reliability test in the following order: thin Ni ENEPIG > OSP > ENEPIG where the thin Ni ENEPIG pad metal finish provided the best Cu pillar/Sn-Ag micro bump interconnection in terms of bump joint reliability. Various IMCs formed between the bump joint areas can account for the main failure mechanism.

  20. Polarized Dust Emission in the Eagle Nebula Pillars

    Science.gov (United States)

    Pound, Marc

    We propose the measure the magnetic field morphology in the Eagle Nebula pillars using HAWC+ to map total and polarized dust emission at 63, 89, 154, and 214 microns. We will couple these new measurements with existing measurements of CO, CS, HCN, HCO+, and N2H+ to compare with our simulations pillar formation in the presence of magnetic fields. These simulations provide projected column density maps, position-velocity diagrams, and plane-of-sky magnetic field maps for a variety of field configurations and strengths. With such analysis we can not only determine the most probable three-dimensional B-field morphology, but estimate its strength without recourse to observationally expensive Zeeman measurements. This would represent the first time magnetic field measurements have been made in any molecular pillar system and provide insight on the importance of magnetic fields in the stellar feedback process in star-forming molecular clouds.

  1. REMOVAL OF PHOSPHATES FROM WATER BY PILLARED RECTORITE

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The presence of trace phosphates in treated wastewater from municipalities and industries is often responsible for eutrophication problems in lakes, rivers, and other water bodies. In this paper,we report the removal of PO43- from water by using a pillared rectorite that we synthesized recently. The results show that cross-linking can significantly increase the adsorbing capacity of Na-rectorite for phosphates. The pH, the concentrations of F, NH4+ and COD are main factors, which affect the results for pillared rectorite to adsorb phosphates from water. The OH-, and F- ions decrease the capacity to adsorb phosphates, while the COD and NH4+ ions increase it.

  2. Aespoe Pillar Stability Experiment. Geology and mechanical properties of the rock in TASQ

    Energy Technology Data Exchange (ETDEWEB)

    Staub, Isabelle [Golder Associates AB, Uppsala (Sweden); Andersson, J. Christer; Magnor, Bjoern

    2004-03-01

    An extensive characterization programme has been performed in the drift, TASQ, excavated for the Aespoe Pillar Stability Experiment, APSE, including the rock volume that will host the experiment pillar between the two deposition holes. The two major objectives with the characterization has been to 1) derive material properties for the final numerical modelling of the experiment and 2) to ensure that the pillar location is suitable from a structural and rock mechanical point of view. In summary the following activities have been performed: Geological mapping of the drift, the pilot holes cores and deposition hole DQ0066G01. 3D-visualisation of the geological mapping in the experiment (pillar) volume of TASQ. Convergence measurements during the excavation and back calculation of the results for determination of the stress tensor and the rock mass Young's modulus. Laboratory tests on core samples from the 15{phi}76 mm core boreholes drilled around the pillar volume for determination of: compressive strength, thermal properties and fracture properties. P-wave velocity measurements on core samples and between boreholes for estimation of the excavation damaged zone and rock mass properties. The geological mapping and the 3D-visualisation gives a good description of the TASQ drift in general and the experiment volume in the drift in particular. The fracturing of the drift follows the pattern of the rest of Aespoe. Three fracture sets have been mapped in TASQ. The major fracture set is sub-vertical and trending NW, in principle parallel to {sigma}{sub 1}. This set is the most conductive at Aespoe and is the only water bearing set in TASQ. A second less pronounced set is trending NE, parallel to TASQ, and is also sub-vertical. The third set is sub-horizontal. It is interesting to note that the third set is the only one that almost completely consists of sealed fractures. The first two sets have mostly open fractures. One unique feature in the drift is a heavily

  3. Neutral coordination polymers based on a metal-mono(dithiolene) complex: synthesis, crystal structure and supramolecular chemistry of [Zn(dmit)(4,4'-bpy)]n, [Zn(dmit)(4,4'-bpe)]n and [Zn(dmit)(bix)]n (4,4'-bpy = 4,4'-bipyridine, 4,4'-bpe = trans-1,2-bis(4-pyridyl)ethene, bix = 1,4-bis(imidazole-1-ylmethyl)-benzene.

    Science.gov (United States)

    Madhu, Vedichi; Das, Samar K

    2011-12-28

    This article describes a unique synthetic route that enables a neutral mono(dithiolene)metal unit, {Zn(dmit)}, to link with three different organic molecules, resulting in the isolation of a new class of neutral coordination polymers. The species {Zn(dmit)} coordinates with 4,4'-bipyridine (4,4'-bpy), trans-1,2-bis(4-pyridyl)ethene (4,4'-bpe) and 1,4-bis(imidazole-1-ylmethyl)-benzene (bix) as linkers giving rise to the formation of coordination polymers [Zn(dmit)(4,4'-bpy)](n) (1), [Zn(dmit)(4,4'-bpe)](n) (2) and [Zn(dmit)(bix)](n) (3) respectively. Compounds 1-3 were characterized by elemental analyses, IR, diffuse reflectance and single crystal X-ray diffraction studies. Compounds 1 and 3 crystallize in the monoclinic space group P2(1)/n, whereby compound 2 crystallizes in triclinic space group P1[combining macron]. In the present study, we chose three linkers 4,4'-bpy, 4,4'-bpe and bix (see , respectively, for their structural drawings), that differ in terms of their molecular dimensions. The crystal structures of compounds 1-3 are described here in terms of their supramolecular diversities that include π-π interactions, not only among aromatic stacking (compounds 1 and 3), but also between an aromatic ring and an ethylenic double bond (compound 2). The electronic absorption spectroscopy of compounds 1-3 support these intermolecular π-π interactions. This journal is © The Royal Society of Chemistry 2011

  4. Synthesis and characterization of TiO2 pillared montmorillonites: application for methylene blue degradation.

    Science.gov (United States)

    Chen, Daimei; Du, Gaoxiang; Zhu, Qian; Zhou, Fengsan

    2013-11-01

    TiO2 pillared clay composites were prepared by modifying of montmorillonite (Mt) with cetyl-trimethyammoniumbromide (CTAB) and then using an acidic solution of hydrolyzed Ti alkoxide to intercalate into the interlayer space of the organic modified Mt. The as-prepared materials were characterized by XRD, FTIR, TEM, SEM TG-DTA, specific surface area and porosity measurements. The composites had a porous delaminated structure with pillared fragments and well dispersed TiO2 nanoparticles. Introduction of CTAB into the synthetic system accelerated the hydrolysis and condensation of the Ti source, which promoted TiO2 formation. In addition, the CTAB also significantly increased the porosity and surface area of the composites. A number of anatase particles, with crystal sizes of 5-10 nm, were homogenously distributed on the surface of the Mt as the result of the templating role of CTAB. The resultant TiO2 pillared Mt exhibited good thermal stability as indicated by its surface area after calcination at 800°C. No phase transformations from anatase to rutile were observed even under calcination at 900°C. The grain size of the anatase in prepared sample increased from 2.67 nm to 13.42 nm as the calcination temperature increased from 300°C to 900°C. The photocatalytic performance of these new porous materials was evaluated by using methylene blue degradation. The composite exhibited better photocatalytic property than P 25. The maximum removal efficiency of this composite was up to 99% within 60 min.

  5. A hydrogen storage nanotank: lithium-organic pillared graphite.

    Science.gov (United States)

    Han, Sang Soo; Jang, Seung Soon

    2009-09-28

    From first-principle based grand canonical Monte-Carlo simulations, we propose a new hydrogen storage material, lithium-organic pillared graphite, showing high H2 uptake of 4.0 wt% and 41.9 kg m(-3) at 300 K and 100 bar.

  6. Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation

    Directory of Open Access Journals (Sweden)

    Wang GJ

    2012-04-01

    Full Text Available Hsiao-Wei Wang1, Chung-Wei Cheng2, Ching-Wen Li3, Han-Wei Chang4, Ping-Han Wu2, Gou-Jen Wang 1Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan, 2Laser Application Technology Center, Industrial Technology Research Institute, Tainan County, Taiwan, 3Department of Mechanical Engineering, 4Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, People’s Republic of ChinaAbstract: One of the persistent challenges confronting tissue engineering is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. An artificial microvascular system could be a feasible solution to this problem. In this study, the femtosecond laser ablation technique was implemented for the fabrication of pillared microvessel scaffolds of polylactic-co-glycolic acid (PLGA. This novel scaffold facilitates implementation of the conventional cell seeding process. The progress of cell growth can be observed in vitro by optical microscopy. The problems of becoming milky or completely opaque with the conventional PLGA scaffold after cell seeding can be resolved. In this study, PLGA microvessel scaffolds consisting of 47 µm × 80 µm pillared branches were produced. Results of cell culturing of bovine endothelial cells demonstrate that the cells adhere well and grow to surround each branch of the proposed pillared microvessel networks.Keywords: femtosecond laser ablation, pillared microvessel scaffold, polylactic-co-glycolic acid, bovine endothelial cells

  7. On pillar design for weak floor strata conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pytel, W.M. (Southern Illinois University at Carbondale, Carbondale, IL (United States). Dept. of Mining Engineering)

    1994-06-01

    The paper deals with the rational techniques that are available and currently utilized in engineering practice to design pillars associated with weak floor strata. All methods applied to determine the ultimate brearing capacity of floor strata are reviewed, including a more general, recently developed technique which treats weak floor strata as a two-layer rock system characterized by cohesion (c) and the angle of internal friction ([phi]) for both layers. Using foundation engineering analysis techniques, the effect of adjacent pillars on ultimate bearing capacity of weak floor strata underneath pillars in a panel was also considered. Based on the limit states theory, the upper-bound for capacity factors of an anisotopric non-homogeneous floor strata system were determined to estimate the effect of rock anisotropy on floor strata stability. Sensitivity analyses were also performaed in order to determine the relative importance of all parameters affecting floor strata strength underneath rectangular pillars. The design approaches presented are illustrated with step by step solutions for physical problems, and the appropriateness of all available design methods is estimated through field observations performed in two coal mines. 11 refs., 17 figs., 3 tabs.

  8. In situ measurements of Merensky pillar behaviour at Impala Platinum

    CSIR Research Space (South Africa)

    Watson, BP

    2009-12-01

    Full Text Available to stabilize the stoping excavations. This paper describes the in situ measurement, of stress within a Merensky pillar from Impala Platinum. These measurements were used to derive a stress-strain curve that includes pre and post failure behaviour. 2D FLAC...

  9. Design of Slit between Micro Cylindrical Pillars for Cell Sorting

    Directory of Open Access Journals (Sweden)

    Yusuke Takahashi

    2016-12-01

    Full Text Available Micro slits have been designed between micro cylindrical pillars to sort biological cells. Micro cylindrical pillars of 0.02 mm diameter and 0.055 mm height were fabricated on the glass plate using the photolithography technique. Variation was made on the gap between pillars: 0.01 mm, 0.02 mm, 0.03 mm, and 0.04 mm. The micro pillars are set in the flow path between parallel plates, of which dimension of the cross section is 5 mm width and 0.055 mm height. Three kinds of biological cells were used in the test alternatively: C2C12 (mouse myoblast cell line originated with cross-striated muscle of C3H mouse, Hepa1-6 (mouse hepatoma cell line of C57L mouse, or swine red blood cell. The suspension of cells was introduced into the slits by the syringe pump at the flow rate between 0.4 and 500 cm3/hour. The deformation of the cell at the slit can be observed by the microscope. The experimental results show that the designed slit has capability for sorting cells according to the size and deformability of the cell.

  10. The Sixth Pillar of Reading Instruction: Knowledge Development

    Science.gov (United States)

    Cervetti, Gina N.; Hiebert, Elfrieda H.

    2015-01-01

    The National Reading Panel (NRP) identified five pillars, or essential components, of reading instruction that lead to the highest chance of reading success--phonemic awareness, phonics, fluency, vocabulary, and comprehension. A decade after the NRP's report, the majority of US states adopted the Common Core State Standards/English Language Arts…

  11. Boundary layer eruption behind the bridge pillar model

    Science.gov (United States)

    Strzelecka, K.; Kudela, H.

    2016-10-01

    Experimental quantitative (local velocity measurements by Laser Doppler Anemometry) and qualitative researches (visualization by dye marker) of flow around a bridge pillar model for the Reynolds number Re D in the range of 40 up to 350 (for laminar, transitional and turbulent flow) were conducted. Re D was the Reynolds number referred to the diameter of the model (cylinder), D = 14.65 mm.

  12. Architecture at the Nanoscale—Self-Pillared Zeolite Nanosheets

    NARCIS (Netherlands)

    Zecevic, J.; de Jong, K.P.

    2013-01-01

    Playing with a full deck: A simple, one-step synthesis of self-pillared zeolite MFI nanosheets was realized with the use of a surprisingly simple structure directing agent. Nanosheets were intergrown in an open “house of cards” arrangement with combined micropores and mesopores. Hierarchical porosit

  13. Pillar tuleb laulu, tantsu lusti ja koertega. Sõbrad musitseerivad

    Index Scriptorium Estoniae

    2006-01-01

    Rahvusvahelisest laste folkloorifestivalist "Porkuni Pillar" 3. ja 4. juunil. Hausjärvi muusika- ja kunstikallakuga koolide õpilaste külaskäigust Väike-Maarja Muusikakooli ja Kiltsi põhikooli õpilastele, kontsertetendusest 1. juunil Väike-Maarja rahvamajas

  14. Development of a method to estimate coal pillar loading

    CSIR Research Space (South Africa)

    Roberts, DP

    2002-09-01

    Full Text Available Final Report Development of a method to estimate coal pillar loading DP Roberts, JN van der Merwe, I Canbulat EJ Sellers and S Coetzer Research Agency : CSIR Miningtek Project No : COL 709 Date : September 2002 Report No : 2001-0651 2 Executive...

  15. Dynamic hydrophobicity of heterogeneous pillared surfaces at the nano-scale

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae Woo; Ha, Man Yeong; Jang, Joon Kyoung [Pusan National University, Busan (Korea, Republic of); Ambrosia, Matthew Stanley [Catholic University of Pusan, Busan (Korea, Republic of)

    2015-04-15

    In this study, the static and dynamic behaviors of nano-scale water droplets on heterogeneous surfaces were investigated using molecular dynamics simulations. The surface consisted of a flat plate and pillar structures. The surface was designed with four pillar heights and three pillar characteristic energies. Simulations were first run so that the water droplet reached the static equilibrium state. Once the static water droplets were in Cassie-Baxter state, increasing the pillar height had very little effect on the contact angle. Droplets on the surface with the strongest pillar characteristic energy never reached the Cassie-Baxter state and contact angles tended to decrease with increasing pillar height. Then five forces were applied to the water droplets parallel to the surface to observe the dynamic behavior of the droplets. Then, the effect of the pillar characteristic energy on the behavior of the dynamic water droplet was discussed using the contact angle hysteresis ( cosθ{sub Re} - cosθ{sub Ad}) as the pillar height and the magnitude of the applied force varied. When compared to the homogeneous cases, it was found that except at the lowest pillar height all of the lower pillar characteristic energy cases were hydrophobic and did not depend much on pillar height or magnitude of force. Whereas the higher pillar characteristic energy cases were generally hydrophilic and the hydrophobicity depended greatly on the magnitude of the force.

  16. A two-fold interpenetrated flexible bi-pillared-layer framework of Fe(II) with interesting solvent adsorption property

    Indian Academy of Sciences (India)

    Ritesh Haldar; Tapas Kumar Majia

    2011-11-01

    A two-fold interpenetrated microporous bi-pillared-layer framework of Fe(II), {[Fe(2,6-napdc)(4,4'-bipy)](EtOH)(H2O)} (1) (2,6-napdc =2,6-naphthalenedicarboxylate; 4,4'-bipy=4,4'-bipyridine) composed of mixed ligand system has been synthesized and structurally characterized. The 2,6-napdc linkers form a 2D corrugated sheet of {Fe(2,6-napdc)} by linking the secondary building unit of Fe2(CO2)2 in the plane, which are further connected by double 4,4'-bipy pillars resulting in a bi-pillared-layer type 3D framework. The 3D framework is two-fold interpenetrated and exhibits a 3D channel structure (4.0 × 3.5, 1.5 × 0.5 and 2.2 × 2.1 Å2) occupied by the guest water and ethanol molecules. Framework 1 shows high thermal stability, and the desolvated framework (1′) renders permanent porosity realized by N2 adsorption profile at 77K (BET surface area of ∼ 52 m2 g-1). Moreover, the framework 1′ also uptakes different solvent vapours (water, methanol and ethanol) and their type-I profile suggest strong interaction with pore surfaces and overall hydrophilic nature of the framework. Temperature dependent magnetic measurements suggest overall antiferromagnetic behaviour in compound 1.

  17. 多孔碳柱撑膨润土的制备与表征%PREPARATION AND CHARACTERIZATION OF POROUS CARBON PILLARED BENTONITE

    Institute of Scientific and Technical Information of China (English)

    张增志; 杨春卫; 牛俊杰

    2008-01-01

    Porous carbon pillared bentonite was prepared from bentonite modified by C19H42BrN and C10H16CIN. The porous pillared bentonite were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, nitrogen absorption/desorption, thermal-gravimetric analysis and differential scanning calorimetry. The influence of organic modifier on the characteristics of porous pillared bentonite was investigated. The results show that organic modifier combines with bentonite particles by covalent bond and ion embedding. The microstructure of porous carbon pillared bentonite looks like needle slice. The most probable pore size distribution is about 1.7 nm. The modifier slice mainly consists of two direction holes supported by a carbonization pillar. The high-temperature stability of carbon pillared bentonite was improved.%用十六烷基三甲基溴化铵和苄基三甲基氯化铵改性膨润土制备了多孔碳柱撑膨润土.用Fourier变换红外光谱仪、扫描电子显微镜和氮气吸附-脱附、热分析系统地研究了有机改性剂对多孔材料性能的影响.结果表明:膨润土微粒与有机改性剂以共价键和离子嵌入2种形式结合;多孔碳柱撑膨润土的微观形貌呈针片状,最可几孔径分布大约在1.7nm;多孔材料的主要结构是由碳化的大粒子柱撑而构建的二维孔径,烧结后的有机黏土热稳定性大大提高.

  18. Capacitive humidity sensing properties of carbon nanotubes grown on silicon nanoporous pillar array

    Institute of Scientific and Technical Information of China (English)

    JIANG WeiFen; XIAO ShunHua; ZHANG HuanYun; DONG YongFen; LI XinJian

    2007-01-01

    Multi-walled carbon nanotubes (CNTs) were grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition method, and the structural and capacitive humidity sensing properties of CNT/Si-NPA were studied. It was found that with the relative humidity (RH) changing from 11% to 95%, a device response of ~480% was achieved at the frequency of 50000 Hz, and a linear device response curve could be obtained by adopting longitudinal logarithmic coordinate. The response/recovery times were measured to be ~20 s and ~10 s, respectively, which indicated a rather fast response/recovery rate. The adsorption-desorption dynamic cycle experiments demonstrated the high measurement reproducibility of CNT/Si-NPA sensors. These excellent performances were attributed to the unique surface structure, morphology and chemical inertness of CNT/Si-NPA.

  19. Capacitive humidity sensing properties of carbon nanotubes grown on silicon nanoporous pillar array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multi-walled carbon nanotubes (CNTs) were grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition method, and the structural and capacitive humidity sensing properties of CNT/Si-NPA were studied. It was found that with the relative humidity (RH) changing from 11% to 95%, a device re-sponse of ~480% was achieved at the frequency of 50000 Hz, and a linear device response curve could be obtained by adopting longitudinal logarithmic coordinate. The response/recovery times were measured to be ~20 s and ~10 s, respectively, which indicated a rather fast response/recovery rate. The adsorption-desorption dynamic cycle experiments demonstrated the high measurement reproducibility of CNT/Si-NPA sensors. These excellent performances were attributed to the unique surface structure, morphology and chemical inertness of CNT/Si-NPA.

  20. Ultimate bearing capacity and settlement of coal pillar sub-strata

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Pula, O.; Pytel, W.M. (Southern Illinois University, Carbondale, IL (USA). Dept. of Mining Engineering)

    1990-06-01

    This paper develops a rational approach for design of coal pillars under weak floor strata conditions considering ultimate bearing capacity (UBC) as well as pillar settlement. An approximate solution is presented for estimation of UBC for a shallow foundation on a two-layered rock system with consideration of both cohesion ({ital c}) and ({phi}) for both layers. Similarly, deformability underneath a full-size pillar is estimated from deformability calculated from plate loading tests. The effect of adjacent pillars on UBC and deformability of coal pillars in a panel is considered using foundation engineering analysis techniques. The design of pillars based on limiting settlements considers both differential settlements as well as mean settlement of pillar in a panel. An attempt is made to validate the proposed design approach based on field data and observations at an Illinois mine. 37 refs., 12 figs., 1 tab.

  1. Numerical Analysis on Failure Modes and Mechanisms of Mine Pillars under Shear Loading

    Directory of Open Access Journals (Sweden)

    Tianhui Ma

    2016-01-01

    Full Text Available Severe damage occurs frequently in mine pillars subjected to shear stresses. The empirical design charts or formulas for mine pillars are not applicable to orebodies under shear. In this paper, the failure process of pillars under shear stresses was investigated by numerical simulations using the rock failure process analysis (RFPA 2D software. The numerical simulation results indicate that the strength of mine pillars and the corresponding failure mode vary with different width-to-height ratios and dip angles. With increasing dip angle, stress concentration first occurs at the intersection between the pillar and the roof, leading to formation of microcracks. Damage gradually develops from the surface to the core of the pillar. The damage process is tracked with acoustic emission monitoring. The study in this paper can provide an effective means for understanding the failure mechanism, planning, and design of mine pillars.

  2. Optimization study on waterproofing coal and rock pillar between two working faces

    Energy Technology Data Exchange (ETDEWEB)

    Yang Liu; Xue-Zhou Chai; Jing-Sheng Li [Xi' an University of Science and Technology. Xi' an (China). School of Energy Engineering

    2009-02-15

    The routine method of designing the width of waterproofing coal and rock pillar between two working faces leads to the coal pillar size being too large and is wasteful of coal resources. The omission in this method of replacing the width of failure area by the displaced mass influence area was pointed out. A formula of coal pillar failure area width is given for waterproofing coal and rock design. It is recommended that coal pillars and rock pillars should be calculated separately first. The design method was corrected by replacing the width of failure area by the displaced mass influence area. This reduces the design width of coal pillars and optimizes the whole process of waterproof coal and rock pillars design. 6 refs., 3 figs.

  3. High Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries

    Science.gov (United States)

    2015-04-24

    Automotive Research Development and Engineering Center, Warren, MI 48387, USA Keywords: nanostructured materials, lithium ion batteries, cathode... key consideration for batteries used in vehicle applications, the rate capability, cyclability, and safety of LIBs have been identified as critical...diffraction planes ( Figure 1). With the intercalation of the Al13 Keggin pillars, the position of the 001 plane shifts to 6.7 degrees two-theta, along with

  4. Crystallography of Representative MOFs Based on Pillared Cyanonickelate (PICNIC Architecture

    Directory of Open Access Journals (Sweden)

    Winnie Wong-Ng

    2016-09-01

    Full Text Available The pillared layer motif is a commonly used route to porous coordination polymers or metal organic frameworks (MOFs. Materials based on the pillared cyano-bridged architecture, [Ni’(LNi(CN4]n (L = pillar organic ligands, also known as PICNICs, have been shown to be especially diverse where pore size and pore functionality can be varied by the choice of pillar organic ligand. In addition, a number of PICNICs form soft porous structures that show reversible structure transitions during the adsorption and desorption of guests. The structural flexibility in these materials can be affected by relatively minor differences in ligand design, and the physical driving force for variations in host-guest behavior in these materials is still not known. One key to understanding this diversity is a detailed investigation of the crystal structures of both rigid and flexible PICNIC derivatives. This article gives a brief review of flexible MOFs. It also reports the crystal structures of five PICNICS from our laboratories including three 3-D porous frameworks (Ni-Bpene, NI-BpyMe, Ni-BpyNH2, one 2-D layer (Ni-Bpy, and one 1-D chain (Ni-Naph compound. The sorption data of BpyMe for CO2, CH4 and N2 is described. The important role of NH3 (from the solvent of crystallization as blocking ligands which prevent the polymerization of the 1-D chains and 2-D layers to become 3D porous frameworks in the Ni-Bpy and Ni-Naph compounds is also addressed.

  5. Ozonation of Indigo Carmine Catalyzed with Fe-Pillared Clay

    Directory of Open Access Journals (Sweden)

    Miriam Bernal

    2013-01-01

    Full Text Available The ozonation catalyzed by iron-pillared clays was studied. The degradation of dye indigo carmine (IC was elected as test reaction. Fe-pillared clays were synthesized by employing hydrolyzed FeCl3 solutions and bentonite. The pillared structure was verified by XRD and by XPS the oxidation state of iron in the synthesized material was established to be +2. By atomic absorption the weight percentage of iron was determined to be 16. The reaction was conducted in a laboratory scale up-flow bubble column reactor. From the studied variables the best results were obtained with a particle size of 60 microns, pH=3, ozone flow of 0.045 L/min, and catalyst concentration of 100 mg/L. IC was completely degraded and degradation rate was found to be double when using Fe-PILCS than with ozone alone. DQO reduction was also significantly higher with catalyzed than with noncatalyzed ozonation.

  6. Nanoscale Structure and Elasticity of Pillared DNA Nanotubes

    CERN Document Server

    Joshi, Himanshu; Seeman, Nadrian C; Maiti, Prabal K

    2016-01-01

    We present an atomistic model of pillared DNA nanotubes (DNTs) and their elastic properties which will facilitate further studies of these nanotubes in several important nanotechnological and biological applications. In particular, we introduce a computational design to create an atomistic model of a 6-helix DNT (6HB) along with its two variants, 6HB flanked symmetrically by two double helical DNA pillars (6HB+2) and 6HB flanked symmetrically by three double helical DNA pillars (6HB+3). Analysis of 200 ns all-atom simulation trajectories in the presence of explicit water and ions shows that these structures are stable and well behaved in all three geometries. Hydrogen bonding is well maintained for all variants of 6HB DNTs. We calculate the persistence length of these nanotubes from their equilibrium bend angle distributions. The values of persistence length are ~10 {\\mu}m, which is 2 orders of magnitude larger than that of dsDNA. We also find a gradual increase of persistence length with an increasing number...

  7. Synthesis and Characterization of Alumina Pillared Synthetic Saponite%层柱人工水热合成皂石的制备与表征

    Institute of Scientific and Technical Information of China (English)

    姚铭; 刘子阳; 王凯雄; 李彩今; 邹永存; 孙红杰

    2004-01-01

    利用具有理想皂石结构的人工水热合成蒙皂石为层原料,通过与羟基聚合铝离子([Al13O4(OH)24(H2O)12]7+)交换反应合成得到了一种层柱粘土.实验对于该铝柱皂石进行了粉末XRD,FT-IR和TG-DTA表征.氮气吸附实验说明其高温活化(773 K,2 h)产物具有很高的BET比表面(360 m2·g-1).相对于层柱蒙脱土,层柱皂石显示了更高的催化裂解性能和热稳定性.层柱皂石的异丙苯裂解转化率达到了65%;而层柱蒙脱土的转化率只有4%.这说明层材料的四面体取代对于层柱粘土Bronsted酸位的形成具有重要的决定作用.氨程序升温脱附实验发现铝柱皂石在350~650℃区间具有较强的氨脱附量,表明层柱皂石具有层柱蒙脱土所没有的强酸中心.%Alumina pillared clay was synthesized by a cationic exchange reaction with [Al13O4(OH)24(H2O)12]7+ (referred to as Al13) using synthetic smectite with ideal saponite structure as parent material. The obtained pillared saponite was characterized by X-ray powder diffraction, FT-IR and TG-DTA. The pillared materials showed a very high the alumina pillared montmorillonite, the pillared saponite exhibited higher cracking activity and better thermal stability. The cumene conversion was ca. 65% over the pillared saponite by the impulse reaction, while it was only ~4% for the pillared montmorillonite, indicating that the substitutions in the tetrahedral sheets played an important role in the development of Bronsted acidity of the catalyst. By temperature programmed desorption of ammonia (TPDA), pillared saponite showed high strong acidity in the temperature range 350~650℃.

  8. Effect of structural discontinuities on coal pillar strength as a basis for improving safety in the design of coal pillar systems.

    CSIR Research Space (South Africa)

    Esterhuizen, GS

    1998-12-01

    Full Text Available The stability of underground coal mines depends on the integrity of the pillars which are required to support the overlying strata. Should the pillars collapse, the safety of the persons in the workings will be threatened. The strength of a coal...

  9. Stress Changes and Deformation Monitoring of Longwall Coal Pillars Located in Weak Ground

    Science.gov (United States)

    Yu, Bin; Zhang, Zhenyu; Kuang, Tiejun; Liu, Jinrong

    2016-08-01

    Coal pillar stability is strongly influenced by the site-specific geological and geotechnical conditions. Many geological structures such as faults, joints, or rock intrusions can be detrimental to mining operations. In order to evaluate the performance of coal pillars under weak roof degraded by igneous rock intrusion, stress and deformation monitoring was conducted in the affected tailgate areas of Nos. 8208 and 8210 longwalls in Tashan coal mine, Shanxi Province, China. The measurements in the 8208 longwall tailgate showed that the mining-induced stresses in 38-m-wide coal chain pillars under the overburden depth of 300-500 m started to increase at about 100 m ahead of the 8208 longwall working face and reached its peak level at approximately 50 m ahead of the longwall face. The peak stress of 9.16 MPa occurred at the depth of 8-9 m into the pillar from the tailgate side wall. In comparison, disturbance of the headgate block pillar area was negligible, indicating the difference of abutment pressure distribution between the tailgate and headgate sites where the adjacent unmined longwall block carried most of the overburden load. However, when the longwall face passed the headgate monitoring site by 360-379 m, the pillar stress increased to a peak value of 21.4 MPa at the pillar depth of 13 m from the gob side mainly due to stress redistribution in the chain pillar. In contrast to the headgate, at the tailgate side, the adjacent goaf was the dominant triggering factor for high stress concentrations in the chain pillar. Convergence measurements in the tailgate during longwall mining further indicated the evolution characteristics of coal pillar deformation, clearly showing that the gateroad deformation is mainly induced by the longwall extraction it serves. When predicting the future pillar loads from the monitored data, two stress peaks appeared across the 38-m-wide tailgate coal pillar, which are separated by the lower stress area within the pillar center. This

  10. Analysis on stability of pillar and stiff roof system in the gob area

    Institute of Scientific and Technical Information of China (English)

    LIU Hong; HU Qian-ting; WANG Jin-an; LI Jian-gong

    2009-01-01

    Based on the open stope method, the stability of the gob area was decided by pillars and stiff roof. Therefore, it was dispensable to leave pillars with long-term strength and enough size to support the stiff roof during mining activities. Based on the mining conditions of Baixiang wollastonite mine in Changxing County of Zhejiang, while consider-ing pillars with different shape, irregular size, and distribution, the load imposed on the pil-lars was analyzed, and the safety coefficient was calculated in order to determine their support status. The strength of stiff roof was calculated by means of analytical solu-tion-theory of rectangle thin plate rested on elastic foundation. The system stability of pillar and stiff roof was analyzed according to the proportion of the total cross section area of pillars to the stiff roof area above the mined area.

  11. Strength of submicrometer diameter pillars of metallic glasses investigated with in situ transmission electron microscopy

    NARCIS (Netherlands)

    Chen, C.Q.; Pei, Y.T.; Hosson, J.Th.M. De

    2009-01-01

    We have fabricated micro-/nano-pillars of two metallic glasses (MGs), Cu-based Cu(47)Ti(33)Zr(11)Ni(6)Sn(2)Si(1) and Zr-based Zr(50)Ti(16.5)Cu(15)Ni(18.5), respectively, with pillar tip diameters ranging from similar to 650 to similar to 90 nm. These pillars were mechanically tested in situ in

  12. Reducing mining losses when applying room and pillar mining methods

    Energy Technology Data Exchange (ETDEWEB)

    Duchrow, G.; Schilder, C.

    1985-12-01

    In potassium mining in the German Democratic Republic, the reduction of losses is an important problem, and considerable scientific and technical efforts have been made on this sector. There were four stages of development: A period of 'empirical' dimensioning was followed by dimensioning on a mathematical basis and by the optimized design of winning parameter relationships. The latest stage focuses on the optimisation of pillar parameters in suitable rock salt and sylvinite fields. The different stages of development are described, explained, and illustrated by examples. The efficiency in loss reduction is determined, and methods for monitoring the winning operations are presented. (orig./MOS).

  13. Charge transport in nanoscale vertical organic semiconductor pillar devices

    Science.gov (United States)

    Wilbers, Janine G. E.; Xu, Bojian; Bobbert, Peter A.; de Jong, Michel P.; van der Wiel, Wilfred G.

    2017-01-01

    We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene) (P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust nanoscale junctions carrying high current densities (up to 106 A/m2). Current-voltage data modeling demonstrates excellent hole injection. This work opens up the pathway towards nanoscale, ultrashort-channel organic transistors for high-frequency and high-current-density operation.

  14. Analysis of progressive failure of pillar and instability criterion based on gradient-dependent plasticity

    Institute of Scientific and Technical Information of China (English)

    王学滨

    2004-01-01

    A mechanical model for strain softening pillar is proposed considering the characteristics of progressive shear failure and strain localization. The pillar undergoes elastic, strain softening and slabbing stages. In the elastic stage, vertical compressive stress and deformation at upper end of pillar are uniform, while in the strain softening stage there appears nonuniform due to occurrence of shear bands, leading to the decrease of load-carrying capacity.In addition, the size of failure zone increases in the strain softening stage and reaches its maximum value when slabbing begins. In the latter two stages, the size of elastic core always decreases. In the slabbing stage, the size of failure zone remains a constant and the pillar becomes thinner. Total deformation of the pillar is derived by linearly elastic Hooke's law and gradient-dependent plasticity where thickness of localization band is determined according to the characteristic length. Post-peak stiffness is proposed according to analytical solution of averaged compressive stressaverage deformation curve. Instability criterion of the pillar and roof strata system is proposed analytically using instability condition given by Salamon. It is found that the constitutive parameters of material of pillar, the geometrical size of pillar and the number of shear bands influence the stability of the system; stress gradient controls the starting time of slabbing, however it has no influence on the post-peak stiffness of the pillar.

  15. Contact angle hysteresis on regular pillar-like hydrophobic surfaces.

    Science.gov (United States)

    Yeh, Kuan-Yu; Chen, Li-Jen; Chang, Jeng-Yang

    2008-01-01

    A series of pillar-like patterned silicon wafers with different pillar sizes and spacing are fabricated by photolithography and further modified by a self-assembled fluorosilanated monolayer. The dynamic contact angles of water on these surfaces are carefully measured and found to be consistent with the theoretical predictions of the Cassie model and the Wenzel model. When a water drop is at the Wenzel state, its contact angle hysteresis increases along with an increase in the surface roughness. While the surface roughness is further raised beyond its transition roughness (from the Wenzel state to the Cassie state), the contact angle hysteresis (or receding contact angle) discontinuously drops (or jumps) to a lower (or higher) value. When a water drop is at the Cassie state, its contact angle hysteresis strongly depends on the solid fraction and has nothing to do with the surface roughness. Even for a superhydrophobic surface, the contact angle hysteresis may still exhibit a value as high as 41 degrees for the solid fraction of 0.563.

  16. Growth process and mechanism of a multi-walled carbon nanotube nest deposited on a silicon nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen, E-mail: gingerwfj@yahoo.com.cn [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, No. 36 Beihuan Road, Zhengzhou 450011 (China); Jian Lv; Yang Xiaohui [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, No. 36 Beihuan Road, Zhengzhou 450011 (China); Li Xinjian [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2010-03-01

    A large scale nest array of multi-walled carbon nanotubes (NACNTs) was grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition. Through observing its macro/micromorphology and structure, ascertaining the catalyst component and its locations at different growth time by hiring field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction, the growth process was deduced. Its thermal properties were also investigated by using a thermogravimetric analyzer. Our experiments demonstrated that the CNTs growth by means of root-growth mechanism at the initial growth stage, then a continuous growth process with its tip open is suggested, finally, a schematic growth model of NACNT/Si-NPA was presented.

  17. Study on the optimum design of bus window pillar join40t; Bus window pillar ketsugo buzai no saiteki sekkei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tomioka, N. [Nihon University, Tokyo (Japan); Lim, S.; Kim, M.; Lee, H.; Kang, S.; Bae, D.

    1997-10-01

    Automobile body structure is generally assembled using various spot welded box sectional members. Especially, in the case of the bus, the shape of window pillar joint is assembled m T-type. This T-type member has some problem such as high stress concentration, low fatigue strength and structural rigidity. Therefore, in this report, performed a study on the optimum design of the bus window pillar joint for such problem by FEM analysis and experiments. 1 ref., 10 figs., 2 tabs.

  18. THE EFFECT OF THICKNESS OF PILLAR IN THE CHANNEL BEND TO CHANGES THE COEFFICIENT OF SUPERELEVATION

    Directory of Open Access Journals (Sweden)

    ISHAK M. GALIB

    2016-05-01

    Full Text Available The present study discusses phenomena occurred in a natural channel where a bridge is built in a river bend. The present study aims at determining the effect of pillars thickness on water surface slope in transverse direction on channel bend which is defined in superelevation coefficient (Cs. Physical modelling applies 180o channel bend, 0.75 m radius, and 0.5 m width. It was applied in both with pillar and without pillar flows in subcritical-turbulent flow. For the flows with pillar there were pillar interval of 30o and 60o. The results show that the highest value of Cs (7.826 is found in the flows with pillar of the 30o interval in 30o river bend. In the interval of 60 where the pillar thickness is 3cm, the Cs value is greater than when the pillar thickness is 2 cm, on the other hand in the interval of 30o the Cs value is smaller. It is recommended for the next research to apply hydraulic condition with average velocity divided by the critical velocity must be greater than one.

  19. Separations using a porous-shell pillar array column on a capillary LC instrument

    NARCIS (Netherlands)

    Malsche, de D.M.W.; Bruyne, de S.; Beeck, op de J.; Eeltink, S.; Detobel, F.; Gardeniers, J.G.E.; Desmet, G.

    2012-01-01

    We investigated the achievable separation performance of a 9-cm-long and 1-mm-wide pillar array channel (volume = 0.6 μL) containing 5 μm diameter Si pillars (spacing 2.5 μm) cladded with a mesoporous silica layer with a thickness of 300 nm, when this channel is directly interfaced to a capillary LC

  20. Characteristics of deformation and stress distribution of small coal pillars under leading abutment pressure

    Institute of Scientific and Technical Information of China (English)

    Wu Hai; Zhang Nong; Wang Weijun; Zhao Yiming; Cao Peng

    2015-01-01

    Based on the engineering project on a small coal pillar of 12,521 working face roadway in Xieqiao Coalmine, data regarding surface displacements of the coal pillar, deep displacements and mining stress have been collected and analyzed. The results show that macroscopic transverse fractures of the inner coal pillar are developed within 2–4 m of the roadway surface, which is located outside the coal pillar anchorage zone. There is a displacement of 530 mm at the monitoring point in the 6 m deep zone of the pillar. Transfer of the fracture zone is found in a small coal pillar and the fractures within 3–4 m of the coal-rock zone from the roadway surface undergo propagation and closure of cracks which means this fracture zone is transferred from 3–4 m outside the roadway to only 2–3 m from the roadway sur-face. In the monitoring zone, vertical and horizontal stresses increase with a feature that shows that acceleration in the deep zone of the pillar is greater than that in the shallow zone. Furthermore, the accel-eration of vertical stress is also greater than that of horizontal stress with a peak value in the 4 m zone. The research findings provide a reference for the regulation of a reasonable width of coal pillar in coalmi-nes and optimal control design of surrounding rock.

  1. The coal mining practice of reducing water proof coal pillars in Panxie mining area

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Wang, W.; Peng, W.; Feng, Z.; Shu, K. [Anhui Polytechnical University, Maanshan (China). College of Chemical Engineering and Environment

    2002-04-01

    By summarizing the successful mining practice of reducing waterproof coal pillars in Panxie Mining Area in the past ten years, the hydrogeological feature of Panxie Mining Area, overburden failure law, the mechanism of reducing waterproof coal pillars and the main safety measures during the period of safe extraction are discussed. 3 tabs.

  2. The Sloan-C Pillars: Towards a Balanced Approach to Measuring Organizational Learning

    Science.gov (United States)

    Yeo, Kee Meng; Mayadas, A. Frank

    2010-01-01

    The Sloan Pillars have set the standard for university-wide online learning program assessment for more than a dozen years. In this paper, the authors propose the extension of the Pillars to corporate e-learning, offering an alternative to traditional enterprise learning assessments. Claiming that conventional methods stress individual courses or…

  3. Spacelift 2025 The Supporting Pillar for Space Superiority

    Science.gov (United States)

    1996-08-01

    39 A-1. A Basic Nuclear Thermal Rocket .....................................................................................................44...augmented nuclear thermal rocket combines a scramjet with near-term nuclear thermal rocketry and demonstrates the utility of this concept. 10 Source: Air...Figure A-1. A Basic Nuclear Thermal Rocket The largest obstacles to nuclear rocketry are both political and environmental. Radiation shielding is

  4. Characteristics of stress distribution in floor strata and control of roadway stability under coal pillars

    Institute of Scientific and Technical Information of China (English)

    Tongqiang Xiao; Bai Jianbiao; Xu Lei; Zhang Xuebin

    2011-01-01

    Given the difficulties encountered in roadway support under coal pillars, we studied the characteristics of stress distribution and their effect on roadway stability, using theoretical analysis and numerical simulation. The results show that, under a coal pillar, vertical stress in a floor stratum increases while horizontal stress decreases. We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars. Based on this, we propose control technologies of the surrounding rock of a roadway under a coal pillar, such as high strength and high pre-stressed bolt support, cable reinforcement support,single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock, which have been successfully applied in a stability control project of a roadway under a coal pillar.

  5. Stress Distribution on Blasting Gallery Barrier Pillar due to Goaf Formation During Extraction

    Science.gov (United States)

    Kumar Reddy, Sandi; Sastry, Vedala Rama

    2016-10-01

    Semi-mechanised blasting gallery mining is a sustainable option to achieve higher production and productivity from underground thick coal seams. Judicious design of underground blasting gallery panel requires understanding of stress distribution on barrier pillars during different stages of extraction. This paper presents a study of stress distribution in and around barrier pillar for the different stages of extraction in the blasting gallery panel. Finite difference analysis taken up for final excavation (depillaring) in the panel with different stages of extraction. Analysis revealed that the stress transferred on barrier pillar increased as progress of excavation increased. Maximum stress was observed at a distance of 10 and 12 m from the pillar edge for virgin and goaved out panel sideby respectively, which gradually decreased towards centre of the pillar.

  6. Stress Distribution on Blasting Gallery Barrier Pillar due to Goaf Formation During Extraction

    Science.gov (United States)

    Kumar Reddy, Sandi; Sastry, Vedala Rama

    2015-09-01

    Semi-mechanised blasting gallery mining is a sustainable option to achieve higher production and productivity from underground thick coal seams. Judicious design of underground blasting gallery panel requires understanding of stress distribution on barrier pillars during different stages of extraction. This paper presents a study of stress distribution in and around barrier pillar for the different stages of extraction in the blasting gallery panel. Finite difference analysis taken up for final excavation (depillaring) in the panel with different stages of extraction. Analysis revealed that the stress transferred on barrier pillar increased as progress of excavation increased. Maximum stress was observed at a distance of 10 and 12 m from the pillar edge for virgin and goaved out panel sideby respectively, which gradually decreased towards centre of the pillar.

  7. Sorption of wastewater containing reactive red X-3B on inorgano-organo pillared bentonite

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Bentonite is a kind of natural clay with good exchanging ability. By exchanging its interlamellar cations with various soluble cations, such as quaternary ammonium cations and inorganic metal ions, the properties of natural bentonite can be greatly improved. In this study, hexadecyltrimethylammonium bromide (HDTMA), CaCl2, MgCl2, FeCl3, AlCl3 were used as organic and inorganic pillared materials respectively to produce several kinds of Ca-, Mg-, Fe-, Al-organo pillared bentonites. Sorption of reactive red X-3B on them was studied to determine their potential application as sorbents in wastewater treatment. The results showed that these pillared bentonites had much improved sorption properties, and that the dye solutions' pH value had some effect on the performance of these inorgano-organo pillared bentonites. Isotherms of reactive X-3B on these pillared bentonites suggested a Langmuir-type sorption mechanism.

  8. Characterization of pillared clays containing Fe{sup 3+} and Cu

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Vidal, H.; Custodio-Garcia, E.; Morales-Hidalgo, J. [Division Academica de Ciencias Basicas, Universidad Juarez Autonoma de Tabasco, Km 1.5 Carretera Cunduacan-Jalpa, CP. 86690, Cunduacan, Tabasco (Mexico); Lopez-Alejandro, E.; Frias-Marquez, D.M. [Division Academica de Ingenieria y Arquitectura, Universidad Juarez Autonoma de Tabasco, Km 1.5 Carretera Cunduacan-Jalpa, CP. 86690, Cunduacan, Tabasco (Mexico)

    2006-04-14

    We report the synthesis of pillared clays from natural Mexican bentonites and pillared solutions as a support for Cu and Fe{sup 3+} catalyst. The study shows a favorable cationic exchange capacity on the clays. This is observed with a change of the specific areas: from 66m{sup 2}/g for the natural clay to 202m{sup 2}/g for the pillared clay. The molar relation of 4.91 for the Si/Al structure in the natural clay and 3.72 for the pillared clay shows the entrance of aluminum as pillaring ion. We were able to increase the microporosity on the catalytic material observed through a porous volume variation (0.1-0.8cm{sup 3}/g) at different Fe{sup 3+} concentrations. We obtained an increase on the specific area of more than 200% over the natural clay. (author)

  9. Effects of the microstructure slab with pillars on light extraction of GaN light-emitting diode

    Institute of Scientific and Technical Information of China (English)

    Li Yan; Zheng Rui-Sheng; Feng Yu-Chun; Liu Song-Hao; Niu Han-Ben

    2006-01-01

    The Dositive z direction relative light-extraction efficiency of GaN light-emitting diodes with microstructure slab is calculated by three-dimensional finite-difference time-domain method,where the microstructure slab consists of a graphite lattice of pillars.The results show that the two-dimensional graphite-arranged pillars suppress light extraction.When there is a thick pillar in the middle of the pillars,the structure can enhance light extraction of the light-emitting diodes.The tower-like pillars,which are thin on the top of the pillars and thick on the bottom of the pillars,benefit the light extraction when the angle of the tower-like pillars is proper.

  10. Dielectric anomaly and relaxation natures in a Zn-Cr pillar-layered metal-organic framework with cages and channels

    Science.gov (United States)

    Xue, Chen; Yao, Zhi-Yuan; Liu, Shao-Xian; Luo, Hong-Bin; Zou, Yang; Li, Li; Ren, Xiao-Ming

    2017-06-01

    A bimetallic metal-organic framework (MOF) with the formula [Zn3btc2{Cr3O(isonic)6(H2O)2(OH)}]·(DMF)15.5(H2O)8 (H3btc=1,3,5-benzenetricarboxylic acid; isonic=isonicotinicate) shows a pillar-layered structure. The monolayer consists of hexagon-like rings formed by the [Zn(isonic)2(btc)2] tetrahedral and the consecutive monolayers are pillared by trigonal-prismatic clusters of [Cr3O(isonic)6(H2O)2(OH)]through the remaining binding sites of the Zn2+ ions. DMF and water molecules are confined in the cages and channels. TGA indicates that the lattice DMF and water molecules begin to be released at temperatures above 363 K. Dielectric measurements were carried out in the range of 173-363 K and 1-107 Hz for three successive thermal cycles. The dielectric spectroscopy obtained in the first thermal cycle was different from that observed in the next two thermal cycles, while the dielectric spectra in the last two thermal cycles were almost identical. The dielectric nature of this MOF is discussed in detail for each thermal cycle. Since MOFs are unique host-guest systems in which the structure of the host framework is designable and the guests are exchangeable, it is no doubt those MOFs are materials with a variety of dielectric natures. This study gives a fresh impetus to achieve MOFs-based dielectric materials.

  11. Evaporation-driven clustering of microscale pillars and lamellae

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hong; Kim, Jungchul; Kim, Ho-Young, E-mail: hyk@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-02-15

    As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completely dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering.

  12. Environmental management as a pillar for sustainable development.

    Science.gov (United States)

    Mikulčić, Hrvoje; Duić, Neven; Dewil, Raf

    2017-12-01

    There is a growing concern about how to minimize the impact of human activities on the environment. Already nowadays, in some places adaptation efforts are needed in order to avoid the irreversibility of negative human activities. Due to climate changes, and corresponding environmental and social changes, there is a great need for a more sustainable development of mankind. Over the years, research studies that analyzed the sustainable development of different communities with a multi-disciplinary approach, stressed the necessity of preserving the environment for next generations. Therefore, responsible and conscientious management of the environment is a pillar of the sustainable development concept. This review introduction article provides an overview of the recent top scientific publications related to sustainable development that mostly originated from previous SDEWES conferences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Integrated analysis of rock mass deformation within shaft protective pillar

    Directory of Open Access Journals (Sweden)

    Ewa Warchala

    2016-01-01

    Full Text Available The paper presents an analysis of the rock mass deformation resulting from mining in the vicinity of the shaft protection pillar. A methodology of deformation prediction is based on a deterministic method using Finite Element Method (FEM. The FEM solution is based on the knowledge of the geomechanical properties of the various geological formations, tectonic faults, types of mining systems, and the complexity of the behaviour of the rock mass. The analysis gave the stress and displacement fields in the rock mass. Results of the analysis will allow for design of an optimal mining system. The analysis is illustrated by an example of the shaft R-VIII Rudna Mine KGHM Polish Copper SA.

  14. Pillaring effects in macroporous carrageenan-silica composite microspheres.

    Science.gov (United States)

    Boissière, M; Tourrette, A; Devoisselle, J M; Di Renzo, F; Quignard, F

    2006-02-01

    The impregnation of a carrageenan gel by a silica sol is an efficient method to form a composite material which can be conveniently activated by CO2 supercritical drying. The textural properties of the solids have been characterized by nitrogen adsorption-desorption at 77 K and their composition by thermogravimetric analysis and EDX microprobe. Morphology was examined by SEM. The silica-carrageenan composites present an open macroporous structure. Silica particles retained inside the gel behaved as pillars between the polysaccharide fibrils and form a stick-and-ball network. The stiffening of the carrageenan gel by silica prevented its shrinkage upon drying. The nature of the alkali cations affected the retention of silica particles inside the gel. In the absence of silica, carrageenan fibrils rearrange under supercritical drying and form an aerogel with cavities in the mesopore range.

  15. Pillared metal(IV) phosphate-phosphonate extraction of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Burns, J.D.; Clearfield, A. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Borkowski, M.; Reed, D.T. [Los Alamos National Laboratory, Carlsbad, NM (United States). Earth and Environmental Sciences Div.

    2012-07-01

    Four pillared metal(IV) phosphate-phosphonate ion exchange materials were synthesized and characterized. Studies were conducted to determine their affinity for the lanthanides (Ln's) and actinides (An's). It was determined that by simply manipulating the metal source (Zr or Sn) and the phosphate source (H{sub 3}PO{sub 4} or Na{sub 3}PO{sub 4}) large differences were seen in the extraction of the Ln and An species. K{sub d} values higher than 4 x 10{sup 5} were observed for the AnO{sub 2}{sup 2+} species in nitric acid at pH 2. These basic uptake experiments are important, as the data they provide may indicate the possibility of a separation of Ln's from An's or even more notably americium from curium and Ln's. (orig.)

  16. Evaporation-driven clustering of microscale pillars and lamellae

    Science.gov (United States)

    Kim, Tae-Hong; Kim, Jungchul; Kim, Ho-Young

    2016-02-01

    As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completely dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering.

  17. Redefining the structure-activity relationships of 2,6-methano-3-benzazocines. Part 9: Synthesis, characterization and molecular modeling of pyridinyl isosteres of N-BPE-8-CAC (1), a high affinity ligand for opioid receptors.

    Science.gov (United States)

    VanAlstine, Melissa A; Wentland, Mark P; Alvarez, Juan; Cao, Qing; Cohen, Dana J; Knapp, Brian I; Bidlack, Jean M

    2013-04-01

    Derivatives of the lead compound N-BPE-8-CAC (1) where each CH of the biphenyl group was individually replaced by N were prepared in hopes of identifying high affinity ligands with improved aqueous solubility. Compared to 1, binding affinities of the five possible pyridinyl derivatives for the μ opioid receptor were between threefold lower to fivefold higher with the Ki of the most potent compound being 0.064 nM. Docking of 8-CAC (2) into the unliganded binding site of the mouse μ opioid receptor (pdb: 4DKL) revealed that 8-CAC and β-FNA (from 4DKL) make nearly identical interactions with the receptor. However, for 1 and the new pyridinyl derivatives 4-8, binding is not tolerated in the 8-CAC binding mode due to the steric constraints of the large N-substituents. Either an alternative binding mode or rearrangement of the protein to accommodate these modifications may account for their high binding affinity.

  18. Host-Guest Complexes of Carboxylated Pillar[n]arenes With Drugs.

    Science.gov (United States)

    Wheate, Nial J; Dickson, Kristie-Ann; Kim, Ryung Rae; Nematollahi, Alireza; Macquart, René B; Kayser, Veysel; Yu, Guocan; Church, W Bret; Marsh, Deborah J

    2016-12-01

    Pillar[n]arenes are a new family of nanocapsules that have shown application in a number of areas, but because of their poor water solubility their biomedical applications are limited. Recently, a method of synthesizing water-soluble pillar[n]arenes was developed. In this study, carboxylated pillar[n]arenes (WP[n], n = 6 or 7) have been examined for their ability to form host-guest complexes with compounds relevant to drug delivery and biodiagnostic applications. Both pillar[n]arenes form host-guest complexes with memantine, chlorhexidine hydrochloride, and proflavine by (1)H nuclear magnetic resonance and modeling. Binding is stabilized by hydrophobic effects within the cavities, and hydrogen bonding and electrostatic interactions at the portals. Encapsulation within WP[6] results in the complete and efficient quenching of proflavine fluorescence, giving rise to "on" and "off" states that have potential in biodiagnostics. The toxicity of the pillar[n]arenes was examined using in vitro growth assays with the OVCAR-3 and HEK293 cell lines. The pillar[n]arenes are relatively nontoxic to cells except at high doses and after prolonged continuous exposure. Overall, the results show that there could be a potentially large range of medical applications for carboxylated pillar[n]arene nanocapsules.

  19. Polyhydroxyl-aluminum pillaring improved adsorption capacities of Pb2+ and Cd2+ onto diatomite

    Institute of Scientific and Technical Information of China (English)

    朱健; 王平; 雷明婧; 张伟丽

    2014-01-01

    In order to greatly improve adsorption capacity, the diatomite was pillared by polyhydroxyl-aluminum.A series of adsorption tests were conducted to obtain the optimum condition for pillared diatomite synthesis. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), surface area and porosity analyzer and micro-electrophoresis were used to determine pore structure and surface property.The pillared diatomite attaining the optimal adsorption densities (qe) of Pb2+ and Cd2+ was synthesized with the following conditions: Addition of pillaring solution containing Al3+-oligomers with a concentration range of 0.1-0.2 mol/L to a suspension containing Na+-diatomite to obtain the required Al/diatomite ratio of 10 mmol/g; synthesis temperature of 80 °C for 120 min; aging at a temperature of 105 °C for 16 h. The adsorption capacities of Pb2+ and Cd2+ on pillared diatomite increase by 23.79% and 27.36% compared with natural diatomite, respectively. The surface property of pillared diatomite is more favorable for ion adsorption than natural diatomite. The result suggests that diatomite can be modified by pillaring with polyhydroxyl-aluminum to improve its adsorption properties greatly.

  20. Low-temperature pyrolysis of oily sludge: roles of Fe/Al-pillared bentonites

    Directory of Open Access Journals (Sweden)

    Jia Hanzhong

    2017-09-01

    Full Text Available Pyrolysis is potentially an effective treatment of oily sludge for oil recovery, and the addition of a catalyst is expected to affect its pyrolysis behavior. In the present study, Fe/Al-pillared bentonite with various Fe/Al ratios as pyrolysis catalyst is prepared and characterized by XRD, N2 adsorption, and NH3-TPD. The integration of Al and Fe in the bentonite interlayers to form pillared clay is evidenced by increase in the basal spacing. As a result, a critical ratio of Fe/Al exists in the Fe/Al-pillared bentonite catalytic pyrolysis for oil recovery from the sludge. The oil yield increases with respect to increase in Fe/Al ratio of catalysts, then decreases with further increasing of Fe/Al ratio. The optimum oil yield using 2.0 wt% of Fe/Al 0.5-pillared bentonite as catalyst attains to 52.46% compared to 29.23% without catalyst addition in the present study. In addition, the addition of Fe/Al-pillared bentonite catalyst also improves the quality of pyrolysis-produced oil and promotes the formation of CH4. Fe/Al-pillared bentonite provides acid center in the inner surface, which is beneficial to the cracking reaction of oil molecules in pyrolysis process. The present work implies that Fe/Al-pillared bentonite as addictive holds great potential in industrial pyrolysis of oily sludge.

  1. Nondestructive characterization of musical pillars of Mahamandapam of Vitthala Temple at Hampi, India.

    Science.gov (United States)

    Kumar, Anish; Jayakumar, T; Rao, C Babu; Sharma, Govind K; Rajkumar, K V; Raj, Baldev; Arundhati, P

    2008-08-01

    This paper presents the first scientific investigation on the musical pillars of the Vitthala Temple at Hampi, India. The solid stone columns in these pillars produce audible sound, when struck with a finger. Systematic investigations on the acoustic characteristics of the musical pillars of mahamandapam (great stage) of the Vitthala Temple have been carried out. The 11 most popular pillars that produce sounds of specific musical instruments are considered for the investigations. The sound produced from these 11 most popular musical pillars was recorded systematically and different nondestructive testing techniques such as low frequency ultrasonic testing, impact echo testing, and in situ metallography were employed on the musical columns of these pillars. The peak frequencies in the amplitude spectrum of the sound produced from various columns in these pillars are correlated with the dimensional measurements and ultrasonic velocity determined using impact echo technique. The peak frequencies obtained experimentally have been found to have excellent correlation with the calculated flexural frequencies based on the dimensional measurements and ultrasonic velocities of the columns.

  2. Numerical Investigation of the Dynamic Mechanical State of a Coal Pillar During Longwall Mining Panel Extraction

    Science.gov (United States)

    Wang, Hongwei; Jiang, Yaodong; Zhao, Yixin; Zhu, Jie; Liu, Shuai

    2013-09-01

    This study presents a numerical investigation on the dynamic mechanical state of a coal pillar and the assessment of the coal bump risk during extraction using the longwall mining method. The present research indicates that there is an intact core, even when the peak pillar strength has been exceeded under uniaxial compression. This central portion of the coal pillar plays a significant role in its loading capacity. In this study, the intact core of the coal pillar is defined as an elastic core. Based on the geological conditions of a typical longwall panel from the Tangshan coal mine in the City of Tangshan, China, a numerical fast Lagrangian analysis of continua in three dimensions (FLAC3D) model was created to understand the relationship between the volume of the elastic core in a coal pillar and the vertical stress, which is considered to be an important precursor to the development of a coal bump. The numerical results suggest that, the wider the coal pillar, the greater the volume of the elastic core. Therefore, a coal pillar with large width may form a large elastic core as the panel is mined, and the vertical stress is expected to be greater in magnitude. Because of the high stresses and the associated stored elastic energy, the risk of coal bumps in a coal pillar with large width is greater than for a coal pillar with small width. The results of the model also predict that the peak abutment stress occurs near the intersection between the mining face and the roadways at a distance of 7.5 m from the mining face. It is revealed that the bump-prone zones around the longwall panel are within 7-10 m ahead of the mining face and near the edge of the roadway during panel extraction.

  3. SELECTION OF HORIZONTAL DISTANCE X BETWEEN ROADWAY AND THE EDGE OF ITS UPPER PILLAR

    Institute of Scientific and Technical Information of China (English)

    陆士良; 孙永联; 姜耀东

    1994-01-01

    The horizontal distance X between roadway and the edge of its upper pillar is considered as an important parameter for layout of roadway in floor strata or in the adjacent coal seam. Based on the research achievements of rockstrata pressure, this paper illustrates the quantitative relationship among the mining situation of upper seam, the roekstrata properties around roadway, the vertical distance Z (between roadway and its upper pillar), and the horizontal distance X (between roadway and the edge of its upper pillar), and provides a main basis for the selection of value X and the relative location between roadway and its upper seam.

  4. Real Estate in Chongqing as a Pillar Industry: A Quantitative Analysis

    Institute of Scientific and Technical Information of China (English)

    XIANG Wei-min; REN Hong

    2007-01-01

    The definition of pillar industry is stated and its indicators, including the proportion of added value in the GDP, the degree of industry correlation, the income elasticity of demand, and the growth rate of employment will be discussed.And then index weighing is determined based on the degree of importance.The result of the quantitative analysis of real estate industry in Chongqing suggests that its first three evaluating indicators live up to the index requirement of a pillar industry while its degree of industry correlation is not satisfactory.An overall evaluation indicates that the real estate industry in Chongqing meets the requirements of pillar industry.

  5. InGaN micro-LED-pillar as the building block for high brightness emitters

    KAUST Repository

    Shen, Chao

    2013-01-01

    In summary, we confirmed the improved electrical and optical characteristics, with reduced efficiency droop in InGaN μLED-pillars when these devices were scaled down in size. We demonstrated that strain relief contributed to further improvement in EQE characteristics in small InGaN μLED-pillars (D < 50 μm), apart from the current spreading effect. The μLED-pillar can be deployed as the building block for large effective-area, high brightness emitter. © 2013 IEEE.

  6. Diffusion and separation of CH4/N2 in pillared graphene nanomaterials: A molecular dynamics investigation

    Science.gov (United States)

    Zhou, Sainan; Lu, Xiaoqing; Wu, Zhonghua; Jin, Dongliang; Guo, Chen; Wang, Maohuai; Wei, Shuxian

    2016-09-01

    Diffusion and separation of CH4/N2 in pillared graphene were investigated by molecular dynamics. The pillared graphene with (6, 6) carbon nanotube (CNT) exhibited the higher diffusion and selectivity of CH4 over N2 than that with (7, 7) CNT due to the cooperative effect of pore topological characteristics and interaction energy. The stronger interaction facilitated CH4 to enter CNT prior to N2, and higher pressure promoted CH4 to pass CNT more easily. The relative concentrations profiles showed that CH4 reached equilibrium state faster than N2 at low pressure. Our results highlight potential use of pillared graphene in gas purification and separation.

  7. The Los Alamos Science Pillars The Science of Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Joshua E. [Los Alamos National Laboratory; Peterson, Eugene J. [Los Alamos National Laboratory

    2012-09-13

    As a national security science laboratory, Los Alamos is often asked to detect and measure the characteristics of complex systems and to use the resulting information to quantify the system's behavior. The Science of Signatures (SoS) pillar is the broad suite of technical expertise and capability that we use to accomplish this task. With it, we discover new signatures, develop new methods for detecting or measuring signatures, and deploy new detection technologies. The breadth of work at Los Alamos National Laboratory (LANL) in SoS is impressive and spans from the initial understanding of nuclear weapon performance during the Manhattan Project, to unraveling the human genome, to deploying laser spectroscopy instrumentation on Mars. Clearly, SoS is a primary science area for the Laboratory and we foresee that as it matures, new regimes of signatures will be discovered and new ways of extracting information from existing data streams will be developed. These advances will in turn drive the development of sensing instrumentation and sensor deployment. The Science of Signatures is one of three science pillars championed by the Laboratory and vital to supporting our status as a leading national security science laboratory. As with the other two pillars, Materials for the Future and Information Science and Technology for Predictive Science (IS&T), SoS relies on the integration of technical disciplines and the multidisciplinary science and engineering that is our hallmark to tackle the most difficult national security challenges. Over nine months in 2011 and 2012, a team of science leaders from across the Laboratory has worked to develop a SoS strategy that positions us for the future. The crafting of this strategy has been championed by the Chemistry, Life, and Earth Sciences Directorate, but as you will see from this document, SoS is truly an Institution-wide effort and it has engagement from every organization at the Laboratory. This process tapped the insight and

  8. Pilarização de esmectita brasileira para fins catalíticos. Emprego de argila pilarizada na alquilação de benzeno com 1-dodeceno Pillarization of Brazilian smectite for the catalytic of purpose. Use of pillared clay in the alkylation of benzene with 1-dodecene

    Directory of Open Access Journals (Sweden)

    Sidnei Quezada M. Leite

    2000-04-01

    Full Text Available Al-pillared clay was prepared with a Brazilian bentonite from the Campina Grande region (Paraíba, BRAZIL. It was intercalated at 298 K, during 48 hours, with a solution containing [Al3+] = 0.10 mol/L and molar ratio OH/Al = 2.0 prepared at 333 K, and was calcined at 773K. The catalytic activity was evaluated by alkylation of benzene with 1-dodecene. The characterization methods were: X-ray fluorescence and diffraction analysis; 27Al, 29Si and 23Na MAS NMR and textural analysis by N2 adsorption. The thermal stability of the natural clay was improved by the pillaring procedure, as well as the catalytic activity. The intercalated clay presented the highest initial rate of reaction among the systems tested.

  9. Research and application of schemes for constructing concrete pillars in large section finishing cut in backfill coal mining

    Institute of Scientific and Technical Information of China (English)

    Sun Qiang; Zhang Jixiong; Ju Feng; Li Linyue; Zhao Xu

    2015-01-01

    Based on the technology of controlling surrounding rock deformation by constructing concrete pillars in large section finishing cut in backfill coal mining, the characteristics of vertical stress on concrete pillars and main factors influencing pillar stability are analyzed. By building a Winkler elastic foundation mechanical model for the support system constituted of coal pillar, backfill body and concrete pillars, mechanical calculation on stability of concrete pillar is carried out to evaluate the pillar stability and safety. Seven numeral models in three schemes with different pillar sizes, inter-row distances and com-pression ratios at the stopes were analyzed through numerical simulation according to width reduction principle. The practice of finishing cut at III644 workface at Yangzhuang coal mine shows that:when the actual compression ratio is 86.5%, construction size inside the finishing cut is 2000 mm ? 2000 mm and the interval between concrete pillars is 2000 mm ? 2000 mm, the pillars can be stable with the maxi-mum movement of two sides of each pillar being only 83 mm and 54 mm, which achieves the expected effect.

  10. Degradation study of phenol on pillared clay catalyst

    Directory of Open Access Journals (Sweden)

    Julio Andrés Cardona Castaño

    2016-08-01

    Full Text Available The pillaring of a Colombian natural clay (bentonite with the Al-Fe systems and the application for catalytic wet peroxide oxidation (CWPO using phenol as target compound at 291,15 K has been studied. The solid was characterized by DRX and specific surface area using the BET model. The experiments were conducted at temperature of 291,15 K, atmospheric pressure, phenol concentration of 100 mg/L, catalyst concentration of  0,5 and  2,75 g/L and hydrogen peroxide concentration of  0,0265 and 0,053 M in semibatch and 7,4x10-3 and 0,0148 M in batch, equivalent to 50 and 100% of the stoichiometric amount needed for complete phenol degradation, respectively.Both processes were compared in terms of degradation of phenol, degradation of H2O2 and aromatic intermediates and short chain acids. It was determined that the rate of degradation of phenol and aromatic intermediates is slower in the semibatch process. However, more efficient hydrogen peroxide in the semibatch process was presented use favoring reaction with organic species and reducing competitive reactions.

  11. Relativity: a pillar of modern physics or a stumbling block

    Science.gov (United States)

    Sandhu, Gurcharn S.

    2011-09-01

    Currently, the theory of Relativity is being regarded as one of the main pillars of Modern Physics, essentially due to its perceived role in high energy physics, particle accelerators, relativistic quantum mechanics, and cosmology. Since the founding assumptions or postulates of Relativity and some of the resulting consequences confound the logic and common sense, a growing number of scientists are now questioning the validity of Relativity. The advent of Relativity has also ruled out the existence of the 19th century notion of ether medium or physical space as the container of physical reality. Thereby, the Newtonian notions of absolute motion, absolute time, and absolute reference frame have been replaced with the Einsteinian notions of relative motion, relative time, and inertial reference frames in relative motion. This relativity dominated viewpoint has effectively abandoned any critical study or advanced research in the detailed properties and processes of physical space for advancement of Fundamental Physics. In this paper both special theory of relativity and general relativity have been critically examined for their current relevance and future potential. We find that even though Relativity appears to be a major stumbling block in the progress of Modern Physics, the issue needs to be finally settled by a viable experiment [Phys. Essays 23, 442 (2010)] that can detect absolute motion and establish a universal reference frame.

  12. Guiding and confinement of interface acoustic waves in solid-fluid pillar-based phononic crystals

    Science.gov (United States)

    Razip Wee, M. F. Mohd; Addouche, Mahmoud; Siow, Kim S.; Zain, A. R. Md; Elayouch, Aliyasin; Chollet, Franck; Khelif, Abdelkrim

    2016-12-01

    Pillar-based phononic crystals exhibit some unique wave phenomena due to the interaction between surface acoustic modes of the substrate and local resonances supported by pillars. In this paper, we extend the investigations by taking into account the presence of a liquid medium. We particularly demonstrate that local resonances dramatically decrease the phase velocity of Scholte-Stoneley wave, which leads to a slow wave at the solid/fluid interface. Moreover, we show that increasing the height of pillars introduces a new set of branches of interface modes and drastically affects the acoustic energy localization. Indeed, while some modes display a highly confined pressure between pillars, others exponentially decay in the fluid or only propagate in the solid without disturbing the fluid pressure. These theoretical results, performed by finite element method, highlight a new acoustic wave confinement suitable in various applications such as acoustophoresis, lab on chip and microfluidics.

  13. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

    KAUST Repository

    Li, Huawei

    2013-12-21

    This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

  14. Guiding and confinement of interface acoustic waves in solid-fluid pillar-based phononic crystals

    Directory of Open Access Journals (Sweden)

    M. F. Mohd Razip Wee

    2016-12-01

    Full Text Available Pillar-based phononic crystals exhibit some unique wave phenomena due to the interaction between surface acoustic modes of the substrate and local resonances supported by pillars. In this paper, we extend the investigations by taking into account the presence of a liquid medium. We particularly demonstrate that local resonances dramatically decrease the phase velocity of Scholte-Stoneley wave, which leads to a slow wave at the solid/fluid interface. Moreover, we show that increasing the height of pillars introduces a new set of branches of interface modes and drastically affects the acoustic energy localization. Indeed, while some modes display a highly confined pressure between pillars, others exponentially decay in the fluid or only propagate in the solid without disturbing the fluid pressure. These theoretical results, performed by finite element method, highlight a new acoustic wave confinement suitable in various applications such as acoustophoresis, lab on chip and microfluidics.

  15. Wettability transition of plasma-treated polystyrene micro/nano pillars-aligned patterns

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available This paper reports the wettability transition of plasma-treated polystyrene (PS micro/nano pillars-aligned patterns. The micro/nano pillars were prepared using hot embossing on silicon microporous template and alumina nanoporous template, which were fabricated by ultraviolet (UV lithography and inductive coupled plasma (ICP etching, and two-step anodic oxidation, respectively. The results indicate that the combination of micro/nano patterning and plasma irradiation can easily regulate wettabilities of PS surfaces, i.e. from hydrophilicity to hydrophobicity, or from hydrophobicity to superhydrophilicity. During the wettability transition from hydrophobicity to hydrophilicity there is only mild hydrophilicity loss. After plasma irradiation, moreover, the wettability of PS micro/nano pillars-aligned patterns is more stable than that of flat PS surfaces. The observed wettability transition and wettability stability of PS micro/nano pillars-aligned patterns are new phenomena, which may have potential in creating programmable functional polymer surfaces.

  16. Trajectory generation algorithm for smooth movement of a hybrid-type robot Rocker-Pillar

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Min; Choi, Dong Kyu; Kim, Jong Won [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Hwa Soo [Dept. of Mechanical System Engineering, Kyonggi University, Suwon (Korea, Republic of)

    2016-11-15

    While traveling on rough terrain, smooth movement of a mobile robot plays an important role in carrying out the given tasks successfully. This paper describes the trajectory generation algorithm for smooth movement of hybrid-type mobile robot Rocker-Pillar by adjusting the angular velocity of its caterpillar as well as each wheel velocity in such a manner to minimize a proper index for smoothness. To this end, a new Smoothness index (SI) is first suggested to evaluate the smoothness of movement of Rocker-Pillar. Then, the trajectory generation algorithm is proposed to reduce the undesired oscillations of its Center of mass (CoM). The experiment are performed to examine the movement of Rocker-Pillar climbing up the step whose height is twice larger than its wheel radius. It is verified that the resulting SI is improved by more than 40 % so that the movement of Rocker-Pillar becomes much smoother by the proposed trajectory algorithm.

  17. Theoretical analysis on water-inrush mechanism of concealed collapse pillars in floor

    Institute of Scientific and Technical Information of China (English)

    Tang Junhua; Bai Haibo; Yao Banghua; Wu Yu

    2011-01-01

    In order to study the water-inrush mechanism of concealed collapse pillars from the mechanical view,a mechanical model for water-inrush of collapse pillars has been established based on thick plate theory of elastic mechanics in this paper. By solving this model the deformation of water-resistant rock strata under the action of water pressure and the expression of critical water pressure for collapse pillar waterinrush have been obtained The research results indicate that: the boundary conditions and strength of water-resistant strata play important roles in influencing water-inrush of collapse pillars. The critical water-inrush pressure is determined by both relative thickness and absolute thickness of water-resistant strata.

  18. Numerical investigation into effect of rear barrier pillar on stress distribution around a longwall face

    Institute of Scientific and Technical Information of China (English)

    鞠明和; 李学华; 姚强岭; 李冬伟; 种照辉; 周健

    2015-01-01

    Numerical investigation was performed to examine the effect of rear barrier pillar on stress distribution around a longwall face. Salamon theoretical formula was used to calculate the parameters of the caving zone, which was later assigned to double yield constitutive model in FLAC3D. Numerical results demonstrate that high stress concentration zone exists above the region where the second open-off cut intersects with the rear barrier pillar due to stress transfer and plastic zone expansion. It is also found that the maximum vertical stresses with varied distance to the seam floor are all within the projective plane of the rear barrier pillar and their positions concentrate on the barrier pillar adjacent to the connection corner of the second open-off cut. In addition, position of the maximum vertical stresses abruptly transfer from the connection corner adjacent to former panel to that adjacent to current panel along the panel direction.

  19. The social pillar of sustainable development: a literature review and framework for policy analysis

    Directory of Open Access Journals (Sweden)

    Kevin Murphy

    2012-03-01

    Full Text Available There is a need to develop a clearer understanding of what the social pillar of sustainable development means and how it relates to the environmental pillar. This article contributes to this process by presenting a conceptual framework that identifies four overarching social concepts and links them to environmental imperatives. These concepts are: public awareness, equity, participation, and social cohesion. The framework builds on concepts and policy objectives outlined in research on international sustainable development indicators and the social sustainability literature. The social pillar can be expanded to include environmental, international, and intergenerational dimensions. This framework can then be used to examine how states and organizations understand the social pillar and its environmental links.

  20. Field Emission Properties of Carbon Nanotube Pillar Arrays Patterned Directly on Metal Alloy Surfaces

    Science.gov (United States)

    2008-04-01

    V/μm, respectively. The dramatic reduction in turn-on fields exhibited by the high aspect-ratio CPA samples is attributed to the edge effect ,1...the CPA samples occurred primarily from the pillar edges where the local electric field was greatly enhanced by the edge effect . Furthermore, the...influences the electric field at the edges of the pillar structures. We employed finite element electrostatic simulations to quantify this CPA edge

  1. The Social Pillar of Sustainable Development A literature review and framework for policy analysis

    OpenAIRE

    Kevin Murphy

    2017-01-01

    There is a need to develop a clearer understanding of what the social pillar of sustainable development means and how it relates to the environmental pillar. This article contributes to this process by presenting a conceptual framework that identifies four overarching social concepts and links them to environmental imperatives. These concepts are: public awareness, equity, participation, and social cohesion. The framework builds on concepts and policy objectives outlined in research on intern...

  2. Asymmetric liquid wetting and spreading on surfaces with slanted micro-pillar arrays

    KAUST Repository

    Yang, Xiaoming

    2013-01-01

    Uni-directional liquid spreading on asymmetric silicone-fabricated nanostructured surfaces has recently been reported. In this work, uniformly deflected polydimethylsiloxane (PDMS) micro-pillars covered with silver films were fabricated. Asymmetric liquid wetting and spreading behaviors in a preferential direction were observed on the slanted micro-pillar surfaces and a micro-scale thin liquid film advancing ahead of the bulk liquid droplet was clearly observed by high-speed video imaging. It is found that the slanted micro-pillar array is able to promote or inhibit the propagation of this thin liquid film in different directions by the asymmetric capillary force. The spreading behavior of the bulk liquid was guided and finally controlled by this micro-scale liquid film. Different spreading regimes are defined by the relationship between the liquid intrinsic contact angle and the critical angles, which were determined by the pillar height, pillar deflection angle and inter-pillar spacing. © The Royal Society of Chemistry 2013.

  3. Surface properties of bionic micro-pillar arrays with various shapes of tips

    Science.gov (United States)

    Wang, Dapeng; Zhao, Aiwu; Jiang, Rui; Li, Da; Zhang, Maofeng; Gan, Zibao; Tao, Wenyu; Guo, Hongyan; Mei, Tao

    2012-10-01

    Gecko-inspired micro-pillar arrays with various tip structures including spatular, spherical and concave tips were fabricated by a facile soft-molding method. The tip structures of micro-pillar arrays strongly depend on different curing processes in soft-molding using the same template. The adhesion and the wetting properties of these micro-pillar arrays are investigated by means of triboindenter and optical contact angle measurement. The results suggest that the surface properties are determined by different tip structures of micro-pillars. The spatular tip and concave tip are helpful for the adhesion enhancement and the shape of tip can control the contact angles and stabilities of water droplets on the micro-pillar arrays. In addition, the procedures demonstrate that the present route to fabricate gecko-inspired micro-pillar arrays with various tip structures is reliable and convenient. We believe that this research may pave the road to further understanding the gecko-inspired attachment systems and designing new artificial structures for dry adhesives.

  4. An experimental investigation into the trapping model core pillars with reinforced fly ash composites

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, M.K. [National Inst. of Technology, Rourkela (India); Karanam, U.M. [Indian Inst. of Technology, Kharagpur (India)

    2008-06-15

    This paper presented details of a study which examined the use of fly ash composite materials for backfilling mine voids in room-and-pillar mining techniques. The study examined the load deformation characteristics of model core pillars confined by wire mesh reinforced fly ash composite materials. Anhydrous chemical-grade lime and gypsum were added in various quantities to class F fly ash samples. The model core pillars were 57 mm in diameter and 200 mm in length. The engineering properties of the model core pillars were then determined using unconfined compressive strength and Brazilian indirect tensile strength tests. The experimental investigations showed that the percentage increases in the strength of the trapped model core pillars varied with the different types of composite materials, and was also influenced by the length of the curing period and the ratio of the annular thickness of the fill area to the model core pillar radius. Results demonstrated that the addition of excess lime to fly ash composites was not beneficial. Maximum strength gains of 14 per cent were achieved with model cores of a cement-sand ratio of 1:2.5 for fly ash composites containing 15 per cent lime and 5 per cent gypsum. It was concluded that suitable fly ash composites reinforced with wire ropes can enhance the strength of the load bearing element and alter the post-peak characteristics of trapped cores.

  5. Geotechnical risk management to prevent coal outburst in room-and-pillar mining

    Institute of Scientific and Technical Information of China (English)

    Zhang Peter⇑; Peterson Scott; Neilans Dan; Wade Scott; McGrady Ryan; Pugh Joe

    2016-01-01

    A coal outburst is a severe safety hazard in room-and-pillar mining under deep cover. It is more likely to occur during pillar retreating. Multi-seam mining dramatically increases the risk of coal outburst within the influence zones created by remnant pillars and gob-solid boundaries. Though coal outburst is gener-ally associated with heavy loading of coal pillars, its occurrence is difficult to predict. Risk management provides a proactive tool to minimize coal outburst in room-and-pillar mining under deep cover. Risk assessment is the first step in identifying and quantifying outburst risk factors. The primary risk factors for coal outburst are overburden depth, roof and floor strength, geological anomalies, mining type, multi-seam mining, and panel width. A risk assessment chart can be used to proactively screen out min-ing sections with high risk of coal outburst for further analysis. Gob-solid boundaries and remnant pillars are critical factors in evaluation of the coal outburst risk of multi-seam mining. Risk identification, risk assessment, geologic influence mapping, geotechnical evaluation, risk analysis, risk mitigation, and mon-itoring are essential elements of coal outburst risk management process. Training is an integral part of risk management for risk identification and communication between all the stakeholders including man-agement, technical and safety personnel, and miners.

  6. Research on 3D Modeling and Visualization of Coal Pillars for Surface Protection

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-jing; MAO Shan-jun; YAO Ji-ming; JIANG Yun-feng

    2006-01-01

    In order to safely exploit coal resource, protection coal pillars must be prepared in coal mines. Some correlative parameters of protection coal pillar are calculated by Drop face and Drop line methods. Models of protecting surface objects and coal pillars are established by TIN modeling and object-oriented technique. By using ACCESS2000as the database and the VC++ and OpenGL as the language, the calculation of protective coal pillars is realized and the 3D-visulizaiton system for protected objects on ground surface and for coal pillars is developed. The system can obtain the data of characteristic points on the surface interactively from the digitized mine topography map,constructing 3D model automatically. It can also obtain the interrelated parameters of the coal seam and drill hole data from existing geological surveying database to calculate the location, surface area and the total coal columns. The whole process can be computed quickly and accurately. And the 3D visualization system was applied in a mine, showing that the system solve the problem of complex calculation,not only realized the automatic 3D mapping and visualization of coal pillars for buildings protection , but also greatly improves the working efficiency.

  7. Planarization of High Aspect Ratio P-I-N Diode Pillar Arrays for Blanket Electrical Contacts

    Energy Technology Data Exchange (ETDEWEB)

    Voss, L F; Shao, Q; Reinhardt, C E; Graff, R T; Conway, A M; Nikolic, R J; Deo, N; Cheung, C L

    2009-03-05

    Two planarization techniques for high aspect ratio three dimensional pillar structured P-I-N diodes have been developed in order to enable a continuous coating of metal on the top of the structures. The first technique allows for coating of structures with topography through the use of a planarizing photoresist followed by RIE etch back to expose the tops of the pillar structure. The second technique also utilizes photoresist, but instead allows for planarization of a structure in which the pillars are filled and coated with a conformal coating by matching the etch rate of the photoresist to the underlying layers. These techniques enable deposition using either sputtering or electron beam evaporation of metal films to allow for electrical contact to the tops of the underlying pillar structure. These processes have potential applications for many devices comprised of 3-D high aspect ratio structures. Two separate processes have been developed in order to ensure a uniform surface for deposition of an electrode on the {sup 10}Boron filled P-I-N pillar structured diodes. Each uses S1518 photoresist in order to achieve a relatively uniform surface despite the non-uniformity of the underlying detector. Both processes allow for metallization of the final structure and provide good electrical continuity over a 3D pillar structure.

  8. Beyond DSM-5 and IQ Scores: Integrating the Four Pillars to Forensic Evaluations.

    Science.gov (United States)

    Delgado, Sergio V; Barzman, Drew H

    2017-03-01

    The current adult and child forensic psychiatrist is well trained, familiar, and comfortable with the use of the semi-structured Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, APA 2013 (DSM-5) [In APA, 2003] interview style. The author's assertion is not that this method is invalid or unreliable; rather, that it can be complemented by integrating elements of the defendant's four pillar assessment. Assessing the four pillars expands on the information provided by a semi-structured DSM-5-style interview in psychiatry. The four pillars are the foundation of a person's personality; temperament, cognition (learning abilities or weaknesses), cognitive flexibility (theory of mind) and internal working models of attachment, within the backdrop of the family and of the social and cultural environment in which they have lived. The importance of the study of four pillars is based on the understanding that human behavior and psychopathology as a complex and multifaceted process that includes the level of social-emotional maturity and cognitive abilities (In Delgado et al. Contemporary Psychodynamic Psychotherapy for Children and Adolescents: Integrating Intersubjectivity and Neuroscience. Springer, Berlin, 2015). The four pillars are not new concepts, rather they had been studied by separate non-clinical disciplines, and had not been integrated to the clinical practice. As far as we know, it wasn't until Delgado et al. (Contemporary Psychodynamic Psychotherapy for Children and Adolescents: Integrating Intersubjectivity and Neuroscience. Springer, Berlin, 2015) incorporated the four pillars in a user-friendly manner to clinical practice.

  9. Focal mechanism caused by fracture or burst of a coal pillar

    Institute of Scientific and Technical Information of China (English)

    CAO An-ye; DOU Lin-ming; CHEN Guo-xiang; GONG Si-yuan; WANG Yu-gang; LI Zhi-hua

    2008-01-01

    As a regional, real-time and dynamic method, microseismic monitoring technology is quite an appropriate technology for forecasting geological hazards, such as rock bursts, mine tremors, coal and gas outbursts and can even be used to prevent or at least reduce these disasters. The study of the focal mechanisms of different seismic sources is the prerequisite and basis for forecasting rock burst by microseismic monitoring technology. Based on the analysis on the mechanism and fracture course of coal pillars where rock bursts occur mostly, the equivalent point source model of the seismicity caused by a coal pillar was created. Given the model, the seismic displacement equation of a coal pillar was analyzed and the seismic mechanism was pointed out by seismic wave theory. The course of the fracture of the coal pillar was simulated closely in the laboratory and the equivalent microseismic signals of the fractures of the coal pillar were acquired using a TDS-6 experimental system. The results show that, by the pressure and friction of a medium near the seismic source, both a compression wave and a shear wave will be emitted and shear fracture will be induced at the moment of breakage. The results can be used to provide an academic basis to forecast and prevent rock bursts or tremors in a coal pillar.

  10. Preparation and characterization of mixed hydroxy-Fe-Al pillared montmorillonite with large basal spacing

    Institute of Scientific and Technical Information of China (English)

    ZENG Xiu-qiong; LIU Wei-ping

    2004-01-01

    Mixed hydroxy-Al-Fe pillared montmorillonites with large basal spacing were successfully prepared through cation-exchanging of Na+ - montmorillonite with mixed hydroxy-Al and hydroxy-Fe pillaring solutions made from hydrolysis of corresponding metal salts, followed by calcination to convert hydroxy-Al and hydroxy-Fe into intercalated polycations. According to XRD analysis, the basal spacing d(001 ) of pillared products dramatically enlarged from 12.7 A in the Na-montmorillonite to 81 A in the hydroxy-Fe -montmorillonite and 77.5 A in mixed hydroxy-Al-Fe-montmorillonite. The N2 BET surface areas of the pillared montmorillonites also greatly increased to more than 200m2/g as compared to about 27 m2/g for the Na-montmorillonite. IR analysis of hydroxy-Fe, and mixed hydroxy-Al-Fe pillared montmorillonites revealed a new absorption vibration at 1384 cm-1 wavelength. XRF elemental analysis data also showed a high content of Fe2 O3 in the hydroxy-Fe pillared montmorillonite.

  11. The four pillars of education - learning by value

    Science.gov (United States)

    Czerniak-Czyżniak, Marta

    2017-04-01

    Nature is a great laboratory and a place of research. Observing and being with nature tells us how to acquire knowledge, how to work in a group, how to protect nature and how to behave in its environment. There are four important elements of contemporary education. Many scientific achievements and inventions created by observation and imitation of nature. Teaching nature can take into account the four pillars of education presented in the report for the United Nations Jacques Delors: Learning to KNOW - by discovering, experiencing, develop interests Learn to ACT - by activity, experimentation, creativity and courage Learning to LIVE TOGETHER - through group work, help and care Learn to BE - safe, helpful, experience and maintain social contacts Teaching through action is extremely important for the development of the child-man* (Piaget, 2006). The thinking originates primarily from the action. Therefore, students should undertake independent research activities, perform experiments and conduct observations and thus raise questions about the world, looking for meanings and solutions. Adults (a teacher, a person with a passion) are to be the support in the search for knowledge. The following poster is the summary of Project „Environmental Education for Sustainable Development in teacher training" co-financed by Norwegian as well national funds. The aim of the project is to increase environment al awareness and strengthenknowledge about the environment and cli mate change among students of Elary childhood education, to exchange Polish-Norwegian experience on outdoor nature education didactics in the first grades of primary school, to develop a didactics of the outdoor education and to implement it in program of an early childhood education study. *Piaget, J. (2006) How a child imagines the world, Warsaw: PWN Publishing

  12. Silylated pillared clay (SPILC): A novel bentonite-based inorgano-organo composite sorbent synthesized by integration of pillaring and silylation.

    Science.gov (United States)

    Zhu, Lizhong; Tian, Senlin; Zhu, Jianxi; Shi, Yao

    2007-11-01

    This research examines the feasibility of synthesizing inorgano-organo composites based on bentonite-silylated pillared interlayered clays (SPILCs) by pre-pillaring of bentonite with the Keggin ion (hydroxyaluminum polycation) and then silylating with alkylchlorosilanes. The results of organic carbon content analysis, FTIR, XRD, and DTA/TG indicated that the silyl group can be successfully grafted to the inner surface of pillared interlayered clays (PILCs) through reaction with the OH groups of the pillars and the d-spacing of synthesized PILCs and SPILCs were almost the same. SPILCs have both the higher organic carbon content relative to original bentonite and PILCs and the better surface and pore properties relative to surfactants-modified organobentonites. A comparison of the modifier demand of SPILCs and CTMAB-bentonites indicated that the silylation of PILCs was a modifier-economized process for organically modification of bentonite. The heat-resistant temperature of SPILCs, 508 degrees C for OTS-Al-PILC and 214 degrees C for TMCS-Al-PILC, are more excellent organobentonites. Unlike the partition-predominated sorption mechanisms of organobentonites, both adsorption and partition are important components of sorption mechanism of SPILCs. The VOC sorption capacity of SPILCs is approximately same with that of organobentonites and the hydrophobicity of SPILCs is superior to that of PILCs.

  13. Deep proton writing of high aspect ratio SU-8 micro-pillars on glass

    Science.gov (United States)

    Ebraert, Evert; Rwamucyo, Ben; Thienpont, Hugo; Van Erps, Jürgen

    2016-12-01

    Deep proton writing (DPW) is a fabrication technology developed for the rapid prototyping of polymer micro-structures. We use SU-8, a negative resist, spincoated in a layer up to 720 μm-thick in a single step on borosilicate glass, for irradiation with a collimated 12 MeV energy proton beam. Micro-pillars with a slightly conical profile are irradiated in the SU-8 layer. We determine the optimal proton fluence to be 1.02 × 104 μm-2, with which we are able to repeatably achieve micro-pillars with a top-diameter of 138 ± 1 μm and a bottom-diameter of 151 ± 3 μm. The smallest fabricated pillars have a top-diameter of 57 ± 5 μm. We achieved a root-mean-square sidewall surface roughness between 19 nm and 35 nm for the fabricated micro-pillars, measured over an area of 5 × 63.7 μm. We briefly discuss initial testing of two potential applications of the fabricated micro-pillars. Using ∼100 μm-diameter pillars as waveguides for gigascale integration optical interconnect applications, has shown a 4.7 dB improvement in optical multimode fiber-to-fiber coupling as compared to the case where an air-gap is present between the fibers at the telecom wavelength of 1550 nm. The ∼140 μm-diameter pillars were used for mold fabrication with silicone casting. The resulting mold can be used for hydrogel casting, to obtain hydrogel replicas mimicking human tissue for in vitro bio-chemical applications.

  14. A three-pillar approach to assessing climate impacts on low flows

    Directory of Open Access Journals (Sweden)

    G. Laaha

    2015-12-01

    Full Text Available The objective of this paper is to present a new strategy for assessing climate impacts on low flows and droughts. The strategy is termed a three-pillar approach as it combines different sources of information. The first pillar, trend extrapolation, exploits the temporal patterns of observed low flows and extends them into the future. The second pillar, rainfall–runoff projections uses precipitation and temperature scenarios from climate models as an input to rainfall–runoff models to project future low flows. The third pillar, stochastic projections, exploits the temporal patterns of observed precipitation and air temperature and extends them into the future to drive rainfall–runoff projections. These pieces of information are combined by expert judgement based on a synoptic view of data and model outputs, taking the respective uncertainties of the methods into account. The viability of the approach is demonstrated for four example catchments from Austria that represent typical climate conditions in Central Europe. The projections differ in terms of their signs and magnitudes. The degree to which the methods agree depends on the regional climate and the dominant low flow seasonality. In the Alpine region where winter low flows dominate, trend projections and climate scenarios yield consistent projections of increasing low flows, although of different magnitudes. In the region north of the Alps, consistently small changes are projected by all methods. In the regions in the South and Southeast, more pronounced and mostly decreasing trends are projected but there is disagreement in the magnitudes of the projected changes. These results suggest that conclusions drawn from only one pillar of information would be highly uncertain. The three-pillar approach offers a systematic framework of combining different sources of information aiming at more robust projections than obtained from each pillar alone.

  15. Deep proton writing of high aspect ratio SU-8 micro-pillars on glass

    Energy Technology Data Exchange (ETDEWEB)

    Ebraert, Evert, E-mail: eebraert@b-phot.org; Rwamucyo, Ben; Thienpont, Hugo; Van Erps, Jürgen

    2016-12-15

    Deep proton writing (DPW) is a fabrication technology developed for the rapid prototyping of polymer micro-structures. We use SU-8, a negative resist, spincoated in a layer up to 720 μm-thick in a single step on borosilicate glass, for irradiation with a collimated 12 MeV energy proton beam. Micro-pillars with a slightly conical profile are irradiated in the SU-8 layer. We determine the optimal proton fluence to be 1.02 × 10{sup 4} μm{sup −2}, with which we are able to repeatably achieve micro-pillars with a top-diameter of 138 ± 1 μm and a bottom-diameter of 151 ± 3 μm. The smallest fabricated pillars have a top-diameter of 57 ± 5 μm. We achieved a root-mean-square sidewall surface roughness between 19 nm and 35 nm for the fabricated micro-pillars, measured over an area of 5 × 63.7 μm. We briefly discuss initial testing of two potential applications of the fabricated micro-pillars. Using ∼100 μm-diameter pillars as waveguides for gigascale integration optical interconnect applications, has shown a 4.7 dB improvement in optical multimode fiber-to-fiber coupling as compared to the case where an air–gap is present between the fibers at the telecom wavelength of 1550 nm. The ∼140 μm-diameter pillars were used for mold fabrication with silicone casting. The resulting mold can be used for hydrogel casting, to obtain hydrogel replicas mimicking human tissue for in vitro bio-chemical applications.

  16. A three-pillar approach to assessing climate impacts on low flows

    Science.gov (United States)

    Laaha, Gregor; Parajka, Juraj; Viglione, Alberto; Koffler, Daniel; Haslinger, Klaus; Schöner, Wolfgang; Zehetgruber, Judith; Blöschl, Günter

    2016-09-01

    The objective of this paper is to present a framework for assessing climate impacts on future low flows that combines different sources of information, termed pillars. To illustrate the framework three pillars are chosen: (a) extrapolation of observed low-flow trends into the future, (b) rainfall-runoff projections based on climate scenarios and (c) extrapolation of changing stochastic rainfall characteristics into the future combined with rainfall-runoff modelling. Alternative pillars could be included in the overall framework. The three pillars are combined by expert judgement based on a synoptic view of data, model outputs and process reasoning. The consistency/inconsistency between the pillars is considered an indicator of the certainty/uncertainty of the projections. The viability of the framework is illustrated for four example catchments from Austria that represent typical climate conditions in central Europe. In the Alpine region where winter low flows dominate, trend projections and climate scenarios yield consistently increasing low flows, although of different magnitudes. In the region north of the Alps, consistently small changes are projected by all methods. In the regions in the south and south-east, more pronounced and mostly decreasing trends are projected but there is disagreement in the magnitudes of the projected changes. The process reasons for the consistencies/inconsistencies are discussed. For an Alpine region such as Austria the key to understanding low flows is whether they are controlled by freezing and snowmelt processes, or by the summer moisture deficit associated with evaporation. It is argued that the three-pillar approach offers a systematic framework of combining different sources of information aimed at more robust projections than that obtained from each pillar alone.

  17. Stress distribution of GaN layer grown on micro-pillar patterned GaN templates

    Science.gov (United States)

    Nagarajan, S.; Svensk, O.; Ali, M.; Naresh-Kumar, G.; Trager-Cowan, C.; Suihkonen, S.; Sopanen, M.; Lipsanen, H.

    2013-07-01

    High-resolution Raman mapping of the stress distribution in an etched GaN micro-pillar template and a 5 μm thick GaN layer grown on a micro-pillar patterned GaN template is investigated. Raman mapping of the E2 (high) phonon shows differences in stress between the coalescing boundary, the top surface of the pillar region and around the GaN micro-pillar. Increased compressive stress is observed at the coalescing boundary of two adjacent GaN micro-pillars, when compared to the laterally grown GaN regions. The electron channeling contrast image reveals the reduction of threading dislocation density in the GaN layer grown on the micro-pillar patterned GaN template.

  18. Temperature-dependent photoluminescence and mechanism of CdS thin film grown on Si nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ling Ling [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Li, Yan Tao [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); School of Material Science and Engineering, Henan University of Technology, Zhengzhou 454052 (China); Hu, Chu Xiong [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); Li, Xin Jian, E-mail: lixj@zzu.edu.cn [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2015-09-15

    Highlights: • CdS/silicon nanoporous pillar array (CdS/Si-NPA) was prepared by a CBD method. • The PL spectrum of CdS/Si-NPA was measured at different temperatures, from 10 to 300 K. • The PL spectrum was composed of four emission bands, obeying different mechanisms. • The PL degradation with temperature was due to phonon-induced escape of carriers. - Abstract: Si-based cadmium sulfide (CdS) is a prospective semiconductor system in constructing optoelectronic nanodevices, and this makes the study on the factors which may affect its optical and electrical properties be of special importance. Here we report that CdS thin film was grown on Si nanoporous pillar array (Si-NPA) by a chemical bath deposition method, and the luminescent properties of CdS/Si-NPA as well as its mechanism were studied by measuring and analyzing its temperature-dependent photoluminescence (PL) spectrum. The low-temperature measurement disclosed that the PL spectrum of CdS/Si-NPA could be decomposed into four emission bands, a blue band, a green band, a red band and an infrared band. The blue band was due to the luminescence from Si-NPA substrate, and the others originate from the CdS thin film. With temperature increasing, the peak energy, PL intensity and peak profile shape for the PL bands from CdS evolves differently. Through theoretical and fitting analyses, the origins of the green, red and infrared band are attributed to the near band-edge emission, the radiative recombination from surface defects to Cd vacancies and those to S interstitials, respectively. The cause of PL degradation is due to the thermal quenching process, a phonon-induced electron escape but with different activation energies. These results might provide useful information for optimizing the preparing parameters to promote the performance of Si-based CdS optoelectronic devices.

  19. Using submarine lava pillars to record mid-ocean ridge eruption dynamics

    Science.gov (United States)

    Gregg, Tracy K.P.; Fornari, Daniel J.; Perfit, Michael R.; Ridley, W. Ian; Kurz, Mark D.

    2000-01-01

    Submarine lava pillars are hollow, glass-lined, basaltic cylinders that occur at the axis of the mid-ocean ridge, and within the summit calderas of some seamounts. Typically, pillars are ~1-20 m tall and 0.25-2.0 m in diameter, with subhorizontal to horizontal glassy selvages on their exterior walls. Lava pillars form gradually during a single eruption, and are composed of lava emplaced at the eruption onset as well as the last lava remaining after the lava pond has drained. On the deep sea floor, the surface of a basaltic lava flow quenches to glass within 1 s, thereby preserving information about eruption dynamics, as well as chemical and physical properties of lava within a single eruption. Investigation of different lava pillars collected from a single eruption allows us to distinguish surficial lava-pond or lava-lake geochemical processes from those operating in the magma chamber. Morphologic, major-element, petrographic and helium analyses were performed on portions of three lava pillars formed during the April 1991 eruption near 9°50'N at the axis of the East Pacific Rise. Modeling results indicate that the collected portions of pillars formed in ~2-5 h, suggesting a total eruption duration of ~8-20 h. These values are consistent with observed homogeneity in the glass helium concentrations and helium diffusion rates. Major-element compositions of most pillar glasses are homogeneous and identical to the 1991 flow, but slight chemical variations measured in the outermost portions of some pillars may reflect post-eruptive processes rather than those occurring in subaxial magma bodies. Because lava pillars are common at mid-ocean ridges (MORs), the concepts and techniques we present here may have important application to the study of MOR eruptions, thereby providing a basis for quantitative comparisons of volcanic eruptions in geographically and tectonically diverse settings. More research is needed to thoroughly test the hypotheses presented here. (C) 2000

  20. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars

    Science.gov (United States)

    Wang, Shuguang; Zhou, Tong; Li, Dehui; Zhong, Zhenyang

    2016-06-01

    The scalable array of ordered nano-pillars with precisely controllable quantum nanostructures (QNs) are ideal candidates for the exploration of the fundamental features of cavity quantum electrodynamics. It also has a great potential in the applications of innovative nano-optoelectronic devices for the future quantum communication and integrated photon circuits. Here, we present a synthesis of such hybrid system in combination of the nanosphere lithography and the self-assembly during heteroepitaxy. The precise positioning and controllable evolution of self-assembled Ge QNs, including quantum dot necklace(QDN), QD molecule(QDM) and quantum ring(QR), on Si nano-pillars are readily achieved. Considering the strain relaxation and the non-uniform Ge growth due to the thickness-dependent and anisotropic surface diffusion of adatoms on the pillars, the comprehensive scenario of the Ge growth on Si pillars is discovered. It clarifies the inherent mechanism underlying the controllable growth of the QNs on the pillar. Moreover, it inspires a deliberate two-step growth procedure to engineer the controllable QNs on the pillar. Our results pave a promising avenue to the achievement of desired nano-pillar-QNs system that facilitates the strong light-matter interaction due to both spectra and spatial coupling between the QNs and the cavity modes of a single pillar and the periodic pillars.

  1. Experimental investigation of Eagle nebula pillars using a multiple hohlraum array

    Science.gov (United States)

    Martinez, David; Kane, Jave; Villette, Bruno; Pound, Mark; Casner, Alexis; Heeter, Robert; Mancini, Roberto

    2014-10-01

    The ``pillars of creation'' are stunningly beautiful and physically puzzling molecular cloud structure in the Eagle nebula. Formation of these pillars has been subject of debate since their observation. Although extensive observation and modeling have attempted to answer the creation of the observed pillars, experiments have not adequately tested the theoretical models surrounding the photoevaporation of the molecular clouds. Recent Omega EP experiments at the LLE developed a 30 ns x-ray drive using a multiple hohlraum array (``Gatling gun'' approach) to drive the photoevaporation process and test pillar formation. This proof of principle experiment imaged the initial stages of a pillar using Ti area backlighter through a driven 50 mg/cc R/F foam with an embedded solid density CH ball. This presentation will give an overview of the experimental design and results from the experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-656872.

  2. Dynamic behavior of water droplets on solid surfaces with pillar-type nanostructures.

    Science.gov (United States)

    Jeong, Woog-Jin; Ha, Man Yeong; Yoon, Hyun Sik; Ambrosia, Matthew

    2012-03-27

    In the present study, we investigated the static and dynamic behavior of water droplets on solid surfaces featuring pillar-type nanostructures by using molecular dynamics simulations. We carried out the computation in two stages. As a result of the first computational stage, an initial water cube reached an equilibrium state at which the water droplet showed different shapes depending on the height and the lateral and gap dimensions of the pillars. In the second computational stage, we applied a constant body force to the static water droplet obtained from the first computational stage and evaluated the dynamic behavior of the water droplet as it slid along the pillar-type surface. The dynamic behavior of the water droplet, which could be classified into three different groups, depended on the static state of the water droplet, the pillar characteristics (e.g., height and the lateral and gap dimensions of the pillars), and the magnitude of the applied body force. We obtained the advancing and receding contact angles and the corresponding contact angle hysteresis of the water droplets, which helped classify the water droplets into the three different groups.

  3. Estimating the coordinates of pillars and posts in the parking lots for intelligent parking assist system

    Science.gov (United States)

    Choi, Jae Hyung; Kuk, Jung Gap; Kim, Young Il; Cho, Nam Ik

    2012-01-01

    This paper proposes an algorithm for the detection of pillars or posts in the video captured by a single camera implemented on the fore side of a room mirror in a car. The main purpose of this algorithm is to complement the weakness of current ultrasonic parking assist system, which does not well find the exact position of pillars or does not recognize narrow posts. The proposed algorithm is consisted of three steps: straight line detection, line tracking, and the estimation of 3D position of pillars. In the first step, the strong lines are found by the Hough transform. Second step is the combination of detection and tracking, and the third is the calculation of 3D position of the line by the analysis of trajectory of relative positions and the parameters of camera. Experiments on synthetic and real images show that the proposed method successfully locates and tracks the position of pillars, which helps the ultrasonic system to correctly locate the edges of pillars. It is believed that the proposed algorithm can also be employed as a basic element for vision based autonomous driving system.

  4. Penile intracavernosal pillars: lessons from anatomy and potential implications for penile prosthesis placement.

    Science.gov (United States)

    Pagano, M J; Weinberg, A C; Deibert, C M; Hernandez, K; Alukal, J; Zhao, L; Wilson, S K; Egydio, P H; Valenzuela, R J

    2016-05-01

    The objective of this study was to anatomically describe the relationship of penile intracavernosal pillars to penile surgery, specifically corporal dilation during penile prosthesis placement. Corpora cavernosa from four embalmed male cadavers were dissected and subjected to probe dilation. Corpora were cross-sectioned and examined for the gross presence and location of pillars and dilated spaces. Infrapubic penile prosthesis insertion was performed on one fresh-frozen cadaveric male pelvis, followed by cross-sectioning. A single patient had intracavernosal pillars examined intraoperatively during Peyronie's plaque excision and penile prosthesis insertion. Intracavernosal pillars were identified in all cadavers and one surgical patient, passing obliquely from the dorsolateral tunica albuginea across the sinusoidal space to the ventral intercorporal septum. This delineated each corpus into two potential compartments for dilation: dorsomedial and ventrolateral. Dorsal dilation seated instruments and prosthetics satisfactorily in the dorsal mid glans and provided additional tissue coverage over weak ventral areas of the tunica albuginea, while ventrolateral dilation appeared to result in ventral seating and susceptibility to perforation. Intracavernosal pillars are an important anatomic consideration during penile prosthesis placement. Dorsal dilation appears to result in improved distal seating of cylinder tips, which may be protective against tip malposition, perforation or subsequent erosion.

  5. Industrial Restructuring and the Selection of Pillar Industries in Qinghai Province, China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the data from the Qinghai Statistical Yearbook 2009, the evolution course of industrial structure and the developmental status of pillar industries is analyzed. The pillar industries in Qinghai Province are analyzed and revaluated from four aspects, which cover demand and income elasticity, location quotient, contribution rate and interrelationship between industries. Through analyzing the problems and causes of the industrial structure of Qinghai Province, we know that the output structure of the three main industries has seriously departed from the employment structure; the pillar industries mainly concentrated on the fields of resource exploitation and primary processing; the interrelationship between the industries is low; and the development between the light and heavy industries are imbalanced. With the globalization and the further implementation of national preferential policies on western development, Qinghai Province follows the following principles in the restructuring of industrial structure in order to carry out the scientific thought of development and the "Ecological province" strategy. Firstly, the restructuring of industrial structure should be guided by market and scientific and technological progress. Secondly, it should fully display the regional advantages. Thirdly, it should attach importance to the developmental status and prospect of relevant accessory industries. Fourthly, the restructuring should be helpful to the labor transfer and reemployment of rural surplus labor forces. Suggestions on the selection of pillar industries and optimization of industrial structure are put forward. Qinghai Province should accelerate the restructuring of industrial structure, strengthen the support on pillar industries and lay stress on the introduction of the capitals, technologies and talents.

  6. Strain relief InGaN/GaN MQW micro-pillars for high brightness LEDs

    KAUST Repository

    Shen, Chao

    2013-01-01

    Micro-structured group-III-nitrides are considered as promising strain relief structures for high efficiency solid state lighting. In this work, the strain field in InGaN/GaN multi-quantum wells (MQWs) micro-pillars is investigated using micro-Raman spectroscopy and the design of micro-pillars were studied experimentally. We distinguished the strained and strain-relieved signatures of the GaN layer from the E2 phonon peak split from the Raman scattering signatures at 572 cm-1 and 568 cm-1, respectively. The extent of strain relief is examined considering the height and size of micro-pillars fabricated using focused ion beam (FIB) micro-machining technique. A significant strain relief can be achieved when one micro-machined through the entire epi-layers, 3 μm in our study. The dependence of strain relief on micro-pillar diameter (D) suggested that micro-pillar with D < 3 μm showed high degree of strain relief. Our results shed new insights into designing strain-relieved InGaN/GaN microstructures for high brightness light emitting diode arrays. © 2013 IEEE.

  7. Microscopic Pillars and Tubes Fabricated by Using Fish Dentine as a Molding Template

    Directory of Open Access Journals (Sweden)

    Weiqun Li

    2014-08-01

    Full Text Available Biomaterials in nature exhibit delicate structures that are greatly beyond the capability of the current manufacturing techniques. Duplicating these structures and applying them in engineering may help enhance the performance of traditional functional materials and structures. Inspired by gecko’s hierarchical micro- and nano-fibrillar structures for adhesion, in this work we fabricated micro-pillars and tubes by adopting the tubular dentine of black carp fish teeth as molding template. The adhesion performances of the fabricated micro-pillars and tubes were characterized and compared. It was found that the pull-off force of a single pillar was about twice of that of the tube with comparable size. Such unexpected discrepancy in adhesion was analyzed based on the contact mechanics theories.

  8. Phononic Crystal Plate with Hollow Pillars Actively Controlled by Fluid Filling

    Directory of Open Access Journals (Sweden)

    Yabin Jin

    2016-05-01

    Full Text Available We investigate theoretically the properties of phononic crystal plates with hollow pillars. Such crystals can exhibit confined whispering gallery modes around the hollow parts of the pillars whose localization can be increased by separating the pillar from the plate by a full cylinder. We discuss the behaviors of these modes and their potential applications in guiding and filtering. Filling the hollow parts with a fluid gives rise to new localized modes, which depend on the physical properties and height of the fluid. Thus, these modes can be actively controlled for the purpose of multichannel multiplexing. In particular, one can obtain localized modes associated with the compressional vibrations of the fluid along its height. They can be used for the purpose of sensing the acoustic properties of the fluid or their variations with temperature.

  9. Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays

    Directory of Open Access Journals (Sweden)

    M. Abdennouri

    2016-09-01

    Full Text Available Titanium dioxide was synthesized by the sol–gel method and titanium pillared purified clay was prepared with two titanium contents: 1.15 and 10.5 mmol of Ti per gram of clay. The composites were synthesized by immobilizing TiO2 onto surfactant-pillared clay via ion exchange reaction between clay with cation surfactant, cetyl-trimethyl ammonium bromide (CTMABr. The composition and texture of the prepared photocatalysts were characterized with X-ray powder diffraction (XRD, FT-IR spectroscopy, transmission electron microscopy (TEM and energy-dispersive spectroscopy (EDX. The adsorption performance and photocatalytic activities of the prepared samples were investigated using 2,4-dichlorophenoxyacetic acid (2,4-D and 2,4-dichlorophenoxypropionic acid (2,4-DP as models of organic pollutants. The results were obtained that these photocatalysts can effectively degrade selected pesticides. The removal efficiency increases with the Ti content in the pillared clay.

  10. Pillarization, Multiculturalism and Cultural Freezing. Dutch Migration History and the Enforcement of Essentialist Ideas

    Directory of Open Access Journals (Sweden)

    Marlou Schrover

    2010-01-01

    Full Text Available During the 1970s, the Netherlands introduced a set of multi-cultural policies which, through government subsidies, subsidised and promoted the otherness of migrants for several decades. Other countries also embraced multiculturalism. In the Netherlands, however, this policy represented a continuation of an older tradition of pillarization. Multiculturalism was not pillarization in new clothes, however, although there was a continuity of the underlying ideas, as this article will show. This led to a great deal of enthusiasm for multiculturalism, and subsequently to great disappointment, without it ever becoming clear what exactly the aim of the policy was and how its success or failure could be measured. The central thesis of this article is that the successive development of pillarization and multiculturalism in the Netherlands has led to a reinforcement of essentialist ideas concerning migrants and their descendants, as well as a freezing of ideas on ‘the’ Dutch culture. This double freezing then made adaptation difficult or impossible.

  11. Radiation-MHD simulations of pillars and globules in HII regions

    CERN Document Server

    Mackey, Jonathan

    2012-01-01

    Implicit and explicit raytracing-photoionisation algorithms have been implemented in the author's radiation-magnetohydrodynamics code. The algorithms are described briefly and their efficiency and parallel scaling are investigated. The implicit algorithm is more efficient for calculations where ionisation fronts have very supersonic velocities, and the explicit algorithm is favoured in the opposite limit because of its better parallel scaling. The implicit method is used to investigate the effects of initially uniform magnetic fields on the formation and evolution of dense pillars and cometary globules at the boundaries of HII regions. It is shown that for weak and medium field strengths an initially perpendicular field is swept into alignment with the pillar during its dynamical evolution, matching magnetic field observations of the`Pillars of Creation' in M16. A strong perpendicular magnetic field remains in its initial configuration and also confines the photoevaporation flow into a bar-shaped, dense, ioni...

  12. Thermal transport across carbon nanotube-graphene covalent and van der Waals junctions

    Science.gov (United States)

    Shi, Jingjing; Dong, Yalin; Fisher, Timothy; Ruan, Xiulin

    2015-07-01

    Carbon nanotubes and graphene are promising materials for thermal management applications due to their high thermal conductivities. However, their thermal properties are anisotropic, and the radial or cross-plane direction thermal conductivity is low. A 3D Carbon nanotube (CNT)-graphene structure has previously been proposed to address this limitation, and direct molecular dynamics simulations have been used to predict the associated thermal conductivity. In this work, by recognizing that thermal resistance primarily comes from CNT-graphene junctions, a simple network model of thermal transport in pillared graphene structure is developed. Using non-equilibrium molecular dynamics, the resistance across an individual CNT-graphene junction with sp2 covalent bonds is found to be around 6 ×10-11 m2K/W, which is significantly lower than typical values reported for planar interfaces between dissimilar materials. In contrast, the resistance across a van der Waals junction is about 4 ×10-8 m2K/W. Interestingly, when the CNT pillar length is small, the interfacial resistance of the sp2 covalent junction is found to decrease as the CNT pillar length decreases, suggesting the presence of coherence effects. To explain this intriguing trend, the junction thermal resistance is decomposed into interfacial region and boundary components, and it is found that while the boundary resistance has little dependence on the pillar length, the interfacial region resistance decreases as the pillar length decreases. This is explained by calculating the local phonon density of states (LDOS) of different regions near the boundary. The LDOS overlap between the interfacial region and the center region of CNT increases as the pillar length decreases, leading to the decrease of interfacial region resistance. The junction resistance Rj is eventually used in the network model to estimate the effective thermal conductivity, and the results agree well with direct MD simulation data, demonstrating the

  13. Copper pillar and memory characteristics using Al2O3 switching material for 3D architecture.

    Science.gov (United States)

    Maikap, Siddheswar; Panja, Rajeswar; Jana, Debanjan

    2014-01-01

    A novel idea by using copper (Cu) pillar is proposed in this study, which can replace the through-silicon-vias (TSV) technique in future three-dimensional (3D) architecture. The Cu pillar formation under external bias in an Al/Cu/Al2O3/TiN structure is simple and low cost. The Cu pillar is formed in the Al2O3 film under a small operation voltage of 70 mA is obtained. More than 100 devices have shown tight distribution of the Cu pillars in Al2O3 film for high current compliance (CC) of 70 mA. Robust read pulse endurances of >10(6) cycles are observed with read voltages of -1, 1, and 4 V. However, read endurance is failed with read voltages of -1.5, -2, and -4 V. By decreasing negative read voltage, the read endurance is getting worst, which is owing to ruptured Cu pillar. Surface roughness and TiO x N y on TiN bottom electrode are observed by atomic force microscope and transmission electron microscope, respectively. The Al/Cu/Al2O3/TiN memory device shows good bipolar resistive switching behavior at a CC of 500 μA under small operating voltage of ±1 V and good data retention characteristics of >10(3) s with acceptable resistance ratio of >10 is also obtained. This suggests that high-current operation will help to form Cu pillar and lower-current operation will have bipolar resistive switching memory. Therefore, this new Cu/Al2O3/TiN structure will be benefited for 3D architecture in the future.

  14. Catalysis as a foundational pillar of green chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, Paul T. [White House Office of Science and Technology Policy, Department of Chemistry, University of Nottingham Nottingham, (United Kingdom); Kirchhoff, Mary M. [U.S. Environmental Protection Agency and Trinity College, Washington, DC (United States); Williamson, Tracy C. [U.S. Environmental Protection Agency, Washington, DC (United States)

    2001-11-30

    Catalysis is one of the fundamental pillars of green chemistry, the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances. The design and application of new catalysts and catalytic systems are simultaneously achieving the dual goals of environmental protection and economic benefit. Green chemistry, the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances, is an overarching approach that is applicable to all aspects of chemistry. From feedstocks to solvents, to synthesis and processing, green chemistry actively seeks ways to produce materials in a way that is more benign to human health and the environment. The current emphasis on green chemistry reflects a shift away from the historic 'command-and-control' approach to environmental problems that mandated waste treatment and control and clean up through regulation, and toward preventing pollution at its source. Rather than accepting waste generation and disposal as unavoidable, green chemistry seeks new technologies that are cleaner and economically competitive. Utilizing green chemistry for pollution prevention demonstrates the power and beauty of chemistry: through careful design, society can enjoy the products on which we depend while benefiting the environment. The economic benefits of green chemistry are central drivers in its advancement. Industry is adopting green chemistry methodologies because they improve the corporate bottom line. A wide array of operating costs are decreased through the use of green chemistry. When less waste is generated, environmental compliance costs go down. Treatment and disposal become unnecessary when waste is eliminated. Decreased solvent usage and fewer processing steps lessen the material and energy costs of manufacturing and increase material efficiency. The environmental, human health, and the economic advantages realized through green chemistry

  15. Simulation and formability analysis of drawing process for automotive B-pillar

    Institute of Scientific and Technical Information of China (English)

    XING Zhong-wen; FANG Hua-song; BAO Jun

    2009-01-01

    The numerical simulation on drawing process of automotive B-pillar was carried out on AutoForm software, and dangerous forming areas were discovered. The processing parameters, such as the layout of drawbeads, blank holding force and the shape of blank, were adjusted and optimized according to the simulation results. Results indicate that the quality defects can be forecast and removed, which improves the stability of forming process. The cost of design is decreased and the research cycle is shortened. It is proved that the drawing process and die design of B-pillar forming are feasible in actual production.

  16. Laterally Confined Modes in Wet-Etched,Metal-Coated,Quantum-Dot-Inserted Pillar Microcavities

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao; ZHENG Hou-Zhi; ZHANG Ji-Dong; XU Ping; TAN Ping-Heng; YANG Fu-Hua; ZENG Yi-Ping

    2004-01-01

    @@ We report the fabrication and the measurement of microcavities whose optical eigenmodes were discrete and were well predicted by using the model of the photonic dot with perfectly reflected sidewalls. These microcavities were consisted of the semiconductor pillar fabricated by the simple wet-etched process and successive metal coating. Angle-resolved photoluminescence spectra demonstrate the characteristic emission of the corresponding eigenmodes, as its pattern revealed by varying both polar (θ) and azimuthal (φ) angles. It is shown that the metal-coated sidewalls can provide an efficient way to suppress the emission due to the leaking modes in these pillar microcavities.

  17. Subwavelength photonic crystal waveguide with trapezoidal shaped dielectric pillars in optical systems

    Science.gov (United States)

    Xu, Xiaochuan; Chen, Ray T.

    2017-02-07

    A method for reducing loss in a subwavelength photonic crystal waveguide bend is disclosed. The method comprising: forming the subwavelength photonic crystal waveguide bend with a series of trapezoidal shaped dielectric pillars centered about a bend radius; wherein each of the trapezoidal shaped dielectric pillars comprise a top width, a bottom width, and a trapezoid height; wherein the length of the bottom width is greater than the length of the top width; and wherein the bottom width is closer to the center of the bend radius of the subwavelength photonic crystal waveguide bend than the top width. Other embodiments are described and claimed.

  18. Photodegradation of dye pollutants on TiO2 pillared bentonites under UV light irradiation

    Institute of Scientific and Technical Information of China (English)

    李静谊; 陈春城; 赵进才; 朱怀勇; 丁哲

    2002-01-01

    TiO2 pillared bentonite samples dried under different conditions are used to degrade 2,4-dichlorophenol and orange II under UV light irradiation. The supercritical dried sample exhibits a high activity for the photodegradation of 2,4-dichlorophenol and orange II due to its structural features. TOC and COD are measured during the degradation of 2,4-dichlorophenol under UV light irradiation using P25 and TiO2 pillared bentonite samples dried under different conditions. The clay-based catalysts can be readily separated by filtration or sedimentation.

  19. Mechanized silica nanoparticles based on pillar[5]arenes for on-command cargo release.

    Science.gov (United States)

    Sun, Yu-Long; Yang, Ying-Wei; Chen, Dai-Xiong; Wang, Guan; Zhou, Yue; Wang, Chun-Yu; Stoddart, J Fraser

    2013-10-11

    Mechanized silica nanoparticles, equipped with pillar[5]arene-[2]pseudorotaxane nanovalves, operate in biological media to trap cargos within their nanopores, but release them when the pH is lowered or a competitive binding agent is added. Although cargo size plays an important role in cargo loading, cargo charge-type does not appear to have any significant influence on the amount of cargo loading or its release. These findings open up the possibility of using pillar[n]arene and its derivatives for the formation of robust and dynamic nanosystems that are capable of performing useful functions.

  20. Subwavelength photonic crystal waveguide with trapezoidal shaped dielectric pillars in optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaochuan; Chen, Ray T.

    2017-02-07

    A method for reducing loss in a subwavelength photonic crystal waveguide bend is disclosed. The method comprising: forming the subwavelength photonic crystal waveguide bend with a series of trapezoidal shaped dielectric pillars centered about a bend radius; wherein each of the trapezoidal shaped dielectric pillars comprise a top width, a bottom width, and a trapezoid height; wherein the length of the bottom width is greater than the length of the top width; and wherein the bottom width is closer to the center of the bend radius of the subwavelength photonic crystal waveguide bend than the top width. Other embodiments are described and claimed.

  1. Width design for gobs and isolated coal pillars based on overall burst-instability prevention in coal mines

    Institute of Scientific and Technical Information of China (English)

    Junfei Zhang; Fuxing Jiang; Sitao Zhu; Lei Zhang

    2016-01-01

    An investigation was conducted on the overall burst-instability of isolated coal pillars by means of the possibility index diagnosis method (PIDM). First, the abutment pressure calculation model of the gob in side direction was established to derive the abutment pressure distribution curve of the isolated coal pillar. Second, the overall burst-instability ratio of the isolated coal pillars was defined. Finally, the PIDM was utilized to judge the possibility of overall burst-instability and recoverability of isolated coal pillars. The results show that an overall burst-instability may occur due to a large gob width or a small pillar width. If the width of the isolated coal pillar is not large enough, the shallow coal seam will be damaged at first, and then the high abutment pressure will be transferred to the deep coal seam, which may cause an overall burst-instability accident. This approach can be adopted to design widths of gobs and isolated coal pillars and to evaluate whether an existing isolated coal pillar is recoverable in skip-mining mines.

  2. A1/A2-Diamino-Substituted Pillar[5]arene-Based Acid-Base-Responsive Host-Guest System.

    Science.gov (United States)

    Hu, Wei-Bo; Hu, Wen-Jing; Zhao, Xiao-Li; Liu, Yahu A; Li, Jiu-Sheng; Jiang, Biao; Wen, Ke

    2016-05-06

    An acid-base-responsive supramolecular host-guest system based on a planarly chiral A1/A2-diamino-substituted pillar[5]arene (1)/imidazolium ion recognition motif was created. The pillar[4]arene[1]diaminobenzene 1 can bring an electron-deficient imidazolium cation into its cylindrically shaped cavity under neutral or basic conditions and release it under acidic conditions.

  3. Investigations into the residual strength of a 2.5 m wide Bushveld Merensky Reef crush pillar

    CSIR Research Space (South Africa)

    Watson, BP

    2008-08-01

    Full Text Available .2 m.The residual strength of the crush pillar with a width of 2.5 m was determined from a series of strain measurements in two boreholes and a Boussinesq matrix inversion. The calculated peak and residual stresses of the pillar were surprisingly high...

  4. Effect of the presence of an ordered micro-pillar array on the formation of silica monoliths.

    Science.gov (United States)

    Detobel, Frederik; Eghbali, Hamed; De Bruyne, Selm; Terryn, Herman; Gardeniers, Han; Desmet, Gert

    2009-10-30

    We report on the synthesis of siloxane-based monoliths in the presence of a two-dimensional, perfectly ordered array of micro-pillars. Both methyltrimethoxysilane- and tetramethoxysilane-based monoliths were considered. The obtained structures were analyzed using scanning-electron microscopy and can be explained from the general theory of surface-directed phase separation in confined spaces. The formed structures are to a large extent nearly exclusively determined by the ratio between the bulk domain size of the monolith on the one hand and the distance between the micro-pillars on the other hand. When this ratio is small, the presence of the pillars has nearly no effect on the morphology of the produced monoliths. However, when the ratio approaches unity and ascends above it, some new types of monolith morphologies are induced, two of which appear to have interesting properties for use as novel chromatographic supports. One of these structures (obtained when the domain size/inter-pillar distance ratio is around unity) is a 3D network of linear interconnections between the pillars, organized such that all skeleton branches are oriented perpendicular to the micro-pillar surface. A second interesting structure is obtained at even higher values of the domain size/inter-pillar distance ratio. In this case, each individual micro-pillar is uniformly coated with a mesoporous shell.

  5. Stability of coal pillar in gob-side entry driving under unstable overlying strata and its coupling support control technique

    Institute of Scientific and Technical Information of China (English)

    Yuan Zhang; Zhijun Wan; Fuchen Li; Changbing Zhou; Bo Zhang; Feng Guo; Chengtan Zhu

    2013-01-01

    Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata,the finite difference numerical simulation method was adopted to analyze the inner stress distribution and its evolution regularity,as well as the deformation characteristics of narrow coal pillar in gob-side entry driving,in the whole process from entry driving of last working face to the present working face mining.A new method of narrow coal pillar control based on the triune coupling support technique (TCST),which includes that high-strength prestressed thread steel bolt is used to strain the coal on the goaf side,and that short bolt to control the integrity of global displacement zone in coal pillar on the entry side,and that long grouting cable to fix anchor point to constrain the bed separation between global displacement zone and fixed zone,is thereby generated and applied to the field production.The result indicates that after entry excavating along the gob under unstable overlying strata,the supporting structure left on the gob side of narrow coal pillar is basically invalid to maintain the coal-pillar stability,and the large deformation of the pillar on the gob side is evident.Except for the significant dynamic pressure appearing in the coal mining of last working face and overlying strata stabilizing process,the stress variation inside the coal pillar in other stages are rather steady,however,the stress expansion is obvious and the coal pillar continues to deform.Once the gob-side entry driving is completed,a global displacement zone on the entry side appears in the shallow part of the pillar,whereas,a relatively steady fixed zone staying almost still in gob-side entry driving and present working face mining is found in the deep part of the pillar.The application of TCST can not only avoid the failure of pillar supporting structure,but exert the supporting capacity of the bolting structure left in the

  6. Pillar shape modulation in epitaxial BiFeO3–CoFe2O4 vertical nanocomposite films

    Directory of Open Access Journals (Sweden)

    Dong Hun Kim

    2014-08-01

    Full Text Available Self-assembled epitaxial CoFe2O4-BiFeO3 nanocomposite films, in which pillars of CoFe2O4 grow within a single crystal BiFeO3 matrix, show both ferrimagnetism and ferroelectricity. The pillars typically have a uniform cross-section, but here two methods are demonstrated to produce a width modulation during growth by pulsed laser deposition. This was achieved by growing a blocking layer of BiFeO3 to produce layers of separated pillars or pillars with constrictions, or by changing the temperature during growth to produce bowling-pin shaped pillars. Modulated nanocomposites showed changes in their magnetic anisotropy compared to nanocomposites with uniform width. The magnetic anisotropy was interpreted as a result of magnetoelastic and shape anisotropies.

  7. Assimilation of Seawater in Basaltic Magmas: Evidence Found in a Lava Pillar From Axial Seamount, Juan de Fuca Ridge

    Science.gov (United States)

    Schiffman, P.; Zierenberg, R.; Chadwick, W. W.; Clague, D. A.

    2008-12-01

    A lava pillar formed during the 1998 eruption at Axial Seamount exhibits compositional and textural evidence consistent with the direct assimilation of seawater under magmatic conditions. Glass immediately adjacent to anastomosing microfractures within 1 cm of the inner pillar wall is oxidized and significantly enriched in both Na and Cl (and depleted in Fe and K) with respect to that in selvages from the (unaffected) outer pillar wall. The affected glass contains up to 1 wt. % Cl and is enriched by ca. 2 wt. % Na2O relative to unaffected glass, consistent with a nearly 1:1 (molar) assimilation of NaCl. Glass not adjacent to microfractures in the inner pillar wall is depleted in Na, but enriched in K, with respect to the NaCl-enriched, inner pillar wall glass and the unaffected outer pillar wall glass. The 87Sr/86Sr ratio of the NaCl-enriched glass (ca. 0.704 +/- .001), as determined by LA ICPMS, is slightly elevated with respect to that of unaffected glass (ca. .703) consistent with the incorporation of a seawater-derived fluid. The presence of tiny (< 10 mm) grains of Cu-Fe- and Fe-sulfides as well as elemental Ni, Ag, and Au in the Na-depleted, K-enriched glass of the inner pillar wall implies significant reduction of this glass, presumably by hydrogen generated during seawater assimilation and oxidation of magma adjacent to microfractures. We interpret that the chemical anomalies we see in the glass of the interior pillar wall are caused by nearly instantaneous assimilation of seawater into the magma during pillar growth. Other lava pillars we have examined from Axial Seamount and elsewhere on the Juan de Fuca Ridge do not display similar features, although we have not examined a statistically significant number of samples to ascertain how widespread a process this is for seawater assimilation.

  8. Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite

    Science.gov (United States)

    Tomul, Fatma

    2011-12-01

    In this study, the synthesis of zirconium-pillared bentonite modified with cerium was performed via two different methods by the application of conventional and ultrasonic treatments during the intercalation stage. To synthesise copper-impregnated pillared clays by wet impregnation, cerium-modified zirconium-pillared clays were used as supportive materials after being calcined at 300 °C. Ultrasonic treatment significantly decreased the required processing time compared with the conventional treatment of the synthesised pillared bentonites. Chemical analysis confirmed the incorporation of Zr 4+, Ce 4+ and Cu 2+ species into the pillared bentonites. X-ray diffraction (XRD) patterns of zirconium- and cerium/zirconium-pillared bentonites prepared by conventional treatment show that one large d-spacing above 3.5 nm corresponds to the mesoporous delaminated part, and another small d-spacing above 1.7 nm is indicative of the microporous pillared part. Zirconium- and cerium/zirconium-pillared bentonites prepared via ultrasonic treatment exhibited similar results, with the same high d-spacing but with a second low-intensity d-spacing above 1.9 nm. The delaminated structures of the pillared bentonites synthesised by both methods were conserved after copper impregnation. Nitrogen-adsorption isotherm analysis showed that the textural characteristics of products synthesised by ultrasonic treatment were comparable to those of products synthesised by conventional treatment. Fourier-transform infrared spectroscopy (FTIR) analyses showed the presence of Brønsted- and Lewis-acid sites, and zirconium-pillared clays synthesised by conventional treatment exhibited increased numbers of Brønsted- and Lewis-acid sites after cerium addition and copper impregnation. However, the products synthesised by ultrasonic treatment exhibited an increased number of Brønsted- and Lewis-acid sites after cerium addition, but a decreased number of acid sites after copper impregnation.

  9. Extracorporeal shock wave therapy in pillar pain after carpal tunnel release: a preliminary study.

    Science.gov (United States)

    Romeo, Pietro; d'Agostino, M Cristina; Lazzerini, A; Sansone, Valerio C

    2011-10-01

    "Pillar pain" is a relatively frequent complication after surgical release of the median nerve at the wrist. Its etiology still remains unknown although several studies highlight a neurogenic inflammation as a possible cause. Pillar pain treatment usually includes rest, bracing and physiotherapy, although a significant number of patients still complain of painful symptoms two or even three years after surgery. The aim of this study was to investigate the efficacy of low-energy, flux density-focused extracorporeal shock wave therapy (ESWT) in the treatment of pillar pain. We treated 40 consecutive patients with ESWT who had pillar pain for at least six months after carpal tunnel release surgery, and to our knowledge, this is the first study that describes the use of ESWT for treating this condition. Our results show that in all of the treated patients, there was a marked improvement: the mean visual analogue scale (VAS) score decreased from 6.18 (±1.02) to 0.44 (±0.63) 120 d after treatment, and redness and swelling of the surgical scar had also decreased significantly.

  10. Hydrogen-bonded Lamellar Network of Pyromellitic Acid Pillared by 8-Hydroxyquinoline

    Institute of Scientific and Technical Information of China (English)

    WANG, Lei; ZHANG, Hong; ZHANG, Jing-Ping; GAO, Fei-Xue; HUA, Rui-Mao; ZHOU, Guang-Yuan

    2006-01-01

    8-Hydroxyquinoline (8-q) salt of pyromellitic acid (benzene-1,2,4,5-tetracarboxylic acid, H4bta) forms robust lamellar structure where [H2bta]2- anions build up sheets through strong hydrogen bonds in two dimensions and[H-8-q]+ cations act as pillars to afford an extended three dimensional network.

  11. Capillary liquid chromatography separations using non-porous pillar array columns

    NARCIS (Netherlands)

    de Malsche, Wim; de Bruyne, S.; op de Beek, J.; Sandra, P.; Gardeniers, Johannes G.E.; Desmet, G.; Lynen, F.

    2012-01-01

    We report on a series of explorative experiments wherein a non-porous pillar array column (NP-PAC) is coupled to a commercial capillary LC instrument. The performance of the system was evaluated by both non-retained and retained experiments using several types of samples. In order to minimize

  12. The effect of polymer fill ratio in pillar structure for piezoelectric energy harvester

    Science.gov (United States)

    Lee, Kyoung-Soo; Shin, Dong-Jin; Chae, Moon-Soon; Koo, Sang-Mo; Ha, Jae-Geun; Koh, Jung-Hyuk; Cho, Kyung-Ho; Seo, Chang-Eui; Jeong, Soon-Jong

    2013-07-01

    One method of energy harvesting is to use piezoelectric devices, which are able to interchange electrical energy and mechanical strain or vibration. This study is to experimentally investigate the behavior of a piezoelectric energy harvester that was constructed with an array of pillar structures made of 0.2(PbMg1/3Nb2/3O3)-0.8(PbZr0.475Ti0.525O3) with polymer fill. Additionally, the aim of this study is to optimize the fill ratio of the composite piezoelectric ceramics and polymer structure. 0.2(PbMg1/3Nb2/3O3)-0.8(PbZr0.475Ti0.525O3) ceramics were employed as piezoelectric ceramic pillars, prepared in a rectangular shape. These piezoelectric ceramic pillars were sintered separately and attached to a bottom metallic electrode with poled states. The optimum ratio of ceramic pillar and elastic polymer ratio will be discussed. Piezoelectric properties will be discussed including the piezoelectric constant, piezoelectric voltage constants, and electromechanical coupling coefficient. We will present how the harvested energy depends on the lead resistor.

  13. Discovery, synthesis, and characterization of an isomeric coordination polymer with pillared kagome net topology.

    Science.gov (United States)

    Chun, Hyungphil; Moon, Jumi

    2007-05-28

    A topological isomer based on Zn2 paddlewheel, dicarboxylate, and diamine ligands is synthesized by solvothermal methods after careful modulation of the reaction conditions. The new framework is characterized by a pillared Kagome net topology and possesses a sustainable pore structure with high surface area (approximately 2400 m2/g) and large hexagonal channels (approximately 15 A).

  14. Capillary liquid chromatography separations using non-porous pillar array columns

    NARCIS (Netherlands)

    Malsche, de D.M.W.; Bruyne, de S.; Beek, op de J.; Sandra, P.; Gardeniers, J.G.E.; Desmet, G.; Lynen, F.

    2012-01-01

    We report on a series of explorative experiments wherein a non-porous pillar array column (NP-PAC) is coupled to a commercial capillary LC instrument. The performance of the system was evaluated by both non-retained and retained experiments using several types of samples. In order to minimize interf

  15. Determine the need to research the time-related stability decay of bord and pillar systems

    CSIR Research Space (South Africa)

    Oberholzer, JW

    1997-07-01

    Full Text Available This report summarizes the findings of the work conducted to determine the need to research the time dependent decay of coal mine bord and pillar workings. It is intended for use by the relevant SIMRAC committee as background information to assist...

  16. Spatial Control of Condensation on Chemically Homogeneous Pillar-Built Surfaces

    DEFF Research Database (Denmark)

    Mandsberg, Nikolaj Kofoed; Taboryski, Rafael J.

    2017-01-01

    The random nature of dropwise condensation impedes spatial control hereof and its use for creating microdroplet arrays, yet here we demonstrate the spatial control of dropwise condensation on a chemically homogeneous pillar array surface, yielding ∼8000 droplets/mm2 under normal atmospheric...

  17. Optical IFU observations of gas pillars surrounding the super star cluster NGC 3603

    CERN Document Server

    Westmoquette, M S; Ercolano, B; Smith, L J

    2013-01-01

    We present optical integral field unit (IFU) observations of two gas pillars surrounding the Galactic young massive star cluster NGC 3603. The high S/N and spectral resolution of these data have allowed us to accurately quantify the H-alpha, [NII] and [SII] emission line shapes, and we find a mixture of broad (FWHM~70-100 km/s) and narrow (10000 cm-3. In one pillar we found that these high densities are only found in the narrow component, implying it must originate from deeper within the pillar than the broad component. From this, together with our kinematical data, we conclude that the narrow component traces a photoevaporation flow, and that the TML forms at the interface with the hot wind. On the pillar surfaces we find a consistent offset in radial velocity between the narrow (brighter) components of H-alpha and [NII] of ~5-8 km/s, for which we were unable to find a satisfactory explanation. We urge the theoretical community to simulate mechanical and radiative cloud interactions in more detail to address...

  18. ANALISIS DAN PERANCANGAN APLIKASI BERBASIS WEB E-PROCUREMENT DI PT PILLAR UTAMA CONTRINDO

    Directory of Open Access Journals (Sweden)

    Sartika Kurniali

    2012-11-01

    errors on related document filling, help the company to get best price on their supply, and increase control. It can be concluded from the research that the protoype can be implemented to be a tool for the users to decide the best supplier, obtain the best price, and increase control in buying process at PT Pillar Utama Contrindo.

  19. synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36

    NARCIS (Netherlands)

    He, Y.; Nivarthy, G.S.; Eder, F.; Eder, F.; Seshan, Kulathuiyer; Lercher, J.A.

    1998-01-01

    MCM-36 materials were prepared by swelling the layered MCM-22 precursors with large organic molecules and then pillaring the resulting material with polymeric silica. A mesopore region with 0.25–0.3 nm thickness between the microporous layers was identified. The BET surface area obtained for MCM-36

  20. Dense high-aspect ratio 3D carbon pillars on interdigitated microelectrode arrays

    DEFF Research Database (Denmark)

    Amato, Letizia; Heiskanen, Arto; Hansen, Rasmus

    2015-01-01

    In this work we present high-aspect ratio carbon pillars (1.4 μm in diameter and ∼11 μm in height) on top of interdigitated electrode arrays to be used for electrochemical applications. For this purpose, different types of 2D and 3D pyrolysed carbon structures were fabricated and characterised...

  1. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries.

    Science.gov (United States)

    Huan, Long; Xie, Ju; Chen, Ming; Diao, Guowang; Zhao, Rongfang; Zuo, Tongfei

    2017-04-01

    The applicability of a novel macrocyclic multi-carbonyl compound, pillar[4]quinone (P4Q), as the cathode active material for lithium-ion batteries (LIBs) was assessed theoretically. The molecular geometry, electronic structure, Li-binding thermodynamic properties, and the redox potential of P4Q were obtained using density functional theory (DFT) at the M06-2X/6-31G(d,p) level of theory. The results of the calculations indicated that P4Q interacts with Li atoms via three binding modes: Li-O ionic bonding, O-Li···O bridge bonding, and Li···phenyl noncovalent interactions. Calculations also indicated that, during the LIB discharging process, P4Q could yield a specific capacity of 446 mAh g(-1) through the utilization of its many carbonyl groups. Compared with pillar[5]quinone and pillar[6]quinone, the redox potential of P4Q is enhanced by its high structural stability as well as the effect of the solvent. These results should provide the theoretical foundations for the design, synthesis, and application of novel macrocyclic carbonyl compounds as electrode materials in LIBs in the future. Graphical Abstract Schematic representation of the proposed charge-discharge mechanism of Pillar[4]quinone as cathode for lithium-ion batteries.

  2. An array of ordered pillars with retentive properties for pressure-driven liquid chromatography fabricated directly from an unmodified cyclo olefin polymer

    NARCIS (Netherlands)

    Illa, Xavi; Malsche, de Wim; Bomer, Johan; Gardeniers, Han; Eijkel, Jan; Morante, Joan Ramon; Romano-Rodriguez, Albert; Desmet, Gert

    2009-01-01

    The current paper describes the development and characterization of a pillar array chip that is constructed out of a sandwich of cyclo olefin polymer (COP) sheets. The silicon master of a 5 cm long pillar array was embossed into the COP, yielding 4.3 µm deep pillars of 15.3 µm diameter with an exter

  3. Technology of back stoping from level floors in gateway and pillar mining areas of extra-thick seams

    Institute of Scientific and Technical Information of China (English)

    Tu Hongsheng; Tu Shihao; Zhang Xiaogang; Li Zhaoxin; Jia Shuai

    2014-01-01

    According to the special requirements of secondary mining of resources in gateway-and-pillar goaf in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical simulation and theoretical analysis are used to investigate the compaction characteristics of cavities under stress as well as an appropriate mining height of the primary-mining layer based on dif-ferent mining widths and pillar widths. For Yangjian coal mine, the mining thickness of the first seam during back stoping from level floor is determined to be 3 m, which meets the relevant requirements. Gateway-and-pillar goaf of a single layer has a range of influence of 9 m vertically. If gateway-and-pillar goaf occurs both in 9-1 and 9-5 layers, the range is extended to within 11.2 m. When the mining width of a gateway is less than 2 m or larger than 5 m, the gateway-and-pillar goaf in the upper layer of the primary-mining seam can be filled in and compacted after stoping. When the working face is 2 m away from the gateway and pillar before entering into it and after passing through it, the coal body under the gateway and pillar is subjected to relatively high stress. During mining of the upper layer, moreover, the working face should interlock the goaf in primary-mining layer for 20 m.

  4. Contamination of basaltic lava by seawater: Evidence found in a lava pillar from Axial Seamount, Juan de Fuca Ridge

    Science.gov (United States)

    Schiffman, Peter; Zierenberg, Robert; Chadwick, William W.; Clague, David A.; Lowenstern, Jacob

    2010-04-01

    A lava pillar formed during the 1998 eruption at Axial Seamount exhibits compositional and textural evidence for contamination by seawater under magmatic conditions. Glass immediately adjacent to anastomosing microfractures within 1 cm of the inner pillar wall is oxidized and significantly enriched in Na and Cl and depleted in Fe and K with respect to that in glassy selvages from the unaffected outer pillar wall. The affected glass contains up to 1 wt % Cl and is enriched by ˜2 wt % Na2O relative to unaffected glass, consistent with a nearly 1:1 (molar) incorporation of NaCl. Glass bordering the Cl-enriched glass in the inner pillar wall is depleted in Na but enriched in K. The presence of tiny (<10 μm) grains of Cu-Fe sulfides and Fe sulfides as well as elemental Ni, Ag, and Au in the Na-depleted, K-enriched glass of the inner pillar wall implies significant reduction of this glass, presumably by hydrogen generated during seawater contamination and oxidation of lava adjacent to microfractures. We interpret the compositional anomalies we see in the glass of the interior pillar wall as caused by rapid incorporation of seawater into the still-molten lava during pillar growth, probably on the time scale of seconds to minutes. Only one of seven examined lava pillars shows this effect, and we interpret that seawater has to be trapped in contact with molten lava (inside the lava pillar, in this case) to produce the effects we see. Thus, under the right conditions, seawater contamination of lavas during submarine eruptions is one means by which the oceanic crust can sequester Cl during its global flux cycle. However, since very few recent lava flows have been examined in similar detail, the global significance of this process in effecting Earth's Cl budget remains uncertain.

  5. Effect of Al and Ce on Zr-pillared bentonite and their performance in catalytic oxidation of phenol

    Science.gov (United States)

    Mnasri-Ghnimi, Saida; Frini-Srasra, Najoua

    2016-09-01

    Catalysts based on pillared clays with Zr and/or Al and Ce-Zr and/or Al polycations have been synthesized from a Tunisian bentonite and tested in catalytic oxidation of phenol at 298 K. The Zr-pillared clay showed higher activity than the Al-one in phenol oxidation. Mixed Zr-Al pillars lead to an enhancement of the catalytic activity due to the modification of the zirconium properties. The clays modified with Ce showed high conversions of phenol and TOC thus showing to be very selective towards the formation of CO2 and H2O.

  6. From random sphere packings to regular pillar arrays: analysis of transverse dispersion.

    Science.gov (United States)

    Daneyko, Anton; Hlushkou, Dzmitry; Khirevich, Siarhei; Tallarek, Ulrich

    2012-09-28

    We study the impact of microscopic order on transverse dispersion in the interstitial void space of bulk (unconfined) chromatographic beds by numerical simulations of incompressible fluid flow and mass transport of a passive tracer. Our study includes polydisperse random sphere packings (computer-generated with particle size distributions of modern core-shell and sub-2 μm particles), the macropore space morphology of a physically reconstructed silica monolith, and computer-generated regular pillar arrays. These bed morphologies are analyzed by their velocity probability density distributions, transient dispersion behavior, and the dependence of asymptotic transverse dispersion coefficients on the mobile phase velocity. In our work, the spherical particles, the monolith skeleton, and the cylindrical pillars are all treated as impermeable solid phase (nonporous) and the tracer is unretained, to focus on the impact of microscopic order on flow and (particularly transverse) hydrodynamic dispersion in the interstitial void space. The microscopic order of the pillar arrays causes their velocity probability density distributions to start and end abruptly, their transient dispersion coefficients to oscillate, and the asymptotic transverse dispersion coefficients to plateau out of initial power law behavior. The microscopically disordered beds, by contrast, follow power law behavior over the whole investigated velocity range, for which we present refined equations (i.e., Eq.(13) and the data in Table 2 for the polydisperse sphere packings; Eq.(17) for the silica monolith). The bulk bed morphologies and their intrinsic differences addressed in this work determine how efficient a bed can relax the transverse concentration gradients caused by wall effects, which exist in all confined separation media used in chromatographic practice. Whereas the effect of diffusion on transverse dispersion decreases and ultimately disappears at increasing velocity with the microscopically

  7. Develop guidelines for the design of pillar systems for shallow and intermediate depth, tabular, hard rock mines and provide methodology for assessing hangingwall stability and support requirements for the panels between pillars

    CSIR Research Space (South Africa)

    Haile, AT

    1995-12-01

    Full Text Available The overall view of the research being conducted at Impala platinum was to improve pillar design techniques through a rock testing programme, underground instrumentation and back analysis. The laboratory rock testing programme has provided a useful...

  8. Single Pot Benzylation of O-Xylene with Benzyl Chloride and Benzyl Alcohol Over Pillared Montmorillonites

    Directory of Open Access Journals (Sweden)

    Kurian Manju

    2014-09-01

    Full Text Available Improvement of product selectivity is a major concern of the day. Presence of a coreactant can alter the rate as well as product selectivity of many key reactions like Friedel-Crafts benzylation. Single pot benzylation of o-xylene with benzyl chloride and benzyl alcohol was studied over transition metal exchanged pillared clay catalysts. Complete conversion of benzyl alcohol occured within one hour with 100% monoalkylated product selectivity. The reaction of o-xylene with benzyl alcohol was found to proceed fast in presence of benzyl chloride in single pot, than when present alone as the benzylating species. This enhancement occurs at the expense of no reaction of benzyl chloride, which when present alone reacts faster than benzyl alcohol. Existence of a second transition metal exchanged between the pillars increased the rate of the reaction. A detailed investigation of the reaction variables suggested preferential adsorption of benzyl alcohol to catalyst active sites as the reason.

  9. A micro-pillar array to trap magnetic beads in microfluidic systems

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2012-12-01

    A micro-pillar array (MPA) is proposed in this paper to trap and separate magnetic beads (MBs) in microfluidic systems. MBs are used in many biomedical applications due to being compatible in dimension to biomolecules, the large surface area available to attach biomolecules, and the fact that they can be controlled by a magnetic field. Trapping and separating these labeled biomolecules is an important step toward achieving reliable and accurate quantification for disease diagnostics. Nickel Iron (Ni50Fe 50) micro-pillars were fabricated on a Silicon (Si) substrate by standard microfabrication techniques. Experimental results showed that MBs could be trapped on the MPA at the single bead level and separated from other non-target particles. This principle can easily be extended to trap and separate target biomolecules in heterogeneous biological samples. © 2012 IEEE.

  10. Theoretical study of a novel imino bridged pillar[5]arene derivative

    Science.gov (United States)

    Xie, Ju; Zuo, Tongfei; Huang, Zhiling; Huan, Long; Gu, Qixin; Gao, Chenxi; Shao, Jingjing

    2016-10-01

    In this paper, we report a novel imino bridged pillar[5]arene derivative (P5N) for the first time. Four conformers (P5N0, P5N1, P5N12, and P5N13, arising due to the different orientation of Nsbnd H bond of imino bridging group) are obtained by quantum chemical calculations at the CAM-B3LYP/6-31+G(d, p) level of theory. The geometries, energies, electronic structures, and absorption spectra of P5N conformers as well as pillar[5]arene (P5) are discussed in detail. The inclusion complexes of paraquat (Pq) with P5N and P5, respectively, are also obtained at the same level of theory. Compared to P5, P5N exhibits better performance in inclusion complexation toward Pq.

  11. A superhydrophobic chip based on SU-8 photoresist pillars suspended on a silicon nitride membrane

    KAUST Repository

    Marinaro, Giovanni

    2014-07-28

    We developed a new generation of superhydrophobic chips optimized for probing ultrasmall sample quantities by X-ray scattering and fluorescence techniques. The chips are based on thin Si3N4 membranes with a tailored pattern of SU-8 photoresist pillars. Indeed, aqueous solution droplets can be evaporated and concentrated at predefined positions using a non-periodic pillar pattern. We demonstrated quantitatively the deposition and aggregation of gold glyconanoparticles from the evaporation of a nanomolar droplet in a small spot by raster X-ray nanofluorescence. Further, raster nanocrystallography of biological objects such as rod-like tobacco mosaic virus nanoparticles reveals crystalline macro-domain formation composed of highly oriented nanorods. © 2014 the Partner Organisations.

  12. Experimental evidence of high-frequency complete elastic bandgap in pillar-based phononic slabs

    Energy Technology Data Exchange (ETDEWEB)

    Pourabolghasem, Reza; Mohammadi, Saeed; Eftekhar, Ali A.; Adibi, Ali [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Khelif, Abdelkrim [Institut FEMTO-ST, Université de Franche-Comté, CNRS, 32 Avenue de l' Observatoire, 25044 Besançon Cedex (France)

    2014-12-08

    We present strong experimental evidence for the existence of a complete phononic bandgap, for Lamb waves, in the high frequency regime (i.e., 800 MHz) for a pillar-based phononic crystal (PnC) membrane with a triangular lattice of gold pillars on top. The membrane is composed of an aluminum nitride film stacked on thin molybdenum and silicon layers. Experimental characterization shows a large attenuation of at least 20 dB in the three major crystallographic directions of the PnC lattice in the frequency range of 760 MHz–820 MHz, which is in agreement with our finite element simulations of the PnC bandgap. The results of experiments are analyzed and the physics behind the attenuation in different spectral windows is explained methodically by assessing the type of Bloch modes and the in-plane symmetry of the displacement profile.

  13. PILLARED ZEOLITES AMENDMENTS INFLUENCE FROM POLLUTED SOIL ON HEAVY METALS BIOACCUMULATION IN TOMATOES

    Directory of Open Access Journals (Sweden)

    SMARANDA MASU

    2013-12-01

    Full Text Available Due to anthropic activities, the presence of metals in polluted soils has effects on plants development and metals bioaccumulation into trophic levels. In this paper, were followed experiments regarding the tomatoes development into polluted soils with 43.4 – 58.4 mg Cd/kg d.s. and 500- 633 mg Pb/kg d.s. Nickel, zinc and copper content in soils are in the range of diffuse pollution values. Comparatively, an experiment was realized with polluted soils and amended with pillared zeolites. Pillared zeolites change metals distribution in soil fractions and their solubility. Tomato plants grew onto polluted soils, but did not present fruits. Tomatoes from polluted and amended soils presented fruits and metals in tissues (Zn  Cu  Ni. Zinc concentration was five times greater then Ni. Fruits do not accumulate cadmium and lead.

  14. Microscopic Receding Contact Line Dynamics on Pillar and Irregular Superhydrophobic Surfaces

    Science.gov (United States)

    Yeong, Yong Han; Milionis, Athanasios; Loth, Eric; Bayer, Ilker S.

    2015-01-01

    Receding angles have been shown to have great significance when designing a superhydrophobic surface for applications involving self-cleaning. Although apparent receding angles under dynamic conditions have been well studied, the microscopic receding contact line dynamics are not well understood. Therefore, experiments were performed to measure these dynamics on textured square pillar and irregular superhydrophobic surfaces at micron length scales and at micro-second temporal scales. Results revealed a consistent “slide-snap” motion of the microscopic receding line as compared to the “stick-slip” dynamics reported in previous studies. Interface angles between 40–60° were measured for the pre-snap receding lines on all pillar surfaces. Similar “slide-snap” dynamics were also observed on an irregular nanocomposite surface. However, the sharper features of the surface asperities resulted in a higher pre-snap receding line interface angle (~90°). PMID:25670630

  15. The Issue of Data Protection and Data Security in the (Pre-Lisbon EU Third Pillar

    Directory of Open Access Journals (Sweden)

    Maria O'Neill

    2010-06-01

    Full Text Available The key functional operability in the pre-Lisbon PJCCM pillar of the EU is the exchange of intelligence and information amongst the law enforcement bodies of the EU. The twin issues of data protection and data security within what was the EU’s third pillar legal framework therefore come to the fore. With the Lisbon Treaty reform of the EU, and the increased role of the Commission in PJCCM policy areas, and the integration of the PJCCM provisions with what have traditionally been the pillar I activities of Frontex, the opportunity for streamlining the data protection and data security provisions of the law enforcement bodies of the post-Lisbon EU arises. This is recognised by the Commission in their drafting of an amending regulation for Frontex , when they say that they would prefer “to return to the question of personal data in the context of the overall strategy for information exchange to be presented later this year and also taking into account the reflection to be carried out on how to further develop cooperation between agencies in the justice and home affairs field as requested by the Stockholm programme.” The focus of the literature published on this topic, has for the most part, been on the data protection provisions in Pillar I, EC. While the focus of research has recently sifted to the previously Pillar III PJCCM provisions on data protection, a more focused analysis of the interlocking issues of data protection and data security needs to be made in the context of the law enforcement bodies, particularly with regard to those which were based in the pre-Lisbon third pillar. This paper will make a contribution to that debate, arguing that a review of both the data protection and security provision post-Lisbon is required, not only in order to reinforce individual rights, but also inter-agency operability in combating cross-border EU crime. The EC’s provisions on data protection, as enshrined by Directive 95/46/EC, do not apply

  16. A superhydrophobic chip based on SU-8 photoresist pillars suspended on a silicon nitride membrane.

    Science.gov (United States)

    Marinaro, Giovanni; Accardo, Angelo; De Angelis, Francesco; Dane, Thomas; Weinhausen, Britta; Burghammer, Manfred; Riekel, Christian

    2014-10-01

    We developed a new generation of superhydrophobic chips optimized for probing ultrasmall sample quantities by X-ray scattering and fluorescence techniques. The chips are based on thin Si3N4 membranes with a tailored pattern of SU-8 photoresist pillars. Indeed, aqueous solution droplets can be evaporated and concentrated at predefined positions using a non-periodic pillar pattern. We demonstrated quantitatively the deposition and aggregation of gold glyconanoparticles from the evaporation of a nanomolar droplet in a small spot by raster X-ray nanofluorescence. Further, raster nanocrystallography of biological objects such as rod-like tobacco mosaic virus nanoparticles reveals crystalline macro-domain formation composed of highly oriented nanorods.

  17. Analisis dan Perancangan Aplikasi Berbasis Web E-Procurement di PT Pillar Utama Contrindo

    Directory of Open Access Journals (Sweden)

    Sartika Kurniali

    2012-12-01

    Full Text Available The aim of this research is to analyze the current business process at the procurement department at PT Pillar Utama Contrindo as well as develop a web based e-procurement application prototype to supportprocurement process at the company. Interview, survey, as well as analysis and design to develop the prototype are used in the research. The research results in an e-procurement application prototype built to minimize errors on related document filling, help the company to get best price on their supply, and increase control. It can be concluded from the research that the protoype can be implemented to be a tool for the users to decide the best supplier, obtain the best price, and increase control in buying process at PT Pillar Utama Contrindo.

  18. N-octane catalytic isomerization with aluminium and aluminiumlanthanum pillared nontronite

    Directory of Open Access Journals (Sweden)

    C. P. de Moura

    2015-12-01

    Full Text Available Abstract Nontronite samples pillared with aluminium (Pt/Al-PilM and aluminium-lanthanum (Pt/AlLa-PilM were prepared from natural nontronite, characterized and tested as catalyst in n-octane hydroisomerization reaction. The results were compared with those obtained from the same reaction using commercial Y-zeolite impregnated with platinum (Pt-Y. Experiments with commercial zeolite show that platinum is essential to maintain the reactional selectivity of the products. The conversion capacities of (Pt/Al- PilM and (Pt/AlLa-PilM were 70% and 40%, respectively, surpassing the Pt-Y performance of 30%, but with the same selectivity. X-ray diffraction data show that organic matter oxidation followed by cationic homogenization is of paramount importance for pillared clay preparation.

  19. Surface-enhanced Raman scattering of patterned copper nanostructure electrolessly plated on arrayed nanoporous silicon pillars.

    Science.gov (United States)

    Jiang, Wei Fen; Shan, Wen Wen; Ling, Hong; Wang, Yu Sheng; Cao, Yan Xia; Li, Xin Jian

    2010-10-20

    A new synthesized composite structure, a patterned copper/silicon nanoporous pillar array (Cu/Si-NPA) made by depositing Cu on Si-NPA using an immersion plating method, can be used as a surface-enhanced Raman scattering (SERS) substrate. Its surface component and morphology were analyzed by x-ray diffraction and field-emission scanning electron microscopy, respectively. It was found that the surface was Cu with two kinds of crystal structures: a continuous film composed of Cu nanocrystallites covering the Si-NPA, and a quasi-regular, interconnected network composed of loop-chains of Cu crystallites, with the size in the range of several tens of nanometer to 300 nm, surrounding the porous Si pillars. The composite structure is strongly SERS active using rhodamine 6G as probe molecules, which is mainly due to the patterned hierarchical Cu structure. © 2010 IOP Publishing Ltd

  20. Replication of micro-sized pillars in polypropylene using the extrusion coating process

    DEFF Research Database (Denmark)

    Okulova, Nastasia; Johansen, Peter; Christensen, Lars

    2017-01-01

    A recent advancement in nano-pattern replication using roll-to-roll extrusion coating (R2R-EC) shows potential for many biomimetic applications. For further development of the technique a study of the micro-replication regime is carried out. In this study a full and partial replication in polypro......A recent advancement in nano-pattern replication using roll-to-roll extrusion coating (R2R-EC) shows potential for many biomimetic applications. For further development of the technique a study of the micro-replication regime is carried out. In this study a full and partial replication...... in polypropylene (PP) of micro-sized pillars has been demonstrated using the extrusion coating process. The replication fidelity of the pillars is investigated in a systematic variation of different process parameters: the line-speed of the rolls, the extruder output, the cooling roll temperature and the pressure...

  1. Studies on selective adsorption of biogas components on pillared clays: approach for biogas improvement.

    Science.gov (United States)

    Pires, João; Saini, Vipin K; Pinto, Moisés L

    2008-12-01

    Comparative adsorptions of four gases (natural gas and landfill gas components), viz., CO2, CH4, C2H6, and N2, were studied on four different pillared clays (PILCs) to develop a selective material. Such material could be useful forthe separation/purification process of waste gases. These materials (PILCs) were prepared from two different natural montmorillonite clays, by pillaring with Al2O3 and ZrO2, separately and were characterized by means of nitrogen adsorption and XRD. The adsorption isotherms for pure component gases were determined for each PILC, up to 10(3) kPa. The isotherms data were explored to calculate the selectivity of PILCs for either gas in any binary mixture. It was observed that the surface area of the clays pillared with Al2O3 was higher than that of the clays pillared with ZrO2. At the highest studied equilibrium pressure, the order of maximum adsorption was found to be CO2 > C2H6 > CH4 > N2 for each material. With the help of adsorption modeling, the selective adsorption from binary mixtures was predicted at different equilibrium pressures and compositions. Among the four PILCs, a ZrO2 PILC was found to be the most suitable material, in terms of separation possibility. To further assess the efficiency of these materials in commercial processes, the adsorption capacity in terms of working capacity was also calculated at two different regeneration pressures, i.e., at 1.0 atm and 1.0 Torr.

  2. Bearing characteristics of coal pillars based on modified limit equilibrium theory

    Institute of Scientific and Technical Information of China (English)

    Wang Xiangyu a; Bai Jianbiao; Wang Ruofan; Sheng Wenlong

    2015-01-01

    There are two states for the coal-mass on the goaf-side which is in stress equilibrium:the state of limit equilibrium (the bearing stress in the coal-mass equals its ultimate bearing stress) and the state of non-ultimate equilibrium (the bearing stress in the coal-mass is less than its ultimate bearing stress). To ana-lyze the bearing characteristics of a coal pillar in the state of limit equilibrium and guide the design of pillar width, we established a mechanical analytical model of the non-ultimate equilibrium zone in the coal-mass on the goaf-side combined with the limit equilibrium theory as well as adopting the methods of theory analysis and mechanical analysis based on the assumption of a state of non-ultimate equilibrium. The width correction coefficient of the limit equilibrium zone has been given. The influence of mining depth, stress concentration coefficient of the surrounding rock, the non-limit strength of the coal-mass and stability of the coal rock interface has been studied. On this basis, we have confirmed that when the width of a longwall mining face roadway protection coal pillar is between 11.6 m and 13.16 m in No. 4 coal seam of Xinrui coal mine in Lvliang in Shanxi province the elastic core region in the coal pillar can be assured and the roadway will be located in the area of lower stress which is outside the peak stress. So the revised width of the limit equilibrium zone is more practical.

  3. Current practice and guidelines for the safe design of water barrier pillars

    CSIR Research Space (South Africa)

    Rangasamy, T

    2001-08-01

    Full Text Available 5.5 Conclusions.............................................................................................................................48 6 Ground penetrating radar scan .............................................49 7 Effect of water quality... as well as pillar-roof/floor interfaces. In the following sections various empirical techniques, which have been employed around the globe, are presented and discussed. 2.1.1.2 North America 2.1.1.2.1 Legislation The Federal Coal Mine Safety Act...

  4. Security: The Fourth Pillar of the Caribbean Community. Does the Region Need a Security Organ

    Science.gov (United States)

    2016-06-10

    SECURITY: THE FOURTH PILLAR OF THE CARIBBEAN COMMUNITY. DOES THE REGION NEED A SECURITY ORGAN? A thesis presented to the...Does the Region Need a Security Organ? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Pryce, Murphy G...Public Release; Distribution is Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Caribbean Community (CARICOM) is a 15-state regional

  5. N-octane catalytic isomerization with aluminium and aluminiumlanthanum pillared nontronite

    OpenAIRE

    Moura,C. P. de; Fernandes,M. V. S.; L. R. D. da Silva; L. C. G. Vasconcellos; R. F. do Nascimento; Valentini, A.

    2015-01-01

    Abstract Nontronite samples pillared with aluminium (Pt/Al-PilM) and aluminium-lanthanum (Pt/AlLa-PilM) were prepared from natural nontronite, characterized and tested as catalyst in n-octane hydroisomerization reaction. The results were compared with those obtained from the same reaction using commercial Y-zeolite impregnated with platinum (Pt-Y). Experiments with commercial zeolite show that platinum is essential to maintain the reactional selectivity of the products. The conversion capacit...

  6. Porphyrinic supramolecular daisy chains incorporating pillar[5]arene-viologen host-guest interactions

    KAUST Repository

    Fathalla, Maher

    2015-05-18

    A porphyrin functionalised with pillar[5]arene and a viologen at its 5- and 15-meso positions assembles in a head-to-tail manner, producing linear supramolecular daisy chains in dichloromethane. At high concentrations, it forms an organogel which has been investigated by electron microscopy and rheological measurements, paving the way for the preparation of other functional supramolecular assemblies which harness viologen"⊂" pillararene host-guest interactions.

  7. Discoid Bicelles as Efficient Templates for Pillared Lamellar Periodic Mesoporous Silicas at pH 7 and Ultrafast Reaction Times

    Directory of Open Access Journals (Sweden)

    Mohanty Paritosh

    2011-01-01

    Full Text Available Abstract We report the first synthesis of periodic mesoporous silicas templated by bicelles. The obtained materials form novel pillared lamellar structures with a high degree of periodic order, narrow pore size distributions, and exceptionally high surface areas.

  8. In situ synthesis, characterization, and catalytic performance of tungstophosphoric acid encapsulated into the framework of mesoporous silica pillared clay.

    Science.gov (United States)

    Li, Baoshan; Liu, Zhenxing; Han, Chunying; Ma, Wei; Zhao, Songjie

    2012-07-01

    Mesoporous silica pillared clay (SPC) incorporated with tungstophosphoric acid (HPW) has been synthesized via in situ introducing P and W source in the acidic suspension of the clay interlayer template during the formation of the silica pillared clay. The samples were characterized by XRD, XRF, FT-IR, TG-DTA, N(2) adsorption-desorption, and SEM techniques. The results showed that the HPW formed by in situ method has been effectively introduced into the framework of mesoporous silica pillared clay and its Keggin structure remained perfectly after formation of the materials. In addition, samples with similar HPW loadings were also prepared by impregnation method using SPC as the support. HPW in the incorporated samples was better dispersed into the silica pillared clay than in the impregnated samples. The results of catalytic tests indicated that the encapsulated materials demonstrated better catalytic performance than the impregnated samples in oxidative desulfurization (ODS) of dibenzothiophene (DBT).

  9. Rockburst Disaster Prediction of Isolated Coal Pillar by Electromagnetic Radiation Based on Frictional Effect

    Directory of Open Access Journals (Sweden)

    Tongbin Zhao

    2014-01-01

    Full Text Available Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster.

  10. Basel’s Forgotten Pillar: The Myth of Market Discipline on the Forefront of Basel III

    Directory of Open Access Journals (Sweden)

    Vahit Ferhan Benli

    2016-01-01

    Full Text Available Although Basel II fortified the first two pillars with market transparency enhancing Pillar III disclosures and encouraged the usage of major Credit Rating Agencies (CRAs such as Moody’s, Standard and Poor’s, and Fitch as quasi governmental authorities to overcome asymmetric informational problems on risk and capital adequacy fronts of the global financial system, the recent global financial crisis has proven just the opposite. The banks and regulators were not in a position to truly assess the risk and capital adequacy frameworks of the global and domestic financial institutions based on the assessments of the rating agencies. To overcome the problem of informational asymmetry for the market participants, the Basel Committee on Banking Supervision set out new proposals for enhanced Pillar III disclosures in the areas of credit risks and capital reporting standards on the forefront of Basel III that would come into effect on April 1, 2016. This paper is a critical evaluation of the new reporting proposals of BCBS within the critical role of the credit rating agencies.

  11. Rockburst disaster prediction of isolated coal pillar by electromagnetic radiation based on frictional effect.

    Science.gov (United States)

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster.

  12. High-resolution adsorption analysis of pillared zeolites IPC-3PI and MCM-36.

    Science.gov (United States)

    Zukal, Arnošt; Kubů, Martin

    2014-07-21

    The porous structure of pillared zeolites IPC-3PI and MCM-36 and their precursors IPC-3P and MCM-22P, respectively, has been investigated by means of a high-resolution adsorption analysis. The analysis was based on argon adsorption isotherms measured at 87 K from the relative pressure of 10(-6). The isotherms were processed by means of the t-plot method, which made it possible to distinguish adsorption in micropores from adsorption in mesopores. The pore size distribution was evaluated from argon isotherms using Non-Local Density Functional Theory. The obtained results have shown that the microporous structure of the MWW layers is preserved in both pillared zeolites. In contrast to precursors IPC-3P and MCM-22P, pillared samples are characterized by the formation of a porous structure belonging to the lower mesopore region. The distribution of mesopores in the zeolite IPC-3PI is broader and is shifted to larger widths in comparison with the zeolite MCM-36.

  13. Feasibility study on thinning safety pillar under water-bodies in comprehensive overhead caving work face

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Wang, G.; Liang, G.; Gao, H.; Zhang, Q. [Huainan Technology College (China)

    2000-02-01

    The main target coal seam of Renlou Mine is directly covered with 5-15m thick gravel aquifer, which seriously threatens the safety of the mine, hence a safety pillar of vertical height 80m under water-bodies are retained to support it. To demonstrate the safety and reliability of the pillar, the tests for hydrogeological conditions of mining area, rock mechanics, water-rock physical properties are conducted. The results show that the gravel layer contains high volume of cementing clay materials, and has weak ability of vertical permeation; the mudstone near the basement of the working face belongs to loose-medium rock type; the contents of clay minerals in the weathered zone of the basement is relatively high, and its volume dilation after absorbing water has resulted in strong regenerating water-tightness, hence it possesses the double functions of waterproofing and restraining the continuous development of fractures under the impact of mining conditions. The analogy simulation, computer simulation and formula calculation are conducted, too. Based on the above results, the safety pillar is reduced to 65m. Coal withdrawal was completed in May, 1998. The amount of coal recovered is up to 4.6x10{sup 4}t. 1 ref., 3 tabs.

  14. Pillars and globules at the edges of H ii regions, Confronting Herschel observations and numerical simulations

    CERN Document Server

    Tremblin, P; Schneider, N; Audit, E; Hill, T; Didelon, P; Peretto, N; Arzoumanian, D; Motte, F; Zavagno, A; Bontemps, S; Anderson, L D; Andre, Ph; Bernard, J P; Csengeri, T; Di Francesco, J; Elia, D; Hennemann, M; Konyves, V; Marston, A P; Luong, Q Nguyen; Rivera-Ingraham, A; Roussel, H; Sousbie, T; Spinoglio, L; White, G J; Williams, J

    2013-01-01

    Pillars and globules are present in many high-mass star-forming regions, such as the Eagle nebula (M16) and the Rosette molecular cloud, and understanding their origin will help characterize triggered star formation. The formation mechanisms of these structures are still being debated. Recent numerical simulations have shown how pillars can arise from the collapse of the shell in on itself and how globules can be formed from the interplay of the turbulent molecular cloud and the ionization from massive stars. The goal here is to test this scenario through recent observations of two massive star-forming regions, M16 and Rosette. The column density structure of the interface between molecular clouds and H ii regions was characterized using column density maps obtained from far-infrared imaging of the Herschel HOBYS key programme. Then, the DisPerSe algorithm was used on these maps to detect the compressed layers around the ionized gas and pillars in different evolutionary states. Finally, their velocity structu...

  15. Pillared-layer cluster organic frameworks constructed from nanoscale Ln10 and Cu16 clusters.

    Science.gov (United States)

    Fang, Wei-Hui; Yang, Guo-Yu

    2014-06-02

    Two pillared-layer cluster organic frameworks, [Ln5(μ3-OH)4(μ-H2O)Cu8I8L11]·H2O (L = 4-pyridin-4-yl-benzoate; Ln = Dy(1), Eu(2)), have been made by employing lanthanide oxide and copper(I) halide as the source of lanthanide and transitional metal under hydrothermal condition. Compared to the pillared-layer frameworks constructed from heterometallic layers and organic pillars, these two compounds are derived from lanthanide cluster organic layers and copper(I) halide cluster motifs. Thus, there are two distinct types of inorganic metal connectors in the structure, one is hydroxo lanthanide [Ln10(μ3-OH)8](22+) (Ln10) cluster, and the other is copper(I) halide [Cu16I16] (Cu16) cluster. The rational assembly of these two inorganic connectors and organic linear linkers leads to the formation of the two complexes here. To the best of our knowledge, they appear to be the first 3D frameworks constructed from decanuclear hydroxo lanthanide clusters. From the topological point of view, these compounds represent an intriguing example of a binodal (8,14)-connected net considering the Ln10 and Cu16 connectors as the nodes, revealing that they are typical high dimensional frameworks with high connected net based on high nuclearity nodes. Furthermore, elemental analysis, IR, TGA, PXRD, and UV-vis properties are also studied.

  16. Model of care for a changing healthcare system: are there foundational pillars for design?

    Science.gov (United States)

    Booker, Catriona; Turbutt, Adam; Fox, Robyn

    2016-04-01

    Currently, healthcare organisations are being challenged to provide optimal clinical services within budget limitations while simultaneously being confronted by aging consumers and labour and skill shortages. Within this dynamic and changing environment, the ability to remain responsive to patient needs while managing these issues poses further challenges. Development or review of the model of care (MOC) may provide a possible solution to support efficiencies in service provision. Although MOC are not readily understood or appreciated as an efficiency strategy, they can be more easily explained by considering several recurring pillars when developing or redesigning an MOC. Generic and recurring foundational pillars include integrated care models, team functioning and communication, leadership, change management and lean thinking. These foundational pillars should be incorporated into the development and application of MOC in order to achieve desired outcomes. However, sustainability requires continuous review to enable improvement and must be integrated into routine business. Moreover, successful review of MOC requires collaboration and commitment by all stakeholders. Leaders are critical to motivating clinicians and stakeholders in the review process. Further, it is imperative that leaders engage stakeholders to commit to support the agreed strategies designed to provide efficient and comprehensive healthcare services. Redesign of MOC can significantly improve patient care by applying the agreed strategies. In the current healthcare environment, these strategies can favourably affect healthcare expenditure and, at the same time, improve the quality of interprofessional health services.

  17. A novel high performance SemiSJ-CSTBT with p-pillar under the bottom of the trench gate

    Science.gov (United States)

    Yan, Jia; Hong, Chen; Ji, Tan; Shuojin, Lu; Yangjun, Zhu

    2016-08-01

    A novel high performance SemiSJ-CSTBT is proposed with the p-pillar under the bottom of the trench gate. The inserted p-pillar with the neighbouring n-drift region forms a lateral P/N junction, which can adjust the electric distribution in the forward-blocking mode to achieve a higher breakdown voltage compared to the conventional CSTBT. Also, the p-pillar can act as a hole collector at turn-off, which significantly enhances the turn-off speed and obtains a lower turn-off switching loss. Although the turn-off switching loss decreases as the depth of the p-pillar increases, there is no need for a very deep p-pillar. The associated voltage overshoot at turn-off increases dramatically with increasing the depth of p-pillar, which may cause destruction of the devices. Plus, this will add difficulty and cost to the manufacturing process of this new structure. Therefore, the proposed SemiSJ-CSTBT offers considerably better robustness compared to the conventional CSTBT and SJ-CSTBT. The simulation results show that the SemiSJ-CSTBT exhibits an increase in breakdown voltage by 160 V (13%) and a reduction of turn-off switching loss by approximately 15%. Project supported by the National Major Science and Technology Special Project of China (No. 2013ZX02305005-002) and the Major Program of the National Natural Science Foundation of China (No. 51490681).

  18. Supramolecular chemistry of pillar[n]arenes functionalised by a copper(i)-catalysed alkyne-azide cycloaddition "click" reaction.

    Science.gov (United States)

    Kakuta, T; Yamagishi, T; Ogoshi, T

    2017-05-09

    Since we discovered pillar[n]arenes in 2008, many chemists have developed a strong interest in pillar[n]arene chemistry because of the many advantages associated with these materials, including their facile and high yielding synthesis, versatile functionality, planar chirality and unique host-guest properties. In this feature article, we discuss recent advances in the field of supramolecular chemistry based on the use of pillar[n]arenes as substrates for copper(i)-catalysed alkyne-azide cycloaddition (CuAAC) "click" chemistry. The CuAAC reaction provides facile access to 1,4-disubstituted triazoles by a reaction between alkyne and azido substrates in the presence of a Cu(i) catalyst. Pillar[n]arenes bearing alkyne or azido groups can therefore be used as substrates for this reaction. Herein, we discuss not only the synthesis of pillar[n]arenes bearing alkyne or azido groups but also the application of these functionalised systems to the CuAAC reaction to construct supramolecular assemblies. We also discuss the rational molecular design and synthesis of guest compounds using the CuAAC reaction because linear alkanes sandwiched between 1,2,3-triazole moieties are good guests for cyclic pentamer pillar[5]arenes.

  19. THE SYNTHESIS OF Cr2O3-PILLARED MONTMORILLONITE (CrPM AND ITS USAGE FOR HOST MATERIAL OF p-NITROANILINE

    Directory of Open Access Journals (Sweden)

    Karna Wijaya

    2010-06-01

    Full Text Available The synthesis of Cr2O3-pillared montmorillonite (CrPM and its usage for host material of p-nitroaniline have been conducted. The Cr2O3-pillared montmorillonite clays was prepared by a direct ion exchange method. First, the polyhydroxychromium as a pillaring spesies was intercalated into the interlayer region of the montmorillonite clays (purified clay in the monocation form, result in a montmorillonite-polyoxychromium intercalation compound. The precursors/pillaring spesies was not stable, hence it must be stabilized by calcination in order to transform the polyoxychromium via dehydration and dehydroxylation processes into Cr2O3. This oxide constituts the so-called pillar that prop the clay layers apart to a relatively large distance. The Cr2O3-pillared clays as a host material was added into ethanol solution saturated with p-nitroaniline, and mixture was stirred for 24 h at room temperature. The Na-montmorillonite, Cr2O3-pillared clay and p-nitroaniline-Cr2O3-pillared clay (pNA-CrPM were characterized by X-Ray Diffraction (XRD, Gas Sorption Analysis, Infrared Spectroscopy (FTIR and Activated Neutron Analysis (ANA methods. The result of research showed that basal spacing (d001 of Cr2O3-pillared montmorillonite (CrPM was 18,55 Å, meanwhile the basal spacing of the hydrated Na-montmorillonite was 14,43 Å. The specific surface area of the Cr2O3-pillared montmorillonite was 174,308 m2/g, whereas p-nitroaniline-Cr2O3-pillared clay (pNA-CrPM was 133,331641 m2/g. This fact indicated that p-nitroaniline has been included into the pore of the Cr2O3-pillared clay.   Keyword: montmorillonite, pillared-clay, ion exchange, intercalate.

  20. Copper-impregnated Al-Ce-pillared clay for selective catalytic reduction of NO by C{sub 3}H{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qichun; Hao, Jiming; Li, Junhua [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Ma, Zifeng [Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Lin, Weiming [Department of Chemical Engineering, Guangzhou University, Guangzhou 510405 (China)

    2007-08-30

    The selective catalytic reduction (SCR) of NO by hydrocarbon is an efficient way to remove NO emission from lean-burn gasoline and diesel exhaust. In this paper, a thermally and hydrothermally stable Al-Ce-pillared clay (Al-Ce-PILC) was synthesized and then modified by SO{sub 4}{sup 2-}, whose surface area and average pore diameter calcined at 773 K were 161 m{sup 2}/g and 12.15 nm, respectively. Copper-impregnated Al-Ce-pillared clay catalyst (Cu/SO{sub 4}{sup 2-}/Al-Ce-PILC) was applied for the SCR of NO by C{sub 3}H{sub 6} in the presence of oxygen. The catalyst 2 wt% Cu/SO{sub 4}{sup 2-}/Al-Ce-PILC showed good performance over a broad range of temperature, its maximum conversion of NO was 56% at 623 K and remained as high as 22% at 973 K. Furthermore, the presence of 10% water slightly decreased its activity, and this effect was reversible following the removal of water from the feed. Py-IR results showed SO{sub 4}{sup 2-} modification greatly enhanced the number and strength of Broensted acidity on the surface of Cu/SO{sub 4}{sup 2-}/Al-Ce-PILC, which played a vital role in the improvement of NO conversion. TPR and XPS results indicated that both Cu{sup +} and isolated Cu{sup 2+} species existed on the optimal catalyst, mainly Cu{sup +}, as Cu content increased to 5 wt%, another species CuO aggregates which facilitated the combustion of C{sub 3}H{sub 6} were formed. (author)

  1. Uncertainty quantification based on pillars of experiment, theory, and computation. Part I: Data analysis

    Science.gov (United States)

    Elishakoff, I.; Sarlin, N.

    2016-06-01

    In this paper we provide a general methodology of analysis and design of systems involving uncertainties. Available experimental data is enclosed by some geometric figures (triangle, rectangle, ellipse, parallelogram, super ellipse) of minimum area. Then these areas are inflated resorting to the Chebyshev inequality in order to take into account the forecasted data. Next step consists in evaluating response of system when uncertainties are confined to one of the above five suitably inflated geometric figures. This step involves a combined theoretical and computational analysis. We evaluate the maximum response of the system subjected to variation of uncertain parameters in each hypothesized region. The results of triangular, interval, ellipsoidal, parallelogram, and super ellipsoidal calculi are compared with the view of identifying the region that leads to minimum of maximum response. That response is identified as a result of the suggested predictive inference. The methodology thus synthesizes probabilistic notion with each of the five calculi. Using the term "pillar" in the title was inspired by the News Release (2013) on according Honda Prize to J. Tinsley Oden, stating, among others, that "Dr. Oden refers to computational science as the "third pillar" of scientific inquiry, standing beside theoretical and experimental science. Computational science serves as a new paradigm for acquiring knowledge and informing decisions important to humankind". Analysis of systems with uncertainties necessitates employment of all three pillars. The analysis is based on the assumption that that the five shapes are each different conservative estimates of the true bounding region. The smallest of the maximal displacements in x and y directions (for a 2D system) therefore provides the closest estimate of the true displacements based on the above assumption.

  2. An interpenetrated pillared-layer MOF: Synthesis, structure, sorption and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Li-Na [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Zhao, Yang [Research and Development Department, Zhejiang Quhua Fluorine Chemistry Co., Ltd., Zhejiang 324004 (China); Hou, Lei, E-mail: lhou2009@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Cui, Lin; Wang, Hai-Hua; Wang, Yao-Yu [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China)

    2014-02-15

    A new three-dimensional porous framework [Co{sub 2}(bpdc){sub 2}(H{sub 2}bpz)]∙2(DMF)·5(H{sub 2}O) (1) (H{sub 2}bpdc=4,4′-biphenyldicarboxylic acid, H{sub 2}bpz=3,3′,5,5′-tetramethyl-4,4′-bipyrazole) has been solvothermally synthesized by employing mixed H{sub 2}bpdc and H{sub 2}bpz ligands. 1 is a pillared-layer framework based on a binuclear paddle-wheel Co{sub 2}(O{sub 2}C-R){sub 4} cluster, and exhibits a 2-fold interpenetrated 6-connected pcu topology. H{sub 2}bpz bridges Co{sub 2}(O{sub 2}C-R){sub 4} clusters with an angular coordination configuration to form interesting left- and right-handed helical chains. 1 possesses a two-dimensional porous system decorated by uncoordinated pyrazole –NH groups of H{sub 2}bpz, leading to high adsorption selectivities for CO{sub 2} over N{sub 2} and H{sub 2}. In addition, the strong antiferromagnetic interactions between the Co{sup 2+} ions in cluster were observed. - Graphical abstract: A new pillared-layer porous framework has been constructed by paddle-wheel Co{sub 2}(O{sub 2}C-R){sub 4} cluster and H{sub 2}bpdc–H{sub 2}bpz mixed ligands, displaying adsorption selectivity and antiferromagnetic properties. Display Omitted - Highlights: • We present a new pillared-layer framework based on paddle-wheel Co{sub 2}(O{sub 2}C-R){sub 4} cluster. • The framework possesses a 2-fold interpenetrated pcu topology. • The framework displays adsorption selectivity and antiferromagnetic properties.

  3. Preparation, structural and electrical properties of zinc oxide grown on silicon nanoporous pillar array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Polycrystalline thick film of zinc oxide (ZnO) is grown on a unique silicon substrate with a hierarchical structure,silicon nanoporous pillar array (Si-NPA), by using a vapour phase transport method. It is found that as-grown ZnO film is composed of closely packed ZnO crystallites with an average size of ~10 μm. The film resistivity of ZnO/Siheterostructure is measured. Theoretical analysis shows that the carrier transport across ZnO/Si-NPA heterojunction is dominated by two mechanisms, i.e. a thermionic process at high voltages and a quantum tunnelling process at low voltages.

  4. Study on structural characteristics of pillared clay modified phosphate fertilizers and its increase efficiency mechanism

    Institute of Scientific and Technical Information of China (English)

    WU Ping-xiao; LIAO Zong-wen

    2005-01-01

    Three types of new high-efficiency phosphate fertilizers were made when pillared clays at certain proportions were added into ground phosphate rock. Chemical analyses showed that their soluble phosphorus content decreased more than that of superphosphate. Pot experiment showed that, under equal weights, the new fertilizers increased their efficiency by a large margin over that of superphosphate. Researches on their structures by means of XRD, IR and EPR spectrum revealed that their crystal structures changed considerably, improving their activity and preventing the fixation of available phosphorus in the soil, and consequently, greatly improved the bioavailability and became the main cause of the increase of biomass.

  5. Synthesis of Hydrotalcite-like Compound Pillared by Hetero-polyacid Anions in a Hydrothermal System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hetero-polyacid anions (PW12O403-)-pillared hydrotalcite-like compound is directly and hydrothermally synthesized by the hot solution method. FTIR and XRD show that PW12O403- has been incorporated into the interstitial space with the dimension of 0.917 nm. The state of PW12O403- anion between the hydrotalcite sheets was also discussed. The title product can be expressed by formula [Zn0.68Al0.32(OH)2][PW12O40] 0. 113H2O after a serious study of TGA and chemical analysis.

  6. Enhanced Field Emission from Well-Patterned Silicon Nanoporous Pillar Arrays

    Institute of Scientific and Technical Information of China (English)

    FU Xiao-Nan; LI Xin-Jian

    2006-01-01

    @@ The silicon nanoporous pillar array (Si-NPA) is synthesized by using hydrothermal etching method, and the electron field emission properties are studied. The results show that Si-NPA has a low turn-on field of 1.48 V/μm at the emission current of 0.1 μA and its field emission is relatively stable. The field emission enhancement of Si-NPA is believed to originate from its unique morphology and structure. Our finding demonstrates that the Si-NPA is a promising candidate material for field emission applications.

  7. Swelling and pillaring of the layered precursor IPC-1P: tiny details determine everything.

    Science.gov (United States)

    Shamzhy, Mariya; Mazur, Michal; Opanasenko, Maksym; Roth, Wieslaw J; Čejka, Jiří

    2014-07-21

    The influence of swelling (i.e. the size of tetraalkylammonium surfactant molecule, the presence of tetrapropylammonium hydroxide (TPAOH), pH) and pillaring (i.e. the ratio between the swollen precursor IPC-1P and tetraethyl orthosilicate) conditions on the structure and textural properties of the resulting materials was studied in detail for IPC-1P, which is the layered precursor of zeolite PCR. The swelling of IPC-1P proceeds efficiently under basic conditions both in mixed C(n)H(2n+1)N(CH3)3Cl/TPAOH systems and in C(n)H(2n+1)N(CH3)3OH (n = 8, 10, 12, 14, 16, 18) solutions at pH = 13-14. The intercalation of C(n)H(2n+1)N(+)(CH3)3 in IPC-1P resulted in the formation of expanded materials with interlayer distances growing with increasing length of the alkyl chain in C(n)H(2n+1)N(CH3)3(+): 1.59-1.86 (n = 8) IPC-2 zeolite was formed during calcination of IPC-1P samples swollen in C(n)H(2n+1)N(CH3)3OH solution, while PCR zeolite can be obtained by calcination of IPC-1P treated with either C(n)H(2n+1)N(CH3)3Cl/TPAOH or C(n)H(2n+1)N(CH3)3Cl. The pillaring of IPC-1P samples swollen with C(n)H(2n+1)N(CH3)3OH provided mesoporous materials with narrow pore size distribution in the range 2.5-3.5 nm. Pillared materials derived from the samples swollen in the presence of TPAOH were characterized by a broader pore size distribution. The optimal TEOS/IPC-1PSW ratio being sufficient for the formation of well-ordered pillared derivatives characterized by improved textural properties (S(BET) = 878 m(2) g(-1), V(total) = 0.599 cm(3) g(-1)) was found to be 1 : 1.5.

  8. Surface acoustic wave modulation of a coherently driven quantum dot in a pillar microcavity

    Science.gov (United States)

    Villa, B.; Bennett, A. J.; Ellis, D. J. P.; Lee, J. P.; Skiba-Szymanska, J.; Mitchell, T. A.; Griffiths, J. P.; Farrer, I.; Ritchie, D. A.; Ford, C. J. B.; Shields, A. J.

    2017-07-01

    We report the efficient coherent photon scattering from a semiconductor quantum dot embedded in a pillar microcavity. We show that a surface acoustic wave can periodically modulate the energy levels of the quantum dot but has a negligible effect on the cavity mode. The scattered narrow-band laser is converted into a pulsed single-photon stream, displaying an anti-bunching dip characteristic of single-photon emission. Multiple phonon sidebands are resolved in the emission spectrum, due to the absorption and emission of vibrational quanta in each scattering event.

  9. The automobile steel of the third generation in B-pillar reinforced panel

    Institute of Scientific and Technical Information of China (English)

    Du Huijun; Li Shuli; Yang Jie; Yang Hongxin; Bai Kebin

    2012-01-01

    The fundamental research and industry, trials of the third generation automobile steel QP980 were introduced in this paper, including chemical ingredient, mechanical properties, microstructure, forming limit and basic perform- ance parameters. The application of QP steel of the B-pillar was researched, and the QP980, DP600 and hot forming steel were compared in the aspect of formability, safety and cost. The resuhs showed that the QP980 replacing DP600 steel single piece carl reduce the weight by 2.4 kg. The security and performance is basically the same as that of hot forming steel using 22MnB5, and the cost is reduced by 30 %.

  10. Is active management of mandatory pension funds in Croatia creating value for second pillar fund members?

    Directory of Open Access Journals (Sweden)

    Petar-Pierre Matek

    2015-09-01

    Full Text Available This paper analyses Croatian mandatory pension funds’ investment returns during the 2005-2014 period using performance attribution methodology. Results from active investment management are compared to a long-term policy return. Such analysis is essential to shed light on the contribution of active portfolio management in the second pillar pension scheme. Evidence suggests that in the period analysed portfolio managers have added value through active management decisions. In addition, we determined the sources of portfolio return by breaking down active return into policy, tactical asset allocation and security selection effect.

  11. Segment-specific association between cervical pillar hyperplasia (CPH and degenerative joint disease (DJD

    Directory of Open Access Journals (Sweden)

    Peterson Cynthia K

    2006-09-01

    Full Text Available Abstract Background Cervical pillar hyperplasia (CPH is a recently described phenomenon of unknown etiology and clinical significance. Global assessment of pillar hyperplasia of the cervical spine as a unit has not shown a relationship with degenerative joint disease, but a more sensible explanation of the architectural influence of CPH on cervical spine biomechanics may be segment-specific. Objective The objective of this study was to determine the level of association between degenerative joint disease (DJD and cervical pillar hyperplasia (CPH in an age- and gender-matched sample on a [cervical spine] by-level basis. Research Methods Two-hundred and forty radiographs were collected from subjects ranging in age between 40 and 69 years. The two primary outcome measures used in the study were the segmental presence/absence of cervical pillar hyperplasia from C3 to C6, and segment-specific presence/absence of degenerative joint disease from C1 to C7. Contingency Coefficients, at the 5% level of significance, at each level, were used to determine the strength of the association between CPH and DJD. Odds Ratios (OR with their 95% Confidence Intervals (95% CI were also calculated at each level to assess the strength of the association. Results Our study suggests that an approximately two-to-one odds, or a weak-to-moderate correlation, exists at C4 and C5 CPH and adjacent level degenerative disc disease (DDD; with the strongest (overall associations demonstrated between C4 CPH and C4–5 DDD and between C5 CPH and C5–6 DDD. Age-stratified results demonstrated a similar pattern of association, even reaching the initially hypothesized OR ≥ 5.0 (95% CI > 1.0 or "moderately-strong correlation of C ≥ .4 (p ≤ .05" in some age categories, including the 40–44, 50–59, and 60–64 years of age subgroups; these ORs were as follows: OR = 5.5 (95% CI 1.39–21.59; OR = 6.7 (95% CI 1.65–27.34; and OR = 5.3 (95% CI 1.35–21.14, respectively

  12. Failure laws of narrow pillar and asymmetric control technique of gob-side entry driving in island coal face

    Institute of Scientific and Technical Information of China (English)

    Yang Jiping; Cao Shenggen; Li Xuehua

    2013-01-01

    In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws,as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face,2107 face in Chengjiao Colliery is researched as an engineering case.Through physical mechanical test of rock,theoretical and numerical simulation analyses of rock,the analysis model of the roadway overlying strata structure was established,and its parameters quantified.To reveal the deformation law of the surrounding rock,the stability of the overlying strata structure was studied before,during and after the roadway driving.According to the field conditions,the stress distribution in coal pillar was quantified,and the surrounding rock deformation feature studied with different widths of the pillars in gob-side entry driving.Finally,the pillar width of 4 m was considered as the most reasonable.The research results show that there is great difference in support conditions among roadway roof,entity coal side and narrow pillar side.Besides,the asymmetric control technique for support of the surrounding rock was proposed.The asymmetric control technique was proved to be reasonable by field monitoring,support by bolt-net,steel ladder and steel wire truss used in narrow pillar side.

  13. Reverse engineering of B-pillar with 3D optical scanning for manufacturing of non-uniform thickness part

    Directory of Open Access Journals (Sweden)

    Islam Md. Tasbirul

    2017-01-01

    Full Text Available This paper presents reverse engineering (RE of a complex automobile structural part, B-pillar. As a major part of the automobile body-in white (BiW, B-pillar has substantial opportunity for weight reduction by introducing variable thickness across its sections. To leverage such potential, an existing B-pillar was reverse engineered with a 3D optical scanner and computer aided design (CAD application. First, digital data (i.e. in meshes of exiting B-pillar was obtained by the scanner, and subsequently, this information was utilized in developing a complete 3D CAD model. CATIA V5 was used in the modeling where some of the essential work benches were “Digitized Shape Editor”, “Quick Surface Reconstruction”, “Wireframe and Surface Design”, “Freestyle”, “Generation Shape Design” and “Part design”. In the final CAD design, five different thicknesses were incorporated successfully in order to get a B-pillar with non-uniform sections. This research opened opportunities for thickness optimization and mold tooling design in real time manufacturing.

  14. The molecular environment of the pillar-like features in the H ii region G46.5-0.2

    Science.gov (United States)

    Paron, S.; Celis Peña, M.; Ortega, M. E.; Fariña, C.; Petriella, A.; Rubio, M.; Ashley, R. P.

    2017-10-01

    At the interface of H ii regions and molecular gas, peculiar structures appear, some of them with pillar-like shapes. Understanding their origin is important for characterizing triggered star formation and the impact of massive stars on the interstellar medium. In order to study the molecular environment and influence of radiation on two pillar-like features related to the H ii region G46.5-0.2, we performed molecular line observations with the Atacama Submillimeter Telescope Experiment and spectroscopic optical observations with the Isaac Newton Telescope. From the optical observations, we identified the star that is exciting the H ii region as spectral type O4-6. The molecular data allowed us to study the structure of the pillars and an HCO+ cloud lying between them. In this HCO+ cloud, which has no well-defined 12CO counterpart, we found direct evidence of star formation: two molecular outflows and two associated near-IR nebulosities. The outflow axis orientation is perpendicular to the direction of the radiation flow from the H ii region. Several Class I sources are also embedded in this HCO+ cloud, showing that it is usual that young stellar objects (YSOs) form large associations occupying a cavity bounded by pillars. On the other hand, it was confirmed that the radiation-driven implosion (RDI) process is not occurring in one of the pillar tips.

  15. Development of Pillared Clays for Wet Hydrogen Peroxide Oxidation of Phenol and Its Application in the Posttreatment of Coffee Wastewater

    Directory of Open Access Journals (Sweden)

    Nancy R. Sanabria

    2012-01-01

    Full Text Available This paper focuses on the use of pillared clays as catalysts for the Fenton-like advanced oxidation, specifically wet hydrogen peroxide catalytic oxidation (WHPCO. This paper discusses the limitations on the application of a homogeneous Fenton system, development of solid catalysts for the oxidation of phenol, advances in the synthesis of pillared clays, and their potential application as catalysts for phenol oxidation. Finally, it analyzes the use of pillared clays as heterogeneous Fenton-like catalysts for a real wastewater treatment, emphasizing the oxidation of phenolic compounds present in coffee wastewater. Typically, the wet hydrogen peroxide catalytic oxidation in a real effluent system is used as pretreatment, prior to biological treatment. In the specific case of coffee wet processing wastewater, catalytic oxidation with pillared bentonite with Al-Fe is performed to supplement the biological treatment, that is, as a posttreatment system. According to the results of catalytic activity of pillared bentonite with Al-Fe for oxidation of coffee processing wastewater (56% phenolic compounds conversion, 40% selectivity towards CO2, and high stability of active phase, catalytic wet hydrogen peroxide oxidation emerges as a viable alternative for management of this type of effluent.

  16. Modeling the Role of Bulk and Surface Characteristics of Carbon Fiber on Thermal Conductance across the Carbon Fiber/Matrix Interface (Postprint)

    Science.gov (United States)

    2015-11-09

    2014, 95, 16−20. (10) Zhang, P.; Li, Q.; Xuan, Y. Thermal Contact Resistance of Epoxy Composites Incorporated with Nano- Copper Particles and the Multi...Patnaik, S. S.; Roy, A. K.; Froudakis, G.; Farmer, B. L. Modeling of Thermal Transport in Pillared -Graphene Architectures. ACS Nano 2010, 4, 1153−1161

  17. Application of a routine moment tensor inversion capability in the development of a new design consideration for the stability of foundations of stabilising pillars in deep level gold mines and pillars in intermediate depth hard rock mines

    CSIR Research Space (South Africa)

    Linzer, LM

    2002-03-01

    Full Text Available was not the full load that the pillar would receive. It was hypothesized that these histories of “foundation failure”, are, rather, symptoms of the yielding of the pillar foundation system. Thus the point of interest for design purposes could lie in the yield... the determination of which two nodal planes, obtained from moment tensor inversion, is the most likely fault plane. 19 Acknowledgements Acknowledgement is made to Dr. S. Spottiswoode of Miningtek for his technical guidance. 19 Table of Contents Executive...

  18. Formation of Pillars at the Boundaries between HII Regions and Molecular Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Mizuta, A; Kane, J O; Pound, M W; Remington, B A; Ryutov, D D; Takabe, H

    2006-04-20

    We investigate numerically the hydrodynamic instability of an ionization front (IF) accelerating into a molecular cloud, with imposed initial perturbations of different amplitudes. When the initial amplitude is small, the imposed perturbation is completely stabilized and does not grow. When the initial perturbation amplitude is large enough, roughly the ratio of the initial amplitude to wavelength is greater than 0.02, portions of the IF temporarily separate from the molecular cloud surface, locally decreasing the ablation pressure. This causes the appearance of a large, warm HI region and triggers nonlinear dynamics of the IF. The local difference of the ablation pressure and acceleration enhances the appearance and growth of a multimode perturbation. The stabilization usually seen at the IF in the linear regimes does not work due to the mismatch of the modes of the perturbations at the cloud surface and in density in HII region above the cloud surface. Molecular pillars are observed in the late stages of the large amplitude perturbation case. The velocity gradient in the pillars is in reasonably good agreement with that observed in the Eagle Nebula. The initial perturbation is imposed in three different ways: in density, in incident photon number flux, and in the surface shape. All cases show both stabilization for a small initial perturbation and large growth of the second harmonic by increasing amplitude of the initial perturbation above a critical value.

  19. Globules and pillars seen in the [CII] 158 micron line with SOFIA

    CERN Document Server

    Schneider, N; Tremblin, P; Hennemann, M; Minier, V; Hill, T; Comerón, F; Requena-Torres, M A; Kraemer, K E; Simon, R; Röllig, M; Stutzki, J; Djupvik, A A; Zinnecker, H; Marston, A; Csengeri, T; Cormier, D; Lebouteiller, V; Audit, E; Motte, F; Bontemps, S; Sandell, G; Allen, L; Megeath, T; Gutermuth, R A

    2012-01-01

    Molecular globules and pillars are spectacular features, found only in the interface region between a molecular cloud and an HII-region. Impacting Far-ultraviolet (FUV) radiation creates photon dominated regions (PDRs) on their surfaces that can be traced by typical cooling lines. With the GREAT receiver onboard SOFIA we mapped and spectrally resolved the [CII] 158 micron atomic fine-structure line and the highly excited 12CO J=11-10 molecular line from three objects in Cygnus X (a pillar, a globule, and a strong IRAS source). We focus here on the globule and compare our data with existing Spitzer data and recent Herschel Open-Time PACS data. Extended [CII] emission and more compact CO-emission was found in the globule. We ascribe this emission mainly to an internal PDR, created by a possibly embedded star-cluster with at least one early B-star. However, external PDR emission caused by the excitation by the Cyg OB2 association cannot be fully excluded. The velocity-resolved [CII] emission traces the emission ...

  20. Green social cooperatives in Italy: a practical way to cover the three pillars of sustainability?

    Directory of Open Access Journals (Sweden)

    Giorgio Osti

    2012-02-01

    Full Text Available This article provides an introductory description of Italian green social cooperatives which are democratic nonprofit organizations specializing in the provision of environmental services. The background to this topic is the literature on the “third sector,” usually called social entrepreneurship, and the “sociology of environment,” mainly that part concerned with consumption and lifestyles. Green social cooperatives are a concrete attempt to unify the three pillars of sustainability. The analysis is divided into two parts. The first part highlights the challenges that the environmental crisis raises for social enterprises and considers three dimensions in particular: work integration, generalized or linear exchange, and the theory of the commons. The discussion reveals mismatches between the urgency of moving toward a sustainable world and the competences of social enterprises. The second part examines this asymmetry and uses the social cooperative, the main empirical expression of social enterprise in Italy, as its point of departure. The article proposes a typology with which to frame green social cooperatives and employs a qualitative approach to outline a concrete case for each type. The result is the emergence of a social area, at present decidedly underdeveloped and undersized, but with considerable potential for job creation and environmental services. The analysis demonstrates that social enterprises are interesting hybrids of economic and social sustainability, but to promote the environmental pillar of sustainability they must combine work and habitation (or production and consumption according to a logic of sufficiency.

  1. Wide pillar roadway retained in the deep high gas coal seam

    Institute of Scientific and Technical Information of China (English)

    Pan; Liyou; Feng; Enhu; Zhao; Qingshou; Chen; Liqiang; Kong; Fanpeng

    2012-01-01

    According to the geological and mining conditions of deep high gas coal seam,this paper established the mechanical model of stope surrounding rock,and analyzed the stress distribution and deformation failure mechanism of working face and coal pillar.The research determined the arrangement mode that adjacent working faces retain wide pillar,and the reasonable support method of roadway that the combined support of roof and grouting combined together.The reasonable time of reinforced roadway was determined.Through analyzing the mechanical model of the ways of roadway supporting,this research drew the conclusions as follows:the combined support of roof and working slope improved the support strength and range of surrounding rock,optimized the support by adjusting the angle of anchor,and reached the support requirements by using cement grouting in working slope and chemical grout in roof.The technology was applied in 15104 working face of Baoan Mine,and obtained good results.

  2. Synthesis and Photocatalytie Property of the ZrO2/TiO2Pillared Laponite

    Institute of Scientific and Technical Information of China (English)

    LIN Yingguang; PI Pihui; YANG Zhuoru; WANG Lianshi

    2011-01-01

    The ZrO2/TiO2 pillared laponite (Ti-Zr-lap) photocatalysts were prepared with intercalation reaction by supercritical fluid drying (SCFD),and characterized by XRD,TEM,SEM and BET surface area analysis,and the photocatalytic properties of Ti-Zr-lap were investigated by degradation of azo dye acid red B (ARB).The results showed that the ZrO2/TiO2 pillared structures in laponite could be formed,with the mass fraction of (Zr+++Ti4+)/laponite (Xm) increasing,the basal spacing and the BET surface area of Ti-Zr-lap significantly increased.The Ti-Zr-lap used as photocatalyst had the advantages of stable and porous layered structure,large surface area with the anatase type TiO2+ Compared with the Ti-Zr-lap dried by air drying,the TiZr-lap dried by SCFD showed better photocatalytic property which was very close to that of P25 TiO2.Using the Ti-Zr-lap as photocatalyst with the optimum Xm of 0.16 and the calcination temperature of 500 ℃,under the conditions of the initial concentration of ARB 20 mg/L,photocatalyst concentration of 1.5 g/L and irradiation time 60 min,the decoloring rate of ARB could achieve 98.3%,indicating that the Ti-Zr-lap had excellent photocatalytic property.

  3. Detailed Numerical Simulations on the Formation of Pillars around HII-regions

    CERN Document Server

    Gritschneder, Matthias; Naab, Thorsten; Walch, Stefanie

    2010-01-01

    We study the structural evolution of turbulent molecular clouds under the influence of ionizing radiation emitted from a nearby massive star by performing a high resolution parameter study with the iVINE code. The temperature is taken to be 10K or 100K, the mean number density is either 100cm^3 or 300cm^3. Besides, the turbulence is varied between Mach 1.5 and Mach 12.5 and the main driving scale between 1pc and 8pc. We vary the ionizing flux by an order of magnitude. In our simulations the ionizing radiation enhances the initial turbulent density distribution and thus leads to the formation of pillar-like structures observed adjacent to HII regions in a natural way. Gravitational collapse occurs regularly at the tips of the structures. We find a clear correlation between the initial state of the turbulent cold cloud and the final morphology and physical properties of the structures formed. The most favorable regime for the formation of pillars is Mach 4-10. Structures and therefore stars only form if the ini...

  4. Transformation for sustainable agriculture: what role for the second Pillar of CAP?

    Directory of Open Access Journals (Sweden)

    Janet Dwyer

    2013-05-01

    Full Text Available EU agriculture and rural areas face significant medium-term challenges arising from existing and ‘new’ sources; as acknowledged in the EU2020 vision. The European Commission has placed emphasis upon innovation as a key element in achieving transformation, in the coming decade. Findings from a recent study for the European Parliament highlight the potential role of Pillar 2 rural development pro- grammes as vehicles for enabling innovation. Key roles include supporting knowledge exchange; collaboration; and research-into-practice linkages. Effective knowledge exchange (KE is a critical element, but innovation in KE itself is often needed. Collaboration can be valuable in fostering cross-sectoral linkages, and communities of learning show innovation potential. Integration of measures in tailored packages appears to increase the scope for innovation. Equally important, there is a vital need for innovation in policy design and delivery, to enable a cost-effective transformation of agriculture and rural areas. The CAP proposals 2014-2020 make a positive contri- bution to better promote innovation through Pillar 2, but there is room for improvement. Models for policy innovation adapted from experience in commercial organisations are suggested as worthy of further research.

  5. Nanotextured pillars of electrosprayed bismuth vanadate for efficient photoelectrochemical water splitting.

    Science.gov (United States)

    Yoon, Hyun; Mali, Mukund G; Choi, Jae Young; Kim, Min-woo; Choi, Sung Kyu; Park, Hyunwoong; Al-Deyab, Salem S; Swihart, Mark T; Yarin, Alexander L; Yoon, Sam S

    2015-03-31

    We demonstrate, for the first time, electrostatically sprayed bismuth vanadate (BiVO4) thin films for photoelectrochemical water splitting. Characterization of these films by X-ray diffraction, Raman scattering, and high-resolution scanning electron microscopy analyses revealed the formation of nanotextured pillar-like structures of highly photoactive monoclinic scheelite BiVO4. Electrosprayed BiVO4 nanostructured films yielded a photocurrent density of 1.30 and 1.95 mA/cm(2) for water and sulfite oxidation, respectively, under 100 mW/cm(2) illumination. The optimal film thickness was 3 μm, with an optimal postannealing temperature of 550 °C. The enhanced photocurrent is facilitated by formation of pillar-like structures in the deposit. We show through modeling that these structures result from the electrically-driven motion of submicron particles in the direction parallel to the substrate, as they approach the substrate, along with Brownian diffusion. At the same time, opposing thermophoretic forces slow their approach to the surface. The model of these processes proposed here is in good agreement with the experimental observations.

  6. Effect of sulfuric acid concentration of bentonite and calcination time of pillared bentonite

    Science.gov (United States)

    Mara, Ady; Wijaya, Karna; Trisunaryati, Wega; Mudasir

    2016-04-01

    An activation of natural clay has been developed. Activation was applied by refluxing the natural bentonite in variation of the sulfuric acid concentration and calcination time of pillared bentonite (PLC). Calcination was applied using oven in microwave 2,45 GHz. Determination of acidity was applied by measuring the amount of adsorbed ammonia and pyridine. Morphological, functional groups and chrystanility characterizations were analyzed using SEM, TEM, FTIR and XRD. Porosity was analyzed using SSA. The results showed that the greater of the concentration of sulfuric acid and calcination time was, the greater the acidity of bentonite as well as the pore diameter were. FTIR spectra showed no fundamental changes in the structure of the natural bentonite, SEM, and TEM images were showing an increase in space or field due to pillarization while the XRD patterns showed a shift to a lower peak. Optimization was obtained at a concentration of 2 M of sulfuric acid and calcination time of 20 minutes, keggin ion of 2.2 and suspension of 10 mmol, respectively each amounted to 11.7490 mmol/gram of ammonia and 2.4437 mmol/gram of pyridine with 154.6391 m2/gram for surface area, 0.130470 m3/gram of pore volume and 3.37484 nm of pore diameter.

  7. Separations using a porous-shell pillar array column on a capillary LC instrument.

    Science.gov (United States)

    De Malsche, Wim; De Bruyne, Selm; Op De Beeck, Jeff; Eeltink, Sebastiaan; Detobel, Frederik; Gardeniers, Han; Desmet, Gert

    2012-08-01

    We investigated the achievable separation performance of a 9-cm-long and 1-mm-wide pillar array channel (volume = 0.6 μL) containing 5 μm diameter Si pillars (spacing 2.5 μm) cladded with a mesoporous silica layer with a thickness of 300 nm, when this channel is directly interfaced to a capillary LC instrument. The chip has a small footprint of only 4 cm × 4 mm and the channel consists of three lanes that are each 3 cm long and that are interconnected using low dispersion turns consisting of a narrow U-turn (10 μm), proceded and preceded by a diverging flow distributor. Measuring the band broadening within a single lane and comparing it to the total channel band broadening, the additional band broadening of the turns can be estimated to be of the order of 0.5 μm around the minimum of the van Deemter curve, and around some 1 μm (nonretained species) and 2 μm (retained species) in the C-term dominated regime. The overall performance (chip + instrument) was evaluated by conducting gradient elution separations of digests of cytochrome c and bovine serum albumin. Peak capacities up to 150 could be demonstrated, nearly completely independent of the flow rate.

  8. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode.

    Science.gov (United States)

    Zhu, Zhiqiang; Hong, Meiling; Guo, Dongsheng; Shi, Jifu; Tao, Zhanliang; Chen, Jun

    2014-11-26

    The cathode capacity of common lithium ion batteries (LIBs) using inorganic electrodes and liquid electrolytes must be further improved. Alternatively, all-solid-state lithium batteries comprising the electrode of organic compounds can offer much higher capacity. Herein, we successfully fabricated an all-solid-state lithium battery based on organic pillar[5]quinone (C35H20O10) cathode and composite polymer electrolyte (CPE). The poly(methacrylate) (PMA)/poly(ethylene glycol) (PEG)-LiClO4-3 wt % SiO2 CPE has an optimum ionic conductivity of 0.26 mS cm(-1) at room temperature. Furthermore, pillar[5]quinine cathode in all-solid-state battery rendered an average operation voltage of ∼2.6 V and a high initial capacity of 418 mAh g(-1) with a stable cyclability (94.7% capacity retention after 50 cycles at 0.2C rate) through the reversible redox reactions of enolate/quinonid carbonyl groups, showing favorable prospect for the device application with high capacity.

  9. Modeling plastic deformation of post-irradiated copper micro-pillars

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Tamer, E-mail: tcrosby@ucla.edu; Po, Giacomo, E-mail: gpo@ucla.edu; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu

    2014-12-15

    We present here an application of a fundamentally new theoretical framework for description of the simultaneous evolution of radiation damage and plasticity that can describe both in situ and ex situ deformation of structural materials [1]. The theory is based on the variational principle of maximum entropy production rate; with constraints on dislocation climb motion that are imposed by point defect fluxes as a result of irradiation. The developed theory is implemented in a new computational code that facilitates the simulation of irradiated and unirradiated materials alike in a consistent fashion [2]. Discrete Dislocation Dynamics (DDD) computer simulations are presented here for irradiated fcc metals that address the phenomenon of dislocation channel formation in post-irradiated copper. The focus of the simulations is on the role of micro-pillar boundaries and the statistics of dislocation pinning by stacking-fault tetrahedra (SFTs) on the onset of dislocation channel and incipient surface crack formation. The simulations show that the spatial heterogeneity in the distribution of SFTs naturally leads to localized plastic deformation and incipient surface fracture of micro-pillars.

  10. A missing pillar? Challenges in theorizing and practicing social sustainability: introduction to the special issue

    Directory of Open Access Journals (Sweden)

    Magnus Boström

    2012-01-01

    Full Text Available Since publication of the Brundtland Report in 1987, the notion of sustainable developmenthas come to guide the pursuit of environmental reform by both public and private organizations and to facilitate communication among actors from different societal spheres. It is customary to characterize sustainable development in a familiar typology comprising three pillars: environmental, economic, and social. The relationships among these dimensions are generally assumed to be compatible and mutually supportive. However, previous research has found that when policy makers endorse sustainable development, the social dimension garners less attention and is particularly difficult to realize and operationalize. Recent years though have seen notable efforts among standard setters, planners, and practitioners in various sectors to address the often neglected social aspects of sustainability. Likewise, during the past decade, there have been efforts to develop theoretical frameworks to define and study social sustainability and to empirically investigate it in relation to “sustainability projects,” “sustainability practice,” and “sustainability initiatives.” This introductory article presents the topic and explains some of the challenges of incorporating social sustainability into a broad framework of sustainable development. Also considered is the potential of the social sustainability concept for sustainability projects and planning. This analysis is predicated on the work represented in this special issue and on related initiatives that explicitly discuss the social pillar of sustainable development and its relationship to the other dimensions.

  11. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno

    2014-08-08

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  12. Photo-Fenton discoloration of the azo dye X-3B over pillared bentonites containing iron.

    Science.gov (United States)

    Li, Yimin; Lu, Yueqing; Zhu, Xiaoliu

    2006-05-20

    Both Fe pillared bentonite (Fe-B) and Al-Fe pillared bentonite (Al/Fe-B) were prepared and used as heterogeneous catalysts for the photo-Fenton discoloration of azo dye X-3B under UV irradiation. The catalysts were characterized by XRD, BET and TEM. The effects of solution pH, H(2)O(2) concentration, dye concentration and catalyst loading on the rate of discoloration were investigated in detail. The results indicate that the Fe-B and Al/Fe-B have high BET surface area (114.6 and 194.2 m(2)/g, respectively). Both the heterogeneous photo-Fenton processes employing the Fe-B or the Al/Fe-B as catalyst exhibit higher photo-catalytic activity compared to their corresponding homogeneous photo-Fenton process. The amount of Fe ions leached from the Al/Fe-B into the solution is much lower than that leached from the Fe-B during the reaction process.

  13. Photo-Fenton discoloration of the azo dye X-3B over pillared bentonites containing iron

    Energy Technology Data Exchange (ETDEWEB)

    Li Yimin [Department of Chemistry, Shaoxing University, Zhejiang Shaoxing 312000 (China)]. E-mail: liymj@mail.sxptt.zj.cn; Lu Yueqing [Department of Chemistry, Shaoxing University, Zhejiang Shaoxing 312000 (China); Zhu Xiaoliu [Department of Chemistry, Shaoxing University, Zhejiang Shaoxing 312000 (China)

    2006-05-20

    Both Fe pillared bentonite (Fe-B) and Al-Fe pillared bentonite (Al/Fe-B) were prepared and used as heterogeneous catalysts for the photo-Fenton discoloration of azo dye X-3B under UV irradiation. The catalysts were characterized by XRD, BET and TEM. The effects of solution pH, H{sub 2}O{sub 2} concentration, dye concentration and catalyst loading on the rate of discoloration were investigated in detail. The results indicate that the Fe-B and Al/Fe-B have high BET surface area (114.6 and 194.2 m{sup 2}/g, respectively). Both the heterogeneous photo-Fenton processes employing the Fe-B or the Al/Fe-B as catalyst exhibit higher photo-catalytic activity compared to their corresponding homogeneous photo-Fenton process. The amount of Fe ions leached from the Al/Fe-B into the solution is much lower than that leached from the Fe-B during the reaction process.

  14. Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars

    DEFF Research Database (Denmark)

    Jin, Yabin; Fernez, Nicolas; Pennec, Yan;

    2016-01-01

    We investigate the properties of a phononic crystal plate with hollow pillars and introduce the existence of whispering-gallery modes (WGMs). We show that by tuning the inner radius of the hollow pillar, these modes can merge inside both Bragg and low frequency band gaps, deserving phononic crystal...... and acoustic metamaterial applications. These modes can be used as narrow pass bands for which the quality factor can be greatly enhanced by the introduction of an additional cylinder between the hollow cylinder and the plate. We discuss some functionalities of these confined WGM in both Bragg and low...... frequency gaps for wavelength division in multiplexer devices using heteroradii pillars introduced into waveguide and cavity structures....

  15. Is it possible to win back a part of coal resources confined to the safety pillar of a pit shaft

    Energy Technology Data Exchange (ETDEWEB)

    Krzysztof Ogieglo; Mieczyslaw Lubryka; Jerzy Sliwinski; Piotr Malkowski [Stone Coal Mine ' JAS-MUS' , Jastrzcbic (Poland)

    2003-07-01

    Results of the analysis of the impact of exploitation carried out in three mines of Jastrzebie Mining Joint Stock Company, in Poland close to pillars and exploitation encroaching upon safety pillars of 4 pit shafts on deformation of and damage to pit shaft pipes have been described in this paper. For some mines a period has been analyzed even since 1965. Making use of measurements and observations gained in natural conditions and numeric simulation in a method of finite elements with the use of COSMOS/M program a thesis has been proved that in the conditions of stone coal mines with the increase of the depth of exploitation there is a possibility of partial disturbance of defined boundaries of pillars of pit shafts without damaging and deforming these pit shafts. The course of walls prolonged in this way allows additional extraction without additional expenses. 7 refs., 9 figs.

  16. Instability leading to coal bumps and nonlinear evolutionary mechanisms for a coal-pillar-and-roof system

    Energy Technology Data Exchange (ETDEWEB)

    Qin, S.Q.; Jiao, J.J.; Tang, C.A.; Li, Z.G. [Chinese Academy of Sciences, Beijing (China)

    2006-12-15

    This paper studies the unstable mechanisms of the mechanical system that is composed of the stiff hosts (roof and floor) and the coal pillar using catastrophe theory. It is assumed that the roof is an elastic beam and the coal pillar is a strain-softening medium which can be described by the Weibull's distribution theory of strength. It is found that the instability leading to coal bump depends mainly on the system's stiffness ratio k, which is defined as the ratio of the flexural stiffness of the beam to the absolute value of the stiffness at the turning point of the constitutive curve of the coal pillar, and the homogeneity index m or shape parameter of the Weibull's distribution for the coal pillar. The applicability of the cusp catastrophe is demonstrated by applying the equations to the Mentougou coal mine. A non-linear dynamical model, which is derived by considering the time-dependent property of the coal pillar, is used to study the physical prediction of coal bumps. An algorithm of inversion for determining the parameters of the nonlinear dynamical model is suggested for seeking the precursory abnormality from the observed series of roof settlement. A case study of the Muchengjian coal mine is conducted and its nonlinear dynamical model is established from the observation series using the algorithm of inversion. An important finding is that the catastrophic characteristic index D (i.e., the bifurcation set of the cusp catastrophe model) drastically increases to a high peak value and then quickly drops close to instability. From the viewpoint of damage mechanics of coal pillar, a dynamical model of acoustic emission (AE) is established for modeling the AE activities in the evolutionary process of the system. It is revealed that the values of m and the evolutionary path (D = 0 or D not equal 0) of the system have a great impact on the AE activity patterns and characters.

  17. Synthesis and characterization of TiO2-pillared Romanian clay and their application for azoic dyes photodegradation.

    Science.gov (United States)

    Dvininov, E; Popovici, E; Pode, R; Cocheci, L; Barvinschi, P; Nica, V

    2009-08-15

    The synthesis and properties of metal oxide pillared cationic clays (PILCs) has been subject to numerous studies in the last decades. In order to obtain TiO(2)-pillared type materials, sodium montmorillonite from Romania-areal of Valea Chioarului, having the following composition (% wt): SiO(2)-72.87; Al(2)O(3)-14.5; MgO-2.15; Fe(2)O(3)-1.13; Na(2)O-0.60; K(2)O-0.60; CaO-0.90; PC-5.70 and cation exchange capacity, determined by ammonium acetate method, of 82 meq/100g, as matrix, was used. Sodium form of the clay was modified, primarily, by intercalation of cetyl-trimethylammonium cations between negatively charged layers which will lead to the expansion of the interlayer space. For the preparation of the TiO(2)-pillared clay, the alkoxide molecules, as titania precursor, were adsorbed onto/into clay samples (1 mmol Ti/g clay), in hydrochloric acid environment, the resulted species being converted into TiO(2) pillars by calcination. The as-prepared materials have been used as catalysts for Congo Red dye photodegradation, under UV. The photocatalytic activity of the pillared clays is a function of TiO(2) pillars size, their increase leading to the enhancement of the contact areas between dye solution and photoactive species present in the interlayer space. The structural characteristics and properties of the obtained materials were investigated by X-ray Diffraction, Thermogravimetry Analysis, UV-vis Diffuse Reflectance, Transmission Electron Microscopy and Energy Dispersive X-ray Analysis.

  18. Preparation and photocatalytic activity of laponite pillared by CeO_2 modified TiO_2

    Institute of Scientific and Technical Information of China (English)

    林英光; 皮丕辉; 郑大锋; 杨卓如; 王炼石

    2010-01-01

    The laponite pillared by the CeO2 modified TiO2 (Ce-Ti-lap) were prepared by microwave intercalation reaction with laponite as the layered clay, tetrabutyl titanate and cerium chloride as the Ce-Ti composite pillaring agent, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brumauer-Emmett-Teller (BET) surface area. The photocatalytic activities of Ce-Ti-lap were investigated by the degradation of methyl orange (MO). The results showed that Ce and Ti could be introduced to...

  19. Field Emission of Thermally Grown Carbon Nanostructures on Silicon Carbide

    Science.gov (United States)

    2012-03-22

    thermal decomposition of silicon carbide does not utilize a catalyst, therefore relatively defect free. One drawback to this method, however is that the CNT...In this thesis, silicon carbide samples are patterned to create elevated emission sites in an attempt to minimize the field emission screening effect...Patterning is accomplished by using standard photolithography methods to implement a masking nickel layer on the silicon carbide . Pillars are created

  20. Hydro/solvo-thermal synthesis of ZnO crystallite with particular morphology

    Institute of Scientific and Technical Information of China (English)

    LI Yan; LIU Chuan-sheng

    2009-01-01

    ZnO with controllable morphologies of hexangular pillars, tubes, tablets and tube-structured needles was hydro/ solvo-thermally synthesized by simply changing solvents among H2O, H2O2, alcohol and olefin, using Zn(NO3)2-6H2O and NaOH as the starting materials. The products were characterized by X-ray diffraction, scanning electron microscopy and photoluminescence (PL) measurement. The growth mechanism of differently structured ZnO was discussed. The results reveal that the synthesized ZnO crystals possess a wurtzite structure, the solvent kind has very different influence on the morphology of ZnO, and the hexangular pillars, tablets, short pillars and needles of ZnO are easily obtained in solvent of H2O, C2H5OH+H2O, wet olefin, and H2O2.

  1. Develop guidelines for the design of pillar systems for shallow and intermediate depth, tabular, hard rock mines and provide a methodology for assessing hangingwall stability and support requirements for the panels between pillars

    CSIR Research Space (South Africa)

    York, G

    1998-12-01

    Full Text Available : the panel span, the pillar and the foundation. Design charts have been produced that allow assessment of stability for a particular set of geotechnical and geometric inputs, for each component. Design flowcharts have been produced to show the simple...

  2. Porous Carbon Fibers Containing Pores with Sizes Controlled at the Ångstrom Level by the Cavity Size of Pillar[6]arene.

    Science.gov (United States)

    Ogoshi, Tomoki; Yoshikoshi, Kumiko; Sueto, Ryuta; Nishihara, Hirotomo; Yamagishi, Tada-Aki

    2015-05-26

    We report a new synthesis method of fibrous carbon material with pores sizes that are precisely controlled at the Ångstrom level, by carbonization of two dimensional (2D) porous sheets of pillar[6]arenes. The 2D porous sheets were prepared by 2D supramolecular polymerization induced by oxidation of hydroquinone units of pillar[6]arenes. Owing to the hexagonal structure of pillar[6]arene, the assembly induced by 2D supramolecular polymerization gave hexagonal 2D porous sheets, and the highly ordered structure of the 2D porous sheets formed regular fibrous structures. Then, carbonization of the 2D porous sheets afforded fibrous carbon materials with micropores. The micropore size of the fibrous porous carbon prepared from pillar[6]arene was the same size as that of the starting material pillar[6]arene assembly.

  3. PREPARATION AND CATALYTIC ACTIVITY FOR ISOPROPYL BENZENE CRACKING OF Co, Mo AND Co/Mo-Al2O3-PILLARED MONTMORILLONITE CATALYSTS

    Directory of Open Access Journals (Sweden)

    Hasanudin Hasanudin

    2010-06-01

    Full Text Available It has been prepared Co, Mo and Co/Mo-Al2O3-pillared montmorillonite catalysts using montmorillonite clay  as raw material. The structure and porosity of the catalysts were determined using N2 adsorption-desorption and FT-IR spectroscopy analysis methods. Isopropyl benzene cracking using these catalysts were used to test the catalytic activity and performance of Co, Mo and Co/Mo-Al2O3-pillared montmorillonites.  Characterization results showed that pillarization resulted in the increase of the total pore volume and specific surface area of the clay. Meanwhile, transition metals (Co, Mo and Co/Mo loaded on Al2O3-pillared monmorillonites could increase the catalytic activity of the catalysts for isopropyl benzene cracking significantly.   Keywords: pillared monmorillonite, isopropyl benzene  and cracking catalyst

  4. The Application of Functionalized Pillared Porous Phosphate Heterostructures for the Removal of Textile Dyes from Wastewater

    Directory of Open Access Journals (Sweden)

    José Jiménez-Jiménez

    2017-09-01

    Full Text Available A synthesized functionalized pillared porous phosphate heterostructure (PPH, surface functionalized phenyl group, has been used to remove the dye Acid Blue 113 from wastewater. X-ray photoemission spectroscopy XPS and X-ray diffraction (XRD were used to study its structure. The specific surface area of this was 498 m2/g. The adsorption capacities of PPH and phenyl surface functionalized (Φ-PPH were 0.0400 and 0.0967 mmol/g, respectively, with a dye concentration of 10−5 M when well fitted with SIPS and Langmuir isotherms respectively (pH 6.5, 25 °C. The incorporation of the dye to the adsorbent material was monitored by the S content of the dye. It is suggested as an alternative for Acid Blue 113 remediation.

  5. Investigation of activated Al-pillared clay efficiency in vegetable oil purification

    Directory of Open Access Journals (Sweden)

    Lomić Gizela A.

    2004-01-01

    Full Text Available This paper represents a contribution to the applicability of natural clays and their derivates as adsorbents in the process of purification of vegetable oil. Investigation of textural properties of raw and purified clay samples reveals that during acid activation and Al-pillaring, BET and micropore surface area increases significantly. However, bleaching capacity of clay and its derivates is not determined by using sample surface area, but rather sample total pore volume. Surface area, especially micropore surface area contributes to removal of smaller molecules. This was confirmed by successful elimination of moisture and volatile materials by samples with an appropriate micropore structure. Used samples of clay and its derivates do not significantly influence acid and peroxide values of raw sunflower oil during its treatment.

  6. Study of structural changes in pillared clays; Estudo das alteracoes estruturais em argilas pilarizadas

    Energy Technology Data Exchange (ETDEWEB)

    Reis Junior, Aluisio Sousa; Ardisson, Jose Domingos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)

    2002-07-01

    X-ray diffraction and Moessbauer spectroscopy were used to study the structural changes due the Al-poli-hydroxide interactions with the montmorillonite surface. Pillared Intercalated Clays obtained from Fe and Cu-rich montmorillonites were studied. The results show that the basal spacing for samples obtained from Cu-rich montmorillonite (13.6 A) is lower than that observed for samples obtained from Fe-rich montmorillonite (16.2 Angstrom). This difference is supposed be due the occupation by Cu{sup 2+} ions of the hexagonal cavity on the clay surface. These copper ions induce reactions between the oligomers and clay surface causing changes on the layer structure. (author)

  7. Reliability level III method in design of square pillar resting on weak floor stratum

    Energy Technology Data Exchange (ETDEWEB)

    Pytel, W.M. (Southern Illinois University, Carbondale, IL (USA). Dept. of Mining Engineering)

    1990-06-01

    Current methods of design of pillars resting on weak floor strata involve only a deterministic, conventional safety factor calculation, based on material parameters treated as the mean values taken from observations. In a case where high parameters variability occurs, these methods may lead to fatal design errors resulting in excessive settlement and roof falls. Therefore, to include the influence of parameters quality, the new approach based on reliability level III method was developed. Consideration was given to the identification of the system parameters importance, and to density function for the safety factor treated as a random variable. Design procedure involving floor probability of failure was illustrated by numerical examples. 17 refs., 8 figs., 1 tab.

  8. Overlying strata movement of recovering standing pillars with solid backfilling by physical simulation

    Institute of Scientific and Technical Information of China (English)

    An Baifu; Miao Xiexing; Zhang Jixiong; Ju Feng; Zhou Nan

    2016-01-01

    To analyze the overlying strata movement law of recovering room mining standing pillars with solid backfilling. Physical simulation experiments with sponge and wood as the backfilling simulation material were tested. The results show that: (i) The covering-rock mechanics of the overly strata comes from‘two-arch structures+hinged girder+bend beam”to‘backfilling material+hinged girder+bent beam”by increasing the fill ratio from 0%to 85%, the beginning of overlying strata movement appears later and the total duration of subsidence velocity increased from zero to the highest value increases. The trend of‘single polarization” of the subsidence velocity curves becomes noticeable and the velocity variation trend becomes stable. (ii) The equiponderate aeolian sand was added to improve the anti-pressure ability of the loess, and the corresponding ground processing&transportation system was designed.

  9. Treatment of a Patient with Glossopharyngeal Neuralgia by the Anterior Tonsillar Pillar Method

    Directory of Open Access Journals (Sweden)

    Cemil Ahmet Isbir

    2011-01-01

    Full Text Available We describe the case of a 65-year-old patient with glossopharyngeal neuralgia. Pain was triggered by swallowing, yawning, or cold food. We used the anterior tonsillar pillar method for the injection of drugs; a relatively new glossopharyngeal nerve (GPN block which was described by Benumof (Anesthesiology 1991;75:1094–1096. Performing this GPN block, daily levobupivacaine (Chirocaine® 5 mg/ml and oral amitriptyline (Laroxyl® 10 mg were given, as well as methylprednisolone acetate injectable suspension (Depo-Medrol® 40 mg/ml once only at the beginning of the treatment. A 0–10 point visual analogue scale was used daily to evaluate the pain. Pain was successfully controlled with a steroid added to the GPN block and orally administered tricyclic antidepressant. We think that this treatment is effective for glossopharyngeal neuropathy and could be of interest to pain management physicians.

  10. Operation Pillar of Defence and the 2013 Israeli Elections: Defensive or Provocative Intervention?

    Directory of Open Access Journals (Sweden)

    Philippe Orenes

    2014-06-01

    Full Text Available 'Based on the research on the psychological and political effects of terrorism, this paper focuses on the possible use of provocative counter-terrorism operations in order to influence the outcome of elections. Exploring the case of the Israeli Operation Pillar of Defence, that occurred from 14 November, 2012 to 21 November, the study resorts to qualitative and quantitative methods in a semi-flexible design with a view to exploring whether this operation, and the major escalation it took part in, was necessary and proportionate. The findings are that, in light of the broader context and Israeli experience with counter-terrorism responses, the political exploitation of the psychological effects of this crisis may have been a major motive in the decision to launch this operation.' ' '

  11. THE IMPACT OF ICT SECTOR ON THE SOCIAL PILLAR OF SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    TEODORESCU ANA-MARIA

    2016-06-01

    Full Text Available The human being is the main axis in setting sustainable development goals. Sustainable development, through its components - economic and environmental, has only one beneficiary - the human factor who benefits of income, education, good quality environmental factors, and enjoy inter and intra-generational equity. Information technology and communications contributes to fulffiling the goals of sustainable development through access to information society services (e-health, e-government, e-learning, access to education. This article presents the sustainable development objectives and the impact of ICT sector on the social pillar of sustainable development. I used a theoretical research and qualitative analysis of the data. I presented values indicators at the european level, the lowest and highest value, and recorded values for Romania.

  12. Supramolecular Drug Delivery Systems Based on Water-Soluble Pillar[n]arenes.

    Science.gov (United States)

    Wu, Xuan; Gao, Lei; Hu, Xiao-Yu; Wang, Leyong

    2016-06-01

    Supramolecular drug delivery systems (SDDSs), including various kinds of nanostructures that are assembled by reversible noncovalent interactions, have attracted considerable attention as ideal drug carriers owing to their fascinating ability to undergo dynamic switching of structure, morphology, and function in response to various external stimuli, which provides a flexible and robust platform for designing and developing functional and smart supramolecular nano-drug carriers. Pillar[n]arenes represent a new generation of macrocyclic hosts, which have unique structures and excellent properties in host-guest chemistry. This account describes recent progress in our group to develop pillararene-based stimuli-responsive supramolecular nanostructures constructed by reversible host-guest interactions for controllable anticancer drug delivery. The potential applications of these supramolecular drug carriers in cancer treatment and the fundamental questions facing SDDSs are also discussed.

  13. Molecular simulation of the adsorption of linear alkane mixtures in pillared layered materials

    Institute of Scientific and Technical Information of China (English)

    LI Wen-zhuo; CHE Yu-liang; LIU Zi-yang; ZHANG Dan

    2007-01-01

    The adsorption isotherms of mixtures of linear alkanes, involving n-pentane, n-hexane, and n-heptane in pillared layered materials (PLMs) with three different porosities ψ=0.98, 0.94 and 0.87, and three pore widths H=1.02, 1.70 and 2.38 nm attemperature T=300 K were simulated by using configurational-bias Monte Carlo (CBMC) techniques in grand canonical ensemble. A grid model was employed to calculate the interaction between a fluid molecule and two layered boards here. For alkane mixtures, the n-heptane, the longest chain component in alkane mixtures, is preferentially adsorbed at low pressures, with its adsorption increasing and then decreasing as the pressure increases continuously while the n-pentane, the shortest chain component in alkane mixtures, is still adsorbed at high pressures; the adsorption of the longest chain component of alkane mixtures increases as the pore width and the porosity of PLMs increase.

  14. Ultra-wide acoustic band gaps in pillar-based phononic crystal strips

    Energy Technology Data Exchange (ETDEWEB)

    Coffy, Etienne, E-mail: etienne.coffy@femto-st.fr; Lavergne, Thomas; Addouche, Mahmoud; Euphrasie, Sébastien; Vairac, Pascal; Khelif, Abdelkrim [FEMTO-ST Institute, Université de Franche-Comté, UBFC, CNRS, ENSMM, UTBM, 15B Av. des Montboucons, F-25030 Besançon (France)

    2015-12-07

    An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distribution within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.

  15. Monolithic ZnTe-based pillar microcavities containing CdTe quantum dots

    Science.gov (United States)

    Kruse, Carsten; Pacuski, Wojciech; Jakubczyk, Tomasz; Kobak, Jakub; Gaj, Jan A.; Frank, Kristian; Schowalter, Marco; Rosenauer, Andreas; Florian, Matthias; Jahnke, Frank; Hommel, Detlef

    2011-07-01

    Micropillars of different diameters have been prepared by focused ion beam milling out of a planar ZnTe-based cavity. The monolithic epitaxial structure, deposited on a GaAs substrate, contains CdTe quantum dots embedded in a ZnTe λ-cavity delimited by two distributed Bragg reflectors (DBRs). The high refractive index material of the DBR structure is ZnTe, while for the low index material a short-period triple MgTe/ZnTe/MgSe superlattice is used. The CdTe quantum dots are formed by a novel Zn-induced formation process and are investigated by scanning transmission electron microscopy. Micro-photoluminescence measurements show discrete optical modes for the pillars, in good agreement with calculations based on a vectorial transfer matrix method. The measured quality factor reaches a value of 3100.

  16. Monolithic ZnTe-based pillar microcavities containing CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, Carsten; Pacuski, Wojciech; Hommel, Detlef [Institute of Solid State Physics, Semiconductor Epitaxy, University of Bremen, PO Box 330 440, D-28334 Bremen (Germany); Jakubczyk, Tomasz; Kobak, Jakub; Gaj, Jan A [Institute of Experimental Physics, University of Warsaw, Hoza 69, PL-00-681 Warszawa (Poland); Frank, Kristian; Schowalter, Marco; Rosenauer, Andreas [Institute of Solid State Physics, Electron Microscopy, University of Bremen, PO Box 330 440, D-28334 Bremen (Germany); Florian, Matthias; Jahnke, Frank, E-mail: ckruse@ifp.uni-bremen.de [Institute of Theoretical Physics, University of Bremen, PO Box 330 440, D-28334 Bremen (Germany)

    2011-07-15

    Micropillars of different diameters have been prepared by focused ion beam milling out of a planar ZnTe-based cavity. The monolithic epitaxial structure, deposited on a GaAs substrate, contains CdTe quantum dots embedded in a ZnTe {lambda}-cavity delimited by two distributed Bragg reflectors (DBRs). The high refractive index material of the DBR structure is ZnTe, while for the low index material a short-period triple MgTe/ZnTe/MgSe superlattice is used. The CdTe quantum dots are formed by a novel Zn-induced formation process and are investigated by scanning transmission electron microscopy. Micro-photoluminescence measurements show discrete optical modes for the pillars, in good agreement with calculations based on a vectorial transfer matrix method. The measured quality factor reaches a value of 3100.

  17. Adsorption of probe molecules in pillared interlayered clays: Experiment and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, A., E-mail: a.gallardo@iqfr.csic.es; Guil, J. M.; Lomba, E.; Almarza, N. G.; Khatib, S. J. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid (Spain); Cabrillo, C.; Sanz, A. [Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain); Pires, J. [Centro de Química e Bioquímica da Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal)

    2014-06-14

    In this paper we investigate the adsorption of various probe molecules in order to characterize the porous structure of a series of pillared interlayered clays (PILC). To that aim, volumetric and microcalorimetric adsorption experiments were performed on various Zr PILC samples using nitrogen, toluene, and mesitylene as probe molecules. For one of the samples, neutron scattering experiments were also performed using toluene as adsorbate. Various structural models are proposed and tested by means of a comprehensive computer simulation study, using both geometric and percolation analysis in combination with Grand Canonical Monte Carlo simulations in order to model the volumetric and microcalorimetric isotherms. On the basis of this analysis, we propose a series of structural models that aim at accounting for the adsorption experimental behavior, and make possible a microscopic interpretation of the role played by the different interactions and steric effects in the adsorption processes in these rather complex disordered microporous systems.

  18. Tubular Structures Self-Assembled from a Bola-Amphiphilic Pillar[5]arene in Water and Applied as a Microreactor.

    Science.gov (United States)

    Chen, Rener; Jiang, Huajiang; Gu, Haining; Zhou, Qizhong; Zhang, Zhen; Wu, Jiashou; Jin, Zhengneng

    2015-09-04

    Various nanomorphologies were obtained by simply changing the fabrication conditions, such as the pH of the system, different solvent, or different concentration, of bola-amphiphilic pillar[5]arene Bola-AP5. Importantly, hybrid microtubules as a microreactor were successfully prepared by directly reducing AuCl4(-) on the surface of Bola-AP5-based tubular structures in water.

  19. Decision-making Void of Democratic Qualities? An Evaluation of the EU’s Second Pillar Decision-making Procedure

    Directory of Open Access Journals (Sweden)

    Anne Elizabeth Stie

    2010-08-01

    Full Text Available The EU’s foreign and security policy is often criticised for being undemocratic. In this article, this contention is addressed from the perspective of deliberative democracy. The focus is on the procedural qualities of the second pillar decision-making processes as it is not only the quality of the outcomes that determine the democratic legitimacy of policy-making, but also the way that decisions have come about. Against five criteria, the EU’s second pillar procedure is assessed for its putative lack of democratic qualities. The analysis shows that not only does the second pillar lack parliamentary input, but the procedural set-up also violates basic democratic principles. There is no democratic deliberative forum to which citizens have access and where decision-makers must justify their positions. There is a serious absence of democratically elected participants to counter the vast number of bureaucrats, and the level of secrecy through which decisions are made is almost absolute. Furthermore, there is no separation of powers due to the fact that the same working groups prepare the second pillar items for both the Council and European Council, allowing the two bodies to lead an almost symbiotic coexistence. This impermeable unity controls agenda-setting, policy-formulation and execution, and hence also escapes both parliamentary and judicial scrutiny.

  20. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    Science.gov (United States)

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  1. Instability criterion for the system composed of elastic beam and strain-softening pillar based on gradient-dependent plasticity

    Institute of Scientific and Technical Information of China (English)

    Xuebin Wang

    2005-01-01

    A mechanical model is proposed for the system of elastic beam and strain-softening pillar where strain localization is initiated at peak shear stress. To obtain the plastic deformation of the pillar due to the shear slips of multiple shear bands, the pillar is divided into several narrow slices where compressive deformation is treated as uniformity. In the light of the compatibility condition of deformation, the total compressive displacement of the pillar is equal to the displacement of the beam in the middle span. An insta bility criterion is derived analytically based on the energy principle using a known size of localization band according to gradientdependent plasticity. The main advantage of the present model is that the effects of the constitutive parameters of rock and the geometrical size of structure are reflected in the criterion. The condition that the derivative of distributed load with respect to the deflection of the beam in the middle span is less than zero is not only equivalent to, but also even more concise in form than the instability criterion. To study the influences of constitutive parameters and geometrical size on stability, some examples are presented.

  2. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    Science.gov (United States)

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  3. Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence.

    Science.gov (United States)

    Cheng, Beijun; Kaifer, Angel E

    2015-08-12

    The cathodic voltammetric behavior of pillar[5]quinone was investigated in dichloromethane solution. Our data show that the symmetry of the macrocycle has a pronounced effect on the electron uptake sequence. The uptake of the first five electrons follows a 2-1-2 pattern, and only a total of eight electrons could be injected into the macrocycle under our experimental conditions.

  4. Effect of the presence of an ordered micro-pillar array on the formation of silica monoliths

    NARCIS (Netherlands)

    Detobel, Frederik; Eghbali, Hamed; De Bruyne, Selm; Terryn, Herman; Gardeniers, Han; Desmet, Gert

    2009-01-01

    We report on the synthesis of siloxane-based monoliths in the presence of a two-dimensional, perfectly ordered array of micro-pillars. Both methyltrimethoxysilane- and tetramethoxysilane-based monoliths were considered. The obtained structures were analyzed using scanning-electron microscopy and can

  5. Study and trial on exploitation of retaining safety coal pillar against sand under medium-thickness aquifer layer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Wang, C.; Yan, C. [Anhui University of Science and Technology, Huainan (China). Dept. of Resources Exploration and Management Engineering

    2002-08-01

    The main target coal seam of Baishan Mine is directly covered with a 22-27 m thick gravel aquifer, which seriously threatens the safety of the mine. To demonstrate the safety and reliability of the coal pillar, tests of the hydrogeological conditions of the mining area, rock mechanics, the water-rocks physical properties and the height of the 'two-belt' were conducted. The results show that the gravel layer has relatively higher volume of cementing clay materials but weaker ability of vertical permeation. The safety coal pillar that is retained under sand-bodies belongs to the loose or very loose rock type. The content of clay minerals in the weathered zone is relatively high, resulting in strong regenerating waterproofing due to volume dilation after water absorption, which has the double functions of waterproofing and restraining the propagation of fractures under mining impact conditions. The research shows a breakthrough in technology: that a 50 m coal pillar against sand has been reduced to a 12-20 m safety coal pillar. An extra 6.0 Mt of coal was safely extracted. 2 refs., 1 fig., 4 tabs.

  6. Restructuring of silica-pillared clay (SPC) through posthydrothermal treatment and application as phosphotungstic acid supports for cyclohexene oxidation.

    Science.gov (United States)

    Mao, Huihui; Zhu, Kongnan; Lu, Xinhao; Zhang, Guangcheng; Yao, Chao; Kong, Yong; Liu, Jia

    2015-05-15

    A facile posthydrothermal treated process has been successfully established for restructuring of silica-pillared clay. This approach involves the hydrothermal treated process utilizing octadecylamine as structural agency followed by calcination at high temperatures. The formation of expanded interlayered mesopores is a result of treatment with octadecylamine hydrothermal conditions. The following calcination at higher temperatures gives silica-pillared clay larger pore volume and conserved high surface area. The kind of pore expansion process has been confirmed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption isotherms and transmission electron microscopy (TEM). The pore expansion mechanism of silica-pillared clay is proposed. The pore expanded silica-pillared clay has been used as the catalytic supports for H3PW12O40 loading as high as 26.9%, 35.8% and 48.2% for oxidation reaction of cyclohexene using H2O2 as oxidant. The stable charge force between H3PW12O40 and negative charged clay layers, together with big and open porous structure, large pore volume, and high loading of H3PW12O40 contributes to the efficiency conversion, high selectivity toward cyclohexene epoxide and brilliant reusability. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A family of porous lonsdaleite-e networks obtained through pillaring of decorated kagomé lattice sheets

    KAUST Repository

    Schoedel, Alexander

    2013-09-25

    A new and versatile class of metal-organic materials (MOMs) with augmented lonsdaleite-e (lon-e-a) topology is presented herein. This family of lon-e nets are built by pillaring of hexagonal two-dimensional kagomé (kag) lattices constructed from well-known [Zn2(CO2R)4] paddlewheel molecular building blocks (MBBs) connected by 1,3- benzenedicarboxylate (bdc2-) linkers. The pillars are [Cr 3(μ3-O)(RCO2)]6 trigonal prismatic primary MBBs decorated by six pyridyl moieties (tp-PMBB-1). The three-fold symmetry (D3h) of tp-PMBB-1 is complementary with the alternating orientation of the axial sites of the paddlewheel MBBs and enables triple cross-linking of the kag layers by each pillar. These MOMs represent the first examples of axial-to-axial pillared undulating kag layers, and they are readily fine-tuned because the bdc2- moieties can be varied at their 5-position without changing the overall structure. This lon-e platform possesses functionalized hexagonal channels since the kag lattices are necessarily eclipsed. The effects of the substituent at the 5-positions of the bdc 2- linkers upon gas adsorption, particularly the heats of adsorption of carbon dioxide and methane, were studied. © 2013 American Chemical Society.

  8. PILLARED CLAYS AS SUPERIOR CATALYSTS FOR SELECTIVE CATALYTIC REDUCTION OF NITRIC OXIDE

    Energy Technology Data Exchange (ETDEWEB)

    R.Q. Long; N. Tharappiwattananon; W.B. Li; R.T. Yang

    2000-09-01

    Removal of NO{sub x} (NO + NO{sub 2}) from exhaust gases is a challenging subject. V{sub 2}O{sub 5}-based catalysts are commercial catalysts for selective catalytic reduction (SCR) with NH{sub 3} for stationary sources. However, for diesel and lean-burn gasoline engines in vehicles, hydrocarbons would be the preferred reducing agents over NH{sub 3} because of the practical problems associated with the use of NH{sub 3} (i.e., handling and slippage through the reactor). The noble-metal three-way catalysts are not effective under these conditions. The first catalyst found to be active for selective catalytic reduction of NO by hydrocarbons in the presence of excess oxygen was copper exchanged ZSM-5 and other zeolites, reported in 1990 by Iwamoto in Japan and Held et al. in Germany. Although Cu-ZSM-5 is very active and the most intensively studied catalyst, it suffers from severe deactivation in engine tests, mainly due to H{sub 2}O and SO{sub 2}. In this project, we found that ion-exchanged pillared clays and MCM-41 catalysts showed superior SCR activities of NO with hydrocarbon. All Cu{sup 2+}-exchanged pillared clays showed higher SCR activities than Cu-ZSM-5 reported in the literature. In particular, H{sub 2}O and SO{sub 2} only slightly deactivated the SCR activity of Cu-TiO{sub 2}-PILC, whereas severe deactivation was observed for Cu-ZSM-5. Moreover, Pt/MCM-41 provided the highest specific NO reduction rates as compared with other Pt doped catalysts, i.e., Pt/Al{sub 2}O{sub 3}, Pt/SiO{sub 2} and Pt/ZSM-5. The Pt/MCM-41 catalyst also showed a good stability in the presence of H{sub 2}O and SO{sub 2}.

  9. Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions.

    Science.gov (United States)

    Karamanis, D; Assimakopoulos, P A

    2007-05-01

    Aluminum-pillared-layered montmorillonites (PILMs) were tested for their potential application in the removal of copper or cesium from aqueous solutions. By varying the initial conditions, several PILMs were prepared and characterized by means of X-ray fluorescence (XRF), proton induced gamma-ray emission (PIGE), X-ray diffraction (XRD) and sorption isotherms. Uptake of metals was studied by means of XRF spectrometry for copper sorption or gamma-ray spectrometry for cesium, using 137Cs as radiotracer. The sorption kinetics and capacity of PILMs were determined in relation to the effects of factors such as the initial metal concentration, initial pH of the solution and the presence of competitive cations. Kinetic studies showed that an equilibrium time of few minutes was needed for the adsorption of metal ions on PILMs. A pseudo-first-order equation was used to describe the sorption process for either copper or cesium. The most effective pH range for the removal of copper and cesium was found to be 4.0-6.0 and 3.0-8.0, respectively. Cesium sorption isotherms were best represented by a two-site Langmuir model while copper isotherms followed the Freundlich or the two-site Langmuir model. Cesium sorption experiments with inorganic or organic competitive cations as blocking agents revealed that the high selective sites of PILMs for cesium sorption (1-2% of total) are surface and edge sites in addition to interlayer exchange sites. In copper sorption, the two sites were determined as interlayer sites of PILMs after restoring their cation exchange capacity and sites associated with the pillar oxides.

  10. Determination of concrete cover thickness in a reinforced concrete pillar by observation of the scattered electromagnetic field

    Science.gov (United States)

    Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Mangini, Fabio; Pajewski, Lara

    2017-04-01

    The electromagnetic scattered field by a reinforced concrete structure is calculated by means of frequency-domain numerical simulations and by making use of the scattered-field formulation. The concrete pillar, used as supporting architectural element, is modelled as a parallelepiped shell made of concrete material inside which are present steel bars. In order to make the model simpler, the steel bars are supposed running parallel to the air-pillar interface. To excite the model, a linearly-polarized plane wave impinging normally with respect to the pillars surface, is adopted. We consider two different polarizations in order to determine the most useful in terms of scattered-field sensitivity. Moreover, a preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the pillar cross-section, the steel bars cross-section and the concrete cover. All the three components of the scattered field are monitored along a line just above the interface air-pillar. The electromagnetic properties of the materials employed in this study are present in the literature and, since a frequency-domain technique is adopted, no further approximation is needed. The results obtained for different values of the concrete cover are compared, with the goal of determining the scattered field dependence on the concrete cover thickness. Considering different concrete cover thicknesses, we want to provide an electromagnetic method to obtain this useful parameter by observation of the scattered electromagnetic field. One of the practical applications of this study in the field of Civil Engineering may be the use of ground penetrating radar (GPR) techniques to monitor the thickness of the concrete that separates the metal bars embedded in the pillar from the outer surface. A correct distance is useful because the concrete cover serves as a protection against external agents avoiding corrosion of the bars that might prejudice the reinforced

  11. A physical and numerical modelling investigation of the roadway stability in longwall mining, with and without narrow pillar protection

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, H.; Fowell, R.J. [Suleyman Demirel University, Isparta (Turkey)

    2004-03-01

    The drivage of the supply gate of a development panel in the presumed low stress zone adjacent to the loader gate of an excavated panel with a very small width of intervening pillar between the two entries, known as skin-to-skin working, resulted in an extensive fall of the supply gate roof at Bilsthorpe colliery in 1993. This fall left a question over the application of skin-to-skin drivage of gate entries supported primarily by rock bolts. To investigate the possible reasons behind this fall, both physical and numerical modelling studies were carried out. Physical and numerical models were successful in demonstrating the potential danger of the working method with the rock bolt support system employed. Development of a shear failure plane from the rib edge into roof strata of the loader gate and development of the second shear failure plane at the abutment side of the supply gate exposed the supply gate to the fall of large rock blocks released by shear failure zones. Models demonstrated that the fall of the supply gate roof was not due to the inability of the rock bolts to prevent bed separation, but it was the method of working that made the bolts ineffective due to the height of the block delineated by the shear failure planes. Further physical and numerical models were undertaken to investigate the influence of 5, 7.5 and 10 in wide intervening pillars between the entries on the stability of the rock bolt supported supply gate roof. These studies showed that a 7.5 in or 10 in wide pillar would have prevented development of failure zones and fall of the roof while a 5 in pillar was found to be an undersized pillar width causing the development of extensive failure zones in the roof.

  12. CD44 is a marker for the outer pillar cells in the early postnatal mouse inner ear.

    Science.gov (United States)

    Hertzano, Ronna; Puligilla, Chandrakala; Chan, Siaw-Lin; Timothy, Caroline; Depireux, Didier A; Ahmed, Zubair; Wolf, Jeffrey; Eisenman, David J; Friedman, Thomas B; Riazuddin, Sheikh; Kelley, Matthew W; Strome, Scott E

    2010-09-01

    Cluster of differentiation antigens (CD proteins) are classically used as immune cell markers. However, their expression within the inner ear is still largely undefined. In this study, we explored the possibility that specific CD proteins might be useful for defining inner ear cell populations. mRNA expression profiling of microdissected auditory and vestibular sensory epithelia revealed 107 CD genes as expressed in the early postnatal mouse inner ear. The expression of 68 CD genes was validated with real-time RT-PCR using RNA extracted from microdissected sensory epithelia of cochleae, utricles, saccules, and cristae of newborn mice. Specifically, CD44 was identified as preferentially expressed in the auditory sensory epithelium. Immunohistochemistry revealed that within the early postnatal organ of Corti, the expression of CD44 is restricted to outer pillar cells. In order to confirm and expand this finding, we characterized the expression of CD44 in two different strains of mice with loss- and gain-of-function mutations in Fgfr3 which encodes a receptor for FGF8 that is essential for pillar cell development. We found that the expression of CD44 is abolished from the immature pillar cells in homozygous Fgfr3 knockout mice. In contrast, both the outer pillar cells and the aberrant Deiters' cells in the Fgfr3 ( P244R/ ) (+) mice express CD44. The deafness phenotype segregating in DFNB51 families maps to a linkage interval that includes CD44. To study the potential role of CD44 in hearing, we characterized the auditory system of CD44 knockout mice and sequenced the entire open reading frame of CD44 of affected members of DFNB51 families. Our results suggest that CD44 does not underlie the deafness phenotype of the DFNB51 families. Finally, our study reveals multiple potential new cell type-specific markers in the mouse inner ear and identifies a new marker for outer pillar cells.

  13. 无机柱撑粘土的结构研究%The study of structure of inorganic pillared clays

    Institute of Scientific and Technical Information of China (English)

    王琪莹; 刘自力; 赵朝晖

    2011-01-01

    以聚合羟基金属离子为客体物质,在蒙脱土的层间进行插层柱撑,制备出具有层柱结构的柱撑粘土TiPILCs、Al-PILCs、Zr-PILCs,用比表面和孔径分布、吸附脱附等温线、XRD对柱撑粘土的孔结构进行了研究.聚合羟基金属离子可进入钠基土层间进行有效的柱撑,形成的柱撑粘土其比表面和孔径大幅增加.聚合羟基钛离子的插层柱撑过程导致粘土c-轴向层结构改变,引起径向孔径的增加,形成了新的层柱状中孔结构.XRD显示Ti—PILC上的TiO2以锐钛矿柱子的形式存在于层间.%Pillared clays Ti-PILCs, Al-PILCs and Zr-PILCs were synthesized from Na-Mt. The BET surface area, N2 adsorption/desorption isotherms, pore size distribution and XRD of pillared clays were studied. The BET surface area and pore size of clays were largely increased and new pillared layered mesoporous stucture are formed after the pillaring course. XRD showed that the TiO2 pillars existing in the layer of clays were anatase.

  14. Combination of POMs and deliberately designed macrocations: a rational approach for synthesis of POM-pillared metal-organic framework.

    Science.gov (United States)

    Lan, Ya-Qian; Li, Shun-Li; Shao, Kui-Zhan; Wang, Xin-Long; Hao, Xiang-Rong; Su, Zhong-Min

    2009-02-14

    Two POM-pillared 3D porous compounds, [Cu(I)Cu(II)(Cu(II)fcz)(2)(H(2)O)(5)(PMo(VI)(10)Mo(V)(2)O(40))].6H(2)O () and [Cu(I)(2)(Cu(II)fcz)(2)(H(2)O)(2)(PMo(VI)(8)V(V)(3)V(IV)(3)O(42))].6H(2)O () (Hfcz = fluconazole, (1-(2,4-difluorophenyl)-1,1-bis[(1H-1,2,4-triazol-1-yl)methyl]benzyl alcohol) have been constructed based on different polyanions, (Cufcz)(2)(2+) macrocations and copper cations by the hydrothermal method. The (Cufcz)(2)(2+) macrocations link Cu cations to generate a 2D wavelike cationic sheet. Then the POM anions act as pillars to the cationic sheet to form different POM-pillared 3D frameworks. In compound 2 , the polyanion exhibits a rare coordination mode and acts as a penta-dentate ligand, which acts as to pillars to the cationic sheet to form an unprecedented 3D (3,4,5,6)-connected open framework with (3.6.7)(3(2).6.7(3))(3(3).4.6(2).7(3).8)(3(4).4(2).6(2).7(6).8)(3(2).6(2).7(6).8(4).10) topology. In compound , polyanions covalently link cationic sheets to extend to an unusual 3D (3,4,6)-connected framework with the (5(2).6)(5(2).6(2).7.9)(5(4).6(4).7(4).9(3)) topology. To the best of our knowledge, it is the first time that POM-pillared 3D metal-organic frameworks have been realized by combining POMs with deliberately designed macrocations and transition-metal ions, using a rational approach for synthesis of POM-based open metal-organic frameworks. In addition, the electrochemical behaviors of compounds 1 and 2 have been investigated.

  15. A continuous flow micro filtration device for plasma/blood separation using submicron vertical pillar gap structures

    Science.gov (United States)

    Kang, Tae Goo; Yoon, Yong-Jin; Ji, Hongmiao; Lim, Pei Yi; Chen, Yu

    2014-08-01

    This work demonstrates a continuous flow plasma/blood separator using a vertical submicron pillar gap structure. The working principle of the proposed separator is based on size exclusion of cells through cross-flow filtration, in which only plasma is allowed to pass through submicron vertical pillars located tangential to the main flow path of the blood sample. The maximum filtration efficiency of 99.9% was recorded with a plasma collection rate of 0.67 µl min-1 for an input blood flow rate of 12.5 µl min-1. The hemolysis phenomenon was observed for an input blood flow rate above 30 µl min-1. Based on the experimental results, we can conclude that the proposed device shows potential for the application of on-chip plasma/blood separation as a part of integrated point-of-care (POC) diagnostics systems.

  16. An empirical-analytical evaluation of the stability of ore blocks and the pillars of mining works

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, O.V.; Shamanskii, G.P.

    1981-01-01

    In order to evaluate the stability of ore blocks and pillars, the velocity of the shift of the ore block contour in the center of the span, v /SUB n/, and the upper point of the axis of symmetry, V /SUB u/, are employed. In particular, the ore block is more stable with of minimum delta V=V /SUB n/ -V /SUB u/. These velocities are found from a plane problem, for which basic equations of a plastic flow theory are found. For halite-sylvinite rock, finite values for V /SUB n/ and V /SUB u/ are derived that are expressed via tabulated or graphic interpretive functions that are determined by the depth of the mine, the width of the chamber and the pillars and their height.

  17. Barrier Vibration Isolation to Work-Place Vibration and Its Influence on Uneven Subsidence of Pillar Foundation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Aiming at practice, the wave propagation in soil has been comprehensively studied on the basis of FEM analyzing model being established. An investigation has also been performed on how to solve the problems of simulating transient vibration in actual foundation with FEM, and the result of calculating to the real transient vibration of actual foundation with FEM software ANSYS agrees with that of measuring. The vibration variation in the ground and the uneven subsidence of the factory houses' pillars, with and without barrier vibration isolation, are calculated by employing FEM. The results show that proper barrier isolation can diminish the ground vibration displacement but likely to magnify the dynamic stress and vibration frequency within a certain region, which would aggravate the uneven subsidence of the factory house pillars.

  18. Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting

    Science.gov (United States)

    Mali, Mukund G.; Yoon, Hyun; Kim, Min-woo; Swihart, Mark T.; Al-Deyab, Salem S.; Yoon, Sam S.

    2015-04-01

    We demonstrate that the addition of a tungsten oxide (WO3) layer beneath a bismuth vanadate (BiVO4) photocatalyst layer with a nanotextured pillar morphology significantly increases the photocurrent density in photoelectrochemical water splitting. The WO3-BiVO4 bilayer films produced a photocurrent of up to 3.3 mA/cm2 under illumination at 100 mW/cm2 (AM1.5 spectrum). The bilayer film was characterized by scanning electron microscopy, X-ray diffraction, and photoelectrochemical methods, which confirmed the superiority of the bilayer film in terms of its morphology and charge separation and transport ability. Both WO3 and BiVO4 were deposited by electrostatic spraying under open-air conditions, which resulted in nanotextured pillars of BiVO4 atop a smooth WO3 film. The optimal coating conditions are also reported.

  19. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yafa Zargouni

    2017-05-01

    Full Text Available In this work, we present the electrochemical deposition of manganese dioxide (MnO2 thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD, is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO2 (EMD coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li+ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.

  20. The Single Supervisory Mechanism: the Building Pillar of the European Banking Union

    Directory of Open Access Journals (Sweden)

    Luigi Chiarella

    2016-07-01

    Full Text Available One of the lessons learned from the 2008 financial crisis is that when a bank in Europe goes into trouble the ensuing effects can reach far beyond the immediate threat to its depositors and shareholders. In particular, the crisis has revealed the extent to which irresponsible behavior in the banking sector could undermine the foundations of the financial system and threaten the real economy, turning a banking crisis into a sovereign debt crisis as occurred in the eurozone in 2011. In response to this lesson, Member States first tried to address the systemic fragility of their banking systems through national policy tools, but countries that share a common currency and are more interdependent required more integrated responses. Therefore, at the euro area summit in June 2012, the European Council agreed to break the vicious circle between banks and sovereign debt and decided to create a banking union that would allow a centralized supervision for banks in the euro area through a newly established Single Supervisory Mechanism (SSM and a centralized resolution scheme. The SSM became operational in November 2014 and represents the building pillar of the banking union. The purpose of this paper is then to provide, after a brief description of the background (Par. 1, an analysis of the Single Supervisory Mechanism, illustrating its functioning (Par. 2, then focusing on the position and the powers of the ECB within it (Par. 3 and finally pointing out some remarks on the potential weaknesses of the new regime (Par. 4.

  1. Tomorrow’s Universities and the Seven Pillars of the Knowledge Revolution

    Directory of Open Access Journals (Sweden)

    Ismail Serageldin

    2013-09-01

    Full Text Available The emerging Knowledge Revolution goes beyond the changing technologies and the challenges and opportunities they create to include the structure of knowledge and how it is transmitted inter-generationally and across countries. There are seven major features of that profound transformation, which I call “The Seven Pillars of the New Knowledge Revolution”. These are: (i Parsing, Life & Organization; (ii Image & Text; (iii Humans & Machines; (iv Complexity & Chaos; (v Computation & Research; (vi Convergence & Transformation; and (vii Pluridisciplinarity & Policy. This diagnosis has profound implications on how one should think about the design and management of our institutions of learning, starting not only with universities, but also the school system, as well as our research institutions (whether in universities or in public and private labs, and the supporting institutions of knowledge (like museums, libraries and archives. Radical proposals are advanced for the content, method, participants and organizational setting of education, as well as the role of the University as mediator of transitions, its relationship with society and economy, as well as its physical presence, governance structure and the values it should promote. Core functions and curricula for the future, along with the possibility of a global university consortium, are discussed.

  2. Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Loren; Seaton, Kenneth; Mohseni, Ray; Vasiliev, Aleksey, E-mail: vasiliev@etsu.edu

    2013-10-15

    Highlights: • Mesoporous organoclay for immobilization of heavy metal cations was obtained. • The material has a porous structure with high contents of surface adsorption sites. • Leaching of heavy metals from soil reduced in the presence of this adsorbent. • The adsorbent demonstrated high effectiveness in neutral and acidic media. -- Abstract: The objective of this work was the development of an efficient adsorbent for irreversible immobilization of heavy metals in contaminated soils. The adsorbent was prepared by pillaring of montmorillonite with silica followed by grafting of a chelate ligand on its surface. Obtained adsorbent was mesoporous with high content of adsorption sites. Its structure was studied by BET adsorption of N{sub 2}, dynamic light scattering, and scanning electron microscopy. The adsorption capacity of the organoclay was measured by its mixing with contaminated kaolin and soil samples and by analysis of heavy metal contents in leachate. Deionized water and 50% acetic acid were used for leaching of metals from the samples. As it was demonstrated by the experiments, the adsorbent was efficient in immobilization of heavy metals not only in neutral aqueous media but also in the presence of weak acid. As a result, the adsorbent can be used for reduction of heavy metal leaching from contaminated sites.

  3. The "Seven Pillars" Response to Patient Safety Incidents: Effects on Medical Liability Processes and Outcomes.

    Science.gov (United States)

    Lambert, Bruce L; Centomani, Nichola M; Smith, Kelly M; Helmchen, Lorens A; Bhaumik, Dulal K; Jalundhwala, Yash J; McDonald, Timothy B

    2016-12-01

    To determine whether a communication and resolution approach to patient harm is associated with changes in medical liability processes and outcomes. Administrative, safety, and risk management data from the University of Illinois Hospital and Health Sciences System, from 2002 to 2014. Single health system, interrupted time series design. Using Mann-Whitney U tests and segmented regression models, we compared means and trends in incident reports, claims, event analyses, patient communication consults, legal fees, costs per claim, settlements, and self-insurance expenses before and after the implementation of the "Seven Pillars" communication and resolution intervention. Queried databases maintained by Department of Safety and Risk Management and the Department of Administrative Services at UIH. Extracted data from risk module of the Midas incident reporting system. The intervention nearly doubled the number of incident reports, halved the number of claims, and reduced legal fees and costs as well as total costs per claim, settlement amounts, and self-insurance costs. A communication and optimal resolution (CANDOR) approach to adverse events was associated with long-lasting, clinically and financially significant changes in a large set of core medical liability process and outcome measures. © Health Research and Educational Trust.

  4. The European Union as a Security Actor: Moving Beyond the Second Pillar

    Directory of Open Access Journals (Sweden)

    Kamil Zwolski

    2009-04-01

    Full Text Available It is suggested in this article that there is a discrepancy between, on the one hand, literature that focuses on the European Union (EU as a security actor and, on the other, contemporary security studies literature. This difference concerns the fact that the literature on the EU as a security actor treats security in a narrower sense than how it is approached in the literature on security studies. Over the past few decades, security studies literature has begun to fully acknowledge that the concept of security has broadened beyond traditional ‘hard’ security concerns and can encompass many different issues, for example the security implications of climate change. However, the literature on the EU as a security actor very often associates security only with the second pillar of the EU’s organisational structure; in particular the intergovernmental cooperation embodied by the Common Foreign and Security Policy (CFSP and the European Security and Defence Policy (ESDP. The main purpose of this article is to utilise the broader security studies approach to security as a means to expand the understanding of security in the context of the EU’s performance on the international stage. This is important because it allows the Union’s �����actorness’ in the field of security to be examined in a more holistic manner.

  5. An interpenetrated pillared-layer MOF: Synthesis, structure, sorption and magnetic properties

    Science.gov (United States)

    Jia, Li-Na; Zhao, Yang; Hou, Lei; Cui, Lin; Wang, Hai-Hua; Wang, Yao-Yu

    2014-02-01

    A new three-dimensional porous framework [Co2(bpdc)2(H2bpz)]•2(DMF)·5(H2O) (1) (H2bpdc=4,4‧-biphenyldicarboxylic acid, H2bpz=3,3‧,5,5‧-tetramethyl-4,4‧-bipyrazole) has been solvothermally synthesized by employing mixed H2bpdc and H2bpz ligands. 1 is a pillared-layer framework based on a binuclear paddle-wheel Co2(O2C-R)4 cluster, and exhibits a 2-fold interpenetrated 6-connected pcu topology. H2bpz bridges Co2(O2C-R)4 clusters with an angular coordination configuration to form interesting left- and right-handed helical chains. 1 possesses a two-dimensional porous system decorated by uncoordinated pyrazole -NH groups of H2bpz, leading to high adsorption selectivities for CO2 over N2 and H2. In addition, the strong antiferromagnetic interactions between the Co2+ ions in cluster were observed.

  6. [The first pillar of patient blood management. Types of anemia and diagnostic parameters].

    Science.gov (United States)

    Basora Macaya, M; Bisbe Vives, E

    2015-06-01

    Patient Blood Management (PBM) is the design of a personalized, multimodal multidisciplinary plan for minimizing transfusion and simultaneously achieving a positive impact on patient outcomes. The first pillar of PBM consists of optimizing the erythrocyte mass. The best chance for this step is offered by preoperative preparation. In most cases, a detailed medical history, physical examination and laboratory tests will identify the cause of anemia. A correct evaluation of parameters that assess the state and function of iron, such as ferritin levels, and the parameters that measure functional iron, such as transferrin saturation and soluble transferrin receptor levels, provide us with essential information for guiding the treatment with iron. The new blood count analyzers that measure hypochromia (% of hypochromic red blood cells and reticulocyte hemoglobin concentrations) provide us useful information for the diagnosis and follow-up of the response to iron treatment. Measuring serum folic acid and vitamin B12 levels is essential for treating deficiencies and thereby achieving better hemoglobin optimization. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Photocatalytic degradation of dye effluent by titanium dioxide pillar pellets in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    LI Yun-cang; ZOU Lin-da; Eric Hu

    2004-01-01

    Photocatalytic oxidation(PCO) process is an effective way to deal with organic pollutants in wastewater which could be difficult to be degraded by conventional biological treatment methods. Normally the TiO2 powder in nanometre size range was directly used as photocatalyst for dye degradation in wastewater. However the titanium dioxide powder was arduous to be recovered from the solution after treatment. In this application, a new form of TiO2(i. e. pillar pellets ranging from 2.5 to 5.3 mm long and with a diameter of 3.7 mm) was used and investigated for photocatalytic degradation of textile dye effluent. A test system was built with a flat plate reactor(FPR) and UV light source(blacklight and solar simulator as light source respectively) for investigating the effectiveness of the new form of TiO2. It was found that the photocatalytic process under this configuration could efficiently remove colours from textile dyeing effluent. Comparing with the TiO2 powder, the pellet was very easy to recovered from the treated solution and can be reused in multiple times without the significant change on the photocatalytic property. The results also showed that to achieve the same photocatalytic performance, the FPR area by pellets was about 91% smaller than required by TiO2 powder. At least TiO2 pellet could be used as an alternative form of photocatalyst in applications for textile effluent treatment process, also other wastewater treatment processes.

  8. Study Habits, Skills, and Attitudes: The Third Pillar Supporting Collegiate Academic Performance.

    Science.gov (United States)

    Credé, Marcus; Kuncel, Nathan R

    2008-11-01

    Study habit, skill, and attitude inventories and constructs were found to rival standardized tests and previous grades as predictors of academic performance, yielding substantial incremental validity in predicting academic performance. This meta-analysis (N = 72,431, k = 344) examines the construct validity and predictive validity of 10 study skill constructs for college students. We found that study skill inventories and constructs are largely independent of both high school grades and scores on standardized admissions tests but moderately related to various personality constructs; these results are inconsistent with previous theories. Study motivation and study skills exhibit the strongest relationships with both grade point average and grades in individual classes. Academic specific anxiety was found to be an important negative predictor of performance. In addition, significant variation in the validity of specific inventories is shown. Scores on traditional study habit and attitude inventories are the most predictive of performance, whereas scores on inventories based on the popular depth-of-processing perspective are shown to be least predictive of the examined criteria. Overall, study habit and skill measures improve prediction of academic performance more than any other noncognitive individual difference variable examined to date and should be regarded as the third pillar of academic success.

  9. Struggles against the pillars of agribusiness in Argentina: GMOs, agrotoxics and CONABIA

    Directory of Open Access Journals (Sweden)

    Cecilia Carrizo

    2014-10-01

    Full Text Available Provided with the contributions of the linguistic turn, our perspective conceives political theorizing as an intervention of the researcher in an intersubjective context in which a public issue is debated. We focus on those contexts in which the exercise and claim for rights against the consequences of agribusiness is thematized: diseases and deaths, siteclearances and evictions of indigenous and peasant communities, omission or complicit actions of the state institutions among other issues. We consider these diverse and sustained over time practices as struggles for recognition that put in tension the complacent “consensus of the commodities”, its concepts, practices, institutions and effects. We present the struggles against the pillars of agribusiness in Argentina: GMOs, pesticides and the National Commission on Agricultural Biotechnology (CONABIA. As a result of our research there are contributions that uncover the web of relationships impacted by agribusiness, the public problems generated and currently generates the technological innovation in this field, and the limits and possibilities for resolution. Also we offer glimpse into the structure, criteria and operation, also made invisible: the body of the official political system with responsibilities in this case in our country, the National Commission for Agricultural Technology (CONABIA.

  10. Development of a time-dependent energy model to calculate the mining-induced stress over gates and pillars

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaei

    2015-06-01

    Full Text Available Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gateroads and intervening pillars which helps to raise the safety and productivity of longwall mining operations. This study presents a novel time-dependent analytical model for determination of the longwall mining-induced stress and investigates the coefficient of stress concentration over adjacent gates and pillars. The model is developed based on the strain energy balance in longwall mining incorporated to a rheological constitutive model of caved materials with time-varying parameters. The study site is the Tabas coal mine of Iran. In the proposed model, height of destressed zone above the mined panel, total longwall mining-induced stress, abutment angle, induced vertical stress, and coefficient of stress concentration over neighboring gates and intervening pillars are calculated. To evaluate the effect of proposed model parameters on the coefficient of stress concentration due to longwall mining, sensitivity analysis is performed based on the field data and experimental constants. Also, the results of the proposed model are compared with those of existing models. The comparative results confirm a good agreement between the proposed model and the in situ measurements. According to the obtained results, it is concluded that the proposed model can be successfully used to calculate the longwall mining-induced stress. Therefore, the optimum design of gate supports and pillar dimensions would be attainable which helps to increase the mining efficiency.

  11. Development of a time-dependent energy model to calculate the mining-induced stress over gates and pillars

    Institute of Scientific and Technical Information of China (English)

    Mohammad Rezaei; Mohammad Farouq Hossaini; Abbas Majdi

    2015-01-01

    Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gateroads and intervening pillars which helps to raise the safety and productivity of longwall mining operations. This study presents a novel time-dependent analytical model for determination of the longwall mining-induced stress and investigates the coefficient of stress concentration over adjacent gates and pillars. The model is developed based on the strain energy balance in longwall mining incorporated to a rheological constitutive model of caved materials with time-varying parameters. The study site is the Tabas coal mine of Iran. In the proposed model, height of destressed zone above the mined panel, total longwall mining-induced stress, abutment angle, induced vertical stress, and coeffi-cient of stress concentration over neighboring gates and intervening pillars are calculated. To evaluate the effect of proposed model parameters on the coefficient of stress concentration due to longwall mining, sensitivity analysis is performed based on the field data and experimental constants. Also, the results of the proposed model are compared with those of existing models. The comparative results confirm a good agreement between the proposed model and the in situ measurements. According to the obtained results, it is concluded that the proposed model can be successfully used to calculate the longwall mining-induced stress. Therefore, the optimum design of gate supports and pillar dimensions would be attainable which helps to increase the mining efficiency.

  12. Research and application of strip mining of village coal pillar at coal field of the north of the Yellow River in Shandong Province

    Institute of Scientific and Technical Information of China (English)

    XU Nai-zhong; TIAN Jin-zhou; GAO Chao

    2012-01-01

    This paper focuses on the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River.The strip mining technology was used to protect the village houses.The stratum structure control action of mining subsidence was used to design the mining and pillar width.To further raise resources recovery,we adopted the mutative scheme of mining and pillar width.Observation was carried out while mining.Research shows there is feasibility of the strip mining technology to protecting the village buildings of the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River.Finally,subsidence parameters of strip mining were obtained.It is the basic data of the strip mining of the coal field at the north of the Yellow River.

  13. Verification of the fulfilment of the purposes of Basel II, Pillar 3 through application of the web log mining methods

    Directory of Open Access Journals (Sweden)

    M. Munk

    2012-01-01

    Full Text Available The objective of the paper is the verification of the fulfilment of the purposes of Basel II, Pillar 3 – market discipline during the recent financial crisis. The objective of the paper is to describe the current state of the working out of the project that is focused on the analysis of the market participants’ interest in mandatory disclosure of financial information by a commercial bank by means of advanced methods of web log mining. The output of the realized project will be the verification of the assumptions related to the purposes of Basel III by means of the web mining methods, the recommendations for possible reduction of mandatory disclosure of information under Basel II and III, the proposal of the methodology for data preparation for web log mining in this application domain and the generalised procedure for users’ behaviour modelling dependent on time. The schedule of the project has been divided into three phases. The paper deals with its first phase that is focusing on the data pre-processing, analysis and evaluation of the required information under Basel II, Pillar 3 since 2008 and its disclosure into the web site of a commercial bank. The authors introduce the methodologies for data preparation and known heuristic methods for path completion into web log files with respect to the particularity of investigated application domain. They propose scientific methods for modelling users’ behaviour of the webpages related to Pillar 3 with respect to time.

  14. Ferromagnetism of self-organized Ge{sub 1-x}Mn{sub x} nano-pillars

    Energy Technology Data Exchange (ETDEWEB)

    Devillers, T.; Jamet, M.; Barski, A.; Poydenot, V.; Dujardin, R.; Bayle Guillemaud, P.; Bellet Amalric, E.; Mattana, R. [Departement de Recherche Fondamentale sur la Matiere Condensee, Service de Physique des Materiaux et Microstructures, CEA Grenoble, 17 avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Rothman, J. [Laboratoire d' Electronique de Technologie de l' Information, Laboratoire Infrarouge, CEA Grenoble, 17 avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Cibert, J. [Laboratoire Louis Neel, CNRS, BP166, 38042 Grenoble Cedex 9 (France); Tatarenko, S. [Laboratoire de Spectrometrie Physique, BP 87, 38402 Saint-Martin d' Heres (France)

    2006-07-01

    In the search for high-T{sub C} Si or Ge based ferromagnetic semiconductors, we present here the magnetic and transport properties of Ge{sub 1-x}Mn{sub x} nano-pillars. These pillars self-organize during the MBE growth of thin Mn doped (6%) Ge films as a consequence of the in-plane and out-of-plane diffusion of Mn atoms. Their composition is close to Ge{sub 2}Mn and their average diameter and spacing are 3 nm and 10 nm respectively. Magnetic measurements evidence a ferromagnetic phase up to 400 K giving rise to anomalous Hall effect at room temperature. Moreover we evidence a large positive magnetoresistance (up to 70% at 30 K and 9 T) probably due to the conductivity mismatch between the Mn-rich nano-pillars and the Mn-poor surrounding Ge matrix. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Fe/Ti co-pillared clay for enhanced arsenite removal and photo oxidation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guang Dong Electric Power Design Institute, China Energy Engineering Group Co. Ltd., Guangzhou 510663 (China); Cai, Xiaojiao [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guo, Jingwei [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); The 718th Research Institute of CSIC, Handan 056027 (China); Zhou, Shimin [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Na, Ping, E-mail: naping@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2015-01-01

    Graphical abstract: - Highlights: • An iron and titanium co-pillared montmorillonite (Fe-Ti/MMT) was synthesized for arsenite removal. • Variety of characterization results indicated that Fe and Ti species were pillared in MMT. • A possible mechanism of arsenite adsorption/oxidation with UV light was established. • The participation of Fe component can promote the process of photocatalytic oxidation in Fe-Ti/MMT + As(III) system. • Fe-Ti/MMT can function as both photocatalyst and adsorbent for arsenite removal. - Abstract: A series of iron and titanium co-pillared montmorillonites (Fe-Ti/MMT) were prepared using hydrolysis of inserted titanium and different iron content in montmorillonite (MMT). The Fe-Ti/MMT were characterized by X-ray fluorescence, N{sub 2} adsorption and desorption, X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), confirming the effective insertion of Fe species and TiO{sub 2} in the MMT. The Fe-Ti/MMT was used to remove arsenite (As(III)) from aqueous solutions under different conditions. The result of As(III) adsorption under UV irradiation showed that the photo activity can be enhanced by incorporating Fe and Ti in MMT. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the hydroxyl groups bonded to metal oxide (M–OH) played an important role in the adsorption of As(III)

  16. Galerkin solution of Winkler foundation-based irregular Kirchhoff plate model and its application in crown pillar optimization

    Institute of Scientific and Technical Information of China (English)

    彭康; 尹旭岩; 尹光志; 许江; 黄滚; 殷志强

    2016-01-01

    Irregular plates are very common structures in engineering, such as ore structures in mining. In this work, the Galerkin solution to the problem of a Kirchhoff plate lying on the Winkler foundation with two edges simply supported and the other two clamped supported is derived. Coordinate transformation technique is used during the solving process so that the solution is suitable to irregular shaped plates. The mechanical model and the solution proposed are then used to model the crown pillars between two adjacent levels in Sanshandao gold mine, which uses backfill method for mining operation. After that, an objective function, which takes security, economic profits and filling effect into consideration, is built to evaluate design proposals. Thickness optimizations for crown pillars are finally conducted in both conditions that the vertical stiffness of the foundation is known and unknown. The procedure presented in the work provides the guidance in thickness designing of complex shaped crown pillars and the preparation of backfill materials, thus to achieve the best balance between security and profits.

  17. The Pillars of Creation revisited with MUSE: gas kinematics and high-mass stellar feedback traced by optical spectroscopy

    CERN Document Server

    Leod, A F Mc; Ginsburg, A; Ercolano, B; Gritschneder, M; Ramsay, S; Testi, L

    2015-01-01

    Integral field unit (IFU) data of the iconic Pillars of Creation in M16 are presented. The ionisation structure of the pillars was studied in great detail over almost the entire visible wavelength range, and maps of the relevant physical parameters, e.g. extinction, electron density, electron temperature, line-of-sight velocity of the ionised and neutral gas are shown. In agreement with previous authors, we find that the pillar tips are being ionised and photo-evaporated by the massive members of the nearby cluster NGC 6611. They display a stratified ionisation structure where the emission lines peak in a descending order according to their ionisation energies. The IFU data allowed us to analyse the kinematics of the photo-evaporative flow in terms of the stratified ionisation structure, and we find that, in agreement with simulations, the photo-evaporative flow is traced by a blueshift in the position-velocity profile. The gas kinematics and ionisation structure have allowed us to produce a sketch of the 3D ...

  18. Syntheses, characterization and catalytic reactivities of heteropolyanion-pillared clay of anions of Zn-Al type

    Institute of Scientific and Technical Information of China (English)

    刘彦勇; 胡长文; 王作屏; 张继余; 王恩波

    1996-01-01

    Mono-substituted Keggin ions PW11O39Cr(H2O)4 , PW11TiO403 and PW11VO404 were intercalated between the layers of the clay of anions of Zn-Al type using the ion exchange method to obtain a new type of pillared layered microporous materials ZnAl-PW11Cr, ZnAl-PW11Ti and ZnAl-PW11V with basal spacing (1.48±0.02) run. On the basis of the MAS NMR results of 27A1 and 31P, a steric pillared layered structure model of orientation localization of PW11VO40,4- in the orientation in which the C2 axis of PW11VO404-is perpendicular to the host layer. It has been found that this kind of pillared layered microporous materials possess a higher catalytic activity for the esterification of acetic acid with n-butanol than H-type molecular sieves.

  19. Effect of Sulfation on Zirconia-Pillared Montmorillonite to the Catalytic Activity in Microwave-Assisted Citronellal Conversion

    Directory of Open Access Journals (Sweden)

    Is Fatimah

    2014-01-01

    Full Text Available Preparation of sulfated zirconia-pillared montmorillonite was carried out in two steps; zirconia pillarization and sulfation to zirconia-pillared montmorillonite. The prepared materials were characterized by using X-ray diffraction (XRD, measurement of the specific surface area, total pore volume and pore size distribution by the N2 adsorption method, scanning electron microscopy-energy dispersive X-ray (SEM-EDX, and surface acidity determination by using pyridine adsorption-FTIR analysis. The activity of the materials as catalysts was evaluated for a microwave-assisted conversion of citronellal. The results showed that the prepared materials had a physicochemical character that promoted high catalytic activity to convert citronellal. From varied Zr content and study of the effect of sulfation on the activity, it was found that Zr content and sulfation increase the surface acidity of the material as shown by the higher total conversion and tendency to produce menthol as a product of the tandem cyclization-hydrogenation mechanism.

  20. Counter-rotating type tidal stream power unit boarded on pillar (performances and flow conditions of tandem propellers)

    Science.gov (United States)

    Usui, Yuta; Kanemoto, Toshiaki; Hiraki, Koju

    2013-12-01

    The authors have invented the unique counter-rotating type tidal stream power unit composed of the tandem propellers and the double rotational armature type peculiar generator without the traditional stator. The front and the rear propellers counter-drive the inner and the outer armatures of the peculiar generator, respectively. The unit has the fruitful advantages that not only the output is sufficiently higher without supplementary equipment such as a gearbox, but also the rotational moment hardly act on the pillar because the rotational torque of both propellers/armatures are counter-balanced in the unit. This paper discusses experimentally the performances of the power unit and the effects of the propeller rotation on the sea surface. The axial force acting on the pillar increases naturally with the increase of not only the stream velocity but also the drag of the tandem propellers. Besides, the force vertical to the stream also acts on the pillar, which is induced from the Karman vortex street and the dominant frequencies appear owing to the front and the rear propeller rotations. The propeller rotating in close to the sea surface brings the abnormal wave and the amplitude increases as the stream velocity is faster and/or the drag is stronger.

  1. Screening Hofmann Compounds as CO 2 Sorbents: Nontraditional Synthetic Route to Over 40 Different Pore-Functionalized and Flexible Pillared Cyanonickelates

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Jeffrey T.; Madden, Catherine; Kauffman, Kristi; Shi, Fan; Matranga, Christopher

    2013-04-15

    A simple reaction scheme based on the heterogeneous intercalation of pillaring ligands (HIPLs) provides a convenient method for systematically tuning pore size, pore functionality, and network flexibility in an extended series of pillared cyanonickelates (PICNICs), commonly referred to as Hofmann compounds. The versatility of the approach is demonstrated through the preparation of over 40 different PICNICs containing pillar ligands ranging from ~4 to ~15 Å in length and modified with a wide range of functional groups, including fluoro, aldehyde, alkylamine, alkyl, aryl, trifluoromethyl, ester, nitro, ether, and nonmetalated 4,4'-bipyrimidine. The HIPL method involves reaction of a suspension of preformed polymeric sheets of powdered anhydrous nickel cyanide with an appropriate pillar ligand in refluxing organic solvent, resulting in the conversion of the planar [Ni{sub 2}(CN){sub 4}]{sub n} networks into polycrystalline three-dimensional porous frameworks containing the organic pillar ligand. Preliminary investigations indicate that the HIPL reaction is also amenable to forming Co(L)Ni(CN){sub 4}, Fe(L)Ni(CN){sub 4}, and Fe(L)Pd(CN){sub 4} networks. The materials show variable adsorption behavior for CO{sub 2} depending on the pillar length and pillar functionalization. Several compounds show structurally flexible behavior during the adsorption and desorption of CO{sub 2}. Interestingly, the newly discovered flexible compounds include two flexible Fe(L)Ni(CN){sub 4} derivatives that are structurally related to previously reported porous spin-crossover compounds. The preparations of 20 pillar ligands based on ring-functionalized 4,4'-dipyridyls, 1,4-bis(4- pyridyl)benzenes, and N-(4-pyridyl)isonicotinamides are also described.

  2. Thermal Resistance across Interfaces Comprising Dimensionally Mismatched Carbon Nanotube-Graphene Junctions in 3D Carbon Nanomaterials

    Directory of Open Access Journals (Sweden)

    Jungkyu Park

    2014-01-01

    Full Text Available In the present study, reverse nonequilibrium molecular dynamics is employed to study thermal resistance across interfaces comprising dimensionally mismatched junctions of single layer graphene floors with (6,6 single-walled carbon nanotube (SWCNT pillars in 3D carbon nanomaterials. Results obtained from unit cell analysis indicate the presence of notable interfacial thermal resistance in the out-of-plane direction (along the longitudinal axis of the SWCNTs but negligible resistance in the in-plane direction along the graphene floor. The interfacial thermal resistance in the out-of-plane direction is understood to be due to the change in dimensionality as well as phonon spectra mismatch as the phonons propagate from SWCNTs to the graphene sheet and then back again to the SWCNTs. The thermal conductivity of the unit cells was observed to increase nearly linearly with an increase in cell size, that is, pillar height as well as interpillar distance, and approaches a plateau as the pillar height and the interpillar distance approach the critical lengths for ballistic thermal transport in SWCNT and single layer graphene. The results indicate that the thermal transport characteristics of these SWCNT-graphene hybrid structures can be tuned by controlling the SWCNT-graphene junction characteristics as well as the unit cell dimensions.

  3. Three-dimensional imaging of copper pillars using x-ray tomography within a scanning electron microscope: a simulation study based on synchrotron data.

    Science.gov (United States)

    Martin, N; Bertheau, J; Bleuet, P; Charbonnier, J; Hugonnard, P; Laloum, D; Lorut, F; Tabary, J

    2013-02-01

    While microelectronic devices are frequently characterized with surface-sensitive techniques having nanometer resolution, interconnections used in 3D integration require 3D imaging with high penetration depth and deep sub-micrometer spatial resolution. X-ray tomography is well adapted to this situation. In this context, the purpose of this study is to assess a versatile and turn-key tomographic system allowing for 3D x-ray nanotomography of copper pillars. The tomography tool uses the thin electron beam of a scanning electron microscope (SEM) to provoke x-ray emission from specific metallic targets. Then, radiographs are recorded while the sample rotates in a conventional cone beam tomography scheme that ends up with 3D reconstructions of the pillar. Starting from copper pillars data, collected at the European Synchrotron Radiation Facility, we build a 3D numerical model of a copper pillar, paying particular attention to intermetallics. This model is then used to simulate physical radiographs of the pillar using the geometry of the SEM-hosted x-ray tomography system. Eventually, data are reconstructed and it is shown that the system makes it possible the quantification of 3D intermetallics volume in copper pillars. The paper also includes a prospective discussion about resolution issues.

  4. Catalytic properties and activity of copper and silver containing Al-pillared bentonite for CO oxidation

    Science.gov (United States)

    Basoglu, Funda Turgut; Balci, Suna

    2016-02-01

    Al-pillared bentonite (Al-PB) using bentonite obtained from the Middle Anatolia region (Hançılı) was synthesized, and Cu@Al-PB and Ag@Al-PB were obtained after the second metal impregnation step. Cu/AlPB prepared using a hydrothermal method was obtained with a Cu/(Cu + Al) mole ratio of 0.05. The SEM/EDS, scanning electron microscopy/energy dispersive X-ray spectroscopy analyses indicated that the impregnation method resulted in a higher copper loading in the structure. Based on the XPS, X-ray photoelectron spectroscopy analysis, the aluminum in all of the samples was in the Al2O3 form with 2s and 2p3 orbitals. Although no copper peaks were observed for Cu/Al-PB, the 2p3 and 2p1 orbitals of copper as well as the 3d3 and 3d5 orbitals of silver were observed in the copper or silver impregnated samples, respectively. Metal incorporation resulted in an increase especially in the strength of the Brønsted acid peaks in the FTIR, Fourier transform infrared spectra. The intensity of the peaks corresponding to the Brønsted sites did not change substantially as pyridine desorption temperature increased. The impregnated samples created a decrease in the 50% conversion temperature for carbon monoxide oxidation. Cu@Al-PB, which was calcined at 500 °C, gave a carbon monoxide conversion that was as high as 100% at approximately 200 °C and maintained its activity to 500 °C. In the impregnated samples, the reaction may use the surface oxygen provided by the metal oxide.

  5. The 10 Pillars of Lung Cancer Screening: Rationale and Logistics of a Lung Cancer Screening Program.

    Science.gov (United States)

    Fintelmann, Florian J; Bernheim, Adam; Digumarthy, Subba R; Lennes, Inga T; Kalra, Mannudeep K; Gilman, Matthew D; Sharma, Amita; Flores, Efren J; Muse, Victorine V; Shepard, Jo-Anne O

    2015-01-01

    On the basis of the National Lung Screening Trial data released in 2011, the U.S. Preventive Services Task Force made lung cancer screening (LCS) with low-dose computed tomography (CT) a public health recommendation in 2013. The Centers for Medicare and Medicaid Services (CMS) currently reimburse LCS for asymptomatic individuals aged 55-77 years who have a tobacco smoking history of at least 30 pack-years and who are either currently smoking or had quit less than 15 years earlier. Commercial insurers reimburse the cost of LCS for individuals aged 55-80 years with the same smoking history. Effective care for the millions of Americans who qualify for LCS requires an organized step-wise approach. The 10-pillar model reflects the elements required to support a successful LCS program: eligibility, education, examination ordering, image acquisition, image review, communication, referral network, quality improvement, reimbursement, and research frontiers. Examination ordering can be coupled with decision support to ensure that only eligible individuals undergo LCS. Communication of results revolves around the Lung Imaging Reporting and Data System (Lung-RADS) from the American College of Radiology. Lung-RADS is a structured decision-oriented reporting system designed to minimize the rate of false-positive screening examination results. With nodule size and morphology as discriminators, Lung-RADS links nodule management pathways to the variety of nodules present on LCS CT studies. Tracking of patient outcomes is facilitated by a CMS-approved national registry maintained by the American College of Radiology. Online supplemental material is available for this article.

  6. Influence of Sample Volume and Solvent Evaporation on Absorbance Spectroscopy in a Microfluidic "Pillar-Cuvette".

    Science.gov (United States)

    Kriel, Frederik H; Priest, Craig

    2016-01-01

    Spectroscopic analysis of solutions containing samples at high concentrations or molar absorptivity can present practical challenges. In absorbance spectroscopy, short optical path lengths or multiple dilution is required to bring the measured absorbance into the range of the Beer's Law calibration. We have previously reported an open "pillar-cuvette" with a micropillar array that is spontaneously filled with a precise (nL or μL) volume to create the well-defined optical path of, for example, 10 to 20 μm. Evaporation should not be ignored for open cuvettes and, herein, the volume of loaded sample and the rate of evaporation from the cuvette are studied. It was found that the volume of loaded sample (between 1 and 10 μL) had no effect on the Beer's Law calibration for methyl orange solutions (molar absorptivity of (2.42 ± 0.02)× 10(4) L mol(-1) cm(-1)) for cuvettes with a 14.2 ± 0.2 μm path length. Evaporation rates of water from methyl orange solutions were between 2 and 5 nL s(-1) (30 - 40% relative humidity; 23°C), depending on the sample concentration and ambient conditions. Evaporation could be reduced by placing a cover slip several millimeters above the cuvette. Importantly, the results show that a "drop-and-measure" method (measurement within ∼3 s of cuvette loading) eliminates the need for extrapolation of the absorbance-time data for accurate analysis of samples.

  7. 基于损伤因子的7075铝合金B柱热成形工艺优化%Thermoforming Process Optimization for B Pillar of 7075 Aluminum Alloy Based on Damage Factor

    Institute of Scientific and Technical Information of China (English)

    庄蔚敏; 李冰娇; 解东旋

    2015-01-01

    To overcome the difficulty in judging the thermoforming failure of 7075 aluminum alloy, a dam-age factor is introduced as a failure judgment parameter. Firstly, the thermal damage constitutive equation of 7075 aluminum alloy is established, with a corresponding user-defined material subroutine in Ls-dyna created with FOR-TRAN language. Then a finite element analysis is conducted on the thermoforming of B pillar to study the effects of single parameter change on the maximum forming damage of B pillar. Finally, the forming parameters are optimized by using orthogonal experiment, and a set of optimal parameters of forming process is determined: an initial sheet temperature of 420℃, an initial die temperature of 60℃, a friction coefficient of 0 . 15 , a blank-holder force of 6000N and a stamping speed of 230mm/s.%针对仿真中难以简单判断7075铝合金热成形失效的问题,引入损伤因子作为评判失效的参数。首先,建立了7075铝合金高温损伤本构方程。随后,使用FORTRAN语言编写Ls-dyna用户自定义材料子程序,对B柱进行热成形有限元分析,研究单一参数变化对B柱成形最大损伤值的影响。最后,利用正交实验分析对成形参数进行优化,最终确定了一组最优成形工艺参数组合:板料初始温度420℃,模具初始温度60℃,摩擦因数0.15,压边力6000N,冲压速度230mm/s。

  8. Resource reliability, accessibility and governance: pillars for managing water resources to achieve water security in Nepal

    Science.gov (United States)

    Biggs, E. M.; Duncan, J.; Atkinson, P.; Dash, J.

    2013-12-01

    As one of the world's most water-abundant countries, Nepal has plenty of water yet resources are both spatially and temporally unevenly distributed. With a population heavily engaged in subsistence farming, whereby livelihoods are entirely dependent on rain-fed agriculture, changes in freshwater resources can substantially impact upon survival. The two main sources of water in Nepal come from monsoon precipitation and glacial runoff. The former is essential for sustaining livelihoods where communities have little or no access to perennial water resources. Much of Nepal's population live in the southern Mid-Hills and Terai regions where dependency on the monsoon system is high and climate-environment interactions are intricate. Any fluctuations in precipitation can severely affect essential potable resources and food security. As the population continues to expand in Nepal, and pressures build on access to adequate and clean water resources, there is a need for institutions to cooperate and increase the effectiveness of water management policies. This research presents a framework detailing three fundamental pillars for managing water resources to achieve sustainable water security in Nepal. These are (i) resource reliability; (ii) adequate accessibility; and (iii) effective governance. Evidence is presented which indicates that water resources are adequate in Nepal to sustain the population. In addition, aspects of climate change are having less impact than previously perceived e.g. results from trend analysis of precipitation time-series indicate a decrease in monsoon extremes and interannual variation over the last half-century. However, accessibility to clean water resources and the potential for water storage is limiting the use of these resources. This issue is particularly prevalent given the heterogeneity in spatial and temporal distributions of water. Water governance is also ineffective due to government instability and a lack of continuity in policy

  9. Workshops around the pillar system design computer program produced in SIMRAC project GAP334

    CSIR Research Space (South Africa)

    York, G

    2000-03-01

    Full Text Available presentation i0i0i0i0i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0 CSIR Mining Technology Pillar... supporting/ supportable support spacing Slide 1 9 i0i0i0i0i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0i0i0 i0i0i0i0i0i0i0...

  10. A Soft Tooling process chain employing Additive Manufacturing for injection molding of a 3D component with micro pillars

    DEFF Research Database (Denmark)

    Zhang, Yang; Pedersen, David Bue; Segebrecht Gøtje, Asger

    2017-01-01

    photopolymer by Digital Light Processing (vat photopolymerization). The mold cavity was formed by two insert halves, by design; both inserts have four angled tines, with micro holes (Ø200 μm, 200 μm deep) on the surface. Injection molding with polyethylene was used with the soft tool inserts to manufacture...... the final production components. The diameter and height of the pillars that were replicated on the molded components were characterized by means of a 3D profilometer. The influence of the injection molding parameters on the replication was evaluated using a 2-levels DOE of three factors. The uniformity...

  11. Photolysis of a bola-type supra-amphiphile promoted by water-soluble pillar[5]arene-induced assembly.

    Science.gov (United States)

    Guo, Shuwen; Liu, Xin; Yao, Chenhao; Lu, Chengxi; Chen, Qingxin; Hu, Xiao-Yu; Wang, Leyong

    2016-08-25

    A bola-type supra-amphiphile assembled from a water-soluble pillar[5]arene host (WP5) and a rod-coil guest molecule (G) containing a photoactive 9,10-dialkoxyanthracene group was successfully constructed, which could further assemble into a monolayer supramolecular vesicle. Interestingly, the photodecomposition rate of G was remarkably promoted after its aggregation with WP5, accompanied by the disassembly of the formed supramolecular vesicle, especially with the coassembly of a photosensitizer eosin Y, which has potential applications in phototherapy.

  12. Synthesis of Magnetically Modified Fe-Al Pillared Bentonite and Heterogeneous Fenton-like Degradation of Orange II

    Institute of Scientific and Technical Information of China (English)

    CHEN Kun; WANG Guanghua; LI Wenbing; WAN Dong; HU Qin; LU Lulu; WEI Xiaobi; CHENG Zhengzai

    2015-01-01

    Magnetically modified Fe-Al pillared bentonite (Fe3O4/ Fe-Al-Bent) was prepared via chemical co-precipitation method and characterized by powder X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). A series of experiments were carried out to investigate the degradation of Orange II by the obtained heterogeneous catalysts in the presence of H2O2. The experimental result indicated that the synthetic materials had a high catalytic activity and good reusability.

  13. A novel CE microchip with micro pillars column & double-L injection design for Capacitance Coupled Contactless Conductivity detection technology

    Science.gov (United States)

    Wang, Yineng; Messina, Walter; Cao, Xi; Hogan, Anna; van Zalen, Ed; Moore, Eric

    2016-10-01

    This novel capillary electrophoresis microchip, or also known as μTAS (micro total analysis system) was designed to separate complex aqueous based compounds, similar to commercial CE & microchip (capillary electrophoresis) systems, but more compact. This system can be potentially used for mobile/portable chemical analysis equipment. Un-doped silicon wafer & ultra-thin borofloat glass (Pyrex) wafers have been used to fabricate the device. Double-L injection feature, micro pillars column, bypass separation channel & hybrid- referenced C4D electrodes were designed to achieve a high SNR (signal to noise ratio), easy- separation, for a durable and reusable μTAS for CE use.

  14. Rapid quantitative method for the detection of phenylalanine and tyrosine in human plasma using pillar array columns and gradient elution.

    Science.gov (United States)

    Song, Yanting; Takatsuki, Katsuya; Sekiguchi, Tetsushi; Funatsu, Takashi; Shoji, Shuichi; Tsunoda, Makoto

    2016-07-01

    This study reports a fast and quantitative determination method for phenylalanine (Phe) and tyrosine (Tyr) in human plasma using on-chip pressure-driven liquid chromatography. A pillar array column with low-dispersion turns and a gradient elution system was used. The separation of fluorescent derivatives of Phe, Tyr, and other hydrophobic amino acids was successfully performed within 140 s. Under the optimized conditions, Phe and Tyr in human plasma were quantified. The developed method is promising for rapid diagnosis in the clinical field.

  15. Preparation, characterization and application in deep catalytic ODS of the mesoporous silica pillared clay incorporated with phosphotungstic acid.

    Science.gov (United States)

    Li, Baoshan; Liu, Zhenxing; Liu, Jianjun; Zhou, Zhiyuan; Gao, Xiaohui; Pang, Xinmei; Sheng, Huiting

    2011-10-15

    Mesoporous silica pillared clay (SPC) materials with different contents of H(3)PW(12)O(40) (HPW) heteropoly acid were synthesized by introducing HPW into clay interlayer template in an acidic suspension using sol-gel method. Samples with similar HPW loadings were also prepared by impregnation method using SPC as the support. The results of the characterizations showed that HPW was dispersed more homogeneously in the encapsulated samples than in the impregnated samples. The encapsulated materials exhibited better catalytic performance than the impregnated samples in oxidative desulfurization of dibenzothiophene-containing model oil. The sulfur removal reached up to 98.6% for the model oil under the experiential conditions.

  16. Surface Properties of Metal-Incorporated Al-Pillared Interlayered Clay Catalysts Analyzed by Chemisorption and Infrared Analysis

    OpenAIRE

    BASOĞLU, Funda Turgut; BALCI, Suna

    2010-01-01

    Al-pillared interlayered clay (Al-PILC) was synthesized using bentonite from the Hançılı region of Central Anatolia in Turkey. Samples of Al-PILC were impregnated with Cu or Ag to produce Cu@Al-PILC and Ag@Al-PILC. Cu/Al-mixed PILCs were also obtained using mixed metal sources having (Cu/(Cu+Al)) atom percents as 5 and 10. The FTIR intensities of Lewis acidity peaks decreased whereas the intensity of BrÖnsted acidity remained nearly the same for pyridine sorbed PILCs after desorption a...

  17. Preparation and structural evolution of SiO(2)-TiO(2) pillared layered manganese oxide nanocomposite upon intercalating reaction.

    Science.gov (United States)

    Wang, Jianfang; Liu, Zong-Huai; Tang, Xiuhua; Ooi, Kenta

    2007-03-15

    SiO(2)-TiO(2) pillared layered manganese oxide nanohybrid was successfully synthesized by preliminarily expanding the interlayer of H-type layered manganese oxide using dodecylamine, followed by reacting it with a mixture solution of titanium isopropoxide and tetraethylorthosilicate. The basal spacing and the pillared agent content of the obtained materials connected with the length of intercalated n-alkylamine, incorporated Si/Ti molar ratios and the solvothermal treatment temperature. The structural evolution of SiO(2)-TiO(2) pillared layered manganese oxide nanohybrid was characterized by XRD, DSC-TGA, SEM, IR, N(2) adsorption-desorption and element analyses. TiO(2) particles exhibited a stronger affinity for the negatively charged manganese layers, and the TiO(2) particles incorporated were independently intercalated without any distinct chemical bonding with the co-intercalated SiO(2) particles. SiO(2)-TiO(2) pillared layered manganese oxide nanohybrid had a BET surface area of 98 m(2)/g with a gallery height of about 1.43 nm between layers. The obtained SiO(2)-TiO(2) co-pillared layered manganese oxide nanohybrid is expected as a selective catalyst, or an improved battery material.

  18. The effect of the pillar implant system and nasal operation in the managementof OSAHS patients%Pillar 植入系统联合鼻部手术治疗 OSAHS 38例疗效分析

    Institute of Scientific and Technical Information of China (English)

    邹帆; 邝韶景; 高明华; 李明红

    2010-01-01

    目的 探讨Pillar植入系统联合鼻部手术治疗阻塞性睡眠呼吸暂停低通气综合征(OSAHS)的效果.方法 选取2006年7至2008年11月本科 OSAHS 患者38例.38例均同期行 Pillar 植入系统治疗和鼻部手术,术前及术后6个月均行多导睡眠呼吸监测(polysomnography,PSG),对术前及术后的 PSG 结果 (包括AHI、LSaO2)进行统计学分析.结果 术后6个月进行PSG监测,治愈10例,好转17例,减轻7例,无效4例,总有效率达89.5%;所有患者无手术并发症发生.结论 Pillar 植入系统联合鼻部手术治疗单纯型鼾症(primary snoring,PS)及轻-中度0SAHS可取得良好效果.

  19. Knickpoints within the Suoshui watershed and the implication for the age of sandstone pillars in Zhangjiajie, China

    Science.gov (United States)

    Shi, Changxing; Shao, Wenwei

    2014-09-01

    Using DEM and topographic and geological maps alongside field surveys, this study investigated the characteristics and retreat processes of the knickpoints along the mainstream and major tributaries of the Suoshui watershed. Seven disequilibrium transient knickpoints are found along the mainstream, and 0-6 are on the trunk of each of the major tributaries. The knickpoints are labeled from KP0 to KP7 from the lowest to the highest according to their spatial position. The average drop across each knickpoint is in the range of 9-19 m, and the cumulative fall from KP7 to KP0 is about 107 m. Using a brute force two-parameter search, the coefficient m in the stream power incision model for the Suoshui watershed is found to be 0.525, and the coefficient K is variable with an inverse relationship with channel steepness. Using the stream power incision model with these parameters, the time for the highest knickpoint (KP7) to retreat from the mouth of the Suoshui River to its present location is found to be ca. 0.454 Ma. Based on the relationship between the cumulative fall and migration time of knickpoints, the average downcutting rate of the Suoshui River is estimated to be 0.224 mm/a in the past 0.454 Ma. By comparing the downcutting rates with the height of typical sandstone pillars in the Suoshui watershed, the formation of these pillars might commence in the early Pleistocene.

  20. Globules and Pillars in Cygnus X I. Herschel Far-infrared imaging of the Cyg OB2 environment

    CERN Document Server

    Schneider, N; Motte, F; Blazere, A; Andre, Ph; Anderson, L D; Arzoumanian, D; Comeron, F; Didelon, P; Di Francesco, J; Duarte-Cabral, A; Guarcello, M G; Hennemann, M; Hill, T; Konyves, V; Marston, A; Minier, V; Rygl, K L J; Roellig, M; Roy, A; Spinoglio, L; Tremblin, P; White, G J; Wright, N J

    2016-01-01

    The radiative feedback of massive stars on molecular clouds creates pillars, globules and other features at the interface between the HII region and molecular cloud. We present here Herschel observations between 70 and 500 micron of the immediate environment of the Cygnus OB2 association, performed within the HOBYS program. All structures were detected based on their appearance at 70 micron, and have been classified as pillars, globules, evaporating gasous globules (EGGs), proplyd-like objects, and condensations. From the 70 and 160 micron flux maps, we derive the local FUV field on the PDR surfaces. In parallel, we use a census of the O-stars to estimate the overall FUV-field, that is 10^3-10^4 G_0 close to the central OB cluster (within 10 pc) and decreases down to a few tens G_0, in a distance of 50 pc. From a SED fit to the four longest Herschel wavelengths, we determine column density and temperature maps and derive masses, volume densities and surface densities for these structures. We find that the mor...

  1. Impact of instrumental constraints and imperfections on the dislocation structure in micron-sized Cu compression pillars

    Energy Technology Data Exchange (ETDEWEB)

    Kirchlechner, C., E-mail: christoph.kirchlechner@unileoben.ac.at [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (Austria); Department of Materials Physics, Montanuniversitaet Leoben (Austria); Keckes, J. [Department of Materials Physics, Montanuniversitaet Leoben (Austria); Motz, C.; Grosinger, W.; Kapp, M.W. [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (Austria); Micha, J.S.; Ulrich, O. [CEA-Grenoble/Institut Nanosciences et Cryogenie (France); CRG-IF BM32 at ESRF, European Synchrotron Radiation Facility, Grenoble (France); Dehm, G. [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (Austria); Department of Materials Physics, Montanuniversitaet Leoben (Austria)

    2011-08-15

    Highlights: {yields} In situ {mu}Laue compression tests on three 7 {mu}m sized Copper pillars were performed. {yields} The evolution of dislocation structures is interlinked with the mechanical response. {yields} Well aligned samples do not store GNDs to a strain of approximately 0.18. {yields} Poorly aligned samples immediately store GNDs and form dislocation boundaries. - Abstract: In situ micro-Laue diffraction was used to study the plasticity in three 7 {mu}m, initially identical, single-crystalline Cu pillars during compression. Movements of the Laue spot as well as Laue spot streaking were analyzed to obtain real-time insights into the storage of excess dislocations and the possible formation of dislocation cell structures. The results reveal that instrumental constraints lead to dislocation storage at the sample base and top, but will not affect the storage of excess dislocations in the sample center in case of an ideal alignment. In contrast, misaligned samples show early yielding due to the activation of an unpredicted slip system, storage of excess dislocations also in the sample center and, at a later stage, the formation of a complex dislocation substructure.

  2. Stability analysis and determination of rock pillar between two adjacent caverns in different regions of Asmari formation in Iran

    Institute of Scientific and Technical Information of China (English)

    Abdollahipour Abolfazl a; ⇑; Ghannadshirazi Hossein b

    2014-01-01

    Large underground caverns are commonly used in variety of applications. In many cases, because of the geomechanical limitations of dimensions and requirement of high volume, several parallel caverns are used. Plastic zone integration requires a larger rock pillar distance of theses adjacent caverns while eco-nomic and access reasons require smaller distance. In Iran many underground projects are located in West and South West. Asmari formation covers a large part of these regions. The stability of underground spaces that are constructed or will be constructed in this formation has been investigated. A proper cross section based on plastic analysis and a stability criterion has been proposed for each region. Finally, in each case, allowable rock pillar between adjacent caverns with similar dimension was determined with two methods (numerical analysis and fire service law). Results show that Fire Service Law uses a very con-servative safety factor and it was proposed to use a correction factor for allowable distance based on application of underground space.

  3. Electromigration Reliability and Morphologies of Cu Pillar Flip-Chip Solder Joints with Cu Substrate Pad Metallization

    Science.gov (United States)

    Lai, Yi-Shao; Chiu, Ying-Ta; Chen, Jiunn

    2008-10-01

    The Cu pillar is a thick underbump metallurgy (UBM) structure developed to alleviate current crowding in a flip-chip solder joint under operating conditions. We present in this work an examination of the electromigration reliability and morphologies of Cu pillar flip-chip solder joints formed by joining Ti/Cu/Ni UBM with largely elongated ˜62 μm Cu onto Cu substrate pad metallization using the Sn-3Ag-0.5Cu solder alloy. Three test conditions that controlled average current densities in solder joints and ambient temperatures were considered: 10 kA/cm2 at 150°C, 10 kA/cm2 at 160°C, and 15 kA/cm2 at 125°C. Electromigration reliability of this particular solder joint turns out to be greatly enhanced compared to a conventional solder joint with a thin-film-stack UBM. Cross-sectional examinations of solder joints upon failure indicate that cracks formed in (Cu,Ni)6Sn5 or Cu6Sn5 intermetallic compounds (IMCs) near the cathode side of the solder joint. Moreover, the ~52- μm-thick Sn-Ag-Cu solder after long-term current stressing has turned into a combination of ~80% Cu-Ni-Sn IMC and ~20% Sn-rich phases, which appeared in the form of large aggregates that in general were distributed on the cathode side of the solder joint.

  4. Highly compact (4F2) and well behaved nano-pillar transistor controlled resistive switching cell for neuromorphic system application.

    Science.gov (United States)

    Chen, Bing; Wang, Xinpeng; Gao, Bin; Fang, Zheng; Kang, Jinfeng; Liu, Lifeng; Liu, Xiaoyan; Lo, Guo-Qiang; Kwong, Dim-Lee

    2014-10-31

    To simplify the architecture of a neuromorphic system, it is extremely desirable to develop synaptic cells with the capacity of low operation power, high density integration, and well controlled synaptic behaviors. In this study, we develop a resistive switching device (ReRAM)-based synaptic cell, fabricated by the CMOS compatible nano-fabrication technology. The developed synaptic cell consists of one vertical gate-all-around Si nano-pillar transistor (1T) and one transition metal-oxide based resistive switching device (1R) stacked on top of the vertical transistor directly. Thanks to the vertical architecture and excellent controllability on the ON/OFF performance of the nano-pillar transistor, the 1T1R synaptic cell shows excellent characteristics such as extremely high-density integration ability with 4F(2) footprint, ultra-low operation current (<2 nA), fast switching speed (<10 ns), multilevel data storage and controllable synaptic switching, which are extremely desirable for simplifying the architecture of neuromorphic system.

  5. Preparación y propiedades de una arcilla montmorillonita pilareada con polihidroxicationes de aluminio Preparation and properties of a montmorillonite clay pillared with aluminium polyhydroxications

    Directory of Open Access Journals (Sweden)

    Sibele B. C. Pergher

    1999-09-01

    Full Text Available Montmorillonite clay from Brazil was pillared with aluminium polyhydroxications. The influence of Al/Mont ratio and calcination temperature in the properties of the prepared materials was studied. Results showed that the pillarization process increases the basal spaces of the natural clay from 9,7 to 18,5Å and the superficial area from 41 to ~230m2/g. The calcination process at different temperatures showed that the pillared material was stable until 600oC but the adequate temperature for calcination was 450oC. Materials prepared with different Al/Mont ratios showed the maximum Al incorporation for ratios >10meq Al/g and a good distribution for rations >15meq Al/g.

  6. Key pillars of data interoperability in Earth Sciences - INSPIRE and beyond

    Science.gov (United States)

    Tomas, Robert; Lutz, Michael

    2013-04-01

    The well-known heterogeneity and fragmentation of data models, formats and controlled vocabularies of environmental data limit potential data users from utilising the wealth of environmental information available today across Europe. The main aim of INSPIRE1 is to improve this situation and give users possibility to access, use and correctly interpret environmental data. Over the past years number of INSPIRE technical guidelines (TG) and implementing rules (IR) for interoperability have been developed, involving hundreds of domain experts from across Europe. The data interoperability specifications, which have been developed for all 34 INSPIRE spatial data themes2, are the central component of the TG and IR. Several of these themes are related to the earth sciences, e.g. geology (including hydrogeology, geophysics and geomorphology), mineral and energy resources, soil science, natural hazards, meteorology, oceanography, hydrology and land cover. The following main pillars for data interoperability and harmonisation have been identified during the development of the specifications: Conceptual data models describe the spatial objects and their properties and relationships for the different spatial data themes. To achieve cross-domain harmonization, the data models for all themes are based on a common modelling framework (the INSPIRE Generic Conceptual Model3) and managed in a common UML repository. Harmonised vocabularies (or code lists) are to be used in data exchange in order to overcome interoperability issues caused by heterogeneous free-text and/or multi-lingual content. Since a mapping to a harmonized vocabulary could be difficult, the INSPIRE data models typically allow the provision of more specific terms from local vocabularies in addition to the harmonized terms - utilizing either the extensibility options or additional terminological attributes. Encoding. Currently, specific XML profiles of the Geography Markup Language (GML) are promoted as the standard

  7. Aespoe Pillar Stability Experiment. Final experiment design, monitoring results and observations

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Eng, Anders [Acuo Engineering AB, Linkoeping (Sweden)

    2005-12-15

    The field part of the Aespoe Pillar Stability Experiment at the Aespoe Hard Rock Laboratory (HRL) was finished in 2004. The experiment was designed to induce and monitor the process of brittle failure, spalling, in a fractured rock mass under controlled conditions. The field part was successfully conducted and a large data set was obtained. This report presents the final design of the experiment, the results of the monitoring, and the observations made during the spalling process and when the spalled rock was removed. When heating of the rock was initiated the rock responded quickly. After only a few days the spalling process was activated in the notch, as indicated by the acoustic emission system, and shortly thereafter displacement readings were recorded. Contraction (radial expansion) of the rock was recorded by several instruments before the notch reached the instrument levels. This contraction is probably the result of a 3D re-distribution of the stresses. The temperature increase in the system was both slower and reached a steady state much earlier than predicted by the numerical models. The propagation of the notch was therefore halted after approximately one month of heating. The power to the electrical heaters was therefore doubled. Spalling then started up again, and in one month's time it had propagated to a depth of approximately five metres in the hole. A second steady state was now reached, but this time the heater power was kept constant for a while to let the rock settle before the confinement pressure was reduced from 700 kPa to 0 in decrements of 50 kPa. The rock mass response to the pressure drop was very limited until the pressure was lowered to approximately 200 kPa (the atmospheric pressure is not included in the given pressure values). Large displacements and a high acoustic emission hit frequency were then measured in the open hole. After the de-pressurization of the confined hole, the heaters were left on for approximately one week

  8. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available Thermal comfort is influenced by environmental parameters as well as other influences including asymmetric heating and cooling conditions. Additionally, some aspects of thermal comfort may be exploited so as to enable a building to operate within a...

  9. Synthesis of cobalt-, nickel-, copper-, and zinc-based, water-stable, pillared metal-organic frameworks.

    Science.gov (United States)

    Jasuja, Himanshu; Jiao, Yang; Burtch, Nicholas C; Huang, You-gui; Walton, Krista S

    2014-12-02

    The performance of metal-organic frameworks (MOFs) in humid or aqueous environments is a topic of great significance for a variety of applications ranging from adsorption separations to gas storage. While a number of water-stable MOFs have emerged recently in the literature, the majority of MOFs are known to have poor water stability compared to zeolites and activated carbons, and there is therefore a critical need to perform systematic water-stability studies and characterize MOFs comprehensively after water exposure. Using these studies we can isolate the specific factors governing the structural stability of MOFs and direct the future synthesis efforts toward the construction of new, water-stable MOFs. In this work, we have extended our previous work on the systematic water-stability studies of MOFs and synthesized new, cobalt-, nickel-, copper-, and zinc-based, water-stable, pillared MOFs by incorporating structural factors such as ligand sterics and catenation into the framework. Stability is assessed by using water vapor adsorption isotherms along with powder X-ray diffraction patterns and results from BET modeling of N2 adsorption isotherms before and after water exposure. As expected, our study demonstrates that unlike the parent DMOF structures (based on Co, Ni, Cu, and Zn metals), which all collapse under 60% relative humidity (RH), their corresponding tetramethyl-functionalized variations (DMOF-TM) are remarkably stable, even when adsorbing more than 20 mmol of H2O/g of MOF at 80% RH. This behavior is due to steric factors provided by the methyl groups grafted on the BDC (benzenedicarboxylic acid) ligand, as shown previously for the Zn-based DMOF-TM. Moreover, 4,4',4″,4‴-benzene-1,2,4,5-tetrayltetrabenzoic acid based, pillared MOFs (based on Co and Zn metals) are also found to be stable after 90% RH exposure, even when the basicity of the bipyridyl-based pillar ligand is low. This is due to the presence of catenation in their frameworks, similar to

  10. Removal of aqueous Pb(II) by adsorption on Al2O3-pillared layered MnO2

    Science.gov (United States)

    Zhang, Haipeng; Gu, Liqin; Zhang, Ling; Zheng, Shourong; Wan, Haiqin; Sun, Jingya; Zhu, Dongqiang; Xu, Zhaoyi

    2017-06-01

    In the present study, Al2O3-pillared layered MnO2 (p-MnO2) was synthesized using δ-MnO2 as precursor and Pb(II) adsorption on p-MnO2 and δ-MnO2 was investigated. To clarify the adsorption mechanism, Al2O3 was also prepared as an additional sorbent. The adsorbents were characterized by X-ray fluorescence analysis, powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 adsorption-desorption. Results showed that in comparison with pristine δ-MnO2, Al2O3 pillaring led to increased BET surface area of 166.3 m2 g-1 and enlarged basal spacing of 0.85 nm. Accordingly, p-MnO2 exhibited a higher adsorption capacity of Pb(II) than δ-MnO2. The adsorption isotherms of Pb(II) on δ-MnO2 and Al2O3 pillar fitted well to the Freundlich model, while the adsorption isotherm of Pb(II) on p-MnO2 could be well described using a dual-adsorption model, attributed to Pb(II) adsorption on both δ-MnO2 and Al2O3. Additionally, Pb(II) adsorption on δ-MnO2 and p-MnO2 followed the pseudo second-order kinetics, and a lower adsorption rate was observed on p-MnO2 than δ-MnO2. The Pb(II) adsorption capacity of p-MnO2 increased with solution pH and co-existing cation concentration, and the presence of dissolved humic acid (10.2 mg L-1) did not markedly impact Pb(II) adsorption. p-MnO2 also displayed good adsorption capacities for aqueous Cu(II) and Cd(II). Findings in this study indicate that p-MnO2 could be used as a highly effective adsorbent for heavy metal ions removal in water.

  11. Mechanism for Spontaneous Growth of Nanopillar Arrays in Ultrathin Films Subject to a Thermal Gradient

    CERN Document Server

    Dietzel, Mathias

    2010-01-01

    Several groups have reported spontaneous formation of periodic pillar-like arrays in molten polymer nanofilms confined within closely spaced substrates maintained at different temperatures. These formations have been attributed to a radiation pressure instability caused by acoustic phonons. In this work, we demonstrate how variations in the thermocapillary stress along the nanofilm interface can produce significant periodic protrusions in any viscous film no matter how small the initial transverse thermal gradient. The linear stability analysis of the interface evolution equation explores an extreme limit of B\\'{e}nard-Marangoni flow peculiar to films of nanoscale dimensions in which hydrostatic forces are altogether absent and deformation amplitudes are small in comparison to the pillar spacing. Finite element simulations of the full nonlinear equation are also used to examine the array pitch and growth rates beyond the linear regime. Inspection of the Lyapunov free energy as a function of time confirms that...

  12. Fabrication of GaN structures with embedded network of voids using pillar patterned GaN templates

    Science.gov (United States)

    Svensk, O.; Ali, M.; Riuttanen, L.; Törmä, P. T.; Sintonen, S.; Suihkonen, S.; Sopanen, M.; Lipsanen, H.

    2013-05-01

    In this paper we report on the MOCVD growth and characterization of GaN structures and InGaN single quantum wells grown on pillar patterned GaN/sapphire templates. During the regrowth a network of voids was intentionally formed at the interface of sapphire substrate and GaN epitaxial layer. The regrowth process was found to decrease the threading dislocation density of the overgrown layer. The quantum well sample grown on patterned template showed significantly higher optical output in photoluminescence measurements compared to the reference sample with identical internal quantum efficiency characteristics. We attribute the increase to enhanced light extraction efficiency caused by strong scattering and redirection of light from the scattering elements.

  13. Visible light induced TiO2 pillared MMT photocatalyst coupling-doped with S and N

    Institute of Scientific and Technical Information of China (English)

    ZHOU An-ning; CHEN You-mei; YU Zhan-jiang

    2008-01-01

    Visible light induced titanium dioxide (TiO2) pillared montmorillonite clay (MMT)photocatalyst coupling-doped with S and N elements was prepared by the two-step ad-sorption method. The photocatalyst was characterized by X-ray photoelectron spectros-copy (XPS) and ultraviolet-visible (UV-vis) absorption spectroscopy. The photocatalysic ef-ficacy of the prepared photocatalyst for degrading gaseous formaldehyde was evaluatedunder visible light irradiation. The degrading rate of gaseous formaldehyde is nearly 85%in 300 min visible light irradiation. The results demonstrate that the much higher visiblelight photocatalytic activity of the photocatalyst is due to the synergistic effects of coupling-doping of S and N elements to TiO2, extensive specific surface area of MMT and quantumsized efficacy between layers of MMT.

  14. Risk analysis of the proxy life-cycle investments in the second pillar pension scheme in Croatia

    Directory of Open Access Journals (Sweden)

    Renata Kovačević

    2015-03-01

    Full Text Available In this article we analyze the expected risk of pension funds with different risk profiles in the proxy life-cycle model of investments for the 2nd pillar pension scheme in Croatia. The benefits of implementing proxy life-cycle investments, compared to the previous model of mandatory pension funds investments, are clearly visible in the total expected amount of accumulated savings from the risk/return perspective. However, those benefits are partially diminished by the fact that the expected risk of a pension fund with the lowest risk profile is not substantially different from the expected risk of a pension fund with a medium risk profile, due to the lack of diversification. Additionally, we analyze the robustness of the proxy life-cycle model to a sudden and severe market shock, where we determine the presence of risk for those members who choose to switch to a pension fund with a lower risk profile at an unfavorable moment.

  15. High-Temperature In situ Deformation of GaAs Micro-pillars: Lithography Versus FIB Machining

    Science.gov (United States)

    Chen, M.; Wehrs, J.; Michler, J.; Wheeler, J. M.

    2016-11-01

    The plasticity of silicon-doped GaAs was investigated between 25°C and 400°C using microcompression to prevent premature failure by cracking. Micropillars with diameters of 2.5 μm were fabricated on a < 100rangle -oriented GaAs single crystal by means of both conventional lithographic etching techniques and focused ion beam machining and then compressed in situ in the scanning electron microscope (SEM). A transition in deformation mechanisms from partial dislocations to perfect dislocations was found at around 100°C. At lower temperatures, the residual surface layer from lithographic processing was found to provide sufficient constraint to prevent crack opening, which resulted in a significant increase in ductility over FIB-machined pillars. Measured apparent activation energies were found to be significantly lower than previous bulk measurements, which is mostly attributed to the silicon dopant and to a lesser extent to the size effect.

  16. Deep sub micrometer imaging of defects in copper pillars by X-ray tomography in a SEM.

    Science.gov (United States)

    Laloum, D; Lorut, F; Bertheau, J; Audoit, G; Bleuet, P

    2014-03-01

    The potential of X-ray nanotomography hosted in a SEM in presented in this paper. In order to improve the detail detectability of this system, which is directly related to the X-ray source size, thin metal layers have been studied and installed in the equipment. A 3D resolution pattern has been created in order to determine the smallest detectable features by this setup. This sample is a 25 μm diameter copper pillar in which size-controlled holes have been milled using a plasma-focused ion beam. This pattern has then been scanned and the resulting 3D reconstruction demonstrates that the instrument is able to detect 500 nm diameter voids in a copper interconnection, as used in 3D integration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Wettability behavior of water droplet on organic-polluted fused quartz surfaces of pillar-type nanostructures applying molecular dynamics simulation

    Science.gov (United States)

    Chen, Jiaxuan; Chen, Wenyang; Xie, Yajing; Wang, Zhiguo; Qin, Jianbo

    2017-02-01

    Molecular dynamics (MD) is applied to research the wettability behaviors of different scale of water clusters absorbed on organic-polluted fused quartz (FQ) surface and different surface structures. The wettability of water clusters is studied under the effect of organic pollutant. With the combined influence of pillar height and interval, the stair-step Wenzel-Cassie transition critical line is obtained by analyzing stable state of water clusters on different surface structures. The results also show that when interval of pillars and the height of pillars keep constant respectively, the changing rules are exactly the opposite and these are termed as the "waterfall" rules. The substrate models of water clusters at Cassie-Baxter state which are at the vicinity of critical line are chosen to analyze the relationship of HI (refers to the pillar height/interval) ratio and scale of water cluster. The study has found that there is a critical changing threshold in the wettability changing process. When the HI ratio keeps constant, the wettability decreases first and then increase as the size of cluster increases; on the contrary, when the size of cluster keeps constant, the wettability decreases and then increase with the decrease of HI ratio, but when the size of water cluster is close to the threshold the HI ratio has little effect on the wettability.

  18. A randomised controlled trial on the Four Pillars Approach in managing pregnant women with anaemia in Yogyakarta-Indonesia: a study protocol

    NARCIS (Netherlands)

    Widyawati, W.; Jans, S.; Bor, H.; Siswishanto, R.; Dillen, J. van; Lagro-Janssen, A.

    2014-01-01

    BACKGROUND: Anaemia is a common health problem among pregnant women and a contributing factor with a major influence on maternal mortality in Indonesia. The Four Pillars Approach is a new approach to anaemia in pregnancy, combining four strategies to improve antenatal and delivery care. The primary

  19. Highly ordered Al-doped ZnO nano-pillar and tube structures as hyperbolic metamaterials for mid-infrared plasmonics

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Takayama, Osamu; Panah, Mohammad Esmail Aryaee

    Fabrication of large area metamaterial structures in a reproducible manner is a tremendous challenge. Here, we realize the fabrication of plasmonic metamaterials for the mid-infrared wavelength region composed of Al-doped ZnO (AZO) pillars by a combination of atomic layer deposition and reactive...

  20. Research Progress in Preparation of Ti-Pillared Montmorillonite%钛柱撑蒙脱石制备研究进展

    Institute of Scientific and Technical Information of China (English)

    张燕青; 张一敏; 刘涛

    2011-01-01

    钛柱撑蒙脱石作为一种大层间距的微孔材料,是一种多酸型、性能优异的催化剂和吸附剂,成为近几年来纳米多孔材料研究的热点之一.综述了钛柱撑蒙脱石制备的基本原理、主要工序、各工序工艺条件及其对柱撑蒙脱石结构与性能的影响的最新研究进展.评述了尚存在的若干科学问题和今后应重点发展方向.%As a large basal spacing, micro-pore interlay pillared material, Ti-pillared montmorillonite is a kind of multi-acid excellent catalyst and absorbent. It is one of research hotspots about porous materials in the world. In this paper,preparation theory of the pillared montmorillonite was reviewed as well as main preparation processes, conditions of each process and their effects on structure and properties of pillared montmorillonite. Several key problems and prospects were also discussed.

  1. CT-based study of internal structure of the anterior pillar in extinct hominins and its implications for the phylogeny of robust Australopithecus.

    Science.gov (United States)

    Villmoare, Brian A; Kimbel, William H

    2011-09-27

    The phylogeny of the early African hominins has long been confounded by contrasting interpretations of midfacial structure. In particular, the anterior pillar, an externally prominent bony column running vertically alongside the nasal aperture, has been identified as a homology of South African species Australopithecus africanus and Australopithecus robustus. If the anterior pillar is a true synapomorphy of these two species, the evidence for a southern African clade of Australopithecus would be strengthened, and support would be given to the phylogenetic hypothesis of an independent origin for eastern and southern African "robust" australopith clades. Analyses of CT data, however, show that the internal structure of the circumnasal region is strikingly different in the two South African australopith species. In A. africanus the anterior pillar is a hollow column of cortical bone, whereas in A. robustus it is a column of dense trabecular bone. Although Australopithecus boisei usually lacks an external pillar, it has internal morphology identical to that seen in A. robustus. This result supports the monophyly of the "robust" australopiths and suggests that the external similarities seen in the South African species are the result of parallel evolution.

  2. Technique of coal mining and gas extraction without coal pillar in multi-seam with low permeability

    Institute of Scientific and Technical Information of China (English)

    YUAN Liang

    2009-01-01

    Aimed at the low mining efficiency in deep multi-seams because of high crustal stress, high gas content, low permeability, the compound "three soft" roof and the trouble-some safety situation encountered in deep level coal exploitation, proposed a new idea of gob-side retaining without a coal-pillar and Y-style ventilation in the first-mined key pres-sure-relieved coal seam and a new method of coal mining and gas extraction. The follow-ing were discovered: the dynamic evolution law of the crannies in the roof is influenced by mining, the formative rule of "the vertical cranny-abundant area" along the gob-side, the distribution of air pressure field in the gob, and the flowing rule of pressure-relieved gas in a Y-style ventilation system. The study also established a theoretic basis for a new mining method of coal mining and gas extraction which is used to extract the pressure-relieved gas by roadway retaining boreholes instead of roadway boreholes. Studied and resolved many difficult key problems, such as, fast roadway retaining at the gob-side without a coal-pillar, Y-style ventilation and extraction of pressure-relieved gas by roadway retaining boreholes, and so on. The study innovated and integrated a whole set of technical sys-tems for coal and pressure relief gas extraction. The method of the pressure-relieved gas extraction by roadway retaining had been successfully applied in 6 typical working faces in the Huainan and Huaibei mining areas. The research can provide a scientific and reliable technical support and a demonstration for coal mining and gas extraction in gaseous deep multi-seams with low permeability.

  3. A novel porous anionic metal–organic framework with pillared double-layer structure for selective adsorption of dyes

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shu-Nan; Han, Yi; Wang, Bin; Zhao, Cui; Yang, Fan; Zhao, Min-Jian; Xie, Ya-Bo, E-mail: xieyabo@bjut.edu.cn; Li, Jian-Rong

    2016-01-15

    A novel porous anionic metal–organic framework, (Me{sub 2}NH{sub 2}){sub 2}[Zn{sub 2}L{sub 1.5}bpy]·2DMF (BUT-201; H{sub 4}L=4,8-disulfonaphthalene-2,6-dicarboxylic acid; bpy=4,4-bipyridine; DMF=N,N-dimethylformamide), with pillared double-layer structure has been synthesized through the reaction of a sulfonated carboxylic acid ligand and Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 4,4-bipyridine as a co-ligand. It is found that BUT-201 can rapidly adsorb cationic dyes with a smaller size such as Methylene Blue (MB) and Acriflavine Hydrochloride (AH) by substitution of guest (CH{sub 3}){sub 2}NH{sub 2}{sup +}, but has no adsorption towards the cationic dyes with a lager size such as Methylene Violet (MV), the anionic dyes like C. I. Acid Yellow 1 (AY1) and neutral dyes like C. I. Solvent Yellow 7 (SY7), respectively. The results show that the adsorption behavior of BUT-201 relates not only to the charge but also to the size/shape of dyes. Furthermore, the adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}. - Graphical abstract: A porous anionic metal–organic framework (BUT-201) can selectively adsorb the cationic dyes by cationic guest molecule substitution, and the adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}. - Highlights: • An anionic metal-organic framework (BUT-201) has been synthesized and characterized. • BUT-201 has a three-dimensional (3D) pillared double-layer structure. • BUT-201 can selectively and rapidly adsorb cationic dyes. • The adsorbed dyes can be gradually released in the methanol solution of LiNO{sub 3}.

  4. Comparison of vacuum glazing thermal performance predicted using two- and three-dimensional models and their experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yueping; Hyde, Trevor; Hewitt, Neil [Centre for Sustainable Technologies, School of the Built Environment, University of Ulster, Newtownabbey, BT37 0QB Northern Ireland (United Kingdom); Eames, Philip C. [Centre for Research in Renewable Energy Science and Technology, University of Loughborough (United Kingdom); Norton, Brian [Dublin Energy Lab, Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2009-09-15

    Thermal performance of vacuum glazing predicted by using two-dimensional (2-D) finite element and three-dimensional (3-D) finite volume models are presented. In the 2-D model, the vacuum space, including the pillar arrays, was represented by a material whose effective thermal conductivity was determined from the specified vacuum space width, the heat conduction through the pillar array and the calculated radiation heat transfer between the two interior glass surfaces within the vacuum gap. In the 3-D model, the support pillar array was incorporated and modelled within the glazing unit directly. The predicted difference in overall heat transfer coefficients between the two models for the vacuum window simulated was less than 3%. A guarded hot box calorimeter was used to determine the experimental thermal performance of vacuum glazing. The experimentally determined overall heat transfer coefficient and temperature profiles along the central line of the vacuum glazing are in very good agreement with the predictions made using the 2-D and 3-D models. (author)

  5. Determination of adsorptive and catalytic properties of copper, silver and iron contain titanium-pillared bentonite for the removal bisphenol A from aqueous solution

    Science.gov (United States)

    Tomul, Fatma; Turgut Basoglu, Funda; Canbay, Hale

    2016-01-01

    Ti-pillared bentonite, Cu, Ag and Fe modified Ti-pillared bentonite and Cu/Ti- and Fe/Ti-mixed pillared bentonite were synthesized using different titanium sources by direct synthesis or by modification after synthesis. The effects of synthesis conditions on the surface characteristics, pore structure and acidity of the pillared bentonites were investigated by SEM⿿EDS, XPS, XRD, N2-adsorption/desorption and FTIR analyses before and after ammonia adsorption. The results of EDS, XPS and XRD analysis confirmed that titanium, copper, silver and iron were incorporated into the bentonite structure. In the XRD patterns, the formation of delaminated structure reflecting the non-parallel distribution of the bentonite layers by pillaring with Ti, Cu/Ti and Fe/Ti-pillars was observed. XPS spectra indicated the presence of TiO2, CuO, Ag and Ag2O and Fe2O3 species depending on the source of active metals in the synthesized samples. In the FTIR spectra, an increase in the Bronsted/Lewis peak intensity was observed with the loading of copper and iron, whereas a decrease in Lewis and Bronsted acidities was observed with incorporation of silver. Adsorption studies indicated that the adsorption capacity of the sample synthesized using titanium (IV) propoxide and incorporating iron to the structure by ion exchange (Fe-PTi-PILC) were higher than those in other samples. The adsorption of BPA (bisphenol A) by all tested samples was found to fit the Langmuir isotherm. In the catalytic wet peroxide oxidation (CWPO) over PTi-PILC (prepared by titanium (IV) propoxide), Fe-PTi-PILC and Cu-PTi-PILC (prepared by copper impregnated Ti-pillared bentonite) samples, BPA values close to complete conversion were achieved within 30 min at 25 °C, pH 4 and 5 g/L mcat. CWPO results showed that increasement of pH causes a decrease the rate of oxidation. On the other hand, by the time catalyst and BPA concentration is increased, the rate of oxidation is increased as well.

  6. The performances of silicon solar cell with core-shell p-n junctions of micro-nano pillars fabricated by cesium chloride self-assembly and dry etching

    Science.gov (United States)

    Liu, Jing; Zhang, Xinshuai; Dong, Gangqiang; Liao, Yuanxun; Wang, Bo; Zhang, Tianchong; Yi, Futing

    2014-03-01

    Silicon micro-nano pillars are cost-efficiently integrated using twice cesium chloride (CsCl) islands lithography technique and dry etching for solar cell applications. The micro PMMA islands are fabricated by inductively coupled plasma (ICP) dry etching with micro CsCl islands as masks, and the nano CsCl islands with nano sizes then are made on the surface of micro PMMA islands and silicon. By ICP dry etching with the mask of micro PMMA islands and nano CsCl islands, the micro-nano silicon pillars are made and certain height micro pillars are randomly positioned between dense arrays of nano pillars with different morphologies by controlling etching conditions. With 300 nm depth p-n junction detected by secondary-ion mass spectrometry (SIMS), the micro pillars of the diameter about 1 μm form the core-shell p-n junction to maximize utility of p-n junction interface and enable efficient free carrier collection, and the nano tapered pillars of 150 nm diameter are used to decrease reflection by a graded-refractive-index. Compared to single micro or nano pillar arrayed cells, the co-integrated solar cell with micro and nano pillars demonstrates improved photovoltaic characteristic that is a photovoltaic conversion efficiency (PCE) of 15.35 % with a short circuit current density ( J sc) of 38.40 mA/cm2 and an open circuit voltage ( V oc) of 555.7 mV, which benefits from the advantages of micro-nano pillar structures and can be further improved upon process optimization.

  7. Influência do método de síntese no processo de pilarização com titânio de uma esmectita da região amazônica Influence of the synthesis method on the process of pillarization of smectite from the amazonic region with titanium

    Directory of Open Access Journals (Sweden)

    D. L. Guerra

    2006-12-01

    Full Text Available Amostras de argila esmectítica provenientes do município de Serra Madureira no Estado do Acre foram utilizadas no processo de pilarização. As matrizes natural e pilarizada foram caracterizadas por difração de raios X, espectroscopia no infravermelho com transformada de Fourier, análises térmicas diferencial e gravimétrica, microscopia eletrônica de varredura, espectroscopia de raios X por energia dispersiva e análise textural. As soluções pilarizantes de titânio, Ti(OC2H54 e TiCl4, foram analisadas por espectroscopia no infravermelho com transformada de Fourier. O íon intercalante foi obtido através da reação química entre as soluções de Ti(OC2H54 e HCl na proporção aproximada de HCl/Ti=1 e soluções de TiCl4 em reação com etanol com relação Ti/argila= 25 mmol Ti/g. A intercalação da notronita foi efetuada utilizando-se de dois métodos: com a solução de acido clorídrico incorporada paulatinamente na solução de etóxido de titânio, e utilizando o cloreto de titânio em solução de etanol, com vigorosa agitação a 25 ºC durante 3 h e com calcinação a 450 ºC e 600 ºC. Os resultados de difração de raios X do processo de pilarização mostraram alterações no espaçamento basal de 15,30 Å para 18,76 Å, e na área de superfície específica de 44,37 m²/g para 188,72 m²/g. A estabilidade térmica da argila natural foi otimizada com o processo de pilarização.Smectite clays of the State of Acre, Brazil, were used for the pillarization process. The natural and pillarized matrices were characterized by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR, thermal analysis, scanning electron microscopy, energy dispersive spectroscopy and textural analysis. The titanium pillarized solutions Ti(OC2H54 and TiCl4 were analyzed by FTIR. The intercalation ion was obtained by reacting Ti(OC2H54 with HCl (HCl/Ti ~ 1 and TiCl4 with ethanol (Ti/clay ~ 25 mmol Ti/g. The notronite intercalation was

  8. 柱形铜凸点在热力耦合场中的原子迁移%Atomic migration of Cu-pillar bumps in thermomechanical coupling fields

    Institute of Scientific and Technical Information of China (English)

    何俐萍; 邬博义; 李艳; 张道姝; 黄洪钟

    2011-01-01

    With further miniaturization and harsh service loading,the failure problems of atomic migration for solder joints become more dominative in integrated circuit(IC) packaging.The temperature difference caused by thermal properties and electrical resistivity among different materials is a vital factor for IC package solder joints.In consideration of such a new lip-chip interconnect form as a Cu-pillar bump,thermo-migration and stress-migration of Cu-pillar bumps in thermomechanical coupling fields were investigated via the kinetic theory and viscoplastic mechanical analysis by means of finite element method.Informed of influencing factors of atomic migration,we obtained such parameters as temperature gradient and stress distribution in a specific model under temperature load,and then concluded the failure mechanism and occurrence conditions of atomic migration in multi-field coupling.The established failure models of atomic migration in the paper are expected to help improving the reliability in IC packaging.%随着尺寸的进一步微型化和载荷严酷化,集成电路(integrated circuit,IC)封装焊点中的原子迁移失效问题越来越突出。由于材料热性能和电阻率的差异而造成的温差是封装焊点所要面对的主要问题之一。针对铜柱形凸点这种新型倒装芯片互连形式,通过热动力学理论和黏塑性力学分析,运用有限元方法研究了热场和力场耦合作用下柱形铜凸点的热迁移和应力迁移现象。通过分析温度载荷模型下影响原子迁移的多个因素,提取了温度梯度和应力分布等关键参数,进而得到热力耦合场作用下原子迁移的失效机制和发生条件。所建立的失效模型有助于促进IC封装方面原子迁移的可靠性改善工作。

  9. Inter-examiner reliability of the diagnosis of cervical pillar hyperplasia (CPH and the correlation between CPH and spinal degenerative joint disease (DJD

    Directory of Open Access Journals (Sweden)

    Mauron Damien

    2003-12-01

    Full Text Available Abstract Background Cervical pillar hyperplasia (CPH is a recently described phenomenon of unknown aetiology. Its clinical importance is poorly understood at the present time; therefore, the objective of this study was to determine (1 the inter-examiner reliability of detecting CPH and (2 if there is a clinically important correlation (r > 0.4 between the number of cervical spine levels showing signs of degenerative joint disease (DJD and CPH. Methods The sample consisted of 320 radiographs of human male and female subjects who ranged from 40 to 79 years of age. The inter-examiner reliability of assessing the presence/absence of pillar hyperplasia was evaluated on 50 neutral lateral radiographs by two examiners using line drawings and it was quantified using the kappa coefficient of concordance. To determine the presence/absence of hyperplastic pillars as well as the presence/absence of DJD at each intervertebral disc and zygapophysial joint, 320 AP open mouth, AP lower cervical and neutral lateral radiographs were then examined. The unpaired t-test at the 5% level of significance was performed to test for a statistically significant difference between the number of levels affected by DJD in patients with and without hyperplasia. The Spearman's rho at the 5% level of significance was performed to quantify the correlation between DJD and age. Results The inter-examiner reliability of detecting cervical pillar hyperplasia was moderate with a kappa coefficient of 0.51. The unpaired t-test indicated that there was no statistically significant difference (p > 0.05 between the presence/absence of cervical pillar hyperplasia and the number of levels affected by DJD in an age-matched population, regardless of whether all elements were considered together, or the discs and facets were analyzed separately. A Spearman correlation rank of 0.67 (p Conclusion Cervical pillar hyperplasia is a reasonable concept that requires further research. Its evaluation is

  10. 某车型A柱风噪优化研究%Study on Aerodynamic Noise Optimization for a Vehicle A-pillar

    Institute of Scientific and Technical Information of China (English)

    王俊; 龚旭; 张涛; 陈如意

    2015-01-01

    Investigation is made to a Chinese brand vehicle which has awful aerodynamic noise in cross wind environment, it is found that A-pillar design defect makes it a noise source in cross wind. It is identified based on CFD analysis method that airflow separation zone is markedly decreased by installing A-pillar garnish and modifying the A-pillar surface. Then the optimization of adding A-pillar garnish has been tested in wind tunnel, which includes the SPL (sound pressure level) test on the side window surface and in the passenger cabinet, the results show that the average SPL of test point on side window surface and the speech intelligibility index in passenger cabinet have a distinct improvement. Finally the design key points and noise improvement measures for A-pillar is summarized, the crosswind flow field analysis for A-pillar is necessary in car body design process.%针对某自主车型侧风下出现风噪较大的问题,查找原因发现A柱设计缺陷使其在侧风下成为一个显著的噪声源。基于CFD分析方法发现,通过增加A柱装饰件和修改A柱型面,均能明显减小气流分离区。在风洞中对增加A柱装饰件的优化方案进行了由车外至车内的风噪测试,测试结果表明,该方案对侧窗表面声压级和语言清晰度有明显的优化效果。总结出A柱的设计要点及风噪的改善措施,指出在车身开发过程中必须对A柱进行侧风稳态分析。

  11. Effect of Cu pad morphology on direct-Cu pillar formation in CMOS image sensors

    Science.gov (United States)

    Choi, Eunmi; Kim, Areum; Cui, Eunwha; Lee, Ukjae; Son, Hyung Bin; Hahn, Sang June; Pyo, Sung Gyu

    2014-09-01

    We report the feasibility of forming Ni bumps directly on Cu pads in CMOS image sensor (CIS) logic elements formed by Cu wires with diameters of less than 65 nm. The direct Ni bump process proposed in this study simplifies the fabrication process and reduces costs by eliminating the need for Al pad process. In addition, this process can secure the margin of the final layer, enabling the realization of thin camera modules. In this study, we evaluated the effect of pad annealing on the direct formation of Ni bumps over Cu pads. The results suggest that the morphology of the Cu pad varies depending on the annealing sequence, and post-passivation annealing resulted in fewer defects than pad etch annealing. The shear stress of the Ni bumps was 57.77 mgf/m2, which is six times greater than the corresponding reference value. Furthermore, we evaluated the reliability of a chip with an anisotropic conductive film (ACF) and a non-conducting paste (NCP) by using high-temperature storage (HTS), thermal cycling (TC), and wet high-temperature storage (WHTS) reliability tests. The evaluation results suggest the absence of abnormalities in all samples. [Figure not available: see fulltext.

  12. A Case Study: Analyzing City Vitality with Four Pillars of Activity-Live, Work, Shop, and Play.

    Science.gov (United States)

    Griffin, Matt; Nordstrom, Blake W; Scholes, Jon; Joncas, Kate; Gordon, Patrick; Krivenko, Elliott; Haynes, Winston; Higdon, Roger; Stewart, Elizabeth; Kolker, Natali; Montague, Elizabeth; Kolker, Eugene

    2016-03-01

    This case study evaluates and tracks vitality of a city (Seattle), based on a data-driven approach, using strategic, robust, and sustainable metrics. This case study was collaboratively conducted by the Downtown Seattle Association (DSA) and CDO Analytics teams. The DSA is a nonprofit organization focused on making the city of Seattle and its Downtown a healthy and vibrant place to Live, Work, Shop, and Play. DSA primarily operates through public policy advocacy, community and business development, and marketing. In 2010, the organization turned to CDO Analytics ( cdoanalytics.org ) to develop a process that can guide and strategically focus DSA efforts and resources for maximal benefit to the city of Seattle and its Downtown. CDO Analytics was asked to develop clear, easily understood, and robust metrics for a baseline evaluation of the health of the city, as well as for ongoing monitoring and comparisons of the vitality, sustainability, and growth. The DSA and CDO Analytics teams strategized on how to effectively assess and track the vitality of Seattle and its Downtown. The two teams filtered a variety of data sources, and evaluated the veracity of multiple diverse metrics. This iterative process resulted in the development of a small number of strategic, simple, reliable, and sustainable metrics across four pillars of activity: Live, Work, Shop, and Play. Data during the 5 years before 2010 were used for the development of the metrics and model and its training, and data during the 5 years from 2010 and on were used for testing and validation. This work enabled DSA to routinely track these strategic metrics, use them to monitor the vitality of Downtown Seattle, prioritize improvements, and identify new value-added programs. As a result, the four-pillar approach became an integral part of the data-driven decision-making and execution of the Seattle community's improvement activities. The approach described in this case study is actionable, robust, inexpensive

  13. The effect of the depth and groundwater on the formation of sinkholes or ground subsidence associated with abandoned room and pillar lignite mines under static and dynamic conditions

    Science.gov (United States)

    Aydan, Ö.; Ito, T.

    2015-11-01

    It is well known that some sinkholes or subsidence take place from time to time in the areas where abandoned room and pillar type mines exist. The author has been involved with the stability of abandoned mines beneath urbanized residential areas in Tokai region and there is a great concern about the stability of these abandoned mines during large earthquakes as well as in the long term. The 2003 Miyagi Hokubu and 2011 Great East Japan earthquakes caused great damage to abandoned mines and resulted in many collapses. The author presents the effect of the depth and groundwater on the formation of sinkholes or ground subsidence associated with abandoned room and pillar lignite mines under static and dynamic conditions and discusses the implications on the areas above abandoned lignite mines in this paper.

  14. The next chapter in MOF pillaring strategies: Trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms

    KAUST Repository

    Eubank, Jarrod F.

    2011-11-09

    A new pillaring strategy, based on a ligand-to-axial approach that combines the two previous common techniques, axial-to-axial and ligand-to-ligand, and permits design, access, and construction of higher dimensional MOFs, is introduced and validated. Trigonal heterofunctional ligands, in this case isophthalic acid cores functionalized at the 5-position with N-donor (e.g., pyridyl- or triazolyl-type) moieties, are designed and utilized to pillar pretargeted two-dimensional layers (supermolecular building layers, SBLs). These SBLs, based on edge transitive Kagomé and square lattices, are cross-linked into predicted three-dimensional MOFs with tunable large cavities, resulting in isoreticular platforms. © 2011 American Chemical Society.

  15. Significant enhancement of the power conversion efficiency for organic photovoltaic cells due to a P3HT pillar layer containing ZnSe quantum dots.

    Science.gov (United States)

    Kim, Dae Hun; Lee, Young Hun; Lee, Dea Uk; Kim, Tae Whan; Kim, Sungwoo; Kim, Sang Wook

    2012-05-01

    High-efficiency organic photovoltaic (OPV) cells utilizing a poly(3-hexylthiophene) (P3HT) pillar layer containing ZnSe quantum dots (QDs) were fabricated by using a mixed solution method. Scanning electron microscopy and high-resolution transmission electron microscopy images showed that the ZnSe QDs were dispersed in the P3HT layer. The power conversion efficiency of the OPV cells with a P3HT pillar layer containing ZnSe QDs was as much as 100% higher than that of the OPV cells with a planar layer due to an enhancement of the photon-harvesting ability of the congregated P3HT particles containing ZnSe QDs and to an increase of the interfacial region for efficient charge transport.

  16. Suppression of cell-spreading and phagocytic activity on nano-pillared surface: in vitro experiment using hemocytes of the colonial ascidian Botryllus schlosseri

    Directory of Open Access Journals (Sweden)

    L Ballarin

    2015-02-01

    Full Text Available Nano-scale nipple array on the body surface has been described from various invertebrates including endoparasitic and mesoparasitic copepods, but the functions of the nipple array is not well understood. Using the hydrophilized nanopillar sheets made of polystyrene as a mimetic material of the nipple arrays on the parasites’ body surface, we assayed the cell spreading and phagocytosis of the hemocytes of the colonial ascidian Botryllus schlosseri. On the pillared surface, the number of spreading amebocytes and the number of phagocytizing hemocytes per unit area were always smaller than those on the flat surface (Mann-Whitney test, p < 0.05 - 0.001, probably because the effective area for the cell attachment on the pillared surface is much smaller than the area on the flat sheet. The present results supports the idea that the nipple array on the parasites' body surface reduces the innate immune reaction from the host hemocytes.

  17. Effect of the out-of-plane stress on the properties of epitaxial SrTiO3 films with nano-pillar array on Si-substrate

    Science.gov (United States)

    Bai, Gang; Xie, Qiyun; Liu, Zhiguo; Wu, Dongmei

    2015-08-01

    A nonlinear thermodynamic formalism has been proposed to calculate the physical properties of the epitaxial SrTiO3 films containing vertical nano-pillar array on Si-substrate. The out-of-plane stress induced by the mismatch between film and nano-pillars provides an effective way to tune the physical properties of ferroelectric SrTiO3 films. Tensile out-of-plane stress raises the phase transition temperature and increases the out-of-plane polarization, but decreases the out-of-plane dielectric constant below Curie temperature, pyroelectric coefficient, and piezoelectric coefficient. These results showed that by properly controlling the out-of-plane stress, the out-of-plane stress induced paraelectric-ferroelectric phase transformation will appear near room temperature. Excellent dielectric, pyroelectric, piezoelectric properties of these SrTiO3 films similar to PZT and other lead-based ferroelectrics can be expected.

  18. Zero-Bias-Field Spin Torque Induced Oscillation of a Vortex Core in a Magnetic Junction Nano-Pillar with High Magnetoresistance Ratio

    Science.gov (United States)

    Tsukahara, Hiroshi; Imamura, Hiroshi

    2017-06-01

    Spin torque induced dynamics of a vortex core in a magnetic junction nano-pillar is studied by paying special attention to the effect of the in-plane current due to the spatial variation of magnetization. We calculated the motion of the vortex core and the current distribution simultaneously. The current has a considerable in-plane component within the magnetic junction nano-pillar with a high magnetoresistance ratio, and the stable rotational motion of the vortex core is caused by a spin transfer torque from the in-plane current without a bias field when the magnetoresistance ratio is over 180%. It is shown that the zero-bias-field oscillation of the vortex core can be maintained if the magnetoresistance ratio and strength of the in-plane current exceed a certain critical value.

  19. Roadway backfill method to prevent geohazards induced by room and pillar mining: a case study in Changxing coal mine, China

    Science.gov (United States)

    Zhou, Nan; Li, Meng; Zhang, Jixiong; Gao, Rui

    2016-11-01

    Coal mines in the western areas of China experience low mining rates and induce many geohazards when using the room and pillar mining method. In this research, we proposed a roadway backfill method during longwall mining to target these problems. We tested the mechanical properties of the backfill materials to determine a reasonable ratio of backfill materials for the driving roadway during longwall mining. We also introduced the roadway layout and the backfill mining technique required for this method. Based on the effects of the abutment stress from a single roadway driving task, we designed the distance between roadways and a driving and filling sequence for multiple-roadway driving. By doing so, we found the movement characteristics of the strata with quadratic stabilization for backfill mining during roadway driving. Based on this research, the driving and filling sequence of the 3101 working face in Changxing coal mine was optimized to avoid the superimposed influence of mining-induced stress. According to the analysis of the surface monitoring data, the accumulated maximum subsidence is 15 mm and the maximum horizontal deformation is 0.8 mm m-1, which indicated that the ground basically had no obvious deformation after the implementation of the roadway backfill method at 3101 working face.

  20. Flexible piezoelectric nanogenerators based on a transferred ZnO nanorod/Si micro-pillar array

    Science.gov (United States)

    Baek, Seong-Ho; Park, Il-Kyu

    2017-03-01

    Flexible piezoelectric nanogenerators (PNGs) based on a composite of ZnO nanorods (NRs) and an array of Si micro-pillars (MPs) are demonstrated by a transfer process. The flexible composite structure was fabricated by hydrothermal growth of ZnO NRs on an electrochemically etched Si MP array with various lengths followed by mechanically delaminating the Si MP arrays from the Si substrate after embedding them in a polydimethylsiloxane matrix. Because the Si MP arrays act as a supporter to connect the ZnO NRs electrically and mechanically, verified by capacitance measurement, the output voltage from the flexible PNGs increased systematically with the increased density ZnO NRs depending on the length of the Si MPs. The flexible PNGs showed 3.2 times higher output voltage with a small change in current with increasing Si MP length from 5 to 20 μm. The enhancement of the output voltage is due to the increased number of series-connected ZnO NRs and the beneficial effect of a ZnO NR/Si MP heterojunction on reducing free charge screening effects. The flexible PNGs can be attached on fingers as a wearable electrical power source or motion sensor.

  1. Oxalate enhanced mechanism of hydroxyl-Fe-pillared bentonite during the degradation of Orange II by UV-Fenton process.

    Science.gov (United States)

    Chen, Jianxin; Zhu, Lizhong

    2011-01-30

    An enhanced method of hydroxyl-Fe-pillared bentonite (H-Fe-P-B) during the degradation of Orange II was studied to provide novel insight to interactions of degradation intermediates with heterogeneous catalyst in UV-Fenton system. Based on the degradation mechanism of Orange II, oxalate enhanced mechanism of H-Fe-P-B in heterogeneous UV-Fenton system was developed. The results showed that additional oxalate could increase the Fe leaching of H-Fe-P-B during heterogeneous UV-Fenton process, which led to higher mineralization efficiency of Orange II and lower energy consumption of treatment. When the concentrations of additional sodium oxalate increased up to 0.1 mmol L(-1), 0.2 mmol L(-1) and 0.4 mmol L(-1), the rate of Orange II degradation could increase 30%, 46% and 63%, respectively. The iron ions leached from catalyst could be adsorbed back to the catalyst again after the organic intermediates were mineralized completely. Then the catalyst of H-Fe-P-B could be reused and additional pollution caused by iron ions could be avoided.

  2. Effect of ring rotation upon gas adsorption in SIFSIX-3-M (M = Fe, Ni) pillared square grid networks

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K.; Mohamed, Mona H.; Simon, Cory M.; Braun, Efrem; Pham, Tony; Forrest, Katherine A.; Xu, Wenqian; Banerjee, Debasis; Space, Brian; Zaworotko, Michael J.; Thallapally, Praveen K.

    2017-01-01

    The study of the mobility/rotation of the organic linkers in porous metal-organic frameworks could provide a valuable information about the guest/framework interaction and the factors control the kinetics of adsorption. Here, we analyzed the dynamics of pyrazine ring rotation in a series of pillared square grid frameworks, namely SIFSIX-3-M (M = Fe, Ni). It was found that the rotation of pyrazine ring is influenced by the variation of metal cation, temperature and the guest molecule. The Fe-analogue, [Fe(pz)2(SiF6)2] (pz= Pyrazine), , showed no pronounced ring rotation and exhibited a high affinity toward Xe gas over Kr as exemplified by the sharp Xe uptake at low loading (~0.1 bar) and its high isosteric heat of adsorption (Qst~ 27.4 kJmol-1) compared to the current benchmark materials. The Ni analogue, on the contrary, showed a two-regime adsorption isotherm for Xe with a temperature-dependent inflection point. However, this behavior is not observed with the other gases such as CO2, N2, and Kr which showed one-step adsorption isotherms without any inflection. Using molecular models and simulations, we hypothesize that the inflection point is due to a disordered to ordered transition of the rotational configurations of the pz rings in SIFSIX-3-Ni. These results further support the impact of tuning the pore size and chemistry on the adsorption behavior of porous materials.

  3. Composite active control system of roof and side truss cable for large section coal roadway in fold coal pillar area

    Institute of Scientific and Technical Information of China (English)

    Sheng-Rong XIE; Er-Peng LI; Fu-Lian HE; Shou-Bao ZHANG; Guang-Chao ZHANG; Mao-Yu PANG

    2013-01-01

    In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions,this paper analyzed the impact to the roadway controlling produced by the geological conditions such as high ground stress,folded structure tilted roof asymmetry and soft wall rock,and built the tilt layered roof structural mechanics model to clarify the increase span mechanism of the weak coal instability.Then,we proposed the combined control system including roof inclined truss cable,coal-side cable-channel steel and intensive bolt support.And then by building the structural mechanics model of roof inclined truss cable system,the support principle was described.Besides,according to this model,we deduced the calculation formula of cable anchoring force and its tensile stress.Finally surrounding rock control technology of large section roadway in fold coal pillar area was formed.Field practice shows that the greatest roof convergence of gangue replacement roadway is 158 mm and coal-side deformation is 243 mm.Roadway deformation is controlled effectively and technical support is provided for replacement mining.

  4. Patterns and security technologies for co-extraction of coal and gas in deep mines without entry pillars

    Institute of Scientific and Technical Information of China (English)

    Nong Zhang; Fei Xue; Nianchao Zhang; Xiaowei Feng

    2015-01-01

    Retaining gob-side entryways and the stability of gas drainage boreholes are two essential techniques in the co-extraction of coal and gas without entry pillars (CECGWEP). However, retained entryways located in deep coal mines are hard to maintain, especially for constructing boreholes in confined spaces, owing to major deformations. Consequently, it is difficult to drill boreholes and maintain their stability, which therefore cannot guarantee the effectiveness of gas drainage. This paper presents three measures for conducting CECGWEP in deep mines on the basis of effective space in retained entryways for gas drainage. They are combinations of retaining roadways and face-lagging inclined boreholes, retaining roadways and face-advancing inclined boreholes, and retaining roadways and high return airway inclined boreholes. Several essential techniques are suggested to improve the maintenance of retained entryways and the stabilization of boreholes. For the particular cases considered in this study, two field trials have verified the latter two measures from the results obtained from the faces 1111(1) and 11112(1) in the Zhuji Mine. The results indicate that these models can effectively solve the problems in deep mines. The maximum gas drainage flow for a single hole can reach 8.1 m3/min and the effective drainage distance can be extended up to 150 m or more.

  5. Biosafety and biosecurity as essential pillars of international health security and cross-cutting elements of biological nonproliferation

    Directory of Open Access Journals (Sweden)

    Perkins Dana

    2010-12-01

    Full Text Available Abstract The critical aspects of biosafety, biosecurity, and biocontainment have been in the spotlight in recent years. There have also been increased international efforts to improve awareness of modern practices and concerns with regard to the safe pursuit of life sciences research, and to optimize current oversight frameworks, thereby resulting in decreased risk of terrorist/malevolent acquisition of deadly pathogens or accidental release of a biological agent, and increased safety of laboratory workers. Our purpose is to highlight how the World Health Organization’s (WHO revised International Health Regulations (IHR[2005], the Biological Weapons Convention (BWC, and the United Nations Security Council Resolution (UNSCR 1540 overlap in their requirements with regard to biosafety and biosecurity in order to improve the understanding of practitioners and policymakers and maximize the use of national resources employed to comply with internationally-mandated requirements. The broad range of goals of these international instruments, which are linked by the common thread of biosafety and biosecurity, highlight their significance as essential pillars of international health security and cross-cutting elements of biological nonproliferation. The current efforts of the Republic of Georgia to enhance biosafety and biosecurity in accordance with these international instruments are summarized.

  6. Determination of dopamine hydrochloride by host-guest interaction based on water-soluble pillar[5]arene

    Science.gov (United States)

    Xiao, Xue-Dong; Shi, Lin; Guo, Li-Hui; Wang, Jun-Wen; Zhang, Xiang

    2017-02-01

    The supramolecular interaction between the water-soluble pillar[5]arene (WP[5]) as host and dopamine hydrochloride (DH) as guest was studied by spectrofluorometry. The fluorescence intensity of DH gradually decreased with increasing WP[5] concentration, and the possible interaction mechanism between WP[5] and DH was confirmed by 1H NMR, 2D NOESY, and molecular modelling. Based on significant DH fluorescence, a highly sensitive and selective method for DH determination was developed for the first time. The fluorescence intensity was measured at 312 nm, with excitation at 285 nm. The effects of pH, temperature, and reaction time on the fluorescence spectra of the WP[5]-DH complex were investigated. A linear relationship between fluorescence intensity and DH concentration in the range of 0.07-6.2 μg mL- 1 was obtained. The corresponding linear regression equation is ΔF = 25.76 C + 13.56 (where C denotes the concentration in μg mL- 1), with the limit of detection equal to 0.03 μg mL- 1 and the correlation coefficient equal to 0.9996. This method can be used for the determination of dopamine in injection and urine samples. In addition, the WP[5]-DH complex has potential applications in fluorescent sensing and pharmacokinetics studies of DH.

  7. Tradeoffs and entanglements among sustainability dimensions: the case of accessibility as a missing pillar of sustainable mobility policies in Italy

    Directory of Open Access Journals (Sweden)

    Roberta Cucca

    2012-03-01

    Full Text Available This article analyzes the tradeoffs between the environmental and social dimensions in sustainable mobility policies. We focus on the Italian context, where car dependency is a particularly prominent feature of the transportation system. During the past decade, many local administrations have promoted policies to foster more “sustainable mobility” as a way to manage congestion and reduce environmental pollution. However, these initiatives have often missed an important sustainability pillar: improving the accessibility of the most vulnerable to economic and social resources. This issue may have implications for social justice because access to mobility is an important dimension of inequality. A proposed framework identifies some possible tradeoffs related to sustainable mobility policies, concerning medium- to long-range mobility and short-range mobility. The article argues that, paradoxically, policies fostering mobility may lead to environmental pollution (e.g., low cost airlines, and that policies to contain the environmental impacts of mobility may harm social justice (e.g., environmental taxation in the absence of strong promotion of collective transportation. Finally, we analyze possible solutions to reach sustainable accessibility.

  8. Medical education resources initiative for teens program in baltimore: A model pipeline program built on four pillars.

    Science.gov (United States)

    Mains, Tyler E; Wilcox, Mark V; Wright, Scott M

    2016-01-01

    Less than 6% of U.S. medical school applicants are African-American. The lack of diversity among physicians, by race as well as other measures, confers a negative impact on the American healthcare system because underrepresented minority (URM) physicians are more likely to practice in underserved communities and deliver more equitable, culturally competent care. MERIT (Medical Education Resources Initiative for Teens) is a nonprofit organization based in Baltimore, Maryland, USA. MERIT prepares URM high school students for health careers by providing a holistic support system for seven consecutive years. The program model, which utilizes weekly Saturday sessions, summer internships, and longitudinal mentoring, is built on four foundational pillars: (1) Ignite the Fire, (2) Illuminate the Path, (3) Create the Toolkit, and (4) Sustain the Desire. Since 2011, MERIT has supported 51 students in the Baltimore City Public School System. For the past two years, 100% (n = 14) of MERIT seniors enrolled in universities, compared to only 20.2% of Baltimore City students overall. While it is too early to know whether MERIT alumni will realize their goals of becoming healthcare professionals, they are currently excelling in universities and over 75% (n = 17) are still planning to pursue graduate degrees in health-related fields. After piloting an effective program model, MERIT now has three key priorities moving forward: (1) Creating a sustainable and thriving organization, (2) increasing the number of scholars the program supports in Baltimore, and (3) expanding MERIT to other cities.

  9. Flexible piezoelectric nanogenerators based on a transferred ZnO nanorod/Si micro-pillar array.

    Science.gov (United States)

    Baek, Seong-Ho; Park, Il-Kyu

    2017-03-03

    Flexible piezoelectric nanogenerators (PNGs) based on a composite of ZnO nanorods (NRs) and an array of Si micro-pillars (MPs) are demonstrated by a transfer process. The flexible composite structure was fabricated by hydrothermal growth of ZnO NRs on an electrochemically etched Si MP array with various lengths followed by mechanically delaminating the Si MP arrays from the Si substrate after embedding them in a polydimethylsiloxane matrix. Because the Si MP arrays act as a supporter to connect the ZnO NRs electrically and mechanically, verified by capacitance measurement, the output voltage from the flexible PNGs increased systematically with the increased density ZnO NRs depending on the length of the Si MPs. The flexible PNGs showed 3.2 times higher output voltage with a small change in current with increasing Si MP length from 5 to 20 μm. The enhancement of the output voltage is due to the increased number of series-connected ZnO NRs and the beneficial effect of a ZnO NR/Si MP heterojunction on reducing free charge screening effects. The flexible PNGs can be attached on fingers as a wearable electrical power source or motion sensor.

  10. A pillar-layered metal-organic framework as luminescent sensor for selective and reversible response of chloroform

    Science.gov (United States)

    Wang, Kun; Li, Shuni; Jiang, Yucheng; Hu, Mancheng; Zhai, Quan-Guo

    2017-03-01

    A new 3D metal-organic framework, namely, {Zn4(H2BPTC)2(HCOO)4}n (SNNU-1, H4BPTC=biphenyl-3,3',5,5'-tetracarboxylic acid, SNNU=Shaanxi Normal University) has been solvothermal synthesized. Four independent tetrahedral Zn atoms are connected by organic ligands to form a 2D Zn-H2BPTC layer, which is further bridged by in-situ generated HCOO- to give the 3D pillar-layered framework of SNNU-1. Unique Zn and H2BPTC all act as 4-connected nodes leading to a new 4,4,4-connected topological net with point symbol of {4·5·62·82}{4·52·62·8}{52·63·7}. Notably, intense blue emission band is observed for SNNU-1, which exhibits solvent-dependent effect. Compared to other common organic solvents, chloroform can specially improve the photoluminescent intensity of SNNU-1. Further repeated response and release experiments clearly showed that SNNU-1 can act as luminescent sensor for selective and reversible detection of chloroform.

  11. Characterization of electronic structures from CdS/Si nanoheterostructure array based on silicon nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong, E-mail: liyong@pdsu.edu.cn [Department of Physics and Solar Energy Research Center, Pingdingshan University, Pingdingshan 467000 (China); Song, Xiao Yan [Department of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450045 (China); Song, Yue Li; Ji, Peng Fei; Zhou, Feng Qun; Tian, Ming Li; Huang, Hong Chun [Department of Physics and Solar Energy Research Center, Pingdingshan University, Pingdingshan 467000 (China); Li, Xin Jian [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2016-02-15

    Highlights: • CdS/Si nanoheterostructure array has been fabricated through a CBD method. • The electronic properties have been investigated by the I–V and C–V techniques. • The onset voltages, characteristic frequency and built-in potential are investigated. • The electronic structures can be tuned through the annealing treatments. - Abstract: The electronic properties of heterostructures are very important to its applications in the field of optoelectronic devices. Understanding and control of electronic properties are very necessary. CdS/Si nanoheterostructure array have been fabricated through growing CdS nanocrystals on the silicon nanoporous pillar array using a chemical bath deposition method. The electronic properties of CdS nanoheterostructure array have been investigated by the current–voltage, complex impedance spectroscopy and capacitance–voltage techniques. The onset voltages, characteristic frequency and built-in potential are gradually increased with increasing the annealing temperature. It is indicated that the electronic structures of CdS/Si nanoheterostructure array can be tuned through the annealing treatments.

  12. Domesticity, Pillarization and Gender. Historical Explanations for the Divergent Pattern of Dutch Women’s Economic Citizenship

    Directory of Open Access Journals (Sweden)

    Mineke Bosch

    2010-01-01

    Full Text Available Are there historical explanations for the paradox that, in a country with a reputation for being egalitarian and democratic, reasonable and tolerant, women have less economic independence compared with other countries and are under-represented in decision-making roles in society? This has often, implicitly and explicitly, been the guiding question in historical research into the gender relations in the Netherlands. Mineke Bosch takes up this question again and discusses gender-historical research that focuses on specific developments in the area of ‘work’ and ‘women’s work’, whereby the national character is of less relevance, as well as historical research in which broader lines are drawn in relation to the Dutch gender relations in comparison to other countries. In research in the second category, more so than in the first, standard explanatory concepts are used such as burgerlijkheid [bourgeois mentality] and domesticity, or pillarization. As outmoded connotations (and myths concerning masculinity and femininity often lurk within these terms, this type of research risks degenerating into histories of nineteenth-century civilization in which gender relations were used as a basis for explanations.

  13. Transverse dispersion in ordered pillar arrays as a Markov chain: extension of the Galton-board model.

    Science.gov (United States)

    Smirnov, Konstantin N; Shpigun, Oleg A

    2015-01-02

    An extension of the Galton-board model of the transverse solute dispersion in laminar flow through ordered arrays of non-porous cylindrical pillars was proposed. In contrast to the original model, which describes the dispersion process as a one-dimensional random walk with independent, equally probable steps, the extended model treats the process as a Markov chain, namely as a random walk with such correlated steps that the velocity-dependent probability to make a step in the same direction as the preceding step is smaller than the probability to reverse the direction of motion. The relationship between the average squared transverse displacement of the solute and the number of steps in the chain was used to find the expression for the velocity dependence of the transverse dispersion coefficient. The obtained equation differs from the one in the Galton-board model by the multiplier that accounts for the leveling-off of the experimental dependences at high reduced velocities. Although this modified Galton-board model cannot be directly applied to low velocities, a few additional assumptions lead to the expression that fits the whole range of the recent simulated dispersion data well.

  14. Domesticity, Pillarization and Gender. Historical Explanations for the Divergent Pattern of Dutch Women’s Economic Citizenship

    Directory of Open Access Journals (Sweden)

    Mineke Bosch

    2010-01-01

    Full Text Available Are there historical explanations for the paradox that, in a country with a reputation for being egalitarian and democratic, reasonable and tolerant, women have less economic independence compared with other countries and are under-represented in decision-making roles in society? This has often, implicitly and explicitly, been the guiding question in historical research into the gender relations in the Netherlands. Mineke Bosch takes up this question again and discusses gender-historical research that focuses on specific developments in the area of ‘work’ and ‘women’s work’, whereby the national character is of less relevance, as well as historical research in which broader lines are drawn in relation to the Dutch gender relations in comparison to other countries. In research in the second category, more so than in the first, standard explanatory concepts are used such as burgerlijkheid [bourgeois mentality] and domesticity, or pillarization. As outmoded connotations (and myths concerning masculinity and femininity often lurk within these terms, this type of research risks degenerating into histories of nineteenth-century civilization in which gender relations were used as a basis for explanations.

  15. Pillar – A Gateway Figure? On a Work by Louise Bourgeois and her Relationship with Art History

    Directory of Open Access Journals (Sweden)

    Martin Sundberg

    2010-11-01

    Full Text Available Louise Bourgeois very consciously opened her oeuvre to biographical interpretation through comments in interviews, through her writings and, not least, through her art. It would appear to be an open and shut case, with everything neatly laid out for art historians. But is it really that simple? Taking a single work, Pillar (1949, as a starting point, this article illuminates Bourgeois’ relationship with the writing of art history. Rather than interpret the work by itself, this approach will make it possible to both reveal and explore the ways in which the artist changed, adapted and developed her strategies in order to influence the interpretation of individual works and of her oeuvre as a whole. Bourgeois was well aware of her influence, and she deliberately used the rules of the game to draw attention to recurring histories, thereby also dissuading other interpretations. But her construction of the oeuvre as a linear story without digressions is also hard to understand, since the control she gained also implies limitations.

  16. Categorical modeling on electrical anomaly of room-and-pillar coal mine fires and application for field electrical resistivity tomography

    Science.gov (United States)

    Song, Wujun; Wang, Yanming; Shao, Zhenlu

    2017-01-01

    In order to improve the accuracy of fire area delineation in coalfield with electrical prospecting, the categorical geoelectric models of coal fires are established according to geological and mining conditions. The room-and-pillar coal mine fires are divided into three types which are coal seam fire, goaf fire and subsidence area fire, respectively, and forward electrical simulations and inversion analysis of each type of coal fire are implemented. Simulation results show that the resistance anomalies of goaf fires exist around one and a half to two times higher than background field, in contrast, coal seam and subsidence area fires performance low resistivity response which are roughly half to two-third of background field resistivity, respectively. Identification of different fire types and delineation of coal fire areas are further presented. The inversion results which are validated by borehole survey prove that the presented method could eliminate the omission of coal fires with high resistance anomaly and provide a novel reference for fire extinguishing in the future.

  17. Role of Subsidies Allocated by the Second Pillar of the Common Agricultural Policy and Diversification in Romanian Farms through Agritourism

    Directory of Open Access Journals (Sweden)

    NICOLA GALLUZZO

    2016-06-01

    Full Text Available This paper discusses about the role and the economic impact of subsidies allocated by the Common Agricultural Policy between 2007 and 2012, predominantly through the second pillar, in order to stimulate farmers to stay in the countryside and diversify their activities by agritourism. The analysis has used a quantitative approach aimed at assessing the main correlations between the growth of agritourisms and the financial supports paid by the European Union in eight Romanian administrative regions using the Farm Accountancy Data Network. Findings have pointed out that in regions where the higher has been the development of agritourism, the more significant has been the positive socio-economic impact of the funds allocated by the European Union in favour of rural development. Rural areas characterized by a low level of farmer’s income and by a high incidence of subsidies paid by the European Union in supporting rural development have brought about a considerable growth of farm diversification through agritourism. This has also corroborated the hypothesis according to which the diversification in the countryside is sensitive both to the funds allocated by the EU and to a low level of income in farms.

  18. Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation.

    Science.gov (United States)

    Chen, Qiuqiang; Wu, Pingxiao; Li, Yuanyuan; Zhu, Nengwu; Dang, Zhi

    2009-09-15

    Decolorization and mineralization of reactive brilliant orange X-GN was investigated under visible light irradiation (lambda>or=420 nm) by using Fe-Mt/H(2)O(2) as the heterogeneous photo-Fenton reagent. The characterization results (XRD, FTIR, XRF, BET, XPS, UV-vis diffuse spectra) of Fe-Mt suggested that small-sized hydrolyzed iron successfully intercalated into the interlayer spaces of the clay via pillaring. The stability of the Fe-Mt catalyst was evaluated according to the decolorization efficiency for X-GN with used catalyst from previous runs and the concentration of iron ions leached from the solid structure into the reaction solution. The catalytic results showed that at a reaction temperature of 30 degrees C, pH 3.0, 4.9 mmol/L H(2)O(2) and 0.6g/L catalyst dosage, 98.6% discoloration and 52.9% TOC removal of X-GN were achieved under visible irradiation after 140 min treatment. Furthermore, the maximum concentration of dissolved iron ions was 1.26% of the total iron content in the Fe-Mt catalyst after photocatalysis. A halogen lamp as light source has demonstrated that visible radiation can be successfully used for a heterogeneous photo-Fenton process.

  19. Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen Qiuqiang [College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China); Wu Pingxiao, E-mail: pppxwu@scut.edu.cn [College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China); Li Yuanyuan; Zhu Nengwu; Dang Zhi [College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China)

    2009-09-15

    Decolorization and mineralization of reactive brilliant orange X-GN was investigated under visible light irradiation ({lambda} {>=} 420 nm) by using Fe-Mt/H{sub 2}O{sub 2} as the heterogeneous photo-Fenton reagent. The characterization results (XRD, FTIR, XRF, BET, XPS, UV-vis diffuse spectra) of Fe-Mt suggested that small-sized hydrolyzed iron successfully intercalated into the interlayer spaces of the clay via pillaring. The stability of the Fe-Mt catalyst was evaluated according to the decolorization efficiency for X-GN with used catalyst from previous runs and the concentration of iron ions leached from the solid structure into the reaction solution. The catalytic results showed that at a reaction temperature of 30 deg. C, pH 3.0, 4.9 mmol/L H{sub 2}O{sub 2} and 0.6 g/L catalyst dosage, 98.6% discoloration and 52.9% TOC removal of X-GN were achieved under visible irradiation after 140 min treatment. Furthermore, the maximum concentration of dissolved iron ions was 1.26% of the total iron content in the Fe-Mt catalyst after photocatalysis. A halogen lamp as light source has demonstrated that visible radiation can be successfully used for a heterogeneous photo-Fenton process.

  20. Synthesis and Characterization of a New Fe2O3 Pillared Triple-layered Perovskite KSr2Nb3O10

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; YANG Wei-Ming; FANG Liang; YANG Jun-Feng; LIU Han-Xing

    2003-01-01

    A n-Hexyl NH3 Sr2 Nb3 O10 is obtained by the stepwise ion-exchange reaction, then is dispersed interlayer potassium cations of the perovskite niobate are exchanged with the partially hydrolyzed trinuclear acetato complex ions. On heating , the exchanged complex ions are converted into iron oxide pillars which keep the perovskite sheets apart. The product is characterized by XRD , SEM , EDAX and surface area measurement respectively.

  1. Ultrasound promoted selective synthesis of 1,1'-binaphthyls catalyzed by Fe impregnated pillared Montmorillonite K10 in presence of TBHP as an oxidant.

    Science.gov (United States)

    Bhor, Malhari D; Nandurkar, Nitin S; Bhanushali, Mayur J; Bhanage, Bhalchandra M

    2008-03-01

    Naphthols were selectively coupled under sonication using Fe(+3) impregnated pillared Montmorillonite K10 and TBHP as an oxidant. Considerable enhancement in the reaction rate was observed under sonication as compared to the reaction performed under silent condition. The activity of catalyst was compared with other Fe clay catalysts. Various parameters like solvent, catalyst and TBHP concentration has been studied. The heterogeneous active catalyst K10-FePLS120 was recycled without loss in activity and selectivity performance.

  2. Transition metal modified and partially calcined inorganic-organic pillared clays for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine from water.

    Science.gov (United States)

    Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J

    2012-11-15

    Pharmaceutical and Personal Care Products (PPCPs) are considered emerging contaminants, and their efficient removal from water is going to be a challenging endeavor. Microporous adsorbent materials, including pillared clays, could offer a potential solution if tailored properly. Although pillared clays have been employed previously for the removal of organics, the effective removal of PPCPs will only be possible if their surface and textural properties are manipulated from the bottom-up. This work presents the use of modified inorganic-organic pillared clays (IOCs) for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine. The IOCs have been modified with Co(2+), Cu(2+), or Ni(2+) to induce complexation-like adsorbate-adsorbent interactions at ambient conditions, in an attempt to provide an efficient and yet reversible driving force in the sub-ppm concentration range. Furthermore, the IOCs were partially calcined to increase effective surface area by an order of magnitude while preserving some hydrophobicity. In general, the Ni(2+) IOCs exhibited the greatest interaction with salicylic and clofibric acids, respectively, while the Co(2+) adsorbents excelled at adsorbing caffeine at low concentrations. All of the metal-modified IOCs showed comparable adsorption capacities for the case of carbamazepine, probably due to the lack of availability of particular functional groups in this adsorbate.

  3. A methodological non destructive approach for the conservation or structural repair of the Medioeval stone pillars of the Basilica of Santa Maria di Collemaggio in L'Aquila.

    Science.gov (United States)

    Raimondo, Quaresima; Elena, Antonacci; Felice, Fusco; Antonio, Filippone; Lorenzo, Fanale; Galeota, Dante

    2015-04-01

    The Medioeval Basilica of Santa Maria of Collemaggio in L'Aquila (XII century) due to the history and the election of Pope Celestino V, the Celestine Pardon, as well as to the artistic features, has a great religious and historic relevance. The whole Basilica was severely damaged during the earthquake of April 2009 and in particular the transetto zone with the cupola collapsed and ruined completely. By means of the project "Starting Afresh with Collemaggio" the Italian company Eni signs a memorandum of understanding with the city of L'Aquila for the restoration of the monument and of Collemaggio site. For this reason a wide and complex multidisciplinary diagnostic campaign was carried out in order to prepare the final design. A specific aspect concerned the diagnosis of the fourteen octagonal pillars of the central nave in terms of state of conservation and structural behavior. Each pillar consists, more or less, in forty big squared blocks of different local carbonatic stones. The diagnosis was preliminary executed by means of visual checks and mapping of the materials and of the structural damages. Subsequently non destructrutive ultrasonic and endoscopic techniques was carried out. The ultrasonic data were elaborated in order to obtain distribution maps of the velocity in the plane sections. To understanding the compressive strength of the stones and the resistance of the pillars, according to structural instances, destructive, compressive tests, and non destructive, ultrasonic and sclerometric measures, were performed of carbonatic blocks quarried in the sourroundings of L'Aquila. The compressive destructive results, inclusive of ultrasonic and sclerometric results, were compared with those non destructive obtained on the stone blocks of the pillars. The results allow to establish that three typologies of carbonatic stone were used. In many cases the surface of the stone, due to previously heartquake, was replaced with thick pieces of different stones

  4. Thermal comfort

    DEFF Research Database (Denmark)

    d’Ambrosio Alfano, Francesca Romana; Olesen, Bjarne W.; Palella, Boris Igor;

    2014-01-01

    Thermal comfort is one of the most important aspects of the indoor environmental quality due to its effects on well-being, people's performance and building energy requirements. Its attainment is not an easy task requiring advanced design and operation of building and HVAC systems, taking...... into account all parameters involved. Even though thermal comfort fundamentals are consolidated topics for more than forty years, often designers seem to ignore or apply them in a wrong way. Design input values from standards are often considered as universal values rather than recommended values to be used...... under specific conditions. At operation level, only few variables are taken into account with unpredictable effects on the assessment of comfort indices. In this paper, the main criteria for the design and assessment of thermal comfort are discussed in order to help building and HVAC systems designers...

  5. Matrix Thermalization

    CERN Document Server

    Craps, Ben; Nguyen, Kévin

    2016-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  6. Automotive A-pillar Evaluation Using Augmented Reality%增强现实环境下的汽车A立柱视野评估方法

    Institute of Scientific and Technical Information of China (English)

    邱世广; 荆旭; 范秀敏

    2012-01-01

    Currently A-pillar ergonomics evaluation lacks of enabling tool for helping style designer actively participate in automotive design process, therefore, based on augmented reality, a new method for A-pillar evaluation is proposed. Firstly, an assessment environment including hardware and software systems is established, which superimposes the virtual vehicle model to the physical driving mockup precisely in real time. Secondly, virtual visual cone models for left and right eyes are constructed. A calibration method is designed to map the real eye points with the virtual ones in the visual cones, and an algorithm for A-pillar's blind angle calculation is proposed based on vision line collision detection. The method is proved to be reliable through detailed analysis of calibration error's influence on the computational accuracy of blind angle. Lastly, the above system and method are verified by an application of a certain car model's A-pillar evaluation. The virtual visual cones are driven by tracking the user eyes' positions while he is sitting in the physical driving mockup. The blind zone angle of A-pillar can be calculated quickly for different driving postures, and the impact of A-pillar on the front view can be subjectively evaluated by the user. The results show that the method is simple and effective, and a new assessment tool is provided for the automotive A-pillar evaluation.%针对目前汽车造型设计过程中A立柱视野评估缺乏从设计师视角主动参与的使能工具,提出基于增强现实技术的汽车A立柱评估方法.首先建立了汽车内饰评估的增强现实软硬件环境,将虚拟汽车模型准确、实时地叠加到真实的驾驶环境中;其次建立了虚拟视锥体几何模型,设计了用户左右眼视锥的标定方法以及基于视线碰撞检测的A柱盲区角计算方法,并分析了标定误差对盲区角计算精度的影响,结果表明标定方法可靠.最后采用某型轿车模型进行应用验

  7. Technique of coal mining and gas extraction without coal pillar in multi-seam with low permeability

    Energy Technology Data Exchange (ETDEWEB)

    Liang Yuan [Huainan Mining (Group) Co. Ltd., Huainan (China)

    2009-06-15

    Aimed at the low mining efficiency in deep multi-seams because of high crustal stress, high gas content, low permeability, the compound 'three soft' roof and the troublesome safety situation encountered in deep level coal exploitation, a new idea of gob-side retaining without a coal-pillar and Y-style ventilation in the first-mined key pressure-relieved coal seam and a new method of coal mining and gas extraction was proposed. The following were discovered: the dynamic evolution law of the crannies in the roof is influenced by mining, the formative rule of 'the vertical cranny-abundant area' along the gob-side, the distribution of air pressure field in the gob, and the flowing rule of pressure-relieved gas in a Y-style ventilation system. The study also established a theoretic basis for a new mining method of coal mining and gas extraction which is used to extract the pressure-relieved gas by roadway retaining boreholes instead of roadway boreholes. Studied and resolved many difficult key problems, such as, fast roadway retaining at the gob-side without a coalpillar, Y-style ventilation and extraction of pressure-relieved gas by roadway retaining boreholes, and so on. The study innovated and integrated a whole set of technical systems for coal and pressure relief gas extraction. The method of the pressure-relieved gas extraction by roadway retaining had been successfully applied in 6 typical working faces in the Huainan and Huaibei mining areas. The research can provide a scientific and reliable technical support and a demonstration for coal mining and gas extraction in gaseous deep multi-seams with low permeability. 9 refs., 7 figs.

  8. Influence of Drying and Calcination on Remaining Amount and Immobile Character of Titanium on Titanium-pillared Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    赵川; 王小群; 杜善义

    2012-01-01

    Remove of titanium (Ti) from titanium-pillared montmorillont (TIPM) is not expected during its application as adsorbent and photocatalyst, etc. But studies on immobilization of Ti on TIPM are seldom reported. In this work, TIPM was synthesized from TIC14 and Na+-montmorillont (Na+-MMT). Then the prepared TIPM was heated at different temperatures (100, 240 and 450 ~C) to yield three TIPM samples (TIPM1, TIPM2, and TIPM3). Inductively coupled plasma optical emission spectrometer (ICP-OES) was used to determine the effect of heating temperature on the remaining amount of Ti on TIPMs. A two-step treatment method which is often used in the pretreatment and application of TIPM was developed to investigate the immobile character of Ti on TIPMs. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption/desorption isotherm, thermogra- vimetric analysis and differential scanning calorimetry (TG-DSC) were also used to characterize TIPMs before and after the treatment. The results show that with an increase in heating temperature, the amount of Ti species re- mained on T1PM decreases gradually and Ti immobilization is strengthened on TIPM. For TIPM3, less than 2% Ti is removed from TIPM3 after the treatment required to simulate the practical conditions of TIPM in its application, while those of TIPM1 and TIPM2 are 6.6% and 8.4%, respectively. The reason may be that when TIPM is heated, Ti species intercalated into MMT become chemically bonded with the framework of MMT and partially migrate into the layer structure, which make Ti immobile on TIPM firmly during the treatment process.

  9. Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NO{sub x} by propylene

    Energy Technology Data Exchange (ETDEWEB)

    Valverde, J.L.; De Lucas, A.; Sanchez, P.; Dorado, F.; Romero, A. [Facultad de Quimicas, Departamento de Ingenieria Quimica, Universidad Castilla-La Mancha, 13004 Ciudad Real (Spain)

    2003-06-20

    Ti-pillared interlayer clay (PILC)-based catalysts ion exchanged with Cu, Ni and Fe were prepared and used for the selective catalytic reduction of NO{sub x} using propylene as the reducing agent. The influence of the metal loading in the SCR activity was studied. Likewise, catalytic activity of Cu-ion exchanged samples was compared to that of Cu-ones. In both cases, the catalytic activity increased with increasing metal loading, reaching a maximum of NO{sub x} conversion, and then decreased at higher loading. The maximum of NO{sub x} conversion was achieved in each set of catalysts for the samples NiTi-3.4, FeTi-8.0 and CuTi-7.4. Ti-PILCs-ion exchanged with Cu was the most active catalyst for the SCR of NO{sub x} by propylene. H{sub 2}-TPR results showed that Ni{sup 2+} in Ti-PILC-based catalysts was harder to reduce than Cu{sup 2+} in the same material. It was observed that, as the Cu content is increased, CuO and isolated Cu{sup 2+} species became easier to reduce in ion exchanged samples. Likewise, it was also noted that the relative H{sub 2} consumption decreased with the Cu content, due to a lower accessibility of H{sub 2} to the metal. It can be verified a correlation between NO{sub x} conversion and the H{sub 2} consumption for the Cu{sup 2+} -> Cu{sup +} reduction process, reaching the maximum for the sample CuTi-7.4. Finally, it was observed that the presence of 10% water in the feed inhibited the SCR of NO activity of this catalyst. However, this effect was completely reversible following the removal of water from the gas stream.

  10. Thermal Hardware for the Thermal Analyst

    Science.gov (United States)

    Steinfeld, David

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Space Flight Center (GSFC) Thermal Engineering Branch (Code 545). NCTS 21070-1. Most Thermal analysts do not have a good background into the hardware which thermally controls the spacecraft they design. SINDA and Thermal Desktop models are nice, but knowing how this applies to the actual thermal hardware (heaters, thermostats, thermistors, MLI blanketing, optical coatings, etc...) is just as important. The course will delve into the thermal hardware and their application techniques on actual spacecraft. Knowledge of how thermal hardware is used and applied will make a thermal analyst a better engineer.

  11. Study on stability of strip coal pillar with different moisture content%不同含水率条带煤柱稳定性研究

    Institute of Scientific and Technical Information of China (English)

    杨永杰; 赵南南; 马德鹏; 张福俊

    2016-01-01

    煤层的富水性明显影响高应力作用下条带煤柱的稳定性,为研究含水率对条带煤柱蠕变特性的影响,首先对不同含水率的煤样进行蠕变试验,结果表明,含水率对煤样蠕变特性具有明显的影响,含水率越大,煤样的蠕变变形量越大,其蠕变门槛值、蠕变强度及蠕变系数越低。蠕变试验拟合结果表明,采用改进的Burgers模型能够较好地描述煤的蠕变力学特性。以蠕变试验结果为基础,采用FLAC3D数值模拟软件对不同含水率条带煤柱的蠕变特性及稳定性进行了模拟分析。随含水率增大,应力峰值距煤壁距离增加,煤柱塑性区增大;同时,煤柱垂直应力变小,蠕变变形量增大,其承载能力降低,煤柱进入长期稳定状态的时间加长。数值模拟结果表明,在其他条件相同的情况下,煤柱含水率为0.78%,1.07%及1.36%时,煤柱塑性区宽度分别为10,12,16 m,其进入长期稳定状态的时间分别为18,24及36个月。%The stability of strip coal pillar under high stress is obviously affected by water abundance of coal seam. In order to study the influence of moisture content on creep characteristics of strip coal pillar, creep tests of coal specimens with different moisture content have been carried out firstly, and the results have revealed that moisture content has obvious influence on creep characteristics of coal speci-mens, to be more specific, with the increase of moisture content, the creep deformation gets bigger, but the creep threshold value, the creep strength and the creep coefficient get lower. The fitting results of creep tests have shown that the creep mechanical properties of coal can be well described with the im-proved Burgers model. Based on the creep test results, the creep characteristics and stability of strip coal pillar with different moisture content have been analyzed with the FLAC3D numerical simulation soft-ware. With

  12. A New 3D Layered-pillared Cobalt(II)-organic Framework Constructed by Imidazole-4,5-dicarboxylic Acid (H_3IDC) and 4,4'-Bipyridine (bipy)

    Institute of Scientific and Technical Information of China (English)

    YUAN Li; LU Wen-Guan

    2011-01-01

    A new 3D metal-organic framework of {[Co3(IDC)2(bipy)2(py)2]·7H2O}n (1) was obtained by the hydrothermal reaction of Co(NO3)2·6H2O, imidazole-4,5-dicarboxylic acid (H3IDC), 4,4'-bipyridine (bipy), and pyridine (py), and structurally characterized by elemental analysis, infrared spectroscopy, thermal gravimetric analysis, and single-crystal X-ray diffraction. X-ray diffraction crystal structural analysis reveals that it crystallizes in orthorhombic system, space group Pccn with a = 11.1040(3), b = 19.8834(5), c = 21.3025(5), V = 4703.3(2)3, Mr = 1079.63, Z = 4, Dc = 1.525 Mg·m-3, F(000) = 2212, μ(CuKα) = 8.855 mm-1, the final R = 0.0331 and wR = 0.0713 for 2525 observed reflections with I ≥ 2σ(I). In compound 1, each cobalt(II) ion is six-coordinated with a slightly distorted octahedral coordination geometry, and each μ3-IDC3- acts as a bridge to bond three neighboring Co(II) ions, leading to an infinite 2D network layer structure of [Co3(IDC)2]n with Kagomé lattice. The adjacent layers are further linked by μ2-bipy to form an infinite 3D layered-pillared framework architecture of [Co3(IDC)2(bipy)2(py)2]n.

  13. Thermal Clothing

    Science.gov (United States)

    1997-01-01

    Gateway Technologies, Inc. is marketing and developing textile insulation technology originally developed by Triangle Research and Development Corporation. The enhanced thermal insulation stems from Small Business Innovation Research contracts from NASA's Johnson Space Center and the U.S. Air Force. The effectiveness of the insulation comes from the microencapsulated phase-change materials originally made to keep astronauts gloved hands warm. The applications for the product range from outer wear, housing insulation, and blankets to protective firefighting gear and scuba diving suits. Gateway has developed and begun marketing thermal regulating products under the trademark, OUTLAST. Products made from OUTLAST are already on the market, including boot and shoe liners, winter headgear, hats and caps for hunting and other outdoor sports, and a variety of men's and women's ski gloves.

  14. Topological Optimum Design of Wind Resistant Pillars with Minimal Displacement%位移最小化的抗风柱的拓扑优化设计

    Institute of Scientific and Technical Information of China (English)

    李霞; 周克民

    2013-01-01

    The topology optimization models of wind resistant pillars were established by analyzing their different slenderness ratios.The wind resistant pillars with larger slenderness ratios were divided into several segments.The every segment was divided by finite element mesh and was analyzed by finite element method.The optimization method and optimization results were identical for every segment.The anisotropic truss-like continua material model was adopted as ground structures.The densities and principal orientations of material at nodes were taken as design variables.The nodal displacement along the prescribed direction was taken as the objective function.The material distribution field were optimized to form truss-like continua by optimality criteria method.As the result,the optimized wind resistant pillars were obtained.%通过对抗风柱的分析,得出抗风柱的拓扑优化模型.分析抗风柱在不同长细比时的处理方法,即在抗风柱的长细比较大的时候可以采取将柱分段,将每段划分有限元网格,进行有限元分析.每一段的处理方法和最终结果是相同的.优化基结构采用各向异性类桁架连续体材料模型,以材料在结点位置的密度和主方向为设计变量,结点在指定方向的位移为目标函数.采用优化准则法,借助有限元分析,优化材料分布场形成类桁架连续体,得到抗风柱的优化结果.

  15. Disposal of Phosphorus Wastewater by Hydroxyl Fe Pillared Bentonite%羟基铁柱撑膨润土处理含磷废水的研究

    Institute of Scientific and Technical Information of China (English)

    曹春艳; 赵莹莹

    2013-01-01

    以羟基铁为柱化剂对天然膨润土进行柱撑改性制备了羟基铁柱撑膨润土,研究了其对废水中磷的吸附性能和影响因素.结果表明:羟基铁能够进入到膨润土的层间,使其层间距增大,表面积增加;羟基铁柱撑膨润土对废水中的磷有很好的去除效果,在常温下,当改性膨润土投加量为4 mg/L,溶液pH值为5,反应时间为60 min,处理质量浓度为20 mg/L的含磷废水时,磷的去除率达到93.9%.平衡吸附量与平衡质量浓度之间的关系更好地符合Langmuir等温吸附方程所描述的规律.%A hydroxyl Fe pillared bentonite was prepared with natural bentonite as raw material and hydroxyl Fe as pillaring agent. Influence factors of modified bentonite on adsorbent capacity of phosphorus in wastewater were studied. Results showed that hydroxyl Fe was intercalated into the layered bentonite, then the interlayer of bentonite and BET surface areas were increased. The hydroxyl Fe pillared bentonite has very good removal efficiency of phosphorus in wastewater. The removal rate of phosphorus from wastewater whose phosphorus concentration was 20mg/L can be up to 93.9% under the conditions of dosage of organic modified bentonite 4g/L, adsorption time 60min, pH value 5. The relationship between adsorbing capacity and equilibrium mass concentration better matches the isothermal adsorption equations of Langmuir.

  16. Forecast and Prevention of Coal and Gas Outbursts in the Case of Application of a New Mining Method - Drilling of a Coal Pillar

    Directory of Open Access Journals (Sweden)

    Vlastimil Hudeček

    2010-10-01

    Full Text Available Coal and gas outbursts are one of risk factors accompanying the mining of coal in low seams in the Ostrava-Karviná Coalfield.At the use of the method of longwall mining, all coal reserves have not been mined out owing to tectonic faults. For mining outthe residual reserves, the application of a new mining method - drilling of a coal pillar was proposed.The method of mining of a coal seam utilizing long large diameter boreholes is verified in the Paskov Mine (company OKD, JSC –Czech Republic under conditions of rock mass with hazard of rock and gas outbursts in localities of residual pillars left in seams afterfinishing the mining operations performed with using the classical method of longwall working along the strike. [5]Forecast and preventive measures applied to the verification of the new method were based on previous experience withthe mining of seams with hazard of coal and gas outbursts. They accepted fully valid legislation, i.e. Ordinance of Ostrava RegionalMining Authority No. 3895/2002 and supplementary materials (Instructions and Guidelines. The proposed measures respectedthe character of the method being verified. [4]For all areas being mined, projects containing also chapters specifying the problems of ensuring the safety of mining worksand operation under conditions of hazard of coal and gas outbursts were prepared.In the contributions, basic proposals for the principles of coal and gas outburst forecast and prevention when applying the newmining method – drilling of a coal pillar are presented

  17. Design of protective coal pillar for deep mining%深部开采保护煤柱的设计方法

    Institute of Scientific and Technical Information of China (English)

    柴华彬; 王云广; 邹友峰; 张光胜

    2012-01-01

    The reservation of coal pillar is very important to protect ground structures. The predicting parameters of the Probability Integral Method were calculated by analyzing the practical data from ground observation stations in the paper, the protective coal pillar was designed by using the major influence radius. The surface subsidence values were calculated by the Probability Integral Model, and the contour and three-dimensional graph of the surface subsidence were developed. Based on the predicted results, the deformation of the structure foundation was analyzed. The research showed that the design method of the protective coal pillar could improve the deep mining rate, effectively protect the ground high buildings from the mining damage, and achieve the sustainable development of coal mining.%为了减小或者完全避免地下开采对地表建筑物的有害影响,根据深部开采地表移动的实测数据,本文给出了地表移动和变形预计参数,利用概率积分法对地表任意点的下沉值进行计算,分析了建筑物受地下开采的影响程度,以此对矿区地表建筑物保护煤柱进行设计.研究表明,基于地表移动和变形预计理论的保护煤柱设计方法,对减少深部开采保护煤柱的压煤量、保护地表建筑物、实现地下煤炭开采的可持续发展具有一定的参考价值.

  18. The social pillar

    NARCIS (Netherlands)

    Jeroen Hoenderkamp

    2008-01-01

    Original title: De sociale pijler. Despite the extensive welfare state and intensive social policy, the Netherlands has for decades been faced with a number of stubborn social problems, with disadvantage that can apparently not be made good and with wrongs that are difficult to right. There is wide

  19. An Emerging Pillar Industry

    Institute of Scientific and Technical Information of China (English)

    LI ZHENYU

    2010-01-01

    @@ The Fifth Beijing International Cultural and Creative Industry Exposition (ICCIE), held November 17-21 in Beijing, was a feast for the eyes and mind. It showcased the enormous glamour and commercial opportunities promised by the cultural and creative industry.

  20. 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications.

    Science.gov (United States)

    Sekar, Pandiaraj; Anothumakkool, Bihag; Kurungot, Sreekumar

    2015-04-15

    Here, we report synthesis of a 3-dimensional (3D) porous polyaniline (PANI) anchored on pillared graphene (G-PANI-PA) as an efficient charge storage material for supercapacitor applications. Benzoic acid (BA) anchored graphene, having spatially separated graphene layers (G-Bz-COOH), was used as a structure controlling support whereas 3D PANI growth has been achieved by a simple chemical oxidation of aniline in the presence of phytic acid (PA). The BA groups on G-Bz-COOH play a critical role in preventing the restacking of graphene to achieve a high surface area of 472 m(2)/g compared to reduced graphene oxide (RGO, 290 m(2)/g). The carboxylic acid (-COOH) group controls the rate of polymerization to achieve a compact polymer structure with micropores whereas the chelating nature of PA plays a crucial role to achieve the 3D growth pattern of PANI. This type of controlled interplay helps G-PANI-PA to achieve a high conductivity of 3.74 S/cm all the while maintaining a high surface area of 330 m(2)/g compared to PANI-PA (0.4 S/cm and 60 m(2)/g). G-PANI-PA thus conceives the characteristics required for facile charge mobility during fast charge-discharge cycles, which results in a high specific capacitance of 652 F/g for the composite. Owing to the high surface area along with high conductivity, G-PANI-PA displays a stable specific capacitance of 547 F/g even with a high mass loading of 3 mg/cm(2), an enhanced areal capacitance of 1.52 F/cm(2), and a volumetric capacitance of 122 F/cm(3). The reduced charge-transfer resistance (RCT) of 0.67 Ω displayed by G-PANI-PA compared to pure PANI (0.79 Ω) stands out as valid evidence of the improved charge mobility achieved by the system by growing the 3D PANI layer along the spatially separated layers of the graphene sheets. The low RCT helps the system to display capacitance retention as high as 65% even under a high current dragging condition of 10 A/g. High charge/discharge rates and good cycling stability are the other

  1. Globules and pillars in Cygnus X. II. Massive star formation in the globule IRAS 20319+3958

    Science.gov (United States)

    Djupvik, A. A.; Comerón, F.; Schneider, N.

    2017-02-01

    Globules and pillars, impressively revealed by the Spitzer and Herschel satellites, for example, are pervasive features found in regions of massive star formation. Studying their embedded stellar populations can provide an excellent laboratory to test theories of triggered star formation and the features that it may imprint on the stellar aggregates resulting from it. We studied the globule IRAS 20319+3958 in Cygnus X by means of visible and near-infrared imaging and spectroscopy, complemented with mid-infrared Spitzer/IRAC imaging, in order to obtain a census of its stellar content and the nature of its embedded sources. Our observations show that the globule contains an embedded aggregate of about 30 very young (≲1 Myr) stellar objects, for which we estimate a total mass of 90 M⊙. The most massive members are three systems containing early B-type stars. Two of them most likely produced very compact H II regions, one of them being still highly embedded and coinciding with a peak seen in emission lines characterising the photon dominated region (PDR). Two of these three systems are resolved binaries, and one of those contains a visible Herbig Be star. An approximate derivation of the mass function of the members of the aggregate gives hints of a slope at high masses shallower than the classical Salpeter slope, and a peak of the mass distribution at a mass higher than that at which the widely adopted log-normal initial mass function peaks. The emission distribution of H2 and Brγ, tracing the PDR and the ionised gas phase, respectively, suggests that molecular gas is distributed as a shell around the embedded aggregate, filled with centrally-condensed ionised gas. Both, the morphology and the low excitation of the H II region, indicate that the sources of ionisation are the B stars of the embedded aggregate, rather than the external UV field caused by the O stars of Cygnus OB2. The youth of the embedded cluster, combined with the isolation of the globule

  2. Theoretical Investigations of CO 2 and H 2 Sorption in an Interpenetrated Square-Pillared Metal–Organic Material

    KAUST Repository

    Pham, Tony

    2013-05-16

    Simulations of CO2 and H2 sorption and separation were performed in [Cu(dpa)2SiF6-i], a metal-organic material (MOM) consisting of an interpenetrated square grid of Cu2+ ions coordinated to 4,4′-dipyridylacetylene (dpa) rings and pillars of SiF6 2- ions. This class of water stable MOMs shows great promise in practical gas sorption/separation with especially high selectivity for CO2 and variable selectivity for other energy related gases. Simulated CO2 sorption isotherms and isosteric heats of adsorption, Qst, at ambient temperatures were in excellent agreement with the experimental measurements at all pressures considered. Further, it was observed that the Qst for CO2 increases as a function of uptake in [Cu(dpa)2SiF6-i]. This suggests that nascently sorbed CO2 molecules within a channel contribute to a more energetically favorable site for additional CO2 molecules, i.e., in stark contrast to typical behavior, sorbate intermolecular interactions enhance sorption energetics with increased loading. The simulated structure at CO2 saturation shows a loading with tight packing of 8 CO2 molecules per unit cell. The CO2 molecules can be seen alternating between a vertical and horizontal alignment within a channel, with each CO2 molecule coordinating to an equatorial fluorine MOM atom. Calculated H 2 sorption isotherms and Qst values were also in good agreement with the experimental measurements in [Cu(dpa)2SiF 6-i]. H2 saturation corresponds to 10 H2 molecules per unit cell for the studied structure. Moreover, there were two observed binding sites for hydrogen sorption in [Cu(dpa)2SiF 6-i]. Simulations of a 30:70 CO2/H2 mixture, typical of syngas, in [Cu(dpa)2SiF6-i] showed that the MOM exhibited a high uptake and selectivity for CO2. In addition, it was observed that the presence of H2O had a negligible effect on the CO2 uptake and selectivity in [Cu(dpa)2SiF6-i], as simulations of a mixture containing CO2, H2, and small amounts of CO, N2, and H2O produced comparable

  3. The model for the calculation of the dispersed iron ore resource purchase cost in the world class manufacturing (WCM logistics pillar context

    Directory of Open Access Journals (Sweden)

    M. Dudek

    2014-10-01

    Full Text Available In the blast-furnace production, raw materials may account for approx. 50 % of the pig-iron manufacture costs. Therefore, any, even small, saving in the sphere of raw material purchasing will translate into the reduction in the cost of the pig-iron manufacture. The selection of appropriate supply sources and the associated raw material quality influencing the economic viability of the charge blend constitutes a multi-faceted optimization task. The paper presents a modified model for production cost estimation at the moment of making raw material purchasing, which is possible to be used in the logistics pillar of the WCM concept.

  4. 浙江斯宅村千柱屋建构初探%The Preliminary Study of the Thousand-Pillar Mansion in Sizhai Village of Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    池方爱; 黄炜; 潘冬旭; 赖祥助

    2016-01-01

    浙江斯宅村的千柱屋是全国重点文物保护单位,它规模宏大、特征典型、建构文化突出,对它研究可丰富浙江传统民居的建构文化与内涵。利用实地勘察与文献检索等方法,研究千柱屋建构特征;从建筑力学与仿生学角度以及艺术文化与材料功能角度出发,探析千柱屋建构内涵。研究发现千柱屋的建构具有很高的研究价值、美学价值、实用价值等。此外,通过归纳与总结可进一步得出:千柱屋的建构是集结构力学、仿生学、艺术文化与材料功能等为一体的。此次研究成果可为浙江地区其他传统木构架建筑的保护、建造等提供理论依据与技术参考。%The Thousand-pillar Mansionwith large scale, distinct characteristic and abundant construction culture in Zhejiang Sizhai Village,is an important historical monument under special preservation in China.This research can enrich the culture and content of traditional dwellings tectonic in Zhejiang. The feature ofthe Thousand-pillar Mansion is researchedby using the method of visiting venue and reading reference, and meanwhile the tectonic of Thousand-pillar Mansionis explored from the angle of architectural mechanics and bionics, and cultural art and material function. It is discovered that its construction has a high research value, aesthetic value, practical use value, etc. Besides, it can be further concluded that the construction of the Thousand-pillar Mansion is a great assemblage of architectural mechanics, bionics, cultural art and material function. The research findings can be a theoretical basis and technical reference for the protection and construction of other traditional wooden frame architectures in Zhejiang Province.

  5. Thermal insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.

    1985-07-16

    A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.

  6. Thermal Relativity

    Institute of Scientific and Technical Information of China (English)

    赵柳

    2011-01-01

    The group G of general coordinate transformations on the thermodynamic configuration space ε spanned by all the extensive variables keeps the first law of thermodynamics invariant. One can introduce a metric with Lorentzian signature on the space ε, with the corresponding line element also being invariant under the action of G. This line element is identi6ed as the square of the proper entropy. Thus the second law of thermodynamics is also formulated invariantly and this lays down the foundation for the principle of thermal relativity.

  7. Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes

    KAUST Repository

    Huang, Ming

    2015-01-01

    © 2014 Elsevier Ltd. All rights reserved. Hierarchical ZnO@MnO2 core-shell pillar arrays on Ni foam have been fabricated by a facile two-step hydrothermal approach and further investigated as the binder-free electrode for supercapacitors. The core-shell hybrid nanostructure is achieved by decorating ultrathin self-standing MnO2 nanosheets on ZnO pillar arrays grown radically on Nickel foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (423.5 F g-1 at a current density of 0.5 A g-1), and excellent cycling stability (92% capacitance retention after 3000 cycles). The improved electrochemical results show that the ZnO@MnO2 core-shell nanostructure electrode is promising for high-performance supercapacitors. The facile design of the unique core-shell array architectures provides a new and effective approach to fabricate high-performance binder-free electrode for supercapacitors.

  8. Using coupling slabs to tailor surface-acoustic-wave band structures in phononic crystals consisting of pillars attached to elastic substrates

    Science.gov (United States)

    Zhang, Heng; Yu, SiYuan; Liu, FuKang; Wang, Zhen; Lu, MingHui; Hu, XiaoBo; Chen, YanFeng; Xu, XianGang

    2017-04-01

    The propagation of surface acoustic waves (SAWs) in two-dimensional phononic crystals (PnCs) with and without coupling-enhancement slabs was theoretically investigated using a three-dimensional finite element method. Different piezoelectric substrates, for example, lithium niobate (LiNbO3), gallium nitride (GaN), and aluminium nitride (AlN), were taken into account. Compared to the PnCs without coupling-enhancement slabs, the coupling between each pillar and its nearest neighbor was largely enhanced in the presence of slabs. The bandwidth of the first directional band gap increased markedly compared with its initial value for the PnCs without a slab (within square symmetry). In addition, with increasing thicknesses of the slabs bonded between neighboring pillars, the first directional band-gap and second directional band gap of the PnCs tend to merge. Therefore, the structure with coupling-enhancement slabs can be used as an excellent electrical band elimination filter for most electro-SAW devices, offering a new strategy to realize chip-scale applications in electroacoustic signal processing, optoacoustic modulation, and even SAW microfluidic devices.

  9. Five key pillars of an analytics center of excellence, which are required to manage populations and transform organizations into the next era of health care.

    Science.gov (United States)

    Reichert, Jim; Furlong, Gerry

    2014-01-01

    Acute care facilities are experiencing fiscal challenges as noted by decreasing admissions and lower reimbursement creating an unsustainable fiscal environment as we move into the next era of health care. This situation necessitates a strategy to move away from acting solely on hunches and instinct to using analytics to become a truly data-driven organization that identifies opportunities within patient populations to improve the quality and efficiency of care across the continuum. A brief overview of knowledge management philosophies will be provided and how it is used to enable organizations to leverage data, information, and knowledge for operational transformation leading to improved outcomes. This article outlines the 5 key pillars of an Analytics Center of Excellence; governance, organizational structure, people, process, and technology, that are foundational to the development of this strategy. While culture is the most important factor to achieve organizational transformation and improved care delivery, it is the 5 pillars of the ACoE that will enable the culture shift necessary to become a truly data-driven organization and thus achieve transformation into the next era of health care.

  10. Using coupling slabs to tailor surface-acoustic-wave band structures in phononic crystals consisting of pillars attached to elastic substrates

    Science.gov (United States)

    Zhang, Heng; Yu, SiYuan; Liu, FuKang; Wang, Zhen; Lu, MingHui; Hu, XiaoBo; Chen, YanFeng; Xu, XianGang

    2017-04-01

    The propagation of surface acoustic waves (SAWs) in two-dimensional phononic crystals (PnCs) with and without coupling-enhancement slabs was theoretically investigated using a three-dimensional finite element method. Different piezoelectric substrates, for example, lithium niobate (LiNbO3), gallium nitride (GaN), and aluminium nitride (AlN), were taken into account. Compared to the PnCs without coupling-enhancement slabs, the coupling between each pillar and its nearest neighbor was largely enhanced in the presence of slabs. The bandwidth of the first directional band gap increased markedly compared with its initial value for the PnCs without a slab (within square symmetry). In addition, with increasing thicknesses of the slabs bonded between neighboring pillars, the first directional band-gap and second directional band gap of the PnCs tend to merge. Therefore, the structure with coupling-enhancement slabs can be used as an excellent electrical band elimination filter for most electro-SAW devices, offering a new strategy to realize chip-scale applications in electroacoustic signal processing, optoacoustic modulation, and even SAW microfluidic devices.

  11. Anatase TiO2 pillar-nanoparticle composite fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Guoliang; Pan, Kai; Zhou, Wei; Qu, Yang; Pan, Qingjing; Jiang, Baojiang; Tian, Guohui; Wang, Guofeng; Xie, Ying; Dong, Youzhen; Miao, Xiaohuan; Tian, Chungui

    2012-11-07

    The anatase TiO(2) pillar (PL)-TiO(2) nanoparticle (NP) composite is fabricated via layer-by-layer assembly. The composition of the nanostructures (i.e. the pillar-to-nanoparticle ratio) can be conveniently tuned by controlling the experimental conditions of the layer-by-layer assembly. It has been used to fabricate photoelectrodes for high-efficiency dye-sensitized solar cells (DSSCs), which combine the advantages of the rapid electron transport in PLs with the high surface area of NPs. It was found that, with optimum preparation conditions, DSSCs with the composite photoelectrode show a better photoelectrical conversion efficiency (8.06%) than those with either the naked PL photoelectrode or the mechanically mixed PL-NP photoelectrode. This is explained by the photoelectron injection drive force and the interfacial electron transport of the DSSCs, which are quantitatively characterized using the surface photovoltage spectra and electrochemical impedance spectroscopy measurements. It is evident that the DSSC with the optimal PL/NP ratio displays the largest photoelectron injection drive force and the fastest interfacial electron transfer.

  12. Electrosprayed heterojunction WO{sub 3}/BiVO{sub 4} films with nanotextured pillar structure for enhanced photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Mali, Mukund G.; Yoon, Hyun; Yoon, Sam S., E-mail: skyoon@korea.ac.kr [School of Mechanical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Min-woo [School of Mechanical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Green School, Korea University, Seoul 136-713 (Korea, Republic of); Swihart, Mark T. [Department of Chemistry and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260 (United States); Al-Deyab, Salem S. [Department of Chemistry, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2015-04-13

    We demonstrate that the addition of a tungsten oxide (WO{sub 3}) layer beneath a bismuth vanadate (BiVO{sub 4}) photocatalyst layer with a nanotextured pillar morphology significantly increases the photocurrent density in photoelectrochemical water splitting. The WO{sub 3}-BiVO{sub 4} bilayer films produced a photocurrent of up to 3.3 mA/cm{sup 2} under illumination at 100 mW/cm{sup 2} (AM1.5 spectrum). The bilayer film was characterized by scanning electron microscopy, X-ray diffraction, and photoelectrochemical methods, which confirmed the superiority of the bilayer film in terms of its morphology and charge separation and transport ability. Both WO{sub 3} and BiVO{sub 4} were deposited by electrostatic spraying under open-air conditions, which resulted in nanotextured pillars of BiVO{sub 4} atop a smooth WO{sub 3} film. The optimal coating conditions are also reported.

  13. The Analysis and Calculation of the Oil Cylinder in Raising Pillar Hinged Shaft Pedestal of Pile Frame%桩架的起架油缸铰座的分析计算

    Institute of Scientific and Technical Information of China (English)

    刘振东; 赵文欣; 赵伟民

    2012-01-01

    The article introduces the basic composition and use of pile frame, the way that pillar of pile Frame is raised in, According to the theory of pile frame calculates pillar the hinge point force size,And by MATLAB software movement simulation, Finds the pile frame pillar rising in the process that oil cylinder hinge point of force how to change, Uses Solidworks software to set up the entity model of oil cylinder in raising pillar hinged shaft pedestal, Combines with ANSYS software nonlinear finite element contact analysis, Concludes surface contact of the stress of the hinged shaft pedestal cloud between oil cylinder in raising pillar hinged shaft pedestal and the platform structure, which gives the pile frame pillar hinge point determination and oil cylinder hinged shaft pedesatal a development and application to provide the basis.%系统阐述了桩架的基本组成和用途,桩架立柱的起驾方式.根据理论计算出桩架立柱的铰点力大小,并借助MATLAB软件进行运动仿真,找到了桩架立柱起架过程中起架油缸铰点力的变化情况.运用Solidworks软件建立起架油缸铰座的实体模型.结合ANSYS软件进行接触非线性有限元分析.得出了起架油缸铰座与上平台结构在面与面接触的情况下铰座的应力云图,为桩架立柱的铰点确定和起驾油缸铰座的开发和应用提供了依据.

  14. Thermal conductivity of thermal-battery insulations

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.A.; Moss, M.

    1995-08-01

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  15. CEQATR Thermal Test Overview

    Science.gov (United States)

    Balusek, Alan R.

    2009-01-01

    A thermal test overview of the Constellation Environmental Qualification and Acceptance Test Requirement (CEQATR) is presented. The contents include: 1) CEQATR Thermal Test Overview; 2) CxP Environments; 3) CEQATR Table 1.2-1; 4) Levels of Assembly; 5) Definitions for Levels of Assembly; 6) Hardware Applicability; 7) CEQATR Thermal-Related Definitions; 8) Requirements for unit-level thermal testing; 9) Requirements for major assembly level thermal testing; 10) General thermal testing requirements; 11) General thermal cycle, thermal vacuum profiles; 12) Test tolerances; 13) Vacuum vs Ambient; 14) Thermal Gradient; 15) Sequence of Testing; 16) Alternative Strategies; 17) Protoflight; 18) Halt/Hass; 19) Humidity; and 20) Tailoring.

  16. 铁铝柱撑膨润土组成特征及其磷吸附性能研究%Removal of Phosphate from Aqueous Solutions by Iron-and Aluminum-pillared Bentonites

    Institute of Scientific and Technical Information of China (English)

    干方群; 杭小帅; 马毅杰; 何宏伟; 李康祥; 龙翔

    2012-01-01

    In this study, several iron- and aluminum- pillared bentonites were synthesized and characterized, and their potentials for removing phosphate from aqueous solutions were evaluated using adsorption isotherms. The five Fe-/Al- pillared bentonites were: (1)iron-pillared bentonites with two different iron contents(Fe1-Mt and Fe10-Mt),(2)hydroxyl-iron pillared bentonite(FeOx-Mt),(3)hydroxyl-aluminum pillared bentonite(A10x-Mt) and (4)hydroxyl-iron/aluminum pillared bentonite( AlFe-Mt), respectively. Results showed that both iron- and a-luminum- pillaring could increase the inter-lamellar spacing, of which the hydroxyl-iron/aluminum pillared bentonite had the highest inter lamellar spacing, approximately twice as much as that of the untreated bentonite. Phosphate adsorption isotherms by pillared bentonites could be well described by either Freundlich or Langmuir equations. Adsorption results indicated that pillared bentonites exhibited greatly enhanced capabilities for removing phosphate than that of the untreated bentonite(qm=1.05 mg·g-1), with the FeOx-Mt having the highest maximum adsorption capacity(~12.03 mg·g-1), followed by Fe10-Mt(8.14 mg·g-1), AlFe-Mt(8.01 mg·g-1), AlOx-Mt(7.92 mg·g-1), Fe1-Mt(4.83 mg·g-1), respectively. The results suggested that the phosphate adsorption capacities of the pillared bentonites were related to the content of iron and aluminum oxides and the existing form of iron, as well as to their interlayer spacings.%利用天然膨润土合成了铁柱撑膨润土(Fe1-Mt、Fe10-Mt)、羟基铁膨润土(FeOx-Mt)、羟基铝膨润土(AlOx-Mt)和羟基铝铁膨润土复合体(AlFe-Mt),对其化学组成和矿物组成等特征进行分析,比较了5种不同铁铝柱撑膨润土对磷污染水体的吸附净化性能,并通过等温吸附试验探讨了柱撑膨润土对磷的吸附机制.结果发现,不同铁铝柱撑均可以增加天然膨润土的层间距,其中以羟基铝铁膨润土复合体的层间距增加最明显,

  17. Seasonal thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  18. Influence of the thermal interface resistance on the thermovoltage of a magnetic tunnel junction

    Science.gov (United States)

    Böhnert, Tim; Dutra, Roberta; Sommer, Rubem L.; Paz, Elvira; Serrano-Guisan, Santiago; Ferreira, Ricardo; Freitas, Paulo P.

    2017-03-01

    In the field of spin caloritronics recent theoretical models suggested a significant influence of the interfaces of the magnetic tunnel junction (MTJ) on the thermal transport. In this work magnetothermopower measurements are carried out on CoFeB/MgO/CoFeB nanopillars and an unexpected increase of the thermovoltage with the diameter of the nanopillars is observed. To understand this behavior the thermal profiles are computed by finite element simulations. The observed behavior with the pillar diameter could only be reproduced in simulations by considering a far lower effective thermal conductivity of the MgO than the intrinsic thin-film value. In agreement with theoretical predictions, a finite thermal conductivity of the MgO/CoFeB interface can explain this observation. This is experimental evidence of the influence of the thermal resistance of the MgO/CoFeB interfaces on magnetothermovoltage measurements and is in agreement with recent theoretical predictions. The measured magnetothermovoltage is around 4.5 μV and the simulated temperature difference is about 2 K across the tunnel barrier, which resulted in a magnetic contribution of the thermopower of Δ SMTJ≈-2.25 μ V K-1 . This value was about 20 times smaller than the result obtained by the typically used thermal conductivity of MgO thin films.

  19. Using rockbolting in constructing a double entry roadway system arranged skin to skin with a coal pillar; Einsatz der Ankertechnik bei der Auffahrung einer Abbaubegleitstrecke neben einer Kohlenfeste

    Energy Technology Data Exchange (ETDEWEB)

    Woll, T.; Polysos, N.; Luettig, F. [Deutsche Steinkohle AG (Germany)

    2004-07-01

    The common procedure of mining at Saar mine is the extraction of two panels for the same time. The faces are following close to each other in the mid roadway. It is neccessary to develop about 10 km of roadways for one double-panel system. In the Schwalbach seam it was planned due to geological and operational requirements to develop a double entry roadway system arranged skin to skin with a 3 m coal pillar between the panels. The leading face uses the mainway in retreat and at the same time the tailgate for the next panel is developed using a combined support system with backfilled steel arches and rockbolts. The geotechnical planning, the support design and the development technique are described in this report.

  20. Macau and the Health Care: The Four Pillars of the Reproductive Health%澳門衛生保健:生殖健康

    Institute of Scientific and Technical Information of China (English)

    Maria Trindade; 李嘉寶

    2001-01-01

    After giving a brief summary on Macau demographic characteristics and evolution in the last 15 years of its Macau Health Care, we will be talking mainly on the four pillars which are the underlying conditions to build a safe motherhood at all levels of health care system. These include the antenatal care before and during pregnancy,during delivery at hospitals and the related care to mother and newborn/infant after delivery. We also will refer to the indicators that define "the Women Health in Numbers" (without giving the results view the extension allowed for this article) and we will conclude by using a methaphore comparing the Macau Women to the "three weighting systems and three measurements" used in Macan- the International, the English and the Chinese weighting systems.

  1. The Removal of 4-Chlorophenol and Dichloroacetic Acid in Water Using Ti-, Zr- and Ti/Zr-Pillared Bentonites as Photocatalyst

    Directory of Open Access Journals (Sweden)

    Mohamed Houari

    2005-01-01

    Full Text Available Heterogeneous photocatalysis could be alternative remediation technology for water since it does not need the addition of any chemicals and it is suitable for treating low concentrations of pollutant. Although the TiO2 Degussa P 25 is most used photocatalyst its photonic efficiency still low and its recovery from water is considered as an awkward process. In this study the effect of zirconium addition to titanium was investigated. Ti/Zr-pillared montmorillonites have been prepared from natural bentonite and characterized by UV-Vis DRS and X-ray diffraction. The photocatalytic activities have been tested for the removal of 4-chlorophenol and dichloroacetic acid in water. The influence of preparation conditions and the calculation method, on these activities has been investigated. It was found that the photocatalytic activities increase by the addition of zirconium in pillorying process and the calculation by Microwaves (MW improves the photocatalytic activities

  2. Temporal dynamics of black band disease affecting pillar coral ( Dendrogyra cylindrus) following two consecutive hyperthermal events on the Florida Reef Tract

    Science.gov (United States)

    Lewis, Cynthia L.; Neely, Karen L.; Richardson, Laurie L.; Rodriguez-Lanetty, Mauricio

    2017-06-01

    Black band disease (BBD) affects many coral species worldwide and is considered a major contributor to the decline of reef-building coral. On the Florida Reef Tract BBD is most prevalent during summer and early fall when water temperatures exceed 29 °C. BBD is rarely reported in pillar coral ( Dendrogyra cylindrus) throughout the Caribbean, and here we document for the first time the appearance of the disease in this species on Florida reefs. The highest monthly BBD prevalence in the D. cylindrus population were 4.7% in 2014 and 6.8% in 2015. In each year, BBD appeared immediately following a hyperthermal bleaching event, which raises concern as hyperthermal seawater anomalies become more frequent.

  3. Tilted pillar array fabrication by the combination of proton beam writing and soft lithography for microfluidic cell capture Part 2: Image sequence analysis based evaluation and biological application.

    Science.gov (United States)

    Járvás, Gábor; Varga, Tamás; Szigeti, Márton; Hajba, László; Fürjes, Péter; Rajta, István; Guttman, András

    2017-07-17

    As a continuation of our previously published work, this paper presents a detailed evaluation of a microfabricated cell capture device utilizing a doubly tilted micropillar array. The device was fabricated using a novel hybrid technology based on the combination of proton beam writing and conventional lithography techniques. Tilted pillars offer unique flow characteristics and support enhanced fluidic interaction for improved immunoaffinity based cell capture. The performance of the microdevice was evaluated by an image sequence analysis based in-house developed single-cell tracking system. Individual cell tracking allowed in-depth analysis of the cell-chip surface interaction mechanism from hydrodynamic point of view. Simulation results were validated by using the hybrid device and the optimized surface functionalization procedure. Finally, the cell capture capability of this new generation microdevice was demonstrated by efficiently arresting cells from a HT29 cell-line suspension. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fe-saponite pillared and impregnated catalysts. Part 2. Nature of the iron species active for the reduction of NO{sub x} with propene

    Energy Technology Data Exchange (ETDEWEB)

    Belver, C.; Vicente, M.A. [Departamento de Quimica Inorganica, Universidad de Salamanca, E-37008 Salamanca (Spain); Martinez-Arias, A.; Fernandez-Garcia, M. [Instituto de Catalisis y Petroleoquimica, CSIC, Campus Cantoblanco, 28049 Madrid (Spain)

    2004-07-15

    A study of the NO{sub x} reduction with propene in the absence/presence of oxygen over Fe-saponite clay catalysts with different iron loadings (ca. 1-28wt.%) has been performed. The catalysts were prepared by pillaring and impregnation methods and the iron active phases were characterized by using X-ray absorption spectroscopies and electron paramagnetic resonance. The samples display significant activity in the NO{sub x} reduction in the absence of oxygen with a maximum for a Fe content close to 10wt.%. A strong decay of catalytic activity was observed with the introduction of increasing quantities of oxygen in the feed. Iron is mostly present in all catalysts as Fe(III) with a slightly distorted local octahedral symmetry. The catalytic behavior was explained in terms of the nature and properties of the Fe existing phases.

  5. The second pillar of the CAP: the role of Commission policy learning in the creation and reform of EU rural development policy (1968-1999)

    DEFF Research Database (Denmark)

    Steffensen, Jonny Trapp

    argument advanced in this thesis is that policy learning is a multifaceted phenomenon that can most reliably be examined employing 'method pluralism' (documentary analysis, elite interviews, and survey techniques). A second theoretical assertion is that policy learning can change the beliefs - termed....... Whilst policy learning was not found to be a primary driver of CAP reform it was significant in shaping the rural policy alternative, now the second pillar of the CAP.......This thesis examines the concept of 'policy learning' and explores its applicability to the European Commission's role in EU policymaking. Policy learning refers to 'knowledge-based' policy formulation, where content of policy proposals is shaped to a 'non-trivial' extent by administrative...

  6. Feasibility research on composite artificial boundary crown pillars in the transfer from open-pit to underground mining%露天转地下开采复合型人工境界顶柱可行性研究

    Institute of Scientific and Technical Information of China (English)

    毛肖杰; 陈玉明; 吴爱梅

    2015-01-01

    针对传统露天转地下开采过程中留设的天然境界矿柱回采率低、损失大的缺点,在参考国内外相关文献的基础上,通过相关的技术经济比较和 FLAC3D 数值模拟分析,讨论了一种主要以钢筋混凝土为结构的人工境界顶柱代替天然境界矿柱作为境界顶柱的经济性和安全性。可行性研究结论可为类似工程设计时参考。%Natural boundary crown pillars set in the conventional transfer from open-pit to underground mining lead to low extraction rate and high ore loss.To solve the problem,the paper refers to related literature home and a-broad,compares technical indicators,conducts numerical simulation by FLA3D,and discusses the economy and safety of using artificial boundary crown pillars structured mainly by steel and concrete instead of natural crown pillars as boundary crown pillars.The feasibility research conclusion can be referred to in the design of similar projects.

  7. AlFe层柱粘土催化剂催化甲苯在水中的降解%Toluene Degradation in Water Using AlFe-Pillared Clay Catalysts

    Institute of Scientific and Technical Information of China (English)

    Predrag BANKOVI(C); Aleksandra MILUTINOVI(C)-NIKOLI(C); Zorica MOJOVI(C); Aleksandra ROSI(C); (Z)eljko (C)UPI(C); Davor LON(C)AREVI(C); Du(s)an JOVANOVI(C)

    2009-01-01

    The catalytic wet peroxide oxidation (CWPO) of toluene on two bentonite-based AlFe-pillared clays (PILCs) with different iron contents was investigated. The PILCs were obtained using bentonite clay from Bogovina, Serbia. The change in chemical and phase composition and textural properties of the starting clay and synthesized catalysts was monitored using X-ray diffraction, inductively coupled plasma optical emission spectrometry, UV-Vis diffuse reflectance spectrometry, and physisorption of nitrogen. The catalytic performance was examined using gas chromatography. The Na-exchange process lowered the (001) smectite basal plane spacing, but the clay retained its swelling properties, while the pillaring process increased it. The surface areas of both synthesized pillared clays increased to similar values although their Fe content was different. At 37 ℃, both catalysts show significant toluene degradation, with the one richer in Fe having higher efficiency. The leaching of the active cations during reaction was negligible, and the catalysts were stable. AlFe-pillared clay catalysts can be used in CWPO for the elimination of BTEX compounds from plant effluent streams.

  8. 船用吊舱式电力推进系统支柱铸件的研发%Developed of Marine POD Electric Propulsion System Pillar Casting

    Institute of Scientific and Technical Information of China (English)

    刘利平; 王向阳; 张守全

    2011-01-01

    介绍了船用吊舱式电力推进系统支柱铸件的质量要求及应用环境.考虑到CO0980支柱铸件内部两腔不相连、大芯只有2个芯头的特点,使用了同材料熔合芯撑.采用无冒口铸造工艺,利用MAGMA软件进行充型模拟,确定平做立浇工艺;使用solidworks进行3D铸造工艺设计,调整铸件加工余量、添加铸件划线及加工支顶凸台.生产结果显示,CO0980支柱铸件完全满足顾客的质量规范要求.%Quality requirement and application environment of the pillar easting used for ihe POD marine electric propulsion system was introduced. Considering that the two internal cavities of the casting were not connected with each other and the big core had only two prints, the chaplets were made of the same material as for the casting in order to make it easy to he melted into the casting. By using MAGMA software to simulate the mold filling process, it was decided to adopt the riserless casting method with horizontal molding and vertical pouring. The solidworks was used to conduct 3D casting method design. The machining allowance was adjusted and the supporting bosses for marking and machining were added. The production result showed that the pillar casting completely met the quality specification of the client.

  9. Microseismic Precursory Characteristics of Rock Burst Hazard in Mining Areas Near a Large Residual Coal Pillar: A Case Study from Xuzhuang Coal Mine, Xuzhou, China

    Science.gov (United States)

    Cao, An-ye; Dou, Lin-ming; Wang, Chang-bin; Yao, Xiao-xiao; Dong, Jing-yuan; Gu, Yu

    2016-11-01

    Identification of precursory characteristics is a key issue for rock burst prevention. The aim of this research is to provide a reference for assessing rock burst risk and determining potential rock burst risk areas in coal mining. In this work, the microseismic multidimensional information for the identification of rock bursts and spatial-temporal pre-warning was investigated in a specific coalface which suffered high rock burst risk in a mining area near a large residual coal pillar. Firstly, microseismicity evolution prior to a disastrous rock burst was qualitatively analysed, and the abnormal clustering of seismic sources, abnormal variations in daily total energy release, and event counts can be regarded as precursors to rock burst. Secondly, passive tomographic imaging has been used to locate high seismic activity zones and assess rock burst hazard when the coalface passes through residual pillar areas. The results show that high-velocity or velocity anomaly regions correlated well with strong seismic activities in future mining periods and that passive tomography has the potential to describe, both quantitatively and periodically, hazardous regions and assess rock burst risk. Finally, the bursting strain energy index was further used for short-term spatial-temporal pre-warning of rock bursts. The temporal sequence curve and spatial contour nephograms indicate that the status of the danger and the specific hazardous zones, and levels of rock burst risk can be quantitatively and rapidly analysed in short time and in space. The multidimensional precursory characteristic identification of rock bursts, including qualitative analysis, intermediate and short-time quantitative predictions, can guide the choice of measures implemented to control rock bursts in the field, and provides a new approach to monitor and forecast rock bursts in space and time.

  10. Preparation and characterization of SiO2-pillared H2Ti4O9 and its photocatalytic activity for methylene blue degradation.

    Science.gov (United States)

    Jiang, Fang; Zheng, Zheng; Xu, Zhaoyi; Zheng, Shourong

    2009-05-30

    SiO(2) pillared layered titanate (SiO(2)-H(2)Ti(4)O(9)) was prepared via intercalating organosilanes into the interlayers of the layered K(2)Ti(4)O(9) followed by calcination at 500 degrees C. The resulting materials were characterized using XRD, N(2) adsorption-desorption isotherms, UV-vis spectra, IR spectroscopy and Raman spectroscopy. The photocatalytic activity of SiO(2)-H(2)Ti(4)O(9) was evaluated by photocatalytic degradation of aqueous methylene blue dye (MB). XRD and specific surface area results showed that SiO(2)-H(2)Ti(4)O(9) had an interlayer distance of 1.45 nm and a specific surface area of 148 m(2)g(-1). UV-vis absorption spectrum of SiO(2)-H(2)Ti(4)O(9) showed a red shift, indicative of a narrower band gap compared to K(2)Ti(4)O(9). In addition, SiO(2)-H(2)Ti(4)O(9) showed higher MB adsorption capacity compared to H(2)Ti(4)O(9) and K(2)Ti(4)O(9). MB photodegradation over H(2)Ti(4)O(9), K(2)Ti(4)O(9) and SiO(2)-K(2)Ti(4)O(9) followed zero-order kinetics under our experimental conditions, and the photocatalytic activity of SiO(2)-H(2)Ti(4)O(9) was found to be three times higher than that of K(2)Ti(4)O(9), which could be attributed to the increase of interlayer space and specific surface area of SiO(2)-pillared layered titanate.

  11. 介孔型硅柱撑蒙脱石的制备及表征%Preparation and Characterization of Mesoporous Silica-pillared Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    张爱琴; 张荣斌; 张宁; 洪三国

    2009-01-01

    Silica-pillared montmorillonite with microporous and mesoporous pores was prepared by interlamellar hydrolysis of tetraethyl orthosilicate catalyzed by n-octylamine after solvation of n-octylamine and tetraethyl orthosilicate with cetyl trimethylammonium in the interlayers of montmoriltonite. The characteristics of pillared clay were examined by TG-DTA, XRD, SEM, TEM and N_2 adsorption-desorption methods. Results indicated that the specific surface area and pore volume were all increased obviously compared with the original clay: the specific surface area was enlarged from 80m~2/g to 667m~2/g, the pore volume of silica-piUared clay was 0.7413cm~3/g.%利用溶剂化作用,将辛胺和正硅酸四乙酯同时插层进入十六烷基三甲基有机阳离子型蒙脱石层间,在辛胺的碱性催化作用下,正硅酸四乙酯在蒙脱石层间原位水解得到硅酸及有机物混合插层蒙脱石.将此混合插层化合物在550℃煅烧后得到硅柱撑蒙脱石.用TG-DTA、XRD、TEM和N_2吸附-脱附等技术对所制备的硅柱撑蒙脱石进行了表征.结果表明:蒙脱石经硅柱撑后其比表面积由原始的80m~2/g增大到667m~2/g,孔容达到0.7413cm~3/g,具有介孔结构.

  12. Synthesis of magnetic FexOy@silica-pillared clay (SPC) composites via a novel sol-gel route for controlled drug release and targeting.

    Science.gov (United States)

    Mao, Huihui; Liu, Xiaoting; Yang, Jihe; Li, Baoshan; Yao, Chao; Kong, Yong

    2014-07-01

    Novel magnetic silica-pillared clay (SPC) materials with an ordered interlayered mesopore structure were synthesized via a two-step method including gallery molecular self-assembly and sol-gel magnetic functionalization, resulting in the formation of FexOy@SPC composites. Small-angle XRD, TEM and N2 adsorption-desorption isotherms results show that these composites conserved a regular layered and ordered mesoporous structure after the formation of FexOy nanoparticles. Wide-angle XRD and XPS analyses confirmed that the FexOy generated in these mesoporous silica-pillared clay hosts is mainly composed of γ-Fe2O3. Magnetic measurements reveal that these composites with different γ-Fe2O3 loading amounts possess super-paramagnetic properties at 300K, and the saturation magnetization increases with increasing Fe ratio loaded. Compared to the pure SPC, the in vitro drug release rate of the FexOy@SPC composites was enhanced due to the fact that the intensities of the SiOH bands on the pore surface of SPC decrease after the generation of FexOy. However, under an external magnetic field of 0.15T, the drug release rate of the FexOy@SPC composites decreases dramatically owing to the aggregation of the magnetic FexOy@SPC particles triggered by non-contact magnetic force. The obtained FexOy@SPC composites imply the possibility of application in magnetic drug targeting. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huiyuan; Li, Yanli [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Xiang, Luojing [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Huang, Qianqian; Qiu, Juanjuan [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan 430079 (China); Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France); Valange, Sabine, E-mail: sabine.valange@univ-poitiers.fr [Université de Poitiers, UMR CNRS 7285, IC2MP, ENSIP, B1, 1 rue Marcel Doré, TSA 41105, Poitiers 86073 Cedex 9 (France)

    2015-04-28

    Highlights: • Al-pillared Fe-smectite was synthesized and used as the photo-Fenton catalyst. • Response surface methodology was used to study the effects of reaction parameters. • The main intermediate products were identified by GC–MS technique. • A possible degradation pathway of Orange II was proposed. • All the generated products of Orange II were less toxic than the original dye. - Abstract: A ferric smectite clay material was synthesized and further intercalated with Al{sub 2}O{sub 3} pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5 g/L and hydrogen peroxide concentration of 13.5 mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160 mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography–mass spectrometry (GC–MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150 min reaction, indicating that the effluent was suitable for sequential biological treatment.

  14. Fabrication of high-brightness GaN-based light-emitting diodes via thermal nanoimprinting of ZnO-nanoparticle-dispersed resin

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Kyeong-Jae [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 (United States); Cho, Joong-Yeon; Jo, Han-Byeol [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Heon, E-mail: heonlee@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2015-08-15

    Highlights: • A various high-refractive-index ZnO patterns were formed on LED using imprinting. • Mechanism of light extraction enhancement was demonstrated by simulation and EL. • Light output power of patterned LED was improved up 19.6% by light waveguide effect. - Abstract: We fabricated high-brightness GaN-based light-emitting diodes (LEDs) with highly refractive patterned structures by using a thermal nanoimprint lithography (NIL). A highly refractive ZnO-nanoparticle-dispersed resin (ZNDR) was used in NIL, and a submicron hole, a submicron high-aspect-ratio pillar, and microconvex arrays were fabricated on the indium tin oxide (ITO) top electrode of GaN-based LED devices. We analyzed the light extraction mechanism for each of the three types of patterns by using a finite element method simulation, and found that the high-aspect-ratio pillar had a great ability to improve light extraction owing to its waveguide effect and prominent scattering effect. As a result, the light output power, which was measured in an integrating sphere, of the LED device was enhanced by up to 19.6% when the high-aspect-ratio pillar array was formed on the top ITO electrode of the device. Further, the electrical properties of none of the patterned LED devices fabricated using ZNDR degraded in comparison to those of bare LED devices.

  15. 铝柱撑改性膨润土处理电镀废水中Cr6+的实验研究%Experimental study on the treatment of Cr6+ in electroplating wastewater by aluminum pillared modified bentonite

    Institute of Scientific and Technical Information of China (English)

    周仲魁; 徐少辉

    2012-01-01

    Bentonite has been used as raw material for the preparation of aluminum pillared modified bentonite. The effects of different influencing factors on the Cr6+ removing rate from electroplating wastewater with aluminum pillared modified bentonite are studied. The results show that the Cr6+ removing rate from electroplating wastewater with the aluminum pillared modified bentonite is significantly better than that with the original bentonite. The factors,such as wastewater pH,adsorption time and bentonite dosage have greater effect on the Cr6+ removing rate. The Cr6+ removing rate by aluminum pillared modified bentonite reaches the highest,86.1% ,in the case of pH=4, adsorption time 40 min, and dosage 40 g/L. The adsorption of Cr6+ in the electroplating wastewater by aluminum pillared modified bentonite conforms to Langmuir adsorption isotherm equation.%以膨润土为原料制备了铝柱撑改性膨润土,并研究了不同影响因素对铝柱撑改性膨润土去除电镀废水中Cr6+的影响.结果表明:铝柱撑改性膨润土对Cr6+的去除率明显优于膨润土原土;废水的pH、吸附时间和膨润土投加量对Cr6+的去除率影响较大;pH=4,吸附时间为40 min,投加质量浓度为40 g/L,铝柱撑改性膨润土对Cr6+的去除率达到最大86.1%;铝柱撑改性膨润土对电镀废水中Cr6+的吸附符合Langmuir吸附等温方程.

  16. Research and practice of coal pillar storage bunker protection on the loess slope%黄土坡体上储煤仓保护煤柱的留设研究与实践

    Institute of Scientific and Technical Information of China (English)

    张峰

    2014-01-01

    在黄土丘陵地区进行煤炭开采,常常会引起山体滑坡、崩塌等次生灾害,本文以位于黄土坡体顶部储煤仓保护煤柱留设的实践为例,针对储煤仓区域地形特征、煤炭开采条件,对坡体地表受煤炭开采影响的移动、变形特征进行了对比分析,提出了储煤仓保安煤柱加坡体防滑煤柱的联合防护方法,采用开采影响移动角法确定了防滑煤柱尺寸,开采实践证明受护坡体未产生滑坡且储煤仓保持了安全正常使用,留设坡体防滑煤柱的方法是有效的。%Coal Mining in loess hilly area ,often can cause secondary disasters ,collapse ,landslide ,based on the practice in the loess slope top coal storage bunker protective coal pillar set as an example ,according to the coal storage area of terrain features ,coal mining conditions ,comparison ,analysis on slope surface characteristics effects of coal mining ,the protection method of storage bunker security coal pillar and pillar slope slip ,slip the size of coal pillar is determined by the mining influence mobile angle method ,mining practice proved by the slope body not produce landslides and storage bunker maintaining safe and normal use ,the method of slope slip of the coal pillar is effective .

  17. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Saxon, Aron; Powell, Mitchell; Shi, Ying

    2016-06-07

    This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.

  18. Top-coal deformation control of gob-side entry with narrow pillars and its application for fully mechanized mining face Top-coal deformation control of gob-side entry with narrow pillars and its application for fully mechanized mining face

    Institute of Scientific and Technical Information of China (English)

    Qi Fangkun; Zhou Yuejin; Li Jiawei; Wang Erqian; Cao Zhengzheng; Li Ning

    2016-01-01

    A mechanical model to control the top-coal deformation is established in accordance with the structural characters of the gob-side entry surrounding rock for the fully-mechanic top-coal caving;the analytical solution of top coal roof-sag curve is deduced with Winkler elastic foundation beam model. By means of a calculating and analytic program, the top coal roof-sag values are calculated under the conditions of dif-ferent supporting intensities, widths of narrow pillars and stiffness of top coal;meanwhile, the relation-ship between the roof-sag values and supporting intensity, width of narrow pillars and stiffness of top coal is analyzed as well. With the actual situation of the gob-side entry taken into consideration, the parameters of top-coal control are determined and a supporting plan is proposed for the top-coal control, which is proved to be reliable and effective by on-site verification. Some theoretical guidance and advice are put forward for the top-coal deformation control in gob-side entry for fully mechanized top-coal cav-ing face.

  19. Introduction to thermal transport

    Directory of Open Access Journals (Sweden)

    Simon R. Phillpot

    2005-06-01

    Full Text Available The relentless increase in the thermal loads imposed on devices and materials structures is driving renewed interest among materials scientists and engineers in the area of thermal transport. Applications include thermal barrier coatings on turbine blades, thermoelectric coolers, high-performance thermal transfer liquids, and heat dissipation in microelectronics. These, and other applications, demand not only ever more efficient thermal management, but also a better fundamental understanding of the underlying physical mechanisms.

  20. 大断面沿空掘巷煤柱宽度确定数值模拟研究%Numerical Simulation Study on Determination of Coal Pillar Width for Large-section Roadway Driving along Next Gob

    Institute of Scientific and Technical Information of China (English)

    郭辉; 王新萍

    2014-01-01

    针对大断面沿空掘巷煤柱宽度确定的难题,采用FLAC3 D数值模拟方法研究不同宽度煤柱的屈服破坏特征与应力分布规律,研究结果表明:①掘进阶段,煤柱宽度为3m和4m时,煤柱全部被压坏,煤柱应力近似呈三角形分布;煤柱宽度超过5m后,未屈服破坏的煤柱宽度随煤柱宽度增加而呈二次多项式规律增加,煤柱应力近似呈梯形分布。②回采阶段,随着工作面推进,煤柱围岩屈服破坏范围逐渐增加,垂直应力峰值较掘进阶段升高且由梯形分布逐渐向三角形分布演化,超前20 m应加强支护。③工程实践表明,所选受力状态良好、宽5m的煤柱,回采时采取必要的支护措施可以实现高效安全开采。%Aiming at the problem that the coal pillar width for large-section roadway driving along next gob was hardly determined, study was made on the characteristics of the yield failure and the law of stress distribution of coal pillars in different width by using numerical simulation of FLAC3D. The research results showed:①At the drivage stage, when the coal pillar width was 3 m and 4 m, the whole coal pillar was destroyed and its stress was approximately in triangular distribution; when the coal pillar width was more than 5 m, the coal pillar width without yield failure increased in a quadratic polynomial law, and its stress was approximately in trapezoidal distribution;②At the wining stage, the yield failure scope of coal pillar ' s surrounding rock gradually increased with the advance of the working face, the peak value of the vertical stress was higher than that at the drivage stage, and the vertical stress gradually evolved from the trapezoidal distribution to the triangular distribution, so support should be strengthened in 20 m ahead of the coal pillar;③The engineering practice showed that selected coal pillar in 5 m-wide and with good force condition can realize efficient and safe coal mining