WorldWideScience

Sample records for box o3a p38

  1. Redox-sensitive up-regulation of eNOS by purple grape juice in endothelial cells: role of PI3-kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a.

    Science.gov (United States)

    Alhosin, Mahmoud; Anselm, Eric; Rashid, Sherzad; Kim, Jong Hun; Madeira, Socorro Vanesca Frota; Bronner, Christian; Schini-Kerth, Valérie B

    2013-01-01

    The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO). The aim of the present study was to determine whether Concord grape juice (CGJ), which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS) in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells. The stimulatory effect of CGJ on eNOS mRNA is not associated with an increased eNOS mRNA stability and inhibited by antioxidants such as MnTMPyP, PEG-catalase, and catalase, and by wortmannin (an inhibitor of PI3-kinase), SB 203580 (an inhibitor of p38 MAPK), and SP 600125 (an inhibitor of JNK). Moreover, CGJ induced the formation of reactive oxygen species (ROS) in endothelial cells and this effect is inhibited by MnTMPyP, PEG-catalase, and catalase. The CGJ-induced the phosphorylation of p38 MAPK and JNK kinases is abolished by MnTMPyP. CGJ induced phosphorylation of transcription factors FoxO1 and FoxO3a, which regulate negatively eNOS expression, and this effect is prevented by MnTMPyP, PEG-catalase, wortmannin, SB203580 and SP600125. Moreover, chromatin immunoprecipitation assay indicated that the FoxO3a protein is associated with the eNOS promoter in control cells and that CGJ induced its dissociation. Thus, the present study indicates that CGJ up-regulates the expression of eNOS mRNA and protein leading to an increased formation of NO in endothelial cells. The stimulatory effect of CGJ is a redox-sensitive event involving PI3-kinase/Akt, p38 MAPK and JNK pathways, and the inactivation of the FoxO transcription factors, FoxO1 and FoxO3a, thereby preventing their repression of the eNOS gene. PMID:23533577

  2. Redox-sensitive up-regulation of eNOS by purple grape juice in endothelial cells: role of PI3-kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a.

    Directory of Open Access Journals (Sweden)

    Mahmoud Alhosin

    Full Text Available The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO. The aim of the present study was to determine whether Concord grape juice (CGJ, which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells. The stimulatory effect of CGJ on eNOS mRNA is not associated with an increased eNOS mRNA stability and inhibited by antioxidants such as MnTMPyP, PEG-catalase, and catalase, and by wortmannin (an inhibitor of PI3-kinase, SB 203580 (an inhibitor of p38 MAPK, and SP 600125 (an inhibitor of JNK. Moreover, CGJ induced the formation of reactive oxygen species (ROS in endothelial cells and this effect is inhibited by MnTMPyP, PEG-catalase, and catalase. The CGJ-induced the phosphorylation of p38 MAPK and JNK kinases is abolished by MnTMPyP. CGJ induced phosphorylation of transcription factors FoxO1 and FoxO3a, which regulate negatively eNOS expression, and this effect is prevented by MnTMPyP, PEG-catalase, wortmannin, SB203580 and SP600125. Moreover, chromatin immunoprecipitation assay indicated that the FoxO3a protein is associated with the eNOS promoter in control cells and that CGJ induced its dissociation. Thus, the present study indicates that CGJ up-regulates the expression of eNOS mRNA and protein leading to an increased formation of NO in endothelial cells. The stimulatory effect of CGJ is a redox-sensitive event involving PI3-kinase/Akt, p38 MAPK and JNK pathways, and the inactivation of the FoxO transcription factors, FoxO1 and FoxO3a, thereby preventing their repression of the eNOS gene.

  3. Nuclear accumulation of β-catenin and forkhead box O3a in colon cancer:Dangerous liaison

    Institute of Scientific and Technical Information of China (English)

    Wolfgang; Link

    2012-01-01

    The WNT/-catenin and phosphoinositide 3-kinase(PI3K/AKT) signaling cascades both have been implicated in the formation and progression of colorectal cancer.Oncogenic PI3K/AKT signaling suppresses the activity of forkhead box O3a(FOXO3a) transcription factor through phosphorylation leading to its nuclear exclusion.Inhibition of the PI3K/AKT signaling by PI3K or AKT inhibitors results in the translocation of FOXO3a to the nucleus,and is considered to be a promising therapeutic strategy for many cancers including colon cancer.Now,however,a new study in Nature Medicine has revealed a nuclear interaction of-catenin with FOXO3a as a promoter of metastatic progression in colon cancer.The work has important implications for the treatment of colon cancers,suggests a companion biomarker strategy to enable a personalized medicine approach,and offers an alternative therapeutic strategy to overcome resistance to PI3K and AKT inhibitors.

  4. The activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 to the distal CCAAT box of the RhoB promoter

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jiwon [Genome Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Choi, Jeong-Hae; Won, Misun [Genome Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Kang, Chang-Mo [Laboratory of Cytogenetics and Tissue Regeneration, KIRAMS, Seoul 139-706 (Korea, Republic of); Gyun, Mi-Rang [Genome Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Functional Genomics, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Park, Hee-Moon [Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Chun-Ho, E-mail: chkim@kirams.re.kr [Laboratory of Cytogenetics and Tissue Regeneration, KIRAMS, Seoul 139-706 (Korea, Republic of); Chung, Kyung-Sook, E-mail: kschung@kribb.re.kr [Genome Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of)

    2011-06-03

    Highlights: {yields} Regulation of transcriptional activation of RhoB is still unclear. {yields} We examine the effect of p38 MAPK inhibition, and c-Jun and RhoB depletion on UV-induced RhoB expression and apoptosis. {yields} We identify the regions of RhoB promoter necessary to confer UV responsiveness using pRhoB-luciferase reporter assays. {yields} c-Jun, ATF2 and p300 are dominantly associated with NF-Y on the distal CCAAT box. {yields} The activation of p38 MAPK primarily contribute to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins on distal CCAAT box of RhoB promoter. -- Abstract: The Ras-related small GTP-binding protein RhoB is rapidly induced in response to genotoxic stresses caused by ionizing radiation. It is known that UV-induced RhoB expression results from the binding of activating transcription factor 2 (ATF2) via NF-Y to the inverted CCAAT box (-23) of the RhoB promoter. Here, we show that the association of c-Jun with the distal CCAAT box (-72) is primarily involved in UV-induced RhoB expression and p38 MAPK regulated RhoB induction through the distal CCAAT box. UV-induced RhoB expression and apoptosis were markedly attenuated by pretreatment with the p38 MAPK inhibitor. siRNA knockdown of RhoB, ATF2 and c-Jun resulted in decreased RhoB expression and eventually restored the growth of UV-irradiated Jurkat cells. In the reporter assay using luciferase under the RhoB promoter, inhibition of RhoB promoter activity by the p38 inhibitor and knockdown of c-Jun using siRNA occurred through the distal CCAAT box. Immunoprecipitation and DNA affinity protein binding assays revealed the association of c-Jun and p300 via NF-YA and the dissociation of histone deacetylase 1 (HDAC1) via c-Jun recruitment to the CCAAT boxes of the RhoB promoter. These results suggest that the activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins to the distal CCAAT box of the RhoB promoter in

  5. Genistein Increase Intracellular Distribution of the High Motility Group Box - 1 through p38 Pathway in HeLa culture cells induced by Tumor Necrosis Factor - α

    Directory of Open Access Journals (Sweden)

    Merlita Herbani

    2014-05-01

    Full Text Available Cervical cancer is one kind of many cancers that cause death to women around the world. Many studies had support the statement that inflammation has a strong linkage with cancer development. Several factors like proinflammatory factor can influence tumor cell microenvironment, and induce a faster proliferation. TNF-α is suspected can induce proliferation. While cancer itself can induce inflammation, which is marked by several marker. One of them is HMGB1, released from the cell as active secretory lysosomes or passive diffusion. Genistein has demonstrated growth inhibitory effects of various types of cancer cells. It inhibits tyrosine kinase pathway, which can be activated by TNF-α. One of those pathways that have the link with proliferation is p38. This study tries to reveal about inhibitory effect of genistein toward p38 pathway that had been activated by TNF-α. This research was conducted by exposing cultured HeLa cells with various doses of genistein for 90 minutes, and then exposed to TNF-α 10 ng / mL for 20 minutes. Observations were made with a confocal microscope, by staining the cells with pp38-TRITC and HMGB1 antibody. The intensity was measured and analyzed by Fluoview software. The results suggest that there be significant differences between pp38 intranuclear intensity and HMGB1 extranuclear intensity of each dose of genistein (p = 0.000, ANOVA. pp38 and HMGB1 intensity were increased along with increasing genistein dose, but at high dose there were noted decreasing of pp38 and HMGB1 intensity. At apoptotic dose, pp38 and HMGB1 intensity were increased markedly, showing the effect of apoptosis. In general, increasing doses of genistein increase intranuclear p38 activation and HMGB1 extranuclear translocation. So there were a strong linkage between p38 activation and HMGB1 translocation in this study.

  6. HAT-P-38h

    DEFF Research Database (Denmark)

    Sato, Bun'ei; Hartman, Joel D.; Bakos, Gaspar A.;

    2012-01-01

    We report on the discovery of HAT-P-38b, a Saturn-mass exoplanet, transiting the V = 12.56 dwarf star GSC 2314-00559 on a P = 4.6404 d circular orbit. The host star is a 0.89 M-circle dot late G dwarf, with solar metallicity and a radius of 0.92 R-circle dot. The planetary companion has a mass of 0.......27 M-J and a radius of 0.82 R-J. HAT-P-38b is one of the planets the mass and radius of which have ever been discovered to be the closest to those of Saturn....

  7. Mitochondria and forkhead box protein O 3a%线粒体和叉头框蛋白O类3a

    Institute of Scientific and Technical Information of China (English)

    赵琳; 戴琼艳; 张露; 段满林

    2014-01-01

    Background Forkhead box O (FOXO) 3a transcription factors are regulators of cell-type specific apoptosis and cell cycle arrest,but also control cell survival and production of reactive oxygen species(ROS).Objective To review the FOXO3a self-reactivating loop and novel functions of FOXO3a in controlling mitochondrial respiration of cells,which further supports the current view that FOXO3a transcription factors are information-integrating sentinels of cellular stress and critical modulators of cell homeostasis.Content In this article,we will discuss the current knowledge on the involvement of FOXO3a transcription factors in the regulation of cellular homestasis with specific emphasis on mitochondrial integrity,morphology and activity.In neuronal tumor cells,FOXO3a triggers ROS-accumulation as a consequence of transient mitochondrial outer membrane permeabilization,which is essential for FOXO3a-induced apoptosis in these cells.Cellular levels of reactive oxygen species are affected by the FOXO3a-targets including Bim,BclxL,and Survivin.All three proteins localize to mitochondria and affect mitochondrial membrane potential and respiration,as well as cellular levels of reactive oxygen species.Trend FOXO3a controls a delicate balance between mitochondrial reactive oxygeu species-generation and levels of reactive oxygen species-preventing or detoxifying processes,which is critical for cell death decision in neuronal cells.%背景 叉头框蛋白O类(forkhead box protein O,FOXO)3a转录因子是细胞凋亡和细胞周期的调节者,也调控细胞生存或活性氧簇(reactive oxygen species,ROS)生成.目的 阐述FOXO3a激活对细胞线粒体呼吸作用的调控,进一步说明FOXO3a是细胞应激的信息整合因子和细胞稳态的主要调控因子.内容 讨论FOXO3a转录因子在调节细胞稳态中的作用,重点在线粒体完整性、形态和活性.在神经肿瘤细胞中,FOXO3a诱发ROS积聚,短暂性增加线粒体外膜通透性,这对FOXO3a诱

  8. p38gamma and p38delta mitogen activated protein kinases (MAPKs, new stars in the MAPK galaxy

    Directory of Open Access Journals (Sweden)

    Alejandra eEscós

    2016-04-01

    Full Text Available The protein kinases p38γ and p38δ belong to the p38 mitogen-activated protein kinase (MAPK family. p38MAPK signalling controls many cellular processes and is one of the most conserved mechanisms in eukaryotes for the cellular response to environmental stress and inflammation. Although p38γ and p38δ are widely expressed, it is likely that they perform specific functions in different tissues. Their involvement in human pathologies such as inflammation-related diseases or cancer is starting to be uncovered. In this article we give a general overview and highlight recent advances made in defining the functions of p38γ and p38δ, focusing in innate immunity and inflammation. We consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases and cancer

  9. Activation and signaling of the p38 MAP kinase pathway

    Institute of Scientific and Technical Information of China (English)

    Tyler ZARUBIN; Jiahuai HAN

    2005-01-01

    The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.

  10. Regulative effect of P38MAPK on release of TNF

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To evaluate activation of P38 mitogen-activatedprotein kinase (P38MAPK) in alveolar macrophage (AM), release of TNFα and NO from cells, and their relationship following lipopolysacchride (LPS) stimulation.Methods: AM was isolated from branch alveolar lavage fluid (BALF). The activation of P38MAPK was assayed by Westernblot. SB203580, a specific inhibitor of P38MAPK, was used with gradient concentration to evaluate the regulative effect of P38MAPK on the release of TNFα and NO from AM.Results: P38MAPK was activated by LPS (100 ng/ml) with peak activation at 30 minutes. The activation of P38MAPK was inhibited by SB203580. The secretion of TNFα and NO stimulated with LPS increased (P<0.01) and was inhibited by SB203580 significantly.Conclusions: The results indicate that P38MAPK is involved in the secreting process of TNFα and NO following LPS stimulation. P38MAPK may be an important site for controlling the secretion of both inflammatory mediators during lung inflammatory disorders.

  11. FoxO3a and disease progression

    Institute of Scientific and Technical Information of China (English)

    Richard; Seonghun; Nho; Polla; Hergert

    2014-01-01

    The Forkhead box O(FoxO) family has recently been highlighted as an important transcriptional regulator of crucial proteins associated with the many diverse functions of cells. So far, FoxO1, FoxO3 a, FoxO4 and FoxO6 proteins have been identified in humans. Although each FoxO family member has its own role, unlike the other FoxO families, FoxO3 a has been extensively studied because of its rather unique and pivotal regulation of cell proliferation, apoptosis, metabolism, stress management and longevity. FoxO3 a alteration is closely linked to the progression of several types of cancers, fibrosis and other types of diseases. In this review, we will examine the function of FoxO3 a in disease progression and also explore FoxO3a’s regulatory mechanisms. We will also discuss FoxO3 a as a potential target for the treatment of several types of disease.

  12. The Role of the p38 Pathway in Adaptive Immunity

    Institute of Scientific and Technical Information of China (English)

    Ryan Cook; Chia-Cheng Wu; Young Jun Kang; Jiahuai Han

    2007-01-01

    Since its discovery in 1993, the mitogen-activated protein (MAP) kinase p38 has attracted much attention for its role in a wide range of cellular processes, many of which involve the immune system. Although p38 has been heavily implicated in the function of all type immune cells, research has tended focus on its role in innate immunity.In this review we attempt to highlight some of the major discoveries that have been made regarding p38's role in adaptive immunity, and also to discuss the possible future implications of these discoveries.

  13. Comparative chemical array screening for p38γ/δ MAPK inhibitors using a single gatekeeper residue difference between p38α/β and p38γ/δ.

    Science.gov (United States)

    Kondoh, Yasumitsu; Honda, Kaori; Hiranuma, Sayoko; Hayashi, Teruo; Shimizu, Takeshi; Watanabe, Nobumoto; Osada, Hiroyuki

    2016-01-01

    Mammalian p38 mitogen activated protein kinases (MAPKs) are responsive to a variety of cellular stresses. The development of specific pyridinyl imidazole inhibitors has permitted the characterization of the p38 MAPK isoform p38α, which is expressed in most cell types, whereas the physiological roles of p38γ and p38δ are poorly understood. In this study, we report an approach for identifying selective inhibitors against p38γ and p38δ by focusing on the difference in gatekeeper residues between p38α/β and p38γ/δ. Using GST-fused p38α wild type and T106M mutant constructs, wherein the p38α gatekeeper residue (Thr-106) was substituted by the p38γ/δ-type (Met), we performed comparative chemical array screening to identify specific binders of the mutant and identified SU-002 bound to p38αT106M specifically. SU-002 was found to inhibit p38αT106M but not p38α kinase activity in in vitro kinase assays. SU-005, the analog of SU-002, had inhibitory effects against the kinase activity of p38γ and p38δ in vitro but not p38α. In addition, SU-005 inhibited both p38γ and p38δ auto-phosphorylation in HeLa and HEK293T cells. These results demonstrate that the comparative chemical array screening approach is a powerful technique to explore specific inhibitors for mutant proteins with even single amino-acid substitutions in a high-throughput manner. PMID:27431267

  14. Stress-mediated p38 activation promotes somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Xinxiu Xu; Quan Wang; Yuan Long; Ru Zhang; Xiaoyuan Wei; Mingzhe Xing; Haifeng Gu

    2013-01-01

    Environmental stress-mediated adaptation plays essential roles in the evolution of life.Cellular adaptation mechanisms usually involve the regulation of chromatin structure,transcription,mRNA stability and translation,which eventually lead to efficient changes in gene expression.Global epigenetic change is also involved in the reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined factors.Here we report that environmental stress such as hyperosmosis not only facilitates four factor-mediated reprogramming,but also enhances two or one factor-induced iPS cell generation.Hyperosmosis-induced p38 activation plays a critical role in this process.Constitutive active p38 mimics the positive effect of hyperosmosis,while dominant negative p38 and p38 inhibitor block the effect of hyperosmosis.Further study indicates stress-mediated p38 activation may promote reprogramming by reducing the global DNA methylation level and enhancing the expression of pluripotency genes.Our results demonstrate how simple environmental stress like hyperosmosis helps to alter the fate of cells via intracellular signaling and epigenetic modulation.

  15. Piperlongumine induces autophagy by targeting p38 signaling.

    Science.gov (United States)

    Wang, Y; Wang, J-W; Xiao, X; Shan, Y; Xue, B; Jiang, G; He, Q; Chen, J; Xu, H-G; Zhao, R-X; Werle, K D; Cui, R; Liang, J; Li, Y-L; Xu, Z-X

    2013-01-01

    Piperlongumine (PL), a natural product isolated from the plant species Piper longum L., can selectively induce apoptotic cell death in cancer cells by targeting the stress response to reactive oxygen species (ROS). Here we show that PL induces cell death in the presence of benzyloxycarbonylvalyl-alanyl-aspartic acid (O-methyl)-fluoro-methylketone (zVAD-fmk), a pan-apoptotic inhibitor, and in the presence of necrostatin-1, a necrotic inhibitor. Instead PL-induced cell death can be suppressed by 3-methyladenine, an autophagy inhibitor, and substantially attenuated in cells lacking the autophagy-related 5 (Atg5) gene. We further show that PL enhances autophagy activity without blocking autophagy flux. Application of N-acetyl-cysteine, an antioxidant, markedly reduces PL-induced autophagy and cell death, suggesting an essential role for intracellular ROS in PL-induced autophagy. Furthermore, PL stimulates the activation of p38 protein kinase through ROS-induced stress response and p38 signaling is necessary for the action of PL as SB203580, a p38 inhibitor, or dominant-negative p38 can effectively reduce PL-mediated autophagy. Thus, we have characterized a new mechanism for PL-induced cell death through the ROS-p38 pathway. Our findings support the therapeutic potential of PL by triggering autophagic cell death. PMID:24091667

  16. p38 MAPK inhibition alleviates experimental acute pancreatitis in mice

    Institute of Scientific and Technical Information of China (English)

    Ming-HuaCao; JingXu; Hai-DongCai; Zhong-WeiLv; Ya-JingFeng; KunLi; Chun-QiuChen; Yong-YuLi

    2015-01-01

    BACKGROUND: The mitogen-activated protein kinases (MAPKs) signaling pathway is involved in inflammatory process. However, the mechanism is not clear. The present study was to investi-gate the role of p38 MAPK in acute pancreatitis in mice. METHODS: Mice were divided into 4 groups: saline control; acute  pancreatitis  induced  with  repeated  injections  of  ceru-lein;  control  plus  p38  MAPK  inhibitor  SB203580;  and  acute pancreatitis plus SB203580. The pancreatic histology, pancre-atic enzymes, cytokines, myeloperoxidase activity, p38 MAPK and heat shock protein (HSP) 60 and 70 were evaluated. RESULTS: Repeated  injections  of  cerulein  resulted  in  acute pancreatitis  in  mice,  accompanying  with  the  activation  of p38  MAPK  and  overexpression  of  HSP60  and  HSP70  in  the pancreatic tissues. Treatment with SB203580 significantly in-hibited the activation of p38 MAPK, and furthermore, inhib-ited the expression of HSP60 and HSP70 in the pancreas, the inflammatory  cytokines  in  the  serum,  and  myeloperoxidase activity in the lung. CONCLUSION: The p38 MAPK signaling pathway is involved in  the  regulation  of  inflammatory  response  and  the  expres-sion of HSP60 and HSP70 in acute pancreatitis.

  17. p38 MAPK signaling in postnatal tendon growth and remodeling.

    Directory of Open Access Journals (Sweden)

    Andrew J Schwartz

    Full Text Available Tendon is a dynamic tissue whose structure and function is influenced by mechanical loading, but little is known about the fundamental mechanisms that regulate tendon growth and remodeling in vivo. Data from cultured tendon fibroblasts indicated that the p38 MAPK pathway plays an important role in tendon fibroblast proliferation and collagen synthesis in vitro. To gain greater insight into the mechanisms of tendon growth, and explore the role of p38 MAPK signaling in this process, we tested the hypotheses that inducing plantaris tendon growth through the ablation of the synergist Achilles tendon would result in rapid expansion of a neotendon matrix surrounding the original tendon, and that treatment with the p38 MAPK inhibitor SB203580 would prevent this growth. Rats were treated with vehicle or SB203580, and subjected to synergist ablation by bilateral tenectomy of the Achilles tendon. Changes in histological and biochemical properties of plantaris tendons were analyzed 3, 7, or 28 days after overload, and comparisons were made to non-overloaded animals. By 28 days after overload, tendon mass had increased by 30% compared to non-overloaded samples, and cross-sectional area (CSA increased by around 50%, with most of the change occurring in the neotendon. The expansion in CSA initially occurred through the synthesis of a hyaluronic acid rich matrix that was progressively replaced with mature collagen. Pericytes were present in areas of active tendon growth, but never in the original tendon ECM. Inhibition of p38 MAPK resulted in a profound decrease in IL6 expression, and had a modest effect on the expression of other ECM and cell proliferation genes, but had a negligible impact on overall tendon growth. The combined results from this study provided novel insights into tendon mechanobiology, and suggest that p38 MAPK signaling does not appear to be necessary for tendon growth in vivo.

  18. Afzelin positively regulates melanogenesis through the p38 MAPK pathway.

    Science.gov (United States)

    Jung, Eunsun; Kim, Jin Hee; Kim, Mi Ok; Jang, Sunghee; Kang, Mingyeong; Oh, Sae Woong; Nho, Youn Hwa; Kang, Seung Hyun; Kim, Min Hee; Park, See-Hyoung; Lee, Jongsung

    2016-07-25

    Melanogenesis refers to synthesis of the skin pigment melanin, which plays a critical role in the protection of skin against ultraviolet irradiation and oxidative stressors. We investigated the effects of afzelin on melanogenesis and its mechanisms of action in human epidermal melanocytes. In this study, we found that afzelin increased both melanin content and tyrosinase activity in a concentration-dependent manner. While the mRNA levels of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein (TRP)-1 increased following afzelin treatment, the mRNA levels of TRP-2 were not affected by afzelin. Likewise, afzelin increased the protein levels of MITF, TRP-1, and tyrosinase but not TRP-2. Mechanistically, we found that afzelin regulated melanogenesis by upregulating MITF through phosphorylation of p38 mitogen-activated protein kinase (MAPK), independent of cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling. Taken together, these findings indicate that the promotion of melanogenesis by afzelin occurs through increased MITF gene expression, which is mediated by activation of p38 MAPK, and suggest that afzelin may be useful as a protective agent against ultraviolet irradiation. PMID:27287415

  19. The binding of actin to p38 MAPK and inhibiting its kinase activity in vitro

    Institute of Scientific and Technical Information of China (English)

    杨琨; 姜勇; 韩家淮; 顾军

    2003-01-01

    p38 MAP kinase mediates a signal pathway that is involved in many physiological and pathological processes such as inflammation, cellular stress, apoptosis, cell cycle and growth, ischemia/re-perfusion, and myocardium hypertrophy. To determine the molecular and regulative mechanism of p38 signal pathway, we used in vitro binding methods to screen the proteins that interact with p38. Here we report two proteins from mouse macrophage RAW264.7 strain treated with lipopolysaccharide (LPS) or ultraviolet radiation (UV), binding directly to p38. One of them isβ-actin identified by peptide mass spectrum and ProFound program. Actin can inhibit the autophosphorylation of p38 and the phosphorylation of ATF by p38. It suggests that the binding of actin to p38 in vitro may represent a negative feedback to the kinase activity of p38, which leads to the regulation of p38 pathway and cellular function.

  20. Selective activation of p38alpha and p38gamma by hypoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells.

    Science.gov (United States)

    Conrad, P W; Rust, R T; Han, J; Millhorn, D E; Beitner-Johnson, D

    1999-08-13

    Hypoxic/ischemic trauma is a primary factor in the pathology of a multitude of disease states. The effects of hypoxia on the stress- and mitogen-activated protein kinase signaling pathways were studied in PC12 cells. Exposure to moderate hypoxia (5% O(2)) progressively stimulated phosphorylation and activation of p38gamma in particular, and also p38alpha, two stress-activated protein kinases. In contrast, hypoxia had no effect on enzyme activity of p38beta, p38beta(2), p38delta, or on c-Jun N-terminal kinase, another stress-activated protein kinase. Prolonged hypoxia also induced phosphorylation and activation of p42/p44 mitogen-activated protein kinase, although this activation was modest compared with nerve growth factor- and ultraviolet light-induced activation. Hypoxia also dramatically down-regulated immunoreactivity of cyclin D1, a gene that is known to be regulated negatively by p38 at the level of gene expression (Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R., and Pouyssegur, J. (1996) J. Biol. Chem. 271, 20608-20616). This effect was partially blocked by SB203580, an inhibitor of p38alpha but not p38gamma. Overexpression of a kinase-inactive form of p38gamma was also able to reverse in part the effect of hypoxia on cyclin D1 levels, suggesting that p38alpha and p38gamma converge to regulate cyclin D1 during hypoxia. These studies demonstrate that an extremely typical physiological stress (hypoxia) causes selective activation of specific p38 signaling elements; and they also identify a downstream target of these pathways. PMID:10438538

  1. Acidosis-induced p38 MAPK activation and its implication in regulation of cardiac contractility

    Institute of Scientific and Technical Information of China (English)

    Ming ZHENG; Rong HOU; Rui-ping XIAO

    2004-01-01

    AIM: To determine the possible role of pH in mediating activation of p38 mitogen-activated protein kinase (MAPK) and the consequent function of activated p38 MAPK in regulating cardiac contractility. METHODS: Adult rat cardiomyocytes were isolated and cultured. Low pH media was used to induce intracellular acidosis and contraction of single cardiomyocyte was measured. RESULTS: Phosphorylation of p38 MAPK was increased during ischemia, and pHi was decreased. Intracellular acidosis activated p38 MAPK to a similar level as ischemia. Inhibition of p38 MAPK activation by SB203580, a specific inhibitor of p38 MAPK, reversed acidosis-mediated reduction of myocyte contractility. CONCLUSION: In adult rat cardiomyocytes, intracellular acidification activated p38 MAPK and decreased cardiac contractility. Pretreatment of cardiomyocytes with SB203580 completely blocked p38 MAPK activation and partially reversed acidosis-mediated decline of cardiac contractility.

  2. P38 mitogen-activated protein kinase (MAPK) in rheumatoid arthritis

    NARCIS (Netherlands)

    Westra, J.; Limburg, P. C.

    2006-01-01

    The importance of p38 MAPK inhibitors as new drug for rheumatoid arthritis is reflected by the large number of compounds that has been developed over the last years. In this review new insights such as non-stressful activation of p38 MAPK, and the role of p38 MAPK in regulation of NF-kappa B recruit

  3. Stress-induced interaction between p38 MAPK and HSP70

    International Nuclear Information System (INIS)

    Highlights: ► HSP70 interacts to p38 MAPK in vitro and in vivo. ► HSP70 co-localizes with p38 MAPK in the nucleus upon stress. ► HSP70 is involved in the nuclear phosphorylation of MK2 by p38 MAPK. -- Abstract: p38 MAPK, one of the four MAPK subfamilies in mammalian cells, is activated by environmental stresses and pro-inflammatory cytokines, playing fundamental roles in many biological processes. Despite all that is known on the structure and functions of p38, many questions still exist. The coupling of activation and nuclear translocation represents an important aspect of p38 signaling. In our effort in exploring the potential chaperone for p38 translocation, we performed an endogenous pull-down assay and identified HSP70 as a potential interacting protein of p38. We confirmed the interaction between p38 and HSP70 in vitro and in vivo, and identified their interaction domains. We also showed stress-induced nuclear co-localization of these two proteins. Our preliminary result indicated that HSP70 was related to the phosphorylation of MK2, a specific nuclear downstream target of p38, suggesting HSP70 is a potential chaperone for the nuclear translocation of p38.

  4. 运动对p38MAPK表达的影响%Effects of Sports on p38MAPK

    Institute of Scientific and Technical Information of China (English)

    刘庆美

    2007-01-01

    丝裂原活化蛋白激酶信号系统(mitogen activated protein kinase,MAPKs)在细胞的信号传导中起着很重要的作用,其中以p38研究得最为深入.:运动是一个非常重要的刺激因素,可对骨骼肌中的多种代谢和转录过程起调节作用.MAPK信号级联中有多种独立的信号途径参与了骨骼肌运动性适应的细胞调控过程,对骨骼肌中葡萄糖转运、胰岛素信号转导、钾离子转运、工作肌的可塑性等产生影响.运动能够激活骨骼肌中MAPKs信号传导系统.不同运动方式、不同类型的肌肉可以影响到MAPKs的激活,而且激活后MAPKs具有不同的时相性.MAPKs对运动后骨骼肌的适应性变化具有重要作用.

  5. Evaluating the Role of p38 MAPK in the Accelerated Cell Senescence of Werner Syndrome Fibroblasts

    Directory of Open Access Journals (Sweden)

    Terence Davis

    2016-04-01

    Full Text Available Progeroid syndromes show features of accelerated ageing and are used as models for human ageing, of which Werner syndrome (WS is one of the most widely studied. WS fibroblasts show accelerated senescence that may result from p38 MAP kinase activation since it is prevented by the p38 inhibitor SB203580. Thus, small molecule inhibition of p38-signalling may be a therapeutic strategy for WS. To develop this approach issues such as the in vivo toxicity and kinase selectivity of existing p38 inhibitors need to be addressed, so as to strengthen the evidence that p38 itself plays a critical role in mediating the effect of SB203580, and to find an inhibitor suitable for in vivo use. In this work we used a panel of different p38 inhibitors selected for: (1 having been used successfully in vivo in either animal models or human clinical trials; (2 different modes of binding to p38; and (3 different off-target kinase specificity profiles, in order to critically address the role of p38 in the premature senescence seen in WS cells. Our findings confirmed the involvement of p38 in accelerated cell senescence and identified p38 inhibitors suitable for in vivo use in WS, with BIRB 796 the most effective.

  6. Novel regulation of p38gamma by dopamine D2 receptors during hypoxia.

    Science.gov (United States)

    Conrad, P W; Millhorn, D E; Beitner-Johnson, D

    2000-07-01

    The p38 signalling pathway is part of the MAPK superfamily and is activated by various stressors. Our previous results have shown that two p38 isoforms, p38alpha and p38gamma, are activated by hypoxia in the neural-like PC12 cell line. PC12 cells also synthesize and secrete catecholamines, including dopamine, in response to hypoxia. We have now used this system to study the interaction between D2-dopamine receptor signalling and the p38 stress-activated protein kinases. Our results show that two D2 receptor antagonists, butaclamol and sulpiride, enhance hypoxia-induced phosphorylation of p38gamma, but not p38. This effect persists in protein kinase A (PKA)-deficient PC12 cells, demonstrating that p38gamma modulation by the D2 receptor is independent of the cAMP/PKA signalling system. We further show that removal of extracellular calcium blocks the hypoxia-induced increase in p38gamma activity. These results are the first to demonstrate that p38gamma can be regulated by the D2 receptor and calcium following hypoxic exposure. PMID:10989281

  7. Therapeutic potential of p38 MAP kinase inhibition in the management of cardiovascular disease.

    Science.gov (United States)

    Fisk, Marie; Gajendragadkar, Parag R; Mäki-Petäjä, Kaisa M; Wilkinson, Ian B; Cheriyan, Joseph

    2014-06-01

    p38 mitogen-activated protein kinases (p38 MAPKs) are key signalling molecules that regulate cellular behavior in response to environmental stresses. They regulate pro-inflammatory cytokines and therefore p38 MAPKs are implicated in the pathogenesis of many inflammatory-driven conditions, including atherosclerosis. Therapeutic inhibition of p38 MAPKs to attenuate inflammation has been the focus of comprehensive research in the last 2 decades, following the discovery of p38α as the molecular target of pyrindinyl imidazole compounds, which suppress the cytokines tumor necrosis factor-α and interleukin-1. The potential of p38 MAPK inhibitors was initially explored within archetypal inflammatory conditions such as rheumatoid arthritis and Crohn's disease, but early studies demonstrated poor clinical efficacy and unacceptable side effects. Subsequent clinical trials evaluating different p38 MAPK inhibitor compounds in disease models such as chronic obstructive pulmonary disease (COPD) and atherosclerosis have shown potential clinical efficacy. This review aims to provide succinct background information regarding the p38 MAPK signaling pathway, a focus of p38 MAPKs in disease, and a brief summary of relevant pre-clinical studies. An update of human clinical trial experience encompassing a clinically orientated approach, dedicated to cardiovascular disease follows. It provides a current perspective of the therapeutic potential of p38 MAPK inhibitors in the cardiovascular domain, including safety, tolerability, and pharmacokinetics.

  8. p38β, A Novel Regulatory Target of Pokemon in Hepatic Cells

    OpenAIRE

    Ying Tan; Min Liu; Deliang Cao; Zhe Chen; Nannan Zhang; Feng Liu(Central China Normal University); Yuyang Jiang

    2013-01-01

    Pokemon is an important proto-oncogene involved in various biological processes and cancer development, such as cell differentiation, tumorigenesis and metastasis. Pokemon is recognized as a transcription factor localized upstream of several oncogenes, regulating their expression. p38MAPKs act as key regulatory factors in cellular signaling pathways associated with inflammatory responses, cell proliferation, differentiation and survival. p38β, a member of p38MAPK family, is closely correlated...

  9. p38 MAPK Regulates Th2 Cytokines Release in PBMCs in Allergic Rhinitis Rats

    Institute of Scientific and Technical Information of China (English)

    刘杰; 刘立思; 崔永华; 张剑; 江红群

    2010-01-01

    Th2 cytokines play a pivotal role in the pathogenesis of allergic rhinitis.To investigate the effect of p38 mitogen-activated protein kinase(MAPK) on the production of Th2 cytokines such as IL-4 and IL-5 in allergic rhinitis,a model of allergic rhinitis was established in SD rats.The expression level of p38 MAPK mRNA in PBMCs was detected by means of real time quantitative RT-PCR.The p38 MAPK activity in PBMCs was detected by Western blotting.PBMCs were cultured with various concentrations of p38 MAPK inhib...

  10. Involvement of ATM/ATR-p38 MAPK cascade in MNNG induced G1-S arrest

    Institute of Scientific and Technical Information of China (English)

    Ke-Qing Zhu; Suo-Jiang Zhang

    2003-01-01

    AIM: To understand the effect of low concentration of Nmethyl-N′-nitro-nitrosoguanidine (MNNG), which is a widely distributed environmental mutagen and carcinogen especially for human gastric cancer, on DNA damage and to study its possible pathway in regulating cell cycle arrest.METHODS: The DNA damage effect was measured by Comet assay. A specific phospho-(Ser/Thr) ATM/ATR substrate antibody was used to detect the damage sensor by Western blot. p38 kinase activity was measured by direct kinase assay,and immunoprecipitation for the possible connection between ATM/ATR and p38 MAPK. Flow cytometry analysis and p38MAPK specific inhibitor SB203580 were combined to detect the possible cell cycle arrest by p38 MAPK.RESULTS: With the same low concentration MNNG exposure (0.2μM 2.5 h), Comet assays indicated that strand breaks accumulated, Western blot and kinase assay showed ATM/ATR and p38 kinase activated, immunoprecipitation showed phospho-ATM/ATR substrate antibody combined with both p38 MAPK antibody and phospho-p38 MAPK antibody, p38MAPK pathway was involved in the G1-S arrest.CONCLUSION: Activation of ATM/ATR by MNNG induced DNA damage leads to activation of p38 MAPK, which involves in the G1 checkpoint in mammalian cells.

  11. Computational identification of a p38SAPK regulated transcription factor network required for tumor cell quiescence

    OpenAIRE

    Adam, Alejandro P.; George, Ajish; Schewe, Denis; Bragado, Paloma; Iglesias, Bibiana V.; Ranganathan, Aparna C.; Kourtidis, Antonis; Conklin, Douglas S.; Julio A Aguirre-Ghiso

    2009-01-01

    The stress activated kinase p38 plays key roles in tumor suppression and induction of tumor cell dormancy. However, the mechanisms behind these functions remain poorly understood. Using computational tools we identified a transcription factor (TF) network regulated by p38α/β and required for human squamous carcinoma cell quiescence in vivo. We found that p38 transcriptionally regulates a core network of 46 genes that includes 16 TFs. Activation of p38 induced the expression of the TFs p53 and...

  12. p38 MAPK Inhibition Improves Synaptic Plasticity and Memory in Angiotensin II-dependent Hypertensive Mice

    Science.gov (United States)

    Dai, Hai-long; Hu, Wei-yuan; Jiang, Li-hong; Li, Le; Gaung, Xue-feng; Xiao, Zhi-cheng

    2016-01-01

    The pathogenesis of hypertension-related cognitive impairment has not been sufficiently clarified, new molecular targets are needed. p38 MAPK pathway plays an important role in hypertensive target organ damage. Activated p38 MAPK was seen in AD brain tissue. In this study, we found that long-term potentiation (LTP) of hippocampal CA1 was decreased, the density of the dendritic spines on the CA1 pyramidal cells was reduced, the p-p38 protein expression in hippocampus was elevated, and cognitive function was impaired in angiotensin II-dependent hypertensive C57BL/6 mice. In vivo, using a p38 heterozygous knockdown mice (p38KI/+) model, we showed that knockdown of p38 MAPK in hippocampus leads to the improvement of cognitive function and hippocampal synaptic plasticity in angiotensin II-dependent p38KI/+ hypertensive mice. In vitro, LTP was improved in hippocampal slices from C57BL/6 hypertensive mice by treatment with p38MAPK inhibitor SKF86002. Our data demonstrated that p38 MAPK may be a potential therapeutic target for hypertension-related cognitive dysfunction. PMID:27283322

  13. A p38 substrate-specific MK2-EGFP translocation assay for identification and validation of new p38 inhibitors in living cells: a comprising alternative for acquisition of cellular p38 inhibition data.

    Directory of Open Access Journals (Sweden)

    Roman Anton

    Full Text Available The fundamental role of p38 mitogen-activated protein kinases (MAPKs in inflammation underlines their importance as therapeutic targets for various inflammatory medical conditions, including infectious, vascular, neurobiological and autoimmune disease. Although decades of research have yielded several p38 inhibitors, most clinical trials have failed, due to lack of selectivity and efficacy in vivo. This underlines the continuous need to screen for novel structures and chemotypes of p38 inhibitors. Here we report an optimized MK2-EGFP translocation assay in a semi-automated image based High Content Analysis (HCA system to screen a combinatorial library of 3362 proprietary compounds with extensive variations of chemotypes. By determining the levels of redistribution of MK2-EGFP upon activation of the Rac/p38 pathway in combination with compound treatment, new candidates were identified, which modulate p38 activity in living cells. Based on integrated analysis of TNFα release from human whole blood, biochemical kinase activity assays and JNK3 selectivity testing, we show that this cell based assay reveals a high overlap and predictability for cellular efficacy, selectivity and potency of tested compounds. As a result we disclose a new comprehensive short-list of subtype inhibitors which are functional in the low nanomolar range and might provide the basis for further lead-optimization. In accordance to previous reports, we demonstrate that the MK2-EGFP translocation assay is a suitable primary screening approach for p38-MAPK drug development and provide an attractive labor- and cost saving alternative to other cell based methods including determination of cytokine release from hPBMCs or whole blood.

  14. A p38 Substrate-Specific MK2-EGFP Translocation Assay for Identification and Validation of New p38 Inhibitors in Living Cells: A Comprising Alternative for Acquisition of Cellular p38 Inhibition Data

    Science.gov (United States)

    Anton, Roman; Bauer, Silke M.; Keck, Peter R. W. E. F.; Laufer, Stefan; Rothbauer, Ulrich

    2014-01-01

    The fundamental role of p38 mitogen-activated protein kinases (MAPKs) in inflammation underlines their importance as therapeutic targets for various inflammatory medical conditions, including infectious, vascular, neurobiological and autoimmune disease. Although decades of research have yielded several p38 inhibitors, most clinical trials have failed, due to lack of selectivity and efficacy in vivo. This underlines the continuous need to screen for novel structures and chemotypes of p38 inhibitors. Here we report an optimized MK2-EGFP translocation assay in a semi-automated image based High Content Analysis (HCA) system to screen a combinatorial library of 3362 proprietary compounds with extensive variations of chemotypes. By determining the levels of redistribution of MK2-EGFP upon activation of the Rac/p38 pathway in combination with compound treatment, new candidates were identified, which modulate p38 activity in living cells. Based on integrated analysis of TNFα release from human whole blood, biochemical kinase activity assays and JNK3 selectivity testing, we show that this cell based assay reveals a high overlap and predictability for cellular efficacy, selectivity and potency of tested compounds. As a result we disclose a new comprehensive short-list of subtype inhibitors which are functional in the low nanomolar range and might provide the basis for further lead-optimization. In accordance to previous reports, we demonstrate that the MK2-EGFP translocation assay is a suitable primary screening approach for p38-MAPK drug development and provide an attractive labor- and cost saving alternative to other cell based methods including determination of cytokine release from hPBMCs or whole blood. PMID:24743242

  15. P38αMAPK in the Female Reproductive System%P38αMAPK在雌性生殖系统中的研究进展

    Institute of Scientific and Technical Information of China (English)

    胡世福; 夏伟; 朱长虹

    2015-01-01

    Mitogen-activated protein kinases(MAPK), a kind of serine/threonine protein kinases conserved highly in long-term evolution of eukaryotes, play important roles in many organisms, including cell growth, differentiation, apoptosis, inflammation, cytoskeletal rearrangement and stress stimulation. P38MAPK is an important member of MAPK family, meanwhile P38α is the most important subtype of P38MAPK. It plays some important roles in the female reproductive system. When ovary was stimulated by internal hormones or external factors, the P38αMAPK signaling pathway was activated. After that, a variety of cellular factors were expressed, which regulated the growth and development of germ cells by regulating the granulosa cell development and oocyte meiotic events. Activating the P38αMAPK pathways of granulosa cell can regulate its secretion of hormones and cytokines,which contribute to the oocyte maturation. Since P38αMAPK may be involved in the process of oocyte meiosis, the downregulation of P38α may result in the reduced number of maturational oocytes or the aneuploid oocytes.%丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)是真核生物长期进化过程中高度保守的丝氨酸/苏氨酸蛋白激酶,MAPK在许多生物中发挥着重要作用,包括细胞生长、分化、凋亡、炎症反应、细胞骨架重排及应激刺激等。 P38MAPK是其中重要的一个亚家族,其中P38α是P38MAPK中最重要的亚型,在雌性生殖系统中有着重要的作用。卵巢在受到体内激素或者外界因素等信号刺激时,通过激活P38αMAPK信号通路,表达各种细胞调控因子以调控颗粒细胞活动及卵母细胞减数分裂,进而影响生殖细胞的生长发育。激活颗粒细胞中P38αMAPK信号通路可以调控激素分泌及相关细胞因子的释放,从而有助于卵母细胞的成熟;P38αMAPK可能参与了卵母细胞的减数分裂过程,下调P38α的表达,可能导致成熟

  16. The expression of p38 mitogen-activated protein kinase(p38 MAPK)in cerebra of rat with epilepsy%p38蛋白激酶(p38MAPK)在癫(癎)大鼠脑内的表达

    Institute of Scientific and Technical Information of China (English)

    王翠翠; 陈英辉

    2013-01-01

    Objective To investigate the expression of p38 rnitogen-activated protein kinase(p38 MAPK)in cerebra of rat with epilepsy.Methods Healthy male SD rats were randomly divided into normal(n =8)and epileptic group(n=8).Epilepsy model was established with the intraperitoneal injection of pentylenetetrazol.Behaviors were classified according to the criteria of Racine.The expression of p38 MAPK in cerebra was observed by immunofluorescence and Western blot.Results Compared with the normal rats,the expression of p38 MAPK in cortex and hippocampus of epileptic rats was significantly higher(P< 0.01).Conclusions The expression of p38 MAPK was up-regulated in cerebra of epileptic rats.%目的 观察p38蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)在癫(癎)大鼠脑内的表达情况.方法 健康雄性SD大鼠随机分成正常对照组(n=8)和癫(癎)组(n=8).采用戊四氮腹腔注射建立癫(癎)模型,大鼠点燃后的惊厥行为按照Racine的标准进行观察评分,采用Western blot和免疫荧光法比较两组大鼠脑内p38 MAPK的表达情况.结果 癫(癎)组大鼠脑内p38 MAPK在皮层和海马的表达均显著高于正常对照组(P<0.01).结论 p38 MAPK在癫(癎)大鼠脑内表达上调.

  17. Correlation between Expression of P38 MAPK-Signaling and uPA in Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Yanchun Han; Luying Liu; Dongxia Yan; Guihua Wang

    2008-01-01

    OBJECTIVE To study the expression of phosphorylated p38 mitogen.Activated protein kinase(p-p38)and uPA and the correlation of their expression with breast cancer Clinic.patholodiCal characteristics,and to investigate the role of the p38MAPK-signaling pathway in regulating uPA expression in breast cancer cells.METHODS Immunohistochemistry(S-P)was used to test the expression of P-p38 and uPA in 60 specimens of breast cancer tissues.Western blots were adopted to detect expression of the p-p38 and uPA proteins in MDA-MB-231 and MCF-7 breast cancer cells.And uPA expression after treatment with SB203580,a specific inhibitor of p38 MAPK.RESULTS The positive rate of the P.P38 protein and uPA protein expression in the breast cancer tissues was 56.7% and 60.0%.Respectively.The expression of P.P38 was positively related to the expression of uPA(r=0.316,P0.05).The expression of p-p38 and uPA in MDA. MB-231 cells was higher than that in MCF.7 cells.SB203580 inhibited the p38 MAPK pathway and reduced uPA protein expression.CONCLUSI0N The p38 MAPK-signaling pathway promotes breast cancer malignant progression by up.Regulating uPA expression,and it may be an important process in breast cancer invasion and metastasis.

  18. Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Frederic Derbre

    Full Text Available Alterations in muscle play an important role in common diseases and conditions. Reactive oxygen species (ROS are generated during hindlimb unloading due, at least in part, to the activation of xanthine oxidase (XO. The major aim of this study was to determine the mechanism by which XO activation causes unloading-induced muscle atrophy in rats, and its possible prevention by allopurinol, a well-known inhibitor of this enzyme. For this purpose we studied one of the main redox sensitive signalling cascades involved in skeletal muscle atrophy i.e. p38 MAPKinase, and the expression of two well known muscle specific E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFbx; also known as atrogin-1 and Muscle RING (Really Interesting New Gene Finger-1 (MuRF-1. We found that hindlimb unloading induced a significant increase in XO activity and in the protein expression of the antioxidant enzymes CuZnSOD and Catalase in skeletal muscle. The most relevant new fact reported in this paper is that inhibition of XO with allopurinol, a drug widely used in clinical practice, prevents soleus muscle atrophy by ~20% after hindlimb unloading. This was associated with the inhibition of the p38 MAPK-MAFbx pathway. Our data suggest that XO was involved in the loss of muscle mass via the activation of the p38MAPK-MAFbx pathway in unloaded muscle atrophy. Thus, allopurinol may have clinical benefits to combat skeletal muscle atrophy in bedridden, astronauts, sarcopenic, and cachexic patients.

  19. Purification of reversibly oxidized proteins (PROP reveals a redox switch controlling p38 MAP kinase activity.

    Directory of Open Access Journals (Sweden)

    Dennis J Templeton

    Full Text Available Oxidation of cysteine residues of proteins is emerging as an important means of regulation of signal transduction, particularly of protein kinase function. Tools to detect and quantify cysteine oxidation of proteins have been a limiting factor in understanding the role of cysteine oxidation in signal transduction. As an example, the p38 MAP kinase is activated by several stress-related stimuli that are often accompanied by in vitro generation of hydrogen peroxide. We noted that hydrogen peroxide inhibited p38 activity despite paradoxically increasing the activating phosphorylation of p38. To address the possibility that cysteine oxidation may provide a negative regulatory effect on p38 activity, we developed a biochemical assay to detect reversible cysteine oxidation in intact cells. This procedure, PROP, demonstrated in vivo oxidation of p38 in response to hydrogen peroxide and also to the natural inflammatory lipid prostaglandin J2. Mutagenesis of the potential target cysteines showed that oxidation occurred preferentially on residues near the surface of the p38 molecule. Cysteine oxidation thus controls a functional redox switch regulating the intensity or duration of p38 activity that would not be revealed by immunodetection of phosphoprotein commonly interpreted as reflective of p38 activity.

  20. The case for inhibiting p38 mitogen-activated protein kinase in heart failure

    Directory of Open Access Journals (Sweden)

    Pelin eArabacilar

    2015-05-01

    Full Text Available This minireview discusses the evidence that the inhibition of p38 mitogen-activated protein kinases (p38 MAPKs maybe of therapeutic value in heart failure. Most previous experimental studies, as well as past and ongoing clinical trials, have focussed on the role of p38 MAPKs in myocardial infarction and acute coronary syndromes. There is now growing evidence that these kinases are activated within the myocardium of the failing human heart and in the heart and blood vessels of animal models of heart failure. Furthermore, from a philosophical viewpoint the chronic activation of the adaptive stress pathways that lead to the activation of p38 MAPKs in heart failure is analogous to the chronic activation of the sympathetic, renin-aldosterone-angiotensin and neprilysin systems. These have provided some of the most effective therapies for heart failure. This minireview questions whether similar and synergistic advantages would follow the inhibition of p38 MAPKs.

  1. The case for inhibiting p38 mitogen-activated protein kinase in heart failure.

    Science.gov (United States)

    Arabacilar, Pelin; Marber, Michael

    2015-01-01

    This minireview discusses the evidence that the inhibition of p38 mitogen-activated protein kinases (p38 MAPKs) maybe of therapeutic value in heart failure. Most previous experimental studies, as well as past and ongoing clinical trials, have focussed on the role of p38 MAPKs in myocardial infarction and acute coronary syndromes. There is now growing evidence that these kinases are activated within the myocardium of the failing human heart and in the heart and blood vessels of animal models of heart failure. Furthermore, from a philosophical viewpoint the chronic activation of the adaptive stress pathways that lead to the activation of p38 MAPKs in heart failure is analogous to the chronic activation of the sympathetic, renin-aldosterone-angiotensin and neprilysin systems. These have provided some of the most effective therapies for heart failure. This minireview questions whether similar and synergistic advantages would follow the inhibition of p38 MAPKs.

  2. Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics.

    Science.gov (United States)

    Lalaoui, Najoua; Hänggi, Kay; Brumatti, Gabriela; Chau, Diep; Nguyen, Nhu-Y N; Vasilikos, Lazaros; Spilgies, Lisanne M; Heckmann, Denise A; Ma, Chunyan; Ghisi, Margherita; Salmon, Jessica M; Matthews, Geoffrey M; de Valle, Elisha; Moujalled, Donia M; Menon, Manoj B; Spall, Sukhdeep Kaur; Glaser, Stefan P; Richmond, Jennifer; Lock, Richard B; Condon, Stephen M; Gugasyan, Raffi; Gaestel, Matthias; Guthridge, Mark; Johnstone, Ricky W; Munoz, Lenka; Wei, Andrew; Ekert, Paul G; Vaux, David L; Wong, W Wei-Lynn; Silke, John

    2016-02-01

    Birinapant is a smac-mimetic (SM) in clinical trials for treating cancer. SM antagonize inhibitor of apoptosis (IAP) proteins and simultaneously induce tumor necrosis factor (TNF) secretion to render cancers sensitive to TNF-induced killing. To enhance SM efficacy, we screened kinase inhibitors for their ability to increase TNF production of SM-treated cells. We showed that p38 inhibitors increased TNF induced by SM. Unexpectedly, even though p38 is required for Toll-like receptors to induce TNF, loss of p38 or its downstream kinase MK2 increased induction of TNF by SM. Hence, we show that the p38/MK2 axis can inhibit or promote TNF production, depending on the stimulus. Importantly, clinical p38 inhibitors overcame resistance of primary acute myeloid leukemia to birinapant.

  3. Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement

    KAUST Repository

    He, Li-Sheng

    2012-10-24

    The barnacle Balanus ( = Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts.

  4. Vandetanib combined with a p38 MAPK inhibitor synergistically reduces glioblastoma cell survival.

    Science.gov (United States)

    Sooman, Linda; Lennartsson, Johan; Gullbo, Joachim; Bergqvist, Michael; Tsakonas, Georgios; Johansson, Fredrik; Edqvist, Per-Henrik; Pontén, Fredrik; Jaiswal, Archita; Navani, Sanjay; Alafuzoff, Irina; Popova, Svetlana; Blomquist, Erik; Ekman, Simon

    2013-01-01

    The survival for patients with high-grade glioma is poor, and only a limited number of patients respond to the therapy. The aim of this study was to analyze the significance of using p38 MAPK phosphorylation as a prognostic marker in high-grade glioma patients and as a therapeutic target in combination chemotherapy with vandetanib. p38 MAPK phosphorylation was analyzed with immunohistochemistry in 90 high-grade glioma patients. Correlation between p38 MAPK phosphorylation and overall survival was analyzed with Mann-Whitney U test analysis. The effects on survival of glioblastoma cells of combining vandetanib with the p38 MAPK inhibitor SB 203580 were analyzed in vitro with the median-effect method with the fluorometric microculture cytotoxicity assay. Two patients had phosphorylated p38 MAPK in both the cytoplasm and nucleus, and these two presented with worse survival than patients with no detectable p38 MAPK phosphorylation or phosphorylated p38 MAPK only in the nucleus. This was true for both high-grade glioma patients (WHO grade III and IV, n = 90, difference in median survival: 6.1 months, 95 % CI [0.20, 23], p = 0.039) and for the subgroup with glioblastoma patients (WHO grade IV, n = 70, difference in median survival: 6.1 months, 95 % CI [0.066, 23], p = 0.043). The combination of vandetanib and the p38 MAPK inhibitor SB 203580 had synergistic effects on cell survival for glioblastoma-derived cells in vitro. In conclusion, p38 MAPK phosphorylation may be a prognostic marker for high-grade glioma patients, and vandetanib combined with a p38 MAPK inhibitor may be useful combination chemotherapy for glioma patients. PMID:23783486

  5. High Glucose-Induced Oxidative Stress Mediates Apoptosis and Extracellular Matrix Metabolic Imbalances Possibly via p38 MAPK Activation in Rat Nucleus Pulposus Cells

    Directory of Open Access Journals (Sweden)

    Xiaofei Cheng

    2016-01-01

    Full Text Available Objectives. To investigate whether high glucose-induced oxidative stress is implicated in apoptosis of rat nucleus pulposus cells (NPCs and abnormal expression of critical genes involved in the metabolic balance of extracellular matrix (ECM. Methods. NPCs were cultured with various concentrations of glucose to detect cell viability and apoptosis. Cells cultured with high glucose (25 mM were untreated or pretreated with N-acetylcysteine or a p38 MAPK inhibitor SB 202190. Reactive oxygen species (ROS production was evaluated. Activation of p38 MAPK was measured by Western blot. The expression of ECM metabolism-related genes, including type II collagen, aggrecan, SRY-related high-mobility-group box 9 (Sox-9, matrix metalloproteinase 3 (MMP-3, and tissue inhibitor of metalloproteinase 1 (TIMP-1, was analyzed by semiquantitative RT-PCR. Results. High glucose reduced viability of NPCs and induced apoptosis. High glucose resulted in increased ROS generation and p38 MAPK activation. In addition, it negatively regulated the expression of type II collagen, aggrecan, Sox-9, and TIMP-1 and positively regulated MMP-3 expression. These results were changed by pretreatment with N-acetylcysteine or SB 202190. Conclusions. High glucose might promote apoptosis of NPCs, trigger ECM catabolic pathways, and inhibit its anabolic activities, possibly through a p38 MAPK-dependent oxidative stress mechanism.

  6. OPN induces FoxM1 expression and localization through ERK 1/2, AKT, and p38 signaling pathway in HEC-1A cells.

    Science.gov (United States)

    Xie, Yunpeng; Li, Yinghua; Kong, Ying

    2014-12-16

    Mammalian embryo implantation is an extremely complex process and requires endometrial receptivity. In order to establish this receptivity, sequential proliferation and differentiation during the menstrual cycle is necessary. Forkhead box M1 (FoxM1) is described as a major oncogenic transcription factor in tumor initiation, promotion and progression. According to these functions, we believe that FoxM1 should also play an essential role in embryo implantation. Osteopontin (OPN), an adhesion molecule, has been studied extensively in reproduction. In this study, we observed the expression and distribution of FoxM1 during the proliferative-phase and secretory-phase human endometrium and the pre-implantation mouse uterus firstly. Then we observed the relationship between OPN and FoxM1. Our results showed that FoxM1 was mainly distributed in glandular epithelium. OPN increased the expression of FoxM1 in the human uterine epithelial cell line HEC-1A cells in a time- and concentration-dependent manner. OPN regulates FoxM1 to influence HEC-1A cell proliferation through extracellular regulated protein kinases (ERK 1/2), protein kinase B (PKB, AKT), and the p38 mitogen activated protein kinases (p38MAPK, p38) signaling pathway. Inhibition of ERK 1/2, AKT and p38 suppressed OPN-induced FoxM1 expression and location. Our data indicate that FoxM1 might be regulated by OPN to influence endometrial proliferation to establish endometrial receptivity.

  7. High Glucose-Induced Oxidative Stress Mediates Apoptosis and Extracellular Matrix Metabolic Imbalances Possibly via p38 MAPK Activation in Rat Nucleus Pulposus Cells.

    Science.gov (United States)

    Cheng, Xiaofei; Ni, Bin; Zhang, Feng; Hu, Ying; Zhao, Jie

    2016-01-01

    Objectives. To investigate whether high glucose-induced oxidative stress is implicated in apoptosis of rat nucleus pulposus cells (NPCs) and abnormal expression of critical genes involved in the metabolic balance of extracellular matrix (ECM). Methods. NPCs were cultured with various concentrations of glucose to detect cell viability and apoptosis. Cells cultured with high glucose (25 mM) were untreated or pretreated with N-acetylcysteine or a p38 MAPK inhibitor SB 202190. Reactive oxygen species (ROS) production was evaluated. Activation of p38 MAPK was measured by Western blot. The expression of ECM metabolism-related genes, including type II collagen, aggrecan, SRY-related high-mobility-group box 9 (Sox-9), matrix metalloproteinase 3 (MMP-3), and tissue inhibitor of metalloproteinase 1 (TIMP-1), was analyzed by semiquantitative RT-PCR. Results. High glucose reduced viability of NPCs and induced apoptosis. High glucose resulted in increased ROS generation and p38 MAPK activation. In addition, it negatively regulated the expression of type II collagen, aggrecan, Sox-9, and TIMP-1 and positively regulated MMP-3 expression. These results were changed by pretreatment with N-acetylcysteine or SB 202190. Conclusions. High glucose might promote apoptosis of NPCs, trigger ECM catabolic pathways, and inhibit its anabolic activities, possibly through a p38 MAPK-dependent oxidative stress mechanism. PMID:27635402

  8. High Glucose-Induced Oxidative Stress Mediates Apoptosis and Extracellular Matrix Metabolic Imbalances Possibly via p38 MAPK Activation in Rat Nucleus Pulposus Cells

    Science.gov (United States)

    Cheng, Xiaofei; Ni, Bin; Zhang, Feng; Hu, Ying

    2016-01-01

    Objectives. To investigate whether high glucose-induced oxidative stress is implicated in apoptosis of rat nucleus pulposus cells (NPCs) and abnormal expression of critical genes involved in the metabolic balance of extracellular matrix (ECM). Methods. NPCs were cultured with various concentrations of glucose to detect cell viability and apoptosis. Cells cultured with high glucose (25 mM) were untreated or pretreated with N-acetylcysteine or a p38 MAPK inhibitor SB 202190. Reactive oxygen species (ROS) production was evaluated. Activation of p38 MAPK was measured by Western blot. The expression of ECM metabolism-related genes, including type II collagen, aggrecan, SRY-related high-mobility-group box 9 (Sox-9), matrix metalloproteinase 3 (MMP-3), and tissue inhibitor of metalloproteinase 1 (TIMP-1), was analyzed by semiquantitative RT-PCR. Results. High glucose reduced viability of NPCs and induced apoptosis. High glucose resulted in increased ROS generation and p38 MAPK activation. In addition, it negatively regulated the expression of type II collagen, aggrecan, Sox-9, and TIMP-1 and positively regulated MMP-3 expression. These results were changed by pretreatment with N-acetylcysteine or SB 202190. Conclusions. High glucose might promote apoptosis of NPCs, trigger ECM catabolic pathways, and inhibit its anabolic activities, possibly through a p38 MAPK-dependent oxidative stress mechanism.

  9. Inhibition of p38 MAPK sensitizes tumour cells to cisplatin-induced apoptosis mediated by reactive oxygen species and JNK

    OpenAIRE

    Pereira, Lorena; Igea, Ana; Canovas, Begoña; Dolado, Ignacio; Nebreda, Angel R

    2013-01-01

    The p38 MAPK pathway is an important regulator of many cellular responses. It is well established that p38 MAPK signalling negatively regulates epithelial cell transformation, but enhanced p38 MAPK activity has been also correlated with bad clinical prognosis in some tumour types. Here, we provide genetic and pharmacological evidence showing that p38 MAPK inhibition cooperates with the chemotherapeutic agent cisplatin to kill tumour cells. We show that p38 MAPK inhibition results in ROS upreg...

  10. Heat Shock Factor 1 Is a Substrate for p38 Mitogen-Activated Protein Kinases.

    Science.gov (United States)

    Dayalan Naidu, Sharadha; Sutherland, Calum; Zhang, Ying; Risco, Ana; de la Vega, Laureano; Caunt, Christopher J; Hastie, C James; Lamont, Douglas J; Torrente, Laura; Chowdhry, Sudhir; Benjamin, Ivor J; Keyse, Stephen M; Cuenda, Ana; Dinkova-Kostova, Albena T

    2016-09-15

    Heat shock factor 1 (HSF1) monitors the structural integrity of the proteome. Phosphorylation at S326 is a hallmark for HSF1 activation, but the identity of the kinase(s) phosphorylating this site has remained elusive. We show here that the dietary agent phenethyl isothiocyanate (PEITC) inhibits heat shock protein 90 (Hsp90), the main negative regulator of HSF1; activates p38 mitogen-activated protein kinase (MAPK); and increases S326 phosphorylation, trimerization, and nuclear translocation of HSF1, and the transcription of a luciferase reporter, as well as the endogenous prototypic HSF1 target Hsp70. In vitro, all members of the p38 MAPK family rapidly and stoichiometrically catalyze the S326 phosphorylation. The use of stable knockdown cell lines and inhibitors indicated that among the p38 MAPKs, p38γ is the principal isoform responsible for the phosphorylation of HSF1 at S326 in cells. A protease-mass spectrometry approach confirmed S326 phosphorylation and unexpectedly revealed that p38 MAPK also catalyzes the phosphorylation of HSF1 at S303/307, previously known repressive posttranslational modifications. Thus, we have identified p38 MAPKs as highly efficient catalysts for the phosphorylation of HSF1. Furthermore, our findings suggest that the magnitude and persistence of activation of p38 MAPK are important determinants of the extent and duration of the heat shock response. PMID:27354066

  11. Clinical candidates of small molecule p38 MAPK inhibitors for inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Li Xing

    2016-01-01

    Full Text Available The trigger and etiology of chronic inflammatory diseases are not well understood, hindering the development of efficient therapeutic approaches. The observation that abnormal activity of the p38 MAPK is common to all inflammatory diseases raised the expectation that p38 inhibitors would serve as general anti-inflammatory therapeutics. A large number of inhibitors were consequently discovered. Several compounds of different scaffolds, blocking the p38 MAPK signaling pathway, have entered phase II clinical trials for rheumatoid arthritis, chronic obstructive pulmonary disease, pain, cardiovascular diseases, and cancer. As I review here, in almost all cases the clinical trials have failed, leading to re-design of compounds and re-evaluation of p38 as a suitable target. I describe how structural features, unique to p38α, have been employed in the inhibitor design and achieved high degree of kinome selectivity. I then focus on some of the drugs that reached human trials and summarize their in vitro/in vivo pharmacological profiles and the related outcomes from clinical investigations. These compounds include VX-745, VX-702, RO-4402257, SCIO- 469, BIRB-796, SD-0006, PH-797804, AMG-548, LY2228820, SB-681323 and GW-856553. Finally, I discuss novel suggested approaches for the use of p38 inhibitors such as combining p38 inhibition with inhibiting other targets that function in parallel inflammatory pathways for achieving efficacy in treating inflammatory diseases.

  12. p38β, A novel regulatory target of Pokemon in hepatic cells.

    Science.gov (United States)

    Chen, Zhe; Liu, Feng; Zhang, Nannan; Cao, Deliang; Liu, Min; Tan, Ying; Jiang, Yuyang

    2013-01-01

    Pokemon is an important proto-oncogene involved in various biological processes and cancer development, such as cell differentiation, tumorigenesis and metastasis. Pokemon is recognized as a transcription factor localized upstream of several oncogenes, regulating their expression. p38MAPKs act as key regulatory factors in cellular signaling pathways associated with inflammatory responses, cell proliferation, differentiation and survival. p38β, a member of p38MAPK family, is closely correlated with tumorigenesis, but the mechanism of activation remains unclear. In this study, we found overexpression of Pokemon promoted the growth, migration and invasion of HepG2 cells. However, a p38 inhibitor SB202190 efficiently attenuated the promoting effect of Pokemon in the HepG2 cells. Targeted expression or silencing of Pokemon changed cellular p38β protein level and phosphorylation of downstream ATF2 in the p38 signaling pathway. Both dual luciferase report assay and ChIP assay suggested that p38β is a novel regulatory target of the transcription factor Pokemon and positively regulated by Pokemon in hepatic cells. PMID:23807508

  13. p38β, A Novel Regulatory Target of Pokemon in Hepatic Cells

    Directory of Open Access Journals (Sweden)

    Ying Tan

    2013-06-01

    Full Text Available Pokemon is an important proto-oncogene involved in various biological processes and cancer development, such as cell differentiation, tumorigenesis and metastasis. Pokemon is recognized as a transcription factor localized upstream of several oncogenes, regulating their expression. p38MAPKs act as key regulatory factors in cellular signaling pathways associated with inflammatory responses, cell proliferation, differentiation and survival. p38β, a member of p38MAPK family, is closely correlated with tumorigenesis, but the mechanism of activation remains unclear. In this study, we found overexpression of Pokemon promoted the growth, migration and invasion of HepG2 cells. However, a p38 inhibitor SB202190 efficiently attenuated the promoting effect of Pokemon in the HepG2 cells. Targeted expression or silencing of Pokemon changed cellular p38β protein level and phosphorylation of downstream ATF2 in the p38 signaling pathway. Both dual luciferase report assay and ChIP assay suggested that p38β is a novel regulatory target of the transcription factor Pokemon and positively regulated by Pokemon in hepatic cells.

  14. Targeting P38 Pathway Regulates Bony Formation via MSC Recruitment during Mandibular Distraction Osteogenesis in Rats

    Science.gov (United States)

    Yang, Zi-hui; Wu, Bao-lei; Ye, Chen; Jia, Sen; Yang, Xin-jie; Hou, Rui; Lei, De-lin; Wang, Lei

    2016-01-01

    Distraction osteogenesis (DO) is a widely used self-tissue engineering. However, complications and discomfort due to the long treatment period are still the bottleneck of DO. Novel strategies to accelerate bone formation in DO are still needed. P38 is capable of regulating the osteogenic differentiation of both mesenchymal stem cells (MSCs) and osteoblasts, which are crucial to bone regeneration. However, it is not clear whether targeting p38 could regulate bony formation in DO. The purpose of the current work was to investigate the effects of local application of either p38 agonist anisomycin or p38 inhibitor SB203580 in a rat model of DO. 30 adult rats were randomly divided into 3 groups: (A) rats injected with DMSO served as the control group; (B) rats injected with p38 agonist anisomycin; (C) rats injected with p38 inhibitor SB203580. All the rats were subjected to mandibular distraction and the injection was performed daily during this period. The distracted mandibles were harvested on days 15 and 30 after surgery and subjected to the following analysis. Micro-computed tomography and histological evaluation results showed that local application of p38 agonist anisomycin increased new bone formation in DO, whereas p38 inhibitor SB203580 decreased it. Immunohistochemical analysis suggested that anisomycin promoted MSC recruitment in the distraction gap. In conclusion, this study demonstrated that local application of p38 agonist anisomycin can increase new bone formation during DO. This study may lead to a novel cell-based strategy for the improvement of bone regeneration. PMID:27766028

  15. 5-Amino-pyrazoles as potent and selective p38[alpha] inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Das, Jagabandhu; Moquin, Robert V.; Dyckman, Alaric J.; Li, Tianle; Pitt, Sidney; Zhang, Rosemary; Shen, Ding Ren; McIntyre, Kim W.; Gillooly, Kathleen; Doweyko, Arthur M.; Newitt, John A.; Sack, John S.; Zhang, Hongjian; Kiefer, Susan E.; Kish, Kevin; McKinnon, Murray; Barrish, Joel C.; Dodd, John H.; Schieven, Gary L.; Leftheris, Katerina (BMS)

    2012-02-07

    The synthesis and structure-activity relationships (SAR) of p38{alpha} MAP kinase inhibitors based on a 5-amino-pyrazole scaffold are described. These studies led to the identification of compound 2j as a potent and selective inhibitor of p38{alpha} MAP kinase with excellent cellular potency toward the inhibition of TNF{alpha} production. Compound 2j was highly efficacious in vivo in inhibiting TNF{alpha} production in an acute murine model of TNF{alpha} production. X-ray co-crystallography of a 5-amino-pyrazole analog 2f bound to unphosphorylated p38{alpha} is also disclosed.

  16. Whole genome analysis of p38 SAPK-mediated gene expression upon stress

    Directory of Open Access Journals (Sweden)

    Lopez-Bigas Nuria

    2010-03-01

    Full Text Available Abstract Background Cells have the ability to respond and adapt to environmental changes through activation of stress-activated protein kinases (SAPKs. Although p38 SAPK signalling is known to participate in the regulation of gene expression little is known on the molecular mechanisms used by this SAPK to regulate stress-responsive genes and the overall set of genes regulated by p38 in response to different stimuli. Results Here, we report a whole genome expression analyses on mouse embryonic fibroblasts (MEFs treated with three different p38 SAPK activating-stimuli, namely osmostress, the cytokine TNFα and the protein synthesis inhibitor anisomycin. We have found that the activation kinetics of p38α SAPK in response to these insults is different and also leads to a complex gene pattern response specific for a given stress with a restricted set of overlapping genes. In addition, we have analysed the contribution of p38α the major p38 family member present in MEFs, to the overall stress-induced transcriptional response by using both a chemical inhibitor (SB203580 and p38α deficient (p38α-/- MEFs. We show here that p38 SAPK dependency ranged between 60% and 88% depending on the treatments and that there is a very good overlap between the inhibitor treatment and the ko cells. Furthermore, we have found that the dependency of SAPK varies depending on the time the cells are subjected to osmostress. Conclusions Our genome-wide transcriptional analyses shows a selective response to specific stimuli and a restricted common response of up to 20% of the stress up-regulated early genes that involves an important set of transcription factors, which might be critical for either cell adaptation or preparation for continuous extra-cellular changes. Interestingly, up to 85% of the up-regulated genes are under the transcriptional control of p38 SAPK. Thus, activation of p38 SAPK is critical to elicit the early gene expression program required for cell

  17. The p38/MK2/Hsp25 pathway is required for BMP-2-induced cell migration.

    Directory of Open Access Journals (Sweden)

    Cristina Gamell

    Full Text Available BACKGROUND: Bone morphogenetic proteins (BMPs have been shown to participate in the patterning and specification of several tissues and organs during development and to regulate cell growth, differentiation and migration in different cell types. BMP-mediated cell migration requires activation of the small GTPase Cdc42 and LIMK1 activities. In our earlier report we showed that activation of LIMK1 also requires the activation of PAKs through Cdc42 and PI3K. However, the requirement of additional signaling is not clearly known. METHODOLOGY/PRINCIPAL FINDINGS: Activation of p38 MAPK has been shown to be relevant for a number of BMP-2's physiological effects. We report here that BMP-2 regulation of cell migration and actin cytoskeleton remodelling are dependent on p38 activity. BMP-2 treatment of mesenchymal cells results in activation of the p38/MK2/Hsp25 signaling pathway downstream from the BMP receptors. Moreover, chemical inhibition of p38 signaling or genetic ablation of either p38α or MK2 blocks the ability to activate the downstream effectors of the pathway and abolishes BMP-2-induction of cell migration. These signaling effects on p38/MK2/Hsp25 do not require the activity of either Cdc42 or PAK, whereas p38/MK2 activities do not significantly modify the BMP-2-dependent activation of LIMK1, measured by either kinase activity or with an antibody raised against phospho-threonine 508 at its activation loop. Finally, phosphorylated Hsp25 colocalizes with the BMP receptor complexes in lamellipodia and overexpression of a phosphorylation mutant form of Hsp25 is able to abolish the migration of cells in response to BMP-2. CONCLUSIONS: These results indicate that Cdc42/PAK/LIMK1 and p38/MK2/Hsp25 pathways, acting in parallel and modulating specific actin regulatory proteins, play a critical role in integrating responses during BMP-induced actin reorganization and cell migration.

  18. p38α controls erythroblast enucleation and Rb signaling in stress erythropoiesis

    Institute of Scientific and Technical Information of China (English)

    Simon M Schultze; Andreas Mairhofer; Dan Li; Jin Cen; Hartmut Beug; Erwin F Wagner; Lijian Hui

    2012-01-01

    Enucleation of erythroblasts during terminal differentiation is unique to mammals.Although erythroid enucleation has been extensively studied,only a few genes,including retinoblastoma protein(Rb),have been identified to regulate nuclear extrusion.It remains largely undefined by which signaling molecules,the extrinsic stimuli,such as erythropoietin(Epo),are transduced to induce enucleation.Here,we show that p38α,a mitogen-activated protein kinase(MAPK),is required for erythroid enucleation.In an ex vivo differentiation system that contains high Epo levels and mimics stress erythropoiesis,p38α is activated during erythroid differentiation.Loss of p38α completely blocks enucleation of primary erythroblasts.Moreover,p38α regulates erythroblast enucleation in a cell-autonomous manner in vivo during fetal and anemic stress erythropoiesis.Markedly,loss of p38α leads to downregulation of p21,and decreased activation of the p21 target Rb,both of which are important regulators of erythroblast enucleation.This study demonstrates that p38α is a key signaling molecule for erythroblast enucleation during stress erythropoiesis.

  19. Activated p38 MAPK in Peripheral Blood Monocytes of Steroid Resistant Asthmatics.

    Directory of Open Access Journals (Sweden)

    Ling-Bo Li

    Full Text Available Steroid resistance is a significant problem in management of chronic inflammatory diseases, including asthma. Accessible biomarkers are needed to identify steroid resistant patients to optimize their treatment. This study examined corticosteroid resistance in severe asthma. 24 asthmatics with forced expiratory volume in one second of less then 80% predicted were classified as steroid resistant or steroid sensitive based on changes in their lung function following a week of treatment with oral prednisone. Heparinised blood was collected from patients prior to oral prednisone administration. Phosphorylated mitogen activated kinases (MAPK (extracellular regulated kinase (ERK, p38 and jun kinase (JNK were analyzed in whole blood samples using flow cytometry. Activation of phospho-p38 MAPK and phospho-mitogen- and stress-activated protein kinase 1 (MSK1 in asthmatics' peripheral blood mononuclear cells (PBMC were confirmed by Western blot. Dexamethasone suppression of the LPS-induced IL-8 mRNA production by steroid resistant asthmatics PBMC in the presence of p38 and ERK inhibitors was evaluated by real time PCR. Flow cytometry analysis identified significantly stronger p38 phosphorylation in CD14+ monocytes from steroid resistant than steroid sensitive asthmatics (p = 0.014, whereas no difference was found in phosphorylation of ERK or JNK in CD14+ cells from these two groups of asthmatics. No difference in phosphorylated p38, ERK, JNK was detected in CD4+, CD8+ T cells, B cells and NK cells from steroid resistant vs. steroid sensitive asthmatics. P38 MAPK pathway activation was confirmed by Western blot, as significantly higher phospho-p38 and phospho-MSK1 levels were detected in the PBMC lysates from steroid resistant asthmatics. P38 inhibitor significantly enhanced DEX suppression of LPS-induced IL-8 mRNA by PBMC of steroid resistant asthmatics. This is the first report demonstrating selective p38 MAPK pathway activation in blood monocytes of

  20. Intrathecal MK-801 inhibits formalin-induced activation of spinal p38-MAPK in rats

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Peng; Xin Zhao; Xing Jin; Xiaochun Yan; Xiaorong Yang; Ce Zhang

    2008-01-01

    BACKGROUND: p38 mitogen-activated protein kinase (MAPK) plays an instrumental role in signal transduction from the cell surface to the nucleus, while subcutaneous injection of formalin can induce increased activation of spinal p38 MAPK. However, the mechanisms underlying the formalin-induced activation of spinal p38 MAPK in rats are unclear. OBJECTIVE: To observe the effects of N-methyl-D-aspartic acid (NMDA) receptor antagonist MK-801 on the formalin-induced activation of spinal p38 MAPK in rats. DESIGN, TIME AND SETTING: This randomized grouping, controlled animal experiment was performed at the Department of Physiology and Neurobiology, Shanxi Medical University between May and November 2007. MATERIALS: Forty eight healthy, adult Wistar rats were randomly divided into two groups: formalin + normal saline (n = 12) and formalin + MK-801 (n = 36). The formalin + MK-801 group was further divided into three subgroups according to the dosage of MK-801 (10, 50, and 100 nmol/L, 12 rats for each subgroup) METHODS: Following anesthesia, polyethylene tubing filled with sterile normal saline was implanted into the subarachnoid cavity. On postoperative days 5-8, rats received a 15 minute perfusion of normal saline or MK-801 (10, 50, and 100 nmol/L) in the formalin + normal saline and formalin + MK-801 groups, respectively, followed by formalin injection for the induction of nociceptive behavior. MAIN OUTCOME MEASURES: Detection of total p38 MAPK and of phosphorylated p38 MAPK by western Blot analysis; observation of nociceptive behaviors in the 1 hour after formalin injection. RESULTS: Western Blot analysis revealed that injection of formalin had no effect on total p38 MAPK expression but resulted in increased phosphorylation of p38 MAPK in the spinal cord. This increase was apparent after 5 minutes, peaked at 20 minutes, and thereafter descended and reached control levels after 45 minutes. Pretreatment with MK-801 (10, 50, 100 nmol/L) resulted in a dose-dependent reduction

  1. p38 mediates mechanical allodynia in a mouse model of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2010-05-01

    Full Text Available Abstract Background Painful Diabetic Neuropathy (PDN affects more than 25% of patients with type 2 diabetes; however, the pathogenesis remains unclear due to lack of knowledge of the molecular mechanisms leading to PDN. In our current study, we use an animal model of type 2 diabetes in order to understand the roles of p38 in PDN. Previously, we have demonstrated that the C57BLK db/db (db/db mouse, a model of type 2 diabetes that carries the loss-of-function leptin receptor mutant, develops mechanical allodynia in the hind paws during the early stage (6-12 wk of age of diabetes. Using this timeline of PDN, we can investigate the signaling mechanisms underlying mechanical allodynia in the db/db mouse. Results We studied the role of p38 in lumbar dorsal root ganglia (LDRG during the development of mechanical allodynia in db/db mice. p38 phosphorylation was detected by immunoblots at the early stage of mechanical allodynia in LDRG of diabetic mice. Phosphorylated p38 (pp38 immunoreactivity was detected mostly in the small- to medium-sized LDRG neurons during the time period of mechanical allodynia. Treatment with an antibody against nerve growth factor (NGF significantly inhibited p38 phosphorylation in LDRG of diabetic mice. In addition, we detected higher levels of inflammatory mediators, including cyclooxygenase (COX 2, inducible nitric oxide synthases (iNOS, and tumor necrosis factor (TNF-α in LDRG neurons of db/db mice compared to non-diabetic db+ mice. Intrathecal delivery of SB203580, a p38 inhibitor, significantly inhibited the development of mechanical allodynia and the upregulation of COX2, iNOS and TNF-α. Conclusions Our findings suggest that NGF activated-p38 phosphorylation mediates mechanical allodynia in the db/db mouse by upregulation of multiple inflammatory mediators in LDRG.

  2. Functional study of p38 mitogen-activated protein kinase based on cell-penetrating peptide delivery system

    Institute of Scientific and Technical Information of China (English)

    Liping Yang; Yongming Yao; Zhiyong Sheng; Xiaomei Zhu; Yong Jiang

    2009-01-01

    Objective p38 Mitogen-activated protein kinase (MAPK) is a crossing center of various pathways. In this study, protein transduction system based on human immunodeficiency virus (HIV)-1 transactivator of transcription (TAT), which is an efficient delivery peptide of the foreign proteins into cells, was employed to study p38 MAPK functions in eukaryotic cells. Methods p38 And its dominant negative form, p38AF, were constructed into pET-His-TAT vector correctly to verify that the recombinant plasmids were well-founded through restriction enzyme digestion and DNA sequencing. The two proteins, His-TAT-p38 and His-TAT-p38AF, were expressed and purified in Escherichia coli by SDS-PAGE. Then they were incubated with ECV304 cells respectively and readily transduced into cells in a time-dependent and dose-dependent manner. The cells were stimulated by sorbitol. Activating transcription factor (ATF) 2 phosphorylation level was checked using Western blot to assess the activity of endogenous p38. Results Compared with controls, it was found that His-TAT-p38 increased the level ofATF2 phosphorylation in sorbitol-stimulated ECV304 cells, while His-TAT-p38AF inhibited it, indicating p38 MAPK protein delivery system based on TAT was constructed successfully. TAT-p38 and its dominant negative form possessed high biological activity after transduction into ECV304 cells by TAT protein delivery system. The results showed that p38AF fused with TAT could inhibit the transduction of endogenous p38 signal pathway in part, and other pathway might regulate p38 phosphorylation. Conclusions Our study provides a novel pathway to inhibit p38 signal pathway and establish a new method to study p38 function.

  3. The Role of p38 MAPK in the Development of Diabetic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Shudong Wang

    2016-06-01

    Full Text Available Diabetic cardiomyopathy (DCM is a major complication of diabetes that contributes to an increase in mortality. A number of mechanisms potentially explain the development of DCM including oxidative stress, inflammation and extracellular fibrosis. Mitogen-activated protein kinase (MAPK-mediated signaling pathways are common among these pathogenic responses. Among the diverse array of kinases, extensive attention has been given to p38 MAPK due to its capacity for promoting or inhibiting the translation of target genes. Growing evidence has indicated that p38 MAPK is aberrantly expressed in the cardiovascular system, including the heart, under both experimental and clinical diabetic conditions and, furthermore, inhibition of p38 MAPK activation in transgenic animal model or with its pharmacologic inhibitor significantly prevents the development of DCM, implicating p38 MAPK as a novel diagnostic indicator and therapeutic target for DCM. This review summarizes our current knowledge base to provide an overview of the impact of p38 MAPK signaling in diabetes-induced cardiac remodeling and dysfunction.

  4. Role of p38 MAPK in lipopolysaccharide-induced iNOS expression by endothelial cells

    Institute of Scientific and Technical Information of China (English)

    KAN Wen-hong; YAN Wen-sheng; JIANG Yong; WANG Jing-zhen; QIN Qing-he; ZHAO Ke-seng

    2002-01-01

    Objective:To examine the role of p38 mitogen-activated protein kinase (MAPK) in NO production and Inos expression in human endothelial cells stimulated by lipopolysaccharide (LPS). Methods: The NO level in the supernatant of the cell culture media was measured with Griess method, expressions of Inos protein and Mrna in vitro cultured endothelial cell line ECV304 were detected with immunofluorescence analysis and reverse transcriptase-PCR respectively. Immunokinase assay was employed to measure P38mapk activity. Results: Compared with the basal level of Inos expression and NO production, the NO level and the expressions of Inos Mrna and protein in the cells were increased after LPS stimulation. P38mapk activity in ECV304 cells exhibited a marked increase at 15 min after LPS stimulation, lasting for about 45 min before gradually decline. The Inos protein and Mrna expressions induced by LPS stimulation was significantly inhibited by SB203580 [4-(4-fluorophenyl)-2-(4- methylsulfinylphenyl)-5-(4-pyridyl) imidazole], a highly specific inhibitor of p38 MAPK. Conclusion: p38 MAPK plays an important role in iNOS expression and NO production in ECV304 cells, and the inhibition of the signal transduction pathway can be effective to reduce the production of iNOS and other cytokines, and therefore constitutes a useful strategy for treating septic shock or inflammation.

  5. p38 MAPK Regulates Cavitation and Tight Junction Function in the Mouse Blastocyst

    Science.gov (United States)

    Bell, Christine E.; Watson, Andrew J.

    2013-01-01

    Blastocyst formation is essential for implantation and maintenance of pregnancy and is dependent on the expression and coordinated function of a series of proteins involved in establishing and maintaining the trans-trophectoderm ion gradient that enables blastocyst expansion. These consist of Na/K-ATPase, adherens junctions, tight junctions (TJ) and aquaporins (AQP). While their role in supporting blastocyst formation is established, the intracellular signaling pathways that coordinate their function is unclear. The p38 MAPK pathway plays a role in regulating these proteins in other cell types and is required for embryo development at the 8–16 cell stage, but its role has not been investigated in the blastocyst. Hypothesis p38 MAPK regulates blastocyst formation by regulating blastocyst formation gene expression and function. Methods Embryos were cultured from the early blastocyst stage for 12 h or 24 h in the presence of a potent and specific p38 MAPK inhibitor, SB 220025. Blastocyst expansion, hatching, gene family expression and localization, TJ function and apoptosis levels were analyzed. Results Inhibition of the p38 MAPK pathway reduced blastocyst expansion and hatching, increased tight junction permeability, affected TJP1 localization, reduced Aqp3 expression, and induced a significant increase in apoptosis. Conclusion The p38 MAPK pathway coordinates the overall events that regulate blastocyst formation. PMID:23593143

  6. Impeding the interaction between Nur77 and p38 reduces LPS-induced inflammation.

    Science.gov (United States)

    Li, Li; Liu, Yuan; Chen, Hang-zi; Li, Feng-wei; Wu, Jian-feng; Zhang, Hong-kui; He, Jian-ping; Xing, Yong-zhen; Chen, Yan; Wang, Wei-jia; Tian, Xu-yang; Li, An-zhong; Zhang, Qian; Huang, Pei-qiang; Han, Jiahuai; Lin, Tianwei; Wu, Qiao

    2015-05-01

    Sepsis, a hyperinflammatory response that can result in multiple organ dysfunctions, is a leading cause of mortality from infection. Here, we show that orphan nuclear receptor Nur77 (also known as TR3) can enhance resistance to lipopolysaccharide (LPS)-induced sepsis in mice by inhibiting NF-κB activity and suppressing aberrant cytokine production. Nur77 directly associates with p65 to block its binding to the κB element. However, this function of Nur77 is countered by the LPS-activated p38α phosphorylation of Nur77. Dampening the interaction between Nur77 and p38α would favor Nur77 suppression of the hyperinflammatory response. A compound, n-pentyl 2-[3,5-dihydroxy-2-(1-nonanoyl) phenyl]acetate, screened from a Nur77-biased library, blocked the Nur77-p38α interaction by targeting the ligand-binding domain of Nur77 and restored the suppression of the hyperinflammatory response through Nur77 inhibition of NF-κB. This study associates the nuclear receptor with immune homeostasis and implicates a new therapeutic strategy to treat hyperinflammatory responses by targeting a p38α substrate to modulate p38α-regulated functions. PMID:25822914

  7. Globular Adiponectin Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis.

    Science.gov (United States)

    Pun, Nirmala Tilija; Subedi, Amit; Kim, Mi Jin; Park, Pil-Hoon

    2015-01-01

    Adiponectin, an adipokine predominantly produced from adipose tissue, exhibited potent anti-inflammatory properties. In particular, it inhibits production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In the present study, we investigated the role of autophagy induction in the suppression of Lipopolysaccharide (LPS) -induced TNF-α expression by globular adiponectin (gAcrp) and its potential mechanisms. Herein, we found that gAcrp treatment increased expression of genes related with autophagy, including Atg5 and microtubule-associated protein light chain (LC3B), induced autophagosome formation and autophagy flux in RAW 264.7 macrophages. Similar results were observed in primary macrophages isolated peritoneum of mice. Interestingly, inhibition of autophagy by pretreatment with Bafilomycin A1 or knocking down of LC3B gene restored suppression of TNF-α expression, tumor necrosis factor receptor- associated factor 6 (TRAF6) expression and p38MAPK phosphorylation by gAcrp, implying a critical role of autophagy induction in the development of tolerance to LPS-induced TNF-α expression by gAcrp. We also found that knocking-down of FoxO3A, a forkhead box O member of transcription factor, blocked gAcrp-induced expression of LC3II and Atg5. Moreover, gene silencing of Silent information regulator 1 (SIRT1) blocked both gAcrp-induced nuclear translocation of FoxO3A and LC3II expression. Finally, pretreatment with ROS inhibitors, prevented gAcrp-induced SIRT1 expression and further generated inhibitory effects on gAcrp-induced autophagy, indicating a role of ROS production in gAcrp-induced SIRT1 expression and subsequent autophagy induction. Taken together, these findings indicate that globular adiponectin suppresses LPS-induced TNF-α expression, at least in part, via autophagy activation. Furthermore, SIRT1-FoxO3A

  8. Globular Adiponectin Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis.

    Science.gov (United States)

    Pun, Nirmala Tilija; Subedi, Amit; Kim, Mi Jin; Park, Pil-Hoon

    2015-01-01

    Adiponectin, an adipokine predominantly produced from adipose tissue, exhibited potent anti-inflammatory properties. In particular, it inhibits production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In the present study, we investigated the role of autophagy induction in the suppression of Lipopolysaccharide (LPS) -induced TNF-α expression by globular adiponectin (gAcrp) and its potential mechanisms. Herein, we found that gAcrp treatment increased expression of genes related with autophagy, including Atg5 and microtubule-associated protein light chain (LC3B), induced autophagosome formation and autophagy flux in RAW 264.7 macrophages. Similar results were observed in primary macrophages isolated peritoneum of mice. Interestingly, inhibition of autophagy by pretreatment with Bafilomycin A1 or knocking down of LC3B gene restored suppression of TNF-α expression, tumor necrosis factor receptor- associated factor 6 (TRAF6) expression and p38MAPK phosphorylation by gAcrp, implying a critical role of autophagy induction in the development of tolerance to LPS-induced TNF-α expression by gAcrp. We also found that knocking-down of FoxO3A, a forkhead box O member of transcription factor, blocked gAcrp-induced expression of LC3II and Atg5. Moreover, gene silencing of Silent information regulator 1 (SIRT1) blocked both gAcrp-induced nuclear translocation of FoxO3A and LC3II expression. Finally, pretreatment with ROS inhibitors, prevented gAcrp-induced SIRT1 expression and further generated inhibitory effects on gAcrp-induced autophagy, indicating a role of ROS production in gAcrp-induced SIRT1 expression and subsequent autophagy induction. Taken together, these findings indicate that globular adiponectin suppresses LPS-induced TNF-α expression, at least in part, via autophagy activation. Furthermore, SIRT1-FoxO3A

  9. NMR Characterization of Information Flow and Allosteric Communities in the MAP Kinase p38γ.

    Science.gov (United States)

    Aoto, Phillip C; Martin, Bryan T; Wright, Peter E

    2016-01-01

    The intramolecular network structure of a protein provides valuable insights into allosteric sites and communication pathways. However, a straightforward method to comprehensively map and characterize these pathways is not currently available. Here we present an approach to characterize intramolecular network structure using NMR chemical shift perturbations. We apply the method to the mitogen activated protein kinase (MAPK) p38γ. p38γ contains allosteric sites that are conserved among eukaryotic kinases as well as unique to the MAPK family. How these regulatory sites communicate with catalytic residues is not well understood. Using our method, we observe and characterize for the first time information flux between regulatory sites through a conserved kinase infrastructure. This network is accessed, reinforced, and broken in various states of p38γ, reflecting the functional state of the protein. We demonstrate that the approach detects critical junctions in the network corresponding to biologically significant allosteric sites and pathways. PMID:27353957

  10. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury

    Science.gov (United States)

    Murashov, A. K.; Ul Haq, I.; Hill, C.; Park, E.; Smith, M.; Wang, X.; Wang, X.; Goldberg, D. J.; Wolgemuth, D. J.

    2001-01-01

    The p38 stress-activated protein kinase pathway is involved in regulation of phosphorylation of Hsp25, which in turn regulates actin filament dynamic in non-neuronal cells. We report that p38, Hsp25 and Akt signaling pathways were specifically activated in spinal motor neurons after sciatic nerve axotomy. The activation of the p38 kinase was required for induction of Hsp25 expression. Furthermore, Hsp25 formed a complex with Akt, a member of PI-3 kinase pathway that prevents neuronal cell death. Together, our observations implicate Hsp25 as a central player in a complex system of signaling that may both promote regeneration of nerve fibers and prevent neuronal cell death in the injured spinal cord.

  11. Chronic ethanol exposure enhances the aggressiveness of breast cancer: the role of p38γ.

    Science.gov (United States)

    Xu, Mei; Wang, Siying; Ren, Zhenhua; Frank, Jacqueline A; Yang, Xiuwei H; Zhang, Zhuo; Ke, Zun-Ji; Shi, Xianglin; Luo, Jia

    2016-01-19

    Both epidemiological and experimental studies suggest that ethanol may enhance aggressiveness of breast cancer. We have previously demonstrated that short term exposure to ethanol (12-48 hours) increased migration/invasion in breast cancer cells overexpressing ErbB2, but not in breast cancer cells with low expression of ErbB2, such as MCF7, BT20 and T47D breast cancer cells. In this study, we showed that chronic ethanol exposure transformed breast cancer cells that were not responsive to short term ethanol treatment to a more aggressive phenotype. Chronic ethanol exposure (10 days - 2 months) at 100 (22 mM) or 200 mg/dl (44 mM) caused the scattering of MCF7, BT20 and T47D cell colonies in a 3-dimension culture system. Chronic ethanol exposure also increased colony formation in an anchorage-independent condition and stimulated cell invasion/migration. Chronic ethanol exposure increased cancer stem-like cell (CSC) population by more than 20 folds. Breast cancer cells exposed to ethanol in vitro displayed a much higher growth rate and metastasis in mice. Ethanol selectively activated p38γ MAPK and RhoC but not p38α/β in a concentration-dependent manner. SP-MCF7 cells, a derivative of MCF7 cells which compose mainly CSC expressed high levels of phosphorylated p38γ MAPK. Knocking-down p38γ MAPK blocked ethanol-induced RhoC activation, cell scattering, invasion/migration and ethanol-increased CSC population. Furthermore, knocking-down p38γ MAPK mitigated ethanol-induced tumor growth and metastasis in mice. These results suggest that chronic ethanol exposure can enhance the aggressiveness of breast cancer by activating p38γ MAPK/RhoC pathway. PMID:26655092

  12. Paroxetine engenders analgesic effects through inhibition of p38 phosphorylation in a rat migraine model

    Institute of Scientific and Technical Information of China (English)

    Chuanming Wang; Wei Bi; Yanran Liang; Xiuna Jing; Songhua Xiao; Yannan Fang; Qiaoyun Shi; Enxiang Tao

    2012-01-01

    In this study, a model of migraine was established by electrical stimulation of the superior sagittal sinus in rats. These rats were then treated orally with paroxetine at doses of 2.5, 5, or 10 mg/kg per day for 14 days. Following treatment, mechanical withdrawal thresholds were significantly higher, extracellular concentrations of 5-hydroxytryptamine in the periaqueductal grey matter and nucleus reticularis gigantocellularis were higher, and the expression of phosphorylated p38 in the trigeminal nucleus caudalis was lower. Our experimental findings suggest that paroxetine has analgesic effects in a rat migraine model, which are mediated by inhibition of p38 phosphorylation.

  13. Topical alpha-selective p38 MAP kinase inhibition reduces acute skin inflammation in guinea pig

    Directory of Open Access Journals (Sweden)

    Satyanarayana Medicherla

    2010-02-01

    Full Text Available Satyanarayana Medicherla, Jing Ying Ma, Mamtha Reddy, Irina Esikova, Irene Kerr, Fabiola Movius, Linda S Higgins, Andrew A ProtterScios Inc, Fremont, CA , USAAbstract: Certain skin pathologies, including psoriasis, are thought to be immune-mediated inflammatory diseases. Available literature clearly indicates the involvement of inflammatory cells (neutrophils, T cells, and macrophages, their cytokines, and the p38 mitogen-activated protein kinase (MAPK signaling pathway in the pathophysiology of psoriasis. Neutrophils play an important role in the formation of acute inflammatory changes in psoriasis. Acute inflammation or acute flares in psoriasis remain poorly addressed in clinical medicine. In this communication, we first establish a simple and reproducible model for studying neutrophil-mediated acute skin inflammation. Using the hairless guinea pig, due to the similarity of skin architecture to that of human, acute inflammation was induced with an intradermal injection of 50 μg/mL lipopolysaccharide (LPS in 50 μL solution. Myeloperoxidase (MPO activity was measured by MPO-positive neutrophils and shown to increase for 24-hours post-injection. Simultaneously, the level of phosphorylated p38 MAPK was documented for 48-hours post-LPS injection in the skin. Next, we used this model to examine the therapeutic potential of an α-selective p38 MAPK inhibitor, SCIO-469. A comparison of topical application of SCIO-469 at 5 mg/mL or 15 mg/mL to vehicle revealed that SCIO-469 dose-dependently reduces acute skin inflammation and that this effect is statistically significant at the higher dose. Further examination of tissues that received this dose also revealed statistically significant reduction of MPO activity, phosphorylated p38 MAPK, interleukin-6, and cyclooxygenase-2. These data suggest that the α-selective p38 MAPK inhibitor, SCIO-469, acts as a topical anti-inflammatory agent via the p38 MAPK pathway to reduce neutrophil induced acute

  14. p38 Mitogen-Activated Protein Kinase Is Required for Central Nervous System Myelination

    Institute of Scientific and Technical Information of China (English)

    GABRIELA FRAGOSO; JEFFERY D. HAINES; JANICE ROBERSTON; LILIANA PEDRAZA; WALTER E. MUSHYNSKI; GUILLERMINA ALMAZAN

    2008-01-01

    p38MAPKs是一个激酶家族,负责调节包括细胞迁移、增生和分化在内的多种细胞功能.本文主要介绍p38对少突胶质细胞分化的调节作用.采用PD169316和SB203580抑制p38后,不同分化阶段少突胶质细胞特异性标志物的蛋白和mRNA的聚集减少,包括髓鞘碱性蛋白、髓鞘相关糖蛋白、鞘糖脂、半乳糖酰基鞘氨醇和硫脂.同时,细胞周期调节因子p27kip1和转录因子Sox10的表达也有显著的下降.最为重要的是,p38抑制剂能够通过少突胶质细胞完全和不可逆地阻断背根神经节神经元的髓鞘形成,并阻止轴-胶粘附分子Caspr的轴膜组装.本实验结果提示p38MAPKs在OLGs成熟和启动髓鞘形成的关键调控步骤中扮演了重要角色.%The p38 MAPKs are a family of kinases that regulate a number of cellular functions including cell migration, proliferation, and differentiation. Here, we report that p38 regulates oligodendrocyte differentiation. Inhibition of p38 with PD169316 and SB203580 prevented accumulation of protein and mRNA of cell-stage specific markers characteristic of differentiated oligodendrocytes, including myelin basic protein, myelin-associated glycoprotein, and the glycosphingolipids, galactosylceramide and sulfatide. In addition, the cell cycle regulator p27kip1 and the transcription factor Sox10 were also significantly reduced. Most significantly, p38 inhibitors completely and irreversibly blocked myelination of dorsal root ganglion neurons by oligodendrocytes and prevented the axolemmal organization of the axo-glial adhesion molecule Caspr. Our results suggest a role(s) for this kinase in key regulatory steps in the maturation of OLGs and initiation of myelination.

  15. Bioanalysis and pharmacokinetics of the p38 MAPkinase inhibitor SB202190 in rats

    NARCIS (Netherlands)

    Prakash, Jai; Saluja, Vinay; Visser, Jan; Moolenaar, Frits; Meijer, D.K F; Poelstra, Klaas; Kok, R.J

    2005-01-01

    We have developed a sensitive and reproducible high performance liquid chromatography (HPLC)-UV method for the quantification of the p38 MAPkinase inhibitor SB202190 in serum, kidney homogenates and urine samples. Liquid-liquid extraction of SB202190 from the samples was performed using diethylether

  16. Opposing Roles of JNK and p38 in Lymphangiogenesis in Melanoma.

    Science.gov (United States)

    Puujalka, Emmi; Heinz, Magdalena; Hoesel, Bastian; Friedl, Peter; Schweighofer, Bernhard; Wenzina, Judith; Pirker, Christine; Schmid, Johannes A; Loewe, Robert; Wagner, Erwin F; Berger, Walter; Petzelbauer, Peter

    2016-05-01

    In primary melanoma, the amount of vascular endothelial growth factor C (VEGF-C) expression and lymphangiogenesis predicts the probability of metastasis to sentinel nodes, but conditions boosting VEGF-C expression in melanoma are poorly characterized. By comparative mRNA expression analysis of a set of 22 human melanoma cell lines, we found a striking negative correlation between VEGF-C and microphthalmia-associated transcription factor (MITF) expression, which was confirmed by data mining in GEO databases of human melanoma Affymetrix arrays. Moreover, in human patients, high VEGF-C and low MITF levels in primary melanoma significantly correlated with the chance of metastasis. Pathway analysis disclosed the respective c-Jun N-terminal kinase and p38/mitogen-activated protein kinase activities as being responsible for the inverse regulation of VEGF-C and MITF. Predominant c-Jun N-terminal kinase signaling results in a VEGF-C(low)/MITF(high) phenotype; these melanoma cells are highly proliferative, show low mobility, and are poorly lymphangiogenic. Predominant p38 signaling results in a VEGF-C(high)/MITF(low) phenotype, corresponding to a slowly cycling, highly mobile, lymphangiogenic, and metastatic melanoma. In conclusion, the relative c-Jun N-terminal kinase and p38 activities determine the biological behavior of melanoma. VEGF-C and MITF levels serve as surrogate markers for the respective c-Jun N-terminal kinase and p38 activities and may be used to predict the risk of metastasis in primary melanoma.

  17. Changes of p38 Mitogen-activated Protein Kinase and Apoptosis after Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    Xin-yu Zhang; Chu-song Zhou; Zheng-da Kuang

    2005-01-01

    @@ There were very few studies about signal transduction of apoptosis of the spinal cord injury (SCI). We applied spinal cord compression rats model (Nystrom's method) to study the changes of p38 mitogen-activated protein kinase(MAPK) and its relationship with apoptosis.

  18. Microglial activation of p38 contributes to scorpion envenomation-induced hyperalgesia.

    Science.gov (United States)

    Niu, Qing-Shan; Jiang, Feng; Hua, Li-Ming; Fu, Jin; Jiao, Yun-Lu; Ji, Yong-Hua; Ding, Gang

    2013-10-25

    Intraplantar (i.pl.) injection of BmK I, a receptor site 3-specific modulator of voltage-gated sodium channels (VGSCs) from the venom of scorpion Buthus martensi Karsch (BmK), was shown to induce long-lasting and spontaneous nociceptive responses as demonstrated through experiments utilizing primary thermal and mirror-imaged mechanical hypersensitivity with different time course of development in rats. In this study, microglia was activated on both sides of L4-L5 spinal cord by i.pl. injection of BmK I. Meanwhile, the activation of p38/MAPK in L4-L5 spinal cord was found to be co-expressed with OX-42, the cell marker of microglia. The unilateral thermal and bilateral mechanical pain hypersensitivity of rat induced by BmK I was suppressed in a dose-dependent manner following pretreatment with SB203580 (a specific inhibitor of p-p38). Interestingly, microglia activity was also reduced in the presence of SB203580, which suggests that BmK I-induced microglial activation is mediated by p38/MAPK pathway. Combined with previously published literature, the results of this study demonstrate that p38-dependent microglial activation plays a role in scorpion envenomation-induced pain-related behaviors. PMID:24064352

  19. c-Myb regulates NOX1/p38 to control survival of colorectal carcinoma cells.

    Science.gov (United States)

    Pekarčíková, Lucie; Knopfová, Lucia; Beneš, Petr; Šmarda, Jan

    2016-08-01

    The c-Myb transcription factor is important for maintenance of immature cells of many tissues including colon epithelium. Overexpression of c-Myb occurring in colorectal carcinomas (CRC) as well as in other cancers often marks poor prognosis. However, the molecular mechanism explaining how c-Myb contributes to progression of CRC has not been fully elucidated. To address this point, we investigated the way how c-Myb affects sensitivity of CRC cells to anticancer drugs. Using CRC cell lines expressing exogenous c-myb we show that c-Myb protects CRC cells from the cisplatin-, oxaliplatin-, and doxorubicin-induced apoptosis, elevates reactive oxygen species via up-regulation of NOX1, and sustains the pro-survival p38 MAPK pathway. Using pharmacological inhibitors and gene silencing of p38 and NOX1 we found that these proteins are essential for the protective effect of c-Myb and that NOX1 acts upstream of p38 activation. In addition, our result suggests that transcription of NOX1 is directly controlled by c-Myb and these genes are strongly co-expressed in human tumor tissue of CRC patients. The novel c-Myb/NOX1/p38 signaling axis that protects CRC cells from chemotherapy described in this study could provide a new base for design of future therapies of CRC. PMID:27107996

  20. The effect of p38MAPK on cyclic stretch in human facial hypertrophic scar fibroblast differentiation.

    Directory of Open Access Journals (Sweden)

    Qi-cui Du

    Full Text Available Hypertrophic scars (HTS, the excessive deposition of scar tissue by fibroblasts, is one of the most common skin disorders. Fibroblasts derived from surgical scar tissue produce high levels of α-smooth muscle actin (α-SMA and transforming growth factor-β1 (TGF-β1. However, the molecular mechanisms for this phenomenon is poorly understood. Thus, the purpose of this study was to evaluate the molecular mechanisms of HTS and their potential therapeutic implications. Fibroblasts derived from skin HTS were cultured and characterized in vitro. The fibroblasts were synchronized and randomly assigned to two groups: cyclic stretch and cyclic stretch pre-treated with SB203580 (a p38MAPK inhibitor. Cyclic stretch at 10% strain was applied at a loading frequency of 10 cycles per minute (i.e. 5 seconds of tension and 5 seconds of relaxation for 0 h, 6 h and 12 h. Cyclic stretch on HTS fibroblasts led to an increase in the expression of α-SMA and TGF-β1 mRNA and protein and the phosphorylation of p38MAPK. SB203580 reversed these effects and caused a decrease in matrix contraction. Furthermore, HTS fibroblast growth was partially blocked by p38MAPK inhibition. Therefore, the mechanism of cyclic stretch involves p38 MAPK, and its inhibition is suggested as a novel therapeutic strategy for HTS.

  1. The effect of p38MAPK on cyclic stretch in human facial hypertrophic scar fibroblast differentiation.

    Science.gov (United States)

    Du, Qi-cui; Zhang, Dai-zun; Chen, Xiu-juan; Lan-Sun, Gui; Wu, Min; Xiao, Wen-lin

    2013-01-01

    Hypertrophic scars (HTS), the excessive deposition of scar tissue by fibroblasts, is one of the most common skin disorders. Fibroblasts derived from surgical scar tissue produce high levels of α-smooth muscle actin (α-SMA) and transforming growth factor-β1 (TGF-β1). However, the molecular mechanisms for this phenomenon is poorly understood. Thus, the purpose of this study was to evaluate the molecular mechanisms of HTS and their potential therapeutic implications. Fibroblasts derived from skin HTS were cultured and characterized in vitro. The fibroblasts were synchronized and randomly assigned to two groups: cyclic stretch and cyclic stretch pre-treated with SB203580 (a p38MAPK inhibitor). Cyclic stretch at 10% strain was applied at a loading frequency of 10 cycles per minute (i.e. 5 seconds of tension and 5 seconds of relaxation) for 0 h, 6 h and 12 h. Cyclic stretch on HTS fibroblasts led to an increase in the expression of α-SMA and TGF-β1 mRNA and protein and the phosphorylation of p38MAPK. SB203580 reversed these effects and caused a decrease in matrix contraction. Furthermore, HTS fibroblast growth was partially blocked by p38MAPK inhibition. Therefore, the mechanism of cyclic stretch involves p38 MAPK, and its inhibition is suggested as a novel therapeutic strategy for HTS.

  2. Cell-permeable p38 MAP kinase promotes migration of adult neural stem/progenitor cells

    Science.gov (United States)

    Hamanoue, Makoto; Morioka, Kazuhito; Ohsawa, Ikuroh; Ohsawa, Keiko; Kobayashi, Masaaki; Tsuburaya, Kayo; Akasaka, Yoshikiyo; Mikami, Tetsuo; Ogata, Toru; Takamatsu, Ken

    2016-01-01

    Endogenous neural stem/progenitor cells (NPCs) can migrate toward sites of injury, but the migration activity of NPCs is insufficient to regenerate damaged brain tissue. In this study, we showed that p38 MAP kinase (p38) is expressed in doublecortin-positive adult NPCs. Experiments using the p38 inhibitor SB203580 revealed that endogenous p38 participates in NPC migration. To enhance NPC migration, we generated a cell-permeable wild-type p38 protein (PTD-p38WT) in which the HIV protein transduction domain (PTD) was fused to the N-terminus of p38. Treatment with PTD-p38WT significantly promoted the random migration of adult NPCs without affecting cell survival or differentiation; this effect depended on the cell permeability and kinase activity of the fusion protein. These findings indicate that PTD-p38WT is a novel and useful tool for unraveling the roles of p38, and that this protein provides a reasonable approach for regenerating the injured brain by enhancing NPC migration. PMID:27067799

  3. Oncogenic Ras modulates p38 MAPK-mediated inflammatory cytokine production in glioblastoma cells.

    Science.gov (United States)

    Munoz, Lenka; Yeung, Yiu To; Grewal, Thomas

    2016-04-01

    Inflammation is an important factor promoting the progression of glioblastoma. In the present study we examined the contribution of Ras signaling and TNFα/IL-1β cytokines to the development of the glioblastoma inflammatory microenvironment. Enhanced activation of Ras through de-regulated activation of receptor tyrosine kinases, such as EGFR, PDGFR and cMet, is a hallmark of the majority of glioblastomas. Glioblastoma microenvironment contains high levels of TNFα and IL-1β, which mediate inflammation through induction of a local network of cytokines and chemokines. While many studies have focused on Ras- and TNFα/IL-1β-driven inflammation in isolation, little is known about the co-operation between these oncogenic and microenvironment-derived stimuli. Using constitutively active HRasG12V that mimics enhanced Ras activation, we demonstrate that elevated Ras activity in glioblastoma cells leads to up-regulation of IL-6 and IL-8. Furthermore, Ras synergizes with the microenvironment-derived TNFα and IL-1β resulting in amplified IL-6/IL-8 secretion. IL-8 secretion induced by Ras and TNFα/IL-1β is attenuated by inhibitors targeting Erk, JNK and p38 MAPK pathways. IL-6 secretion significantly decreased upon inhibition of JNK and p38 MAPK pathways. Interestingly, although constitutively active HRasG12V does not increase basal or TNFα/IL-1β stimulated p38 MAPK activity, HRasG12V increased the efficacy of the p38 MAPK inhibitor SB203580 to inhibit IL-1β-induced IL-6 secretion. In summary, oncogenic Ras co-operates with the microenvironment-derived TNFα/IL-1β to sustain inflammatory microenvironment, which was effectively attenuated via inhibition of p38 MAPK signaling. PMID:26794430

  4. A specific mechanomodulatory role for p38 MAPK in embryonic joint articular surface cell MEK-ERK pathway regulation.

    Science.gov (United States)

    Lewthwaite, Jo C; Bastow, Edward R; Lamb, Katherine J; Blenis, John; Wheeler-Jones, Caroline P D; Pitsillides, Andrew A

    2006-04-21

    Mechanisms regulating cell behavior and extracellular matrix composition in response to mechanical stimuli remain unresolved. Our previous studies have established that the MEK-ERK cascade plays a specific role in the mechano-dependent joint formation process by promoting the assembly of pericellular matrices reliant upon hyaluronan (HA) for their integrity. Here we demonstrate: (i) novel cross-talk between p38 MAPK and MEK-ERK signaling pathways that is specific for mechanical stimuli and (ii) a role for p38 MAPK in facilitating HA production by cells derived from the articular surface of embryonic chick tibiotarsal joints. We find that p38 MAPK blockade restricts pericellular assembly of HA-rich matrices and reduces basal as well as mechanical strain-induced release of HA. p38 MAPK blockers potentiated early strain-induced increases but restricted sustained increases in MEK/ERK phosphorylation at later times; c-Fos hyperphosphorylation at threonine 325 was found to parallel this p38 MAPK-mediated modulation of ERK activation. In contrast, p38 MAPK inhibitors had no detectable effect on the ERK activation induced by fibroblast growth factor 2 or pervanadate, a phosphatase inhibitor, and MEK inhibitors did not influence p38 MAPK phosphorylation, confirming both the specificity and unidirectionality of p38 MAPK-ERK cross-talk. Immunochemical and immunoblotting studies revealed constitutive p38 MAPK activation in cells at, or derived from, developing articular joint surfaces. Unlike the MEK-ERK pathway, however, p38 MAPK was not further stimulated by mechanical stimulation in vitro. Thus, p38 MAPK specifically facilitates ERK activation and downstream signaling in response to mechanical stimuli. These results suggest that constitutively active p38 MAPK serves an essential, permissive role in mechanically induced changes in ERK activation and in the accumulation of HA-rich extracellular matrices that serve a key role in joint development.

  5. TACE release of TNF-α mediates mechanotransduction-induced activation of p38 MAPK and myogenesis

    OpenAIRE

    Zhan, Mei; Jin, Bingwen; Chen, Shuen-Ei; James M Reecy; Li, Yi-Ping

    2007-01-01

    Skeletal muscle responds to mechanical stimulation by activating p38 MAPK, a key signal for myogenesis. However, the mechanotransduction mechanism that activates p38 is unknown. Here we show that mechanical stimulation of myoblasts activates p38 and myogenesis through stimulating TNF-α release by TNF-α converting enzyme (TACE). In C2C12 or mouse primary myoblasts cultured in growth medium, static stretch activated p38 along with ERK1/2, JNK and AKT. Disrupting TNF-α signaling by TNF-α-neutral...

  6. Involvement of the p38 mitogen-activated protein kinase signal transduction pathway in burns-induced lung injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Xu-lin; XIA Zhao-fan; WEI Duo; WANG Yong-jie; WANG Chang-rong

    2005-01-01

    @@ Acute lung injury (ALI) is a leading complication in extensively burned patients, especially those with inhalation injury.1 It can cause hypoxia resulting in injury of remote organs and dysfunction. P38 mitogen-activated protein kinase (p38 MAPK) is a stress activated protein kinase in the MAPK family.2 Most of the previous studies have demonstrated that p38 MAPK signal transduction pathway mediated ALI in rats with acute severe pancreatitis, sepsis etc.3-5 However, there is little information regarding the role of p38 MAPK signal transduction pathway in ALI after severe burn trauma.

  7. Electromagnetic pulse activated brain microglia via the p38 MAPK pathway.

    Science.gov (United States)

    Yang, Long-Long; Zhou, Yan; Tian, Wei-Dong; Li, Hai-Juan; Kang-Chu-Li; Miao, Xia; An, Guang-Zhou; Wang, Xiao-Wu; Guo, Guo-Zhen; Ding, Gui-Rong

    2016-01-01

    Previously, we found that electromagnetic pulses (EMP) induced an increase in blood brain barrier permeability and the leakage of albumin from blood into brain tissue. Albumin is known to activate microglia cells. Thus, we hypothesised that microglia activation could occur in the brain after EMP exposure. To test this hypothesis, the morphology and secretory function of microglia cells, including the expression of OX-42 (a marker of microglia activation), and levels of TNF-α, IL-10, IL-1β, and NO were determined in the rat cerebral cortex after EMP exposure. In addition, to examine the signalling pathway of EMP-induced microglia activation, protein and phosphorylated protein levels of p38, JNK and ERK were determined. It was found that the expression of OX-42increased significantly at 1, 6 and 12h (paffect its secretory function both in vivo and in vitro, and the p38 pathway is involved in this process. PMID:26688329

  8. Silica nanoparticles inhibit brown adipocyte differentiation via regulation of p38 phosphorylation

    Science.gov (United States)

    Son, Min Jeong; Kim, Won Kon; Kwak, Minjeong; Oh, Kyoung-Jin; Chang, Won Seok; Min, Jeong-Ki; Lee, Sang Chul; Song, Nam Woong; Bae, Kwang-Hee

    2015-10-01

    Nanoparticles are of great interest due to their wide variety of biomedical and bioengineering applications. However, they affect cellular differentiation and/or intracellular signaling when applied and exposed to target organisms or cells. The brown adipocyte is a cell type important in energy homeostasis and thus closely related to obesity. In this study, we assessed the effects of silica nanoparticles (SNPs) on brown adipocyte differentiation. The results clearly showed that brown adipocyte differentiation was significantly repressed by exposure to SNPs. The brown adipocyte-specific genes as well as mitochondrial content were also markedly reduced. Additionally, SNPs led to suppressed p38 phosphorylation during brown adipocyte differentiation. These effects depend on the size of SNPs. Taken together, these results lead us to suggest that SNP has anti-brown adipogenic effect in a size-dependent manner via regulation of p38 phosphorylation.

  9. N-hydroxycinnamide derivatives of osthole ameliorate hyperglycemia through activation of AMPK and p38 MAPK.

    Science.gov (United States)

    Lee, Wei-Hwa; Wu, Hsueh-Hsia; Huang, Wei-Jan; Li, Yi-Ning; Lin, Ren-Jye; Lin, Shyr-Yi; Liang, Yu-Chih

    2015-01-01

    Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor, SB203580, significantly reversed activation of AMPK and p38 MAPK, respectively, in OHC-4p- and OHC-2m-treated cells. Compound C and SB203580 also inhibited glucose uptake induced by OHC-4p and OHC-2m. Next, we found that OHC-4p and OHC-2m significantly increased glucose transporter 4 (GLUT4) translocation to plasma membranes and counteracted hyperglycemia in mice with streptozotocin-induced diabetes. These results suggest that activation of AMPK and p38 MAPK by OHC-4p and OHC-2m is associated with increased glucose uptake and GLUT4 translocation and subsequently led to amelioration of hyperglycemia. Therefore, OHC-4p and OHC-2m might have potential as antidiabetic agents for treating type 2 diabetes. Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor

  10. p38 MAPK inhibition reduces diabetes-induced impairment of wound healing

    OpenAIRE

    Medicherla, Satyanarayana; Wadsworth, Scott; Cullen, Breda; Silcock, Derek; Ma, Jing Y; Mangadu, Ruban; Kerr, Irene; Chakravarty, Sarvajit; Luedtke, Gregory L; Dugar, Sundeep; Protter, Andrew A.; Higgins, Linda S

    2009-01-01

    In healthy tissue, a wound initiates an inflammatory response characterized by the presence of a hematoma, infiltration of inflammatory cells into the wound and, eventually, wound healing. In pathological conditions like diabetes mellitus, wound healing is impaired by the presence of chronic nonresolving inflammation. p38 mitogen-activated protein kinase (MAPK) inhibitors have demonstrated anti-inflammatory effects, primarily by inhibiting the expression of inflammatory cytokines and regulati...

  11. Increased p38-MAPK is responsible for chemotherapy resistance in human gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Jiang Guocheng

    2008-12-01

    Full Text Available Abstract Background Chemoresistance is one of the main obstacles to successful cancer therapy and is frequently associated with Multidrug resistance (MDR. Many different mechanisms have been suggested to explain the development of an MDR phenotype in cancer cells. One of the most studied mechanisms is the overexpression of P-glycoprotein (P-gp, which is a product of the MDR1 gene. Tumor cells often acquire the drug-resistance phenotype due to upregulation of the MDR1 gene. Overexpression of MDR1 gene has often been reported in primary gastric adenocarcinoma. Methods This study investigated the role of p38-MAPK signal pathway in vincristine-resistant SGC7901/VCR cells. P-gp and MDR1 RNA were detected by Western blot analysis and RT-PCR amplification. Mitgen-activated protein kinases and function of P-gp were demonstrated by Western blot and FACS Aria cytometer analysis. Ap-1 activity and cell apoptosis were detected by Dual-Luciferase Reporter Assay and annexin V-PI dual staining. Results The vincristine-resistant SGC7901/VCR cells with increased expression of the multidrug-resistance 1 (MDR1 gene were resistant to P-gp-related drug and P-gp-unrelated drugs. Constitutive increases of phosphorylated p38-MAPK and AP-1 activities were also found in the drug-resistant cells. Inhibition of p38-MAPK by SB202190 reduced activator protein-1 (AP-1 activity and MDR1 expression levels and increased the sensitivity of SGC7901/VCR cells to chemotherapy. Conclusion Activation of the p38-MAPK pathway might be responsible for the modulation of P-glycoprotein-mediated and P-glycoprotein-unmediated multidrug resistance in the SGC7901/VCR cell line.

  12. Increased p38-MAPK is responsible for chemotherapy resistance in human gastric cancer cells

    International Nuclear Information System (INIS)

    Chemoresistance is one of the main obstacles to successful cancer therapy and is frequently associated with Multidrug resistance (MDR). Many different mechanisms have been suggested to explain the development of an MDR phenotype in cancer cells. One of the most studied mechanisms is the overexpression of P-glycoprotein (P-gp), which is a product of the MDR1 gene. Tumor cells often acquire the drug-resistance phenotype due to upregulation of the MDR1 gene. Overexpression of MDR1 gene has often been reported in primary gastric adenocarcinoma. This study investigated the role of p38-MAPK signal pathway in vincristine-resistant SGC7901/VCR cells. P-gp and MDR1 RNA were detected by Western blot analysis and RT-PCR amplification. Mitgen-activated protein kinases and function of P-gp were demonstrated by Western blot and FACS Aria cytometer analysis. Ap-1 activity and cell apoptosis were detected by Dual-Luciferase Reporter Assay and annexin V-PI dual staining. The vincristine-resistant SGC7901/VCR cells with increased expression of the multidrug-resistance 1 (MDR1) gene were resistant to P-gp-related drug and P-gp-unrelated drugs. Constitutive increases of phosphorylated p38-MAPK and AP-1 activities were also found in the drug-resistant cells. Inhibition of p38-MAPK by SB202190 reduced activator protein-1 (AP-1) activity and MDR1 expression levels and increased the sensitivity of SGC7901/VCR cells to chemotherapy. Activation of the p38-MAPK pathway might be responsible for the modulation of P-glycoprotein-mediated and P-glycoprotein-unmediated multidrug resistance in the SGC7901/VCR cell line

  13. Curcumin exerts antitumor effects in retinoblastoma cells by regulating the JNK and p38 MAPK pathways.

    Science.gov (United States)

    Yu, Xiaoming; Zhong, Jingtao; Yan, Li; Li, Jie; Wang, Hui; Wen, Yan; Zhao, Yu

    2016-09-01

    Curcumin, a naturally occurring polyphenolic compound present in turmeric (Curcuma longa), exerts antitumor effects in various types of malignancy. However, the precise mechanisms responsible for the effects of curcumin on retinoblastoma (RB) cells have not been fully explored. In the present study, the molecular mechanisms by which curcumin exerts its anticancer effects in RB Y79 cells were investigated. The results showed that curcumin reduced cell viability in Y79 cells. Curcumin induced G1 phase arrest through downregulating the expression of cyclin D3 and cyclin-dependent kinase (CDK)2/6 and upregulating the expression of CDK inhibitor proteins p21 and p27. Curcumin-induced apoptosis of Y79 cells occurred through the activation of caspases-9/-3. Moreover, flow cytometric analysis showed that curcumin induced mitochondrial membrane potential (∆Ψm) collapse in Y79 cells. We also found that curcumin induced the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). JNK and p38 MAPK inhibitors significantly suppressed curcumin‑induced activation of caspases-9/-3 and inhibited the apoptosis of Y79 cells. Taken together, our results suggest that curcumin induced the apoptosis of Y79 cells through the activation of JNK and p38 MAPK pathways. These findings provide a novel treatment strategy for human RB. PMID:27432244

  14. BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells.

    Science.gov (United States)

    Liu, Xiaoyu; Zhao, Yahong; Peng, Su; Zhang, Shuqiang; Wang, Meihong; Chen, Yeyue; Zhang, Shan; Yang, Yumin; Sun, Cheng

    2016-01-01

    Schwann cell (SC) myelination is pivotal for the proper physiological functioning of the nervous system, but the underlying molecular mechanism remains less well understood. Here, we showed that the expression of bone morphogenetic protein 7 (BMP7) inversely correlates with myelin gene expression during peripheral myelination, which suggests that BMP7 is likely a negative regulator for myelin gene expression. Our experiments further showed that the application of BMP7 attenuates the cAMP induced myelin gene expression in SCs. Downstream pathway analysis suggested that both p38 MAPK and SMAD are activated by exogenous BMP7 in SCs. The pharmacological intervention and gene silence studies revealed that p38 MAPK, not SMAD, is responsible for BMP7-mediated suppression of myelin gene expression. In addition, c-Jun, a potential negative regulator for peripheral myelination, was up-regulated by BMP7. In vivo experiments showed that BMP7 treatment greatly impaired peripheral myelination in newborn rats. Together, our results established that BMP7 is a negative regulator for peripheral myelin gene expression and that p38 MAPK/c-Jun axis might be the main downstream target of BMP7 in this process. PMID:27491681

  15. Effects of p38α/β inhibition on acute lymphoblastic leukemia proliferation and survival in vivo.

    Science.gov (United States)

    Alsadeq, A; Strube, S; Krause, S; Carlet, M; Jeremias, I; Vokuhl, C; Loges, S; Aguirre-Ghiso, J A; Trauzold, A; Cario, G; Stanulla, M; Schrappe, M; Schewe, D M

    2015-12-01

    P38α/β has been described as a tumor-suppressor controlling cell cycle checkpoints and senescence in epithelial malignancies. However, p38α/β also regulates other cellular processes. Here, we describe a role of p38α/β as a regulator of acute lymphoblastic leukemia (ALL) proliferation and survival in experimental ALL models. We also report first evidence that p38α/β phosphorylation is associated with the occurrence of relapses in TEL-AML1-positive leukemia. First, in vitro experiments show that p38α/β signaling is induced in a cyclical manner upon initiation of proliferation and remains activated during log-phase of cell growth. Next, we provide evidence that growth-permissive signals in the bone marrow activate p38α/β in a novel avian ALL model, in which therapeutic targeting can be tested. We further demonstrate that p38α/β inhibition by small molecules can suppress leukemic expansion and prolong survival of mice bearing ALL cell lines and primary cells. Knockdown of p38α strongly delays leukemogenesis in mice xenografted with cell lines. Finally, we show that in xenografted TEL-AML1 patients, ex vivo p38α/β phosphorylation is associated with an inferior long-term relapse-free survival. We propose p38α/β as a mediator of proliferation and survival in ALL and show first preclinical evidence for p38α/β inhibition as an adjunct approach to conventional therapies.

  16. Keratinocyte p38δ loss inhibits Ras-induced tumor formation, while systemic p38δ loss enhances skin inflammation in the early phase of chemical carcinogenesis in mouse skin.

    Science.gov (United States)

    Kiss, Alexi; Koppel, Aaron C; Anders, Joanna; Cataisson, Christophe; Yuspa, Stuart H; Blumenberg, Miroslav; Efimova, Tatiana

    2016-05-01

    p38δ expression and/or activity are increased in human cutaneous malignancies, including invasive squamous cell carcinoma (SCC) and head and neck SCC, but the role of p38δ in cutaneous carcinogenesis has not been well-defined. We have reported that mice with germline loss of p38δ exhibited a reduced susceptibility to skin tumor development compared with wild-type mice in the two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical skin carcinogenesis model. Here, we report that p38δ gene ablation inhibited the growth of tumors generated from v-ras(Ha) -transformed keratinocytes in skin orthografts to nude mice, indicating that keratinocyte-intrinsic p38δ is required for Ras-induced tumorigenesis. Gene expression profiling of v-ras(Ha) -transformed p38δ-null keratinocytes revealed transcriptional changes associated with cellular responses linked to tumor suppression, such as reduced proliferation and increased differentiation, cell adhesion, and cell communications. Notably, a short-term DMBA/TPA challenge, modeling the initial stages of chemical skin carcinogenesis treatment, elicited an enhanced inflammation in p38δ-null skin compared with skin of wild-type mice, as assessed by measuring the expression of pro-inflammatory cytokines, including IL-1β, IL-6, IL-17, and TNFα. Additionally, p38δ-null skin and p38δ-null keratinocytes exhibited increased p38α activation and signaling in response to acute inflammatory challenges, suggesting a role for p38α in stimulating the elevated inflammatory response in p38δ-null skin during the initial phases of the DMBA/TPA treatment compared with similarly treated p38δ(+/+) skin. Altogether, our results indicate that p38δ signaling regulates skin carcinogenesis not only by keratinocyte cell-autonomous mechanisms, but also by influencing the interaction between between the epithelial compartment of the developing skin tumor and its stromal microenvironment.

  17. p38γ regulates UV-induced checkpoint signaling and repair of UV-induced DNA damage.

    Science.gov (United States)

    Wu, Chia-Cheng; Wu, Xiaohua; Han, Jiahuai; Sun, Peiqing

    2010-06-01

    In eukaryotic cells, DNA damage triggers activation of checkpoint signaling pathways that coordinate cell cycle arrest and repair of damaged DNA. These DNA damage responses serve to maintain genome stability and prevent accumulation of genetic mutations and development of cancer. The p38 MAPK was previously implicated in cellular responses to several types of DNA damage. However, the role of each of the four p38 isoforms and the mechanism for their involvement in DNA damage responses remained poorly understood. In this study, we demonstrate that p38γ, but not the other p38 isoforms, contributes to the survival of UV-treated cells. Deletion of p38γ sensitizes cells to UV exposure, accompanied by prolonged S phase cell cycle arrest and increased rate of apoptosis. Further investigation reveal that p38γ is essential for the optimal activation of the checkpoint signaling caused by UV, and for the efficient repair of UV-induced DNA damage. These findings have established a novel role of p38γ in UV-induced DNA damage responses, and suggested that p38γ contributes to the ability of cells to cope with UV exposure by regulating the checkpoint signaling pathways and the repair of damaged DNA.

  18. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.

    Science.gov (United States)

    Gururaj, Sushmitha; Fleites, John; Bhattacharjee, Arin

    2016-04-01

    p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates. PMID:26721627

  19. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Xu Wu

    2016-01-01

    Full Text Available Obstructive sleep apnea (OSA associated chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH triggered tissue damage. Receptor for advanced glycation end product (RAGE and its ligand high mobility group box 1 (HMGB1 are expressed on renal cells and mediate inflammatory responses in OSA-related diseases. To determine their roles in CIH-induced renal injury, soluble RAGE (sRAGE, the RAGE neutralizing antibody, was intravenously administered in a CIH model. We also evaluated the effect of sRAGE on inflammation and apoptosis. Rats were divided into four groups: (1 normal air (NA, (2 CIH, (3 CIH+sRAGE, and (4 NA+sRAGE. Our results showed that CIH accelerated renal histological injury and upregulated RAGE-HMGB1 levels involving inflammatory (NF-κB, TNF-α, and IL-6, apoptotic (Bcl-2/Bax, and mitogen-activated protein kinases (phosphorylation of P38, ERK, and JNK signal transduction pathways, which were abolished by sRAGE but p-ERK. Furthermore, sRAGE ameliorated renal dysfunction by attenuating tubular endothelial apoptosis determined by immunofluorescence staining of CD31 and TUNEL. These findings suggested that RAGE-HMGB1 activated chronic inflammatory transduction cascades that contributed to the pathogenesis of the CIH-induced renal injury. Inhibition of RAGE ligand interaction by sRAGE provided a therapeutic potential for CIH-induced renal injury, inflammation, and apoptosis through P38 and JNK pathways.

  20. Role of P38, a Kind of Signaling Molecules in CNS Diseases%P38-一种信号分子在神经系统疾病中的作用

    Institute of Scientific and Technical Information of China (English)

    李劲涛; 王廷华; 李力燕

    2012-01-01

    Currently,the researches of P38 and related signaling pathway have become a hotspot in various filed in medical science,due to its role in apoptosis. This review discussed the basic concept,biological function of P38 signaling pathway and its effect on the Central Nervous System (CNS) diseases. Moreover,the related signaling pathways of P38 were also explored.The researches for P38 and its related signaling pathway will contribute to the discovery of new drugs in various diseases in different system,ultimately shed a new light on some incurable diseases,including spinal cord injury (SCI) and Alzheimer' s disease (AD).%因P38对凋亡的作用,对P38信号分子及其相关信号通路的研究已成为目前医学科学界注目的焦点.对P38的基本概念,生物学功能及其对神经系统疾病的作用等进行综述.另外,与P38相关的信号通路也将在本文进行探讨.对P38及其相关通路的研究将有助于不同系统多种疾病的治疗新药的发现,最终给一些医学难治性疾病,包括脊髓损伤和阿尔兹海默病等的治疗带来新的曙光.

  1. Association with Soil Bacteria Enhances p38-Dependent Infection Resistance in Caenorhabditis elegans

    Science.gov (United States)

    Montalvo-Katz, Sirena; Huang, Hao; Appel, Michael David; Berg, Maureen

    2013-01-01

    The importance of our inner microbial communities for proper immune responses against invading pathogens is now well accepted, but the mechanisms underlying this protection are largely unknown. In this study, we used Caenorhabditis elegans to investigate such mechanisms. Since very little is known about the microbes interacting with C. elegans in its natural environment, we began by taking the first steps to characterize the C. elegans microbiota. We established a natural-like environment in which initially germfree, wild-type larvae were grown on enriched soil. Bacterial members of the adult C. elegans microbiota were isolated by culture and identified using 16S rRNA gene sequencing. Using pure cultures of bacterial isolates as food, we identified two, Bacillus megaterium and Pseudomonas mendocina, that enhanced resistance to a subsequent infection with the Gram-negative pathogen Pseudomonas aeruginosa. Whereas protection by B. megaterium was linked to impaired egg laying, corresponding to a known trade-off between fecundity and resistance, the mechanism underlying protection conferred by P. mendocina depended on weak induction of immune genes regulated by the p38 MAPK pathway. Disruption of the p38 ortholog, pmk-1, abolished protection. P. mendocina enhanced resistance to P. aeruginosa but not to the Gram-positive pathogen Enterococcus faecalis. Furthermore, protection from P. aeruginosa was similarly induced by a P. aeruginosa gacA mutant with attenuated virulence but not by a different C. elegans-associated Pseudomonas sp. isolate. Our results support a pivotal role for the conserved p38 pathway in microbiota-initiated immune protection and suggest that similarity between microbiota members and pathogens may play a role in such protection. PMID:23230286

  2. Sorbitol induces apoptosis of human colorectal cancer cells via p38 MAPK signal transduction.

    Science.gov (United States)

    Lu, Xue; Li, Chun; Wang, Yong-Kun; Jiang, Kun; Gai, Xiao-Dong

    2014-06-01

    Sorbitol has been reported to have anticancer effects in several tumor models, however its effects on colorectal cancer remain elusive. In the present study, the effects of sorbitol on growth inhibition and apoptosis in the colorectal cancer HCT116 cell line were evaluated and its mechanism of action was examined. An MTT assay was utilized to determine the effect of sorbitol on HCT116 cell proliferation at different time points and variable doses. Western blot analysis was used to examine the effect of sorbitol on apoptosis-related protein expression and the p38 MAPK signaling pathway. The results revealed that sorbitol may inhibit the growth of HCT116 cells in a time- and dose-dependent manner. Following treatment with sorbitol for 3 h, western blotting demonstrated cleavage of the caspase-3 zymogen protein and a cleavage product of poly (ADP-ribose) polymerase (PARP), a known substrate of caspase-3, was also evident. During sorbitol-induced apoptosis, the mitochondrial pathway was activated by a dose-dependent increase in Bax expression and cytochrome c release, while the expression of anti-apoptotic protein Bcl-2 was significantly decreased in a dose-dependent manner. The investigation for the downstream signal pathway revealed that sorbitol-induced apoptosis was mediated by an increase in phosphorylated p38 MAPK expression. Overall, the observations from the present study imply that sorbitol causes increased levels of Bax in response to p38 MAPK signaling, which results in the initiation of the mitochondrial death cascade. Therefore, sorbitol is a promising candidate as a potential chemotherapeutic agent for the treatment of colorectal cancer HCT116 cells.

  3. Halofuginone inhibits NF-kappaB and p38 MAPK in activated T cells.

    Science.gov (United States)

    Leiba, M; Cahalon, L; Shimoni, A; Lider, O; Zanin-Zhorov, A; Hecht, I; Sela, U; Vlodavsky, I; Nagler, A

    2006-08-01

    Halofuginone, a low molecular weight plant alkaloid, inhibits collagen alpha1 (I) gene expression in several animal models and in patients with fibrotic disease, including scleroderma and graft-versus-host disease. In addition, halofuginone has been shown to inhibit angiogenesis and tumor progression. It was demonstrated recently that halofuginone inhibits transforming growth factor-beta (TGF-beta), an important immunomodulator. The present study was undertaken to explore the effects of halofuginone on activated T cells. Peripheral blood T cells were activated by anti-CD3 monoclonal antibodies in the absence and presence of halofuginone and assessed for nuclear factor (NF)-kappaB activity, production of tumor necrosis factor alpha (TNF-alpha) and interferon-gamma (IFN-gamma), T cell apoptosis, chemotaxis, and phosphorylation of p38 mitogen-activated protein kinase (MAPK). A delayed-type hypersensitivity (DTH) model was applied to investigate the effect of halofuginone on T cells in vivo. Preincubation of activated peripheral blood T cells with 10-40 ng/ml halofuginone resulted in a significant dose-dependent decrease in NF-kappaB activity (80% inhibition following incubation with 40 ng halofuginone, P = 0.002). In addition, 40 ng/ml halofuginone inhibited secretion of TNF-alpha, IFN-gamma, interleukin (IL)-4, IL-13, and TGF-beta (P < 0.005). Similarly, halofuginone inhibited the phosphorylation of p38 MAPK and apoptosis in activated T cells (P = 0.0001 and 0.005, respectively). In contrast, T cell chemotaxis was not affected. Halofuginone inhibited DTH response in mice, indicating suppression of T cell-mediated inflammation in vivo. Halofuginone inhibits activated peripheral blood T cell functions and proinflammatory cytokine production through inhibition of NF-kappaB activation and p38 MAPK phosphorylation. It also inhibited DTH response in vivo, making it an attractive immunomodulator and anti-inflammatory agent. PMID:16769768

  4. Bento Boxes

    Science.gov (United States)

    Hasio, Cindy

    2010-01-01

    Bento boxes are common objects in Japanese culture, designed to hold enough lunch for one person. They have individual compartments and sometimes multiple tiers for rice, vegetables, and other side dishes. They are made of materials ranging from wood, cloth, aluminum, or plastic. In general, the greater the number of foods, the better the box is…

  5. INVOLVEMENT OF p38 MITOGEN-ACTIVATED PROTEIN KINASE IN E.Coli-INDUCED U937 APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    Jia-he Wang; Yi-jun Zhou; Ping He; Bai-yi Chen

    2007-01-01

    Objective To investigate whether the effect of E. coli on U937 cell lines apoptosis is mediated via p38 mitogen-activated protein kinase (MAPK) activation.Methods The U937 cell lines were treated with E. coli at different time or together with SB203580, an inhibitor for p38. Cell apoptosis was analyzed by flow cytometry. p38 activities were detected by Western blotting.Results E. coli induced apoptosis in cultured U937 cell lines in a time-dependent manner. The phosphorylation of p38 was induced after 10 minutes infection, reached the peak after 20 minutes, and started to decline after 30 minutes. In contrast, the level of total p38 protein was not changed in whole experimental period. Inhibition of p38 with SB203580 significantly inhibited E. coli induced apoptosis in U937 cells.Conclusion The activation of the p38 MAPK in U937 cell lines by E. coli is a major pathway to mediate the apoptosis.

  6. Mouse preimplantation embryo responses to culture medium osmolarity include increased expression of CCM2 and p38 MAPK activation

    Directory of Open Access Journals (Sweden)

    Watson Andrew J

    2007-01-01

    Full Text Available Abstract Background Mechanisms that confer an ability to respond positively to environmental osmolarity are fundamental to ensuring embryo survival during the preimplantation period. Activation of p38 mitogen-activated protein kinase (MAPK occurs following exposure to hyperosmotic treatment. Recently, a novel scaffolding protein called Osmosensing Scaffold for MEKK3 (OSM was linked to p38 MAPK activation in response to sorbitol-induced hypertonicity. The human ortholog of OSM is cerebral cavernous malformation 2 (CCM2. The present study was conducted to investigate whether CCM2 is expressed during mouse preimplantation development and to determine whether this scaffolding protein is associated with p38 MAPK activation following exposure of preimplantation embryos to hyperosmotic environments. Results Our results indicate that Ccm2 along with upstream p38 MAPK pathway constituents (Map3k3, Map2k3, Map2k6, and Map2k4 are expressed throughout mouse preimplantation development. CCM2, MAP3K3 and the phosphorylated forms of MAP2K3/MAP2K6 and MAP2K4 were also detected throughout preimplantation development. Embryo culture in hyperosmotic media increased p38 MAPK activity in conjunction with elevated CCM2 levels. Conclusion These results define the expression of upstream activators of p38 MAPK during preimplantation development and indicate that embryo responses to hyperosmotic environments include elevation of CCM2 and activation of p38 MAPK.

  7. Inhibition of p38 mitogen-activated protein kinase attenuates experimental autoimmune hepatitis: Involvement of nuclear factor kappa B

    Institute of Scientific and Technical Information of China (English)

    Xiong Ma; Yi-Tao Jia; De-Kai Qiu

    2007-01-01

    AIM: To investigate the role of p38 mitogen-activated protein kinase (p38MAPK) in murine experimental autoimmune hepatitis (EAH).METHODS: To induce EAH, the syngeneic S-100 antigen emulsified in complete Freud's adjuvant was injected intraperitoneally into adult male C57BI/6 mice. Liver injury was assessed by serum ALT and liver histology.The expression and activity of p38 MAPK were measured by Western blot and kinase activity assays. In addition,DNA binding activities of nuclear factor kappa B (NF-κB)were analyzed by electrophoretic mobility shift assay. The effects of SB203580, a specific p38 MAPK inhibitor, on liver injuries and expression of proinflammatory cytokines (interferon-γ, IL-12, IL-1β and TNF-α) were observed.RESULTS: The activity of p38 MAPK and NF-κB was increased and reached its peak 14 or 21 d after the first syngeneic S-100 administration. Inhibition of p38 MAPK activation by SB203580 decreased the activation of NF-κB and the expression of proinflammatory cytokines.Moreover, hepatic injuries were improved significantly after SB203580 administration.CONCLUSION: p38 MAPK and NF-κB play an important role in an animal model of autoimmune hepatitis (AIH)induced by autoantigens.

  8. Inhibition of Acid Sphingomyelinase by Antidepressants Counteracts Stress-Induced Activation of P38-Kinase in Major Depression

    Directory of Open Access Journals (Sweden)

    Heike Grassmé

    2015-12-01

    Full Text Available Background/Aims: Major depressive disorder is a common disease with serious morbidity, including increased risk of death from suicide. Major depressive disorder is treated with antidepressants. However, the molecular targets of antidepressants remained ill-defined and require further elucidation. Methods: Mice were treated with corticosterone to induce stress, amitriptyline and the p38-kinase (p38K inhibitor SB239063 or a combination of these drugs. Phosphorylation of p38K in hippocampal neurons was determined by immunostaining with a phospho-specific antibody, neuronal proliferation using BrdU-labelling and behaviour employing a set of behavioural tests. Results: Corticosterone induced phosphorylation/activation of p38K in the hippocampus in vivo. Antidepressants reversed the effect of corticosterone on p38K activation in wildtype mice, but had no effect in acid sphingomyelinase-deficient animals. Corticosterone also reduced neurogenesis and triggered depression-like behavioural changes, effects that were prevented by pharmacological inhibition of p38K. Conclusion: Stress induces p38K phosphorylation/activation in the hippocampus and thereby reduces neurogenesis and induces depression-like symptoms, events that are prevented by antidepressants via inhibition of the acid sphingomyelinase/ceramide system.

  9. The p38α MAPK function in osteoprecursors is required for bone formation and bone homeostasis in adult mice.

    Directory of Open Access Journals (Sweden)

    Edgardo Rodríguez-Carballo

    Full Text Available p38 MAPK activity plays an important role in several steps of the osteoblast lineage progression through activation of osteoblast-specific transcription factors and it is also essential for the acquisition of the osteoblast phenotype in early development. Although reports indicate p38 signalling plays a role in early skeletal development, its specific contributions to adult bone remodelling are still to be clarified.We evaluated osteoblast-specific deletion of p38α to determine its significance in early skeletogenesis, as well as for bone homeostasis in adult skeleton. Early p38α deletion resulted in defective intramembranous and endochondral ossification in both calvaria and long bones. Mutant mice showed reduction of trabecular bone volume in distal femurs, associated with low trabecular thickness. In addition, knockout mice also displayed decreased femoral cortical bone volume and thickness. Deletion of p38α did not affect osteoclast function. Yet it impaired osteoblastogenesis and osteoblast maturation and activity through decreased expression of osteoblast-specific transcription factors and their targets. Furthermore, the inducible Cre system allowed us to control the onset of p38α disruption after birth by removal of doxycycline. Deletion of p38α at three or eight weeks postnatally led to significantly lower trabecular and cortical bone volume after 6 or 12 months.Our data demonstrates that, in addition to early skeletogenesis, p38α is essential for osteoblasts to maintain their function in mineralized adult bone, as bone anabolism should be sustained throughout life. Moreover, our data also emphasizes that clinical development of p38 inhibitors should take into account their potential bone effects.

  10. Cross-talk between Smad4 and P38 Proteins in Non-small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    TONG Xiang-dong; LIU Hong-xu; ZHAO Hui-ru; WANG Yu; LI Yu; HAN Li-bo; ZHANG Lin

    2007-01-01

    Objective: Impaired signal transduction is associated with tumorigenesis and progression of various kinds of human cancers. Transforming growth factor (TGF)-beta/Smad and ras-mitogen activated protein kinase (MAPK) are two major signal transduction pathways for adjusting cell proliferation and differentiation. Little is known about TGF-beta/Smad4 in non-small cell lung cancer (NSCLC). Hereby, we investigated the expression of Smad4 in NSCLC, its correlation with MAPK proteins (including p38, ERK1 and JNK1 proteins) and their clinical significance in NSCLC. Methods: The expressions of Smad4, p38, ERK1 and JNK1 were detected at protein level with Western blotting and immunohistochemistry, at transcription level with RT-PCR. Statistical analysis was performed for the comparisons of expressions of Smad4, p38, ERK1 and JNK1, and their correlation with various clinicopathological parameters and the prognosis of NSCLC. Results: The levels of protein and mRNA expression of Smad4 in lung cancer tissues were significantly lower than in normal tissues (P<0.05). All these four proteins were associated with TNM staging. There was a strongly negative correlation between p38 and Smad4. Expressions of Smad4, p38 and JNK1, as well as tumor differentiation and staging were significantly correlated with the prognosis of NSCLC by univariate analysis. By multivariate analysis, only Smad4, p38, tumor differentiation and staging were correlated with the prognosis. Taken together, the negative expression of p38 and positive expression of Smad4 were associated with a better prognosis of NSCLC. Conclusion: Smad4 could be of vital importance for the initiation and development of NSCLC. The expression of Smad4 might be inhibited by p38, supporting a cross-talk between main proteins of TGF-beta/Smad and ras-MAPK signal transduction pathways. Smad4 and p38 could be possible prognostic factors for NSCLC.

  11. Piperine alleviates osteoclast formation through the p38/c-Fos/NFATc1 signaling axis.

    Science.gov (United States)

    Deepak, Vishwa; Kruger, Marlena C; Joubert, Annie; Coetzee, Magdalena

    2015-01-01

    Increased bone fracture is one of the health risk factors in patients with bone loss related disorders such as osteoporosis and breast cancer metastasis to bone. Over activity of osteoclasts leads to uncoupling of bone remodeling favoring bone loss over bone formation. Receptor activator of nuclear factor-κβ ligand (RANKL) triggers the differentiation pathway leading to multinucleated osteoclast formation. Modulation of RANKL or its downstream signaling pathways involved in osteoclast formation is of significant interest in the development of anti-resorptive agents. In this study, the effects of piperine, an alkaloid present in Piper nigrum L. on osteoclast formation was investigated. Piperine inhibited tartrate-resistant acid phosphatase-positive multinucleated osteoclast formation in murine RAW264.7 macrophages and human CD14+ monocytes induced by RANKL and breast cancer cells. Piperine attenuated the p38-mitogen activated protein kinase pathway activation, while the extracellular-signal-regulated kinase, c-Jun N-terminal kinase, or NF-κβ pathways downstream of RANKL remained unaffected. Concomitantly, expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), the key transcription factors involved in osteoclastogenesis were remarkably inhibited by piperine. Furthermore, piperine disrupted the actin ring structure and bone resorption, a characteristic hallmark of osteoclasts. Collectively, these results suggested that piperine inhibited osteoclast differentiation by suppressing the p38/NFATc1/c-Fos signaling axis.. PMID:26627060

  12. Aplysin Sensitizes Cancer Cells to TRAIL by Suppressing P38 MAPK/Survivin Pathway

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2014-09-01

    Full Text Available TNF-related apoptosis-inducing ligand (TRAIL is a tumor-selective apoptosis inducer and has been shown to be promising for treating various types of cancers. However, the application of TRAIL is greatly impeded by the resistance of cancer cells to its action. Studies show that overexpression of some critical pro-survival proteins, such as survivin, is responsible for TRAIL resistance. In this study, we found that Aplysin, a brominated compound from marine organisms, was able to restore the sensitivity of cancer cells to TRAIL both in vitro and in vivo. Aplysin was found to enhance the tumor-suppressing capacity of TRAIL on several TRAIL-resistant cancer cell lines. TRAIL-induced apoptosis was also potentiated in A549 and MCF7 cells treated with Aplysin. Survivin downregulation was identified as a mechanism by which Aplysin-mediated TRAIL sensitization of cancer cells. Furthermore, the activation of p38 MAPK was revealed in Aplysin-treated cancer cells, and its inhibitor SB203580 was able to abrogate the promoting effect of Aplysin on the response of cancer cells to TRAIL action, as evidenced by restored survivin expression, elevated cell survival and reduced apoptotic rates. In conclusion, we provided evidence that Aplysin acts as a sensitizer for TRAIL and its effect on p38 MAPK/survivin pathway may partially account for this activity. Considering its low cytotoxicity to normal cells, Aplysin may be a promising agent for cancer treatment in combination with TRAIL.

  13. Centrifugal force induces human ligamentum flavum fibroblasts inflammation through activation of JNK and p38 pathways.

    Science.gov (United States)

    Chao, Yuan-Hung; Tsuang, Yang-Hwei; Sun, Jui-Sheng; Sun, Man-Ger; Chen, Ming-Hong

    2012-01-01

    Inflammation has been proposed to be an important causative factor in ligamentum flavum hypertrophy. However, the mechanisms of mechanical load on inflammation of ligamentum flavum remain unclear. In this study, we used an in vitro model of human ligamentum flavum fibroblasts subjected to centrifugal force to elucidate the effects of mechanical load on cultured human ligamentum flavum fibroblasts; we further studied its molecular and biochemical mechanisms. Human ligamentum flavum fibroblasts were obtained from six patients undergoing lumbar spine surgery. Monolayer cultures of human ligamentum flavum fibroblasts were subjected to different magnitudes of centrifugal forces. Cell viability, cell death, biochemical response, and molecular response to centrifugal forces were analyzed. It was found that centrifugal stress significantly suppressed cell viability without inducing cell death. Centrifugal force at 67.1 g/cm(2) for 60 min significantly increases the production of prostaglandin E2 and nitric oxide as well as gene expression of proinflammatory cytokines, including interleukin (IL)-1α, IL-1β and IL-6, showed that centrifugal force-dependent induction of cyclooxygense-2 and inducible NO synthase required JNK and p38 mitogen-activated protein kinase, but not ERK 1/2 activities. This study suggested that centrifugal force does induce inflammatory responses in human ligamentum flavum fibroblasts. The activation of both JNK and p38 mitogen-activated protein kinase mechanotransduction cascades is a crucial intracellular mechanism that mediates cyclooxygense-2/prostaglandin E2 and inducible NO synthase/nitric oxide production.

  14. Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Jin Woo Choi

    2011-03-01

    Full Text Available Although ARS-interacting multifunctional protein 2 (AIMP2, also named as MSC p38 was first found as a component for a macromolecular tRNA synthetase complex, it was recently discovered to dissociate from the complex and work as a potent tumor suppressor. Upon DNA damage, AIMP2 promotes apoptosis through the protective interaction with p53. However, it was not demonstrated whether AIMP2 was indeed pathologically linked to human cancer. In this work, we found that a splicing variant of AIMP2 lacking exon 2 (AIMP2-DX2 is highly expressed by alternative splicing in human lung cancer cells and patient's tissues. AIMP2-DX2 compromised pro-apoptotic activity of normal AIMP2 through the competitive binding to p53. The cells with higher level of AIMP2-DX2 showed higher propensity to form anchorage-independent colonies and increased resistance to cell death. Mice constitutively expressing this variant showed increased susceptibility to carcinogen-induced lung tumorigenesis. The expression ratio of AIMP2-DX2 to normal AIMP2 was increased according to lung cancer stage and showed a positive correlation with the survival of patients. Thus, this work identified an oncogenic splicing variant of a tumor suppressor, AIMP2/p38, and suggests its potential for anti-cancer target.

  15. Activation of p38α in T cells regulates the intestinal host defense against attaching and effacing bacterial infections

    OpenAIRE

    Shim, Eun-Jin; Bang, Bo Ram; Kang, Seung-Goo; Ma, Jianhui; Otsuka, Motoyuki; Kang, Jiman; Stahl, Martin; Han, Jiahuai; Xiao, Changchun; Vallance, Bruce A.; Kang, Young Jun

    2013-01-01

    Intestinal infections by attaching and effacing (A/E) bacterial pathogens cause severe colitis and bloody diarrhea. Although p38α in intestine epithelial cells (IEC) plays an important role in promoting protection against A/E bacteria by regulating T cell recruitment, its impact on immune responses remains unclear. In this study, we show that activation of p38α in T cells is critical for the clearance of the A/E pathogen Citrobacter rodentium. Mice deficient of p38α in T cells, but not in mac...

  16. Advances in Researches on the Relationship between P38MAPK Signaling Pathway and Ovarian Carcinoma%P38MAPK信号传导通路与卵巢癌关系的研究进展

    Institute of Scientific and Technical Information of China (English)

    陈砚芬; 徐海帆

    2012-01-01

    丝裂原活化蛋白激酶(mitogen-activated proteinkinases,MAPKs)级联反应是细胞内重要的信号传导系统之一,参与细胞生长、发育、分化和凋亡等一系列生理、病理过程.P38 MAPK信号传导通路是MAPK通路的分支之一,介导了应激、炎性细胞因子、细菌产物等多种刺激引起的细胞反应,对细胞周期调控具有重要作用.但对不同的卵巢癌细胞系,或者不同的刺激,P38通路的作用不完全相同,甚至可能相反,提示对P38通路的功能仍需进一步的研究,他可能是肿瘤治疗的新靶点.本文就P38 MAPK信号传导通路与卵巢癌关系作一综述.%The cascade reaction of mitogen-activated protein kinases(MAPKs)is one of the vital intracellular signal transduction systems, participating in many physiological progressions, such as cell growth,proliferation,differentiation and apoptosis. P38 is a member of MAPKs, mediating many cell reactions induced by stress, inflammatory cytokines or bacterial products and playing a key role in the regulation of cell cycle. For different cell lines of ovarian carcinoma,P38 has different functions.The same phenomenon can be seen when the cells are presented under different stimulus.P38 pathway may be one candidate target of cancer therapy. This paper will review the relationship between P38MAPK signaling pathway and ovarian carcinoma.

  17. Recent progresses in endotoxin-induced p38 MAPK signal transduction%内毒素诱导p38 MAPK信号转导作用的研究进展

    Institute of Scientific and Technical Information of China (English)

    姚琳; 余书勤; 张锡然

    2004-01-01

    The diseases caused by endotoxin have seriously affected human health. Previous studies have shown that p38 MAPK pathway is involved in the intracellular signal transduction induced by lipopolysaccharide (LPS), which plays an important role in the activation of inflammation-related cells to release inflammation mediator. Recently there have been some progresses in the isoforms distribution, substrate, molecular mechanism of regulating the release of inflammatory mediators, cellular specific activation and levels of p38 MAPK.

  18. A novel p38 mitogen activated protein kinase (MAPK) specific inhibitor suppresses respiratory syncytial virus and influenza A virus replication by inhibiting virus-induced p38 MAPK activation.

    Science.gov (United States)

    Choi, Myung-Soo; Heo, Jinyuk; Yi, Chae-Min; Ban, Junsu; Lee, Noh-Jin; Lee, Na-Rae; Kim, Sang Won; Kim, Nam-Jung; Inn, Kyung-Soo

    2016-08-26

    Respiratory syncytial virus (RSV) and influenza A virus are leading causes of acute lower respiratory infectious disease. Respiratory diseases caused by RSV and influenza A virus result in serious economic burden and life-threatening disease for immunocompromised people. With the revelation that p38 mitogen-activated protein kinase (MAPK) activity in host cells is crucial for infection and replication of RSV and influenza A virus, inhibition of p38 MAPK activity has been suggested as a potential antiviral therapeutic strategy. However, the low selectivity and high toxicity of the p38 MAPK inhibitors necessitate the development of better inhibitors. Herein, we report the synthesis of a novel p38 MAPK inhibitor, NJK14047, with high kinase selectivity. In this work, it was demonstrated that NJK14047 inhibits RSV- and influenza A-mediated p38 MAPK activation in epithelial cells. Subsequently, NJK14047 treatment resulted in decreased viral replication and viral mRNA synthesis. In addition, secretion of interleukin-6 from infected cells was greatly diminished by NJK14047, suggesting that it can ameliorate immunopathological responses to RSV and influenza A. Collectively, the results suggest that NJK14047 has therapeutic potential to treat respiratory viral infection through the suppression of p38 MAPK activation, which is suggested to be an essential step for respiratory virus infection. PMID:27346133

  19. P38信号通路在Aβ介导的PC12细胞损伤中的作用%P38 signaling pathway participates in PC12 cell injury induced by Aβ

    Institute of Scientific and Technical Information of China (English)

    徐芳; 魏桂荣

    2010-01-01

    目的 探讨P38信号通路在Aβ介导的PC12细胞损伤中的作用.方法 体外培养PC12细胞,不同浓度的Aβ处理PC12细胞.用MTT法检测Aβ对PC12细胞活力的影响,免疫印迹法检测P38通路活化水平,并观察P38通路抑制剂SB203580对细胞活力的影响.结果 Aβ处理后,PC12细胞活力随Aβ浓度的增高而逐渐下降(P<0.05);Aβ处理后P38表达水平从4 h开始升高,12 h 达到高峰,并一直持续到24 h;SB203580预处理能够明显抑制P38信号通路活化,并对PC12细胞起到保护作用.结论 P38信号通路活化参与Aβ介导的PC12细胞损伤.

  20. p38 MAP Kinase Links CAR Activation and Inactivation in the Nucleus via Phosphorylation at Threonine 38

    Science.gov (United States)

    Hori, Takeshi; Moore, Rick

    2016-01-01

    Nuclear receptor constitutive androstane receptor (CAR, NR1I3), which regulates hepatic drug and energy metabolisms as well as cell growth and death, is sequestered in the cytoplasm as its inactive form phosphorylated at threonine 38. CAR activators elicit dephosphorylation, and nonphosphorylated CAR translocates into the nucleus to activate its target genes. CAR was previously found to require p38 mitogen-activated protein kinase (MAPK) to transactivate the cytochrome P450 2B (CYP2B) genes. Here we have demonstrated that p38 MAPK forms a complex with CAR, enables it to bind to the response sequence, phenobarbital-responsive enhancer module (PBREM), within the CYP2B promoter, and thus recruits RNA polymerase II to activate transcription. Subsequently, p38 MAPK elicited rephosphorylation of threonine 38 to inactivate CAR and exclude it from the nucleus. Thus, nuclear p38 MAPK exerted dual regulation by sequentially activating and inactivating CAR-mediated transcription through phosphorylation of threonine 38. PMID:27074912

  1. Critical role of p38 MAPK for regeneration of the sciatic nerve following crush injury in vivo

    OpenAIRE

    Kato Naoki; Matsumoto Masahito; Kogawa Masakazu; Atkins Gerald J; Findlay David M; Fujikawa Takahiko; Oda Hiromi; Ogata Masato

    2013-01-01

    Abstract Background The physiological function of p38α, which is an isoform of p38 MAPK, has been investigated previously in several studies using pharmacological inhibitors. However, the results regarding whether p38α promotes or inhibits nerve regeneration in vivo have been controversial. Methods We generated novel p38α mutant mice (sem mice) with a point mutation in the region encoding the p38α substrate-docking-site, which serves as a limited loss-of-function model of p38α. In the present...

  2. Fasudil inhibits LPS-induced migration of retinal microglial cells via regulating p38-MAPK signaling pathway

    Science.gov (United States)

    Xu, Fan; Xu, Yue; Zhu, Liqiong; Rao, Pinhong; Wen, Jiamin; Sang, Yunyun; Shang, Fu

    2016-01-01

    Purpose To investigate the effect and possible molecular mechanisms of fasudil on retinal microglial (RMG) cell migration. Methods Primary cultured RMG cells were incubated with lipopolysaccharide (LPS), fasudil, and/or SB203580 (a p38 inhibitor). RMG cell motility was determined with the scratch wound assay and the Transwell migration assay. The phosphorylation of p38 and levels of matrix metalloproteinase 2 (MMP-2) and MMP-9 were measured with western blot. Results In the scratch-induced migration assay, as well as in the Transwell migration assay, the results indicated that LPS stimulated the migratory potential of RMG cells and fasudil significantly reduced LPS-stimulated RMG cell migration in a concentration-dependent manner. However, fasudil had no effect on RMG cell migration in the absence of LPS stimulation. Moreover, fasudil reduced the level of phosphor-p38 mitogen-activated protein kinase (p-p38-MAPK) in a concentration-dependent manner, without effects on the levels of phospho-p44/42 (p-ERK1/2) and phospho-c-Jun N-terminal kinase (p-JNK). Cotreatment with SB203580 (a p38 inhibitor) and fasudil resulted in the synergistic reduction of MMP-2, MMP-9, and p-p38-MAPK, as well as a reduction in the LPS-stimulated migration capabilities of the RMG cells, suggesting fasudil suppresses the LPS-stimulated migration of RMG cells via directly downregulating the p38-MAPK signaling pathway. Conclusions Our studies indicated that fasudil inhibited LPS-stimulated RMG cell migration via suppression of the p38-MAPK signaling pathway. PMID:27441000

  3. Shock Waves Increase T-cell Proliferation or IL-2 Expression by Activating p38 MAP Kinase

    Institute of Scientific and Technical Information of China (English)

    Tie-Cheng YU; Yi LIU; Yan TAN; Yanfang JIANG; Xueqing ZHENG; Xinxiang XU

    2004-01-01

    Shock waves were elicited by transient pressure disturbances, which could be used to treat musculoskeletal disorders. In present studies, we i. nvestigated whether the low-density shock waves (LDSWs), which are able to damage plasma membrane without impairing the vimentin or other organelles, might augment T-cell proliferation as well as IL-2 expression, and if mitogen activated protein kinase p38 (p38 MAPK)might be an underlying mechanism through which the LDSWs enhanced T-cell function. We found that the LDSWs increased activation of p38 MAPK in Jurkat T cells. The LDSWs alone didn't result in the T-cell proliferation and IL-2 expression. However, in combination with other stimuli, LDSWs could augment the T-cell proliferation and IL-2 expression. Inhibition of p38 MAPK using SB203580 reduced the stimulatory effects of the LDSWs, which indicated that the LDSWs enhanced IL-2 expression through a mechanism that involved p38 MAPK activation. We concluded that the p38 MAPK activation played a key role in the regulation of T cell function by the LDSWs.

  4. p38 MAPK mediates cardiovascular and behavioral responses induced by central IL-1β and footshock in conscious rats

    Institute of Scientific and Technical Information of China (English)

    Rui-mao ZHENG; Chang-jiang ZOU; Shi-gong ZHU

    2004-01-01

    AIM: To investigate the roles of p38 mitogen-activated protein kinase (p38 MAPK) in the cardiovascular and behavioral responses induced by intracerebral ventricular injection (icv) of interleukin- 1 β (IL- 1 β) or footshock.METHODS: We examined the effects of p38 MAPK on mean artery blood pressure (mABP), heart rate (HR), and motor activity (MA) during central administration of IL- 1 β, or footshock after icv SB203580 (a specific inhibitor of the p38 MAPK) with Cardiovascular and Behavior Telemetry System in conscious SD rats. RESULTS: (1) IL-1 β (icy) or footshock remarkably rise the mABP, and the maximal changes are (7.8± 1.8) and (12.3±3.5) mmHg,respectively, which was abrogated by the pretreatment with p38 inhibitor SB203580 intracerebroventricularly. (2)Compared with icv saline group, the motor activity was significantly decreased in SB203580 group with maximal changes (-7.6± 1.1) counts/min after footshock. CONCLUSION: p38 MAPK plays an important role in the pressor response induced by central administration of IL- 1 β or footshock and change of motor activity after footshock in conscious rats.

  5. p38α Activates Purine Metabolism to Initiate Hematopoietic Stem/Progenitor Cell Cycling in Response to Stress.

    Science.gov (United States)

    Karigane, Daiki; Kobayashi, Hiroshi; Morikawa, Takayuki; Ootomo, Yukako; Sakai, Mashito; Nagamatsu, Go; Kubota, Yoshiaki; Goda, Nobuhito; Matsumoto, Michihiro; Nishimura, Emi K; Soga, Tomoyoshi; Otsu, Kinya; Suematsu, Makoto; Okamoto, Shinichiro; Suda, Toshio; Takubo, Keiyo

    2016-08-01

    Hematopoietic stem cells (HSCs) maintain quiescence by activating specific metabolic pathways, including glycolysis. We do not yet have a clear understanding of how this metabolic activity changes during stress hematopoiesis, such as bone marrow transplantation. Here, we report a critical role for the p38MAPK family isoform p38α in initiating hematopoietic stem and progenitor cell (HSPC) proliferation during stress hematopoiesis in mice. We found that p38MAPK is immediately phosphorylated in HSPCs after a hematological stress, preceding increased HSPC cycling. Conditional deletion of p38α led to defective recovery from hematological stress and a delay in initiation of HSPC proliferation. Mechanistically, p38α signaling increases expression of inosine-5'-monophosphate dehydrogenase 2 in HSPCs, leading to altered levels of amino acids and purine-related metabolites and changes in cell-cycle progression in vitro and in vivo. Our studies have therefore uncovered a p38α-mediated pathway that alters HSPC metabolism to respond to stress and promote recovery. PMID:27345838

  6. p38 signaling and receptor recycling events in a microfluidic endothelial cell adhesion assay.

    Directory of Open Access Journals (Sweden)

    Dwayne A L Vickers

    Full Text Available Adhesion-based microfluidic cell separation has proven to be very useful in applications ranging from cancer diagnostics to tissue engineering. This process involves functionalizing microchannel surfaces with a capture molecule. High specificity and purity capture can be achieved using this method. Despite these advances, little is known about the mechanisms that govern cell capture within these devices and their relationships to basic process parameters such as fluid shear stress and the presence of soluble factors. This work examines how the adhesion of human endothelial cells (ECs is influenced by a soluble tetrapeptide, Arg-Glu-Asp-Val (REDV and fluidic shear stress. The ability of these ECs to bind within microchannels coated with REDV is shown to be governed by shear- and soluble-factor mediated changes in p38 mitogen-activated protein kinase expression together with recycling of adhesion receptors from the endosome.

  7. Resistin increases platelet P-selectin levels via p38 MAPK signal pathway.

    Science.gov (United States)

    Qiu, Wenbing; Chen, Naping; Zhang, Qin; Zhuo, Liyuan; Wang, Xihong; Wang, Dongming; Jin, Hong

    2014-03-01

    Resistin, an adipokine associated with the metabolic syndrome, is believed to have a role in thrombotic conditions. This work analyses the effects of resistin on P-selectin expression using a combination of ex vivo human studies, in vivo animal models and in vitro cell cultures. Human platelets and vascular endothelial cells were incubated with resistin, with or without anti-Toll-like receptor 4 (TLR-4) or mitogen-activated protein kinases (MAPK) pathway inhibitors, whereas mice were treated with resistin infusion followed by analysis of P-selectin expression. Resistin increased both human and murine platelet P-selectin expression compared with controls (human: 48.02% ± 7.6% vs 35.12% ± 2.62%, p P-selectin production. We conclude that resistin induces platelet activation by increasing P-selectin expression through the p38 MAPK-dependent pathway. These data provide one mechanism for the prothrombotic state in individuals with the metabolic syndrome.

  8. The ubiquitin ligase RPM-1 and the p38 MAPK PMK-3 regulate AMPA receptor trafficking.

    Directory of Open Access Journals (Sweden)

    Eun Chan Park

    Full Text Available Ubiquitination occurs at synapses, yet its role remains unclear. Previous studies demonstrated that the RPM-1 ubiquitin ligase organizes presynaptic boutons at neuromuscular junctions in C. elegans motorneurons. Here we find that RPM-1 has a novel postsynaptic role in interneurons, where it regulates the trafficking of the AMPA-type glutamate receptor GLR-1 from synapses into endosomes. Mutations in rpm-1 cause the aberrant accumulation of GLR-1 in neurites. Moreover, rpm-1 mutations enhance the endosomal accumulation of GLR-1 observed in mutants for lin-10, a Mint2 ortholog that promotes GLR-1 recycling from Syntaxin-13 containing endosomes. As in motorneurons, RPM-1 negatively regulates the pmk-3/p38 MAPK pathway in interneurons by repressing the protein levels of the MAPKKK DLK-1. This regulation of PMK-3 signaling is critical for RPM-1 function with respect to GLR-1 trafficking, as pmk-3 mutations suppress both lin-10 and rpm-1 mutations. Positive or negative changes in endocytosis mimic the effects of rpm-1 or pmk-3 mutations, respectively, on GLR-1 trafficking. Specifically, RAB-5(GDP, an inactive mutant of RAB-5 that reduces endocytosis, mimics the effect of pmk-3 mutations when introduced into wild-type animals, and occludes the effect of pmk-3 mutations when introduced into pmk-3 mutants. By contrast, RAB-5(GTP, which increases endocytosis, suppresses the effect of pmk-3 mutations, mimics the effect of rpm-1 mutations, and occludes the effect of rpm-1 mutations. Our findings indicate a novel specialized role for RPM-1 and PMK-3/p38 MAPK in regulating the endosomal trafficking of AMPARs at central synapses.

  9. Critical role of p38 MAPK for regeneration of the sciatic nerve following crush injury in vivo

    Directory of Open Access Journals (Sweden)

    Kato Naoki

    2013-01-01

    Full Text Available Abstract Background The physiological function of p38α, which is an isoform of p38 MAPK, has been investigated previously in several studies using pharmacological inhibitors. However, the results regarding whether p38α promotes or inhibits nerve regeneration in vivo have been controversial. Methods We generated novel p38α mutant mice (sem mice with a point mutation in the region encoding the p38α substrate-docking-site, which serves as a limited loss-of-function model of p38α. In the present study, we utilized sem mice and wild-type littermates (wt mice to investigate the physiological role of p38α in nerve regeneration following crush injuries. Results At four weeks after crush injury, the average axon diameter and the average axon area in sem mice were significantly smaller than those in wt mice. The average myelin sheath thickness in sem mice was reduced compared to wt mice, but no significant difference was observed in the G-ratio between the two groups. The sciatic functional index value demonstrated that functional nerve recovery in sem mice following crush injury was delayed, which is consistent with the histological findings. To investigate the underlying mechanisms of these findings, we examined inflammatory responses of the sciatic nerve by immunohistochemistry and western blotting. At an early phase following crush injury, sem mice showed remarkably lower expression of inflammatory cytokines, such as TNF-α and IL-1β, than wt mice. The expression of Caspase-3 and Tenascin-C were also lower in sem mice. Conversely, at a late phase of the response, sem mice showed considerably higher expression of TNF-α and of IL-1β with lower expression of S-100 than wt mice. Conclusions This is the first study of the physiological role of p38 MAPK in nerve regeneration that does not rely on the use of pharmacological inhibitors. Our results indicate that p38α insufficiency may cause an inflammatory disorder, resulting in a delay of

  10. Effects of p38 MAPK during the resumption of meiosis in Danio rerio Oocytes%p38MAPK在斑马鱼卵母细胞减数分裂恢复中的作用

    Institute of Scientific and Technical Information of China (English)

    丁凤玲; 魏华; 陈阿琴; 沙晓姣; 任周; 余言想

    2014-01-01

    To clarify the effects of p38 mitogen-activated protein kinase (p38MAPK) on the resumption of the first meio-sis in Danio rerio oocytes, the oocytes were cultured with the following chemicals: no chemical, FSH, SB203580 (p38MAPK inhibitors), forskolin (PKA activator), FSH+SB203580 and FSH+H89 (PKA inhibitor).The oocytes were sampled at different culture times , p38 MAPK phosphorylation was examined with SDS -PAGE electrophoresis and West-ern Blot and the germinal vesicle breakdown ( GVBD) of oocytes was observed.The results showed that the p38MAPK activ-ities increased significantly when the oocytes were induced by FSH.But p38MAPK activities in D.rerio oocytescultured with SB203580 was inhibited obviously and the GVBD rate was lower than control group and the group cultured with FSH and SB203580.The GVBD rates had no significant differences between the group of oocytes cultured with both of FSH and SB203580 and that of oocytes cultured with only SB 203580, but the former group was significantly reduced compared to FSH group.p38 MAPK activity in oocytes in response to the H 89 and FSH induction was still happened , with little a-mount.The p38MAPK can be activated after joining the forskolin without FSH , and it was significantly higher than the con-trol group.Results showed that p38MAPK was activated under the induction of FSH during the resumption of meiosis in D.rerio oocytes.And p38MAPK activation is PKA-dependent.%为了阐明p38MAPK(p38丝裂原活化蛋白激酶)的激活在斑马鱼(Danio rerio)卵母细胞第一次减数分裂恢复中的作用,用卵泡刺激素( FSH)、 SB203580( p38MAPK 抑制剂)、 PKA 激活剂 forskolin 单独作用及 FSH 与SB203580、 FSH与PKA抑制剂H89共同培养斑马鱼卵母细胞。采集不同培养时间的卵母细胞,用SDS-PAGE电泳和Western Blot蛋白质免疫印迹技术检测p38MAPK磷酸化,观察生发泡破裂(GVBD)情况。结果表明,斑马鱼卵母细胞在FSH诱发下, p38

  11. JNK and p38 mitogen-activated protein kinase pathways contribute to porcine epidemic diarrhea virus infection.

    Science.gov (United States)

    Lee, Changhee; Kim, Youngnam; Jeon, Ji Hyun

    2016-08-15

    The mitogen-activated protein kinase (MAPK) pathways, which are central building blocks in the intracellular signaling network, are often manipulated by viruses of diverse families to favor their replication. Among the MAPK family, the extracellular signal-regulated kinase (ERK) pathway is known to be modulated during the infection with porcine epidemic diarrhea virus (PEDV); however, involvement of stress-activated protein kinases (SAPKs) comprising p38 MAPK and c-Jun NH2-terminal kinase (JNK) remains to be determined. Therefore, in the present study, we investigated whether activation of p38 MAPK and JNK cascades is required for PEDV replication. Our results showed that PEDV activates p38 MAPK and JNK1/2 up to 24h post-infection, whereas, thereafter their phosphorylation levels recede to baseline levels or even fall below them. Notably, UV-irradiated inactivated PEDV, which can enter cells but cannot replicate inside them, failed to induce phosphorylation of p38 MAPK and JNK1/2 suggesting that viral biosynthesis is essential for activation of these kinases. Treatment of cells with selective p38 or JNK inhibitors markedly impaired PEDV replication in a dose-dependent manner and these antiviral effects were found to be maximal during the early times of the infection. Furthermore, direct pharmacological inhibition of p38 MAPK or JNK1/2 activation resulted in a significant reduction of viral RNA synthesis, viral protein expression, and progeny release. However, independent treatments with either SAPK inhibitor did not inhibit PEDV-induced apoptotic cell death mediated by activation of mitochondrial apoptosis-inducing factor (AIF) suggesting that SAPKs are irrelevant to the apoptosis pathway during PEDV infection. In summary, our data demonstrated critical roles of the p38 and JNK1/2 signaling pathways in facilitating successful viral infection during the post-entry steps of the PEDV life cycle. PMID:27215486

  12. Inhibition of allograft inflammatory factor-1 expression reduces development of neointimal hyperplasia and p38 kinase activity

    Science.gov (United States)

    Sommerville, Laura J.; Xing, Chen; Kelemen, Sheri E.; Eguchi, Satoru; Autieri, Michael V.

    2009-01-01

    Aims Allograft inflammatory factor-1 (AIF-1) is a calcium-binding, scaffold-signalling protein expressed in vascular smooth muscle cells (VSMCs) in response to injury. The effects of AIF-1 attenuation on development of intimal hyperplasia are unknown, and the molecular mechanisms of these effects remain uncharacterized. The goals of the present study were to determine whether AIF-1 knockdown reduced VSMC proliferation, migration, and intimal hyperplasia, and determine AIF-1 effects on signal transduction in VSMCs. Methods and results Balloon angioplasty-injured rat carotid arteries transduced with adenovirus to overexpress AIF-1 (AdAIF-1) significantly increased, and adenovirus to knock down AIF-1 (AdsiRNA) expression significantly decreased neointimal formation compared with green fluorescent protein (AdGFP) and Adscrambled controls (P < 0.05 and P < 0.01, n = 6). Primary rat VSMCs transduced with AdAIF-1 displayed a significant increase in proliferation, and AdsiRNA-transduced VSMCs proliferated significantly more slowly than controls (P < 0.05). VSMCs transduced with AdAIF-1 show increased migration when compared with control VSMCs (P < 0.01). Rat VSMCs transduced with AdAIF-1 showed constitutive and prolonged activation of the mitogen-activated protein kinase p38, whereas AdsiRNA-treated VSMCs showed decreased p38 activation compared with AdGFP (P < 0.05). Immunohistochemical analysis of AdAIF-1-transduced carotid arteries showed increased staining with a phospho-specific p38 antibody compared with AdGFP-transduced arteries. A specific p38 inhibitor abrogated AIF-1-induced VSMC proliferation, but not AIF-1-induced migration. Conclusion Taken together, AIF-1 expression plays a key role in the development of neointimal hyperplasia. AIF-1 expression enhances the activation of p38 MAP kinase. AIF-1-enhanced proliferation is p38 kinase dependent, but AIF-1-enhanced VSMC migration is p38 independent. PMID:18779232

  13. Virtual box

    DEFF Research Database (Denmark)

    Stougaard, Malthe Kirkhoff

    2007-01-01

    Mediated intimacy is the phenomenon where humans use technologies to express, share, or communicate intimate feelings with each other. Typically, technologies supporting mediated intimacy encompass different characteristics than technologies designed to solve specific work-oriented tasks. This pa......Mediated intimacy is the phenomenon where humans use technologies to express, share, or communicate intimate feelings with each other. Typically, technologies supporting mediated intimacy encompass different characteristics than technologies designed to solve specific work-oriented tasks....... This paper reports on the design, implementation and initial evaluation of Virtual Box. Virtual Box attempts to create a physical and engaging context in order to support reciprocal interactions with expressive content. An implemented version of Virtual Box is evaluated in a location-aware environment...

  14. Role of p38 Mitogen-activated Protein Kinase in Mediating Monocyte Chemoattractant Protein-1 in Human Umbilical Vein Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    李艳波; 邓华聪; 郑丹; 李呼伦

    2004-01-01

    @@ p38 mitogen-activated protein kinase (p38MAPK)is a member of the mitogen-activated protein kinase (MAPK) family. p38MAPK pathway is one of the most widely studied signaling pathways involved in the transduction of intracellular signals including survival, growth,differentiation and death.

  15. Magnolol protects neurons against ischemia injury via the downregulation of p38/MAPK, CHOP and nitrotyrosine

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiann-Hwa [Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan (China); Department of Emergency Medicine, Cathay General Hospital, Taipei, Taiwan (China); Kuo, Hsing-Chun [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Taiwan (China); Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China); Lee, Kam-Fai [Department of Pathology, Chang Gung Memorial Hospital at Chiayi, Taiwan (China); Tsai, Tung-Hu, E-mail: thtsai@ym.edu.tw [Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (China); Department of Education and Research, Taipei City Hospital, Taipei, Taiwan (China)

    2014-09-15

    Magnolol is isolated from the herb Magnolia officinalis, which has been demonstrated to exert pharmacological effects. Our aim was to investigate whether magnolol is able to act as an anti-inflammatory agent that brings about neuroprotection using a global ischemic stroke model and to determine the mechanisms involved. Rats were treated with and without magnolol after ischemia reperfusion brain injury by occlusion of the two common carotid arteries. The inflammatory cytokine production in serum and the volume of infarction in the brain were measured. The proteins present in the brains obtained from the stroke animal model (SAM) and control animal groups with and without magnolol treatment were compared. Magnolol reduces the total infarcted volume by 15% and 30% at dosages of 10 and 30 mg/kg, respectively, compared to the untreated SAM group. The levels of acute inflammatory cytokines, including interleukin-1 beta, tumor necrosis factor alpha, and interleukin-6 were attenuated by magnolol. Magnolol was also able to suppress the production of nitrotyrosine, 4-hydroxy-2-nonenal (4-HNE), inducible NO synthase (iNOS), various phosphorylated p38 mitogen-activated protein kinases and various C/EBP homologues. Furthermore, this modulation of ischemia injury factors in the SAM model group treated with magnolol seems to result from a suppression of reactive oxygen species production and the upregulation of p-Akt and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). These findings confirm the anti-oxidative properties of magnolol, including the inhibition of ischemic injury to neurons; this protective effect seems to involve changes in the in vivo activity of Akt, GSK3β and NF-κB. - Graphical abstract: Schematic presentation of the signaling pathways involved in magnolol inhibited transient global ischemia brain apoptosis and inflammation in rats. The effect of magnolol on the scavenger of ROS, which inhibits p38 MAPK and CHOP protein inactivation

  16. REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Dilli Ram Bhandari

    Full Text Available BACKGROUND: REX1/ZFP42 is a well-known embryonic stem cell (ESC marker. However, the role of REX1, itself, is relatively unknown because the function of REX1 has only been reported in the differentiation of ESCs via STAT signaling pathways. Human mesenchymal stem cells (hMSCs isolated from young tissues and cancer cells express REX1. METHODOLOGY/PRINCIPAL FINDING: Human umbilical cord blood-derived MSCs (hUCB-MSCs and adipose tissue-derived MSCs (hAD-MSCs strongly express REX1 and have a lower activation status of p38 MAPK, but bone marrow-derived MSCs (hBM-MSCs have weak REX1 expression and higher activation of p38 MAPK. These results indicated that REX1 expression in hMSCs was positively correlated with proliferation rates but inversely correlated with the phosphorylation of p38 MAPK. In hUCB-MSCs, the roles of REX1 and p38 MAPK were investigated, and a knockdown study was performed using a lentiviral vector-based small hairpin RNA (shRNA. After REX1 knockdown, decreased cell proliferation was observed. In REX1 knocked-down hUCB-MSCs, the osteogenic differentiation ability deteriorated, but the adipogenic potential increased or was similar to that observed in the controls. The phosphorylation of p38 MAPK in hUCB-MSCs significantly increased after REX1 knockdown. After p38 MAPK inhibitor treatment, the cell growth in REX1 knocked-down hUCB-MSCs almost recovered, and the suppressed expression levels of CDK2 and CCND1 were also restored. The expression of MKK3, an upstream regulator of p38 MAPK, significantly increased in REX1 knocked-down hUCB-MSCs. The direct binding of REX1 to the MKK3 gene was confirmed by a chromatin immunoprecipitation (ChIP assay. CONCLUSIONS/SIGNIFICANCE: These findings showed that REX1 regulates the proliferation/differentiation of hMSCs through the suppression of p38 MAPK signaling via the direct suppression of MKK3. Therefore, p38 MAPK and REX-1 status can determine the cell fate of adult stem cells (ASCs. These

  17. The effect of p38 mitogen-activated protein kinase activation on inflammatory liver damage following hemorrhagic shock in rats.

    Directory of Open Access Journals (Sweden)

    Hiroaki Sato

    Full Text Available Hemorrhagic shock is a frequent cause of liver failure and often leads to a fatal outcome. Several studies have revealed that p38 MAPK is a key mediator in hemorrhagic damage of the primary organs through the activation of proinflammatory cytokines such as tumor necrosis factor (TNF-α and interleukin (IL-1β. However, the precise role of these factors in liver damage following hemorrhagic shock is unclear. In this study, we used FR167653, a specific inhibitor of p38 MAPK phosphorylation, to examine the role of p38 MAPK in liver damage occurring up to 5 hours after a hemorrhagic episode in a rat model. Activation of p38 MAPK in the liver as well as an increase in hepatic mRNA expression and serum concentrations of TNF-α and IL-1β occurred during the early phase after hemorrhage. Increased serum levels of hepatic enzymes, as well as histological damage and activated neutrophil accumulation in the liver, were observed in the late phase following hemorrhagic shock. FR167653 inhibited the inflammation-related hepatic injury following hemorrhagic shock. Bacterial lipopolysaccharide (LPS derived from the gut appeared to have little effects on the hepatic damage. These results demonstrate that p38 MAPK activation is induced by hepatic ischemia during hemorrhagic shock and plays an important role both in the hepatic expression of proinflammatory cytokines and in the development of inflammation-related liver damage.

  18. R-Ras Inhibits VEGF-Induced p38MAPK Activation and HSP27 Phosphorylation in Endothelial Cells.

    Science.gov (United States)

    Sawada, Junko; Li, Fangfei; Komatsu, Masanobu

    2015-01-01

    R-Ras is a Ras family small GTPase that is highly expressed in mature functional blood vessels in normal tissues. It inhibits pathological angiogenesis and promotes vessel maturation and stabilization. Previous studies suggest that R-Ras affects cellular signaling in endothelial cells, pericytes and smooth-muscle cells to regulate vessel formation and remodeling in adult tissues. R-Ras suppresses VEGF-induced endothelial permeability and vessel sprouting while promoting normalization of pathologically developing vessels in mice. It attenuates VEGF receptor-2 (VEGFR2) activation by inhibiting internalization of the receptor upon VEGF ligand binding, leading to significant reduction of VEGFR2 autophosphorylation. Here, we show that R-Ras strongly suppresses the VEGF-dependent activation of stress-activated protein kinase-2/p38 mitogen-activated protein kinase (SAPK2/p38MAPK) and the phosphorylation of downstream heat-shock protein 27 (HSP27), a regulator of actin cytoskeleton organization, in endothelial cells. The suppression of p38MAPK activation and HSP27 phosphorylation by R-Ras concurred with altered actin cytoskeleton architecture, reduced membrane protrusion and inhibition of endothelial cell migration toward VEGF. Silencing of endogenous R-Ras by RNA interference increased membrane protrusion and cell migration stimulated by VEGF, and these effects were offset by p38MAPK inhibitor SB203580. These results suggest that R-Ras regulates angiogenic activities of endothelial cells in part via inhibition of the p38MAPK-HSP27 axis of VEGF signaling. PMID:27029009

  19. p38 mitogen-activated protein kinase activation during platelet storage: consequences for platelet recovery and hemostatic function in vivo.

    Science.gov (United States)

    Canault, Matthias; Duerschmied, Daniel; Brill, Alexander; Stefanini, Lucia; Schatzberg, Daphne; Cifuni, Stephen M; Bergmeier, Wolfgang; Wagner, Denisa D

    2010-03-01

    Platelets undergo several modifications during storage that reduce their posttransfusion survival and functionality. One important feature of these changes, which are known as platelet storage lesion, is the shedding of the surface glycoproteins GPIb-alpha and GPV. We recently demonstrated that tumor necrosis factor-alpha converting enzyme (TACE/ADAM17) mediates mitochondrial injury-induced shedding of adhesion receptors and that TACE activity correlates with reduced posttransfusion survival of these cells. We now confirm that TACE mediates receptor shedding and clearance of platelets stored for 16 hours at 37 degrees C or 22 degrees C. We further demonstrate that both storage and mitochondrial injury lead to the phosphorylation of p38 mitogen-activated kinase (MAPK) in platelets and that TACE-mediated receptor shedding from mouse and human platelets requires p38 MAP kinase signaling. Protein kinase C, extracellular regulated-signal kinase MAPK, and caspases were not involved in TACE activation. Both inhibition of p38 MAPK and inactivation of TACE during platelet storage led to a markedly improved posttransfusion recovery and hemostatic function of platelets in mice. p38 MAPK inhibitors had only minor effects on the aggregation of fresh platelets under static or flow conditions in vitro. In summary, our data suggest that inhibition of p38 MAPK or TACE during storage may significantly improve the quality of stored platelets.

  20. Significance of expression of p38MAPK in neuron of hippocampus in mice with sleep deprivation%p38MAPK信号通路与睡眠剥夺的表达及意义

    Institute of Scientific and Technical Information of China (English)

    焦红翠; 赵雅宁; 陈长香; 李建民

    2011-01-01

    Objective To investigate the expression of p38 MAPK and inflammatory factor after sleep deprivation in rats.Methods 40 SD male rats were randomly divided into control (NC), large platform, sleep deprivation and inhibition groups (n = 10).The expressions of p38 MAPK and IL-1 β were examined by immunohistochemical staining.Rat's recognition was detected by water maze.Results Neuron cell was complete in NC group and incomplete in sleep deprivation group, large platform and inhibition group between the above two.Compared with NC and large platform groups, the expressions of p38 and IL-1β were upregulated in sleep deprivation group, and decreased in inhibition group (P < 0.05 ).Compared with NC and large platform groups, recognition function decreased in sleep deprivation group, and improved in inhibition group.Conclusions The activation of p38 signal transferring pathway participates in sleep deprivation process and causes inflammation factor releasing, which can affect rat's recognition function.%目的 探讨p38磷酸化激酶信号转导通路(MAPK)在大鼠睡眠剥夺中的作用及与炎症因子的关系.方法 将40只雄性Wistar大鼠随机分为对照组、大平台组、睡眠剥夺组、抑制剂组,每组10只.采用免疫组化观察大鼠海马区白介素(IL)-1β和磷酸化p38MAK的表达,同时利用水迷宫检测大鼠认知功能.结果 与对照组和大平台组对比,睡眠剥夺组IL-1β与磷酸化p38MAPK表达明显上调(P<0.05),抑制剂组显著下降(P<0.05).认知功能评价中睡眠剥夺组明显低于对照组和大平台组(P<0.05),抑制剂治疗组明显改善(P<0.05).结论 p38信号转导通路参与了大鼠睡眠剥夺的过程,且可引起炎症因子的释放,该作用可影响大鼠认知功能.

  1. 骨骼肌收缩模式对p38/Akt磷酸化水平的影响%The influence of contraction modes on the phosphorylation of p38/Akt

    Institute of Scientific and Technical Information of China (English)

    李辉; 焦博; 余志斌; 陈自谦

    2011-01-01

    Objective: Muscle contraction may prompt glucose uptake through non-insulin-dependent ways, and it may be due to the enhanced activation of key proteins known to regulate glucose metabolism, like p38 and Akt. Our experiment focused on the impact of different contraction modes on the phosphorylation of the molecules, thus to explore effective ways to lower blood glucose. Methods: Isolated muscle strips perfusion technique and Western blot analysis were employed to investigate the influence of different modes of contraction on the activation of the molecules. Results: Muscle contraction led to an increase in p38 phosphorylation, with the greatest effect observed after 5 minutes of 10% DC(duty cycle) contraction and 5 minutes of 1 % DC contraction. However, phosphorylation of Akt were not altered by the two contraction modes. Conclusion: The level of phosphorylation of p38 was higher at the optimal contraction modes, but these modes could not increase the level of phosphorlation of Akt.%目的:骨骼肌收缩可能通过非胰岛素依赖的途径促进葡萄糖摄取,而p38与Akt可能是其中起重要作用的分子.本文研究骨骼肌不同收缩模式对上述信号分子磷酸化的影响,从而探讨有效降低血糖的运动方式.方法:采用离体比目鱼肌肌条灌流技术及Western blot检测方法,研究不同模式的收缩对骨骼肌p38、Akt磷酸化水平的影响.结果:5 min 10%DC(duty cycle负荷率)和5min 1% DC的收缩模式可分别使p38的磷酸化较对照组增加30%和34%,是激活p38的适宜刺激.但对Akt的磷酸化水平没有影响.结论:低强度有氧运动可以更好地激活p38,但不能有效激活Akt.

  2. B7-H4 Treatment of T Cells Inhibits ERK, JNK, p38, and AKT Activation

    Science.gov (United States)

    Wang, Xiaojie; Hao, Jianqiang; Metzger, Daniel L.; Ao, Ziliang; Chen, Lieping; Ou, Dawei; Verchere, C. Bruce; Mui, Alice; Warnock, Garth L.

    2012-01-01

    B7-H4 is a newly identified B7 homolog that plays an important role in maintaining T-cell homeostasis by inhibiting T-cell proliferation and lymphokine-secretion. In this study, we investigated the signal transduction pathways inhibited by B7-H4 engagement in mouse T cells. We found that treatment of CD3+ T cells with a B7-H4.Ig fusion protein inhibits anti-CD3 elicited T-cell receptor (TCR)/CD28 signaling events, including phosphorylation of the MAP kinases, ERK, p38, and JNK. B7-H4.Ig treatment also inhibited the phosphorylation of AKT kinase and impaired its kinase activity as assessed by the phosphorylation of its endogenous substrate GSK-3. Expression of IL-2 is also reduced by B7-H4. In contrast, the phosphorylation state of the TCR proximal tyrosine kinases ZAP70 and lymphocyte-specific protein tyrosine kinase (LCK) are not affected by B7-H4 ligation. These results indicate that B7-H4 inhibits T-cell proliferation and IL-2 production through interfering with activation of ERK, JNK, and AKT, but not of ZAP70 or LCK. PMID:22238573

  3. B7-H4 Treatment of T Cells Inhibits ERK, JNK, p38, and AKT Activation.

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    Full Text Available B7-H4 is a newly identified B7 homolog that plays an important role in maintaining T-cell homeostasis by inhibiting T-cell proliferation and lymphokine-secretion. In this study, we investigated the signal transduction pathways inhibited by B7-H4 engagement in mouse T cells. We found that treatment of CD3(+ T cells with a B7-H4.Ig fusion protein inhibits anti-CD3 elicited T-cell receptor (TCR/CD28 signaling events, including phosphorylation of the MAP kinases, ERK, p38, and JNK. B7-H4.Ig treatment also inhibited the phosphorylation of AKT kinase and impaired its kinase activity as assessed by the phosphorylation of its endogenous substrate GSK-3. Expression of IL-2 is also reduced by B7-H4. In contrast, the phosphorylation state of the TCR proximal tyrosine kinases ZAP70 and lymphocyte-specific protein tyrosine kinase (LCK are not affected by B7-H4 ligation. These results indicate that B7-H4 inhibits T-cell proliferation and IL-2 production through interfering with activation of ERK, JNK, and AKT, but not of ZAP70 or LCK.

  4. Parainfluenza Virus Type 1 Induces Epithelial IL-8 Production via p38-MAPK Signalling

    Science.gov (United States)

    Galván Morales, Miguel Ángel; Cabello Gutiérrez, Carlos; Mejía Nepomuceno, Fidencio; Valle Peralta, Leticia; Valencia Maqueda, Elba; Manjarrez Zavala, María Eugenia

    2014-01-01

    Human parainfluenza virus type 1 (HPIV-1) is the most common cause of croup in infants. The aim of this study was to describe molecular mechanisms associated with IL-8 production during HPIV-1 infection and the role of viral replication in MAPK synthesis and activation. An in vitro model of HPIV-1 infection in the HEp-2 and A549 cell lines was used; a kinetic-based ELISA for IL-8 detection was also used, phosphorylation of the mitogen-activated protein kinases (MAPKs) was identified by Western blot analysis, and specific inhibitors for each kinase were used to identify which MAPK was involved. Inactivated viruses were used to assess whether viral replication is required for IL-8 production. Results revealed a gradual increase in IL-8 production at different selected times, when phosphorylation of MAPK was detected. The secretion of IL-8 in the two cell lines infected with the HPIV-1 is related to the phosphorylation of the MAPK as well as viral replication. Inhibition of p38 suppressed the secretion of IL-8 in the HEp-2 cells. No kinase activation was observed when viruses were inactivated. PMID:25013817

  5. Parainfluenza Virus Type 1 Induces Epithelial IL-8 Production via p38-MAPK Signalling

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Galván Morales

    2014-01-01

    Full Text Available Human parainfluenza virus type 1 (HPIV-1 is the most common cause of croup in infants. The aim of this study was to describe molecular mechanisms associated with IL-8 production during HPIV-1 infection and the role of viral replication in MAPK synthesis and activation. An in vitro model of HPIV-1 infection in the HEp-2 and A549 cell lines was used; a kinetic-based ELISA for IL-8 detection was also used, phosphorylation of the mitogen-activated protein kinases (MAPKs was identified by Western blot analysis, and specific inhibitors for each kinase were used to identify which MAPK was involved. Inactivated viruses were used to assess whether viral replication is required for IL-8 production. Results revealed a gradual increase in IL-8 production at different selected times, when phosphorylation of MAPK was detected. The secretion of IL-8 in the two cell lines infected with the HPIV-1 is related to the phosphorylation of the MAPK as well as viral replication. Inhibition of p38 suppressed the secretion of IL-8 in the HEp-2 cells. No kinase activation was observed when viruses were inactivated.

  6. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    Sergiy; Kostenko; Gianina; Dumitriu; Kari; Jenssen; Lgreid; Ugo; Moens

    2011-01-01

    Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.

  7. p38 Mitogen-Activated Protein Kinase in beryllium-induced dendritic cell activation

    Science.gov (United States)

    Li, L.; Huang, Z.; Gillespie, M.; Mroz, P.M.; Maier, L.A.

    2014-01-01

    Dendritic cells (DC) play a role in the regulation of immune responses to haptens, which in turn impact DC maturation. Whether beryllium (Be) is able to induce DC maturation and if this occurs via the MAPK pathway is not known. Primary monocyte-derived DCs (moDCs) models were generated from Be non-exposed healthy volunteers as a non-sensitized cell model, while PBMCs from BeS (Be sensitized) and CBD (chronic beryllium disease) were used as disease models. The response of these cells to Be was evaluated. The expression of CD40 was increased significantly (pBeS and CBD subjects, SB203580 downregulated Be-stimulated proliferation in a dose-dependent manner, and decreased Be-stimulated TNF-α and IFNγ cytokine production. Taken together, this study suggests that Be-induces non-sensitized Glu69+ DCs maturation, and that p38MAPK signaling is important in the Be-stimulated DCs activation as well as subsequent T cell proliferation and cytokine production in BeS and CBD. In total, the MAPK pathway may serve as a potential therapeutic target for human granulomatous lung diseases. PMID:25454621

  8. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Sayed, M; Kim, S O; Salh, B S;

    2000-01-01

    Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...... to be an allosteric mechanism. Furthermore, we demonstrate that anisomycin- and tumor necrosis factor-alpha-induced phosphorylation of p53 at Ser-392, which is important for the transcriptional activity of this growth suppressor protein, requires p38 MAP kinase and CK2 activities....... in the human cervical carcinoma HeLa cells by up to 8-fold, and this could be blocked by the p38 MAP kinase inhibitor SB203580. We show that p38alpha MAP kinase, in a phosphorylation-dependent manner, can directly interact with the alpha and beta subunits of CK2 to activate the holoenzyme through what appears...

  9. p38MAPK信号通路参与睡眠剥夺大鼠认知功能的损害%p38MAPK is involved in the cognition injury after sleep deprivation in rats

    Institute of Scientific and Technical Information of China (English)

    赵雅宁; 陈桂芝; 陈长香; 李淑杏; 李建民

    2011-01-01

    Objective To investigate the mechanisms of p38 Mitogen-activated protein kinase signaling pathway in cognition injury after sleep deprivation in rats. Methods One hundred male SD rats were randomly divided into three groups: control group( n = 20), model group( n = 40) , inhibitor SB203580 treatment group( n = 40). Sleep deprivation models were established by the modified multiple platform method. After sleep deprivation 1 day, 3 days,5 days,7 days,morphological changes were observed by electron microscopy. The expressions of phosphorylated p38MAPK and interleukin 1β(IL-1β) proteins were detected with immunohistochemistry and Western blotting. The learning and memory functions were performed with Eight-arm maze. Results Compared with control group, the morphous of nerve cells changed;the expressions of phosphorylated p38MAPK and IL-1β proteins increased; the learning and memory functions significantly decreased with time of sleep deprivation. Compared with model group, the morphological changes, the expressions of phosphorylated p38MAPK and IL-lβ proteins decreased obviously in SB203580 treatment group (P < 0.05 ) ;SB203580 improved neurological deficits( P < 0.05 ). Conclttsion p38MAPK could participate and mediate the process of cognition injury after sleep deprivation by regulating IL-1β expression.%目的 探讨p38丝裂原活化蛋白激酶(p38MAPK)信号通路在睡眠剥夺大鼠认知障碍中的作用机制.方法 100只雄性SD大鼠随机分成对照组(n=20)、模型组(n=40)、抑制剂SB203580组(n=40).改良多平台法建立睡眠剥夺大鼠模型.睡眠剥夺1d、3d、5d、7d,电镜观察海马区神经细胞形态变化,免疫组织化学法和免疫印迹法检测海马区磷酸化p38MAPK和白细胞介素-1β(IL-1β)蛋白的表达,八臂迷宫法测试动物学习记忆功能.结果 与对照组比较,随睡眠剥夺时间延长,大鼠海马神经元结构损伤明显,磷酸化p38MAPK和IL-1β阳性细胞数及表达增多,动物学

  10. By activating Fas/ceramide synthase 6/p38 kinase in lipid rafts, stichoposide D inhibits growth of leukemia xenografts.

    Science.gov (United States)

    Yun, Seong-Hoon; Park, Eun-Seon; Shin, Sung-Won; Ju, Mi-Ha; Han, Jin-Yeong; Jeong, Jin-Sook; Kim, Sung-Hyun; Stonik, Valentin A; Kwak, Jong-Young; Park, Joo-In

    2015-09-29

    Stichoposide D (STD) is a marine triterpene glycoside isolated from sea cucumbers. We examined the molecular mechanisms underlying the antitumor activity of STD in human leukemia cells. The role of Fas (CD95), ceramide synthase 6 (CerS6) and p38 kinase during STD-induced apoptosis was examined in human leukemia cells. In addition, the antitumor effects of STD in K562 and HL-60 leukemia xenograft models were investigated. We found that STD induces Fas translocation to lipid rafts, and thus mediates cell apoptosis. We also observed the activation of CerS6 and p38 kinase during STD-induced apoptosis. The use of methyl-β-cyclodextrin and nystatin to disrupt lipid rafts prevents the clustering of Fas and the activation of CerS6 and p38 kinase, and also inhibits STD-induced apoptosis. Specific inhibition by Fas, CerS6, and p38 kinase siRNA transfection partially blocked STD-induced apoptosis. In addition, STD has antitumor activity through the activation of CerS6 and p38 kinase without displaying any toxicity in HL-60 and K562 xenograft models. We observed that the anti-tumor effect of STD is partially prevented in CerS6 shRNA-silenced xenograft models. We first report that Fas/CerS6/p38 kinase activation in lipid rafts by STD is involved in its anti-leukemic activity. We also established that STD is able to enhance the chemosensitivity of K562 cells to etoposide or Ara-C. These data suggest that STD may be used alone or in combination with other chemotherapeutic agents to treat leukemia.

  11. UVB-Stimulated TNFα Release from Human Melanocyte and Melanoma Cells Is Mediated by p38 MAPK

    Directory of Open Access Journals (Sweden)

    Visalini Muthusamy

    2013-08-01

    Full Text Available Ultraviolet (UV radiation activates cell signaling pathways in melanocytes. As a result of altered signaling pathways and UV-induced cellular damage, melanocytes can undergo oncogenesis and develop into melanomas. In this study, we investigated the effect of UV-radiation on p38 MAPK (mitogen-activated protein kinase, JNK and NFκB pathways to determine which plays a major role in stimulating TNFα secretion in human HEM (melanocytes and MM96L (melanoma cells. MM96L cells exhibited 3.5-fold higher p38 activity than HEM cells at 5 min following UVA + B radiation and 1.6-fold higher JNK activity at 15–30 min following UVB+A radiation, while NFκB was minimally activated in both cells. Irradiated HEM cells had the greatest fold of TNFα secretion (UVB: 109-fold, UVA + B: 103-fold & UVB+A: 130-fold when co-exposed to IL1α. The p38 inhibitor, SB202190, inhibited TNFα release by 93% from UVB-irradiated HEM cells. In the UVB-irradiated MM96L cells, both SB202190 and sulfasalazine (NFκB inhibitor inhibited TNFα release by 52%. Although, anisomycin was a p38 MAPK activator, it inhibited TNFα release in UV-irradiated cells. This suggests that UV-mediated TNFα release may occur via different p38 pathway intermediates compared to those stimulated by anisomycin. As such, further studies into the functional role p38 MAPK plays in regulating TNFα release in UV-irradiated melanocyte-derived cells are warranted.

  12. Balance between MKK6 and MKK3 mediates p38 MAPK associated resistance to cisplatin in NSCLC.

    Directory of Open Access Journals (Sweden)

    Eva M Galan-Moya

    Full Text Available The p38 MAPK signaling pathway has been proposed as a critical mediator of the therapeutic effect of several antitumor agents, including cisplatin. Here, we found that sensitivity to cisplatin, in a system of 7 non-small cell lung carcinoma derived cell lines, correlated with high levels of MKK6 and marked activation of p38 MAPK. However, knockdown of MKK6 modified neither the response to cisplatin nor the activation of p38 MAPK. Deeper studies showed that resistant cell lines also displayed higher basal levels of MKK3. Interestingly, MKK3 knockdown significantly decreased p38 phosphorylation upon cisplatin exposure and consequently reduced the response to the drug. Indeed, cisplatin poorly activated MKK3 in resistant cells, while in sensitive cell lines MKK3 showed the opposite pattern in response to the drug. Our data also demonstrate that the low levels of MKK6 expressed in resistant cell lines are the consequence of high basal activity of p38 MAPK mediated by the elevated levels of MKK3. This finding supports the existence of a regulatory mechanism between both MAPK kinases through their MAPK. Furthermore, our results were also mirrored in head and neck carcinoma derived cell lines, suggesting our observations boast a potential universal characteristic in cancer resistance of cisplatin. Altogether, our work provides evidence that MKK3 is the major determinant of p38 MAPK activation in response to cisplatin and, hence, the resistance associated with this MAPK. Therefore, these data suggest that the balance between both MKK3 and MKK6 could be a novel mechanism which explains the cellular response to cisplatin.

  13. MKK3 Was Involved in Larval Settlement of the Barnacle Amphibalanus amphitrite through Activating the Kinase Activity of p38MAPK

    KAUST Repository

    Zhang, Gen

    2013-07-29

    The p38 mitogen-activated protein kinase (p38MAPK) plays a key role in larval settlement of the barnacle Amphibalanus amphitrite. To study the signaling pathway associated with p38MAPK during larval settlement, we sought to identify the upstream kinase of p38MAPK. Three MKKs (MKK3, MKK4 and MKK7) and three MAPKs (p38MAPK, ERK and JNK) in A. amphitrite were cloned and recombinantly expressed in E. coli. Through kinase assays, we found that MKK3, but not MKK4 or MKK7, phosphorylated p38MAPK. Furthermore, MKK3 activity was specific to p38MAPK, as it did not phosphorylate ERK or JNK. To further investigate the functional relationship between MKK3 and p38MAPK in vivo, we studied the localization of phospho-MKK3 (pMKK3) and MKK3 by immunostaining. Consistent with the patterns of p38MAPK and phospho-p38MAPK (pp38MAPK), pMKK3 and MKK3 mainly localized to the antennules of the cyprids. Western blot analysis revealed that pMKK3 levels, like pp38MAPK levels, were elevated at cyprid stage, compared to nauplii and juvenile stages. Moreover, pMKK3 levels increased after treatment with adult barnacle crude extracts, suggesting that MKK3 might mediate the stimulatory effects of adult barnacle extracts on the p38MAPK pathway. © 2013 Zhang et al.

  14. The Role of P38 MAPK in methionine restriction-induced gastric cancer Cell Apoptosis%p38在甲硫氨酸限制抑制胃癌细胞生长中的作用

    Institute of Scientific and Technical Information of China (English)

    辛林; 曹伟新; 陈雪华; 刘炳亚; 朱正纲

    2010-01-01

    目的:探讨甲硫氨酸限制是否会激活胃癌细胞内p38蛋白信号传导通路.方法:观察甲硫氡酸限制环境中胃癌细胞形态的变化及增殖活性的变化:检测甲硫氨酸限制环境中胃癌细胞磷酸化p38的表达.结果:甲硫氨酸限制培养液中胃癌细胞增殖活性明显受到抑制(P<0.05);甲硫氨酸限制培养液中培养24 h后胃癌细胞中可检测到磷酸化p38蛋白的表达.结论:甲硫氨酸限制诱导的胃癌细胞周期阻滞和凋亡与p38蛋白信号通路激活有关.

  15. FR167653, a p38 mitogen-activated protein kinase inhibitor, aggravates experimental colitis in mice

    Institute of Scientific and Technical Information of China (English)

    Takashi Nishimura; Akira Andoh; Atsushi Nishida; Makoto Shioya; Yuhsuke Koizumi; Tomoyuki Tsujikawa; Yoshihide Fujiyama

    2008-01-01

    AIM: To investigate the effects of FR167653 on the development of dextran sulfate sodium (DSS)-induced colitis in mice.METHODS: BALB/c mice were fed rodent chow containing 3.5% (wt/wt) DSS. The recipient mice underwent intra-peritoneal injection of vehicles or FR167653 (30 mg/kg per day). The mice were sacrificed on day 14, and the degree of colitis was assessed. Immunohistochemical analyses for CD4+ T cell and F4/80+ macrophage infiltration were also performed. Mucosal o/tokine expression was analyzed by RT-PCR.RESULTS: The body weight loss was more apparent in the FR167653-treated DSS mice than in the vehicle-treated DSS mice. The colon length was shorter in the FR167653-treated DSS mice than in the vehicle-treated DSS mice. Disease activity index and histological colitis score were significantly higher in FR167653- than in vehicle-treated DSS animals. Microscopically, mucosal edema, cellular infiltration (CD4 T cells and F4/80 macrophages), and the disruption of the epithelium were much more severe in FR167653-treated mice than in controls. Mucosal mRNA expression for interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were found to be markedly reduced in FR167653-treated DSS mice.CONCLUSION: Treatment with FR167653 aggravated DSS colitis in mice. This effect was accompanied by a reduction of mucosal IL-1β and TNF-α expression, suggesting a role of p38 mitogen-activated protein kinase (MAPK)-mediated proinflammatory cytokine induction in host defense mechanisms.

  16. Einstein's Boxes

    OpenAIRE

    Norsen, Travis

    2004-01-01

    At the 1927 Solvay conference, Einstein presented a thought experiment intended to demonstrate the incompleteness of the quantum mechanical description of reality. In the following years, the thought experiment was picked up and modified by Einstein, de Broglie, and several other commentators into a simple scenario involving the splitting in half of the wave function of a single particle in a box. In this paper we collect together several formulations of this thought experiment from the exist...

  17. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function

    DEFF Research Database (Denmark)

    Jensen, Kim Steen; Binderup, Tina; Jensen, Klaus Thorleif;

    2011-01-01

    cell survival in hypoxia. FoxO3A is recruited to the promoters of nuclear-encoded mitochondrial genes where it directly antagonizes c-Myc function via a mechanism that does not require binding to the consensus FoxO recognition element. Furthermore, we show that FoxO3A is activated in human hypoxic...

  18. Plakophilin-2 loss promotes TGF-β1/p38 MAPK-dependent fibrotic gene expression in cardiomyocytes.

    Science.gov (United States)

    Dubash, Adi D; Kam, Chen Y; Aguado, Brian A; Patel, Dipal M; Delmar, Mario; Shea, Lonnie D; Green, Kathleen J

    2016-02-15

    Members of the desmosome protein family are integral components of the cardiac area composita, a mixed junctional complex responsible for electromechanical coupling between cardiomyocytes. In this study, we provide evidence that loss of the desmosomal armadillo protein Plakophilin-2 (PKP2) in cardiomyocytes elevates transforming growth factor β1 (TGF-β1) and p38 mitogen-activated protein kinase (MAPK) signaling, which together coordinate a transcriptional program that results in increased expression of profibrotic genes. Importantly, we demonstrate that expression of Desmoplakin (DP) is lost upon PKP2 knockdown and that restoration of DP expression rescues the activation of this TGF-β1/p38 MAPK transcriptional cascade. Tissues from PKP2 heterozygous and DP conditional knockout mouse models also exhibit elevated TGF-β1/p38 MAPK signaling and induction of fibrotic gene expression in vivo. These data therefore identify PKP2 and DP as central players in coordination of desmosome-dependent TGF-β1/p38 MAPK signaling in cardiomyocytes, pathways known to play a role in different types of cardiac disease, such as arrhythmogenic or hypertrophic cardiomyopathy. PMID:26858265

  19. Scattering of MCF7 cells by heregulin ß-1 depends on the MEK and p38 MAP kinase pathway.

    Directory of Open Access Journals (Sweden)

    Rintaro Okoshi

    Full Text Available Heregulin (HRG β1 signaling promotes scattering of MCF7 cells by inducing breakdown of adherens and tight junctions. Here, we show that stimulation with HRG-β1 causes the F-actin backbone of junctions to destabilize prior to the loss of adherent proteins and scattering of the cells. The adherent proteins dissociate and translocate from cell-cell junctions to the cytosol. Moreover, using inhibitors we show that the MEK1 pathway is required for the disappearance of F-actin from junctions and p38 MAP kinase activity is essential for scattering of the cells. Upon treatment with a p38 MAP kinase inhibitor, adherens junction complexes immediately reassemble, most likely in the cytoplasm, and move to the plasma membrane in cells dissociated by HRG-β1 stimulation. Subsequently, tight junction complexes form, most likely in the cytoplasm, and move to the plasma membrane. Thus, the p38 MAP kinase inhibitor causes a re-aggregation of scattered cells, even in the presence of HRG-β1. These results suggest that p38 MAP kinase signaling to adherens junction proteins regulates cell aggregation, providing a novel understanding of the regulation of cell-cell adhesion.

  20. Fenofibrate reduces cisplatin-induced apoptosis of renal proximal tubular cells via inhibition of JNK and p38 pathways.

    Science.gov (United States)

    Thongnuanjan, Penjai; Soodvilai, Sirima; Chatsudthipong, Varanuj; Soodvilai, Sunhapas

    2016-01-01

    Cisplatin is widely used as a standard chemotherapy for solid tumors. The major adverse effect of cisplatin is nephrotoxicity in proximal tubular cells, via oxidative stress, DNA damage, cell apoptosis, and inflammation. The aim of this study was to investigate the pharmacological effect and mechanism of fibrate drugs on cisplatin-induced renal proximal tubular cell death. Cisplatin decreased cell viability of LLC-PK1 and HK-2 cells in a dose-dependent manner. Cisplatin-induced apoptosis was attenuated by co-treatment with fenofibrate while less so with clofibrate and bezafibrate. Fenofibrate's protective effect was not complimented by co-treatment with GW6471, a PPARα antagonist, indicating the protective effect occurred via a PPARα-independent mechanism. Treating cells with cisplatin induced reactive oxygen species (ROS), c-JUN N-terminal kinase (JNK), and p38 kinase (p38), but not extracellular signal-regulated kinase (ERK). Fenofibrate reversed cisplatin-induced JNK and p38 activation, but had no effect on ROS production. The findings suggest fenofibrate's protective effect on cisplatin-induced cytotoxicity is mediated by inhibition of JNK and p38. Moreover, fenofibrate did not alter cisplatin's antitumor effect on cancer cell lines including T84, SW-480, HepG2, and SK-LU-1 cells. Therefore, fenofibrate may be a candidate agent for further development as an adjuvant to cisplatin treatment. PMID:27193727

  1. Matrine reduces the proliferation and invasion of colorectal cancer cells via reducing the activity of p38 signaling pathway.

    Science.gov (United States)

    Ren, Hongtao; Zhang, Shuqun; Ma, Hongbing; Wang, Yali; Liu, Di; Wang, Xijing; Wang, Zhongwei

    2014-12-01

    Matrine has been used in anti-inflammatory and anti-cancer therapies for a long time. However, the anti-metastatic effect and related mechanism(s) in colorectal cancer (CRC) are still unclear. In this study, we investigated whether the administration of matrine could inhibit the proliferation, motility, and invasion of human CRC cells via regulating p38 signaling pathway. Results showed that matrine inhibited migration and invasion of CRC cells in vitro and in vivo. Additionally, after being treated with matrine for 24 h, the expression levels of matrix metalloproteinase-2 (MMP-2) and MMP-9 as well as proteinase activity in CRC cells were reduced in a dose-dependent manner. Moreover, matrine reduced the phosphorylation level of p38 obviously. Combined treatment with p38 inhibitor (SB203580) and matrine resulted in a synergistic reduction of invasion as well as MMP-2/-9 expression in CRC cells. It was also found that matrine inhibited the proliferation and metastasis of CRC tumor in vivo. In conclusion, p38 signaling pathway may involve in matrine's inhibitory effects on migration and invasion of CRC cells by reducing the expression of MMP-2/-9, suggesting that matrine may be a potential therapeutic agent for CRC.

  2. Calcium paradox induces apoptosis in the isolated perfused Rana ridibunda heart: involvement of p38-MAPK and calpain.

    Science.gov (United States)

    Aggeli, Ioanna-Katerina; Zacharias, Triantafyllos; Papapavlou, Georgia; Gaitanaki, Catherine; Beis, Isidoros

    2013-12-01

    "Calcium paradox" as a term describes the deleterious effects conferred to a heart perfused with a calcium-free solution followed by repletion, including loss of mechanical activity and sarcomere disruption. Given that the signaling mechanisms triggered by calcium paradox remain elusive, in the present study, we tried to investigate them in the isolated perfused heart from Rana ridibunda. Calcium paradox was found to markedly activate members of the MAPKs (p43-ERK, JNKs, p38-MAPK). In addition to lactate dehydrogenase (LDH) release in the perfusate (indicative of necrosis), we also confirmed the occurrence of apoptosis by using the TUNEL assay and identifying poly(ADP-ribose) polymerase (PARP) fragmentation and upregulated Bax expression. Furthermore, using MDL28170 (a selective calpain inhibitor), a role for this protease was revealed. In addition, various divalent cations were shown to exert a protective effect against the calcium paradox. Interestingly, SB203580, a p38-MAPK inhibitor, alleviated calcium-paradox-conferred apoptosis. This result indicates that p38-MAPK plays a pro-apoptotic role, contributing to the resulting myocardial dysfunction and cell death. To our knowledge, this is the first time that the calcium paradox has been shown to induce apoptosis in amphibians, with p38-MAPK and calpain playing significant roles.

  3. Maternal inflammation activated ROS-p38 MAPK predisposes offspring to heart damages caused by isoproterenol via augmenting ROS generation

    Science.gov (United States)

    Zhang, Qi; Deng, Yafei; Lai, Wenjing; Guan, Xiao; Sun, Xiongshan; Han, Qi; Wang, Fangjie; Pan, Xiaodong; Ji, Yan; Luo, Hongqin; Huang, Pei; Tang, Yuan; Gu, Liangqi; Dan, Guorong; Yu, Jianhua; Namaka, Michael; Zhang, Jianxiang; Deng, Youcai; Li, Xiaohui

    2016-01-01

    Maternal inflammation contributes to the increased incidence of adult cardiovascular disease. The current study investigated the susceptibility of cardiac damage responding to isoproterenol (ISO) in adult offspring that underwent maternal inflammation (modeled by pregnant Sprague-Dawley rats with lipopolysaccharides (LPS) challenge). We found that 2 weeks of ISO treatment in adult offspring of LPS-treated mothers led to augmented heart damage, characterized by left-ventricular systolic dysfunction, cardiac hypertrophy and myocardial fibrosis. Mechanistically, prenatal exposure to LPS led to up-regulated expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, antioxidant enzymes, and p38 MAPK activity in left ventricular of adult offspring at resting state. ISO treatment exaggerated ROS generation, p38 MAPK activation but down-regulated reactive oxygen species (ROS) elimination capacity in the left ventricular of offspring from LPS-treated mothers, while antioxidant N-acetyl-L-cysteine (NAC) reversed these changes together with improved cardiac functions. The p38 inhibitor SB202190 alleviated the heart damage only via inhibiting the expression of NADPH oxidases. Collectively, our data demonstrated that prenatal inflammation programs pre-existed ROS activation in the heart tissue, which switches on the early process of oxidative damages on heart rapidly through a ROS-p38 MAPK-NADPH oxidase-ROS positive feedback loop in response to a myocardial hypertrophic challenge in adulthood. PMID:27443826

  4. Bakuchiol suppresses proliferation of skin cancer cells by directly targeting Hck, Blk, and p38 MAP kinase.

    Science.gov (United States)

    Kim, Jong-Eun; Kim, Jae Hwan; Lee, Younghyun; Yang, Hee; Heo, Yong-Seok; Bode, Ann M; Lee, Ki Won; Dong, Zigang

    2016-03-22

    Bakuchiol is a meroterpene present in the medicinal plant Psoralea corylifolia, which has been traditionally used in China, India, Japan and Korea for the treatment of premature ejaculation, knee pain, alopecia spermatorrhea, enuresis, backache, pollakiuria, vitiligo, callus, and psoriasis. Here, we report the chemopreventive properties of bakuchiol, which acts by inhibiting epidermal growth factor (EGF)-induced neoplastic cell transformation. Bakuchiol also decreased viability and inhibited anchorage-independent growth of A431 human epithelial carcinoma cells. Bakuchiol reduced A431 xenograft tumor growth in an in vivo mouse model. Using kinase profiling, we identified Hck, Blk and p38 mitogen activated protein kinase (MAPK) as targets of bakuchiol, which directly bound to each kinase in an ATP-competitive manner. Bakuchiol also inhibited EGF-induced signaling pathways downstream of Hck, Blk and p38 MAPK, including the MEK/ERKs, p38 MAPK/MSK1 and AKT/p70S6K pathways. This report is the first mechanistic study identifying molecular targets for the anticancer activity of bakuchiol and our findings indicate that bakuchiol exhibits potent anticancer activity by targeting Hck, Blk and p38 MAPK. PMID:26910280

  5. Failure to Target RANKL Signaling Through p38-MAPK Results in Defective Osteoclastogenesis in the Microphthalmia Cloudy-Eyed Mutant.

    Science.gov (United States)

    Carey, Heather A; Bronisz, Agnieszka; Cabrera, Jennifer; Hildreth, Blake E; Cuitiño, Maria; Fu, Qi; Ahmad, Asrar; Toribio, Ramiro E; Ostrowski, Michael C; Sharma, Sudarshana M

    2016-03-01

    The Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper family factor that is essential for terminal osteoclast differentiation. Previous work demonstrates that phosphorylation of MITF by p38 MAPK downstream of Receptor Activator of NFkB Ligand (RANKL) signaling is necessary for MITF activation in osteoclasts. The spontaneous Mitf cloudy eyed (ce) allele results in production of a truncated MITF protein that lacks the leucine zipper and C-terminal end. Here we show that the Mitf(ce) allele leads to a dense bone phenotype in neonatal mice due to defective osteoclast differentiation. In response to RANKL stimulation, in vitro osteoclast differentiation was impaired in myeloid precursors derived from neonatal or adult Mitf(ce/ce) mice. The loss of the leucine zipper domain in Mitf(ce/ce) mice does not interfere with the recruitment of MITF/PU.1 complexes to target promoters. Further, we have mapped the p38 MAPK docking site within the region deleted in Mitf(ce). This interaction is necessary for the phosphorylation of MITF by p38 MAPK. Site-directed mutations in the docking site interfered with the interaction between MITF and its co-factors FUS and BRG1. MITF-ce fails to recruit FUS and BRG1 to target genes, resulting in decreased expression of target genes and impaired osteoclast function. These results highlight the crucial role of signaling dependent MITF/p38 MAPK interactions in osteoclast differentiation.

  6. Early infection during burn-induced inflammatory response results in increased mortality and p38-mediated neutrophil dysfunction.

    Science.gov (United States)

    Adediran, Samuel G; Dauplaise, Derrick J; Kasten, Kevin R; Tschöp, Johannes; Dattilo, Jonathan; Goetzman, Holly S; England, Lisa G; Cave, Cindy M; Robinson, Chad T; Caldwell, Charles C

    2010-09-01

    Following burn injury, the host is susceptible to bacterial infections normally cleared by healthy patients. We hypothesized that during the systemic immune response that follows scald injury, the host's altered immune status increases infection susceptibility. Using a murine model of scald injury under inhaled anesthesia followed by intraperitoneal infection, we observed increased neutrophil numbers and function at postburn day (PBD) 1 compared with sham-burned and PBD4 mice. Further, increased mortality, bacteremia, and serum IL-6 were observed in PBD1 mice after Pseudomonas aeruginosa (PA) infection compared with sham-burned and PBD4 mice infected with PA. To examine these disparate responses, we investigated neutrophils isolated at 5 and 24 h following PA infection from PBD1 and sham-burned mice. Five hours after infection, there was no significant difference in number of recruited neutrophils; however, neutrophils from injured mice had decreased activation, active-p38, and oxidative burst compared with sham-burned mice. In direct contrast, 24 h after infection, we observed increased numbers, active-p38, and oxidative burst of neutrophils from PBD1 mice. Finally, we demonstrated that in neutrophils isolated from PBD1 mice, the observed increase in oxidative burst was p38 dependent. Altogether, neutrophil activation and function from thermally injured mice are initially delayed and later exacerbated by a p38-dependent mechanism. This mechanism is likely key to the observed increase in bacterial load and mortality of PBD1 mice infected with PA.

  7. Internalization of EGF receptor following lipid rafts disruption in keratinocytes is delayed and dependent on p38 MAPK activation

    DEFF Research Database (Denmark)

    Lambert, S.; Ameels, H.; Gniadecki, R.;

    2008-01-01

    internalization without participation of the ligand under the control of p38 MAPK during stress conditions. Since cholesterol depletion using methyl-beta-cyclodextrin is known to induce ligand-independent activation of EGFR in keratinocytes, we investigated by confocal microscopy and ligand-binding tests...

  8. Modulation of ERK1/2 and p38MAPK by lead in the cerebellum of Brazilian catfish Rhamdia quelen

    International Nuclear Information System (INIS)

    Lead (Pb2+) is a neurotoxic trace metal, widespread in aquatic environment that can change physiologic, biochemical and behavioral parameters in diverse fish species. Chemical exposure may drive modulation of mitogen-activated protein kinases (MAPKs) that are a family of highly conserved enzymes which comprise ubiquitous groups of signaling proteins playing critical regulatory roles in cell physiology. Extracellular signal-regulated kinases (ERK1/2) and p38MAPK control complex programs such as gene expression, embryogenesis, cell differentiation, cell proliferation, cell death and synaptic plasticity. Little information is available about MAPKs in aquatic organisms and their modulation by trace metals. The aim of this work was to determine the modulation of ERK1/2 and p38MAPK phosphorylation by Pb2+ in vivo and in vitro, in cerebellar slices of the catfish, Rhamdia quelen. In the in vitro model, slices were incubated for 3 h with lead acetate (1-10 μM). In the in vivo studies, the animals were exposed for 2 days to lead acetate (1 mg L-1). ERK1/2 and p38MAPK (total and phosphorylated forms) were immunodetected in cerebellar slices by Western blotting. Pb2+ added in vitro at 5 and 10 μM increased significantly the phosphorylation of both MAPKs. The in vivo exposed animals also showed a significant increase of ERK1/2 and p38MAPK phosphorylation without changes in the total content of the enzymes. In conclusion, the present work indicates that it is possible to evaluate the ERK1/2 and p38MAPK activation in the central nervous system (CNS) of a freshwater fish largely distributed in South America. Moreover, Pb2+, an important environmental pollutant may activate in vitro and in vivo ERK1/2 and p38MAPK enzymes. These findings are important considering the functional and ecologic implications associated to Pb2+ exposure of a freshwater fish species, such as R. quelen, and the roles of ERK1/2 and p38MAPK in the control of brain development, neuroplasticity and cell

  9. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom Su [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Park, Ji-Yun [Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Kang, Hyo-Jin [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Hyung-Jin [Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Jun, E-mail: omslee@wku.ac.kr [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of)

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  10. From Enzyme to Whole Blood: Sequential Screening Procedure for Identification and Evaluation of p38 MAPK Inhibitors.

    Science.gov (United States)

    Bauer, Silke M; Kubiak, Jakub M; Rothbauer, Ulrich; Laufer, Stefan

    2016-01-01

    p38 mitogen-activated protein kinase (MAPK) is a pivotal enzyme in the biosynthesis of pro-inflammatory cytokines like IL-1 and TNF. Therefore, the success of anti-cytokine therapy for treatment of inflammatory processes qualified p38-MAPK as a solid target in drug research concerning chronic inflammatory diseases including infectious vascular, neurobiological, and autoimmune disorders. However, the discovery of new kinase inhibitors is limited by the need for a high biological activity combined with restricted activity to the target enzyme or pathway interaction. As a consequence, no p38 MAPK inhibitor has been introduced to the market so far, although several p38 inhibitors have proceeded into clinical trials. The development of novel inhibitor types and optimization of already known structural classes of MAPK inhibitors require appropriate testing systems reaching across these crucial parameters. As a new approach, we describe the sequential arrangement of three testing systems custom-tailored to the requirements of drug discovery programs with focus on p38 inhibition. Integrated analysis of the obtained results enables a concerted step-by-step selection of tested molecules in order to screen a compound library for the most suitable inhibitor. First, evaluation of the inhibitor's activity on the isolated p38 MAPK enzyme via an ELISA assay gives a first idea about the inhibitory potency of the molecule. Moreover, structure-activity relationships can be elucidated when comparing molecules within inhibitor series. Second, screening in living cells via a p38 substrate-specific MK2-EGFP translocation assay supplies further information about efficacy, but provides also a first notion concerning selectivity and toxicity. Third, efficacy is evaluated more specifically in vivo in LPS-stimulated human whole blood with regard to in vivo parameters, e.g., pharmacokinetic characteristics like plasma protein binding and cellular permeability. These three testing systems

  11. Hydrogen sulfide prevents OGD/R-induced apoptosis by suppressing the phosphorylation of p38 and secretion of IL-6 in PC12 cells.

    Science.gov (United States)

    Li, Chong; Liu, Yue; Tang, Peng; Liu, Peng; Hou, Chen; Zhang, Xin; Chen, Li; Zhang, Lina; Gu, Chaochao

    2016-03-01

    Hydrogen sulfide (H2S), a well-known endogenous mediator, has been shown to exert protective effects against neuronal damage caused by brain ischemia, but the mechanism of its action remains unclear. We have reported the neuroprotective properties of H2S against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury by inhibiting the phosphorylation of p38. The present study evaluates the effect of H2S on OGD/R-induced cell injury or apoptosis and the mechanisms for its action in PC12 cells. Pretreatment of PC12 cells with exogenous sodium hydrosulfide (NaHS) (a H2S donor, 100 or 300 µM) for 12 h before exposure to OGD/R markedly attenuated p38 phosphorylation. Activation of p38 MAPK by transfection of activated p38α, but not p38β, reversed the protective effect of NaHS, as measured by enzyme-linked immunosorbent assay analysis. Importantly, SB203580 (a p38 MAPK inhibitor) also reversed the protective effects of p38α-activated p38 MAPK. Interleukin-6 secretion after OGD/R decreased significantly with NaHS compared with without NaHS. Taken together, we show that the p38 pathway contributes toward OGD/R-induced cell death and p38α plays a key role in OGD/R-induced interleukin-6 secretion.

  12. p38γ MAPK Is a Therapeutic Target for Triple-Negative Breast Cancer by Stimulation of Cancer Stem-Like Cell Expansion.

    Science.gov (United States)

    Qi, Xiaomei; Yin, Ning; Ma, Shao; Lepp, Adrienne; Tang, Jun; Jing, Weiqing; Johnson, Bryon; Dwinell, Michael B; Chitambar, Christopher R; Chen, Guan

    2015-09-01

    Triple-negative breast cancer (TNBC) is highly progressive and lacks established therapeutic targets. p38γ mitogen-activated protein kinase (MAPK) (gene name: MAPK12) is overexpressed in TNBC but how overexpressed p38γ contributes to TNBC remains unknown. Here, we show that p38γ activation promotes TNBC development and progression by stimulating cancer stem-like cell (CSC) expansion and may serve as a novel therapeutic target. p38γ silencing in TNBC cells reduces mammosphere formation and decreases expression levels of CSC drivers including Nanog, Oct3/4, and Sox2. Moreover, p38γ MAPK-forced expression alone is sufficient to stimulate CSC expansion and to induce epithelial cell transformation in vitro and in vivo. Furthermore, p38γ depends on its activity to stimulate CSC expansion and breast cancer progression, indicating a therapeutic opportunity by application of its pharmacological inhibitor. Indeed, the non-toxic p38γ specific pharmacological inhibitor pirfenidone selectively inhibits TNBC growth in vitro and/or in vivo and significantly decreases the CSC population. Mechanistically, p38γ stimulates Nanog transcription through c-Jun/AP-1 via a multi-protein complex formation. These results together demonstrate that p38γ can drive TNBC development and progression and may be a novel therapeutic target for TNBC by stimulating CSC expansion. Inhibiting p38γ activity with pirfenidone may be a novel strategy for the treatment of TNBC.

  13. The p38 SAPK pathway regulates the expression of the MMP-9 collagenase via AP-1-dependent promoter activation.

    Science.gov (United States)

    Simon, C; Simon, M; Vucelic, G; Hicks, M J; Plinkert, P K; Koitschev, A; Zenner, H P

    2001-12-10

    The invasive phenotype of cancers critically depends on the expression of proteases such as the M(R) 92,000 type IV collagenase (MMP-9). Several growth factors and oncogenes were found to increase promoter activity and as a consequence protease expression. This frequently requires the activation of the transcription factor AP-1 by signal transduction cascades such as the ERK and JNK pathways. We have previously demonstrated that the tumor promoter TPA can induce MMP-9 expression via a third signaling cascade, the p38 pathway. Considering that TPA is a potent activator of AP-1, we hypothesized that this transcription factor might also be required for p38 pathway-dependent MMP-9 regulation. While dominant negative p38 and MKK-6 mutants reduced MMP-9 promoter activity in CAT assays, a construct encoding an activating mutation in the MKK-6 protein potently stimulated it. This was mediated via 144 bp of the 5'flanking region of the wild-type promoter, which contains an AP-1 site at -79. Both point mutations in this motif and the expression of a c-jun protein lacking its transactivation domain and therefore acting as a dominant negative AP-1 mutant abrogated MKK-6-dependent promoter stimulation. Finally SB 203580, a specific p38 pathway inhibitor, reduced MMP-9 expression/secretion and in vitro invasion of cancer cells. Thus, our results provide evidence that also the third SAPK/MAPK signaling cascade, the p38 signal transduction pathway, stimulates MMP-9 expression in an AP-1-dependent fashion. PMID:11716547

  14. p38 MAPK Inhibitor Insufficiently Attenuates HSC Senescence Administered Long-Term after 6 Gy Total Body Irradiation in Mice

    Directory of Open Access Journals (Sweden)

    Lu Lu

    2016-06-01

    Full Text Available Senescent hematopoietic stem cells (HSCs accumulate with age and exposure to stress, such as total-body irradiation (TBI, which may cause long-term myelosuppression in the clinic. However, the methods available for long-term myelosuppression remain limited. Previous studies have demonstrated that sustained p38 mitogen-activated protein kinases (p38 MAPK activation in HSCs following exposure to TBI in mice and the administration of its inhibitor twenty-four hours after TBI may partially prevent long-term myelosuppression. However, long-term myelosuppression is latent and identified long after the administration of radiation. In this study, we investigated the effects of SB203580 (a small molecule inhibitor of p38 MAPK on long-term myelosuppression induced by TBI. Mice with hematopoietic injury were injected intraperitoneally with SB203580 every other day five times beginning 70 days after 6 Gy of 137Cs γ ray TBI. Our results at 80 days demonstrated that SB203580 did not significantly improve the TBI-induced long-term reduction of peripheral blood cell and bone marrow nucleated cell (BMNC counts, or defects in hematopoietic progenitor cells (HPCs and HSC clonogenic function. SB203580 reduced reactive oxygen species (ROS production and p-p38 expression; however, SB203580 had no effect on p16 expression in the HSCs of mice. In conclusion, these findings suggest that treatment with SB203580 70 days after TBI in mice inhibits the ROS-p38 oxidative stress pathway; however, it has no therapeutic effect on long-term myelosuppression induced by TBI.

  15. 依达拉奉通过调控p38MAPK通路抑制阿霉素的心肌毒性%Edaravon inhibits the doxorubicin-induced cardiotoxicity by modulating p38 MAPK pathway

    Institute of Scientific and Technical Information of China (English)

    刘广交; 郭润民; 徐文明; 陈景福; 冯鉴强; 廖新学

    2013-01-01

    目的 探讨新型抗氧化剂依达拉奉(edaravone,EDA)能否通过调控p38丝裂原激活蛋白激酶(mitogen-activated protein kinase,MAPK)通路保护H9c2心肌细胞对抗阿霉素(doxorubicin,DOX)引起的损伤.方法 应用5μmol/L DOX处理H9c2心肌24 h以建立心肌毒性损伤模型.CCK-8比色法检测细胞存活率;双氯荧光素(DCFH-DA)染色荧光显微镜照像测定细胞内活性氧(reactive oxygen species,ROX)水平;罗丹明123(rh123)染色荧光显微镜照像检测线粒体膜电位(mitochondrial membrane potential,MMP);Western blot法测定p38MAPK蛋白表达水平.结果 在15~60 min的时间范围内,5 μmol/L DOX呈时间依赖性地上调磷酸化(phosphorylated,P)p38MAPK表达.在DOX处理心肌细胞前,应用40 μmol/LEDA预处理60 min不仅能抑制DOX对p-p38MAPK表达的上调作用,也能抑制DOX引起的心肌细胞损伤,使细胞存活率升高、胞内ROS生成减少及MMP丢失减少.另方面,应用了3μmol/L SB203580(p38MAPK抑制剂)预处理60 min也产生类似于上述的EDA对抗DOX心肌毒性的作用.结论 EDA可通过抑制p38MAPK通路保护H9c2心肌细胞对抗DOX引起的损伤.

  16. 小菜蛾p38 MAPK基因的克隆与生物信息学分析%Cloning and Bioinformatic Analysis of p38 MAPK Gene from Plutella xylostella

    Institute of Scientific and Technical Information of China (English)

    胡霞; 谷希树; 刘晓琳; 白义川; 徐维红; 刘佰明; 许静杨

    2013-01-01

    小菜蛾(Plutella xylostellaL)是一种危害十字花科植物的世界性害虫,研究其基因功能为寻找新的小菜蛾防治方法具有重要意义.本研究克隆了小菜蛾p38 MAPK基因的开放阅读框(ORF),并根据其DNA序列推导出了蛋白一级结构,发现该基因编码一个含有349个氨基酸残基的蛋白.通过SMART网站分析发现该蛋白在第20 ~304位氨基酸残基区域存在着一个典型的丝氨酸/苏氨酸蛋白激酶结构域,说明它是一个潜在的丝氨酸/苏氨酸蛋白激酶.Blast比对发现Pxp38基因与家蚕Bmp38基因、酿酒酵母ScHOG1基因、人类Homo sapiens p38基因在蛋白一级结构上的相似性分别是91.7%、51.6%和78.6%,说明p38 MAPK基因在进化上具有较高的保守性.%Plutella xylostella L.is a major agricultural pest around the world,so the research on its gene function is important and meaningful to its biological control.In this study,the open reading frame (ORF) of Plutella xylostella p38 MAPK gene was cloned,and its protein primary structure was deduced according to the DNA sequence.It was found that the Pxp38 MAPK encoded a protein with 349 amino acid residues.By submitted to the SMART website,a classic Ser/Thr protein kinase domain was found between 20 ~ 304 amino acid residues,which indicated that Pxp38 MAPK gene was a putative Ser/Thr protein kinase.The similarity between Pxp38 and Bmp38,ScHog1,Homo sapiens p38 was 91.7%,51.6% and 78.6% respectively,which proved that p38 MAPK was highly conserved in evolution.

  17. Shadow boxing

    OpenAIRE

    Pulford, Donald

    2011-01-01

    Shadow Boxing continues my interest in the production/performance of gender on stage. It tells the story of a closeted, gay boxer and the devastation that ensues when he is outed. The central device is the play’s appeal to the audience’s imagined ‘bad faith’ concerning masculinity and the shock when the attendant expectations are subverted or upturned. I expressed the foundation of our enterprise in the New York programme by quoting from Calvin Thomas’s Masculinity, Psychoanalysis, Straight Q...

  18. Glucocorticoid modulation of extracellular signal-regulated protein kinase 1/2 and p38 in human ovarian cancer HO-8910 cells

    Institute of Scientific and Technical Information of China (English)

    夏冰; 卢建; 王钢

    2003-01-01

    Objective To investigate the signaling pathway through testing the effects of dexamethasone (Dex) on the activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 kinase (p38) in HO-8910 cells.Methods Activation of the ERK1/2 and p38 was detected by Western blotting using the antibodies against the total ERK1/2 and p38 mitogen-activated protein kinases (MAPKs) protein and the phosphorylated forms of them. Results Dex could suppress the activation of ERK1/2, while enhance the activation of p38 rapidly and strongly in a dose- and time- dependent manner. Neither effect could be blocked by RU486, the antagonist of glucocorticoid receptor (GR).Conclusion Dex has rapid effects on the activation of ERK1/2 and p38, and these effects are not mediated by GR.

  19. The reversal of pulmonary vascular remodeling through inhibition of p38 MAPK-alpha: a potential novel anti-inflammatory strategy in pulmonary hypertension

    OpenAIRE

    Church, Alistair C.; Martin, Damien H.; Wadsworth, Roger; Bryson, Gareth; Fisher, Andrew J.; Welsh, David J.; Peacock, Andrew J

    2015-01-01

    The p38 mitogen-activated protein kinase (MAPK) system is increasingly recognized as an important inflammatory pathway in systemic vascular disease but its role in pulmonary vascular disease is unclear. Previous in vitro studies suggest p38 MAPKα is critical in the proliferation of pulmonary artery fibroblasts, an important step in the pathogenesis of pulmonary vascular remodeling (PVremod). In this study the role of the p38 MAPK pathway was investigated in both in vitro and in vivo models of...

  20. Anti-fibrotic role of Ac SDKP through inhibition of P38MAPK pathway activity mediated transforming growth beta recepters in rat with silicosis

    Institute of Scientific and Technical Information of China (English)

    魏中秋

    2014-01-01

    Objective To investigate the distribution and expression of transforming growth factor beta(TGF-β)receptorsⅠandⅡ,p38 mitogen-activated protein kinase(p38 MAPK),and typeⅠand typeⅢcollagen in the lungs of rats with silicosis and cultured pulmonary fibroblasts,and to investigate the relationship of the anti-fibrosis effect of N-acetyl-sery-aspartyl-lysy-proline(Ac SDKP)with its inhibition of TGF-βreceptor-mediated p38

  1. P38 MAP kinase inhibitors as potential therapeutics for the treatment of joint degeneration and pain associated with osteoarthritis

    Directory of Open Access Journals (Sweden)

    Taiwo Yetunde O

    2008-12-01

    Full Text Available Abstract Background Evaluate the potential role of p38 inhibitors for the treatment of osteoarthritis using an animal model of joint degeneration (iodoacetate-induced arthritis and a pain model (Hargraeves assay. Methods P38 kinase activity was evaluated in a kinase assay by measuring the amount of phosphorylated substrate ATF2 using a phosphoATF2 (Thr71 specific primary antibody and an alkaline phosphate coupled secondary antibody and measuring the OD at 405 nm. TNFα and IL-1β secretion from LPS stimulated THP-1 monocytic cells and human peripheral blood mononuclear cells were measured by ELISA. Rats treated with vehicle or p38 inhibitor were injected intra-articularly in one knee with iodoacetate and damage to the tibial plateau was assessed from digitized images captured using an image analyzer. The effect of p38 inhibitors on hyperalgesia was evaluated in rats given an intraplantar injection of carrageenan and 4 h later the paw withdrawal time to a radiant heat source was measured. Results SB-203580 and VX-745 are both potent inhibitors of p38 with IC50s of 136 ± 64 nM and 35 ± 14 nM (mean ± S.D., respectively. Similarly, SB-203580 and VX-745 potently inhibited TNF release from LPS stimulated human THP-1 cells with IC50s of 72 ± 15 nM; and 29 ± 14 nM (mean ± S.D. respectively. TNF release from LPS stimulated human peripheral blood mononuclear cells was inhibited with IC50s 16 ± 6 nM and 14 ± 8 nM, (mean ± S.D. for SB-203580 and VX-745 and IL-1 was inhibited with IC50s of 20 ± 8 nM and 15 ± 4 nM (mean ± S.D., respectively. SB-203580 and VX-745 administered orally at a dose of 50 mg/kg resulted in the significant (p Conclusion SB203580 and VX-745 demonstrated attenuation of both cartilage degeneration and pain in animal models and suggest that p38 inhibitors may be a useful approach for the treatment of osteoarthritis.

  2. Activation of villous trophoblastic p38 and ERK1/2 signaling pathways in preterm preeclampsia and HELLP syndrome.

    Science.gov (United States)

    Szabo, Szilvia; Mody, Meera; Romero, Roberto; Xu, Yi; Karaszi, Katalin; Mihalik, Noemi; Xu, Zhonghui; Bhatti, Gaurav; Fule, Tibor; Hupuczi, Petronella; Krenacs, Tibor; Rigo, Janos; Tarca, Adi L; Hassan, Sonia S; Chaiworapongsa, Tinnakorn; Kovalszky, Ilona; Papp, Zoltan; Than, Nandor Gabor

    2015-07-01

    Preterm preeclampsia is associated with the failure of trophoblast invasion, placental hypoxic/ischemic injury and the release of toxic substances, which promote the terminal pathway of preeclampsia. In term preeclampsia, factors yet unknown trigger the placenta to induce the terminal pathway. The contribution of the villous trophoblast to these pathologic events has not been fully elucidated. Here we aimed to study how stress and signaling pathways influence trophoblastic functions in various subforms of preeclampsia. Tissue microarrays (TMAs) were constructed from placentas obtained from pregnant women in the following groups: 1-2) preterm preeclampsia with (n = 8) or without (n = 7) HELLP syndrome; 3) late-onset preeclampsia (n = 8); 4-5) preterm (n = 5) and term (n = 9) controls. TMA slides were stained for phosphorylated Akt-1, ERK1/2, JNK, and p38 kinases, and trophoblastic immunostainings were semi-quantitatively evaluated. BeWo cells were kept in various stress conditions, and the expression of FLT1, GCM1, LEP, and PGF was profiled by qRT-PCR, while Akt-1, ERK1/2, JNK, and p38 kinase activities were measured with phospho-kinase immunoassays. We found that: 1) Placental LEP and FLT1 expression was up-regulated in preterm preeclampsia with or without HELLP syndrome compared to controls; 2) Mean pp38 immunoscore was higher in preterm preeclampsia, especially in cases with HELLP syndrome, than in controls. 3) Mean pERK1/2 immunoscore was higher in preterm preeclampsia with HELLP syndrome than in controls. 4) In BeWo cells, ischemia up-regulated LEP expression, and it increased JNK and decreased ERK1/2 activity. 5) Hypoxia up-regulated FLT1 and down-regulated PGF expression, and it increased ERK1/2, JNK and p38 activity. 6) IL-1β treatment down-regulated PGF expression, and it increased JNK and p38 activity. 7) The p38 signaling pathway had the most impact on LEP, FLT1 and PGF expression. In conclusion, hypoxic and ischemic stress, along

  3. Role of P38MAPK in Mediating Dihydroartemisinin-induced Apoptosis in Lewis Lung Carcinoma Cells%P38MAPK在双氢青蒿素诱导Lewis肺腺癌细胞凋亡中的作用

    Institute of Scientific and Technical Information of China (English)

    章必成; 章志怀; 王俊; 王志刚; 吴婷婷; 饶智国; 高建飞

    2014-01-01

    目的 探讨p38丝裂素活化蛋白激酶(mitogen-activated protein kinases,MAPK)在双氢青蒿素(dihydroartemisinin,DHA)所致小鼠Lewis肺腺癌(Lewis lung carcinoma,LLC)细胞凋亡中的作用.方法 以DHA处理LLC细胞后,采用四甲基偶氮唑盐(microculture terazolium,MTT)法观察LLC细胞增殖情况,采用流式细胞仪检测细胞周期和凋亡率,采用透射电镜观察凋亡细胞的形态,应用Western blot法检测p38MAPK表达及SB202190对其表达的影响.结果 DHA抑制LLC细胞增殖具有剂量效应关系,能使LLC细胞周期阻滞于G0/G1期;经20μg/ml DHA处理后,透射电镜下可见典型的凋亡细胞,Western blot显示p38MAPK表达阳性,并能被SB202190所抑制.结论 p38MAPK的活化参与了DHA诱导LLC细胞凋亡的过程.

  4. Inhibition of p38 Mitogen-Activated Protein Kinase Enhances the Apoptosis Induced by Oxidized Low-Density Lipoprotein in Endothelial Progenitor Cells.

    Science.gov (United States)

    Tie, Guodong; Yan, Jinglian; Messina, Julia A; Raffai, Robert L; Messina, Louis M

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) is an important risk factor in the development of atherosclerosis. oxLDL has been shown to decrease endothelial progenitor cell (EPC) number by inducing apoptosis. p38 mitogen-activated protein kinase (MAPK) was shown to be activated by oxLDL and participated in the regulation of EPC number and function. However, the role of p38 remains unknown. Here, we show that oxLDL-induced p38 phosphorylation in EPCs is time and dose dependent. Treatment with antioxidant N-acetyl cysteine restored oxLDL-induced p38 phosphorylation to basal levels. LOX-1-blocking antibody also significantly decreased oxLDL-induced p38 phosphorylation. Interestingly, TUNEL staining showed that pretreatment with the p38 inhibitor SB203580 further increased oxLDL-induced apoptosis in EPCs. In accordance with these findings, pretreatment with SB203580 further attenuated Akt phosphorylation in EPCs challenged with oxLDL, indicating an interaction between Akt and p38 MAPK pathways. In agreement, inhibition of p38 MAPK further attenuated Akt phosphorylation and increased apoptosis in EPCs isolated from hypercholesterolemic ApoE-/- mice. In conclusion, p38 MAPK serves as an anti-apoptotic pathway by supporting Akt activity when EPCs are challenged with oxLDL. PMID:27031525

  5. P38 MAPK信号通路参与BMP-13诱导C3H10T1/2细胞向心肌样细胞分化%P38 MAPK signaling pathway is involved in BMP-13-induced cardiomyocyte-like differentiation from C3H10T1/2 cells

    Institute of Scientific and Technical Information of China (English)

    孙文静; 陈沅; 张芬; 陈露; 陈妙月; 耿雪静; 朱高慧

    2013-01-01

    目的 探讨P38 MAPK对BMP-13诱导C3H10T1/2细胞向心肌样细胞分化的影响.方法 实验共4个部分,分组如下:1)BMP-13腺病毒(Ad-BMP-13)对P38 MAPK的作用:Ad-BMP-13转染组、Ad-GFP转染组和C3H10空白组.Western blot检测磷酸化P38 MAPK(p-P38 MAPK)和总P38 MAPK(t-P38 MAPK)的表达变化,免疫荧光技术定位p-P38 MAPK;2)P38 MAPK干扰腺病毒(Ad-si-P38)对P38 MAPK的作用:si-P38干扰组、si-NC干扰对照组和C3H10空白组.Western blot检测t-P38 MAPK的表达;3)Ad-si-P38阻断P38 MAPK后对BMP-13诱导分化的影响:si-P38+ Ad-BMP-13转染组、si-NC+ Ad-BMP-13转染组、si-NC+ Ad-GFP转染组和C3H10空白组.Western blot检测cTnT和Cx43的表达,荧光定量PCR检测GATA-4和MEF-2C的mRNA表达;4)SB203580阻断P38 MAPK后对BMP-13诱导分化的影响:DMSO+ Ad-BMP-13转染组、SB203580(2、5和10 μmol/L)+Ad-BMP-13转染组.荧光定量PCR检测GATA-4和MEF-2C的mRNA表达.结果 BMP-13促进P38 MAPK的磷酸化.Ad-si-P38可以有效降低P38 MAPK表达水平.Ad-si-P38阻断P38 MAPK后BMP-13诱导组cTnT、Cx43表达有明显降低(P<0.05),GATA-4和MEF-2C的表达也有显著降低(P<0.05).随P38 MAPK特异性抑制剂SB203580浓度增加,BMP-13诱导组GATA-4和MEF-2C的表达降低(P<0.05).结论 Ad-BMP-13可以通过激活P38 MAPK信号通路来调控C3H10T1/2细胞向心肌样细胞分化.%Objective To investigate the role of P38 MAPK in BMP-13-induced differentiation of C3H10T1/2 cells into cardiomyocyte-like cells. Methods The four parts of experiment are grouped as follows; 1)BMP-13 adenovi-rus (Ad-BMP-13) on the role of P38 MAPK: Ad-BMP-13 transfection group, Ad-GFP transfection group and C3H10 blank group. The phosphorylated P38 MAPK (p-P38 MAPK) and total P38 MAPK (t-P38 MAPK) were detected by Western blot. The positioning of p-P38 MAPK was detected by immunofluorescence technique ;2)P38 MAPK interference adenovirus (Ad-si-P38) on the role of P38 MAPK:si-P38 interference group,si-NC control

  6. Pharmacological profile of AW-814141, a novel, potent, selective and orally active inhibitor of p38 MAP kinase

    DEFF Research Database (Denmark)

    Chopra, Puneet; Kulkarni, Onkar; Gupta, Shashank;

    2010-01-01

    The p38 mitogen activated protein kinase (MAPK) is a key signaling molecule that plays a crucial role in the progression of various inflammatory diseases such as rheumatoid arthritis (RA), asthma and chronic obstructive pulmonary disease. The objective of the present study was to evaluate the anti...... and it displays promising in vitro and in vivo anti-inflammatory activities and can be used for the treatment of rheumatoid arthritis....... and collagen-induced arthritis model (CIA), AW-814141 dose dependently inhibited paw swelling. In different in vivo efficacy models, efficacy of AW-814141 was found to be better as compared to the reference compounds (Vx-745 and BIRB-796). This study demonstrated that AW-814141 is a novel p38 MAPK inhibitor...

  7. Activation of the cellular mitogen-activated protein kinase pathways ERK, P38 and JNK during Toxoplasma gondii invasion

    Directory of Open Access Journals (Sweden)

    Valère A.

    2003-03-01

    Full Text Available Host cell invasion is essential for the pathogenicity of the obligate intracellular protozoan parasite Toxoplasma gondii. In the present study, we evaluated the ability of T. gondii tachyzoites to trigger phosphorylation of the different mitogen-activated protein kinases (MAPK in human monocytic cells THP1. Kinetic experiments show that the peak of extracellular-signal-regulated kinase (ERK 1/2, P38 and cjun-NH2 terminal kinase (JNKs phosphorylation occurs between 10 and 60 min. The use of specific inhibitors of ERK1/2, P38 and JNK1/2 phosphorylation indicates the specificity of MAPKs phosphorylation during invasion. Signaling through cellular and parasite mitogen-activated protein (MAP kinase pathways appears to be critical for T. gondii invasion.

  8. ERK/p38 MAPK inhibition reduces radio-resistance to a pulsed proton beam in breast cancer stem cells

    Science.gov (United States)

    Jung, Myung-Hwan; Park, Jeong Chan

    2015-10-01

    Recent studies have identified highly tumorigenic cells with stem cell-like characteristics, termed cancer stem cells (CSCs) in human cancers. CSCs are resistant to conventional radiotherapy and chemotherapy owing to their high DNA repair ability and oncogene overexpression. However, the mechanisms regulating CSC radio-resistance, particularly proton beam resistance, remain unclear. We isolated CSCs from the breast cancer cell lines MCF-7 and MDA-MB-231, which expressed the characteristic breast CSC membrane protein markers CD44+/CD24-/ low , and irradiated the CSCs with pulsed proton beams. We confirmed that CSCs were resistant to pulsed proton beams and showed that treatment with p38 and ERK inhibitors reduced CSC radio-resistance. Based on these results, BCSC radio-resistance can be reduced during proton beam therapy by co-treatment with ERK1/2 or p38 inhibitors, a novel approach to breast cancer therapy.

  9. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    International Nuclear Information System (INIS)

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD

  10. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Xing, Mingyou [Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Liu, Liegang [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Yao, Ping, E-mail: yaoping@mails.tjmu.edu.cn [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China)

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  11. Combined inhibition of p38 and Akt signaling pathways abrogates cyclosporine A-mediated pathogenesis of aggressive skin SCCs

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Aadithya; Walsh, Stephanie B.; Xu, Jianmin; Afaq, Farrukh [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Elmets, Craig A. [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer p38 and Akt are the crucial molecular targets in the pathogenesis of SCCs in OTRs. Black-Right-Pointing-Pointer Combined inhibition of these targets diminished tumor growth by 90%. Black-Right-Pointing-Pointer Inhibition of these targets act through downregulating mTOR signaling pathway. -- Abstract: Non-melanoma skin cancers (NMSCs) are the most common neoplasm in organ transplant recipients (OTRs). These cancers are more invasive and metastatic as compared to those developed in normal cohorts. Previously, we have shown that immunosuppressive drug, cyclosporine A (CsA) directly alters tumor phenotype of cutaneous squamous cell carcinomas (SCCs) by activating TGF-{beta} and TAK1/TAB1 signaling pathways. Here, we identified novel molecular targets for the therapeutic intervention of these SCCs. We observed that combined blockade of Akt and p38 kinases-dependent signaling pathways in CsA-promoted human epidermoid carcinoma A431 xenograft tumors abrogated their growth by more than 90%. This diminution in tumor growth was accompanied by a significant decrease in proliferation and an increase in apoptosis. The residual tumors following the combined treatment with Akt inhibitor triciribine and p38 inhibitors SB-203580 showed significantly diminished expression of phosphorylated Akt and p38 and these tumors were less invasive and highly differentiated. Diminished tumor invasiveness was associated with the reduced epithelial-mesenchymal transition as ascertained by the enhanced E-cadherin and reduced vimentin and N-cadherin expression. Consistently, these tumors also manifested reduced MMP-2/9. The decreased p-Akt expression was accompanied by a significant reduction in p-mTOR. These data provide first important combinatorial pharmacological approach to block the pathogenesis of CsA-induced highly aggressive cutaneous neoplasm in OTRs.

  12. Paeoniflorin attenuates ultraviolet B-induced apoptosis in human keratinocytes by inhibiting the ROS-p38-p53 pathway.

    Science.gov (United States)

    Kong, Lingwen; Wang, Shangshang; Wu, Xiao; Zuo, Fuguo; Qin, Haihong; Wu, Jinfeng

    2016-04-01

    Ultraviolet (UV) light is one of the most harmful environmental factors that contribute to skin damage. Exposure to UV induces extensive generation of reactive oxygen species (ROS), and results in photoaging and skin cancer development. One approach to protecting human skin against UV radiation is the use of antioxidants. In recent years, naturally occurring herbal compounds have gained considerable attention as protective agents for UV exposure. Paeoniflorin (PF) is a novel natural antioxidant, which is isolated from peony root (Radix Paeoniae Alba). The present study evaluated the protective effects of PF on UV‑induced skin damage in vitro, and demonstrated that the effects were mediated via the ROS‑p38‑p53 pathway. The results of the present study demonstrated that treatment with PF (25, 50, and 100 µM) significantly increased the percentage of viable keratinocytes after UV‑B exposure. In addition, cell death analysis indicated that PF treatment markedly reduced UV‑B‑radiation‑induced apoptosis in keratinocytes, which was accompanied by increased procaspase 3 expression and decreased cleaved caspase 3 expression. Treatment with PF markedly reduced the production of ROS, and inhibited the activation of p38 and p53 in human keratinocytes, thus suggesting that the ROS‑p38‑p53 pathway has a role in UV‑B‑induced skin damage. In conclusion, the present study reported that PF was able to attenuate UV‑B‑induced cell damage in human keratinocytes. Notably, these effects were shown to be mediated, at least in part, via inhibition of the ROS-p38-p53 pathway. PMID:26936104

  13. Combined inhibition of p38 and Akt signaling pathways abrogates cyclosporine A-mediated pathogenesis of aggressive skin SCCs

    International Nuclear Information System (INIS)

    Highlights: ► p38 and Akt are the crucial molecular targets in the pathogenesis of SCCs in OTRs. ► Combined inhibition of these targets diminished tumor growth by 90%. ► Inhibition of these targets act through downregulating mTOR signaling pathway. -- Abstract: Non-melanoma skin cancers (NMSCs) are the most common neoplasm in organ transplant recipients (OTRs). These cancers are more invasive and metastatic as compared to those developed in normal cohorts. Previously, we have shown that immunosuppressive drug, cyclosporine A (CsA) directly alters tumor phenotype of cutaneous squamous cell carcinomas (SCCs) by activating TGF-β and TAK1/TAB1 signaling pathways. Here, we identified novel molecular targets for the therapeutic intervention of these SCCs. We observed that combined blockade of Akt and p38 kinases-dependent signaling pathways in CsA-promoted human epidermoid carcinoma A431 xenograft tumors abrogated their growth by more than 90%. This diminution in tumor growth was accompanied by a significant decrease in proliferation and an increase in apoptosis. The residual tumors following the combined treatment with Akt inhibitor triciribine and p38 inhibitors SB-203580 showed significantly diminished expression of phosphorylated Akt and p38 and these tumors were less invasive and highly differentiated. Diminished tumor invasiveness was associated with the reduced epithelial–mesenchymal transition as ascertained by the enhanced E-cadherin and reduced vimentin and N-cadherin expression. Consistently, these tumors also manifested reduced MMP-2/9. The decreased p-Akt expression was accompanied by a significant reduction in p-mTOR. These data provide first important combinatorial pharmacological approach to block the pathogenesis of CsA-induced highly aggressive cutaneous neoplasm in OTRs.

  14. Effect of 17 beta - estradiol on proliferation of endometrial cancer cells and p38 expression%17β-雌二醇对子宫内膜癌细胞增殖及p38表达的影响

    Institute of Scientific and Technical Information of China (English)

    王美丽; 吴中明; 敖第书

    2012-01-01

    目的:探讨不同浓度的17 β-雌二醇(E2)对雌激素受体(ER)阴性的JEC细胞和ER阳性的Ishikawa子宫内膜腺癌细胞系细胞的增殖及细胞内p38蛋白表达的影响.方法:选用人子宫内膜腺癌细胞系JEC和Ishikawa进行体外培养,加入含不同浓度E2培养液,以四甲基偶氮唑蓝(MTT)比色法和激光共聚焦扫描显微镜(CLSM)的方法,观察子宫内膜腺癌细胞系JEC和Ishikawa细胞的增殖活性及P-p38的表达.结果:①MTT法观察细胞增殖:10-7、10-8和10-9 mol/L E2作用JEC细胞4、5天后OD值与对照组比较有差异(P<0.05),其中10-7 mol/L E2组在第5天OD值与对照组比较差异较显著(P<0.01);而不同浓度E2作用Ishikawa细胞均能促进增殖(P<0.05).②共聚焦显微镜测定细胞内P- p38蛋白的表达:10-7mol/L的E2作用JEC 4、5天后可使细胞内P-p38表达增加,平均荧光强度值与对照组相比有统计学意义(P<0.05);10-7 mol/L的E2作用Ishikawa 3、4天后P-p38表达增加,与不加E2对照组比较差异有统计学意义(P<0.05).结论:子宫内膜腺癌细胞系JEC细胞和Ishikawa细胞均可受到雌激素的调控,一定浓度的雌激素能促进ER阴性JEC细胞和ER阳性的Ishikawa细胞增殖,且均能使细胞内P-p38表达增加.%Objective: To explore the effects of different concentrations of 17 beta - estradiol on proliferations of estrogen receptor negative JEC cells, estrogen receptor positive lshikawa cells and p38 expression. Methods; Human endometrial cancer JEC cells and Ish-ikawa cells were cultured in vitro, then they were treated with culture solutions containing different concentrations of 17 beta - estradiol, MTT colorimetric method and CLSM were used to observe the proliferative activities of endometrial cancer JEC cells and lshikawa cells and p38 expression. Results: There was significant difference in OD values of JEC cells after treated with 10-7 mol/L, 10-8 mol/L, and 10-9 mol/Lof 17 beta - estradiol for four and

  15. Simvastatin induces differentiation of rabbit articular chondrocytes via the ERK-1/2 and p38 kinase pathways.

    Science.gov (United States)

    Han, Yohan; Kim, Song Ja

    2016-08-15

    Statins are competitive inhibitors of hydroxy-methyl-glutaryl Coenzyme A (HMG-CoA) reductase, a key enzyme involved in the conversion of HMG-CoA to the cholesterol precursor mevalonate. Some statins, such as simvastatin (simvastatin), have been shown to have anti-cancer and anti-inflammatory effects, reducing cartilage degradation in osteoarthritic rabbits in vivo. However, the regulatory mechanisms undergirding simvastatin mediated chondrocyte differentiation have not been well elucidated. Thus, we investigated the action and mechanism of simvastatin on differentiation of rabbit articular chondrocytes through western blot analyses, RT-PCR, and immunohistochemical (IHC) and immunofluorescence (IF) staining. Simvastatin treatment was found to induce type II collagen expression and sulfated-proteoglycan synthesis in a dose- and time-dependent manner. Indeed, RT-PCR revealed increased expression of type II collagen on treatment with simvastatin. Both IHC and IF staining indicated differentiation of chondrocytes. Simvastatin treatment reduced activation of ERK-1/2 and stimulated activation of p38 kinase. Inhibition of ERK-1/2 with PD98059 enhanced simvastatin induced differentiation, whereas inhibition of p38 kinase with SB203580 inhibited simvastatin induced differentiation. Simvastatin treatment also inhibits loss of type II collagen in serial monolayer culture. Collectively, our results indicate that ERK-1/2 and p38 kinase regulate simvastatin-induced differentiation of chondrocytes in opposing manners. Thus, these findings suggest that simvastatin may be a potential therapeutic drug for osteoarthritis. PMID:27475840

  16. Modulation of radiation injury response in retinal endothelial cells by quinic acid derivative KZ-41 involves p38 MAPK.

    Directory of Open Access Journals (Sweden)

    Jordan J Toutounchian

    Full Text Available Radiation-induced damage to the retina triggers leukostasis, retinal endothelial cell (REC death, and subsequent hypoxia. Resultant ischemia leads to visual loss and compensatory retinal neovascularization (RNV. Using human RECs, we demonstrated that radiation induced leukocyte adhesion through mechanisms involving p38MAPK, p53, and ICAM-1 activation. Additional phenotypic changes included p38MAPK-dependent tyrosine phosphorylation of the focal adhesion scaffolding protein, paxillin (Tyr118. The quinic acid derivative KZ-41 lessened leukocyte adhesion and paxillin-dependent proliferation via inhibition of p38MAPK-p53-ICAM-1 signaling. Using the murine oxygen-induced retinopathy (OIR model, we examined the effect of KZ-41 on pathologic RNV. Daily ocular application of a KZ-41-loaded nanoemulsion significantly reduced both the avascular and neovascular areas in harvested retinal flat mounts when compared to the contralateral eye receiving vehicle alone. Our data highlight the potential benefit of KZ-41 in reducing both the retinal ischemia and neovascularization provoked by genotoxic insults. Further research into how quinic acid derivatives target and mitigate inflammation is needed to fully appreciate their therapeutic potential for the treatment of inflammatory retinal vasculopathies.

  17. Atg7 Knockdown Augments Concanavalin A-Induced Acute Hepatitis through an ROS-Mediated p38/MAPK Pathway.

    Directory of Open Access Journals (Sweden)

    Yan Zhuang

    Full Text Available Concanavalin A (ConA, a T-cell mitogen that induces acute autoimmune hepatitis, is widely used to model pathophysiological processes of human acute autoimmune liver disease. Although autophagy has been extensively studied in the past decade, little is known about its molecular mechanism underlying the regulation of ConA-induced acute hepatitis. In this study, we used a Cre-conditional atg7 KO mouse to investigate the effects of Atg7-associated autophagy on ConA-induced murine hepatitis. Our results demonstrated that atg7 deficiency in mice enhanced macrophage activation and increased pro-inflammatory cytokines upon ConA stimulation. Atg7 silencing resulted in accumulation of dysfunctional mitochondria, disruption of reactive oxygen species (ROS degradation, and increase in pro-inflammatory cytokines in Raw264.7 cells. p38/MAPK and NF-κB levels were increased upon ConA induction due to Atg7 deficiency. Blocking ROS production inhibited ConA-induced p38/IκB phosphorylation and subsequent intracellular inflammatory responses. Hence, this study demonstrated that atg7 knockout in mice or Atg7 knockdown in cell culture augmented ConA-induced acute hepatitis and related cellular malfunction, indicating protective effects of Atg7 on regulating mitochondrial ROS via a p38/MAPK-mediated pathway. Collectively, our findings reveal that autophagy may attenuate macrophage-mediated inflammatory response to ConA and may be the potential therapeutic targets for acute liver injury.

  18. Influence of SB203580 on Cell Apoptosis and P38MAPK in Renal Ischemia/Reperfusion Injury

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of SB203580 (SB) with different concentrations at different time points on renal function, apoptosis, P38MAPK activity and the expression, as well as the P38MAPK substrates in renal ischemia/reperfusion injury were investigated. Forty-nine rats were divided into 7 groups at random (n= 7 in each group) according to the durations of ischemia/reperfusion injury and the time of medication. Based on the orthogonal Latin side, the rats were injected, by caudal vein, with the same volume but different dosages of SB. BUN and Scr were determined. The apoptosis was detected with TUNEL kit. The protein was assayed qualitatively and semi-quantitatively by Western blot. The results showed that SB could significantly reduce the increased Scr and BUN,the apoptosis of renal tubular epithelia and the activation of P38MAPK all caused by renal ischemia/reperfusion injury in a dose-dependent manner (P<0.05). And the effect was most predominant when SB was given 3 h before renal ischemia. This suggested that SB could significantly alleviate renal ischemia/reperfusion injury. Administration of SB 3 h before ischemia at the concentration of 5 μmol/L could obtain an optimal effect.

  19. BMP-2-enhanced chondrogenesis involves p38 MAPK-mediated down-regulation of Wnt-7a pathway.

    Science.gov (United States)

    Jin, Eun-Jung; Lee, Sun-Young; Choi, Young-Ae; Jung, Jae-Chang; Bang, Ok-Sun; Kang, Shin-Sung

    2006-12-31

    The bone morphogenetic protein (BMP) family has been implicated in control of cartilage development. Here, we demonstrate that BMP-2 promotes chondrogenesis by activating p38 mitogen-activated protein kinase (MAPK), which in turn downregulates Wnt-7a/b-catenin signaling responsible for proteasomal degradation of Sox9. Exposure of mesenchymal cells to BMP-2 resulted in upregulation of Sox9 protein and a concomitant decrease in the level of b-catenin protein and Wnt-7a signaling. In agreement with this, the interaction of Sox9 with b-catenin was inhibited in the presence of BMP-2. Inhibition of the p38 MAPK pathway using a dominant negative mutant led to sustained Wnt-7a signaling and decreased Sox9 expression, with consequent inhibition of precartilage condensation and chondrogenic differentiation. Moreover, overexpression of b-catenin caused degradation of Sox9 via the ubiquitin/26S proteasome pathway. Our results collectively indicate that the increase in Sox9 protein resulting from downregulation of b-catenin/Wnt-7a signaling is mediated by p38 MAPK during BMP-2 induced chondrogenesis in chick wing bud mesenchymal cells. PMID:17202865

  20. Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation.

    Science.gov (United States)

    Liu, Ju Mei; Pan, Feng; Li, Li; Liu, Qian Rong; Chen, Yong; Xiong, Xin Xin; Cheng, Kejun; Yu, Shang Bin; Shi, Zhi; Yu, Albert Cheung-Hoi; Chen, Xiao Qian

    2013-07-19

    Piperlongumine (PL), a natural alkaloid isolated from the long pepper, may have anti-cancer properties. It selectively targets and kills cancer cells but leaves normal cells intact. Here, we reported that PL selectively killed glioblastoma multiforme (GBM) cells via accumulating reactive oxygen species (ROS) to activate JNK and p38. PL at 20μM could induce severe cell death in three GBM cell lines (LN229, U87 and 8MG) but not astrocytes in cultures. PL elevated ROS prominently and reduced glutathione levels in LN229 and U87 cells. Antioxidant N-acetyl-L-cysteine (NAC) completely reversed PL-induced ROS accumulation and prevented cell death in LN229 and U87 cells. In LN229 and U87 cells, PL-treatment activated JNK and p38 but not Erk and Akt, in a dosage-dependent manner. These activations could be blocked by NAC pre-treatment. JNK and p38 specific inhibitors, SB203580 and SP600125 respectively, significantly blocked the cytotoxic effects of PL in LN229 and U87 cells. Our data first suggests that PL may have therapeutic potential for one of the most malignant and refractory tumors GBM. PMID:23796709

  1. Simvastatin induces differentiation of rabbit articular chondrocytes via the ERK-1/2 and p38 kinase pathways.

    Science.gov (United States)

    Han, Yohan; Kim, Song Ja

    2016-08-15

    Statins are competitive inhibitors of hydroxy-methyl-glutaryl Coenzyme A (HMG-CoA) reductase, a key enzyme involved in the conversion of HMG-CoA to the cholesterol precursor mevalonate. Some statins, such as simvastatin (simvastatin), have been shown to have anti-cancer and anti-inflammatory effects, reducing cartilage degradation in osteoarthritic rabbits in vivo. However, the regulatory mechanisms undergirding simvastatin mediated chondrocyte differentiation have not been well elucidated. Thus, we investigated the action and mechanism of simvastatin on differentiation of rabbit articular chondrocytes through western blot analyses, RT-PCR, and immunohistochemical (IHC) and immunofluorescence (IF) staining. Simvastatin treatment was found to induce type II collagen expression and sulfated-proteoglycan synthesis in a dose- and time-dependent manner. Indeed, RT-PCR revealed increased expression of type II collagen on treatment with simvastatin. Both IHC and IF staining indicated differentiation of chondrocytes. Simvastatin treatment reduced activation of ERK-1/2 and stimulated activation of p38 kinase. Inhibition of ERK-1/2 with PD98059 enhanced simvastatin induced differentiation, whereas inhibition of p38 kinase with SB203580 inhibited simvastatin induced differentiation. Simvastatin treatment also inhibits loss of type II collagen in serial monolayer culture. Collectively, our results indicate that ERK-1/2 and p38 kinase regulate simvastatin-induced differentiation of chondrocytes in opposing manners. Thus, these findings suggest that simvastatin may be a potential therapeutic drug for osteoarthritis.

  2. Shape-induced terminal differentiation of human epidermal stem cells requires p38 and is regulated by histone acetylation.

    Directory of Open Access Journals (Sweden)

    John T Connelly

    Full Text Available Engineered model substrates are powerful tools for examining interactions between stem cells and their microenvironment. Using this approach, we have previously shown that restricted cell adhesion promotes terminal differentiation of human epidermal stem cells via activation of serum response factor (SRF and transcription of AP-1 genes. Here we investigate the roles of p38 MAPK and histone acetylation. Inhibition of p38 activity impaired SRF transcriptional activity and shape-induced terminal differentiation of human keratinocytes. In addition, inhibiting p38 reduced histone H3 acetylation at the promoters of SRF target genes, FOS and JUNB. Although histone acetylation correlated with SRF transcriptional activity and target gene expression, treatment with the histone de-acetylase inhibitor, trichostatin A (TSA blocked terminal differentiation on micro-patterned substrates and in suspension. TSA treatment simultaneously maintained expression of LRIG1, TP63, and ITGB1. Therefore, global histone de-acetylation represses stem cell maintenance genes independent of SRF. Our studies establish a novel role for extrinsic physical cues in the regulation of chromatin remodeling, transcription, and differentiation of human epidermal stem cells.

  3. Secretory pathway retention of mutant prion protein induces p38-MAPK activation and lethal disease in mice.

    Science.gov (United States)

    Puig, Berta; Altmeppen, Hermann C; Ulbrich, Sarah; Linsenmeier, Luise; Krasemann, Susanne; Chakroun, Karima; Acevedo-Morantes, Claudia Y; Wille, Holger; Tatzelt, Jörg; Glatzel, Markus

    2016-01-01

    Misfolding of proteins in the biosynthetic pathway in neurons may cause disturbed protein homeostasis and neurodegeneration. The prion protein (PrP(C)) is a GPI-anchored protein that resides at the plasma membrane and may be misfolded to PrP(Sc) leading to prion diseases. We show that a deletion in the C-terminal domain of PrP(C) (PrPΔ214-229) leads to partial retention in the secretory pathway causing a fatal neurodegenerative disease in mice that is partially rescued by co-expression of PrP(C). Transgenic (Tg(PrPΔ214-229)) mice show extensive neuronal loss in hippocampus and cerebellum and activation of p38-MAPK. In cell culture under stress conditions, PrPΔ214-229 accumulates in the Golgi apparatus possibly representing transit to the Rapid ER Stress-induced ExporT (RESET) pathway together with p38-MAPK activation. Here we describe a novel pathway linking retention of a GPI-anchored protein in the early secretory pathway to p38-MAPK activation and a neurodegenerative phenotype in transgenic mice. PMID:27117504

  4. ROS-Induced JNK and p38 Signaling Is Required for Unpaired Cytokine Activation during Drosophila Regeneration.

    Directory of Open Access Journals (Sweden)

    Paula Santabárbara-Ruiz

    2015-10-01

    Full Text Available Upon apoptotic stimuli, epithelial cells compensate the gaps left by dead cells by activating proliferation. This has led to the proposal that dying cells signal to surrounding living cells to maintain homeostasis. Although the nature of these signals is not clear, reactive oxygen species (ROS could act as a signaling mechanism as they can trigger pro-inflammatory responses to protect epithelia from environmental insults. Whether ROS emerge from dead cells and what is the genetic response triggered by ROS is pivotal to understand regeneration of Drosophila imaginal discs. We genetically induced cell death in wing imaginal discs, monitored the production of ROS and analyzed the signals required for repair. We found that cell death generates a burst of ROS that propagate to the nearby surviving cells. Propagated ROS activate p38 and induce tolerable levels of JNK. The activation of JNK and p38 results in the expression of the cytokines Unpaired (Upd, which triggers the JAK/STAT signaling pathway required for regeneration. Our findings demonstrate that this ROS/JNK/p38/Upd stress responsive module restores tissue homeostasis. This module is not only activated after cell death induction but also after physical damage and reveals one of the earliest responses for imaginal disc regeneration.

  5. ROS-Induced JNK and p38 Signaling Is Required for Unpaired Cytokine Activation during Drosophila Regeneration.

    Science.gov (United States)

    Santabárbara-Ruiz, Paula; López-Santillán, Mireya; Martínez-Rodríguez, Irene; Binagui-Casas, Anahí; Pérez, Lídia; Milán, Marco; Corominas, Montserrat; Serras, Florenci

    2015-10-01

    Upon apoptotic stimuli, epithelial cells compensate the gaps left by dead cells by activating proliferation. This has led to the proposal that dying cells signal to surrounding living cells to maintain homeostasis. Although the nature of these signals is not clear, reactive oxygen species (ROS) could act as a signaling mechanism as they can trigger pro-inflammatory responses to protect epithelia from environmental insults. Whether ROS emerge from dead cells and what is the genetic response triggered by ROS is pivotal to understand regeneration of Drosophila imaginal discs. We genetically induced cell death in wing imaginal discs, monitored the production of ROS and analyzed the signals required for repair. We found that cell death generates a burst of ROS that propagate to the nearby surviving cells. Propagated ROS activate p38 and induce tolerable levels of JNK. The activation of JNK and p38 results in the expression of the cytokines Unpaired (Upd), which triggers the JAK/STAT signaling pathway required for regeneration. Our findings demonstrate that this ROS/JNK/p38/Upd stress responsive module restores tissue homeostasis. This module is not only activated after cell death induction but also after physical damage and reveals one of the earliest responses for imaginal disc regeneration.

  6. Phosphorylation of the conserved transcription factor ATF-7 by PMK-1 p38 MAPK regulates innate immunity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Robert P Shivers

    2010-04-01

    Full Text Available Innate immunity in Caenorhabditis elegans requires a conserved PMK-1 p38 mitogen-activated protein kinase (MAPK pathway that regulates the basal and pathogen-induced expression of immune effectors. The mechanisms by which PMK-1 p38 MAPK regulates the transcriptional activation of the C. elegans immune response have not been identified. Furthermore, in mammalian systems the genetic analysis of physiological targets of p38 MAPK in immunity has been limited. Here, we show that C. elegans ATF-7, a member of the conserved cyclic AMP-responsive element binding (CREB/activating transcription factor (ATF family of basic-region leucine zipper (bZIP transcription factors and an ortholog of mammalian ATF2/ATF7, has a pivotal role in the regulation of PMK-1-mediated innate immunity. Genetic analysis of loss-of-function alleles and a gain-of-function allele of atf-7, combined with expression analysis of PMK-1-regulated genes and biochemical characterization of the interaction between ATF-7 and PMK-1, suggest that ATF-7 functions as a repressor of PMK-1-regulated genes that undergoes a switch to an activator upon phosphorylation by PMK-1. Whereas loss-of-function mutations in atf-7 can restore basal expression of PMK-1-regulated genes observed in the pmk-1 null mutant, the induction of PMK-1-regulated genes by pathogenic Pseudomonas aeruginosa PA14 is abrogated. The switching modes of ATF-7 activity, from repressor to activator in response to activated PMK-1 p38 MAPK, are reminiscent of the mechanism of regulation mediated by the corresponding ancestral Sko1p and Hog1p proteins in the yeast response to osmotic stress. Our data point to the regulation of the ATF2/ATF7/CREB5 family of transcriptional regulators by p38 MAPK as an ancient conserved mechanism for the control of innate immunity in metazoans, and suggest that ATF2/ATF7 may function in a similar manner in the regulation of mammalian innate immunity.

  7. A potent and selective p38 inhibitor protects against bone damage in murine collagen-induced arthritis : a comparison with neutralization of mouse TNF alpha

    NARCIS (Netherlands)

    Mihara, K.; Almansa, C.; Smeets, R. L.; Loomans, E. E. M. G.; Dulos, J.; Vink, P. M. F.; Rooseboom, M.; Kreutzer, H.; Cavalcanti, F.; Boots, A. M.; Nelissen, R. L.

    2008-01-01

    Background and purpose: The p38 kinase regulates the release of proinflammatory cytokines including tumour-necrosis factor-alpha (TNF alpha) and is regarded as a potential therapeutic target in rheumatoid arthritis (RA). Using the novel p38 inhibitor Org 48762-0, we investigated the therapeutic pote

  8. Hypoxia differentially regulates the mitogen- and stress-activated protein kinases. Role of Ca2+/CaM in the activation of MAPK and p38 gamma.

    Science.gov (United States)

    Conrad, P W; Millhorn, D E; Beitner-Johnson, D

    2000-01-01

    Hypoxic/ischemic trauma is a primary factor in the pathology of various vascular, pulmonary, and cerebral disease states. Yet, the signaling mechanisms by which cells respond and adapt to changes in oxygen levels are not clearly established. The effects of hypoxia on the stress- and mitogen-activated protein kinase (SAPK and MAPK) signaling pathways were studied in PC12 cells. Exposure to moderate hypoxia (5% O2) was found to progressively stimulate phosphorylation and activation of p38 gamma in particular, and also p38 alpha, two isoforms of the p38 family of stress-activated protein kinases. In contrast, hypoxia had no effect on enzyme activity of p38 beta, p38 beta 2, p38 delta, or on JNK, another stress-activated protein kinase. Prolonged hypoxia also induced phosphorylation and activation of p42/p44 MAPK, although this activation was modest when compared to NGF and UV-induced activation. We further showed that activation of p38 gamma and MAPK during hypoxia requires calcium, as treatment with Ca(2+)-free media or the calmodulin antagonist, W13, blocked the activation of p38 gamma and MAPK, respectively. These studies demonstrate that an extremely typical physiological stress (hypoxia) causes selective activation of specific elements of the SAPKs and MAPKs, and identifies Ca+2/CaM as a critical upstream activator. PMID:10849670

  9. Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals

    Science.gov (United States)

    Martínez, María Antonia; Úbeda, Alejandro; Moreno, Jorge; Trillo, María Ángeles

    2016-01-01

    The proliferative response of the neuroblastoma line NB69 to a 100 µT, 50 Hz magnetic field (MF) has been shown mediated by activation of the MAPK-ERK1/2 pathway. This work investigates the MF effect on the cell cycle of NB69, the participation of p38 and c-Jun N-terminal (JNK) kinases in the field-induced proliferative response and the potential involvement of reactive oxygen species (ROS) in the activation of the MAPK-ERK1/2 and -p38 signaling pathways. NB69 cultures were exposed to the 100 µT MF, either intermittently for 24, 42 or 63 h, or continuously for periods of 15 to 120 min, in the presence or absence of p38 or JNK inhibitors: SB203580 and SP600125, respectively. Antioxidant N-acetylcysteine (NAC) was used as ROS scavenger. Field exposure induced transient activation of p38, JNK and ERK1/2. The MF proliferative effect, which was mediated by changes in the cell cycle, was blocked by the p38 inhibitor, but not by the JNK inhibitor. NAC blocked the field effects on cell proliferation and p38 activation, but not those on ERK1/2 activation. The MF-induced proliferative effects are exerted through sequential upregulation of MAPK-p38 and -ERK1/2 activation, and they are likely mediated by a ROS-dependent activation of p38. PMID:27058530

  10. 氯沙坦对急性心肌梗死大鼠左室非梗死区P38 MAPK表达的影响%The effects of losartan on P38 MAPK after myocardial infarction in the rat

    Institute of Scientific and Technical Information of China (English)

    张进; 佘强

    2012-01-01

      Objective:To study the effect of losartan on the expression P38、p-P38 in non-infarction zone of left ventricule(LVNIZ) in AMI rat. Methods: The 40 surviving AMI male Wistar rats were randomly divided into 2 groups: AMI group (n=30) and losartan treated group(n=10).Western-blot analyzed the expression of P38、p-P38 protein in LVNIZ. Results:Compared with Sham rats;the expression of P38、p-P38 protein in LVNIZ peaked at 28th day after MI group (P<0.01);p-P38 protein were decreased in losartan group compared with 28th day after MI group (P<0.01).Conclusion:P38MAPK signaling was activated in LVNIZ, losartan block the signal conduction of P38MAPK and improved the cardiac remodeling.%  目的:研究氯沙坦(Losartan)干预对急性心肌梗死(AMI)大鼠左室非梗死区(LVNIZ)P38MAPK、p-P38MAPK表达的影响.方法:将40只雄性Wistar心肌梗死大鼠随机分为AMI组(n=30)及Losartan组(n=10).另设空白对照组(Sham).Western-blot印记检测LVNIZ P38、p-P38的表达.结果:AMI后28天组P38、p-P38的表达水平达到高峰(P<0.01 vs Sham);与AMI后28天组相比,氯沙坦组p-P38的表达显著降低(P<0.01).结论:心肌梗死后LVNIZ P38MAPK信号被激活,氯沙坦改善心室重构的机制可能是阻断了P38MAPK信号通路.

  11. DLK-1/p38 MAP Kinase Signaling Controls Cilium Length by Regulating RAB-5 Mediated Endocytosis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Aniek van der Vaart

    2015-12-01

    Full Text Available Cilia are sensory organelles present on almost all vertebrate cells. Cilium length is constant, but varies between cell types, indicating that cilium length is regulated. How this is achieved is unclear, but protein transport in cilia (intraflagellar transport, IFT plays an important role. Several studies indicate that cilium length and function can be modulated by environmental cues. As a model, we study a C. elegans mutant that carries a dominant active G protein α subunit (gpa-3QL, resulting in altered IFT and short cilia. In a screen for suppressors of the gpa-3QL short cilium phenotype, we identified uev-3, which encodes an E2 ubiquitin-conjugating enzyme variant that acts in a MAP kinase pathway. Mutation of two other components of this pathway, dual leucine zipper-bearing MAPKKK DLK-1 and p38 MAPK PMK-3, also suppress the gpa-3QL short cilium phenotype. However, this suppression seems not to be caused by changes in IFT. The DLK-1/p38 pathway regulates several processes, including microtubule stability and endocytosis. We found that reducing endocytosis by mutating rabx-5 or rme-6, RAB-5 GEFs, or the clathrin heavy chain, suppresses gpa-3QL. In addition, gpa-3QL animals showed reduced levels of two GFP-tagged proteins involved in endocytosis, RAB-5 and DPY-23, whereas pmk-3 mutant animals showed accumulation of GFP-tagged RAB-5. Together our results reveal a new role for the DLK-1/p38 MAPK pathway in control of cilium length by regulating RAB-5 mediated endocytosis.

  12. Anti-inflammatory effects of α-galactosylceramide analogs in activated microglia: involvement of the p38 MAPK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Yeon-Hui Jeong

    Full Text Available Microglial activation plays a pivotal role in the development and progression of neurodegenerative diseases. Thus, anti-inflammatory agents that control microglial activation can serve as potential therapeutic agents for neurodegenerative diseases. Here, we designed and synthesized α-galactosylceramide (α-GalCer analogs to exert anti-inflammatory effects in activated microglia. We performed biological evaluations of 25 α-GalCer analogs and observed an interesting preliminary structure-activity relationship in their inhibitory influence on NO release and TNF-α production in LPS-stimulated BV2 microglial cells. After identification of 4d and 4e as hit compounds, we further investigated the underlying mechanism of their anti-inflammatory effects using RT-PCR analysis. We confirmed that 4d and 4e regulate the expression of iNOS, COX-2, IL-1β, and IL-6 at the mRNA level and the expression of TNF-α at the post-transcriptional level. In addition, both 4d and 4e inhibited LPS-induced DNA binding activities of NF-κB and AP-1 and phosphorylation of p38 MAPK without affecting other MAP kinases. When we examined the anti-inflammatory effect of a p38 MAPK-specific inhibitor, SB203580, on microglial activation, we observed an identical inhibitory pattern as that of 4d and 4e, not only on NO and TNF-α production but also on the DNA binding activities of NF-κB and AP-1. Taken together, these results suggest that p38 MAPK plays an important role in the anti-inflammatory effects of 4d and 4e via the modulation of NF-κB and AP-1 activities.

  13. Cholesterol Perturbation in Mice Results in p53 Degradation and Axonal Pathology through p38 MAPK and Mdm2 Activation.

    Directory of Open Access Journals (Sweden)

    Qingyu Qin

    Full Text Available Perturbation of lipid metabolism, especially of cholesterol homeostasis, can be catastrophic to mammalian brain, as it has the highest level of cholesterol in the body. This notion is best illustrated by the severe progressive neurodegeneration in Niemann-Pick Type C (NPC disease, one of the lysosomal storage diseases, caused by mutations in the NPC1 or NPC2 gene. In this study, we found that growth cone collapse induced by genetic or pharmacological disruption of cholesterol egress from late endosomes/lysosomes was directly related to a decrease in axonal and growth cone levels of the phosphorylated form of the tumor suppressor factor p53. Cholesterol perturbation-induced growth cone collapse and decrease in phosphorylated p53 were reduced by inhibition of p38 mitogen-activated protein kinase (MAPK and murine double minute (Mdm2 E3 ligase. Growth cone collapse induced by genetic (npc1-/- or pharmacological modification of cholesterol metabolism was Rho kinase (ROCK-dependent and associated with increased RhoA protein synthesis; both processes were significantly reduced by P38 MAPK or Mdm2 inhibition. Finally, in vivo ROCK inhibition significantly increased phosphorylated p53 levels and neurofilaments in axons, and axonal bundle size in npc1-/- mice. These results indicate that NPC-related and cholesterol perturbation-induced axonal pathology is associated with an abnormal signaling pathway consisting in p38 MAPK activation leading to Mdm2-mediated p53 degradation, followed by ROCK activation. These results also suggest new targets for pharmacological treatment of NPC disease and other diseases associated with disruption of cholesterol metabolism.

  14. Involvement of a novel p38 mitogen-activated protein kinase in larval metamorphosis of the polychaete Hydroides elegans (Haswell)

    KAUST Repository

    Wang, Hao

    2010-04-19

    Hydroides elegans is a common marine fouling organism in most tropical and subtropical waters. The life cycle of H. elegans includes a planktonic larval stage in which swimming larvae normally take 5 days to attain competency to settle. Larval metamorphosis marks the beginning of its benthic life; however, the endogenous molecular mechanisms that regulate metamorphosis remain largely unknown. In this study, a PCR-based suppressive subtractive hybridization (SSH) library was constructed to screen the genes expressed in competent larvae but not in precompetent larvae. Among the transcripts isolated from the library, 21 significantly matched sequences in the GenBank. Many of these isolated transcripts have putative roles in the reactive oxygen species (ROS) signal transduction pathway or in response to ROS stress. A putative novel p38 mitogen-activated protein kinase (MAPK), which was also isolated with SSH screen, was then cloned and characterized. The MAPK inhibitors assay showed that both p38 MAPK inhibitors SB202190 and SB203580 effectively inhibited the biofilm-induced metamorphosis of H. elegans. A cell stressors assay showed that H2O2 effectively induced larval metamorphosis of H. elegans, but the inductivity of H2O2 was also inhibited by both SB inhibitors. The catalase assay showed that the catalase could effetely inhibit H. elegans larvae from responding to inductive biofilm. These results showed that the p38 MAPK-dependent pathway plays critical role in controlling larval metamorphosis of the marine polychaete H. elegans, and the reactive oxygen radicals produced by biofilm could be the cue inducing larval metamorphosis. © 2010 Wiley-Liss, Inc.

  15. The Effect of Bee Venom on COX-2, P38, ERK and JNK in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Jae-Young Sim

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide(LPS, sodium nitroprusside(SNP, hydrogen peroxide(H2O2-induced expressions of cyclooxygenase-2(COX-2, p38, jun N-terminal Kinase(JNK and extra-signal response kinase(ERK in RAW 264.7 cells, a murine macrophage cell line. Methods : The expressions of COX-2, p38, JNK and ERK were determined by western blotting with corresponding antibodies.\\ Results : 1. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited significantly LPS and SNP-induced expression of COX-2 compared with control, respectively. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited insignificantly H2O2-induced expression of COX-2 compared with control, respectively. 2. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited significantly LPS, SNP and H2O2-induced expression of p38 compared with control, respectively. 3. The 1 and 5 ㎍/㎖ of bee venom inhibited significantly SNP-induced expression of JNK compared with control, respectively. All of bee venom inhibited insignificantly LPS and H2O2-induced expression of JNK compared with control, respectively. 4. The 5 ㎍/㎖ of bee venom inhibited significantly SNP-induced expression of ERK, the 0.5 ㎍/㎖ of bee venom increased significantly H2O2-induced expression of ERK compared with control. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited insignificantly LPS-induced expression of ERK compared with control, respectively.

  16. Sulfur mustard primes human neutrophils for increased degranulation and stimulates cytokine release via TRPM2/p38 MAPK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Hwa-Yong [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Hong, Chang-Won, E-mail: chyj7983@hallym.ac.kr [Department of Chemical and Biological Warfare Research, The Armed Forces Medical Research Institute, Daejeon (Korea, Republic of); Lee, Si-Nae [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Kwon, Min-Soo [Department of Pharmacology, School of Medicine, CHA University, Seongnam (Korea, Republic of); Kim, Yeon-Ja [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Song, Dong-Keun, E-mail: dksong@hallym.ac.kr [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of)

    2012-01-01

    Sulfur mustard (2,2′-bis-chloroethyl-sulfide; SM) has been a military threat since the World War I. The emerging threat of bioterrorism makes SM a major threat not only to military but also to civilian world. SM injury elicits an inflammatory response characterized by infiltration of neutrophils. Although SM was reported to prime neutrophils, the mechanism has not been identified yet. In the present study, we investigated the mechanism of SM-induced priming in human neutrophils. SM increased [Ca{sup 2+}]{sub i} in human neutrophils in a concentration-dependent fashion. Transient receptor potential melastatin (TRPM) 2 inhibitors (clotrimazole, econazole and flufenamic acid) and silencing of TRPM2 by shRNA attenuated SM-induced [Ca{sup 2+}]{sub i} increase. SM primed degranulation of azurophil and specific granules in response to activation by fMLP as previously reported. SB203580, an inhibitor of p38 MAPK, inhibited SM-induced priming. Neither PD98057, an ERK inhibitor, nor SP600215, a JNK inhibitor, inhibited SM-induced priming. In addition, SM enhanced phosphorylation of NF-kB p65 and release of TNF-α, interleukin (IL)-6 and IL-8. SB203580 inhibited SM-induced NF-kB phosphorylation and cytokine release. These results suggest the involvement of TRPM2/p38 MAPK pathway in SM-induced priming and cytokines release in neutrophils. -- Highlights: ► SM increased [Ca{sup 2+}]{sub i} in human neutrophils through TPRM2-mediated calcium influx. ► SM primed degranulation of azurophil and specific granules. ► SM enhanced p38 MAPK and NF-κB p65 phosphorylation in human neutrophils. ► SM enhanced release of TNF-α, interleukin (IL)-6 and IL-8 from human neutrophils. ► SB203580 inhibited SM-induced priming, NF-κB p65 phosphorylation and cytokine release.

  17. DLK-1/p38 MAP Kinase Signaling Controls Cilium Length by Regulating RAB-5 Mediated Endocytosis in Caenorhabditis elegans.

    Science.gov (United States)

    van der Vaart, Aniek; Rademakers, Suzanne; Jansen, Gert

    2015-12-01

    Cilia are sensory organelles present on almost all vertebrate cells. Cilium length is constant, but varies between cell types, indicating that cilium length is regulated. How this is achieved is unclear, but protein transport in cilia (intraflagellar transport, IFT) plays an important role. Several studies indicate that cilium length and function can be modulated by environmental cues. As a model, we study a C. elegans mutant that carries a dominant active G protein α subunit (gpa-3QL), resulting in altered IFT and short cilia. In a screen for suppressors of the gpa-3QL short cilium phenotype, we identified uev-3, which encodes an E2 ubiquitin-conjugating enzyme variant that acts in a MAP kinase pathway. Mutation of two other components of this pathway, dual leucine zipper-bearing MAPKKK DLK-1 and p38 MAPK PMK-3, also suppress the gpa-3QL short cilium phenotype. However, this suppression seems not to be caused by changes in IFT. The DLK-1/p38 pathway regulates several processes, including microtubule stability and endocytosis. We found that reducing endocytosis by mutating rabx-5 or rme-6, RAB-5 GEFs, or the clathrin heavy chain, suppresses gpa-3QL. In addition, gpa-3QL animals showed reduced levels of two GFP-tagged proteins involved in endocytosis, RAB-5 and DPY-23, whereas pmk-3 mutant animals showed accumulation of GFP-tagged RAB-5. Together our results reveal a new role for the DLK-1/p38 MAPK pathway in control of cilium length by regulating RAB-5 mediated endocytosis.

  18. Aconitine-induced Ca2+ overload causes arrhythmia and triggers apoptosis through p38 MAPK signaling pathway in rats

    International Nuclear Information System (INIS)

    Aconitine is a major bioactive diterpenoid alkaloid with high content derived from herbal aconitum plants. Emerging evidence indicates that voltage-dependent Na+ channels have pivotal roles in the cardiotoxicity of aconitine. However, no reports are available on the role of Ca2+ in aconitine poisoning. In this study, we explored the importance of pathological Ca2+ signaling in aconitine poisoning in vitro and in vivo. We found that Ca2+ overload lead to accelerated beating rhythm in adult rat ventricular myocytes and caused arrhythmia in conscious freely moving rats. To investigate effects of aconitine on myocardial injury, we performed cytotoxicity assay in neonatal rat ventricular myocytes (NRVMs), as well as measured lactate dehydrogenase level in the culture medium of NRVMs and activities of serum cardiac enzymes in rats. The results showed that aconitine resulted in myocardial injury and reduced NRVMs viability dose-dependently. To confirm the pro-apoptotic effects, we performed flow cytometric detection, cardiac histology, transmission electron microscopy and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. The results showed that aconitine stimulated apoptosis time-dependently. The expression analysis of Ca2+ handling proteins demonstrated that aconitine promoted Ca2+ overload through the expression regulation of Ca2+ handling proteins. The expression analysis of apoptosis-related proteins revealed that pro-apoptotic protein expression was upregulated, and anti-apoptotic protein BCL-2 expression was downregulated. Furthermore, increased phosphorylation of MAPK family members, especially the P-P38/P38 ratio was found in cardiac tissues. Hence, our results suggest that aconitine significantly aggravates Ca2+ overload and causes arrhythmia and finally promotes apoptotic development via phosphorylation of P38 mitogen-activated protein kinase. - Highlights: • Aconitine-induced Ca2+ overload causes arrhythmia in rats.

  19. Substituted N-aryl-6-pyrimidinones: A new class of potent, selective, and orally active p38 MAP kinase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Devadas, Balekudru; Selness, Shaun R.; Xing, Li; Madsen, Heather M.; Marrufo, Laura D.; Shieh, Huey; Messing, Dean M.; Yang, Jerry Z.; Morgan, Heidi M.; Anderson, Gary D.; Webb, Elizabeth G.; Zhang, Jian; Devraj, Rajesh V.; Monahan, Joseph B. (Pfizer)

    2012-02-28

    A novel series of highly potent and selective p38 MAP kinase inhibitors was developed originating from a substituted N-aryl-6-pyrimidinone scaffold. SAR studies coupled with in vivo evaluations in rat arthritis model culminated in the identification of 10 with excellent oral efficacy. Compound 10 exhibited a significantly enhanced dissolution rate compared to 1, translating to a high oral bioavailability (>90%) in rat. In animal studies 10 inhibited LPS-stimulated production of tumor necrosis factor-{alpha} in a dose-dependent manner and demonstrated robust efficacy comparable to dexamethasone in a rat streptococcal cell wall-induced arthritis model.

  20. 丝裂原活化蛋白激酶p38在急性胰腺炎患者外周血单个核细胞中的变化和意义%Significance of mitogen activated protein kinase p38 in peripheral blood mononuclear cells of patients with acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    李桂芬; 唐源远

    2012-01-01

    Objective To investigate the relationship of mitogen activated protein kinase p38(p38 MAPK)levels in peripheral blood mononuclear cell( PBMC) and disease severity in patients with acute pancreatitis( AP). Methods Twenty-nine patients with mild acute pancreatitis ( MAP group), twenty-three patients with severe acute pancreatitis (SAP group) ,and twenty-one healthy volunteers (control group) were evaluated in this study. Levels of p38 MAPK mRNA in PBMC were measured by real-time polymerase chain reaction. Protein levels of p38 MAPK and phosphorylation-p38 MAPK( P-p38 MAPK) were detected by Western blot. Results Levels of p38 MAPK mRNA and p38 MAPK protein in SAP group were higher than control group and MAP group(P 0.05). Levels of P-p38 MAPK protein in SAP group were higher than control group and MAP group(P<0.01 ,P<0.05) ;the levels of P-p38 MAPK protein in MAP group were higher than control group (P < 0.05 ). Conclusion It is phosphorylation levels but not total levels of p38 MAPK that significantly increased in PBMC from acute pancreatitis,and P-p38 MAPK takes a close relationship with the grade severity of AP.%目的 探讨急性胰腺炎患者外周血单个核细胞(PBMC)内丝裂原活化蛋白激酶p38(p38 MAPK)信号水平的变化及其与疾病严重程度的关系.方法 收集轻型胰腺炎(MAP组)29例、重症胰腺炎(SAP组)23例和对照组21例,实时荧光聚合酶链反应检测患者PBMC p38 MAPK基因表达水平,Western blot检测PBMC p38 MAPK和磷酸化p38 MAPK(P-p38 MAPK)蛋白的水平.结果 SAP组p38 MAPK mRNA表达水平和总蛋白水平高于对照组和MAP组(P<0.05);MAP组p38 MAPK mRNA表达水平和总蛋白水平与对照组比较差异无统计学意义(P>0.05).SAP组P-p38 MAPK总蛋白水平高于对照组和MAP组(P<0.01,P<0.05),MAP组P-p38 MAPK总蛋白水平高于对照组(P<0.05).结论 急性胰腺炎患者PBMC内p38 MAPK mRNA表达水平和总蛋白水平变化较小;p38 MAPK磷酸化水平显著升高,而且与病情程度密切相关.

  1. A novel chromone derivative with anti-inflammatory property via inhibition of ROS-dependent activation of TRAF6-ASK1-p38 pathway.

    Directory of Open Access Journals (Sweden)

    Hailiang Liu

    Full Text Available The p38 MAPK signaling pathway plays a pivotal role in inflammation. Targeting p38 MAPK may be a potential strategy for the treatment of inflammatory diseases. In the present study, we show that a novel chromone derivative, DCO-6, significantly reduced lipopolysaccharide (LPS-induced production of nitric oxide, IL-1β and IL-6, decreased the levels of iNOS, IL-1β and IL-6 mRNA expression in both RAW264.7 cells and mouse primary peritoneal macrophages, and inhibited LPS-induced activation of p38 MAPK but not of JNK, ERK. Moreover, DCO-6 specifically inhibited TLR4-dependent p38 activation without directly inhibiting its kinase activity. LPS-induced production of intracellular reactive oxygen species (ROS was remarkably impaired by DCO-6, which disrupted the formation of the TRAF6-ASK1 complex. Administering DCO-6 significantly protected mice from LPS-induced septic shock in parallel with the inhibition of p38 activation and ROS production. Our results indicate that DCO-6 showed anti-inflammatory properties through inhibition of ROS-dependent activation of TRAF6-ASK1-p38 pathway. Blockade of the upstream events required for p38 MAPK action by DCO-6 may provide a new therapeutic option in the treatment of inflammatory diseases.

  2. Effect of TRPV4-p38 MAPK Pathway on Neuropathic Pain in Rats with Chronic Compression of the Dorsal Root Ganglion

    Directory of Open Access Journals (Sweden)

    Yu-Juan Qu

    2016-01-01

    Full Text Available The aim of this study was to investigate the relationships among TRPV4, p38, and neuropathic pain in a rat model of chronic compression of the dorsal root ganglion. Mechanical allodynia appeared after CCD surgery, enhanced via the intrathecal injection of 4α-phorbol 12,13-didecanoate (4α-PDD, an agonist of TRPV4 and anisomycin (an agonist of p38, but was suppressed by Ruthenium Red (RR, an inhibitor of TRPV4 and SB203580 (an inhibitor of p38. The protein expressions of p38 and P-p38 were upregulated by 4α-PDD and anisomycin injection but reduced by RR and SB203580. Moreover, TRPV4 was upregulated by 4α-PDD and SB203580 and downregulated by RR and anisomycin. In DRG tissues, the numbers of TRPV4- or p38-positive small neurons were significantly changed in CCD rats, increased by the agonists, and decreased by the inhibitors. The amplitudes of ectopic discharges were increased by 4α-PDD and anisomycin but decreased by RR and SB203580. Collectively, these results support the link between TRPV4 and p38 and their intermediary role for neuropathic pain in rats with chronic compression of the dorsal root ganglion.

  3. Behavioral evidence for the differential regulation of p-p38 MAPK and p-NF-κB in rats with trigeminal neuropathic pain

    Directory of Open Access Journals (Sweden)

    Lee Min K

    2011-08-01

    Full Text Available Abstract Background We investigated the differential regulation of p-p38 MAPK or p-NF-κB in male Sprague-Dawley rats with inferior alveolar nerve injury resulting from mal-positioned dental implants. For this purpose, we characterized the temporal expression of p-p38 MAPK or p-NF-κB in the medullary dorsal horn and examined changes in nociceptive behavior after a blockade of p-p38 MAPK or p-NF-κB pathways in rats with trigeminal neuropathic pain. Results Under anesthesia, the left lower second molar was extracted and replaced with a mini dental implant to intentionally injure the inferior alveolar nerve. Western and immunofluorescence analysis revealed that p-p38 MAPK is upregulated in microglia following nerve injury and that this expression peaked on postoperative day (POD 3 through 7. However, the activation of p-NF-κB in astrocyte peaked on POD 7 through 21. The intracisternal administration of SB203580 (1 or 10 μg, a p38 MAPK inhibitor, on POD 3 but not on POD 21 markedly inhibits mechanical allodynia and the p-p38 MAPK expression. However, the intracisternal administration of SN50 (0.2 or 2 ng, an NF-κB inhibitor, on POD 21 but not on POD 3 attenuates mechanical allodynia and p-NF-κB expression. Dexamethasone (25 mg/kg decreases not only the activation of p38 MAPK but also that of NF-κB on POD 7. Conclusions These results suggest that early expression of p-p38 MAPK in the microglia and late induction of p-NF-κB in astrocyte play an important role in trigeminal neuropathic pain and that a blockade of p-p38 MAPK at an early stage and p-NF-κB at a late stage might be a potential therapeutic strategy for treatment of trigeminal neuropathic pain.

  4. QSAR Analysis of Some Antagonists for p38 map kinase Using Combination of Principal Component Analysis and Artificial Intelligence.

    Science.gov (United States)

    Doosti, Elham; Shahlaei, Mohsen

    2015-01-01

    Quantitative relationships between structures of a set of p38 map kinase inhibitors and their activities were investigated by principal component regression (PCR) and principal componentartificial neural network (PC-ANN). Latent variables (called components) generated by principal component analysis procedure were applied as the input of developed Quantitative structure- activity relationships (QSAR) models. An exact study of predictability of PCR and PC-ANN showed that the later model has much higher ability to calculate the biological activity of the investigated molecules. Also, experimental and estimated biological activities of compounds used in model development step have indicated a good correlation. Obtained results show that a non-linear model explaining the relationship between the pIC50s and the calculated principal components (that extract from structural descriptors of the studied molecules) is superior than linear model. Some typical figures of merit for QSAR studies explaining the accuracy and predictability of the suggested models were calculated. Therefore, to design novel inhibitors of p38 map kinase with high potency and low undesired effects the developed QSAR models were used to estimate biological pIC50 of the studied compounds.

  5. Triptolide (PG-490) induces apoptosis of dendritic cells through sequential p38 MAP kinase phosphorylation and caspase 3 activation

    Institute of Scientific and Technical Information of China (English)

    Liu Q; Chen T; Chen H; Zhang M; Li N; Lu Z; Ma P; Cao X

    2004-01-01

    Dendritic cells (DCs) are the most potent antigen-presenting cells that play crucial roles in the regulation of immune response. Triptolide, an active component purified from the medicinal plant Tripterygium wilfordii Hook F. , has been demonstrated to act as a potent immunosuppressive drug capable of inhibiting T cell activation and proliferation. However, little is known about the effects of triptolide on DCs. The present study shows that triptolide does not affect phenotypic differentiation and LPS-induced maturation of murine DCs. But triptolide can dramatically reduce cell recovery by inducing apoptosis of DCs at concentration as low as 10 ng/ml, as demonstrated by phosphatidylserine exposure, mitochondria potential decrease, and nuclear DNA condensation. Triptolide induces activation of p38 in DCs, which precedes the activation of caspase 3. SB203580, a specific kinase inhibitor for p38, can block the activation of caspase 3 and inhibit the resultant apoptosis of DCs. Our results suggest that the anti-inflammatory and immunosuppressive activities of triptolide may be due, in part,to its apoptosis-inducing effects on DCs.

  6. Hyperpigmentation mechanism of methyl 3,5-di-caffeoylquinate through activation of p38 and MITF induction of tyrosinase.

    Science.gov (United States)

    Kim, Hyo Jung; Kim, Jin Sook; Woo, Je-Tae; Lee, Ik-Soo; Cha, Byung-Yoon

    2015-07-01

    Methyl 3,5-di-caffeoylquinate (3,5-diCQM) has been used for the treatment of various diseases in oriental medicine, but its effect on melanogenesis has not been reported yet. In this study, the molecular mechanism of 3,5-diCQM-induced melanogenesis was investigated. It was found that 3,5-diCQM induced synthesis of melanin pigments in murine B16F10 melanoma cells in a concentration-dependent manner. Treatment of cells with 3,5-diCQM for 48 h increased extracellular and intracellular melanin production and tyrosinase activity. The expressions of tyrosinase, tyrosinase-related protein 1 (TRP1), and TRP2 were up-regulated in a dose-dependent manner 48 h after 3,5-diCQM treatment. Western blot analysis showed that 3,5-diCQM increased the phosphorylation of p38 mitogen-activated protein kinase and cAMP responsive element binding as well as the expression of microphthalmia-associated transcription factor. In addition, 3,5-diCQM-stimulated cAMP production, and 3,5-diCQM-induced tyrosinase activity and melanin synthesis were attenuated by H89, a protein kinase A inhibitor. These results suggested that 3,5-diCQM-mediated activation of the p38 pathway may represent a novel approach for an effective therapy for vitiligo and hair graying. PMID:26018825

  7. Tumor suppressor gene ING3 induces cardiomyocyte hypertrophy via inhibition of AMPK and activation of p38 MAPK signaling.

    Science.gov (United States)

    Wang, Jiaojiao; Liu, Zhiping; Feng, Xiaojun; Gao, Si; Xu, Suowen; Liu, Peiqing

    2014-11-15

    Cardiac hypertrophy, an adaptive growth process that occurs in response to various pathophysiological stimuli, constitutes an important risk factor for the development of heart failure. However, the molecular mechanisms that regulate this cardiac growth response are not completely understood. Here we revealed that ING3 (inhibitor of growth family, member 3), a type II tumor suppressor, plays a critical role in the regulation of cardiac hypertrophy. ING3 expression was present in relatively high abundance in the heart, and was prominently upregulated in hypertrophic agonists angiotensin II (Ang II), phenylephrine (PE), or isoproterenol (ISO)-stimulated cardiomyocytes and in hearts of rat undergoing abdominal aortic constriction (AAC) surgery. In cardiomyocytes, overexpression of ING3 caused an increase in ANP, BNP and β-MHC mRNA levels and cell surface area, while depletion of ING3 attenuated PE-induced cardiomyocyte hypertrophy. Mechanistically, we have demonstrated that overexpression of ING3 could inactivate the AMPK and activate the canonical p38 MAPK signaling. Remarkably, AMPK agonist AICAR or p38 MAPK inhibitor SB203580 abrogated ING3-induced hypertrophic response in cardiomyocytes. In summary, our data disclose a novel role of ING3 as an inducer of pathological cardiac hypertrophy, suggesting that silencing of ING3 may be explored as a potential therapeutic target in preventing cardiac hypertrophy.

  8. Piperlongumine inhibits migration of glioblastoma cells via activation of ROS-dependent p38 and JNK signaling pathways.

    Science.gov (United States)

    Liu, Qian Rong; Liu, Ju Mei; Chen, Yong; Xie, Xiao Qiang; Xiong, Xin Xin; Qiu, Xin Yao; Pan, Feng; Liu, Di; Yu, Shang Bin; Chen, Xiao Qian

    2014-01-01

    Piperlongumine (PL) is recently found to kill cancer cells selectively and effectively via targeting reactive oxygen species (ROS) responses. To further explore the therapeutic effects of PL in cancers, we investigated the role and mechanisms of PL in cancer cell migration. PL effectively inhibited the migration of human glioma (LN229 or U87 MG) cells but not normal astrocytes in the scratch-wound culture model. PL did not alter EdU(+)-cells and cdc2, cdc25c, or cyclin D1 expression in our model. PL increased ROS (measured by DCFH-DA), reduced glutathione, activated p38 and JNK, increased IκBα, and suppressed NFκB in LN229 cells after scratching. All the biological effects of PL in scratched LN229 cells were completely abolished by the antioxidant N-acetyl-L-cysteine (NAC). Pharmacological administration of specific p38 (SB203580) or JNK (SP600125) inhibitors significantly reduced the inhibitory effects of PL on LN229 cell migration and NF κ B activity in scratch-wound and/or transwell models. PL prevented the deformation of migrated LN229 cells while NAC, SB203580, or SP600125 reversed PL-induced morphological changes of migrated cells. These results suggest potential therapeutic effects of PL in the treatment and prevention of highly malignant tumors such as glioblastoma multiforme (GBM) in the brain by suppressing tumor invasion and metastasis. PMID:24967005

  9. Piperlongumine Inhibits Migration of Glioblastoma Cells via Activation of ROS-Dependent p38 and JNK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Qian Rong Liu

    2014-01-01

    Full Text Available Piperlongumine (PL is recently found to kill cancer cells selectively and effectively via targeting reactive oxygen species (ROS responses. To further explore the therapeutic effects of PL in cancers, we investigated the role and mechanisms of PL in cancer cell migration. PL effectively inhibited the migration of human glioma (LN229 or U87 MG cells but not normal astrocytes in the scratch-wound culture model. PL did not alter EdU+-cells and cdc2, cdc25c, or cyclin D1 expression in our model. PL increased ROS (measured by DCFH-DA, reduced glutathione, activated p38 and JNK, increased IκBα, and suppressed NFκB in LN229 cells after scratching. All the biological effects of PL in scratched LN229 cells were completely abolished by the antioxidant N-acetyl-L-cysteine (NAC. Pharmacological administration of specific p38 (SB203580 or JNK (SP600125 inhibitors significantly reduced the inhibitory effects of PL on LN229 cell migration and NFκB activity in scratch-wound and/or transwell models. PL prevented the deformation of migrated LN229 cells while NAC, SB203580, or SP600125 reversed PL-induced morphological changes of migrated cells. These results suggest potential therapeutic effects of PL in the treatment and prevention of highly malignant tumors such as glioblastoma multiforme (GBM in the brain by suppressing tumor invasion and metastasis.

  10. Bridelia ferruginea Produces Antineuroinflammatory Activity through Inhibition of Nuclear Factor-kappa B and p38 MAPK Signalling

    Directory of Open Access Journals (Sweden)

    Olumayokun A. Olajide

    2012-01-01

    Full Text Available Bridelia ferruginea is commonly used in traditional African medicine (TAM for treating various inflammatory conditions. Extracts from the plant have been shown to exhibit anti-inflammatory property in a number of in vivo models. In this study the influence of B. ferruginea (BFE on the production of PGE2, nitrite, and proinflammatory cytokines from LPS-stimulated BV-2 microglia was investigated. The effects of BFE on cyclooxygenase-2 (COX-2 and inducible nitric oxide synthase (iNOS protein expressions were evaluated in LPS-activated rat primary microglia. The roles of NF-κB and MAPK signalling in the actions of BFE were also investigated. BFE (25–200 μg inhibited the production of PGE2, nitrite, tumour necrosis factor-α (TNFα, and interleukin-6 (IL-6 as well as COX-2 and iNOS protein expressions in LPS-activated microglial cells. Further studies to elucidate the mechanism of anti-inflammatory action of BFE revealed interference with nuclear translocation of NF-κBp65 through mechanisms involving inhibition of IκB degradation. BFE prevented phosphorylation of p38, but not p42/44 or JNK MAPK. It is suggested that Bridelia ferruginea produces anti-inflammatory action through mechanisms involving p38 MAPK and NF-κB signalling.

  11. Behavioral evidence for the differential regulation of p-p38 MAPK and p-NF-κB in rats with trigeminal neuropathic pain

    OpenAIRE

    Lee Min K; Han Seung R; Park Min K; Kim Min J; Bae Yong C; Kim Sung K; Park Jae S; Ahn Dong K

    2011-01-01

    Abstract Background We investigated the differential regulation of p-p38 MAPK or p-NF-κB in male Sprague-Dawley rats with inferior alveolar nerve injury resulting from mal-positioned dental implants. For this purpose, we characterized the temporal expression of p-p38 MAPK or p-NF-κB in the medullary dorsal horn and examined changes in nociceptive behavior after a blockade of p-p38 MAPK or p-NF-κB pathways in rats with trigeminal neuropathic pain. Results Under anesthesia, the left lower secon...

  12. Effects of Chaihu-Shugan-San and Shen-Ling-Bai-Zhu-San on p38 MAPK Pathway in Kupffer Cells of Nonalcoholic Steatohepatitis

    Directory of Open Access Journals (Sweden)

    Qin-He Yang

    2014-01-01

    Full Text Available This study aimed to investigate the effects of Chaihu-Shugan-San (CSS, Shen-Ling-Bai-Zhu-San (SLBZS, and integrated recipe of the above two recipes on inflammatory markers and proteins involved in p38 MAPK pathway in Kupffer cells of NASH rats induced by high fat diet (HFD. Rats were administered at low or high dose of CSS, SLBZS, and integrated recipe except normal group and model group for 16 weeks. The levels of hepatic lipid, TNF-α, IL-1, and IL-6 in liver tissues were measured. Kupffer cells were isolated from livers to evaluate expressions of TLR4, p-p38 MAPK, and p38 MAPK by Western blotting. The results showed that the NASH model rats successfully reproduced typical pathogenetic and histopathological features. Levels of hepatic lipid and liver tissues inflammatory factors in high-dose SLBZS group and integrated recipe group were all lower than that of model group decreased observably. Expressions of TLR4, p-p38 MAPK, and p38 MAPK in Kupffer cells were decreased in all treatment groups, but there was no significant difference between treatment groups. The high-dose SLBZS group had the lowest expression levels of TLR4, and the most visible downtrend in the expression levels of p-p38 MAPK and p38 MAPK was found in the high-dose integrated recipe group. The ratio of p-p38 MAPK to total p38 MAPK protein was obviously increased in all treatment groups. Therefore, our study showed that the activation of p38 MAPK pathway in Kupffer cells might be related to the release of inflammatory factors such as TNF-α, IL-1, and IL-6 in NASH rats. High dose of SLBZS and integrated recipe might work as a significant anti-inflammatory effect in Kupffer cells of NASH rats induced by HFD through suppression of p38 MAPK pathway. It indicated that p38 MAPK pathway may be the possible effective target for the recipes.

  13. Dexamethasone Causes Sustained Expression of Mitogen-Activated Protein Kinase (MAPK) Phosphatase 1 and Phosphatase-Mediated Inhibition of MAPK p38

    OpenAIRE

    Lasa, Marina; Abraham, Sonya M.; Boucheron, Christine; Saklatvala, Jeremy; Clark, Andrew R.

    2002-01-01

    The stress-activated protein kinase p38 stabilizes a number of mRNAs encoding inflammatory mediators, such as cyclooxygenase 2 (Cox-2). In HeLa cells the anti-inflammatory glucocorticoid dexamethasone destabilizes Cox-2 mRNA by inhibiting p38 function. Here we demonstrate that this effect is phosphatase dependent. Furthermore, in HeLa cells dexamethasone induced the sustained expression of mitogen-activated protein kinase phosphatase 1 (MKP-1), a potent inhibitor of p38 function. The inhibiti...

  14. Transcriptional Down-Regulation of Thromboxane A(2) Receptor Expression via Activation of MAPK ERK1/2, p38/NF-kappaB Pathways

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars;

    2008-01-01

    . Phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38 and nuclear factor-kappaB (NF-kappaB) was seen by Western blot within 1-3 h after organ culture. Inhibition of ERK1/2, p38 or NF-kappaB reversed depressed contraction as well as decreased receptor mRNA expression. Actinomycin D...... arteries down-regulates VSMC TP receptor expression through activation of ERK1/2 and p38/NF-kappaB signal pathways....

  15. Transcriptional down-regulation of thromboxane A(2) receptor expression via activation of MAPK ERK1/2, p38/NF-kappaB pathways

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars;

    2009-01-01

    . Phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38 and nuclear factor-kappaB (NF-kappaB) was seen by Western blot within 1-3 h after organ culture. Inhibition of ERK1/2, p38 or NF-kappaB reversed depressed contraction as well as decreased receptor mRNA expression. Actinomycin D...... arteries down-regulates VSMC TP receptor expression through activation of ERK1/2 and p38/NF-kappaB signal pathways....

  16. Single Muscle Immobilization Decreases Single-Fibre Myosin Heavy Chain Polymorphism: Possible Involvement of p38 and JNK MAP Kinases

    Science.gov (United States)

    Derbré, Frédéric; Droguet, Mickaël; Léon, Karelle; Troadec, Samuel; Pennec, Jean-Pierre; Giroux-Metges, Marie-Agnès; Rannou, Fabrice

    2016-01-01

    Purpose Muscle contractile phenotype is affected during immobilization. Myosin heavy chain (MHC) isoforms are the major determinant of the muscle contractile phenotype. We therefore sought to evaluate the effects of muscle immobilization on both the MHC composition at single-fibre level and the mitogen-activated protein kinases (MAPK), a family of intracellular signaling pathways involved in the stress-induced muscle plasticity. Methods The distal tendon of female Wistar rat Peroneus Longus (PL) was cut and fixed to the adjacent bone at neutral muscle length. Four weeks after the surgery, immobilized and contralateral PL were dissociated and the isolated fibres were sampled to determine MHC composition. Protein kinase 38 (p38), extracellular signal-regulated kinases (ERK1/2), and c-Jun- NH2-terminal kinase (JNK) phosphorylations were measured in 6- and 15-day immobilized and contralateral PL. Results MHC distribution in immobilized PL was as follows: I = 0%, IIa = 11.8 ± 2.8%, IIx = 53.0 ± 6.1%, IIb = 35.3 ± 7.3% and I = 6.1 ± 3.9%, IIa = 22.1 ± 3.4%, IIx = 46.6 ± 4.5%, IIb = 25.2 ± 6.6% in contralateral muscle. The MHC composition in immobilized muscle is consistent with a faster contractile phenotype according to the Hill’s model of the force-velocity relationship. Immobilized and contralateral muscles displayed a polymorphism index of 31.1% (95% CI 26.1–36.0) and 39.3% (95% CI 37.0–41.5), respectively. Significant increases in p38 and JNK phosphorylation were observed following 6 and 15 days of immobilization. Conclusions Single muscle immobilization at neutral length induces a shift of MHC composition toward a faster contractile phenotype and decreases the polymorphic profile of single fibres. Activation of p38 and JNK could be a potential mechanism involved in these contractile phenotype modifications during muscle immobilization. PMID:27383612

  17. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response.

    Science.gov (United States)

    Guillonneau, Maëva; Paris, François; Dutoit, Soizic; Estephan, Hala; Bénéteau, Elise; Huot, Jacques; Corre, Isabelle

    2016-08-01

    Oxidative stress is a leading cause of endothelial dysfunction. The p38 MAPK pathway plays a determinant role in allowing cells to cope with oxidative stress and is tightly regulated by a balanced interaction between p38 protein and its interacting partners. By using a proteomic approach, we identified nucleophosmin (NPM) as a new partner of p38 in HUVECs. Coimmunoprecipitation and microscopic analyses confirmed the existence of a cytosolic nucleophosmin (NPM)/p38 interaction in basal condition. Oxidative stress, which was generated by exposure to 500 µM H2O2, induces a rapid dephosphorylation of NPM at T199 that depends on phosphatase PP2A, another partner of the NPM/p38 complex. Blocking PP2A activity leads to accumulation of NPM-pT199 and to an increased association of NPM with p38. Concomitantly to its dephosphorylation, oxidative stress promotes translocation of NPM to the nucleus to affect the DNA damage response. Dephosphorylated NPM impairs the signaling of oxidative stress-induced DNA damage via inhibition of the phosphorylation of ataxia-telangiectasia mutated and DNA-dependent protein kinase catalytic subunit. Overall, these results suggest that the p38/NPM/PP2A complex acts as a dynamic sensor, allowing endothelial cells to react rapidly to acute oxidative stress.-Guillonneau, M., Paris, F., Dutoit, S., Estephan, H., Bénéteau, E., Huot, J., Corre, I. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response.

  18. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response.

    Science.gov (United States)

    Guillonneau, Maëva; Paris, François; Dutoit, Soizic; Estephan, Hala; Bénéteau, Elise; Huot, Jacques; Corre, Isabelle

    2016-08-01

    Oxidative stress is a leading cause of endothelial dysfunction. The p38 MAPK pathway plays a determinant role in allowing cells to cope with oxidative stress and is tightly regulated by a balanced interaction between p38 protein and its interacting partners. By using a proteomic approach, we identified nucleophosmin (NPM) as a new partner of p38 in HUVECs. Coimmunoprecipitation and microscopic analyses confirmed the existence of a cytosolic nucleophosmin (NPM)/p38 interaction in basal condition. Oxidative stress, which was generated by exposure to 500 µM H2O2, induces a rapid dephosphorylation of NPM at T199 that depends on phosphatase PP2A, another partner of the NPM/p38 complex. Blocking PP2A activity leads to accumulation of NPM-pT199 and to an increased association of NPM with p38. Concomitantly to its dephosphorylation, oxidative stress promotes translocation of NPM to the nucleus to affect the DNA damage response. Dephosphorylated NPM impairs the signaling of oxidative stress-induced DNA damage via inhibition of the phosphorylation of ataxia-telangiectasia mutated and DNA-dependent protein kinase catalytic subunit. Overall, these results suggest that the p38/NPM/PP2A complex acts as a dynamic sensor, allowing endothelial cells to react rapidly to acute oxidative stress.-Guillonneau, M., Paris, F., Dutoit, S., Estephan, H., Bénéteau, E., Huot, J., Corre, I. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response. PMID:27142525

  19. Effect and its mechanism of FoxO3a activates FasL on renal tubular epithelial cell apoptosis induced by renal ischemia/reperfusion injury%FoxO3a 激活 FasL 介导肾缺血再灌注中肾小管上皮细胞凋亡的作用及机制

    Institute of Scientific and Technical Information of China (English)

    徐剑; 王艳; 姬怀雪; 胡书群; 董红艳; 任玲

    2014-01-01

    Objective To explore the role and mechanism of forkhead box proteinO3a activates Fas ligand on renal tubular epithelial cell ( RTC ) apoptosis induced by renal ischemia /reperfusion ( I/R ) . Methods The model by clamping renal pedicles for 45 minutes follow-ing reperfusion was established.The protein expression of forkhead box proteinO3a and Fas ligand were examined by western blotting.Apoptosis of RTC was assessed by TdT -mediated dUTP nick -end Labeling (TUNEL) method and transmission electron microscopic (TEM).Renal function was assessed by biochemical automatic analyzer .Results The protein expression level of forkhead box proteinO 3a and Fas ligand was increased significantly following renal I /R at 1 h.RTC nucleus was shrinking, crushing followed renal I /R, and a significant increase in the number of TUNEL -positive cells following renal I /R was displayed com-pared with the sham group.The level of blood urea nitrogen(BUN) and serum creatinine ( Scr) was increased significantly compared with the sham group (P <0.05,P <0.01).Conclusion FoxO3a could be acti-vated during renal I /R, and then up -regulated FasL protein expression , facilitated renal tubular epithelial cell apoptosis , in turn, aggravated renal I /R injury in rats.%目的:观察叉头框蛋白 FoxO3a 激活 Fas 配体 FasL 介导肾缺血再灌注损伤诱导肾小管上皮细胞凋亡的作用及机制。方法双侧夹闭大鼠肾蒂缺血45 min 后再灌注建立动物模型。免疫印迹分析 FoxO3a、FasL 的表达变化;原位缺口末端标记法检测大鼠肾小管上皮细胞凋亡情况;透射电镜观察肾小管上皮细胞凋亡的超微结构变化;生化全自动分析仪检测大鼠肾功能。结果大鼠肾缺血再灌注1 h 后,FoxO3a 及 FasL 蛋白表达水平明显增加;再灌注48 h,肾小管上皮细胞凋亡损伤加剧,凋亡数目明显增加,血肌酐及尿素氮水平明显升高,与假手术组相比,差异有统计学意义(P <0.05

  20. Neurite Outgrowth of PC12 Mutant Cells Induced by Orange Oil and d-Limonene via the p38 MAPK Pathway

    Directory of Open Access Journals (Sweden)

    Shinomiya,Misae

    2012-04-01

    Full Text Available We studied the effects of natural essential oil on neurite outgrowth in PC12m3 neuronal cells to elucidate the mechanism underlying the action of the oils used in aromatherapy. Neurite outgrowth can be induced by nerve growth factor (NGF, where ERK and p38 MAPK among MAPK pathways play important roles in activating intracellular signal transduction. In this study, we investigated whether d-limonene, the major component of essential oils from oranges, can promote neurite outgrowth in PC12m3 cells, in which neurite outgrowth can be induced by various physical stimulations. We also examined by which pathways, the ERK, p38 MAPK or JNK pathway, d-limonene acts on PC12m3 cells. Our results showed that neurite outgrowth can be induced when the cells are treated with d-limonene. After treatment with d-limonene, we observed that p38 MAPK is strongly activated in PC12m3 cells, while ERK is weakly activated. In contrast, JNK shows little activity. A study using an inhibitor of p38 MAPK revealed that neurite outgrowth in PC12m3 cells is induced via the activation of p38 MAPK by d-limonene. The results thus indicate that d-limonene may promote neural cell differentiation mainly via activation of the p38 MAPK pathway.

  1. p38α MAPK Regulates Lineage Commitment and OPG Synthesis of Bone Marrow Stromal Cells to Prevent Bone Loss under Physiological and Pathological Conditions

    Directory of Open Access Journals (Sweden)

    Qian Cong

    2016-04-01

    Full Text Available Bone marrow-derived mesenchymal stromal cells (BM-MSCs are capable of differentiating into osteoblasts, chondrocytes, and adipocytes. Skewed differentiation of BM-MSCs contributes to the pathogenesis of osteoporosis. Yet how BM-MSC lineage commitment is regulated remains unclear. We show that ablation of p38α in Prx1+ BM-MSCs produced osteoporotic phenotypes, growth plate defects, and increased bone marrow fat, secondary to biased BM-MSC differentiation from osteoblast/chondrocyte to adipocyte and increased osteoclastogenesis and bone resorption. p38α regulates BM-MSC osteogenic commitment through TAK1-NF-κB signaling and osteoclastogenesis through osteoprotegerin (OPG production by BM-MSCs. Estrogen activates p38α to maintain OPG expression in BM-MSCs to preserve the bone. Ablation of p38α in BM-MSCs positive for Dermo1, a later BM-MSC marker, only affected osteogenic differentiation. Thus, p38α mitogen-activated protein kinase (MAPK in Prx1+ BM-MSCs acts to preserve the bone by promoting osteogenic lineage commitment and sustaining OPG production. This study thus unravels previously unidentified roles for p38α MAPK in skeletal development and bone remodeling.

  2. Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38.

    Science.gov (United States)

    Arnold, Christopher P; Merryman, M Shane; Harris-Arnold, Aleishia; McKinney, Sean A; Seidel, Chris W; Loethen, Sydney; Proctor, Kylie N; Guo, Longhua; Sánchez Alvarado, Alejandro

    2016-07-21

    The interrelationship between endogenous microbiota, the immune system, and tissue regeneration is an area of intense research due to its potential therapeutic applications. We investigated this relationship in Schmidtea mediterranea, a model organism capable of regenerating any and all of its adult tissues. Microbiome characterization revealed a high Bacteroidetes to Proteobacteria ratio in healthy animals. Perturbations eliciting an expansion of Proteobacteria coincided with ectopic lesions and tissue degeneration. The culture of these bacteria yielded a strain of Pseudomonas capable of inducing progressive tissue degeneration. RNAi screening uncovered a TAK1 innate immune signaling module underlying compromised tissue homeostasis and regeneration during infection. TAK1/MKK/p38 signaling mediated opposing regulation of apoptosis during infection versus normal tissue regeneration. Given the complex role of inflammation in either hindering or supporting reparative wound healing and regeneration, this invertebrate model provides a basis for dissecting the duality of evolutionarily conserved inflammatory signaling in complex, multi-organ adult tissue regeneration.

  3. p38 MAPK is involved in human neutrophil chemotaxis induced by L-amino acid oxidase from Calloselasma rhodosthoma.

    Science.gov (United States)

    Pontes, Adriana S; Setúbal, Sulamita da S; Nery, Neriane Monteiro; da Silva, Francisquinha Souza; da Silva, Silvana D; Fernandes, Carla F C; Stábeli, Rodrigo G; Soares, Andreimar M; Zuliani, Juliana P

    2016-09-01

    The action of LAAO, an L-amino acid oxidase isolated from Calloselasma rhodosthoma snake venom, on isolated human neutrophil function was investigated. Cr-LAAO showed no toxicity on neutrophils. Cr-LAAO in its native form induced the neutrophil chemotaxis, suggesting that its primary structure is essential for stimulation the cell. p38 MAPK and PI3K have a role as signaling pathways of CR-LAAO induced chemotaxis. This toxin also induced the production of hydrogen peroxide and stimulated phagocytosis in neutrophils. Furthermore, Cr-LAAO was able to stimulate neutrophils to release IL-6, IL-8, MPO, LTB4 and PGE2. Together, the data showed that the Cr-LAAO triggers relevant proinflammatory events. PMID:27242041

  4. STATE OF JNK AND P38 MAP-KINASE SYSTEM IN BLOOD monon uclea r le ucocytes DUR ING INFLAMMATION

    Directory of Open Access Journals (Sweden)

    N. Y. Chasovskih

    2009-01-01

    Full Text Available Abstract. Pogrammed cell death of peripheral blood mononuclear leucocytes from patients with acute inflammatory diseases (non-nosocomial pneumonia, acute appendicitis was investigated under ex vivo conditions, upon cultivation of the cells with selective inhibitors of JNK (SP600125 and р38 МАРК (ML3403. In vitro addition of SP600125 and ML3403 under oxidative stress conditions prevents increase of annexinpositive mononuclear cells numbers, thus suggesting JNK and р38 МАР-kinases to be involved into oxidative mechanisms of apoptosis deregulation. A role of JNK in IL-8 production by mononuclear leucocytes was revealed in cases of acute inflammation. Regulatory effect of JNK and p38 MAP-kinases can be mediated through activation of redox-sensitive apoptogenic signal transduction systems, as well as due to changes in cellular cytokine-producing function.

  5. C-reactive protein decreases interleukin-8 production in human endothelial progenitor cells by inhibition of p38 MAPK pathway

    Institute of Scientific and Technical Information of China (English)

    NAN Jing-long; LI Jian-jun; HE Jian-guo

    2009-01-01

    Background C-reactive protein (CRP) has been reported to damage the vascular wall by inducing endothelial dysfunction and inflammation,and it is also speculated to have a role in attenuating angiogenic functions of human endothelial progenitor cells (EPCs).Interleukin-8 (IL-8) is an important mediator of the paracrine mitogenic effect of EPCs,which has direct angiogenic effects on mature endothelial cells.We,herein,investigated the direct effect of CRP on IL-8 production and gene expression in cultured human EPCs.Methods EPCs were isolated from the peripheral venous blood of healthy male volunteers.Cells were cultured in EndoCultTM liquid medium in the absence and presence of CRP at clinically relevant concentrations (5 to 25 μg/ml) for different durations (3 to 48 hours).IL-8 protein and mRNA of cultured EPCs were evaluated using ELISA and real-time PCR.Results The results showed that CRP at a concentration of 10 pg/ml significantly reduced IL-8 secretion of cultured EPCs with a peak at 25 μg/ml,and also decreased mRNA expression in EPCs with a peak at 12 hours.In addition,preincubation of EPCs with SB203580,an inhibitor of p38 mitogen-activated protein kinase (MAPK) decreased CRP inhibition of IL-8 mRNA expression at 12 hours in EPCs.Conclusions Our study,for the first time,demonstrates that CRP directly inhibits EPCs IL-8 secretion,a key cytokine player of angiogenesis induced by EPCs.Inhibition occurred in part via an effect of CRP to active the p38 MAPK signal transduction pathway in EPC.The ability of CRP to inhibit EPCs IL-8 secretion may represent an important mechanism that further links inflammation to cardiovascular disease.

  6. ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Adrian Nahirnyj

    Full Text Available Astrocytes are the most abundant glial cell in the retinal nerve fiber layer (NFL and optic nerve head (ONH, and perform essential roles in maintaining retinal ganglion cell (RGC detoxification and homeostasis. Mature astrocytes are relatively quiescent, but rapidly undergo a phenotypic switch in response to insult, characterized by upregulation of intermediate filament proteins, loss of glutamate buffering, secretion of pro-inflammatory cytokines, and increased antioxidant production. These changes result in both positive and negative influences on RGCs. However, the mechanism regulating these responses is still unclear, and pharmacologic strategies to modulate select aspects of this switch have not been thoroughly explored. Here we describe a system for rapid culture of mature astrocytes from the adult rat retina that remain relatively quiescent, but respond robustly when challenged with oxidative damage, a key pathogenic stress associated with inner retinal injury. When primary astrocytes were exposed to reactive oxygen species (ROS we consistently observed characteristic changes in activation markers, along with increased expression of detoxifying genes, and secretion of proinflammatory cytokines. This in vitro model was then used for a pilot chemical screen to target specific aspects of this switch. Increased activity of p38α and β Mitogen Activated Protein Kinases (MAPKs were identified as a necessary signal regulating expression of MnSOD, and heme oxygenase 1 (HO-1, with consequent changes in ROS-mediated injury. Additionally, multiplex cytokine profiling detected p38 MAPK-dependent secretion of IL-6, MCP-1, and MIP-2α, which are proinflammatory signals recently implicated in damage to the inner retina. These data provide a mechanism to link increased oxidative stress to proinflammatory signaling by astrocytes, and establish this assay as a useful model to further dissect factors regulating the reactive switch.

  7. Novel Antiplatelet Activity of Minocycline Involves Inhibition of MLK3-p38 Mitogen Activated Protein Kinase Axis.

    Directory of Open Access Journals (Sweden)

    Joseph W Jackson

    Full Text Available Platelets play an essential role in hemostasis and wound healing by facilitating thrombus formation at sites of injury. Platelets also mediate inflammation and contain several pro-inflammatory molecules including cytokines and chemokines that mediate leukocyte recruitment and activation. Not surprisingly, platelet dysfunction is known to contribute to several inflammatory disorders. Antiplatelet therapies, such as aspirin, adenosine diphosphate (ADP antagonists, glycoprotein IIb/IIIa (GPIIb/IIIa inhibitors, and anticoagulants such as warfarin, dampen platelet activity at the risk of unwarranted bleeding. Thus, the development of drugs that reduce platelet-mediated inflammation without interfering with thrombus formation is of importance to combat platelet-associated disorders. We have shown here for the first time that the tetracycline antibiotic, minocycline, administered to HIV-infected individuals reduces plasma levels of soluble CD40L and platelet factor 4 levels, host molecules predominately released by platelets. Minocycline reduced the activation of isolated platelets in the presence of the potent platelet activator, thrombin, as measured by ELISA and flow cytometry. Platelet degranulation was reduced upon exposure to minocycline as shown by mepacrine retention and flow cytometry. However, minocycline had no effect on spreading, aggregation, GPIIb/IIIa activation, or in vivo thrombus formation. Lastly, immunoblot analysis suggests that the antiplatelet activity of minocycline is likely mediated by inhibition of mixed lineage kinase 3 (MLK3-p38 MAPK signaling axis and loss of p38 activity. Our findings provide a better understanding of platelet biology and a novel repurposing of an established antibiotic, minocycline, to specifically reduce platelet granule release without affecting thrombosis, which may yield insights in generating novel, specific antiplatelet therapies.

  8. Novel Antiplatelet Activity of Minocycline Involves Inhibition of MLK3-p38 Mitogen Activated Protein Kinase Axis

    Science.gov (United States)

    Jackson, Joseph W.; Singh, Meera V.; Singh, Vir B.; Jones, Letitia D.; Davidson, Gregory A.; Ture, Sara; Morrell, Craig N.; Schifitto, Giovanni; Maggirwar, Sanjay B.

    2016-01-01

    Platelets play an essential role in hemostasis and wound healing by facilitating thrombus formation at sites of injury. Platelets also mediate inflammation and contain several pro-inflammatory molecules including cytokines and chemokines that mediate leukocyte recruitment and activation. Not surprisingly, platelet dysfunction is known to contribute to several inflammatory disorders. Antiplatelet therapies, such as aspirin, adenosine diphosphate (ADP) antagonists, glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors, and anticoagulants such as warfarin, dampen platelet activity at the risk of unwarranted bleeding. Thus, the development of drugs that reduce platelet-mediated inflammation without interfering with thrombus formation is of importance to combat platelet-associated disorders. We have shown here for the first time that the tetracycline antibiotic, minocycline, administered to HIV-infected individuals reduces plasma levels of soluble CD40L and platelet factor 4 levels, host molecules predominately released by platelets. Minocycline reduced the activation of isolated platelets in the presence of the potent platelet activator, thrombin, as measured by ELISA and flow cytometry. Platelet degranulation was reduced upon exposure to minocycline as shown by mepacrine retention and flow cytometry. However, minocycline had no effect on spreading, aggregation, GPIIb/IIIa activation, or in vivo thrombus formation. Lastly, immunoblot analysis suggests that the antiplatelet activity of minocycline is likely mediated by inhibition of mixed lineage kinase 3 (MLK3)-p38 MAPK signaling axis and loss of p38 activity. Our findings provide a better understanding of platelet biology and a novel repurposing of an established antibiotic, minocycline, to specifically reduce platelet granule release without affecting thrombosis, which may yield insights in generating novel, specific antiplatelet therapies. PMID:27270236

  9. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Shuichi Segawa

    Full Text Available Probiotics exhibit beneficial effects on human health, particularly in the maintenance of intestinal homeostasis in a complex manner notwithstanding the diversity of an intestinal flora between individuals. Thus, it is highly probable that some common molecules secreted by probiotic and/or commensal bacteria contribute to the maintenance of intestinal homeostasis and protect the intestinal epithelium from injurious stimuli. To address this question, we aimed to isolate the cytoprotective compound from a lactobacillus strain, Lactobacillus brevis SBC8803 which possess the ability to induce cytoprotective heat shock proteins in mouse small intestine. L. brevis was incubated in MRS broth and the supernatant was passed through with a 0.2-µm filter. Caco2/bbe cells were treated with the culture supernatant, and HSP27 expression was evaluated by Western blotting. HSP27-inducible components were separated by ammonium sulfate precipitation, DEAE anion exchange chromatography, gel filtration, and HPLC. Finally, we identified that the HSP27-inducible fraction was polyphosphate (poly P, a simple repeated structure of phosphates, which is a common product of lactobacilli and other bacteria associated with intestinal microflora without any definitive physiological functions. Then, poly P was synthesized by poly P-synthesizing enzyme polyphosphate kinase. The synthesized poly P significantly induced HSP27 from Caco2/BBE cells. In addition, Poly P suppressed the oxidant-induced intestinal permeability in the mouse small intestine and pharmacological inhibitors of p38 MAPK and integrins counteract its protective effect. Daily intrarectal administration of poly P (10 µg improved the inflammation grade and survival rate in 4% sodium dextran sulfate-administered mice. This study, for the first time, demonstrated that poly P is the molecule responsible for maintaining intestinal barrier actions which are mediated through the intestinal integrin β1-p38 MAPK.

  10. Microglial Signaling in Chronic Pain with a Special Focus on Caspase 6, p38 MAP Kinase, and Sex Dependence.

    Science.gov (United States)

    Berta, T; Qadri, Y J; Chen, G; Ji, R R

    2016-09-01

    Microglia are the resident immune cells in the spinal cord and brain. Mounting evidence suggests that activation of microglia plays an important role in the pathogenesis of chronic pain, including chronic orofacial pain. In particular, microglia contribute to the transition from acute pain to chronic pain, as inhibition of microglial signaling reduces pathologic pain after inflammation, nerve injury, and cancer but not baseline pain. As compared with inflammation, nerve injury induces much more robust morphologic activation of microglia, termed microgliosis, as shown by increased expression of microglial markers, such as CD11b and IBA1. However, microglial signaling inhibitors effectively reduce inflammatory pain and neuropathic pain, arguing against the importance of morphologic activation of microglia in chronic pain sensitization. Importantly, microglia enhance pain states via secretion of proinflammatory and pronociceptive mediators, such as tumor necrosis factor α, interleukins 1β and 18, and brain-derived growth factor. Mechanistically, these mediators have been shown to enhance excitatory synaptic transmission and suppress inhibitory synaptic transmission in the pain circuits. While early studies suggested a predominant role of microglia in the induction of chronic pain, further studies have supported a role of microglia in the maintenance of chronic pain. Intriguingly, recent studies show male-dominant microglial signaling in some neuropathic pain and inflammatory pain states, although both sexes show identical morphologic activation of microglia after nerve injury. In this critical review, we provide evidence to show that caspase 6-a secreted protease that is expressed in primary afferent axonal terminals surrounding microglia-is a robust activator of microglia and induces profound release of tumor necrosis factor α from microglia via activation of p38 MAP kinase. The authors also show that microglial caspase 6/p38 signaling is male dominant in some

  11. ROCK activity affects IL-1-induced signaling possibly through MKK4 and p38 MAPK in Caco-2 cells.

    Science.gov (United States)

    Banerjee, Sayantan; McGee, Dennis W

    2016-09-01

    Elevated levels of interleukin-1 (IL-1) accompany inflammatory bowel disease. IL-1-stimulated intestinal epithelial cells can secrete potent chemokines like CXCL8 to exacerbate inflammation. Previously, we found that inhibiting the Rho-associated kinase (ROCK) could inhibit IL-1- or TNF-α-induced CXCL8 secretion by the Caco-2 colonic epithelial cell line. This ROCK inhibition did not affect IκBα phosphorylation and degradation, but suppressed the phosphorylation of c-Jun N-terminal kinase (JNK). Therefore, ROCK must play an important role in epithelial cell CXCL8 responses through an effect on the JNK signaling pathway. Here, we extend these studies by showing that inhibiting ROCK suppressed the IL-1-induced phosphorylation of MKK4, a known activator of JNK, but not MKK7. Yet, ROCK inhibition had no significant effect on the IL-1-induced phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2. Inhibiting ROCK also suppressed the phosphorylation of p38 MAPK after IL-1 stimulation, but this inhibition had no significant effect on the stability of CXCL8 messenger RNA (mRNA) after IL-1 stimulation. These results suggest that ROCK may be important in IL-1-induced signaling through MKK4 to JNK and the activation of p38 MAPK. Finally, inhibiting ROCK in IL-1 and TNF-α co-stimulated Caco-2 cells also resulted in a significant suppression of CXCL8 secretion and mRNA levels suggesting that inhibiting ROCK may be a mechanism to inhibit the overall response of epithelial cells to both cytokines. These studies indicate a novel signaling event, which could provide a target for suppressing intestinal epithelial cells (IEC) chemokine responses involved in mucosal inflammation. PMID:27173611

  12. Discovery of biaryl-4-carbonitriles as antihyperglycemic agents that may act through AMPK-p38 MAPK pathway.

    Science.gov (United States)

    Goel, Atul; Nag, Pankaj; Rahuja, Neha; Srivastava, Rohit; Chaurasia, Sumit; Gautam, Sudeep; Chandra, Sharat; Siddiqi, Mohammad Imran; Srivastava, Arvind K

    2014-08-25

    A series of functionalized biaryl-4-carbonitriles was synthesized in three steps and evaluated for PTP-1B inhibitory activity. Among the synthesized compounds, four biaryls 6a-d showed inhibition (IC50 58-75 μM) against in vitro PTP-1B assay possibly due to interaction with amino acid residues Lys120, Tyr46 through hydrogen bonding and aromatic-aromatic interactions, respectively. Two biaryl-4-carbonitriles 6b and 6c showed improved glucose tolerance, fasting as well as postprandial blood glucose, serum total triglycerides, and increased high-density lipoprotein-cholesterol in SLM, STZ, STZ-S and C57BL/KsJ-db/db animal models. The bioanalysis of 4'-bromo-2,3-dimethyl-5-(piperidin-1-yl)biphenyl-4-carbonitrile (6b) revealed that like insulin, it increased 2-deoxyglucose uptake in skeletal muscle cells (L6 and C2C12 myotubes). The compound 6b significantly up-regulated the genes related to the insulin signaling pathways like AMPK, MAPK including glucose transporter-4 (GLUT-4) gene in muscle tissue of C57BL/KsJ-db/db mice. Furthermore, it was observed that the compound 6b up-regulated PPARα, UCP2 and HNF4α, which are key regulator of glucose, lipid, and fatty acid metabolism. Western blot analysis of the compound 6b showed that it significantly increased the phosphorylation of AMPK and p38 MAPK and ameliorated glucose uptake in C57BL/KsJ-db/db mice through the AMPK-p38 MAPK pathway.

  13. Inhibition of ROS and upregulation of inflammatory cytokines by FoxO3a promotes survival against Salmonella typhimurium

    Science.gov (United States)

    Joseph, Julie; Ametepe, Emmanuelle S.; Haribabu, Naveen; Agbayani, Gerard; Krishnan, Lakshmi; Blais, Alexandre; Sad, Subash

    2016-01-01

    Virulent intracellular pathogens, such as the Salmonella species, engage numerous virulence factors to subvert host defence mechanisms to induce a chronic infection that leads to typhoid or exacerbation of other chronic inflammatory conditions. Here we show the role of the forkhead transcription factor FoxO3a during infection of mice with Salmonella typhimurium (ST). Although FoxO3a signalling does not affect the development of CD8+ T cell responses to ST, FoxO3a has an important protective role, particularly during the chronic stage of infection, by limiting the persistence of oxidative stress. Furthermore, FoxO3a signalling regulates ERK signalling in macrophages, which results in the maintenance of a proinflammatory state. FoxO3a signalling does not affect cell proliferation or cell death. Thus, these results reveal mechanisms by which FoxO3a promotes host survival during infection with chronic, virulent intracellular bacteria. PMID:27599659

  14. In vitro effects of p38MAPK inhibitor SB202190 on Echinococcus granulosus protoscoleces%p38MAPK抑制剂SB202190体外对细粒棘球蚴原头节的作用

    Institute of Scientific and Technical Information of China (English)

    张晶; 吕海龙; 王成华; 孙冯; 雷颖; 彭心宇; 姜玉峰

    2013-01-01

    目的 探讨p38MAPK抑制剂SB202190体外抑制细粒棘球蚴原头节生长的作用.方法 将体外培养的细粒棘球蚴原头节分别加入12.5、25、50、100 μmol/L的SB202190中体外孵育.利用伊红染色的方法,在光镜下观察原头节的活力变化.实验重复3次;扫描电子显微镜下(SEM)下观察SB202190作用后原头节表面超微结构改变;不同浓度SB202190作用24 h后,半胱氨酸天冬氨酸蛋白酶-3(caspase-3)活性检测试剂盒检测caspase-3酶活性.结果 50 μmol/L和100 μmol/L的SB202190作用1d后,头节活力开始下降.作用14d后,100 μmol/LSB202190组无存活的头节,50 μmol/L SB202190组的头节活力仅为13.8%.超微结构显示100 μmol/LSB202190作用6d后,原头节顶突外翻、变形,顶突界面缺损,吸盘变形,体表出现虫蛀样损害.不同浓度SB202190作用24 h后,与正常对照组比较,SB202190高浓度组原头节的caspase-3表达明显增高.结论 p38MAPK抑制剂SB202190在体外有明显的抑制细粒棘球蚴原头节生长的作用.%The aim of this study was to investigate the in vitro efficacy of the p38MAPK inhibitor SB202190 against Echinococcus granulosus protoscoleces.Protoscolices of Echinococcusgranulosus were incubated with SB202190 at concentrations of 12.5,25,50,100μmol/L,and the effects on protoscoleces viability were monitored by 0.1% eosin staining and light microscopic inspection.Each experiment was repeated for three times.Starting from day 1 of incubation in the presence of 50 μmol/L and 100μmol/L SB202190,viability of protoscoleces started to decline depending on the concentration of the inhibitors.After 14 days of incubation in 100μmol/L of SB202190,no survival protoscolece remained but 13.8% survival proto scoleces were found in 50μmol/L of SB202190 after 14 days.At the same time,ultrastructural effects of protoscoleces were observed by scanning electron microscopy (SEM),the morphological changes included contraction of the soma

  15. Differential activation of p38 and extracellular signal-regulated kinase in spinal cord in a model of bee venom-induced inflammation and hyperalgesia

    Directory of Open Access Journals (Sweden)

    Kobayashi Kimiko

    2008-04-01

    Full Text Available Abstract Background Honeybee's sting on human skin can induce ongoing pain, hyperalgesia and inflammation. Injection of bee venom (BV into the intraplantar surface of the rat hindpaw induces an early onset of spontaneous pain followed by a lasting thermal and mechanical hypersensitivity in the affected paw. The underlying mechanisms of BV-induced thermal and mechanical hypersensitivity are, however, poorly understood. In the present study, we investigated the role of mitogen-activated protein kinase (MAPK in the generation of BV-induced pain hypersensitivity. Results We found that BV injection resulted in a quick activation of p38, predominantly in the L4/L5 spinal dorsal horn ipsilateral to the inflammation from 1 hr to 7 d post-injection. Phosphorylated p38 (p-p38 was expressed in both neurons and microglia, but not in astrocytes. Intrathecal administration of the p38 inhibitor, SB203580, prevented BV-induced thermal hypersensitivity from 1 hr to 3 d, but had no effect on mechanical hypersensitivity. Activated ERK1/2 was observed exclusively in neurons in the L4/L5 dorsal horn from 2 min to 1 d, peaking at 2 min after BV injection. Intrathecal administration of the MEK inhibitor, U0126, prevented both mechanical and thermal hypersensitivity from 1 hr to 2 d. p-ERK1/2 and p-p38 were expressed in neurons in distinct regions of the L4/L5 dorsal horn; p-ERK1/2 was mainly in lamina I, while p-p38 was mainly in lamina II of the dorsal horn. Conclusion The results indicate that differential activation of p38 and ERK1/2 in the dorsal horn may contribute to the generation and development of BV-induced pain hypersensitivity by different mechanisms.

  16. Decreased hepatic phosphorylated p38 mitogen-activated protein kinase contributes to attenuation of thioacetamide-induced hepatic necrosis in diet-induced obese mice.

    Science.gov (United States)

    Shirai, Makoto; Arakawa, Shingo; Teranishi, Munehiro; Kai, Kiyonori

    2016-04-01

    We previously reported that thioacetamide (TA)-induced hepatocellular necrosis was attenuated in mice fed a high-fat diet (HFD mice) compared with mice fed a normal rodent diet (ND mice). In this study, we investigated whether p38 mitogen-activated protein kinase (p38 MAPK) was involved in this attenuation. Western blot analysis revealed that hepatic phosphorylated p38 MAPK protein decreased at 8 and 24 hours (hr) after TA dosing in the HFD mice, while it decreased only at 24 hr in the ND mice in comparison to the time- and diet-matched, vehicle-treated mice. p38 MAPK regulates various biological functions including inflammation, therefore, hepatic metabolomics analysis focusing on pro-inflammatory lipid mediators was performed. At 24 hr after TA dosing, only one pro-inflammatory mediator, 12-hydroxyeicosatetraenoic acid (HETE), was higher in the HFD mice. On the other hand, in addition to 12-HETE, 15-HETE and 12-hydroxyeicosapentaenoic acid (HEPE) were higher and omega-3/omega-6 polyunsaturated fatty acids ratios were lower in the ND mice at 24 hr. These results of metabolomics indicated that less pro-inflammatory state was seen in HFD mice than in ND mice at 24 hr. Finally, to confirm whether the observed decrease in phosphorylated p38 MAPK could attenuate TA-induced hepatocellular necrosis, we showed that SB203580 hydrochloride, an inhibitor of p38 MAPK, partially attenuated TA-induced hepatic necrosis in ND mice. Collectively, these results suggest that a prompt decrease in phosphorylation of p38 MAPK after TA administration is one of the factors that attenuate TA-induced hepatic necrosis in HFD mice. PMID:26961609

  17. Inhibition of p38 mitogen-activated protein kinase may decrease intestinal epithelial cell apoptosis and improve intestinal epithelial barrier function after ischemia- reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Shu-Yun Zheng; Xiao-Bing Fu; Jian-Guo Xu; Jing-Yu Zhao; Tong-Zhu Sun; Wei Chen

    2005-01-01

    AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intestine.METHODS: Ninety Wistar rats were divided randomly into three groups, namely sham-operated group (C), I/R vehicle group (R) and SB203580 pre-treated group(S).In groups R and S, the superior mesenteric artery(SMA)was separated and occluded for 45 min, then released for reperfusion for0.25, 0.5, 1, 2, 6, 12 and 24 h. In group C, SMA was separated without occlusion. Plasma D-lactate levels were examined and histological changes were observed under a light microscope. The activity of p38 MAPK was determined by Western immunoblotting and apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUDP-biotin nick end labeling (TUNEL).RESULTS: Intestinal ischemia followed by reperfusion activated p38 MAPK, and the maximal level of activation (7.3-fold vs sham-operated group) was reached 30 min after I/R. Treatment with SB 203580, a p38 MAPK inhibitor,reduced intestinal apoptosis (26.72±3.39% vs62.50±3.08%in I/R vehicle, P<0.01) and decreased plasma D-lactate level (0.78±0.15 mmol/L in I/R vehicle vs0.42±0.17 mmol/L in SB-treated group) and improved post-ischemic intestinal histological damage.CONCLUSION: p38 MAPK plays a crucial role in the signal transduction pathway mediating post-ischemic intestinal apoptosis, and inhibition of p38 MAPK may attenuate ischemia-reperfusion injury.

  18. Effects of chemical anoxia on NHE1, p38 MAPK, p53, Akt and ERM proteins in NIH3T3 fibroblasts: evidence for a role of NHE1 upstream of p38 MAPK

    DEFF Research Database (Denmark)

    Rentsch, M. L.; Hoffmann, E. K.; Pedersen, Stine Helene Falsig

    2006-01-01

    Activation of the plasma membrane Na+/H+ exchanger NHE1 contributes importantly to ischemic/anoxic cell damage, yet the mechanisms involved are unclear. In NIH3T3 cells, PCR studies confirmed the expression of NHE1 and -8, yet not NHE2, -3, and -4. Chemical anoxia (10 mM azide, 10 min) was associ......Activation of the plasma membrane Na+/H+ exchanger NHE1 contributes importantly to ischemic/anoxic cell damage, yet the mechanisms involved are unclear. In NIH3T3 cells, PCR studies confirmed the expression of NHE1 and -8, yet not NHE2, -3, and -4. Chemical anoxia (10 mM azide, 10 min......) was associated with a decrease in pHi which was exacerbated by the NHE1 inhibitor EIPA (5 µM). Reperfusion (azide washout) elicited a rapid, EIPA-sensitive alkalinization to 7.60 ± 0.057 (n=6), compared to a starting pHi of 7.49 ± 0.032 (n=6). Cell survival was reduced by prolonged chemical anoxia (to 87% at 3 h...... and 41% at 24 h, MTT assay), an effect counteracted by EIPA at early ( 6 h) time points. Chemical anoxia was furthermore associated with: (i) a rapid ( 10 min) and transient phosphorylation of p38 MAPK, which was abolished by NHE1 inhibitors (EIPA, cariporide, 5 µM); (ii) increased phosphorylation...

  19. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  20. Quercetin suppresses drug-resistant spheres via the p38 MAPK-Hsp27 apoptotic pathway in oral cancer cells.

    Directory of Open Access Journals (Sweden)

    Su-Feng Chen

    Full Text Available BACKGROUND: Treatment failure in oral squamous cell carcinoma (OSCC leading to local recurrence(s and metastases is mainly due to drug resistance. Cancer stem cells (CSCs are thought be responsible for the development of drug resistance. However, the correlations between CSCs, drug resistance, and new strategy against drug resistance in OSCC remain elusive. METHODS: A drug-resistant sphere (DRSP model was generated by using a nonadhesive culture system to induce drug-resistant cells from SCC25 oral cancer cells. A comparative analysis was performed between the parent control cells and DRSPs with a related treatment strategy focusing on the expression of epithelial-mesenchymal transition (EMT-associated markers, drug-resistance-related genes, and CSC properties in vitro, as well as tumorigenicity and the regimen for tumor regression in vivo. RESULTS: Our data show the presence of a phenomenon of EMT with gradual cellular transition from an epithelioid to mesenchymal-like spheroid morphology during induction of drug resistance. The characterization of DRSPs revealed the upregulation of the drug-resistance-related genes ABCG2 and MDR-1 and of CSC-representative markers, suggesting that DRSPs have greater resistance to cisplatin (Cis and stronger CSC properties compared with the control. Moreover, overexpression of phosphorylated heat-shock protein 27 (p-Hsp27 via the activation of p38 MAPK signaling was observed in DRSPs. Knockdown of Hsp27 decreased Cis resistance and induced apoptosis in DRSPs. Furthermore, an inhibitor of Hsp27, quercetin (Qu, suppressed p-Hsp27 expression, with alterations of the EMT signature, leading to the promotion of apoptosis in DRSPs. A xenographic study also confirmed the increase of tumorigenicity in DRSPs. The combination of Qu and Cis can reduce tumor growth and decrease drug resistance in OSCC. CONCLUSIONS: The p38 MAPK-Hsp27 axis plays an important role in CSCs-mediated drug resistance in OSCC. Targeting this axis

  1. Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Aiping Lan

    Full Text Available Hydrogen sulfide (H(2S has been proposed as a novel neuromodulator and neuroprotective agent. Cobalt chloride (CoCl(2 is a well-known hypoxia mimetic agent. We have demonstrated that H(2S protects against CoCl(2-induced injuries in PC12 cells. However, whether the members of mitogen-activated protein kinases (MAPK, in particular, extracellular signal-regulated kinase1/2(ERK1/2 and p38MAPK are involved in the neuroprotection of H(2S against chemical hypoxia-induced injuries of PC12 cells is not understood. We observed that CoCl(2 induced expression of transcriptional factor hypoxia-inducible factor-1 alpha (HIF-1α, decreased cystathionine-β synthase (CBS, a synthase of H(2S expression, and increased generation of reactive oxygen species (ROS, leading to injuries of the cells, evidenced by decrease in cell viability, dissipation of mitochondrial membrane potential (MMP , caspase-3 activation and apoptosis, which were attenuated by pretreatment with NaHS (a donor of H(2S or N-acetyl-L cystein (NAC, a ROS scavenger. CoCl(2 rapidly activated ERK1/2, p38MAPK and C-Jun N-terminal kinase (JNK. Inhibition of ERK1/2 or p38MAPK or JNK with kinase inhibitors (U0126 or SB203580 or SP600125, respectively or genetic silencing of ERK1/2 or p38MAPK by RNAi (Si-ERK1/2 or Si-p38MAPK significantly prevented CoCl(2-induced injuries. Pretreatment with NaHS or NAC inhibited not only CoCl(2-induced ROS production, but also phosphorylation of ERK1/2 and p38MAPK. Thus, we demonstrated that a concurrent activation of ERK1/2, p38MAPK and JNK participates in CoCl(2-induced injuries and that H(2S protects PC12 cells against chemical hypoxia-induced injuries by inhibition of ROS-activated ERK1/2 and p38MAPK pathways. Our results suggest that inhibitors of ERK1/2, p38MAPK and JNK or antioxidants may be useful for preventing and treating hypoxia-induced neuronal injury.

  2. [Down-regulation of p38 MAPK and collagen by 1, 25-(OH)2-VD3 in rat models of diabetic nephropathy].

    Science.gov (United States)

    Xie, Xianhui; Li, Zhengsheng; Pi, Mingjing; Wu, Jing; Zeng, Wen; Zuo, Li; Zha, Yan

    2016-07-01

    Objective To investigate the effect of 1, 25-(OH)2-VD3 on collagen type III (Col3), collagen type IV (Col4) and p38 mitogen-activated protein kinase (p38 MAPK) in rat models of type 2 diabetic nephropathy, and explore the relationships of p38MAPK with Col3 and Col4. Methods Rat models of type 2 diabetic nephropathy were induced by streptozocin (STZ, 30 mg/kg) combined with high-glucose-and-fat diet. Sixty rats were randomly divided into control group, model group, 1, 25-(OH)2-VD3 treatment group [given 1, 25-(OH)2-VD3 6 ng/(100 g.d) after modeling] and insulin group (given 2-3 U insulin after modeling). After 8 weeks' intervention, serum creatinine (Scr), blood urea nitrogen (BUN) and 24-hour proteinuria were detected in all groups. Periodic acid-Schiff (PAS) staining was used to observe the kidney pathological changes, and immunohistochemical staining and Western blotting were performed to determine p38 MAPK Col3 and Col4 expressions in rat renal interstitium. Spearman method was applied to the correlation analysis. Results Compared with the model group, blood glucose, Scr, BUN, 24-hour proteinuria and impaired renal interstitial area were all reduced in the 1, 25-(OH)2-VD3 treatment group and the insulin group. Compared with the control group, the expressions of Col3, Col4 and p38 MAPK were higher in the model group, and lower in the 1, 25-(OH)2-VD3 treatment group and the insulin group. Correlation analysis showed that 24-hour proteinuria was positively related with p38 MAPK, Col3, Col4 and immunohistochemical results; p38MAPK was positively correlated with Col3 and Col4 expressions. Conclusion Col3, Col4 and p38MAPK are up-regulated in rat models of type 2 diabetic nephropathy. The 1, 25-(OH)2-VD3 might attenuates the progression of renal interstitial fibrosis via down-regulating p38 MAPK, Col3 and Col4. PMID:27363275

  3. p38 mitogen-activated protein kinase plays a critical role in the control of energy metabolism and development of cardiovascular diseases%p38丝裂原活化蛋白激酶在能量代谢控制和心血管疾病中的作用

    Institute of Scientific and Technical Information of China (English)

    曹文洪; 熊燕; 范曲; 刘辉宇

    2007-01-01

    p38是丝裂原活化蛋白激酶家族中的成员之一,大量研究显示p38在能量代谢中具有广泛的作用.p38参与脂肪组织、骨骼肌、胰岛细胞和肝脏等组织、器官的能量代谢,这些组织、器官都是控制能量代谢的主要组织与器官.在白色脂肪组织,p38对脂肪细胞分化和葡萄糖摄取的重要作用是一致公认的,尽管p38对脂肪细胞葡萄糖摄取究竟是促进还是抑制至今尚未定论;在棕色脂肪组织,p38对解偶联蛋白-1基因转录起促进作用.在骨骼肌,虽然p38对葡萄糖摄取的作用仍有争议,但p38对骨骼肌细胞分化和骨骼肌线粒体生成的重要作用是非常肯定的.在胰岛细胞,p38似乎与细胞凋亡有关;p38还可能控制胰岛素原基因转录,但对胰岛素分泌无明显作用.在肝脏,p38在肝脏的糖、脂代谢中起核心作用,一方面,p38通过抑制肝脏糖原合成,增加肝脏糖异生,使血糖升高;另一方面,p38通过抑制肝脏脂肪合成、促进脂肪酸在肝脏的氧化代谢,从而抑制脂肪在肝脏的贮存;另外,p38还通过调节低密度脂蛋白受体基因表达和胆汁代谢对胆固醇代谢起关键作用.p38不仅参与心肌细胞的各种生理、病理过程;也通过影响单核-巨噬细胞、血管内皮细胞和血管平滑肌细胞参与动脉粥样硬化斑块的形成.%p38 mitogen-activated protein kinase (p38) is a member of MAP kinase family. Its widespectrum roles in the control of energy metabolism have been indicated in numerous studies. P3 8 participates in the energy metabolism in all major tissues/organs involved in the control of energy metabolism, including adipose tissue, skeletal muscles, islet cells, and liver. In white adipose tissue, p38 plays an important role in adipose differentiation and glucose uptake although it is still inconclusive whether this role of p38 is stimulatory or inhibitory. The stimulatory role of p38 in transcription of the uncoupling protein 1 ( UCP

  4. Advanced glycation end products induce human corneal epithelial cells apoptosis through generation of reactive oxygen species and activation of JNK and p38 MAPK pathways.

    Directory of Open Access Journals (Sweden)

    Long Shi

    Full Text Available Advanced Glycation End Products (AGEs has been implicated in the progression of diabetic keratopathy. However, details regarding their function are not well understood. In the present study, we investigated the effects of intracellular reactive oxygen species (ROS and JNK, p38 MAPK on AGE-modified bovine serum albumin (BSA induced Human telomerase-immortalized corneal epithelial cells (HUCLs apoptosis. We found that AGE-BSA induced HUCLs apoptosis and increased Bax protein expression, decreased Bcl-2 protein expression. AGE-BSA also induced the expression of receptor for advanced glycation end product (RAGE. AGE-BSA-RAGE interaction induced intracellular ROS generation through activated NADPH oxidase and increased the phosphorylation of p47phox. AGE-BSA induced HUCLs apoptosis was inhibited by pretreatment with NADPH oxidase inhibitors, ROS quencher N-acetylcysteine (NAC or neutralizing anti-RAGE antibodies. We also found that AGE-BSA induced JNK and p38 MAPK phosphorylation. JNK and p38 MAPK inhibitor effectively blocked AGE-BSA-induced HUCLs apoptosis. In addition, NAC completely blocked phosphorylation of JNK and p38 MAPK induced by AGE-BSA. Our results indicate that AGE-BSA induced HUCLs apoptosis through generation of intracellular ROS and activation of JNK and p38 MAPK pathways.

  5. p38 mitogen-activated protein kinase up-regulates NF-{kappa}B transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Guoping [Department of Orthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai 200011 (China); Liu, Dongxu [Department of Orthodontics, College of Stomatology, Shandong University, Jinan, Shandong Province 250012 (China); Liu, Jing [Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province 266075 (China); Gao, Hui [Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin 300041 (China); Yuan, Xiao, E-mail: yuanxiaoqd@163.com [Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province 266075 (China); Shen, Gang, E-mail: ganshen2007@163.com [Department of Orthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai 200011 (China)

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-{kappa}B in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-{kappa}B activation during myogenesis, not through down-regulation of degradation of I{kappa}B-{alpha}, and consequent translocation of the p65 subunit of NF-{kappa}B to the nucleus. It is likely that stretch-induced NF-{kappa}B activation by phosphorylation of p65 NF-{kappa}B. Moreover, depletion of p38{alpha} using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-{kappa}B activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-{kappa}B signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The {alpha} isoform of p38MAP kinase regulates the transcriptional activation of NF-{kappa}B following stimulation with cyclic stretch.

  6. Flow Cytometric Detection of p38 MAPK Phosphorylation and Intracellular Cytokine Expression in Peripheral Blood Subpopulations from Patients with Autoimmune Rheumatic Diseases

    Directory of Open Access Journals (Sweden)

    Athanasios Mavropoulos

    2014-01-01

    Full Text Available Flow cytometric analysis of p38 mitogen-activated protein kinase (p38 MAPK signaling cascade is optimally achieved by methanol permeabilization protocols. Such protocols suffer from the difficulties to accurately detect intracellular cytokines and surface epitopes of infrequent cell subpopulations, which are removed by methanol. To overcome these limitations, we have modified methanol-based phosphoflow protocols using several commercially available antibody clones suitable for surface antigens, intracellular cytokines, and p38 MAPK. These included markers of B cells (CD19, CD20, and CD22, T cells (CD3, CD4, and CD8, NK (CD56 and CD7, and dendritic cells (CD11c. We have also tested surface markers of costimulatory molecules, such as CD27. We have successfully determined simultaneous expression of IFN-γ, as well as IL-10, and phosphorylated p38 in cell subsets. The optimized phosphoflow protocol has also been successfully applied in peripheral blood mononuclear cells or purified cell subpopulations from patients with various autoimmune diseases. In conclusion, our refined phosphoflow cytometric approach allows simultaneous detection of p38 MAPK activity and intracellular cytokine expression and could be used as an important tool to study signaling cascades in autoimmunity.

  7. p38 mitogen-activated protein kinase up-regulates NF-κB transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    International Nuclear Information System (INIS)

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-κB in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-κB activation during myogenesis, not through down-regulation of degradation of IκB-α, and consequent translocation of the p65 subunit of NF-κB to the nucleus. It is likely that stretch-induced NF-κB activation by phosphorylation of p65 NF-κB. Moreover, depletion of p38α using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-κB activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-κB signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The α isoform of p38MAP kinase regulates the transcriptional activation of NF-κB following stimulation with cyclic stretch.

  8. Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation.

    Science.gov (United States)

    Hsieh, Chia-Jung; Kuo, Po-Lin; Hsu, Ying-Chan; Huang, Ya-Fang; Tsai, Eing-Mei; Hsu, Ya-Ling

    2014-02-01

    This study investigates the anticancer effect of arctigenin (ATG), a natural lignan product of Arctium lappa L., in human breast cancer MDA-MB-231 cells. Results indicate that ATG inhibits MDA-MB-231 cell growth by inducing apoptosis in vitro and in vivo. ATG triggers the mitochondrial caspase-independent pathways, as indicated by changes in Bax/Bcl-2 ratio, resulting in AIF and EndoG nuclear translocation. ATG increased cellular reactive oxygen species (ROS) production by increasing p22(phox)/NADPH oxidase 1 interaction and decreasing glutathione level. ATG clearly increases the activation of p38 MAPK, but not JNK and ERK1/2. Antioxidant EUK-8, a synthetic catalytic superoxide and hydrogen peroxide scavenger, significantly decreases ATG-mediated p38 activation and apoptosis. Blocking p38 with a specific inhibitor suppresses ATG-mediated Bcl-2 downregulation and apoptosis. Moreover, ATG activates ATF-2, a transcription factor activated by p38, and then upregulates histone H3K9 trimethylation in the Bcl-2 gene promoter region, resulting in Bcl-2 downregulation. Taken together, the results demonstrate that ATG induces apoptosis of MDA-MB-231 cells via the ROS/p38 MAPK pathway and epigenetic regulation of Bcl-2 by upregulation of histone H3K9 trimethylation. PMID:24140706

  9. Berberine induces dedifferentiation by actin cytoskeleton reorganization via phosphoinositide 3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes.

    Science.gov (United States)

    Yu, Seon-Mi; Cho, Hongsik; Kim, Gwang-Hoon; Chung, Ki-Wha; Seo, Sung-Yum; Kim, Song-Ja

    2016-04-01

    Osteoarthritis is a nonrheumatologic joint disease characterized by progressive degeneration of the cartilage extracellular matrix. Berberine (BBR) is an isoquinoline alkaloid used in traditional Chinese medicine, the majority of which is extracted from Huang Lian (Coptis chinensis). Although numerous studies have revealed the anticancer activity of BBR, its effects on normal cells, such as chondrocytes, and the molecular mechanisms underlying its actions remain elusive. Therefore, we examined the effects of BBR on rabbit articular chondrocytes, and the underlying molecular mechanisms, focusing on actin cytoskeletal reorganization. BBR induced dedifferentiation by inhibiting activation of phosphoinositide-3(PI3)-kinase/Akt and p38 kinase. Furthermore, inhibition of p38 kinase and PI3-kinase/Akt with SB203580 and LY294002, respectively, accelerated the BBR-induced dedifferentiation. BBR also caused actin cytoskeletal architecture reorganization and, therefore, we investigated if these effects were involved in the dedifferentiation. Disruption of the actin cytoskeleton by cytochalasin D reversed the BBR-induced dedifferentiation by activating PI3-kinase/Akt and p38 kinase. In contrast, the induction of actin filament aggregation by jasplakinolide accelerated the BBR-induced dedifferentiation via PI3-kinase/Akt inhibition and p38 kinase activation. Taken together, these data suggest that BBR strongly induces dedifferentiation, and actin cytoskeletal reorganization is a crucial requirement for this effect. Furthermore, the dedifferentiation activity of BBR appears to be mediated via PI3-kinase/Akt and p38 kinase pathways in rabbit articular chondrocytes. PMID:26851252

  10. ANTI-OXIDATIVE MECHANISMS OF PRAVASTATIN PREVENTING AORTIC ATHEROSCLEROSIS IN apoE KNOCKOUT MICE: ROLE OF p38 MAPK PATHWAY

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-xu; GAO Ping-jin; SUN Bao-gui; ZHANG Jian-jun

    2008-01-01

    Objective To determine whether pravastatin exerts anti-oxidative effects on preventing aortic atherosclerosis via modulating p38 MAPK pathway.Methods Male 8-week-old apoE-/- mice fed a diet containing 1.25% cholesterol (wt/wt) were divided into pravastatin group administered with pravastatin (80 mg·kg-1·d-1) and atherosclerosis group administered with PBS; and male 8-week-old C57BL/6J mice fed a normal diet were as control group (n=12). In thoracoabdominal aortas of mice, levels of Malondialdehyde (MDA) and activities of superoxide dismutase (SOD) were measured and expression of phosphorylated p38 MAPK (p-p38 MAPK) and phosphorylated signal transducer and activator of transcription 1 (pSTAT1) were examined by Western blotting.Results After eight weeks, atherosclerosis in aortic root was significantly prevented by pravastatin. In aortic atherosclerosis lesion, the level of MDA was significantly reduced; adversely the activity of SOD was increased. Expressions of p-p38 MAPK and pSTAT1 were significantly decreased in aortic atherosclerosis lesion.Conclusion Our results suggests that anti-oxidative mechanisms of pravastatin preventing aortic atherosclerosis may partially depend on modulating p38 MAPK signal pathway.

  11. The rational design of specific peptide inhibitor against p38α MAPK at allosteric-site: a therapeutic modality for HNSCC.

    Directory of Open Access Journals (Sweden)

    Kamaldeep Gill

    Full Text Available p38α is a significant target for drug designing against cancer. The overproduction of p38α MAPK promotes tumorigenesis in head and neck squamous cell carcinoma (HNSCC. The ATP binding and an allosteric site referred as DFG are the key sites of the p38α mitogen activated protein kinase (MAPK exploited for the design of inhibitors. This study demonstrated design of peptide inhibitor on the basis of allosteric site using Glide molecular docking software and the biochemical analysis of the best modeled peptide. The best fitted tetrapeptide (FWCS in the allosteric site inhibited the pure recombinant and serum p38α of HNSCC patients by 74 and 72%, respectively. The potency of the peptide was demonstrated by its IC50 (4.6 nM and KD (3.41×10-10 M values, determined by ELISA and by surface plasmon resonance (SPR technology, respectively. The cell viability of oral cancer i.e. KB cell line was reduced in dose dependent manner by 60 and 97% by the treatment of peptide and the IC50 was 600 and 210 µM after 24 and 72 h incubation, respectively. Our result provides an insight for the development of a proficient small peptide as a promising anticancer agent targeting DFG site of p38α kinase.

  12. Naringin inhibits the invasion and migration of human glioblastoma cell via downregulation of MMP-2 and MMP-9 expression and inactivation of p38 signaling pathway.

    Science.gov (United States)

    Aroui, Sonia; Najlaoui, Feten; Chtourou, Yassine; Meunier, Annie-Claire; Laajimi, Amel; Kenani, Abderraouf; Fetoui, Hamadi

    2016-03-01

    Gliomas are the most common and malignant primary brain tumors. They are associated with a poor prognosis despite the availability of multiple therapeutic options. Naringin, a common dietary flavonoid abundantly present in fruits and vegetables, is believed to possess strong anti-proliferative and anti-cancer properties. However, there are no reports describing its effects on the invasion and migration of glioblastoma cell lines. Our results showed that the treatment of U251 glioma cell lines with different concentrations of naringin inhibited the invasion and migration of these cells. In addition, we revealed a decrease in the levels of matrix metalloproteinases (MMP-2) and (MMP-9) expression as well as proteinase activity in U251 glioma cells. In contrast, the expression of tissue inhibitor of metalloproteinases (TIMP-1) and (TIMP-2) was increased. Furthermore, naringin treatment decreased significantly the phosphorylated level of p38. Combined treatment with a p38 inhibitor (SB203580) resulted in the synergistic reduction of MMP-2 and MMP-9 expressions correlated with an increase of TIMP-1 and TIMP-2 expressions and the anti-invasive properties. However, p38 chemical activator (anisomycin) could block these effects produced by naringin, suggesting a direct downregulation of the p38 signaling pathway. These data suggest that naringin may have therapeutic potential for controlling invasiveness of malignant gliomas by inhibiting of p38 signal transduction pathways. PMID:26474590

  13. Mannose-binding lectin inhibits monocyte proliferation through transforming growth factor-β1 and p38 signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Mannose-binding lectin (MBL, a plasma C-type lectin, plays an important role in innate immunity. However, the interaction, and the consequences of it, between MBL and the immune system remain ill defined. We have investigated the contributing mechanisms and effects of MBL on the proliferation of human monocytes. At lower concentrations (≤4 μg/ml MBL was shown to partially enhance monocyte proliferation. By contrast, at higher concentrations (8-20 μg/ml of MBL, cell proliferation was markedly attenuated. MBL-induced growth inhibition was associated with G0/G1 arrest, down-regulation of cyclin D1/D3, cyclin-dependent kinase (Cdk 2/Cdk4 and up-regulation of the Cdk inhibitory protein Cip1/p21. Additionally, MBL induced apoptosis, and did so through caspase-3 activation and poly ADP-ribose polymerase (PARP cleavage. Moreover, transforming growth factor (TGF-β1 levels increased in the supernatants of MBL-stimulated monocyte cultures. We also found that MBL-dependent inhibition of monocyte proliferation could be reversed by the TGF-β receptor antagonist SB-431542, or by anti-TGF-β1 antibody, or by the mitogen-activated protein kinase (MAPK inhibitors specific for p38 (SB203580, but not ERK (U0126 or JNK (SP600125. Thus, at high concentrations, MBL can affect the immune system by inhibiting monocyte proliferation, which suggests that MBL may exhibit anti-inflammatory effects.

  14. Graphene/single-walled carbon nanotube hybrids promoting osteogenic differentiation of mesenchymal stem cells by activating p38 signaling pathway

    Science.gov (United States)

    Yan, Xinxin; Yang, Wen; Shao, Zengwu; Yang, Shuhua; Liu, Xianzhe

    2016-01-01

    Carbon nanomaterials are becoming increasingly significant in biomedical fields since they exhibit exceptional physicochemical and biocompatible properties. Today, the stem cells offer potentially new therapeutic approaches in tissue engineering and regenerative medicine. However, the induction of differentiation into specific lineages remains challenging, which provoked us to explore the biomedical applications of carbon nanomaterials in stem cells. In this study, we investigated the interactions between graphene/single-walled carbon nanotube (G/SWCNT) hybrids and rat mesenchymal stem cells (rMSCs) and focused on the proliferation and differentiation of rMSCs treated with G/SWCNT hybrids. Cell viability and morphology were evaluated using cell counting kit-8 assay and immunofluorescence staining, respectively. Osteogenic differentiation evaluated by alkaline phosphatase activity of MSCs proved to be higher after treatment with G/SWCNT hybrids, and the mineralized matrix nodule formation was also enhanced. In addition, the expression levels of osteogenic-associated genes were upregulated, while the adipocyte-specific markers were downregulated. Consistent with these results, we illustrated that the effect of G/SWCNT hybrids on the process of osteogenic differentiation of rMSCs can be modulated by activating the p38 signaling pathway and inhibiting the extracellular signal-regulated kinase 1/2 pathway. Nevertheless, our study suggests that carbon nanomaterials offer a promising platform for regenerative medicine in the near future.

  15. Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38

    Science.gov (United States)

    Arnold, Christopher P; Merryman, M Shane; Harris-Arnold, Aleishia; McKinney, Sean A; Seidel, Chris W; Loethen, Sydney; Proctor, Kylie N; Guo, Longhua; Sánchez Alvarado, Alejandro

    2016-01-01

    The interrelationship between endogenous microbiota, the immune system, and tissue regeneration is an area of intense research due to its potential therapeutic applications. We investigated this relationship in Schmidtea mediterranea, a model organism capable of regenerating any and all of its adult tissues. Microbiome characterization revealed a high Bacteroidetes to Proteobacteria ratio in healthy animals. Perturbations eliciting an expansion of Proteobacteria coincided with ectopic lesions and tissue degeneration. The culture of these bacteria yielded a strain of Pseudomonas capable of inducing progressive tissue degeneration. RNAi screening uncovered a TAK1 innate immune signaling module underlying compromised tissue homeostasis and regeneration during infection. TAK1/MKK/p38 signaling mediated opposing regulation of apoptosis during infection versus normal tissue regeneration. Given the complex role of inflammation in either hindering or supporting reparative wound healing and regeneration, this invertebrate model provides a basis for dissecting the duality of evolutionarily conserved inflammatory signaling in complex, multi-organ adult tissue regeneration. DOI: http://dx.doi.org/10.7554/eLife.16793.001 PMID:27441386

  16. Cold-inducible RNA-binding protein promotes epithelial-mesenchymal transition by activating ERK and p38 pathways.

    Science.gov (United States)

    Lee, Hae Na; Ahn, Sung-Min; Jang, Ho Hee

    2016-09-01

    Transforming growth factor-β1 (TGF-β1), a potent inducer of epithelial-to-mesenchymal transition (EMT), upregulates the cold-inducible RNA-binding protein (CIRP). The link between CIRP and EMT, however, remains unknown. To determine the role of CIRP in EMT, we performed CIRP knockdown and overexpression experiments in in vitro TGF-β1-induced EMT models. We found that CIRP overexpression promoted the downregulation of epithelial markers and the upregulation of mesenchymal markers after TGF-β1 treatment for EMT induction. It also promoted cell migration and invasion, key features of EMT. In contrast, CIRP knockdown inhibited the downregulation of epithelial markers and the upregulation of mesenchymal markers after TGF-β1 treatment for EMT induction. In addition, it also inhibited cell migration and invasion. Furthermore, we demonstrated that the RNA-recognition motif in CIRP is essential for the role of CIRP in EMT. At the downstream level, CIRP knockdown downregulated Snail, key transcriptional regulator of EMT, while CIRP overexpression upregulated it. We found out that the link between CIRP and Snail is mediated by ERK and p38 pathways. EMT is a critical component of carcinoma metastasis and invasion. As demonstrated in this study, the biological role of CIRP in EMT may explain why CIRP overexpression has been associated with a bad prognosis in cancer patients. PMID:27395339

  17. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L.; Hood, Molly M.; Lord, John W.; Lu, Wei-Ping; Miller, David F.; Patt, William C.; Smith, Bryan D.; Vogeti, Lakshminarayana; Kaufman, Michael D.; Petillo, Peter A.; Wise, Scott C.; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L. (Deciphera); (Emerald); (Cocrystal)

    2012-01-20

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase.

  18. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region.

    Science.gov (United States)

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L; Hood, Molly M; Lord, John W; Lu, Wei-Ping; Miller, David F; Patt, William C; Smith, Bryan D; Vogeti, Lakshminarayana; Kaufman, Michael D; Petillo, Peter A; Wise, Scott C; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L

    2010-10-01

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase.

  19. Involvement of PI3K/Akt/FoxO3a and PKA/CREB Signaling Pathways in the Protective Effect of Fluoxetine Against Corticosterone-Induced Cytotoxicity in PC12 Cells.

    Science.gov (United States)

    Zeng, Bingqing; Li, Yiwen; Niu, Bo; Wang, Xinyi; Cheng, Yufang; Zhou, Zhongzhen; You, Tingting; Liu, Yonggang; Wang, Haitao; Xu, Jiangping

    2016-08-01

    The selective serotonin reuptake inhibitor fluoxetine is neuroprotective in several brain injury models. It is commonly used to treat major depressive disorder and related conditions, but its mechanism of action remains incompletely understood. Activation of the phosphatidylinositol-3-kinase/protein kinase B/forkhead box O3a (PI3K/Akt/FoxO3a) and protein kinase A/cAMP-response element binding protein (PKA/CREB) signaling pathways has been strongly implicated in the pathogenesis of depression and might be the downstream target of fluoxetine. Here, we used PC12 cells exposed to corticosterone (CORT) to study the neuroprotective effects of fluoxetine and the involvement of the PI3K/Akt/FoxO3a and PKA/CREB signaling pathways. Our results show that CORT reduced PC12 cells viability by 70 %, and that fluoxetine showed a concentration-dependent neuroprotective effect. Neuroprotective effects of fluoxetine were abolished by inhibition of PI3K, Akt, and PKA using LY294002, KRX-0401, and H89, respectively. Treatment of PC12 cells with fluoxetine resulted in increased phosphorylation of Akt, FoxO3a, and CREB. Fluoxetine also dose-dependently rescued the phosphorylation levels of Akt, FoxO3a, and CREB, following administration of CORT (from 99 to 110, 56 to 170, 80 to 170 %, respectively). In addition, inhibition of PKA and PI3K/Akt resulted in decreased levels of p-CREB, p-Akt, and p-FoxO3a in the presence of fluoxetine. Furthermore, fluoxetine reversed CORT-induced upregulation of p53-upregulated modulator of apoptosis (Puma) and Bcl-2-interacting mediator of cell death (Bim) via the PI3K/Akt/FoxO3a signaling pathway. H89 treatment reversed the effect of fluoxetine on the mRNA level of brain-derived neurotrophic factor, which was decreased in the presence of CORT. Our data indicate that fluoxetine elicited neuroprotection toward CORT-induced cell death that involves dual regulation from PI3K/Akt/FoxO3a and PKA/CREB pathways. PMID:27412469

  20. Leptin administration favors muscle mass accretion by decreasing FoxO3a and increasing PGC-1alpha in ob/ob mice.

    Directory of Open Access Journals (Sweden)

    Neira Sáinz

    Full Text Available Absence of leptin has been associated with reduced skeletal muscle mass in leptin-deficient ob/ob mice. The aim of our study was to examine the effect of leptin on the catabolic and anabolic pathways regulating muscle mass. Gastrocnemius, extensor digitorum longus and soleus muscle mass as well as fiber size were significantly lower in ob/ob mice compared to wild type littermates, being significantly increased by leptin administration (P<0.001. This effect was associated with an inactivation of the muscle atrophy-related transcription factor forkhead box class O3 (FoxO3a (P<0.05, and with a decrease in the protein expression levels of the E3 ubiquitin-ligases muscle atrophy F-box (MAFbx (P<0.05 and muscle RING finger 1 (MuRF1 (P<0.05. Moreover, leptin increased (P<0.01 protein expression levels of peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha, a regulator of muscle fiber type, and decreased (P<0.05 myostatin protein, a negative regulator of muscle growth. Leptin administration also activated (P<0.01 the regulators of cell cycle progression proliferating cell nuclear antigen (PCNA and cyclin D1, and increased (P<0.01 myofibrillar protein troponin T. The present study provides evidence that leptin treatment may increase muscle mass of ob/ob mice by inhibiting myofibrillar protein degradation as well as enhancing muscle cell proliferation.

  1. Interaction of Omega, Sigma, and Theta glutathione transferases with p38b mitogen-activated protein kinase from the fruit fly, Drosophila melanogaster.

    Science.gov (United States)

    Wongtrakul, J; Janphen, K; Saisawang, C; Ketterman, A J

    2014-05-01

    Glutathione S-transferases (GSTs) are a diverse family of phase II detoxification enzymes found in almost all organisms. Besides playing a major role in the detoxification of xenobiotic and toxic compounds, GSTs are also involved in the regulation of mitogen activated protein (MAP) kinase signal transduction by interaction with proteins in the pathway. An in vitro study was performed for Theta, Omega, Sigma GSTs and their interaction with MAP kinase p38b protein from the fruit fly Drosophila melanogaster Meigen (Diptera: Drosophilidae). The study included the effects of all five Omega class GSTs (DmGSTO1, DmGSTO2a, DmGSTO2b, DmGSTO3, DmGSTO4), all five Theta class GSTs (DmGSTT1, DmGSTT2, DmGSTT3a, DmGSTT3b, DmGSTT4), and one Sigma class glutathione transferase on the activity of Drosophila p38b, including the reciprocal effect of this kinase protein on glutathione transferase activity. It was found that DmGSTT2, DmGSTT3b, DmGSTO1, and DmGSTO3 activated p38b significantly. Substrate specificities of GSTs were also altered after co-incubation with p38b. Although p38b activated DmGSTO1, DmGSTO2a, and DmGSTT2, it inhibited DmGSTT3b and DmGSTO3 activity toward xenobiotic and physiological substrates tested. These results suggest a novel link between Omega and Theta GSTs with the p38b MAP kinase pathway.

  2. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells

    International Nuclear Information System (INIS)

    Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-γ inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-γ production, we measured IL-18-induced IFN-γ production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-γ expression was blocked by SKI pre-treatment in both mRNA and protein levels. In addition, the increased IFN-γ production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-γ production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-γ production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-γ production via p38 MAPK

  3. SB203580 Modulates p38 MAPK Signaling and Dengue Virus-Induced Liver Injury by Reducing MAPKAPK2, HSP27, and ATF2 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Gopinathan Pillai Sreekanth

    Full Text Available Dengue virus (DENV infection causes organ injuries, and the liver is one of the most important sites of DENV infection, where viral replication generates a high viral load. The molecular mechanism of DENV-induced liver injury is still under investigation. The mitogen activated protein kinases (MAPKs, including p38 MAPK, have roles in the hepatic cell apoptosis induced by DENV. However, the in vivo role of p38 MAPK in DENV-induced liver injury is not fully understood. In this study, we investigated the role of SB203580, a p38 MAPK inhibitor, in a mouse model of DENV infection. Both the hematological parameters, leucopenia and thrombocytopenia, were improved by SB203580 treatment and liver transaminases and histopathology were also improved. We used a real-time PCR microarray to profile the expression of apoptosis-related genes. Tumor necrosis factor α, caspase 9, caspase 8, and caspase 3 proteins were significantly lower in the SB203580-treated DENV-infected mice than that in the infected control mice. Increased expressions of cytokines including TNF-α, IL-6 and IL-10, and chemokines including RANTES and IP-10 in DENV infection were reduced by SB203580 treatment. DENV infection induced the phosphorylation of p38MAPK, and its downstream signals including MAPKAPK2, HSP27 and ATF-2. SB203580 treatment did not decrease the phosphorylation of p38 MAPK, but it significantly reduced the phosphorylation of MAPKAPK2, HSP27, and ATF2. Therefore, SB203580 modulates the downstream signals to p38 MAPK and reduces DENV-induced liver injury.

  4. Inhibitory Effects of Enalaprilat on Rat Cardiac Fibroblast Proliferation via ROS/P38MAPK/TGF-β1 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Du-Juan Yu

    2012-03-01

    Full Text Available Enalaprilat (Ena., an angiotensin II (Ang II converting enzyme inhibitor (ACEI, can produce some therapeutic effects on hypertension, ventricular hypertrophy and myocardial remodeling in clinic, but its precise mechanism, especially its signaling pathways remain elusive. In this study, cardiac fibroblasts (CFb was isolated by the trypsin digestion method; a BrdU proliferation assay was adopted to determine cell proliferation; an immunofluorescence assay was used to measure intracellular reactive oxygen species (ROS; immunocytochemistry staining and Western blotting assay were used to detect phosphorylated p38 mitogen activated protein kinase (p-p38MAPK and transforming growth factor-β1 (TGF-β1 protein expression, respectively. The results showed that Ang II (10–7 M stimulated the cardiac fibroblast proliferation which was inhibited by NAC (an antioxidant, SB203580 (a p38MAPK inhibitor or enalaprilat; Ang II caused an burst of intracellular ROS level within thirty minutes, an increase in p-p38MAPK (3.6-fold of that in the control group, as well as an elevation of TGF-β1 meantime; NAC, an antioxidant, and enalaprilat treatment attenuated cardiac fibroblast proliferation induced by Ang II and decreased ROS and p-p38MAPK protein levels in rat cardiac fibroblast; SB203580 lowered TGF-β1 protein expression in rats’ CFb in a dose-dependent manner. It could be concluded that enalaprilat can inhibit the cardiac fibroblast proliferation induced by Ang II via blocking ROS/P38MAPK/TGF-β1 signaling pathways and the study provides a theoretical proof for the application of ACEIs in treating myocardial fibrosis and discovering the primary mechanism through which ACEIs inhibit CFb proliferation.

  5. Targeting of p38 Mitogen-activated Protein Kinases to Early Growth Response gene 1 (EGR-1) in the Human Paclitaxel-resistance Ovarian Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    Meisong LU; Lan XIAO; Jianli HU; Suo DENG; Yan XU

    2008-01-01

    To investigate the relationship between the expression of early growth response gene 1(EGR-1) and p38MAPK pathway in the paclitaxel resistance of ovarian carcinoma cells, the effect of p38MAPK inhibitor SB203580 on cell apoptosis was examined by using Hoechst 33258 staining.The intracellular Rh123 (Rhodamine 123) accumulation was detected by the flow cytometry (FCM).The 50% inhibition concentration (IC50) of paclitaxel for A2780/Taxol cells was determined by MTT method. Electrophoretic motility shift assay (EMSA) was employed to examine the EGR-1DNA binding activity. MDR1 and EGR-1 mRNA were assessed by RT-PCR. The expressed of p-gp, phosphorylated p53 and p38 were detected by Western blotting. SB203580 could remarkably promote the apoptosis of A2780/Taxol cells, and the cell apoptosis was in a time-dependent manner. Cellular Rh123 accumulation was increased, and the IC50 of paclitaxel for A2780/Taxol cells was decreased significantly. A2780/Taxol cell line after SB203580 treatment was shown to have a significantly higher level of EGR-1 DNA binding activity. SB203580 down-regulated the activity of p38MAPK pathway, but up-regulated EGR-1 expression. SB203580 significantly increased the level of cellular phosphorylated p53 protein, but decreased the p-gp protein level and MDR1 mRNA level in A2780/Taxol cells. There existed a close relationship between p38MAPK pathway and the paclitaxel resistance of ovarian carcinoma cells. The expression of EGR-1 mediated by p38MAPK pathway plays a critical role in paclitaxel resistance of ovarian carcinoma cells.

  6. Rapid Disruption of Cellular Integrity of Zinc-treated Astroglia Is Regulated by p38 MAPK and Ca2+-dependent Mechanisms

    OpenAIRE

    Im, Joo-Young; Joo, Hyo-Jin; Han, Pyung-Lim

    2011-01-01

    Cultured cortical primary astroglia treated with zinc died while rapidly detached from culture plates, a distinct part of zinc-treated astroglia. In the present study, we investigated the mechanism underlying the rapid change in the morphologic integrity of zinc-treated astroglia. Among the early cellular events occurring in zinc-treated astroglia, strong activation of p38 MAPK and JNK was evident. Although inhibitors of p38 (SB203580 and SB202190) or JNK (SP600125) did not protect zinc-insul...

  7. Skepinone-L, a Novel Potent and Highly Selective Inhibitor of p38 MAP Kinase, Effectively Impairs Platelet Activation and Thrombus Formation

    Directory of Open Access Journals (Sweden)

    Oliver Borst

    2013-06-01

    Full Text Available Background/Aims: Platelets are critically important for primary haemostasis and the major players in thrombotic vascular occlusion. Platelets are activated by agonists, such as thrombin and collagen-related peptide as well as second-wave mediators including thromboxane A2 via different intracellular signaling pathways resulting in degranulation, aggregation and thrombus formation. Platelet activation is paralleled by phosphorylation and activation of p38 MAPK. The limited specificity of hitherto known p38 MAPK inhibitors precluded safe conclusions on the precise role of p38 MAPK in the regulation of platelet function. The present study examined the impact of Skepinone-L, a novel and highly selective inhibitor of p38 mitogen-activated protein kinase (p38 MAPK, on platelet activation and thrombus formation. Methods: Experiments were performed in freshly isolated human platelets. Protein phosphorylation was quantified by Western blotting, thromboxane B2 synthesis by enzyme immunoassay, ATP release by ChronoLume luciferin assay, cytosolic Ca2+ concentration by Fura-2 fluorescence-measurements, platelet aggregation by a light transmissions measurement and in vitro thrombus formation by a flow chamber. Results: Skepinone-L (1 μM virtually abrogated the phosphorylation of platelet p38 MAPK substrate Hsp27 following stimulation with CRP (1 μg/ml, thrombin (5 mU/ml or thromboxane A2 analogue U-46619 (1 μM. Furthermore, Skepinone-L significantly blunted activation-dependent platelet secretion and aggregation following threshold concentrations of CRP, thrombin and thromboxane A2 analogue U-46619. Skepinone-L did not impair platelet Ca2+ signaling but prevented agonist-induced thromboxane A2 synthesis through abrogation of p38 MAPK-dependent phosphorylation of platelet cytosolic phospholipase A2 (cPLA2. Skepinone-L further markedly blunted thrombus formation under low (500-s and high (1700-s arterial shear rates. Conclusions: The present study discloses

  8. SIRT1 Suppresses Doxorubicin-Induced Cardiotoxicity by Regulating the Oxidative Stress and p38MAPK Pathways

    Directory of Open Access Journals (Sweden)

    Yang Ruan

    2015-02-01

    Full Text Available Background: SIRT1, which belongs to the Sirtuin family of NAD-dependent enzymes, plays diverse roles in aging, metabolism, and disease biology. It could regulate cell survival and has been shown to be a protective factor in heart function. Hence, we verified the mechanism by which SIRT1 regulates doxorubicin induced cardiomyocyte injury in vivo and in vitro. Methods: We analyzed SIRT1 expression in doxorubicin-induced neonatal rat cardiomyocyte injury model and adult mouse heart failure model. SIRT1 was over-expressed in cultured neonatal rat cardiomyocyte by adenovirus mediated gene transfer. SIRT1 agonist resveratrol was used to treat the doxorubicin-induced heart failure mouse model. Echocardiography, reactive oxygen species (ROS production, TUNEL, qRT-PCR, and Western blotting were performed to analyze cell survival, oxidative stress, and inflammatory signal pathways in cardiomyocytes. Results: SIRT1 expression was down-regulated in doxorubicin induced cardiomocyte injury, accompanied by elevated oxidative stress and cell apoptosis. SIRT1 over-expression reduced doxorubicin induced cardiomyocyte apoptosis with the attenuated ROS production. SIRT1 also reduced cell apoptosis by inhibition of p38MAPK phosphorylation and caspase-3 activation. The SIRT1 agonist resveratrol was able to prevent doxorubicin-induced heart function loss. Moreover, the SIRT1 inhibitor niacinamide could reverse SIRT1's protective effect in cultured neonatal rat cardiomyocytes. Conclusions: These results support the role of SIRT1 as an important regulator of cardiomyocyte apoptosis during doxorubicin-induced heart injury, which may represent a potential therapeutic target for doxorubicin-induced cardiomyopathy.

  9. FoxO3a与泌尿系肿瘤关系的研究进展%New development in the research on FoxO3a and urologic neoplasm

    Institute of Scientific and Technical Information of China (English)

    田跃军; 陶燕; 郭琦; 王志平; 洪梅

    2015-01-01

    The forkhead box O (FoxO) transcription factor family plays an important role in cell functions, including metabo-lism, apoptosis, cellular proliferation, stress reactions, DNA repair, and immune response. As a member of this family, forkhead box O3a (FoxO3a) regulates its target genes by modulating histone modifications, including phosphorylation, acetylation, and methylation. FoxO3a expression is abnormally downregulated in urologic neoplasm. Protein modifications and FoxO3a activity are mainly con-trolled by PI3K/Akt signal pathway and other signaling pathways. FoxO3a is also involved in the initiation, progression, and prognosis of urologic neoplasm. This review focuses on the function of FoxO3a in urologic neoplasm and elucidates the regulatory mechanisms involved. This article will provide novel strategies to clinical diagnosis and drug therapy of urologic neoplasms.%FoxO转录因子家族通过对其靶基因的调节作用,在细胞代谢、凋亡、增殖、应激反应、DNA修复和免疫应答等生命活动中发挥着重要作用。该家族成员FoxO3a可调控靶基因启动子发生组蛋白磷酸化、乙酰化、甲基化等修饰从而影响其表达。FoxO3a在泌尿系肿瘤中存在异常的低表达,其蛋白质修饰状态和活性受到以PI3K/Akt为主的多条信号通路的复杂调控,对泌尿系肿瘤的发生、发展和预后产生重要的影响。本文将对FoxO3a在泌尿系肿瘤中的研究进展进行综述,探讨FoxO3a调控的机制,为临床诊断和靶向治疗提供新的策略。

  10. Implication of Akt, ERK1/2 and alternative p38MAPK signalling pathways in human colon cancer cell apoptosis induced by green tea EGCG.

    Science.gov (United States)

    Cerezo-Guisado, María Isabel; Zur, Rafal; Lorenzo, María Jesús; Risco, Ana; Martín-Serrano, Miguel A; Alvarez-Barrientos, Alberto; Cuenda, Ana; Centeno, Francisco

    2015-10-01

    We investigated apoptosis induced by the green tea component the epigallocatechin-3-gallate (EGCG) and the pathways underlying its activity in a colon cancer cell line. A complete understanding of the mechanism(s) and molecules targeted by green tea polyphenols could be useful in developing novel therapeutic approaches for cancer treatment. EGCG, which is the major polyphenol in green tea, has cytotoxic effects and induced cell death in HT-29 cell death. In this study, we evaluated the effect EGCG on mitogen-activated protein kinase (MAPK) and Akt pathways. EGCG treatment increased phospho-ERK1/2, -JNK1/2 and -p38α, -p38γ and -p38δ, as well as phospho-Akt levels. Using a combination of kinase inhibitors, we found that EGCG-induced cell death is partially blocked by inhibiting Akt, ERK1/2 or alternative p38MAPK activity. Our data suggest that these kinase pathways are involved in the anti-cancer effects of EGCG and indicate potential use of this compound as chemotherapeutic agent for colon cancer treatment.

  11. Lidamycin induces marked G2 cell cycle arrest in human colon carcinoma HT-29 cells through activation of p38 MAPK pathway.

    Science.gov (United States)

    Liu, Xia; Bian, Chunjing; Ren, Kaihuan; Jin, Haixia; Li, Baowei; Shao, Rong-Guang

    2007-03-01

    Lidamycin (LDM), a member of the enediyne antibiotic family, is presently undergoing phase I clinical trials in P.R. China. In this study, we investigated the mechanisms of LDM-induced cell cycle arrest in order to support its use in clinical cancer therapy. Using human colon carcinoma HT-29 cells, we observed that LDM induced G2 cell cycle arrest in a time- and dose-dependent manner. LDM-induced G2 arrest was associated with increasing phosphorylation of Chk1, Chk2, Cdc25C, Cdc2 and expression of Cdc2 and cyclin B1. In addition, cytoplasmic localization of cyclin B1 was also involved in LDM-induced G2 arrest. Moreover, we found that p38 MAPK pathway contributed to LDM-induced G2 arrest. Inhibition of p38 MAPK by its inhibitor SB203580 not only attenuated LDM-induced G2 arrest but also potentiated LDM-induced apoptosis, which was accompanied by decreasing phosphorylation of Cdc2 and increasing expression of FasL and phosphorylation of JNK. Finally, we demonstrated that cells at G1 phase were more sensitive to LDM. Together, our findings suggest that p38 MAPK signaling pathway is involved in LDM-induced G2 arrest, at least partly, and a combination of LDM with p38 MAPK inhibitor may represent a new strategy for human colon cancer therapy. PMID:17273739

  12. Bacillus sp. strain P38: an efficient producer of L-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural.

    Science.gov (United States)

    Peng, Lili; Wang, Limin; Che, Chengchuan; Yang, Ge; Yu, Bo; Ma, Yanhe

    2013-12-01

    In this study, efficient polymer-grade L-lactic acid production was achieved with the strain Bacillus sp. P38 by using cellulosic hydrolysate as the sole carbon source. In fed-batch fermentation, 180 g L(-1)L-lactic acid was obtained with a volumetric productivity of 2.4 g L(-1)h(-1) and a yield of 0.96 g g(-1) total reducing sugars. No D-isomer of lactic acid was detected in the broth. Strain P38 tolerated up to 10 g L(-1) 2-furfural, and lactate production was sharply inhibited only when the 2-furfural concentration was higher than 6 g L(-1). Moreover, strain P38 also tolerated high concentrations (>6 g L(-1)) of other fermentation inhibitors in cellulosic hydrolysate, such as vanillin and acetic acid, although it was slightly sensitive to formic acid. The efficient L-lactic acid production, combined with high inhibitor tolerance and efficient pentose utilization, indicate that Bacillus sp. P38 is a promising producer of polymer-grade L-lactic acid from cellulosic biomass. PMID:24096283

  13. The role of p38 MAP kinase and c-Jun N-terminal protein kinase signaling in the differentiation and apoptosis of immortalized neural stem cells

    International Nuclear Information System (INIS)

    The two distinct members of the mitogen-activated protein (MAP) kinase family c-Jun N-terminal protein kinase (JNK) and p38 MAP kinase, play an important role in central nervous system (CNS) development and differentiation. However, their role and functions are not completely understood in CNS. To facilitate in vitro study, we have established an immortal stem cell line using SV40 from fetal rat embryonic day 17. In these cells, MAP kinase inhibitors (SP600125, SB202190, and PD98059) were treated for 1, 24, 48, and 72 h to examine the roles of protein kinases. Early inhibition of JNK did not alter phenotypic or morphological changes of immortalized cells, however overexpression of Bax and decrease of phosphorylated AKT was observed. The prolonged inhibition of JNK induced polyploidization of immortalized cells, and resulted in differentiation and inhibition of cell proliferation. Moreover, JNK and p38 MAP kinase but not ERK1/2 was activated, and p21, p53, and Bax were overexpressed by prolonged inhibition of JNK. These results indicate that JNK and p38 MAP kinase could play dual roles on cell survival and apoptosis. Furthermore, this established cell line could facilitate study of the role of JNK and p38 MAP kinase on CNS development or differentiation/apoptosis

  14. Matrine induction of reactive oxygen species activates p38 leading to caspase-dependent cell apoptosis in non-small cell lung cancer cells.

    Science.gov (United States)

    Tan, Caihong; Qian, Xiaoqiang; Jia, Rongdi; Wu, Min; Liang, Zhongqin

    2013-11-01

    Non-small cell lung carcinoma (NSCLC) is one of the most refractory cancers in the clinic; it is insensitive to chemotherapy and is usually excised. However, screening natural compounds from herbs is also considered a possible method for its therapy. In the present study, we investigated whether matrine, a natural compound isolated from Sophora flavescens Ait. and exerting an inhibitory effect on lung cancer cells, also indicates inhibition on NSCLC cells and elucidated its molecular mechanism. Firstly, it is confirmed that matrine induces apoptosis of human NSCLC cells with anti-apoptotic factors inhibited and dependent on caspase activity. In addition, we found that matrine increases the phosphorylation of p38 but not its total protein, and inhibition of the p38 pathway with SB202190 partially prevents matrine-induced apoptosis. Furthermore, matrine generates reactive oxygen species (ROS) in a dose- and time-dependent manner, which is reversed by pretreatment with N-acetyl-L-cysteine (NAC). Additionally, inhibition of cell proliferation and increase of phosphorylation of p38 was also partially reversed by NAC. Collectively, matrine activates p38 pathway leading to a caspase-dependent apoptosis by inducing generation of ROS in NSCLC cells and may be a potential chemical for NSCLC.

  15. STAT1, STAT3 and p38MAPK are involved in the apoptotic effect induced by a chimeric cyclic interferon-{alpha}2b peptide

    Energy Technology Data Exchange (ETDEWEB)

    Blank, Viviana C.; Pena, Clara [Institute of Biochemistry and Biophysics (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956-C1113AAD Buenos Aires (Argentina); Roguin, Leonor P., E-mail: rvroguin@qb.ffyb.uba.ar [Institute of Biochemistry and Biophysics (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956-C1113AAD Buenos Aires (Argentina)

    2010-02-15

    In the search of mimetic peptides of the interferon-{alpha}2b molecule (IFN-{alpha}2b), we have previously designed and synthesized a chimeric cyclic peptide of the IFN-{alpha}2b that inhibits WISH cell proliferation by inducing an apoptotic response. Here, we first studied the ability of this peptide to activate intracellular signaling pathways and then evaluated the participation of some signals in the induction of apoptosis. Stimulation of WISH cells with the cyclic peptide showed tyrosine phosphorylation of Jak1 and Tyk2 kinases, tyrosine and serine phosphorylation of STAT1 and STAT3 transcription factors and activation of p38 MAPK pathway, although phosphorylation levels or kinetics were in some conditions different to those obtained under IFN-{alpha}2b stimulus. JNK and p44/42 pathways were not activated by the peptide in WISH cells. We also showed that STAT1 and STAT3 downregulation by RNA interference decreased the antiproliferative activity and the amount of apoptotic cells induced by the peptide. Pharmacological inhibition of p38 MAPK also reduced the peptide growth inhibitory activity and the apoptotic effect. Thus, we demonstrated that the cyclic peptide regulates WISH cell proliferation through the activation of Jak/STAT signaling pathway. In addition, our results indicate that p38 MAPK may also be involved in cell growth regulation. This study suggests that STAT1, STAT3 and p38 MAPK would be mediating the antitumor and apoptotic response triggered by the cyclic peptide in WISH cells.

  16. Lactobacillus casei triggers a TLR mediated RACK-1 dependent p38 MAPK pathway in Caenorhabditis elegans to resist Klebsiella pneumoniae infection.

    Science.gov (United States)

    Kamaladevi, Arumugam; Balamurugan, Krishnaswamy

    2016-07-13

    In the present study, the effect of Lactic Acid Bacteria (LAB) was investigated at the molecular level using the model organism Caenorhabditis elegans against Klebsiella pneumoniae. Out of the 13 LAB screened, Lactobacillus casei displayed excellent protective efficacy by prolonging the survival of K. pneumoniae-infected nematodes. Pretreatment with L. casei significantly decreased bacterial colonization and rescued K. pneumoniae-infected C. elegans from various physiological impairments. The concomitant upregulation of key immune genes that regulate the TLR, RACK-1 as well as the p38 MAPK pathway rather than the IIS and ERK pathway suggested that the plausible immunomodulatory mechanism of L. casei could be by triggering the TLR, RACK-1 and p38 MAPK pathway. Furthermore, the hyper-susceptibility of L. casei treated loss-of-function mutants of the tol-1, RACK-1 and p38 MAPK pathway (sek-1 and pmk-1) to K. pneumoniae infection and gene expression analysis suggested that L. casei triggered a TLR mediated RACK-1 dependent p38 MAPK pathway to increase host resistance and protect nematodes against K. pneumoniae infection. PMID:27338631

  17. Loss of CAR promotes migration and proliferation of HaCaT cells, and accelerates wound healing in rats via Src-p38 MAPK pathway

    Science.gov (United States)

    Su, Linlin; Fu, Lanqing; Li, Xiaodong; Zhang, Yue; Li, Zhenzhen; Wu, Xue; Li, Yan; Bai, Xiaozhi; Hu, Dahai

    2016-01-01

    The coxsackie and adenovirus receptor (CAR) is a cell adhesion molecule mostly localized to cell-cell contacts in epithelial and endothelial cells. CAR is known to regulate tumor progression, however, its physiological role in keratinocyte migration and proliferation, two essential steps in re-epithelialization during wound healing, has less been investigated. Here we showed that CAR was predominantly expressed in the epidermis of human skin, CAR knockdown by RNAi significantly accelerated HaCaT cell migration and proliferation. In addition, knockdown of CAR in vitro increased p-Src, p-p38, and p-JNK protein levels; however, Src inhibitor PP2 prevented the increase of p-Src and p-p38 induced by CAR RNAi, but not p-JNK, and decelerated cell migration and proliferation. More intriguingly, in vivo CAR RNAi on the skin area surrounding the wounds on rat back visually accelerated wound healing and re-epithelialization process, while treatment with PP2 or p38 inhibitor SB203580 obviously inhibited these effects. By contrast, overexpressing CAR in HaCaT cells significantly decelerated cell migration and proliferation. Above results demonstrate that suppression of CAR could accelerate HaCaT cell migration and proliferation, and promote wound healing in rat skin, probably via Src-p38 MAPK pathway. CAR thus might serve as a novel therapeutic target for facilitating wound healing. PMID:26804208

  18. Synthesis and structure-activity relationships of 4-fluorophenyl-imidazole p38 alpha MAPK, CK1 delta and JAK2 kinase inhibitors

    NARCIS (Netherlands)

    Seerden, Jean-Paul G.; Leusink-Ionescu, Gabriela; Woudenberg - Vrenken, Titia; Dros, Bas; Molema, Grietje; Kamps, Jan A. A. M.; Kellogg, Richard M.

    2014-01-01

    The synthesis and structure-activity relationships of novel 4-(4 '-fluorophenyl)imidazoles as selective p38 alpha MAPK, CK1 delta and JAK2 inhibitors with improved water solubility are described. Microwave-assisted multicomponent reactions afforded 4-fluorophenyl-2,5-disubstituted imidazoles. Carbox

  19. The p38 MAP kinase inhibitor SB203580 enhances nuclear factor-kappa B transcriptional activity by a non-specific effect upon the ERK pathway

    NARCIS (Netherlands)

    Birkenkamp, KU; Tuyt, LML; Lummen, C; Wierenga, LTJ; Kruijer, W; Vellenga, E

    2000-01-01

    1 In the present study we investigated a possible role for the p38 mitogen-activated protein (MAP) kinase pathway in mediating nuclear factor-kappa B (NF-kappa B) transcriptional activity in the erythroleukaemic cell line TF-1. 2 TF-1 cells stimulated with the phosphatase inhibitor okadaic acid (OA)

  20. Bacillus sp. strain P38: an efficient producer of L-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural.

    Science.gov (United States)

    Peng, Lili; Wang, Limin; Che, Chengchuan; Yang, Ge; Yu, Bo; Ma, Yanhe

    2013-12-01

    In this study, efficient polymer-grade L-lactic acid production was achieved with the strain Bacillus sp. P38 by using cellulosic hydrolysate as the sole carbon source. In fed-batch fermentation, 180 g L(-1)L-lactic acid was obtained with a volumetric productivity of 2.4 g L(-1)h(-1) and a yield of 0.96 g g(-1) total reducing sugars. No D-isomer of lactic acid was detected in the broth. Strain P38 tolerated up to 10 g L(-1) 2-furfural, and lactate production was sharply inhibited only when the 2-furfural concentration was higher than 6 g L(-1). Moreover, strain P38 also tolerated high concentrations (>6 g L(-1)) of other fermentation inhibitors in cellulosic hydrolysate, such as vanillin and acetic acid, although it was slightly sensitive to formic acid. The efficient L-lactic acid production, combined with high inhibitor tolerance and efficient pentose utilization, indicate that Bacillus sp. P38 is a promising producer of polymer-grade L-lactic acid from cellulosic biomass.

  1. Role of p38 Mapk in development of acute hepatic injury in Long-Evans Cinnamon (LEC) rats, an animal model of human Wilson's disease.

    Science.gov (United States)

    Kadowaki, Shingo; Meguro, Saori; Imaizumi, Yoshitaka; Sakai, Hiroshi; Endoh, Daiji; Hayashi, Masanobu

    2013-12-30

    The Long-Evans Cinnamon (LEC) rat, an animal model of human Wilson's disease, spontaneously develops fulminant hepatitis associated with severe jaundice at about 4 months of age. In this study, we examined the changes in gene expression during progression of acute hepatic injury. When levels of gene expression in the liver of LEC rats at 13 weeks of age were compared to those in rats at 4 weeks of age using oligonucleotide arrays, 1,620 genes out of 7,700 genes analyzed showed more than 2-fold differences. Expression levels of 11 of 29 genes related to stress-activating protein kinase (SAPK) changed by more than 2-fold in the liver of LEC rats, but none of the SAPK-related genes showed changes in expression levels in the liver of control rats. Activity of p38 mapk in the liver of LEC rats at 13 weeks of age was about 8.1-fold higher than that in rats at 4 weeks of age. When LEC rats were administered SB203580, a p38 mapk-specific inhibitor, by s.c. injection twice a week from 10 to 13 weeks of age, activities of p38 mapk in the liver, activities of AST and ALT and concentrations of bilirubin in sera of rats administered SB203580 significantly decreased compared to those in rats not administered. These results showed that the increase in activities of p38 mapk was related to the occurrence of acute hepatic injury in LEC rats.

  2. Calcium-dependent p38 phosphorylation is important for memory CD4 T cell effector cytokine transcription and mRNA stabilization.

    Science.gov (United States)

    PMA and ionomycin are often used for in vitro T cell stimulation, as a mimic of TCR-mediated activation. Here we report that ionomycin alone induces substantial production of IL-4 and IFN-gamma, but not IL-2, from in vivo and in vitro generated Th2 and Th1 cells, respectively. Ionomycin induces p38 ...

  3. Paroxetine-induced apoptosis in human osteosarcoma cells: Activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation

    International Nuclear Information System (INIS)

    Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are generally used for treatment of various mood and anxiety disorders. There has been much research showing the anti-tumor and cytotoxic activities of some antidepressants; but the detailed mechanisms were unclear. In cultured human osteosarcoma cells (MG63), paroxetine reduced cell viability in a concentration- and time-dependent manner. Paroxetine caused apoptosis as assessed by propidium iodide-stained cells and increased caspase-3 activation. Although immunoblotting data revealed that paroxetine could activate the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Paroxetine also induced [Ca2+]i increases which involved the mobilization of intracellular Ca2+ stored in the endoplasmic reticulum and Ca2+ influx from extracellular medium. However, pretreatment with BAPTA/AM, a Ca2+ chelator, to prevent paroxetine-induced [Ca2+]i increases did not protect cells from death. The results suggest that in MG63 cells, paroxetine caused Ca2+-independent apoptosis via inducing p38 MAPK-associated caspase-3 activation

  4. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  5. The mirror box

    Science.gov (United States)

    Thompson, Gene; Mathieson, Don

    2001-11-01

    The mirror box is an old standby in magic shows and an impressive demonstration of the law of reflection for the physics instructor. The box creates the illusion of an object floating in space by the use of a plane mirror.

  6. Modulation of ERK1/2 and p38{sup MAPK} by lead in the cerebellum of Brazilian catfish Rhamdia quelen

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Rodrigo B. [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil)]. E-mail: bainyle@mbox1.ufsc.br; Ribeiro, Sandro Jose [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil); Posser, Thais [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil); Cordova, Fabiano M. [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil); Escola de Medicina Veterinaria e Zootecnia, Universidade Federal do Tocantins, Araguaina - TO 77804-970 (Brazil); Rigon, Ana Paula [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil); Filho, Evoy Zaniboni [Departamento de Aquicultura, Centro de Ciencias Agrarias, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil); Bainy, Afonso C.D. [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil)

    2006-04-20

    Lead (Pb{sup 2+}) is a neurotoxic trace metal, widespread in aquatic environment that can change physiologic, biochemical and behavioral parameters in diverse fish species. Chemical exposure may drive modulation of mitogen-activated protein kinases (MAPKs) that are a family of highly conserved enzymes which comprise ubiquitous groups of signaling proteins playing critical regulatory roles in cell physiology. Extracellular signal-regulated kinases (ERK1/2) and p38{sup MAPK} control complex programs such as gene expression, embryogenesis, cell differentiation, cell proliferation, cell death and synaptic plasticity. Little information is available about MAPKs in aquatic organisms and their modulation by trace metals. The aim of this work was to determine the modulation of ERK1/2 and p38{sup MAPK} phosphorylation by Pb{sup 2+} in vivo and in vitro, in cerebellar slices of the catfish, Rhamdia quelen. In the in vitro model, slices were incubated for 3 h with lead acetate (1-10 {mu}M). In the in vivo studies, the animals were exposed for 2 days to lead acetate (1 mg L{sup -1}). ERK1/2 and p38{sup MAPK} (total and phosphorylated forms) were immunodetected in cerebellar slices by Western blotting. Pb{sup 2+} added in vitro at 5 and 10 {mu}M increased significantly the phosphorylation of both MAPKs. The in vivo exposed animals also showed a significant increase of ERK1/2 and p38{sup MAPK} phosphorylation without changes in the total content of the enzymes. In conclusion, the present work indicates that it is possible to evaluate the ERK1/2 and p38{sup MAPK} activation in the central nervous system (CNS) of a freshwater fish largely distributed in South America. Moreover, Pb{sup 2+}, an important environmental pollutant may activate in vitro and in vivo ERK1/2 and p38{sup MAPK} enzymes. These findings are important considering the functional and ecologic implications associated to Pb{sup 2+} exposure of a freshwater fish species, such as R. quelen, and the roles of ERK1

  7. Silica nanoparticles induce cytokine responses in lung epithelial cells through activation of a p38/TACE/TGF-α/EGFR-pathway and NF-κΒ signalling

    Energy Technology Data Exchange (ETDEWEB)

    Skuland, Tonje, E-mail: tonje.skuland@fhi.no; Øvrevik, Johan; Låg, Marit; Schwarze, Per; Refsnes, Magne

    2014-08-15

    Amorphous silica nanoparticles (SiNPs) have previously been shown to induce marked cytokine (interleukin-6; IL-6 and interleukin-8; CXCL8/IL-8) responses independently of particle uptake in human bronchial epithelial BEAS-2B cells. In this study the involvement of the mitogen-activated protein kinases (MAP-kinases), nuclear factor-kappa Β (NF-κΒ) and in particular tumour necrosis factor-α converting enzyme (TACE) and—epidermal growth factor receptor (EGFR) signalling pathways were examined in triggering of IL-6 and CXCL8 release after exposure to a 50 nm silica nanoparticle (Si50). Exposure to Si50 increased phosphorylation of NF-κΒ p65 and MAP-kinases p38 and JUN-N-terminal protein kinase pathways (JNK), but not extracellular signal regulated kinases (ERK). Inhibition of NF-κΒ and p38 reduced the cytokine responses to Si50, whereas neither JNK- nor ERK-inhibition exerted any significant effect on the responses to Si50. Increases in membrane-bound transforming growth factor-α (TGF-α) release and EGFR phosphorylation were also observed after Si50 exposure, and pre-treatment with inhibitors of these pathways reduced the release of IL-6 and CXCL8, but did not affect the Si50-induced phosphorylation of p38 and p65. In contrast, p38-inhibition partially reduced Si50-induced TGF-α release, while the p65-inhibition was without effect. Overall, our results indicate that Si50-induced IL-6 and CXCL8 responses in BEAS-2B cells were regulated through combined activation of several pathways, including NF-κΒ and p38/TACE/TGF-α/EGFR signalling. The study identifies critical, initial events in the triggering of pro-inflammatory responses by nanoparticles. - Highlights: • Silica nanoparticles induce IL-6 and CXCL8 via NFκB and MAPKinase p38 in BEAS-2B • Silica nanoparticles induce release of the EGF-receptor ligand TGF-α • TGF-α release contributes to the IL-6 and CXCL8 release • Phosphorylation of p38 is involved in release of TGF-α.

  8. A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model

    Directory of Open Access Journals (Sweden)

    McNamara Laurie K

    2007-09-01

    Full Text Available Abstract Background An accumulating body of evidence is consistent with the hypothesis that excessive or prolonged increases in proinflammatory cytokine production by activated glia is a contributor to the progression of pathophysiology that is causally linked to synaptic dysfunction and hippocampal behavior deficits in neurodegenerative diseases such as Alzheimer's disease (AD. This raises the opportunity for the development of new classes of potentially disease-modifying therapeutics. A logical candidate CNS target is p38α MAPK, a well-established drug discovery molecular target for altering proinflammatory cytokine cascades in peripheral tissue disorders. Activated p38 MAPK is seen in human AD brain tissue and in AD-relevant animal models, and cell culture studies strongly implicate p38 MAPK in the increased production of proinflammatory cytokines by glia activated with human amyloid-beta (Aβ and other disease-relevant stressors. However, the vast majority of small molecule drugs do not have sufficient penetrance of the blood-brain barrier to allow their use as in vivo research tools or as therapeutics for neurodegenerative disorders. The goal of this study was to test the hypothesis that brain p38α MAPK is a potential in vivo target for orally bioavailable, small molecules capable of suppressing excessive cytokine production by activated glia back towards homeostasis, allowing an improvement in neurologic outcomes. Methods A novel synthetic small molecule based on a molecular scaffold used previously was designed, synthesized, and subjected to analyses to demonstrate its potential in vivo bioavailability, metabolic stability, safety and brain uptake. Testing for in vivo efficacy used an AD-relevant mouse model. Results A novel, CNS-penetrant, non-toxic, orally bioavailable, small molecule inhibitor of p38α MAPK (MW01-2-069A-SRM was developed. Oral administration of the compound at a low dose (2.5 mg/kg resulted in attenuation of

  9. Nanosized titanium dioxide resulted in the activation of TGF-β/Smads/p38MAPK pathway in renal inflammation and fibration of mice.

    Science.gov (United States)

    Hong, F; Wu, N; Ge, Y; Zhou, Y; Shen, T; Qiang, Q; Zhang, Q; Chen, M; Wang, Y; Wang, L; Hong, J

    2016-06-01

    Titanium dioxide nanoparticles (TiO2 NPs) have been demonstrated to damage the kidneys. However, whether chronic nephritis leads to renal fibration or the fibrosis is associated with the activation of TGF-β/Smads/p38MAPK pathway caused by TiO2 NPs exposure is not well understood. Forty male mice were separately exposed to 0, 2.5, 5, or 10 mg/kg body weight TiO2 NPs for 6 months. Renal biochemical functions and levels of TGF-β/Smads/p38MAPK pathway-related markers and extracellular matrix (ECM) expression in the kidneys were investigated. The findings showed that subchronic TiO2 NPs exposure increased levels of urinary creatisix (Cr), N-acetyl-glucosaminidase, and vanin-1, resulted in severe renal inflammation and fibration. Furthermore, TiO2 NP exposure upregulated expression of transforming growth factor-β1 (TGF-β1, 0.07- to 2.72-fold), Smad2 (0.42- to 1.63-fold), Smad3 (0.02- to 1.94-fold), ECM (0.15- to 2.75-fold), α-smooth muscle actin (0.14- to 3.06-fold), p38 mitogen-activated protein kinase (p38MAPK, 0.11- to 3.78-fold), and nuclear factor-κB (0.4- to 2.27-fold), and downregulated Smad7 (0.05- to 0.61-fold) expression in mouse kidney. Subchronic TiO2 NPs exposure induced changes of renal characteristics towards inflammation and fibration may be mediated via TGF-β/Smads/p38MAPK pathway, and the uses of TiO2 NPs should be carried out cautiously, especially in humans. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1452-1461, 2016.

  10. Nanosized titanium dioxide resulted in the activation of TGF-β/Smads/p38MAPK pathway in renal inflammation and fibration of mice.

    Science.gov (United States)

    Hong, F; Wu, N; Ge, Y; Zhou, Y; Shen, T; Qiang, Q; Zhang, Q; Chen, M; Wang, Y; Wang, L; Hong, J

    2016-06-01

    Titanium dioxide nanoparticles (TiO2 NPs) have been demonstrated to damage the kidneys. However, whether chronic nephritis leads to renal fibration or the fibrosis is associated with the activation of TGF-β/Smads/p38MAPK pathway caused by TiO2 NPs exposure is not well understood. Forty male mice were separately exposed to 0, 2.5, 5, or 10 mg/kg body weight TiO2 NPs for 6 months. Renal biochemical functions and levels of TGF-β/Smads/p38MAPK pathway-related markers and extracellular matrix (ECM) expression in the kidneys were investigated. The findings showed that subchronic TiO2 NPs exposure increased levels of urinary creatisix (Cr), N-acetyl-glucosaminidase, and vanin-1, resulted in severe renal inflammation and fibration. Furthermore, TiO2 NP exposure upregulated expression of transforming growth factor-β1 (TGF-β1, 0.07- to 2.72-fold), Smad2 (0.42- to 1.63-fold), Smad3 (0.02- to 1.94-fold), ECM (0.15- to 2.75-fold), α-smooth muscle actin (0.14- to 3.06-fold), p38 mitogen-activated protein kinase (p38MAPK, 0.11- to 3.78-fold), and nuclear factor-κB (0.4- to 2.27-fold), and downregulated Smad7 (0.05- to 0.61-fold) expression in mouse kidney. Subchronic TiO2 NPs exposure induced changes of renal characteristics towards inflammation and fibration may be mediated via TGF-β/Smads/p38MAPK pathway, and the uses of TiO2 NPs should be carried out cautiously, especially in humans. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1452-1461, 2016. PMID:26850371

  11. 13-Acetoxysarcocrassolide Induces Apoptosis on Human Gastric Carcinoma Cells Through Mitochondria-Related Apoptotic Pathways: p38/JNK Activation and PI3K/AKT Suppression

    Directory of Open Access Journals (Sweden)

    Ching-Chyuan Su

    2014-10-01

    Full Text Available 13-acetoxysarcocrassolide (13-AC, an active compound isolated from cultured Formosa soft coral Sarcophyton crassocaule, was found to possess anti-proliferative and apoptosis-inducing activities against AGS (human gastric adenocarcinoma cells gastric carcinoma cells. The anti-tumor effects of 13-AC were determined by MTT assay, colony formation assessment, cell wound-healing assay, TUNEL/4,6-Diamidino-2-phenylindole (DAPI staining, Annexin V-fluorescein isothiocyanate/propidium iodide (PI staining and flow cytometry. 13-AC inhibited the growth and migration of gastric carcinoma cells in a dose-dependent manner and induced both early and late apoptosis as assessed by flow cytometer analysis. 13-AC-induced apoptosis was confirmed through observation of a change in ΔΨm, up-regulated expression levels of Bax and Bad proteins, down-regulated expression levels of Bcl-2, Bcl-xl and Mcl-1 proteins, and the activation of caspase-3, caspase-9, p38 and JNK. Furthermore, inhibition of p38 and JNK activity by pretreatment with SB03580 (a p38-specific inhibitor and SP600125 (a JNK-specific inhibitor led to rescue of the cell cytotoxicity of 13-AC-treated AGS cells, indicating that the p38 and the JNK pathways are also involved in the 13-AC-induced cell apoptosis. Together, these results suggest that 13-AC induces cell apoptosis against gastric cancer cells through triggering of the mitochondrial-dependent apoptotic pathway as well as activation of the p38 and JNK pathways.

  12. MKP1-dependent PTH modulation of bone matrix mineralization in female mice is osteoblast maturation stage specific and involves P-ERK and P-p38 MAPKs.

    Science.gov (United States)

    Mahalingam, Chandrika D; Sampathi, Bharat Reddy; Sharma, Sonali; Datta, Tanuka; Das, Varsha; Abou-Samra, Abdul B; Datta, Nabanita S

    2013-03-01

    Limited information is available on the role of MAPK phosphatase 1 (MKP1) signaling in osteoblasts. We have recently reported distinct roles for MKP1 during osteoblast proliferation, differentiation, and skeletal responsiveness to parathyroid hormone (PTH). As MKP1 regulates the phosphorylation status of MAPKs, we investigated the involvement of P-ERK and P-p38 MAPKs in MKP1 knockout (KO) early and mature osteoblasts with respect to mineralization and PTH response. Calvarial osteoblasts from 9-14-week-old WT and MKP1 KO male and female mice were examined. Western blot analysis revealed downregulation and sustained expressions of P-ERK and P-p38 with PTH treatment in differentiated osteoblasts derived from KO males and females respectively. Exposure of early osteoblasts to p38 inhibitor, SB203580 (S), markedly inhibited mineralization in WT and KO osteoblasts from both genders as determined by von Kossa assay. In osteoblasts from males, ERK inhibitor U0126 (U), not p38 inhibitor (S), prevented the inhibitory effects of PTH on mineralization in early or mature osteoblasts. In osteoblasts from KO females, PTH sustained mineralization in early osteoblasts and decreased mineralization in mature cells. This effect of PTH was attenuated by S in early osteoblasts and by U in mature KO cells. Changes in matrix Gla protein expression with PTH in KO osteoblasts did not correlate with mineralization, indicative of MKP1-dependent additional mechanisms essential for PTH action on osteoblast mineralization. We conclude that PTH regulation of osteoblast mineralization in female mice is maturation stage specific and involves MKP1 modulation of P-ERK and P-p38 MAPKs.

  13. Endothelial lipase is upregulated by interleukin-6 partly via the p38 MAPK and p65 NF-κB signaling pathways

    Science.gov (United States)

    Yue, Xin; Wu, Minghui; Jiang, Hong; Hao, Jing; Zhao, Qinghao; Zhu, Qing; Saren, Gaowa; Zhang, Yun; Zhang, Xiaoli

    2016-01-01

    To investigate the effects of inflammatory factor interleukin (IL)-6 on the expression of endothelial lipase (EL) and its potential signaling pathways in atherosclerosis, a primary culture of human umbilical vein endothelial cells (HUVECs) was established and treated as follows: i) Control group without any treatment; ii) recombinant human (rh)IL-6 treatment (10 ng/ml) for 0, 4, 8, 12 and 24 h; iii) p38 mitogen-activated protein kinases (MAPKs) inhibitor (SB203580, 10 µmol/l) pretreatment for 1 h prior to rhIL-6 (10 ng/ml) treatment; iv) nuclear factor (NF)-κB activation inhibitor (pyrrolidine dithiocarbamate, 10 mmol/l) pretreatment for 1 h prior to rhIL-6 (10 ng/ml) treatment. EL levels were detected by immunocytochemical staining and western blot analysis. Proliferation of HUVECs was detected by immunostaining of proliferating cell nuclear antigen (PCNA) and an MTT assay. p38 MAPK and NF-κB p65 levels were detected by western blotting. The results showed that rhIL-6 treatment increased EL expression and proliferation of HUVECs. NF-κB p65 and MAPK p38 protein levels also increased in a time-dependent manner in HUVECs after rhIL-6 treatment. NF-κB inhibitor and MAPK p38 inhibitor prevented the effects of rhIL-6 on EL expression. In conclusion, inflammatory factor IL-6 may participate in the pathogenesis of atherosclerosis by increasing EL expression and the proliferation of endothelial cells via the p38 MAPK and NF-κB signaling pathways. PMID:27430252

  14. Novel mechanism for gonadotropin-releasing hormone neuronal migration involving Gas6/Ark signaling to p38 mitogen-activated protein kinase.

    Science.gov (United States)

    Allen, Melissa P; Linseman, Daniel A; Udo, Hiroshi; Xu, Mei; Schaack, Jerome B; Varnum, Brian; Kandel, Eric R; Heidenreich, Kim A; Wierman, Margaret E

    2002-01-01

    Gonadotropin-releasing hormone (GnRH) is the central regulator of the reproductive axis. Normal sexual maturation depends on the migration of GnRH neurons from the olfactory placode to the hypothalamus during development. Previously, we showed restricted expression of the membrane receptor adhesion-related kinase (Ark) in immortalized cell lines derived from migratory but not postmigratory GnRH neurons. In addition, Ark and GnRH transcripts were detected along the GnRH neuron migratory route in the E13 mouse cribriform plate. In the present study, we examined the role of Ark and its ligand, Gas6 (encoded by growth arrest-specific gene 6), in GnRH neuron migration. Gas6 stimulated lamellipodial extension, membrane ruffling, and chemotaxis of immortalized NLT GnRH neuronal cells via the Ark receptor. Gas6/Ark signaling promoted activation of the Rho family GTPase Rac, and adenoviral-mediated expression of dominant negative N17Rac abolished Gas6/Ark-induced actin cytoskeletal reorganization and migration of GnRH neuronal cells. In addition, p38 MAPK was activated downstream of Ark and Rac, and inhibition of p38 MAPK with either SB203580 or adenoviral dominant negative p38alpha also blocked Gas6/Ark-mediated migration. Finally, downstream of Rac and p38 mitogen-activated protein kinase (MAPK), Gas6/Ark signaling promoted activation of MAPK-activated protein kinase 2 and induced phosphorylation of HSP25, a known regulator of cortical actin remodeling. The data are the first to demonstrate a migratory signaling pathway downstream of Ark/Axl family receptors and suggest a previously unidentified role for p38 MAPK in neuronal migration. Furthermore, these studies support a potential role for Ark in the regulation of GnRH neuronal migration.

  15. Effects of physical exercise on the P38MAPK/REDD1/14-3-3 pathways in the myocardium of diet-induced obesity rats.

    Science.gov (United States)

    Pieri, B L S; Souza, D R; Luciano, T F; Marques, S O; Pauli, J R; Silva, A S R; Ropelle, E R; Pinho, R A; Lira, F S; De Souza, C T

    2014-08-01

    Obesity is associated with myocardial insulin resistance and impairment of the mammalian target of rapamycin (mTOR) signaling pathway. The activation of the mTOR cascade by exercise has been largely shown in skeletal muscle, but insufficiently analyzed in myocardial tissue. In addition, little is known regarding the mTOR upstream molecules in the hearts of obese animals and even less about the role of exercise in this process. Thus, the present study was aimed to evaluate the effects of physical exercise on P38 Mitogen-Activated Protein Kinase (P38MAPK) phosphorylation and the REDD1 (regulated in development and DNA damage responses 1) and 14-3-3 protein levels in the myocardium of diet-induced obesity (DIO) rats. After achievement of DIO and insulin resistance, Wistar rats were divided in 2 groups: sedentary obese rats and obese rats performed treadmill running (50-min/day, 5 days per week velocity of 1.0 km/h for 2 months). Forty-eight hours after the final physical exercise, the rats were killed, and the myocardial tissue was removed for Western blot analysis. DIO increased the REDD1 protein levels and reduced the 14-3-3 protein levels and P38MAPK, mTOR, P70S6k (p70 ribosomal S6 protein kinase), and 4EBP1 (4E-binding protein-1) phosphorylation. Interestingly, physical exercise reduced the REDD1 protein levels and increased the 14-3-3 protein levels and P38MAPK, mTOR, P70S6k, and 4EBP1 phosphorylation. Moreover, exercise increased the REDD1/14-3-3 association in the heart. Our results indicate that the phospho-P38MAPK, REDD1, and 14-3-3 protein levels were reduced in the myocardium of obese rats and that physical exercise increased the protein levels of these molecules. PMID:24691733

  16. The Ethanol Extract of Fructus trichosanthis Promotes Fetal Hemoglobin Production via p38 MAPK Activation and ERK Inactivation in K562 Cells

    Directory of Open Access Journals (Sweden)

    Hui Li

    2011-01-01

    Full Text Available Pharmacological stimulation of fetal hemoglobin (HbF expression may be a promising approach for the treatment of beta-thalassemia. In this study, the effects of Fructus trichosanthis (FT were investigated in human erythroleukemic K562 cells for their gamma-globin mRNA and HbF-induction activities. The role of signaling pathways, including extracellular regulated protein kinase (ERK and p38 mitogen-activated protein kinase (MAPK, was also investigated. It was found that the ethanol extract of FT significantly increased gamma-globin mRNA and HbF levels, determined by real-time reverse transcription polymerase chain reaction and enzyme linked immunosorbent assay, respectively, in dose- and time-dependent manner. Total Hb (THb levels were also elevated in the concentrations without cytotoxicity (<80 μg mL−1. Pre-treatment with p38 MAPK inhibitor SB203580 blocked the stimulatory effects of FT extract in total and HbF induction. In contrast, no change in HbF was observed when treated with ERK inhibitor PD98059. Furthermore, FT ethanol extract activated p38 MAPK and inhibited ERK signaling pathways in K562 cells, as revealed in western blotting analysis. In addition, SB203580 significantly abolished p38 MAPK activation when the cells were treated with FT. In summary, the ethanol extract of FT was found to be a potent inducer of HbF synthesis in K562 cells. The present data delineated the role of ERK and p38 MAPK signaling as molecular targets for pharmacologic stimulation of HbF production upon FT treatment.

  17. Zinc deficiency exacerbates while zinc supplement attenuates cardiac hypertrophy in high-fat diet-induced obese mice through modulating p38 MAPK-dependent signaling.

    Science.gov (United States)

    Wang, Shudong; Luo, Manyu; Zhang, Zhiguo; Gu, Junlian; Chen, Jing; Payne, Kristen McClung; Tan, Yi; Wang, Yuehui; Yin, Xia; Zhang, Xiang; Liu, Gilbert C; Wintergerst, Kupper; Liu, Quan; Zheng, Yang; Cai, Lu

    2016-09-01

    Childhood obesity often leads to cardiovascular diseases, such as obesity-related cardiac hypertrophy (ORCH), in adulthood, due to chronic cardiac inflammation. Zinc is structurally and functionally essential for many transcription factors; however, its role in ORCH and underlying mechanism(s) remain unclear and were explored here in mice with obesity induced with high-fat diet (HFD). Four week old mice were fed on either HFD (60%kcal fat) or normal diet (ND, 10% kcal fat) for 3 or 6 months, respectively. Either diet contained one of three different zinc quantities: deficiency (ZD, 10mg zinc per 4057kcal), normal (ZN, 30mg zinc per 4057kcal) or supplement (ZS, 90mg zinc per 4057kcal). HFD induced a time-dependent obesity and ORCH, which was accompanied by increased cardiac inflammation and p38 MAPK activation. These effects were worsened by ZD in HFD/ZD mice and attenuated by ZS in HFD/ZS group, respectively. Also, administration of a p38 MAPK specific inhibitor in HFD mice for 3 months did not affect HFD-induced obesity, but completely abolished HFD-induced, and zinc deficiency-worsened, ORCH and cardiac inflammation. In vitro exposure of adult cardiomyocytes to palmitate induced cell hypertrophy accompanied by increased p38 MAPK activation, which was heightened by zinc depletion with its chelator TPEN. Inhibition of p38 MAPK with its specific siRNA also prevented the effects of palmitate on cardiomyocytes. These findings demonstrate that ZS alleviates but ZD heightens cardiac hypertrophy in HFD-induced obese mice through suppressing p38 MAPK-dependent cardiac inflammatory and hypertrophic pathways. PMID:27346292

  18. Activation of phosphorylating-p38 mitogen-activated protein kinase and its relationship with localization of intestinal stem cells in rats after ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bing Fu; Feng Xing; Yin-Hui Yang; Tong-Zhu Sun; Bao-Chen Guo

    2003-01-01

    AIM: To investigate the expression of phosphorylating p38mitogen-activated protein kinase (MAPK) in rat small intestine after ischemia-reperfusion (I/R) insult and its relationship with the localization of intestinal stem cells.METHODS: Forty-eight Wistar rats were divided randomly into three groups, namely intestinal ischemia-reperfusion group (R), intestinal ischemia group (Ⅰ) and sham-operated control group (C). In group I, the animals were killed 45minutes after superior mesenteric artery (SMA) occlusion,while in group R the rats sustained SMA occlusion for 45 minutes and reperfusion for 2, 6, 12 or 24 hours respectively. In shamoperated control group, SMA was separated, but without occlusion. The activity of plasma diamine oxidase (DAO)was determined. Intestinal tissue samples were also taken for histological analysis and immunohistochemical analysis of MAPK p38 detection and intestinal stem cell localization.RESULTS: The changes in histological structure and plasma DAO levels indicated that the intestinal barrier was damaged after intestinal I/R injury. In group C and I, each crypt contained 5-6 p38 MAPK positive cells, which were mainly located in the lower region of the crypts. This was consistent with the distribution of intestinal stem cells. The presence of positive cells in crypts increased with the time of reperfusion and reached its peak at 12 hours after reperfusion (35.6%).CONCLUSION: After intestinal T/R injury, the expression of phosphorylating-p38 MAPK in small intestine increased with the duration of reperfusion, and its distribution coincided with that of intestinal stem cells and their daughter cells,indicating that phosphorylating-p38 might be a possible marker of intestinal stem cells.

  19. TAK-1/p38/nNFκB signaling inhibits myoblast differentiation by increasing levels of Activin A

    Directory of Open Access Journals (Sweden)

    Trendelenburg Anne

    2012-02-01

    Full Text Available Abstract Background Skeletal-muscle differentiation is required for the regeneration of myofibers after injury. The differentiation capacity of satellite cells is impaired in settings of old age, which is at least one factor in the onset of sarcopenia, the age-related loss of skeletal-muscle mass and major cause of frailty. One important cause of impaired regeneration is increased levels of transforming growth factor (TGF-β accompanied by reduced Notch signaling. Pro-inflammatory cytokines are also upregulated in aging, which led us hypothesize that they might potentially contribute to impaired regeneration in sarcopenia. Thus, in this study, we further analyzed the muscle differentiation-inhibition pathway mediated by pro-inflammatory cytokines in human skeletal muscle cells (HuSKMCs. Methods We studied the modulation of HuSKMC differentiation by the pro-inflammatory cytokines interleukin (IL-1α and tumor necrosis factor (TNF-α The grade of differentiation was determined by either imaging (fusion index or creatine kinase (CK activity, a marker of muscle differentiation. Secretion of TGF-β proteins during differentiation was assessed by using a TGF-β-responsive reporter-gene assay and further identified by means of pharmacological and genetic inhibitors. In addition, signaling events were monitored by western blotting and reverse transcription PCR, both in HuSKMC cultures and in samples from a rat sarcopenia study. Results The pro-inflammatory cytokines IL-1α and TNF-α block differentiation of human myoblasts into myotubes. This anti-differentiation effect requires activation of TGF-β-activated kinase (TAK-1. Using pharmacological and genetic inhibitors, the TAK-1 pathway could be traced to p38 and NFκB. Surprisingly, the anti-differentiation effect of the cytokines required the transcriptional upregulation of Activin A, which in turn acted through its established signaling pathway: ActRII/ALK/SMAD. Inhibition of Activin A signaling was

  20. 尿酸通过激活p38信号通路上调大鼠肾小球系膜细胞前列腺素E2的表达%Uric acid up-regulates the expression of prostanoid 2 in the glomerular mesangial cells through the p38MAPK pathway

    Institute of Scientific and Technical Information of China (English)

    彭俊琼; 袁伟杰; 张威; 周益

    2013-01-01

    Objectives To investigate the role and mechanism of p38 mitogerra activated protein kinase (p38MAPK) in up-regulation of prostanoid 2 induced by uric acid in rat glomerular mesangial cells (GMCs).Methods Rat glomerular mesangial cells were cultured in vitro,then stimulated with different concentrations of uric acid (50,100,300 μmol/L),or stimulated with different concentrations of uric acid (50,100,300 μmol/L) after pretreatment with p38MAPK specific inhibitor SC68376 (10 μmol/L) for 30 min.Activated p38MAPK was detected by Western blotting.The expression of prostanoid 2 was measured by ELISA.Cyclooxygenase-2 mRNA expression was determined by RT-PCR.Results Uric acid could activate p38MAPK and up-regulate the mRNA expressions of prostanoid 2 and cyclooxygenase-2 in rat glomerular mesangial cells (all P < 0.05).SC68376 inhibited those effects of the above-described induced by uric acid.Conclusion Uric acid can promote the expression of prostanoid 2 in rat glomerular mesangial cells,whose mechanism may be related to the activation of p38MAPK and the promotion of cyclooxygenase-2 synthesis,and further up-regulation of prostanoid 2 expression.%目的 探讨p38信号通路(p38MAPK)在尿酸(UA)上调大鼠肾小球系膜细胞(GMC)表达前列腺素E2(PGE2)中的作用及其可能机制.方法 体外培养GMC,应用不同浓度的UA(50、100、300 μmol/L)刺激或应用p38MAPK特异性抑制剂SC68376(10 μmol/L)预处理30 min后,再加入UA(50、100、300 μmol/L),分别于1h、2h、6h、24 h收集细胞.分别应用RT-PCR、ELISA法检测环氧化酶2(COX-2)、PGE2的表达,Western印迹法检测细胞内p38MAPK的磷酸化水平.结果 与对照组相比,UA显著促进GMC的PGE2、COX-2 mRNA表达及p38MAPK的磷酸化(均P<0.05).予p38MAPK特异性抑制剂SC68376后,UA诱导GMC的COX-2、PGE2表达和p38MAPK磷酸化均受到抑制.结论 UA可促进GMC表达PGE2,其机制可能与UA激活p38MAPK信号通路,引起COX-2的合成增加,进而上调PGE2表达有关.

  1. Effects of lentiviral-mediated p38 mitogen-activated protein kinase RNA interference on connective tissue growth factor expression in myocardial fibroblasts%慢病毒介导的p38丝裂原活化蛋白激酶RNA干扰对心肌成纤维细胞结缔组织生长因子的影响

    Institute of Scientific and Technical Information of China (English)

    周燕; 魏捷; 梁远红; 陈静; 唐其柱

    2013-01-01

    Objective To explore the effects of p38 mitogen-activated protein kinase (MAPK)short-hair RNA (shRNA) delivered by lentiviral vectors (PGLV) on connective tissue growth factor (CTGF) expression in myocardial fibroblasts.Methods The PGLN-shRNA was transfected into myocardial fibroblasts to to explore the role of p38MAPK pathway activation in transforming growth factor (TGF)-β-mediated myocardial fibrosis.The mRNA expression levels of p38MAPK and CTGF were detected by using reverse transcriptase-polymerase chain reaction (RT-PCR),and the protein expression levels of CTGF and α-smooth muscle actin (α-SMA) by using Western blotting.Results TGF-β stimulation increased p38MAPK and CTGF mRNA,and CTGF and α-SMA protein expression in myocardial fibroblasts (P <0.01).As compared with those in TGF-β group,PGLN-shRNA transfection decreased p38MAPK and CTGF mRNA,and CTGF and α-SMA protein expression in myocardial fibroblasts [(0.252 ± 0.041 vs.0.652±0.089,P<0.01; 0.418 ±0.071 vs.0.838 ±0.099,P<0.01; 0.418 ±0.076 vs.0.991 ±0.117,P<0.01;0.465±0.069 vs.0.875 ± 0.100,P < 0.05)].Conclusion TGF-β directly upregulates CTGF expression through p38MAPK pathway and gene silence of p38MAPK may protect TGF-β-mediated fibrosis in cardiac myoeytes.%目的 观察慢病毒介导的p38丝裂原活化蛋白激酶(p38MAPK)的短发夹环RNA(shRNA)对心肌成纤维细胞结缔组织生长因子(CTGF)的影响并探讨其机制.方法 构建慢病毒p38MAPK shRNA (PGLV-shRNA)并测序鉴定,观察其对转化生长因子-β(TGF-β)诱导心肌成纤维细胞的影响,检测p38MAPK、CTGF mRNA和CTGF、α-平滑肌肌动蛋白(α-SMA)蛋白的表达.结果 TGF-β3 4 nmol/L刺激24 h使心肌成纤维细胞p38MAPK mRNA、CTGF mRNA、CTGF蛋白和α-SMA蛋白明显升高(P<0.01).PGLV-shRNA明显减少TGF-β诱导的p38MAPK mRNA、CTGF mRNA、CTGF蛋白和α-SMA蛋白表达(0.252±0.041比0.652±0.089,P<0.01;0.418 ±0.071比0.838±0.099,P <0.01;0.418 ±0.076比0.991

  2. High glucose induced oxidative stress and apoptosis in cardiac microvascular endothelial cells are regulated by FoxO3a.

    Directory of Open Access Journals (Sweden)

    Chaoming Peng

    Full Text Available AIM: Cardiac microvascular endothelial cells (CMECs dysfunction contributes to cardiovascular complications in diabetes, whereas, the underlying mechanism is not fully clarified. FoxO transcription factors are involved in apoptosis and reactive oxygen species (ROS production. Therefore, the present study was designed to elucidate the potential role of FoxO3a on the CMECs injury induced by high glucose. MATERIALS AND METHODS: CMECs were isolated from hearts of adult rats and cultured in normal or high glucose medium for 6 h, 12 h and 24 h respectively. To down-regulate FoxO3a expression, CMECs were transfected with FoxO3a siRNA. ROS accumulation and apoptosis in CMECs were assessed by dihydroethidine (DHE staining and TUNEL assay respectively. Moreover, the expressions of Akt, FoxO3a, Bim and BclxL in CMECs were assessed by Western blotting assay. RESULTS: ROS accumulation in CMECs was significantly increased after high glucose incubation for 6 to 24 h. Meanwhile, high glucose also increased apoptosis in CMECs, correlated with decreased the phosphorylation expressions of Akt and FoxO3a. Moreover, high glucose incubation increased the expression of Bim, whereas increased anti-apoptotic protein BclxL. Furthermore, siRNA target FoxO3a silencing enhanced the ROS accumulation, whereas suppressed apoptosis in CMECs. FoxO3a silencing also abolished the disturbance of Bcl-2 proteins induced by high glucose in CMECs. CONCLUSION: Our data provide evidence that high glucose induced FoxO3a activation which suppressed ROS accumulation, and in parallel, resulted in apoptosis of CMECs.

  3. Effect of lactadherin on secretion of IL-12 and IL-10 by immature dendritic cells through ERK and p38 MAPK signaling pathway%乳凝集素通过ERK、p38 MAPK通路调节未成熟树突状细胞分泌IL-12和IL-10的研究

    Institute of Scientific and Technical Information of China (English)

    李灿; 沈珏; 施君; 雷一慧; 何振娟

    2013-01-01

    目的 探讨乳凝集素通过ERK、p38 MAPK信号通路对未成熟树突状细胞(iDCs)分泌白介素(IL)-12和IL-10的影响.方法 脐带血中分离得到单核细胞,加入重组人粒细胞巨噬细胞集落刺激因子(50 ng/mL)和重组人白介素-4 (10ng/mL),同时按照不同组合加入乳凝集素(10 μg/mL)和信号通路阻滞剂,诱导分化为iDCs.分组如下:①对照组;②乳凝集素组;③ERK通路阻滞组;④ERK通路阻滞剂+乳凝集素组;⑤p38MAPK通路阻滞组;⑥p38MAPK通路阻滞剂+乳凝集素组;⑦JNK通路阻滞组;⑧JNK通路阻滞剂+乳凝集素组.采用Western blotting检测ERK、JNK、p38MAPK蛋白磷酸化水平,ELISA法检测iDCs分泌IL-12和IL-10的变化.结果 与对照组比较,乳凝集素组ERK蛋白磷酸化水平升高(P<0.05),p38 MAPK蛋白磷酸化水平降低(P<0.05),JNK蛋白磷酸化水平无明显差异(P>0.05),IL-12和IL-10的分泌量显著降低(P<0.05),IL-12/IL-10比值显著升高(P<0.05).ERK通路阻滞组和ERK通路阻滞剂+乳凝集素组中ERK蛋白磷酸化水平几乎为零;ERK阻滞剂+乳凝集素组IL-12和IL-10的分泌量显著高于乳凝集素组(P<0.05),IL-12/IL-10比值显著低于乳凝集素组(P<0.05).p38 MAPK通路阻滞组和p38 MAPK通路阻滞剂+乳凝集素组中p38 MAPK蛋白磷酸化水平几乎为零;p38 MAPK通路阻滞剂+乳凝集素组IL-12和IL-10的分泌量显著低于乳凝集素组(P<0.05),IL-12/IL-10比值显著高于乳凝集素组(P<0.05).结论 乳凝集素可能通过激活ERK通路的活化及抑制p38MAPK通路的活化调节iDCs分泌IL-10和IL-12.%Objective To investigate the effect of lactadherin on secretion of iuterleukin (IL)-12 and IL-10 by immature dendritic cells (iDCs) through ERK and p38 MAPK signaling pathway.Methods Cord blood monocytes were isolated from human umbilical cord blood and cultured in vitro in the presence of recombinant human granulocyte-macrophage colonystimulating factor (50 ng/mL) and

  4. Effects of Serum Containing Zuogui Pill,Yougui Pill and Their Disassembled Prescriptions on Osteogenic Differentiation of BMSCs through p38 Pathway%左、右归丸含药血清通过p38 MAPK信号通路干预BMSCs成骨诱导的研究

    Institute of Scientific and Technical Information of China (English)

    曲宁宁; 何丽娟; 何文智; 任艳玲

    2016-01-01

    目的:基于p38信号通路探讨左、右归丸含药血清对BMSCs成骨诱导的机制.方法:运用全骨髓贴壁法分离和培养大鼠BMSCs;分别以左归丸、右归丸、两方共同药、滋肾阴药、补肾阳药、阳性对照药补佳乐制备的大鼠含药血清加诱导剂(地塞米松、维生素C、β-甘油磷酸钠)、诱导剂和空白含药血清组共8组对BMSCs进行干预,采用改良钙钴染色法检测碱性磷酸酶(ALP)表达,采用茜素红染色法检测钙化结节,采用Western blotting法检测核结合因子α1(Cbfα1)和Ⅰ型胶原(Col Ⅰ)、p38、p-p38蛋白表达,采用real time PCR法检测Cbfα1、Col Ⅰ mRNA表达.结果:左、右归丸及滋阴药组可以上调ALP表达,促进BMSCs矿化结节形成,增强Cbfα1、Col ⅠmRNA和蛋白的表达并且可以促进p38蛋白的磷酸化;给予p38特异性阻滞剂SB203580后,各组BMSCs ALP表达下调,矿化结节形成减少,p38蛋白磷酸化水平降低,并且Cbfα1、ColⅠ mRNA和蛋白的表达下降.结论:左、右归丸及其拆方含药血清可能部分通过p38 MAPK信号通路对BMSCs成骨分化产生调控作用的.%Objective:To explore the mechanism of serum containing Zuogui Pill and Yougui Pill on BMSCs through p 3 8 signaling pathway.Methods:The whole bone marrow adherence method was used to isolate and culture BMSCs.Zuogui Pill,Yougui Pill,combined formula,nourishing Yin drugs,supplementing kidney Yang drugs,positive control progynova model rats' serum plus inducers (dexamethasone,vitamin C,β-glycerophosphate),inducers and blank serum,all together 8 groups of BMSCs intervention.The modified calcium cobalt staining was used to detected alkaline phosphatase (ALP) expression and alizarin red staining for calcified nodules and Western blotting for nuclear binding factor α1 (Cbfα1),collagen Ⅰ (Col Ⅰ),p38 and p-p38 protein expression and real time PCR method for detecting Cbfα1 and Col Ⅰ mRNA expression.Results:Zuogui Pill,Yougui Pill and

  5. p38α MAPK mediates 17β-estradiol inhibition of MMP-2 and -9 expression and cell migration in human lovo colon cancer cells.

    Science.gov (United States)

    Hsu, Hsi-Hsien; Liu, Chung-Jung; Shen, Chia-Yao; Chen, Yi-Jyun; Chen, Li-Mien; Kuo, Wu-Hsien; Lin, Yueh-Min; Chen, Ray-Jade; Tsai, Chang-Hai; Tsai, Fuu-Jen; Huang, Chih-Yang

    2012-11-01

    Epidemiological studies demonstrate that the incidence and mortality rates of colorectal cancer in women are lower than in men. However, it is unknown if 17β-estradiol (E(2)) treatment is sufficient to inhibit cell proliferation and cell migration in human colon cancer cells. Up-regulation of urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA), and matrix metallopeptidases (MMPs) is reported to associate with the development of cancer cell mobility, metastasis, and subsequent malignant tumor. In the present study, we treated human LoVo colon cancer cells with E(2) to explore whether E(2) down-regulates cell proliferation and migration, and to identify the precise molecular and cellular mechanisms behind the down-regulatory responses. Here, we found that E(2) treatment decreased cell proliferation and cell cycle-regulating factors such as cyclin A, cyclin D1 and cyclin E. At the same time, E(2) significantly inhibited cell migration and migration-related factors such as uPA, tPA, MMP-2, and MMP-9. However, E(2) treatment showed no effects on upregulating expression of plasminogen activator inhibitor-1 (PAI-1), tissue inhibitor of metalloproteinase-1, -2, -3, and -4 (TIMP-1, -2, -3, and -4). After administration of inhibitors including QNZ (NFκB inhibitor), LY294002 (Akt activation inhibitor), U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor) or SP600125 (JNK1/2 inhibitor), E(2) -downregulated cell migration and expression of MMP-2 and MMP-9 in LoVo cells is markedly inhibited only by p38 MAPK inhibitors, SB203580. Application of specific target gene siRNA (ERα, ERβ, p38α, and p38β) to LoVo cells further confirmed that p38 MAPK mediates E(2) /ERs inhibition of MMP-2 and -9 expression and cell motility in LoVo cells. Collectively, these results suggest that E(2) treatment down-regulates cell proliferation by modulating the expression of cyclin A, cyclin D1 and cyclin E. E(2) treatment simultaneously impaired cell migration by

  6. Osthole-mediated cell differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells.

    Science.gov (United States)

    Kuo, Po-Lin; Hsu, Ya-Ling; Chang, Cheng-Hsiung; Chang, Jiunn-Kae

    2005-09-01

    The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients. Osthole (7-methoxy-8-isopentenoxycoumarin) is a coumarin derivative present in many medicinal plants. By means of alkaline phosphatase (ALP) activity, osteocalcin, osteopontin, and type I collagen, enzyme-linked immunosorbent assay, we have shown that osthole exhibits a significant induction of differentiation in two human osteoblast-like cell lines, MG-63 and hFOB. Induction of differentiation by osthole was associated with increased bone morphogenetic protein (BMP)-2 production and the activations of SMAD1/5/8 and p38 and extracellular signal-regulated kinase (ERK) 1/2 kinases. Addition of purified BMP-2 protein did not increase the up-regulation of ALP activity and osteocalcin by osthole, whereas the BMP-2 antagonist noggin blocked both osthole and BMP-2-mediated ALP activity enhancement, indicating that BMP-2 production is required in osthole-mediated osteoblast maturation. Pretreatment of osteoblast cells with noggin abrogated p38 activation but only partially decreased ERK1/2 activation, suggesting that BMP-2 signaling is required in p38 activation and is partially involved in ERK1/2 activation in osthole-treated osteoblast cells. Cotreatment of p38 inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] or p38 small interfering RNA (siRNA) expression inhibited osthole-mediated activation of ALP but only slightly affected osteocalcin production. In contrast, the production of osteocalcin induced by osthole was inhibited by the mitogen-activated protein kinase kinase inhibitor PD98059 (2'-amino-3'-methoxyflavone) or by expression of an ERK2 siRNA. These data suggest that BMP-2/p38 pathway links to the early phase, whereas ERK1/2 pathway is associated with the later phase in osthole-mediated differentiation of osteoblast cells. In this study, we demonstrate that osthole is a promising agent for treating osteoporosis

  7. N-Formyl peptides drive mitochondrial damage associated molecular pattern induced neutrophil activation through ERK1/2 and P38 MAP kinase signalling pathways.

    Science.gov (United States)

    Hazeldine, Jon; Hampson, Peter; Opoku, Francis Adusei; Foster, Mark; Lord, Janet M

    2015-01-01

    Traumatic injury results in a systemic inflammatory response syndrome (SIRS), a phenomenon characterised by the release of pro-inflammatory cytokines into the circulation and immune cell activation. Released from necrotic cells as a result of tissue damage, damage associated molecular patterns (DAMPs) are thought to initiate the SIRS response by activating circulating immune cells through surface expressed pathogen recognition receptors. Neutrophils, the most abundant leucocyte in human circulation, are heavily implicated in the initial immune response to traumatic injury and have been shown to elicit a robust functional response to DAMP stimulation. Here, we confirm that mitochondrial DAMPs (mtDAMPs) are potent activators of human neutrophils and show for the first time that signalling through the mitogen-activated-protein-kinases p38 and extracellular-signal-related-kinase 1/2 (ERK1/2) is essential for this response. At 40 and/or 100 μg/ml, mtDAMPs activated human neutrophils, indicated by a significant reduction in the surface expression of L-selectin, and triggered a number of functional responses from both resting and tumour necrosis factor-α primed neutrophils, which included reactive oxygen species (ROS) generation, degranulation, secretion of interleukin-8 and activation of p38 and ERK1/2 MAPKs. Pre-treatment of neutrophils with Cyclosporin H, a selective inhibitor of formyl peptide receptor-1 (FPR-1), significantly inhibited mtDAMP-induced L-selectin shedding as well as p38 and ERK1/2 activation, suggesting that N-formyl peptides are the main constituents driving mtDAMP-induced neutrophil activation. Indeed, no evidence of L-selectin shedding or p38 and ERK1/2 activation was observed in neutrophils challenged with mitochondrial DNA alone. Interestingly, pharmacological inhibition of p38 or ERK1/2 either alone or in combination significantly inhibited L-selectin shedding and IL-8 secretion by mtDAMP-challenged neutrophils, revealing for the first time

  8. Hydrogen Peroxide Induce Apoptosis of PC12 Cells via Up-regulating P38-MAPK Pathway%H2O2通过上调P38的活性而诱导PC12细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    王春燕; 刘逸; 杨胜圆; 曹建国

    2009-01-01

    目的:探讨H2O2是否通过调节P38 MAPK的活性而诱导PC12细胞凋亡.方法:碘化丙啶(PI)染色流式细胞术(FCM)检测细胞凋亡;Western-Blot测定磷酸化ERK1/2蛋白和磷酸化p38蛋白的表达.结果:作用PC12细胞24 h后,20~80 μmol/L的H2O2可呈浓度依赖性地诱导PC12细胞凋亡并增加PC12细胞P38磷酸化的水平;P38特异性抑制剂SB203580(10或20μmol/L)预处理30 min可显著减轻40μmol/L H2O2对PC12细胞凋亡的诱导作用.结论:H2O2通过上调P38的活性而诱导PC12细胞凋亡.

  9. Advanced oxidation protein products induce monocyte chemoattractant protein-1 expression via p38 mitogen-activated protein kinase activation in rat vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    PENG Kan-fu; WU Xiong-fei; ZHAO Hong-wen; SUN Yan

    2006-01-01

    Background Advanced oxidation protein products (AOPPs) are new uremic toxins reported by Witko-Sarsat in 1996, which are associated with the pathogenesis of atherosclerosis. However, the mechanisms by which AOPPs enhance atherosclerosis have not been fully understood. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine which stimulates migration of monocytes and plays a critical role in the development of atherosclerosis. In this study, we investigated the effect of AOPPs on MCP-1 expression in cultured vascular smooth muscle cells (VSMCs).Methods VSMCs were cultured and then co-incubated with AOPP (200 μ mol/L, 400 μ mol/L) for different times with or without pretreatment with specific p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. RT-PCR and Western blott were used to detect MCP-1 mRNA and protein expression at different time points after AOPP stimulation in rat smooth muscle cells. Western blot was used to detect the expression of phosphorylated p38 MAPK.Results Treatment of VSMC with AOPPs resulted in a significant increase of the expression of MCP- 1 mRNA and protein in time- and dose-dependent manner, and could activated p38 MAPK. Pretreatment of VSMCs with SB203580 resulted in a dose-dependent inhibition of AOPPs-induced MCP-1 mRNA and protein expression.Conclusions AOPPs can stimulate MCP-1 expression via p38 MAPK in VSMCs. This suggests that AOPPs might contribute to the formation of atherosclerosis through this proinflammatory effect.

  10. Asiaticoside attenuates the effects of spinal cord injury through antioxidant and anti‑inflammatory effects, and inhibition of the p38‑MAPK mechanism.

    Science.gov (United States)

    Luo, Yang; Fu, Changfeng; Wang, Zhenyu; Zhang, Zhuo; Wang, Hongxia; Liu, Yi

    2015-12-01

    Asiaticoside has potent pharmacological activity and broader pharmacological effects, including anti‑oxidant, antidepressant and hepatic protection effects, and the inhibition of tumor cell proliferation. However, the mechanism underlying the effects of asiaticoside on neurological pain in spinal cord injury (SCI) remain to be fully elucidated. Therefore, the present study investigated the specific mechanism underlying the beneficial action of asiaticoside in a SCI rat model. In the present study, Basso, Beattie and Bresnahan scores was determined to analyze the therapeutic effects of asiaticoside on the neurological function of the SCI rat model. The water content of the spinal cord was also determined to measure its effects on the SCI rats. Oxidative stress, levels of nitric oxide and inflammation were detected using commercial kits. Western blot analysis was used to measure the protein expression levels of p38‑mitogen‑activated protein kinase (MAPK) in the SCI rat. Asiaticoside effectively augmented the Basso, Beattie and Bresnahan scores of the SCI rats. Significant reductions in the water content of the spinal cord, the levels of inducible nitric oxide synthase (iNOS), and the activities of the nuclear factor‑κB p65 unit, tumor necrosis factor‑α, interleukin(IL)‑1β and IL‑6 were observed in the experimental animals. Furthermore, on examination of the oxidative stress‑associated parameters, increased production of malondialdehyde and decreased levels of superoxide dismutase, glutathione and glutathione peroxidase were detected in the SCI rat model. Asiaticoside also significantly suppressed the expression of p38‑MAPK, which indicated that the therapeutic effects of asiaticoside may be associated with the p38‑MAPK pathway. These data confirmed that asiaticoside attenuates SCI through antioxidant and anti‑inflammatory effects, and through inhibition of the p38‑MAPK mechanism.

  11. Exposure to p,p′-DDE Induces Morphological Changes and Activation of the PKCα-p38-C/EBPβ Pathway in Human Promyelocytic HL-60 Cells

    Directory of Open Access Journals (Sweden)

    Nallely A. Torres-Avilés

    2016-01-01

    Full Text Available Dichlorodiphenyldichloroethylene (p,p′-DDE, the most persistent metabolite of dichlorodiphenyltrichloroethane (DDT, is still present in the human population. Both are present in the bone marrow of patients with bone marrow disorders, but thus far there are no studies that assess the capability of p,p′-DDE to affect myeloid cells. The aim of this study was to determine the effect of p,p′-DDE on promyelocytic cell differentiation and intracellular pathways related to this event. p,p′-DDE induced morphological changes compatible with promyelocytic differentiation in a concentration-dependent manner. The p,p′-DDE effect on Ca2+i, C/EBPβ protein levels, PKCα and p38 activation, and the role of oxidative stress or PLA2 was assayed. Exposure to 1.9 μg/mL of p,p′-DDE increased Ca2+i, PKCα, p38, and C/EBPβ protein levels; the increase of nuclear C/EBPβ protein was dependent on p38. PKCα phosphorylation was dependent on PLA2 and p,p′-DDE-induced oxidative stress. p38 phosphorylation induced by p,p′-DDE was dependent on PLA2, PKC activation, and oxidative stress. These effects of p,p′-DDE at concentrations found in human bone marrow may induce alterations in immature myeloid cells and could affect their cellular homeostasis. In order to establish the risk from exposure to p,p′-DDE on the development of bone marrow disorders in humans, these effects deserve further study.

  12. Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor

    International Nuclear Information System (INIS)

    Schwann cells (SCs) play an essentially supportive role in the regeneration of injured peripheral nerve system (PNS). As Netrin-1 is crucial for the normal development of nervous system (NS) and can direct the process of damaged PNS regeneration, our study was designed to determine the role of Netrin-1 in RSC96 Schwann cells (an immortalized rat Schwann cell line) proliferation and migration. Our studies demonstrated that Netrin-1 had no effect on RSC96 cells proliferation, while significantly promoted RSC96 cells migration. The Netrin-1-induced RSC96 cells migration was significantly attenuated by inhibition of p38 and PI3K through pretreatment with SB203580 and LY294002 respectively, but not inhibition of MEK1/2 and JNK by U0126-EtOH and SP600125 individually. Treatment with Netrin-1 enhanced the phosphorylation of p38 and Akt. QRT-PCR indicated that Netrin-1 and only its receptors Unc5a, Unc5b and Neogenin were expressed in RSC96 cells, among which Unc5b expressed the most. And UNC5B protein was significantly increased after stimulated by Netrin-1. In conclusion, we show here that Netrin-1-enhanced SCs migration is mediated by activating p38 MAPK and PI3K-Akt signal cascades via receptor UNC5B, which suggests that Netrin-1 could serve as a new therapeutic strategy and has potential application value for PNS regeneration. - Highlights: • Netrin-1 attracts RSC96 Schwann cells migration in a dose dependent manner. • Netrin-1 induced Schwann cells migration is p38 and PI3K-Akt signaling dependent. • UNC5B may be dominant receptor mediating Netrin-1′ effect on RSC96 cells motility. • Netrin-1 may promote peripheral nerve repair by enhancing Schwann cells motility

  13. Bufalin Induces Mitochondria-Dependent Apoptosis in Pancreatic and Oral Cancer Cells by Downregulating hTERT Expression via Activation of the JNK/p38 Pathway

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2015-01-01

    Full Text Available Bufalin, a digoxin-like active component of the traditional Chinese medicine Chan Su, exhibits potent antitumor activities in many human cancers. Bufalin induces mitochondria-dependent apoptosis in cancer cells, but the detailed molecular mechanisms are largely unknown. hTERT, the catalytic subunit of telomerase, protects against mitochondrial damage by binding to mitochondrial DNA and reducing mitochondrial ROS production. In the present study, we investigated the effects of bufalin on the cell viability, ROS production, DNA damage, and apoptosis of CAPAN-2 human pancreatic and CAL-27 human oral cancer cells. Bufalin reduced CAPAN-2 and CAL-27 cell viability with IC50 values of 159.2 nM and 122.6 nM, respectively. The reduced cell viability was accompanied by increased ROS production, DNA damage, and apoptosis and decreased expression of hTERT. hTERT silencing in CAPAN-2 and CAL-27 cells by siRNA resulted in increased caspase-9/-3 cleavage and DNA damage and decreased cell viability. Collectively, these data suggest that bufalin downregulates hTERT to induce mitochondria-dependent apoptosis in CAPAN-2 and CAL-27 cells. Moreover, bufalin increased the phosphorylation of JNK and p38-MAPK in CAPAN-2 and CAL-27 cells, and blocking the JNK/p38-MAPK pathway using the JNK inhibitor SP600125 or the p38-MAPK inhibitor SB203580 reversed bufalin-induced hTERT downregulation. Thus, the JNK/p38 pathway is involved in bufalin-induced hTERT downregulation and subsequent induction of apoptosis by the mitochondrial pathway.

  14. Glutamine supplementation prevents exercise-induced neutrophil apoptosis and reduces p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression.

    Science.gov (United States)

    Lagranha, Claudia J; Hirabara, Sandro M; Curi, Rui; Pithon-Curi, Tania C

    2007-01-01

    We have previously shown that a single session of exercise induces DNA fragmentation, mitochondrial membrane depolarization, increases expression of pro-apoptotic genes (bax and bcl-xS) and decreases expression of anti-apoptotic genes (bcl-xL) in rat neutrophils. Glutamine supplementation had a protective effect in the apoptosis induced by a single session of exercise. The mechanism involved in the effect of single session of exercise to induce apoptosis was investigated by measuring expression of p53 and caspase 3 and phosphorylation of p38 mitogen-activated protein kinases (MAPK) and cJun NH(2)-terminal kinase (JNK) in neutrophils from rats supplemented or not with glutamine. Exercise was carried out on a treadmill for 1 h and the rats were killed by decapitation. Neutrophils were obtained by intraperitoneal (i.p.) lavage with PBS, 4 h after injection of oyster glycogen solution. Glutamine supplementation (1g per Kg b.w.) was given by gavage 1 h before the exercise session. Gene expression and protein phosphorylation were then analyzed by reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. A single session of exercise increased p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression. Glutamine supplementation partially prevented the increase in p38 MAPK and JNK phosphorylation and p53 expression, and fully abolished the increase in caspase 3 expression. Thus, neutrophil apoptosis induced by a single session of exercise is accompanied by increased p53 and caspase 3 expression and p38 MAPK and JNK phosphorylation. Glutamine supplementation prevents these effects of exercise and reduces apoptosis. PMID:17542038

  15. p38 MAP kinase-mediated NMDA receptor-dependent suppression of hippocampal hypersynchronicity in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Ittner, Arne A; Gladbach, Amadeus; Bertz, Josefine; Suh, Lisa S; Ittner, Lars M

    2014-01-01

    Hypersynchronicity of neuronal brain circuits is a feature of Alzheimer's disease (AD). Mouse models of AD expressing mutated forms of the amyloid-β precursor protein (APP), a central protein involved in AD pathology, show cortical hypersynchronicity. We studied hippocampal circuitry in APP23 transgenic mice using telemetric electroencephalography (EEG), at the age of onset of memory deficits. APP23 mice display spontaneous hypersynchronicity in the hippocampus including epileptiform spike trains. Furthermore, spectral contributions of hippocampal theta and gamma oscillations are compromised in APP23 mice, compared to non-transgenic controls. Using cross-frequency coupling analysis, we show that hippocampal gamma amplitude modulation by theta phase is markedly impaired in APP23 mice. Hippocampal hypersynchronicity and waveforms are differentially modulated by injection of riluzole and the non-competitive N-methyl-D-aspartate (NMDA) receptor inhibitor MK801, suggesting specific involvement of voltage-gated sodium channels and NMDA receptors in hypersynchronicity thresholds in APP23 mice. Furthermore, APP23 mice show marked activation of p38 mitogen-activated protein (MAP) kinase in hippocampus, and injection of MK801 but not riluzole reduces activation of p38 in the hippocampus. A p38 inhibitor induces hypersynchronicity in APP23 mice to a similar extent as MK801, thus supporting suppression of hypersynchronicity involves NMDA receptors-mediated p38 activity. In summary, we characterize components of hippocampal hypersynchronicity, waveform patterns and cross-frequency coupling in the APP23 mouse model by pharmacological modulation, furthering the understanding of epileptiform brain activity in AD.

  16. The CORM ALF-186 Mediates Anti-Apoptotic Signaling via an Activation of the p38 MAPK after Ischemia and Reperfusion Injury in Retinal Ganglion Cells

    Science.gov (United States)

    Ulbrich, Felix; Kaufmann, Kai B.; Meske, Alexander; Lagrèze, Wolf A.; Augustynik, Michael; Buerkle, Hartmut; Ramao, Carlos C.; Biermann, Julia

    2016-01-01

    Purpose Ischemia and reperfusion injury may induce apoptosis and lead to sustained tissue damage and loss of function, especially in neuronal organs. While carbon monoxide is known to exert protective effects after various harmful events, the mechanism of carbon monoxide releasing molecules in neuronal tissue has not been investigated yet. We hypothesize that the carbon monoxide releasing molecule (CORM) ALF-186, administered after neuronal ischemia-reperfusion injury (IRI), counteracts retinal apoptosis and its involved signaling pathways and consecutively reduces neuronal tissue damage. Methods IRI was performed in rat´s retinae for 1 hour. The water-soluble CORM ALF-186 (10 mg/kg) was administered intravenously via a tail vein after reperfusion. After 24 and 48 hours, retinal tissue was harvested to analyze mRNA and protein expression of Bcl-2, Bax, Caspase-3, ERK1/2, p38 and JNK. Densities of fluorogold pre-labeled retinal ganglion cells (RGC) were analyzed 7 days after IRI. Immunohistochemistry was performed on retinal cross sections. Results ALF-186 significantly reduced IRI mediated loss of RGC. ALF-186 treatment differentially affected mitogen-activated protein kinases (MAPK) phosphorylation: ALF-186 activated p38 and suppressed ERK1/2 phosphorylation, while JNK remained unchanged. Furthermore, ALF-186 treatment affected mitochondrial apoptosis, decreasing pro-apoptotic Bax and Caspase-3-cleavage, but increasing anti-apoptotic Bcl-2. Inhibition of p38-MAPK using SB203580 reduced ALF-186 mediated anti-apoptotic effects. Conclusion In this study, ALF-186 mediated substantial neuroprotection, affecting intracellular apoptotic signaling, mainly via MAPK p38. CORMs may thus represent a promising therapeutic alternative treating neuronal IRI. PMID:27764224

  17. The intrathecal administration of losartan, an AT1 receptor antagonist, produces an antinociceptive effect through the inhibiton of p38 MAPK phosphorylation in the mouse formalin test.

    Science.gov (United States)

    Nemoto, Wataru; Ogata, Yoshiki; Nakagawasai, Osamu; Yaoita, Fukie; Tanado, Takeshi; Tan-No, Koichi

    2015-01-12

    We have recently reported that an intrathecal (i.t.) administration of angiotensin II (Ang II) into mice induces a nociceptive behavior accompanied by the activation of p38 MAPK signaling via AT1 receptors (Nemoto et al., 2013, Mol. Pain 9, 38). These results suggested that Ang II participates in the facilitation of nociceptive transmission in the spinal cord. In the present study, we used formalin test to examine the effect of i.t.-administered losartan, an AT1 receptor antagonist, and determine whether Ang II acts as a neurotransmitter and/or neuromodulator in the spinal transmission of nociceptive information. When administered i.t. 5 min before the injection of a 2% formalin solution into the plantar surface of the hindpaw, losartan (30-100 nmol) produced a dose-dependent and significant antinociceptive effect during both the first and second phases of the test. In the superficial dorsal horn of the spinal cord (laminae I and II), the fluorescence intensities for Ang II and phospho-p38 MAPK were both significantly increased on the ipsilateral side 3 min after the injection of formalin compared to saline-treated controls. Moreover, the increase of phospho-p38 MAPK fluorescence intensity was significantly inhibited by the i.t. administration of losartan (54.8 nmol) 5 min prior to formalin. These results indicate that losartan produces an antinociceptive effect through the inhibition of p38 MAPK phosphorylation in the mouse formalin test and that Ang II may act as a neurotransmitter and/or neuromodulator in the spinal transmission of nociceptive information.

  18. Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jianwei [General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin 300052 (China); Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Sun, Xiaolei; Ma, Jianxiong [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Ma, Xinlong, E-mail: gengxiao502@163.com [General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin 300052 (China); Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Zhang, Yang; Li, Fengbo; Li, Yanjun; Zhao, Zhihu [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China)

    2015-08-14

    Schwann cells (SCs) play an essentially supportive role in the regeneration of injured peripheral nerve system (PNS). As Netrin-1 is crucial for the normal development of nervous system (NS) and can direct the process of damaged PNS regeneration, our study was designed to determine the role of Netrin-1 in RSC96 Schwann cells (an immortalized rat Schwann cell line) proliferation and migration. Our studies demonstrated that Netrin-1 had no effect on RSC96 cells proliferation, while significantly promoted RSC96 cells migration. The Netrin-1-induced RSC96 cells migration was significantly attenuated by inhibition of p38 and PI3K through pretreatment with SB203580 and LY294002 respectively, but not inhibition of MEK1/2 and JNK by U0126-EtOH and SP600125 individually. Treatment with Netrin-1 enhanced the phosphorylation of p38 and Akt. QRT-PCR indicated that Netrin-1 and only its receptors Unc5a, Unc5b and Neogenin were expressed in RSC96 cells, among which Unc5b expressed the most. And UNC5B protein was significantly increased after stimulated by Netrin-1. In conclusion, we show here that Netrin-1-enhanced SCs migration is mediated by activating p38 MAPK and PI3K-Akt signal cascades via receptor UNC5B, which suggests that Netrin-1 could serve as a new therapeutic strategy and has potential application value for PNS regeneration. - Highlights: • Netrin-1 attracts RSC96 Schwann cells migration in a dose dependent manner. • Netrin-1 induced Schwann cells migration is p38 and PI3K-Akt signaling dependent. • UNC5B may be dominant receptor mediating Netrin-1′ effect on RSC96 cells motility. • Netrin-1 may promote peripheral nerve repair by enhancing Schwann cells motility.

  19. Effect of oxymatrine on the p38 mitogen-activated protein kinases signalling pathway in rats with CCl4 induced hepatic fibrosis

    Institute of Scientific and Technical Information of China (English)

    DENG Zi-yu; LI Jun; JIN Yong; CHEN Xiao-liang; Lü Xiong-wen

    2009-01-01

    Background Recent studies have suggested that p38 mitogen-activated protein kinases (MAPK) signalling pathway plays an important role in hepatic fibrosis. This study explored the antifibrotic effect of oxymatrine on tetrachloromethane induced liver fibrosis in rats and its modulation on the p38 MAPK signalling pathway. Methods One hundred and twenty healthy male Sprague-Dawley rats were randomly assigned to six groups: normal (n=20), induced fibrosis (n=20), colchicine (n=20) and three treatment groups of oxymatrine (n=20x3). We obesrved changes in deposition of collagen, hyaluronic acid (HA), laminin (LN), collagen type Ⅳ(CIV), procollagen Ⅲ(PCIII) and hydroxyproline (Hyp), α-smooth muscle actin (α-SMA) and phosphor-p38 (pp38).Results The relative indicators of changes in histopathology, HA, LN, CIV, PCIli, Hyp, α-SMA and pp38 were raised significantly in the induced fibrosis group (P <0.01 vs normal group). The semiquantitative hepatic fibrosis staging scores of middle dose group and high dose group were decreased (P <0.05 and P <0.01 respectively vs the induced fibrosis group), as was the average area of collagen in rats' liver, the concentrations of serum HA, LN, CIV, PCIII and liver tissue homogenate Hyp. The gene expression of a-SMA mRNA was considerably decreased in the treated animals, as was the protein espression of pp38 protein. Conclusions Oxymatrine is effective in reducing the production and deposition of collagen in the liver tissue of experimental rats in ways which relate to modulating the fibrogenic signal transduction via p38 MAPK signalling pathway.

  20. IL-17A promotes the migration and invasiveness of cervical cancer cells by coordinately activating MMPs expression via the p38/NF-κB signal pathway.

    Directory of Open Access Journals (Sweden)

    Minjuan Feng

    Full Text Available IL-17A plays an important role in many inflammatory diseases and cancers. We aimed to examine the effect of IL-17A on the invasion of cervical cancer cells and study its related mechanisms.Wound healing and matrigel transwell assays were used to examine the effect of IL-17A on cervical cancer cell migration and invasion by a panel of cervical cancer cell lines. The levels of matrix metalloproteinases (MMPs and tissue inhibitor of metalloproteinases (TIMPs were investigated using western blotting. The activity of p38 and nuclear factor-kappa B (NF-κB signal pathway was detected too.Here, we showed that IL-17A could promote the migration and invasion of cervical cancer cells. Further molecular analysis showed that IL-17A could up-regulate the expressions and activities of MMP2 and MMP9, and down-regulate the expressions of TIMP-1 and TIMP-2. Furthermore, IL-17A also activates p38 signal pathway and increased p50 and p65 nuclear expression. In addition, treatment of cervical cancer cells with the pharmacological p38/NF-κB signal pathway inhibitors, SB203580 and PDTC, potently restored the roles of invasion and upregulation of MMPs induced by IL-17A.IL-17A could promote the migration and invasion of cervical cancer cell via up-regulating MMP2 and MMP9 expression, and down-regulating TIMP-1 and TIMP-2 expression via p38/NF-κB signal pathway. IL-17A may be a potential target to improve the prognosis for patients with cervical cancer.

  1. Neferine, an alkaloid ingredient in lotus seed embryo, inhibits proliferation of human osteosarcoma cells by promoting p38 MAPK-mediated p21 stabilization.

    Science.gov (United States)

    Zhang, Xiyu; Liu, Zhaojian; Xu, Bing; Sun, Zhaoliang; Gong, Yaoqin; Shao, Changshun

    2012-02-29

    Identification of natural products that have antitumor activity is invaluable to the chemoprevention and therapy of cancer. The embryos of lotus (Nelumbo nucifera) seeds are consumed in beverage in some parts of the world for their presumed health-benefiting effects. In this report we studied the effects of neferine, a major alkaloid component in lotus embryos, on human osteosarcoma cells and the underlying mechanisms. We found that neferine possessed a potent growth-inhibitory effect on human osteosarcoma cells, but not on non-neoplastic human osteoblast cells. The inhibitory effect of neferine on human osteosarcoma cells was largely attributed to cell cycle arrest at G1. The induction of G1 arrest was p21(WAF1/CIP1)-dependent, but was independent of p53 or RB (retinoblastoma-associated protein). The up-regulation of p21 by neferine was due to an increase in the half-life of p21 protein. We examined four kinases that are known to affect the stabilization of p21, and found that p38 MAPK and JNK were activated by neferine. However, only SB203580 (an inhibitor of p38), but not SP600125 (the inhibitor of JNK), can attenuate the up-regulation of p21 in response to neferine. Furthermore, the p21-stabilizing effect of neferine was abolished when p38 was silenced by RNA interference. Finally, we showed that neferine treatment led to an increased phosphorylation of p21 at Ser130 that was dependent on p38. Our results for the first time showed a direct antitumor effect of neferine, suggesting that consumption of neferine may have cancer-preventive and cancer-therapeutic benefit.

  2. Human adipose tissue-derived multilineage progenitor cells exposed to oxidative stress induce neurite outgrowth in PC12 cells through p38 MAPK signaling

    Directory of Open Access Journals (Sweden)

    Moriyama Mariko

    2012-08-01

    Full Text Available Abstract Background Adipose tissues contain populations of pluripotent mesenchymal stem cells that also secrete various cytokines and growth factors to support repair of damaged tissues. In this study, we examined the role of oxidative stress on human adipose-derived multilineage progenitor cells (hADMPCs in neurite outgrowth in cells of the rat pheochromocytoma cell line (PC12. Results We found that glutathione depletion in hADMPCs, caused by treatment with buthionine sulfoximine (BSO, resulted in the promotion of neurite outgrowth in PC12 cells through upregulation of bone morphogenetic protein 2 (BMP2 and fibroblast growth factor 2 (FGF2 transcription in, and secretion from, hADMPCs. Addition of N-acetylcysteine, a precursor of the intracellular antioxidant glutathione, suppressed the BSO-mediated upregulation of BMP2 and FGF2. Moreover, BSO treatment caused phosphorylation of p38 MAPK in hADMPCs. Inhibition of p38 MAPK was sufficient to suppress BMP2 and FGF2 expression, while this expression was significantly upregulated by overexpression of a constitutively active form of MKK6, which is an upstream molecule from p38 MAPK. Conclusions Our results clearly suggest that glutathione depletion, followed by accumulation of reactive oxygen species, stimulates the activation of p38 MAPK and subsequent expression of BMP2 and FGF2 in hADMPCs. Thus, transplantation of hADMPCs into neurodegenerative lesions such as stroke and Parkinson’s disease, in which the transplanted hADMPCs are exposed to oxidative stress, can be the basis for simple and safe therapies.

  3. Glutamine supplementation prevents exercise-induced neutrophil apoptosis and reduces p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression.

    Science.gov (United States)

    Lagranha, Claudia J; Hirabara, Sandro M; Curi, Rui; Pithon-Curi, Tania C

    2007-01-01

    We have previously shown that a single session of exercise induces DNA fragmentation, mitochondrial membrane depolarization, increases expression of pro-apoptotic genes (bax and bcl-xS) and decreases expression of anti-apoptotic genes (bcl-xL) in rat neutrophils. Glutamine supplementation had a protective effect in the apoptosis induced by a single session of exercise. The mechanism involved in the effect of single session of exercise to induce apoptosis was investigated by measuring expression of p53 and caspase 3 and phosphorylation of p38 mitogen-activated protein kinases (MAPK) and cJun NH(2)-terminal kinase (JNK) in neutrophils from rats supplemented or not with glutamine. Exercise was carried out on a treadmill for 1 h and the rats were killed by decapitation. Neutrophils were obtained by intraperitoneal (i.p.) lavage with PBS, 4 h after injection of oyster glycogen solution. Glutamine supplementation (1g per Kg b.w.) was given by gavage 1 h before the exercise session. Gene expression and protein phosphorylation were then analyzed by reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. A single session of exercise increased p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression. Glutamine supplementation partially prevented the increase in p38 MAPK and JNK phosphorylation and p53 expression, and fully abolished the increase in caspase 3 expression. Thus, neutrophil apoptosis induced by a single session of exercise is accompanied by increased p53 and caspase 3 expression and p38 MAPK and JNK phosphorylation. Glutamine supplementation prevents these effects of exercise and reduces apoptosis.

  4. p38 MAPK-Mediated Bmi-1 down-regulation and defective proliferation in ATM-deficient neural stem cells can be restored by Akt activation.

    Directory of Open Access Journals (Sweden)

    Jeesun Kim

    Full Text Available A-T (ataxia telangiectasia is a genetic disease caused by a mutation in the Atm (A-T mutated gene that leads to neurodegeneration. Despite an increase in the numbers of studies in this area in recent years, the mechanisms underlying neurodegeneration in human A-T are still poorly understood. Previous studies demonstrated that neural stem cells (NSCs isolated from the subventricular zone (SVZ of Atm(-/- mouse brains show defective self-renewal and proliferation, which is accompanied by activation of chronic p38 mitogen-activated protein kinase (MAPK and a lower level of the polycomb protein Bmi-1. However, the mechanism underlying Bmi-1 down-regulation and its relevance to defective proliferation in Atm(-/- NSCs remained unclear. Here, we show that over-expression of Bmi-1 increases self-renewal and proliferation of Atm(-/- NSCs to normal, indicating that defective proliferation in Atm(-/- NSCs is a consequence of down-regulation of Bmi-1. We also demonstrate that epidermal growth factor (EGF-induced Akt phosphorylation renders Bmi-1 resistant to the proteasomal degradation, leading to its stabilization and accumulation in the nucleus. However, inhibition of the Akt-dependent Bmi-1 stabilizing process by p38 MAPK signaling reduces the levels of Bmi-1. Treatment of the Atm(-/- NSCs with a specific p38 MAPK inhibitor SB203580 extended Bmi-1 posttranscriptional turnover and H2A ubiquitination in Atm(-/- NSCs. Our observations demonstrate the molecular basis underlying the impairment of self-renewal and proliferation in Atm(-/- NSCs through the p38 MAPK-Akt-Bmi-1-p21 signaling pathway.

  5. Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2A-p38MAPK-p53 cascade

    OpenAIRE

    Yu-Ying Chen; Cheng-Ying Hsieh; Thanasekaran Jayakumar; Kuan-Hung Lin; Duen-Suey Chou; Wan-Jung Lu; Ming-Jen Hsu; Joen-Rong Sheu

    2014-01-01

    The abnormal growth of vascular smooth muscle cells (VSMCs) is considered a critical pathogenic process in inflammatory vascular diseases. We have previously demonstrated that protein phosphatase 2 A (PP2A)-mediated NF-κB dephosphorylation contributes to the anti-inflammatory properties of andrographolide, a novel NF-κB inhibitor. In this study, we investigated whether andrographolide causes apoptosis, and characterized its apoptotic mechanisms in rat VSMCs. Andrographolide activated the p38 ...

  6. Ceramide mediates Ox-LDL-induced human vascular smooth muscle cell calcification via p38 mitogen-activated protein kinase signaling.

    Directory of Open Access Journals (Sweden)

    Lizhen Liao

    Full Text Available Vascular calcification is associated with significant cardiovascular morbidity and mortality, and has been demonstrated as an actively regulated process resembling bone formation. Oxidized low density lipoprotein (Ox-LDL has been identified as a regulatory factor involved in calcification of vascular smooth muscle cells (VSMCs. Additionally, over-expression of recombinant human neutral sphingomyelinase (N-SMase has been shown to stimulate VSMC apoptosis, which plays an important role in the progression of vascular calcification. The aim of this study is to investigate whether ceramide regulates Ox-LDL-induced calcification of VSMCs via activation of p38 mitogen-activated protein kinase (MAPK pathway. Ox-LDL increased the activity of N-SMase and the level of ceramide in cultured VSMCs. Calcification and the osteogenic transcription factor, Msx2 mRNA expression were reduced by N-SMase inhibitor, GW4869 in the presence of Ox-LDL. Usage of GW4869 inhibited Ox-LDL-induced apoptosis in VSMCs, an effect which was reversed by C2-ceramide. Additionally, C2-ceramide treatment accelerated VSMC calcification, with a concomitant increase in ALP activity. Furthermore, C2-ceramide treatment enhanced Ox-LDL-induced VSMC calcification. Addition of caspase inhibitor, ZVAD-fmk attenuated Ox-LDL-induced calcification. Both Ox-LDL and C2-ceramide treatment increased the phosphorylation of p38 MAPK. Inhibition of p38 MAPK by SB203580 attenuated Ox-LDL-induced calcification of VSMCs. These data suggest that Ox-LDL activates N-SMase-ceramide signaling pathway, and stimulates phosphorylation of p38 MAPK, leading to apoptosis in VSMCs, which initiates VSMC calcification.

  7. Opposite roles for p38MAPK-driven responses and reactive oxygen species in the persistence and resolution of radiation-induced genomic instability.

    Directory of Open Access Journals (Sweden)

    Erica Werner

    Full Text Available We report the functional and temporal relationship between cellular phenotypes such as oxidative stress, p38MAPK-dependent responses and genomic instability persisting in the progeny of cells exposed to sparsely ionizing low-Linear Energy Transfer (LET radiation such as X-rays or high-charge and high-energy (HZE particle high-LET radiation such as (56Fe ions. We found that exposure to low and high-LET radiation increased reactive oxygen species (ROS levels as a threshold-like response induced independently of radiation quality and dose. This response was sustained for two weeks, which is the period of time when genomic instability is evidenced by increased micronucleus formation frequency and DNA damage associated foci. Indicators for another persisting response sharing phenotypes with stress-induced senescence, including beta galactosidase induction, increased nuclear size, p38MAPK activation and IL-8 production, were induced in the absence of cell proliferation arrest during the first, but not the second week following exposure to high-LET radiation. This response was driven by a p38MAPK-dependent mechanism and was affected by radiation quality and dose. This stress response and elevation of ROS affected genomic instability by distinct pathways. Through interference with p38MAPK activity, we show that radiation-induced stress phenotypes promote genomic instability. In contrast, exposure to physiologically relevant doses of hydrogen peroxide or increasing endogenous ROS levels with a catalase inhibitor reduced the level of genomic instability. Our results implicate persistently elevated ROS following exposure to radiation as a factor contributing to genome stabilization.

  8. Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages

    OpenAIRE

    Somenath Banerjee; Dipayan Bose; Nabanita Chatterjee; Subhadip Das; Sreeparna Chakraborty; Tanya Das; Krishna Das Saha

    2016-01-01

    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these...

  9. Sustained oxidative stress causes late acute renal failure via duplex regulation on p38 MAPK and Akt phosphorylation in severely burned rats.

    Directory of Open Access Journals (Sweden)

    Yafei Feng

    Full Text Available BACKGROUND: Clinical evidence indicates that late acute renal failure (ARF predicts high mortality in severely burned patients but the pathophysiology of late ARF remains undefined. This study was designed to test the hypothesis that sustained reactive oxygen species (ROS induced late ARF in a severely burned rat model and to investigate the signaling mechanisms involved. MATERIALS AND METHODS: Rats were exposed to 100°C bath for 15 s to induce severe burn injury (40% of total body surface area. Renal function, ROS generation, tubular necrosis and apoptosis, and phosphorylation of MAPK and Akt were measured during 72 hours after burn. RESULTS: Renal function as assessed by serum creatinine and blood urea nitrogen deteriorated significantly at 3 h after burn, alleviated at 6 h but worsened at 48 h and 72 h, indicating a late ARF was induced. Apoptotic cells and cleavage caspase-3 in the kidney went up slowly and turned into significant at 48 h and 72 h. Tubular cell ROS production shot up at 6 h and continuously rose during the 72-h experiment. Scavenging ROS with tempol markedly attenuated tubular apoptosis and renal dysfunction at 72 h after burn. Interestingly, renal p38 MAPK phosphorylation elevated in a time dependent manner whereas Akt phosphorylation increased during the first 24 h but decreased at 48 h after burn. The p38 MAPK specific inhibitor SB203580 alleviated whereas Akt inhibitor exacerbated burn-induced tubular apoptosis and renal dysfunction. Furthermore, tempol treatment exerted a duplex regulation through inhibiting p38 MAPK phosphorylation but further increasing Akt phosphorylation at 72 h postburn. CONCLUSIONS: These results demonstrate that sustained renal ROS overproduction induces continuous tubular cell apoptosis and thus a late ARF at 72 h after burn in severely burned rats, which may result from ROS-mediated activation of p38 MAPK but a late inhibition of Akt phosphorylation.

  10. Human herpesvirus 6B induces phosphorylation of p53 in its regulatory domain by a CK2- and p38-independent pathway

    DEFF Research Database (Denmark)

    Øster, Bodil; Bundgaard, Bettina; Hupp, TR;

    2008-01-01

    Here, we demonstrate that human herpesvirus 6B (HHV-6B) infection upregulates the tumour suppressor p53 and induces phosphorylation of p53 at Ser392. Interestingly, phosphorylation at the equivalent site has previously been shown to correlate with p53 tumour suppression in murine models. Although...... or Cdk9, eluted in column fractions that phosphorylated p53 at Ser392. However, treatment of cells with neither the CK2 and Cdk9 inhibitor 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB) nor p38 kinase inhibitors reduced HHV-6B-induced Ser392 phosphorylation significantly. Knockdown of the CK2......beta subunit or p38alpha by small interfering RNA had no effect on HHV-6B-induced phosphorylation of p53 at Ser392. Thus, HHV-6B induces p53 Ser392 phosphorylation by an atypical pathway independent of CK2 and p38 kinases, whereas mitogen-activated protein (MAP) kinase signalling pathways are involved...

  11. A diacylglycerol kinase inhibitor, R59022, stimulates glucose transport through a MKK3/6-p38 signaling pathway in skeletal muscle cells.

    Science.gov (United States)

    Takahashi, Nobuhiko; Nagamine, Miho; Tanno, Satoshi; Motomura, Wataru; Kohgo, Yutaka; Okumura, Toshikatsu

    2007-08-17

    Diacylglycerol kinase (DGK) is one of lipid-regulating enzymes, catalyzes phosphorylation of diacylglycerol to phosphatidic acid. Because skeletal muscle, a major insulin-target organ for glucose disposal, expresses DGK, we investigated in the present study a role of DGK on glucose transport in skeletal muscle cells. PCR study showed that C2C12 myotubes expressed DGKalpha, delta, epsilon, zeta, or theta isoform mRNA. R59022, a specific inhibitor of DGK, significantly increased glucose transport, p38 and MKK3/6 activation in C2C12 myotubes. The R59022-induced glucose transport was blocked by SB203580, a specific p38 inhibitor. In contrast, R59022 failed to stimulate both possible known mechanisms to enhance glucose transport, an IRS1-PI3K-Akt pathway, muscle contraction signaling or GLUT1 and 4 expression. All these results suggest that DGK may play a role in glucose transport in the skeletal muscle cells through modulating a MKK3/6-p38 signaling pathway. PMID:17588539

  12. Isoalantolactone inhibits the migration and invasion of human breast cancer MDA-MB-231 cells via suppression of the p38 MAPK/NF-κB signaling pathway.

    Science.gov (United States)

    Wang, Jing; Cui, Li; Feng, Liang; Zhang, Zhenhai; Song, Jie; Liu, Dan; Jia, Xiaobin

    2016-09-01

    Isoalantolactone is a bioactive sesquiterpene lactone isolated from the flowering plant Inula helenium L. This study was conducted to assess the anti-migratory and anti-invasive activities of isoalantolactone in MDA-MB-231 cells, and to explore the underlying mechanisms. Wound-healing and Transwell chambers assays demonstrated that isoalantolactone inhibited the adhesion, migration and invasion of MDA-MB-231 cells. The activity and expression of MMP-2 and MMP-9 were downregulated by isoalantolactone in a dose-dependent manner. Additionally, isoalantolactone markedly decreased the p-p38 MAPK level, whereas no significant change in p-ERK1/2 and p-JNK1/2 was noted. The downregulation of MMP-2 and MMP-9 protein expression and suppression of in vitro invasion might be associated with the blockade of p38 MAPK activation. Furthermore, isoalantolactone blocked the translocation of NF-κB p65 from the cytoplasm into the nucleus. These results revealed that isoalantolactone inhibited the adhesion, migration and invasion of MDA-MB-231 cells via suppression of the p38 MAPK/NF-κB signaling pathway, and isoalantolactone might be an alternative treatment for breast cancer. PMID:27461575

  13. p38MAPK activation is involved in androgen-independent proliferation of human prostate cancer cells by regulating IL-6 secretion

    International Nuclear Information System (INIS)

    Increased levels of serum interleukin-6 (IL-6) are frequently observed in patients with advanced, hormone-refractory prostate cancer. However, the precise mechanism of IL-6 regulation is still largely unknown. Since prostate cancer gradually progresses to an androgen-independent state despite the stress caused by various therapeutic agents, we hypothesized the stress-activated protein kinases (SAPKs) involvement in androgen-independent growth or IL-6 secretion of prostate cancer cells. Using PC-3 and DU145 human prostate cancer cells, we analyzed the role of SAPKs in IL-6 mediated cell growth and found that the p38MAPK and JNK are involved in androgen-independent cancer cell growth. Furthermore, IL-6 secretion by PC-3 and DU145 cells was significantly suppressed by SAPKs inhibitor, especially by p38MAPK inhibitor SB203580, but not by JNK inhibitor SP600125 nor by MEK inhibitor, PD98059. These results raised the possibility that the IL-6 mediated androgen-independent proliferation of PC-3 and DU145 cells is regulated at least partly via SAPKs signaling pathway especially through p38MAPK activation

  14. A diacylglycerol kinase inhibitor, R59022, stimulates glucose transport through a MKK3/6-p38 signaling pathway in skeletal muscle cells.

    Science.gov (United States)

    Takahashi, Nobuhiko; Nagamine, Miho; Tanno, Satoshi; Motomura, Wataru; Kohgo, Yutaka; Okumura, Toshikatsu

    2007-08-17

    Diacylglycerol kinase (DGK) is one of lipid-regulating enzymes, catalyzes phosphorylation of diacylglycerol to phosphatidic acid. Because skeletal muscle, a major insulin-target organ for glucose disposal, expresses DGK, we investigated in the present study a role of DGK on glucose transport in skeletal muscle cells. PCR study showed that C2C12 myotubes expressed DGKalpha, delta, epsilon, zeta, or theta isoform mRNA. R59022, a specific inhibitor of DGK, significantly increased glucose transport, p38 and MKK3/6 activation in C2C12 myotubes. The R59022-induced glucose transport was blocked by SB203580, a specific p38 inhibitor. In contrast, R59022 failed to stimulate both possible known mechanisms to enhance glucose transport, an IRS1-PI3K-Akt pathway, muscle contraction signaling or GLUT1 and 4 expression. All these results suggest that DGK may play a role in glucose transport in the skeletal muscle cells through modulating a MKK3/6-p38 signaling pathway.

  15. Enediyne lidamycin induces apoptosis in human multiple myeloma cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase.

    Science.gov (United States)

    Zhen, Yong-Zhan; Lin, Ya-Jun; Shang, Bo-Yang; Zhen, Yong-Su

    2009-07-01

    In the present study, the effects of lidamycin (LDM), a member of the enediyne antibiotic family, on two human multiple myeloma (MM) cell lines, U266 and SKO-007, were evaluated. In MTS assay, LDM showed much more potent cytotoxicity than conventional anti-MM agents to both cell lines. The IC(50) values of LDM for the U266 and SKO-007 cells were 0.0575 +/- 0.0015 and 0.1585 +/- 0.0166 nM, respectively, much lower than those of adriamycin, dexamethasone, and vincristine. Mechanistically, LDM triggered MM cells apoptosis by increasing the levels of cleaved poly ADP-ribose polymerase (PARP) and caspase-3/7. In addition, activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) was a critical mediator in LDM-induced cell death. Inhibition of the expression of p38 MAPK and JNK by pharmacological inhibitors reversed the LDM-induced apoptosis through decreasing the level of cleaved PARP and caspase-3/7. Interestingly, phosphorylation of extracellular signal-related kinase was increased by LDM; conversely, MEK inhibitor synergistically enhanced LDM-induced cytotoxicity and apoptosis in MM cells. The results demonstrated that LDM suppresses MM cell growth through the activation of p38 MAPK and JNK, with the potential to be developed as a chemotherapeutic agent for MM. PMID:19468799

  16. Curcumol Inhibits Growth and Induces Apoptosis of Colorectal Cancer LoVo Cell Line via IGF-1R and p38 MAPK Pathway.

    Science.gov (United States)

    Wang, Juan; Huang, Fengxiang; Bai, Zhun; Chi, Bixia; Wu, Jiacai; Chen, Xu

    2015-08-20

    Curcumol, isolated from the traditional medical plant Rhizoma Curcumae, is the bioactive component of Zedoary oil, whose potential anti-tumor effect has attracted considerable attention in recent years. Though many researchers have reported curcumol and its bioactivity, the potential molecular mechanism for its anti-cancer effect in colorectal cancer LoVo cells still remains unclear. In the present study, we found that curcumol showed growth inhibition and induced apoptosis of LoVo cells in a dose- and time-dependent manner. The occurrence of its proliferation inhibition and apoptosis came with suppression of IGF-1R expression, and then increased the phosphorylation of p38 mitogen activated protein kinase (MAPK), which might result in a cascade response by inhibiting the CREB survival pathway and finally triggered Bax/Bcl-2 and poly(ADP-ribose) polymerase 1 (PARP-1) apoptosis signals. Moreover, curcumol inhibited colorectal cancer in xenograft models of nude mice. Immunohistochemical and Western blot analysis revealed that curcumol could decrease the expression of ki-67, Bcl-2 as well as CREB1, and increase the expression of Bax and the phosphorylation of p38, which were consistent with our in vitro study. Overall, our in vitro and in vivo data confirmed the anti-cancer activity of curcumol, which was related to a significant inhibition of IGF-1R and activation of p38 MAPKs, indicating that curcumol may be a potential anti-tumor agent for colorectal carcinoma therapy.

  17. Curcumol Inhibits Growth and Induces Apoptosis of Colorectal Cancer LoVo Cell Line via IGF-1R and p38 MAPK Pathway

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2015-08-01

    Full Text Available Curcumol, isolated from the traditional medical plant Rhizoma Curcumae, is the bioactive component of Zedoary oil, whose potential anti-tumor effect has attracted considerable attention in recent years. Though many researchers have reported curcumol and its bioactivity, the potential molecular mechanism for its anti-cancer effect in colorectal cancer LoVo cells still remains unclear. In the present study, we found that curcumol showed growth inhibition and induced apoptosis of LoVo cells in a dose- and time-dependent manner. The occurrence of its proliferation inhibition and apoptosis came with suppression of IGF-1R expression, and then increased the phosphorylation of p38 mitogen activated protein kinase (MAPK, which might result in a cascade response by inhibiting the CREB survival pathway and finally triggered Bax/Bcl-2 and poly(ADP-ribose polymerase 1 (PARP-1 apoptosis signals. Moreover, curcumol inhibited colorectal cancer in xenograft models of nude mice. Immunohistochemical and Western blot analysis revealed that curcumol could decrease the expression of ki-67, Bcl-2 as well as CREB1, and increase the expression of Bax and the phosphorylation of p38, which were consistent with our in vitro study. Overall, our in vitro and in vivo data confirmed the anti-cancer activity of curcumol, which was related to a significant inhibition of IGF-1R and activation of p38 MAPKs, indicating that curcumol may be a potential anti-tumor agent for colorectal carcinoma therapy.

  18. Src Family Kinases Modulate the Loss of Endothelial Barrier Function in Response to TNF-α: Crosstalk with p38 Signaling.

    Science.gov (United States)

    Adam, Alejandro P; Lowery, Anthony M; Martino, Nina; Alsaffar, Hiba; Vincent, Peter A

    2016-01-01

    Activation of Src Family Kinase (SFK) signaling is required for the increase in endothelial permeability induced by a variety of cytokines and growth factors. However, we previously demonstrated that activation of endogenous SFKs by expression of dominant negative C-terminal Src Kinase (DN-Csk) is not sufficient to decrease endothelial adherens junction integrity. Basal SFK activity has been observed in normal venular endothelia and was not associated with increased basal permeability. The basal SFK activity however was found to contribute to increased sensitivity of the venular endothelium to inflammatory mediator-induced leakage. How SFK activation achieves this is still not well understood. Here, we show that SFK activation renders human dermal microvascular endothelial cells susceptible to low doses of TNF-α. Treatment of DN-Csk-expressing cells with 50 pg/ml TNF-α induced a loss of TEER as well as drastic changes in the actin cytoskeleton and focal adhesion proteins. This synergistic effect was independent of ROCK or NF-κB activity. TNF-α-induced p38 signaling was required for the synergistic effect on barrier function, and activation of the p38 MAPK alone was also able to induce changes in permeability only in monolayers with active SFKs. These results suggest that the activation of endogenous levels of SFK renders the endothelial barrier more susceptible to low, physiologic doses of TNF-α through activation of p38 which leads to a loss of endothelial tight junctions. PMID:27603666

  19. Exercise preconditioning reduces neonatal incision surgery-induced enhanced hyperalgesia via inhibition of P38 mitogen-activated protein kinase and IL-1β, TNF-α release.

    Science.gov (United States)

    Gong, Xingrui; Jiang, Jing; Zhang, Mazhong

    2016-08-01

    Neonatal surgery leads to enhanced hyperalgesia to noxious stimulation in adulthood via a mechanism caused by enhanced phosphorylated (p)-p38 expression in microglia. We tested the effect of exercise on reducing enhanced hypersensitivity primed by neonatal incision surgery. Adult female Wistar rats, with or without neonatal incision surgery at postnatal day (P) 3, received right hind paw plantar incision surgery under anesthesia at P44. The rats performed wheel-running exercise from P22 to P41. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were measured and ipsilateral spinal cords were collected for protein quantification. For PWT and PWL, exercise reduced the pain index after incision surgery at P44 in rats with neonatal surgery (Pexercise suppressed P-p38 expression relative to adult rats without neonatal surgery (Pexercise reduced IL-1β and TNF-α (PExercise preconditioning is an effective approach to reducing enhanced adult hyperalgesia primed by neonatal surgery. The mechanism may be explained by exercise-induced inhibition of P-p38 activation and IL-1β, TNF-α release. PMID:27235543

  20. GBE50 Attenuates Inflammatory Response by Inhibiting the p38 MAPK and NF-κB Pathways in LPS-Stimulated Microglial Cells

    Directory of Open Access Journals (Sweden)

    Gai-ying He

    2014-01-01

    Full Text Available Overactivated microglia contribute to a variety of pathological conditions in the central nervous system. The major goal of the present study is to evaluate the potential suppressing effects of a new type of Ginko biloba extract, GBE50, on activated microglia which causes proinflammatory responses and to explore the underlying molecular mechanisms. Murine BV2 microglia cells, with or without pretreatmentof GBE50 at various concentrations, were activated by incubation with lipopolysaccharide (LPS. A series of biochemical and microscopic assays were performed to measure cell viability, cell morphology, release of tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β, and signal transduction via the p38 MAPK and nuclear factor-kappa B (NF-κB p65 pathways. We found that GBE50 pretreatment suppressed LPS-induced morphological changes in BV2 cells. Moreover, GBE50 treatment significantly reduced the release of proinflammatory cytokines, TNF-α and IL-1β, and inhibited the associated signal transduction through the p38 MAPK and NF-κB p65 pathways. These results demonstrated the anti-inflammatory effect of GBE50 on LPS-activated BV2 microglia cells, and indicated that GBE50 reduced the LPS-induced proinflammatory TNF-α and IL-1β release by inhibiting signal transduction through the NF-κB p65 and p38 MAPK pathways. Our findings reveal, at least in part, the molecular basis underlying the anti-inflammatory effects of GBE50.

  1. Angiopoietin-Like Protein 7 Promotes an Inflammatory Phenotype in RAW264.7 Macrophages Through the P38 MAPK Signaling Pathway.

    Science.gov (United States)

    Qian, Tao; Wang, Kun; Cui, Jiesheng; He, Yiduo; Yang, Zaiqing

    2016-06-01

    Angiopoietin-like protein 7 (Angptl7) has been extensively studied for decades, but its potential immune functions have not been characterized. Hence, we investigated the relationship between Angptl7 and inflammation by using RAW264.7 monocyte/macrophage cells. The expression of genes encoding inflammation-associated factors cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, IL-10, and transforming growth factor beta 1 (TGF-β1)) decreased after RAW264.7 cells were treated with anti-Angptl7 polyclonal antibody but increased after the cells were transfected with an Angptl7-expressing plasmid. Angptl7 overexpression enhanced phagocytosis and inhibited the proliferation of RAW264.7 cells. In addition, Angptl7 antagonized the anti-inflammatory effects of TGF-β1 and dexamethasone. Pathway analysis showed that Angptl7 promoted the phosphorylation of both p65 and p38, but only the P38 mitogen-activated protein kinase (MAPK) signaling pathway mediated Angptl7-associated inflammatory functions. Additionally, after 1 week of daily intraperitoneal injections of recombinant TNF-α in a mouse model of peripheral inflammation, Angptl7 expression increased in the mouse eyes. Thus, Angptl7 is a factor that promotes pro-inflammatory responses in macrophages through the P38 MAPK signaling pathway and represents a potential therapeutic target for treatment of inflammatory diseases. PMID:26973239

  2. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9.

    Science.gov (United States)

    Yan, Shuangquan; Wang, Yiran; Liu, Panpan; Chen, Ali; Chen, Mayun; Yao, Dan; Xu, Xiaomei; Wang, Liangxing; Huang, Xiaoying

    2016-01-01

    Baicalin has a protective effect on hypoxia-induced pulmonary hypertension in rats, but the mechanism of this effect remains unclear. Thus, investigating the potential mechanism of this effect was the aim of the present study. Model rats that display hypoxic pulmonary hypertension and cor pulmonale under control conditions were successfully generated. We measured a series of indicators to observe the levels of pulmonary arterial hypertension, pulmonary arteriole remodeling, and right ventricular remodeling. We assessed the activation of p38 mitogen-activated protein kinase (MAPK) in the pulmonary arteriole walls and pulmonary tissue homogenates using immunohistochemistry and western blot analyses, respectively. The matrix metalloproteinase- (MMP-) 9 protein and mRNA levels in the pulmonary arteriole walls were measured using immunohistochemistry and in situ hybridization. Our results demonstrated that baicalin not only reduced p38 MAPK activation in both the pulmonary arteriole walls and tissue homogenates but also downregulated the protein and mRNA expression levels of MMP-9 in the pulmonary arteriole walls. This downregulation was accompanied by the attenuation of pulmonary hypertension, arteriole remodeling, and right ventricular remodeling. These results suggest that baicalin may attenuate pulmonary hypertension and cor pulmonale, which are induced by chronic hypoxia, by downregulating the p38 MAPK/MMP-9 pathway. PMID:27688788

  3. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways.

    Science.gov (United States)

    Min, Jie; Huang, Kenan; Tang, Hua; Ding, Xinyu; Qi, Chen; Qin, Xiong; Xu, Zhifei

    2015-12-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose‑dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC.

  4. Indomethacin induces increase in gastric epithelial tight junction permeability via redistribution of occludin and activation of p38 MAPK in MKN-28 Cells.

    Science.gov (United States)

    Thakre-Nighot, Meghali; Blikslager, Anthony T

    2016-01-01

    Tight Junctions (TJ) create a paracellular barrier that is compromised when nonsteriodal anti-inflammatory drugs (NSAIDs) injure the gastric epithelium, leading to increased permeability. However, the mechanism of NSAID-induced gastric injury is unclear. Here, we examined the effect of indomethacin on barrier function and TJ in gastric MKN-28 cells. In concentration response studies, 500 µm indomethacin induced a significant decrease in transepithelial resistance (TER; 380 vs. 220 Ω·cm(2) for control and indomethacin-treated cells respectively, p permeability by 0.2 vs 1.2 g/l (p permeability. Pretreatment with the p38 MAPK inhibitor significantly attenuated the disruption of barrier function, but JNK and MEK/ERK inhibition had no effect. Western blot analysis on gastric mucosa reveled loss of TJ protein occludin by indomethacin, which was prevented by inhibition of p38 MAPK. This data suggests that indomethacin compromises the gastric epithelial barrier via p38 MAPK inducing occludin alterations in the TJs. PMID:27583191

  5. Isomenthone protects human dermal fibroblasts from TNF-α-induced death possibly by preventing activation of JNK and p38 MAPK.

    Science.gov (United States)

    Jung, Eunsun; Byun, Sangyo; Kim, Seungbeom; Kim, Moohan; Park, Deokhoon; Lee, Jongsung

    2012-10-01

    Cell death evoked by tumor necrosis factor-α (TNF-α) is regulated by the TNF-α receptor-associated death domain containing protein, which interacts with and activates apoptotic proteases triggering cell death. c-Jun N-terminal kinase (JNK) and p38 MAPK, induce the apoptotic program and are indispensible early elements in stress-induced apoptosis that control the release of cytochrome c. Isomenthone is a constituent of the essential oil of Mentha arvensis L. and is used as a fragrance and flavor in the cosmetic, drug, and food industries. In this study, we investigated the protective effects of isomenthone against TNF-α-induced cell death and its mechanism in human dermal fibroblasts. To understand the cytoprotective role of isomenthone, MTT and terminal deoxynucleotidyl transferase dUTP nick end labeling assays for cell viability and enzyme-linked immunosorbent assay analysis for the mechanistic study were performed. We found that isomenthone inhibited the TNF-α-mediated reduction in cell viability and inhibited the increase in apoptosis under a serum-free condition. Isomenthone also blocked the JNK and p38 MAPK pathways and downstream apoptotic events. These results indicate that isomenthone has the potential to protect fibroblasts against TNF-α-induced cell death under a serum-deprived condition by blocking activation of the JNK and p38 MAPK pathways and downstream apoptotic events.

  6. 4-Hydroxynonenal enhances MMP-9 production in murine macrophages via 5-lipoxygenase-mediated activation of ERK and p38 MAPK

    International Nuclear Information System (INIS)

    Exaggerated levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) co-exist in macrophages in atherosclerotic lesions, and activated macrophages produce MMP-9 that degrades atherosclerotic plaque constituents. This study investigated the effects of HNE on MMP-9 production, and the potential role for 5-LO derivatives in MMP-9 production in murine macrophages. Stimulation of J774A.1 cells with HNE led to activation of 5-LO, as measured by leukotriene B4 (LTB4) production. This was associated with an increased production of MMP-9, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor or with 5-LO siRNA. A cysteinyl-LT1 (cysLT1) receptor antagonist, REV-5901 as well as a BLT1 receptor antagonist, U-75302, also attenuated MMP-9 production induced by HNE. Furthermore, LTB4 and cysLT (LTC4 and LTD4) enhanced MMP-9 production in macrophages, suggesting a pivotal role for 5-LO in HNE-mediated production of MMP-9. Among the MAPK pathways, LTB4 and cysLT enhanced phosphorylation of ERK and p38 MAPK, but not JNK. Linked to these results, a p38 MAPK inhibitor as well as an ERK inhibitor blunted MMP-9 production induced by LT. Collectively, these data suggest that 5-LO-derived LT mediates HNE-induced MMP-9 production via activation of ERK and p38 MAPK pathways, consequently leading to plaque instability in atherosclerosis.

  7. Cable Tester Box

    Science.gov (United States)

    Lee, Jason H.

    2011-01-01

    Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.

  8. ERK1/2 and p38 kinases are important regulators in P2Y receptor-mediated prostate cancer invasion%ERK1/2 及p38通路调节P2Y受体介导的前列腺癌细胞体外侵袭

    Institute of Scientific and Technical Information of China (English)

    陈玲; 贺慧颖; 李红梅; 由江峰; 衡万杰; 李燕; 方伟岗

    2005-01-01

    目的探讨细胞外信号调节激酶(ERK1/2)及p38激酶在P2Y嘌呤受体活化介导的前列腺癌细胞体外侵袭中的作用.方法以脂质体法将负显性MAPK激酶1 (KA-MEK1) 及野生型p38磷酸酶(MKP-5)转染人前列腺癌细胞PC-3亚系1E8(高转移)和2B4(不转移)细胞,以 Western印迹法检测细胞经P2Y嘌呤受体激动剂ATP刺激后ERK1/2及p38活化情况,并用体外侵袭实验检测在P2Y受体介导的前列腺癌细胞体外侵袭效应中ERK1/2 及p38通路所起的作用.结果 ATP可以激活ERK1/2 及p38通路并促进前列腺癌细胞体外侵袭,这种侵袭促进效应可以分别被MEK1抑制剂PD98059及p38抑制剂SB203580所抑制.转染KA-MEK1及MKP-5使侵袭细胞数分别降低约40%及60%. 如果加入抑制剂同时抑制ERK1/2及p38通路,细胞的侵袭能力被抑制约76%.结论 ERK1/2及p38通路在P2Y嘌呤受体活化所介导的前列腺癌细胞侵袭中起重要作用.

  9. Using the one-lung method to link p38 to pro-inflammatory gene expression during overventilation in C57BL/6 and BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Stephanie Siegl

    Full Text Available INTRODUCTION: The mechanisms of ventilator-induced lung injury (VILI, including the role of MAP kinases, are frequently studied in different mouse strains. A useful model for such studies is the isolated perfused mouse lung. As a further development we present the one-lung method that permits to continue perfusion and ventilation of the right lung after removal of the left lung. This method was used to compare the effect of high pressure ventilation (HPV on pro-inflammatory signaling events in two widely used mouse strains (C57BL/6, BALB/c and to further define the role of p38 in VILI. METHODS: Lungs were perfused and ventilated for 30 min under control conditions before they were randomized to low (8 cm H(2O or high (25 cm H(2O pressure ventilation (HPV for 210 min, with the left lung being removed after 180 min. In the left lung we measured the phosphorylation of p38, JNK, ERK and Akt kinase, and in the right lung gene expression and protein concentrations of Il1b, Il6, Tnf, Cxcl1, Cxcl2, and Areg. RESULTS: Lung mechanics and kinase activation were similar in both mouse strains. HPV increased all genes (except Tnf in BALB/c and all mediators in both strains. The gene expression of mRNA for Il1b, Il6, Cxcl1 and Cxcl2 was higher in BALB/c mice. Backward regression of the kinase data at t = 180 min with the gene and protein expression data at t = 240 min suggested that p38 controls HPV-induced gene expression, but not protein production. This hypothesis was confirmed in experiments with the p38-kinase inhibitor SB203580. CONCLUSIONS: The one-lung method is useful for mechanistic studies in the lungs. While C57BL/6 show diminished pro-inflammatory responses during HPV, lung mechanics and mechanotransduction processes appear to be similar in both mouse strains. Finally, the one-lung method allowed us to link p38 to gene expression during VILI.

  10. Cinobufagin induces autophagy-mediated cell death in human osteosarcoma U2OS cells through the ROS/JNK/p38 signaling pathway.

    Science.gov (United States)

    Ma, Kun; Zhang, Chuan; Huang, Man-Yu; Li, Wu-Yin; Hu, Guo-Qiang

    2016-07-01

    The main objective of this study was to explore whether autophagy could be triggered by cinobufagin, and to clarify the role of autophagy in the antitumor effects of cinobufagin on U2OS cells and the underlying mechanisms. U2OS cells were exposed to 15, 30, 60 and 120 mg/l cinobufagin for 0, 12, 24 and 48 h. An MTT assay was used to measure cell viability. FITC-Annexin Ⅴ/PI staining and flow cytometry were used to analyze the apoptotic ratio, while apoptotic morphological changes were assessed by PI and Hoechst 33258 viable cell staining. The effects of autophagy on the cells were investigated with GFP-LC3b green fluorescence plasmid transfection and transmission electron microscopy. The levels of caspase-3, -8, - 9, cleaved PARP, LC3-II/LC3-I, p62 and the activation of JNK/p-38 were detected by western blot analysis. Reactive oxygen species (ROS) fluorescence intensity was examined under fluorescence microscopy with an analysis software system. Cell proliferation was obviously inhibited by cinobufagin in a dose- and time-dependent manner. The apoptosis ratio was gradually increased with treatment time as evidenced by flow cytometric analysis and Hoechst 33258 staining. Exposure to cinobufagin resulted in the activation of caspase-3, -8, -9, as well as cleaved PARP which indicated that cinobufagin induced caspase-dependent apoptosis. Autophagy was confirmed in the cinobufagin-treated cells as evidenced by formation of autophagosomes, accumulation of GFP-LC3 fluorescence particles as well as the upregulation of LC3-II/LC3-I levels. Inhibition of autophagy diminished apoptosis as detected by the MTT assays. Moreover the percentage of apoptotic cells decreased following pretreatment with 3-MA, CQ and si-beclin-1. Cinobufagin also induced phosphorylation of the JNK and p38 signaling pathway as well as ROS generation. The JNK and p38 inhibitors significantly attenuated coexistence of apoptosis and autophagy-related proteins. The ROS scavenger also prevented

  11. Apelin-13 induces ERK1/2 but not p38 MAPK activation through coupling of the human apelin receptor to the Gi2 pathway

    Institute of Scientific and Technical Information of China (English)

    Bo Bai; Jiyou Tang; Haiqing Liu; Jing Chen; Yalin Li; Wengang Song

    2008-01-01

    Apelin signaling to the family of mitogen-activated protein kinases (MAPKs), such as extracellular-regulated kinases 1/2 (ERK1/2) and p38 MAPK, through the coupling of apelin receptor (APJ) to G-protein, mediates important pathophysiological responses. Although apelin fragments have been reported to induce ERK1/2 activation through Gi-protein, the intracellular pathways by which APJ activates these MAPKs are only partially understood. Here, using stably transfected human embryonic kidney 293 (HEK293) cells overexpressing human APJ (HEK293-apelinR), we showed that apelin-13 signaling leads to ERK1/2 and p38 MAPK pathways through APJ activation. It was found in HEK293-apelinR cells that ERK1/2 activation was initiated by apelin13 at 5 min, with the peak of activation occurring at 15 min,and a return to the basal level within 60 min. The activation of ERK1/2 appeared to be dose-dependent with a significant activation being observed at 10 nM apelin-13 and maximal activation at 100 nM. However, phosphorylated-p38 MAPK was not detected in HEK293-apelinR cells treated with apelin13. We also shown that the apelin-13-induced ERK1/2 activation requires a coupling with pertussis toxin-sensitive G-protein, and that overexpression of dominant-negative Gi2 completely inhibits the apelin-13-induced ERK1/2 activation.In addition, treatment with apelin-13 resulted in a concentration-dependent reduction of forskolin-stimulated cAMP production. It is therefore suggested that apelin-13 activates ERK1/2 but not p38 MAPK, which involves the coupling of APJ to the Gi2 cascade. In conclusion, the ERK1/2, but not p38 MAPK pathway is activated by apelin- 13 through coupling of human APJ to Gi2-protein, which contributes to cellular responses.

  12. Effect of pre-electroacupuncture on p38 and c-Fos expression in the spinal dorsal horn of rats suffering from visceral pain

    Institute of Scientific and Technical Information of China (English)

    XU Ke-da; LIANG Tao; WANG Kun; TIAN De-an

    2010-01-01

    Background Acupuncture is an effective way to relieve pain, but the mechanism by which electroacupuncture (EA) decreases the visceral pain state still remains unclear. This study aimed to evaluate the effects of pre-electroacupuncture on pain behaviors, p38 phosphorylation, and c-Fos protein and mRNA expression in both the colonic wall and spinal dorsal horn of rats suffering from visceral pain. This study also investigated the probable signaling regulatory mechanism of the analgesic effect induced by electroacupuncture. Methods All rats were randomized into the control (Con) group, the Con+EA group, the visceral pain (VP) group, and VP+EA group (n=8 for all groups). The visceral pain model was established using 40 ul of 5% formalin solution injected into the colon of rats. EA was applied to the bilateral Jiaji acupoints for 20 minutes before application of visceral pain. Parameters for EA were set at a continuous wave (20 Hz) and intensity where the rats shook their whiskers but did not scrabble (≤1 mA). The visceral pain score was recorded and the expressions of p38 and c-Fos protein were detected using Western blotting. Real-time quantitative PCR was also used to determine the expression of c-Fos mRNA. Results Rats in the VP group immediately presented with obvious visceral pain behaviors after being injected with formalin. p38 activity and c-Fos protein and mRNA expression in both the colonic wall and spinal dorsal horn were higher in the VP group than in the Con group (P <0.05). By contrast, visceral pain behaviors were delayed in rats from the VP+EA group. p38 activity and c-Fos protein and mRNA expression were lower in the VP+EA group than that in the VP group (P<0.01). Conclusions Pre-electroacupuncture of the Jiaji acupoint has prophylactic analgesic effects on rats suffering from visceral pain. The p38 signal transduction pathway may be partly involved in the regulatory mechanism of this analgesic effect.

  13. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol-Hee [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Department of Pharmacology, College of Medicine, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Lee, Byung-Hoon [College of Pharmacy and Multiscreening Center for Drug Development, Seoul National University, Seoul 151-742 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, College of Dentistry, Chosun University, Gwangju 501-759 (Korea, Republic of); Oh, Seon-Hee, E-mail: oshccw@hanmail.net [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our

  14. Nontypeable Haemophilus influenzae induces COX-2 and PGE2 expression in lung epithelial cells via activation of p38 MAPK and NF-kappa B

    Directory of Open Access Journals (Sweden)

    Koga Tomoaki

    2008-01-01

    Full Text Available Abstract Background Nontypeable Haemophilus influenzae (NTHi is an important respiratory pathogen implicated as an infectious trigger in chronic obstructive pulmonary disease, but its molecular interaction with human lung epithelial cells remains unclear. Herein, we tested that the hypothesis that NTHi induces the expression of cyclooxygenase (COX-2 and prostaglandin E2 (PGE2 via activation of p38 mitogen-activated protein kinase (MAPK and nuclear factor (NF-kappa B in pulmonary alveolar epithelial cells. Methods Human alveolar epithelial A549 cells were infected with different concentrations of NTHi. The phosphorylation of p38 MAPK was detected by Western blot analysis, the DNA binding activity of NF-kappa B was assessed by electrophoretic mobility shift assay (EMSA, and the expressions of COX-1 and 2 mRNA and PGE2 protein were measured by reverse transcription-polymerase chain reaction (RT-PCR and enzyme linked immunosorbent assay (ELISA, respectively. The roles of Toll-like receptor (TLR 2 and TLR4, well known NTHi recognizing receptor in lung epithelial cell and gram-negative bacteria receptor, respectively, on the NTHi-induced COX-2 expression were investigated in the HEK293 cells overexpressing TLR2 and TLR4 in vitro and in the mouse model of NTHi-induced pneumonia by using TLR2 and TLR4 knock-out mice in vivo. In addition, the role of p38 MAPK and NF-kappa B on the NTHi-induced COX-2 and PGE2 expression was investigated by using their specific chemical inhibitors. Results NTHi induced COX-2 mRNA expression in a dose-dependent manner, but not COX-1 mRNA expression in A549 cells. The enhanced expression of PGE2 by NTHi infection was significantly decreased by pre-treatment of COX-2 specific inhibitor, but not by COX-1 inhibitor. NTHi induced COX-2 expression was mediated by TLR2 in the epithelial cell in vitro and in the lungs of mice in vivo. NTHi induced phosphorylation of p38 MAPK and up-regulated DNA binding activity of NF-kappa B

  15. The BOXES Methodology Black Box Dynamic Control

    CERN Document Server

    Russell, David W

    2012-01-01

    Robust control mechanisms customarily require knowledge of the system’s describing equations which may be of the high order differential type.  In order to produce these equations, mathematical models can often be derived and correlated with measured dynamic behavior.  There are two flaws in this approach one is the level of inexactness introduced by linearizations and the other when no model is apparent.  Several years ago a new genre of control systems came to light that are much less dependent on differential models such as fuzzy logic and genetic algorithms. Both of these soft computing solutions require quite considerable a priori system knowledge to create a control scheme and sometimes complicated training program before they can be implemented in a real world dynamic system. Michie and Chambers’ BOXES methodology created a black box system that was designed to control a mechanically unstable system with very little a priori system knowledge, linearization or approximation.  All the method need...

  16. Depth in box spaces.

    Science.gov (United States)

    Pont, Sylvia C; Nefs, Harold T; van Doorn, Andrea J; Wijntjes, Maarten W A; Te Pas, Susan F; de Ridder, Huib; Koenderink, Jan J

    2012-01-01

    Human observers adjust the frontal view of a wireframe box on a computer screen so as to look equally deep and wide, so that in the intended setting the box looks like a cube. Perspective cues are limited to the size-distance effect, since all angles are fixed. Both the size on the screen, and the viewing distance from the observer to the screen were varied. All observers prefer a template view of a cube over a veridical rendering, independent of picture size and viewing distance. If the rendering shows greater or lesser foreshortening than the template, the box appears like a long corridor or a shallow slab, that is, like a 'deformed' cube. Thus observers ignore 'veridicality'. This does not fit an 'inverse optics' model. We discuss a model of 'vision as optical user interface'.

  17. Buyanghuanwu recipe inhibits neurona 1 apoptosis after cerebra 1 ischemia/reperfusion injury possibly through the p38MAPK/COX2 signa 1 pathway in rats%补阳还五汤对大鼠脑缺血/再灌注后p38MAPK磷酸化、COX2表达的影响

    Institute of Scientific and Technical Information of China (English)

    孙立倩; 赵雅宁; 李建民; 崔建忠; 张宇新

    2010-01-01

    目的 探讨补阳还五汤对脑缺血再灌注后神经细胞凋亡的作用及机制.方法 大脑中动脉线栓法制作大鼠局灶性脑缺血/再灌注损伤模型.原位缺口末端标记法(TUNEL)检测大鼠脑缺血/再灌注区神经细胞的凋亡,免疫组织化学和Westem Blot法检测p38MAPK和COX2蛋白表达,术后2、4及7 d对大鼠综合运动能力评分.结果 模型组TUNEL阳性细胞数量、p38MAPK和COX2蛋白表达水平明显升高,神经功能损害严重;补阳还五汤能够明显减少TUNEL阳性细胞数量,降低p38MAPK和COX2蛋白表达水平,改善神经功能状态.结论 补阳还五汤能减少脑缺血再灌注后神经细胞凋亡,其机制与抑制p38MAPK磷酸化、COX2蛋白表达有关.

  18. Opto-Box

    CERN Document Server

    Bertsche, David; The ATLAS collaboration; Welch, Steven; Smith, Dale Shane; Che, Siinn; Gan, K.K.; Boyd, George Russell Jr

    2015-01-01

    The opto-box is a custom mini-crate for housing optical modules, which process and transfer optoelectronic data. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35x10x8 cm^3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits (ASICs), were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain.

  19. p-ezrin和p-p38在乳腺浸润性导管癌中的表达及临床意义%The expressions and significant of p-ezrin and p-p38 in breast invasive ductal carcinoma

    Institute of Scientific and Technical Information of China (English)

    刘树立; 刘楠; 曹红一; 宋敏

    2011-01-01

    Objective To examine the expressions of p-ezrin and p-p38 in breast invasive ductal carcinomas (IDC), and analyze its relationship and significant with the metastasis of breast cancer. Methods The expressions of p-ezrin and p-p38 were examined using immunohistochemistry S-P method in 80 IDC tissues. Results The abnormal high expression of p-ezrin was found in 7 cases of 33 IDC tissues without metastasis (21.2% ) and in 27 cases of 47 IDC tissues with metastasis (57.4%). The abnormal high expression of p-p38 was found in 15 cases of IDC without metastasis (45.5%) and in 34 cases of IDC with metastasis (72.3%). The abnormal expressions of p-ezrin and p-p38 were positively correlated with each other (r= 0.269, P = 0.016).Conclusion p-ezrin and p-p38 are correlate with the invasion and metastasis of IDCs and might be important markers of lymph node metastasis of IDCs.%目的 Ezrin是细胞膜与细胞骨架连接蛋白,参与肿瘤细胞的侵袭和转移.本研究通过检测p-ezrin和p-p38在乳腺浸润性导管癌中的表达情况,探讨其与乳腺癌转移的关系和意义.方法 采用免疫组织化学SP法检测80例乳腺浸润性导管癌组织切片中p-ezrin和p-p38的表达.结果 p-ezrin在33例无转移的癌组织中7例异常高表达(21.2%),47例有转移的癌组织中27例异常高表达(57.4%).p-p38在无转移的癌组织中15例异常高表达(45.5%),而在有转移的癌组织中34例异常高表达(72.3%).p-ezrin异常表达与p-p38异常表达正相关性(r = 0.269,P = 0.016).结论 p-ezrin和p-p38与乳腺导管癌的浸润和转移密切相关,可以作为预测浸润性乳腺导管癌淋巴结转移的重要肿瘤标志物.

  20. Room temperature epitaxial stabilization of a tetragonal phase in ARuO3 (A = Ca and Sr) thin films

    NARCIS (Netherlands)

    Vailionis, Arturas; Siemons, Wolter; Koster, Gertjan

    2008-01-01

    We demonstrate that SrRuO3 and CaRuO3 thin films undergo a room temperature structural phase transition driven by the substrate imposed epitaxial biaxial strain. As tensile strain increases, ARuO3 (A = Ca and Sr) films transform from the orthorhombic phase which is usually observed in bulk SrRuO3 an

  1. A study of changes in the contents of LPS, p38MAPK, 5-HT and TXB2 in a model of oligofructose-induced acute equine laminitis%低聚果糖诱导马急性蹄叶炎模型中LPS、p38MAPK、5-HT和TXB2含量变化的研究

    Institute of Scientific and Technical Information of China (English)

    姜仁礼; 李欣然; 王冠颖; 李玥; 范晓静; 刘旭; 王晶璐; 马云峰; 高利

    2015-01-01

    为了探讨脂多糖(LPS)、p38丝裂原活化蛋白激酶(p38MAPK)、5-羟色胺(5-HT)和血栓素B2(TXB2)在低聚果糖诱导的马急性蹄叶炎中的作用,将24匹蒙古马随机分为试验组和对照组,每组12匹,试验组灌服低聚果糖,从0 ~72 h,每4h采集一次颈静脉血,4℃、3 000 r/min离心10 min后检测血浆中的LPS、p38MAPK、5-HT和TXB2的浓度.结果表明:LPS、p38MAPK、5-HT和TXB2的浓度分别在16,16,24,28小时达到峰值,峰值分别为(0.025 2±0.003 5)EU/mL、(50.914 2±12.341 7) ng/mL、(10.313 2±1.532 6) ng/mL和(3.992 3±0.565 0) ng/mL,与0小时比较差异显著(P<0.05).说明LPS、p38MAPK、5-HT和TXB2的浓度随时间发生较大变化,可能在急性蹄叶炎的发展过程中起到重要作用.

  2. Activation of TLR9-dependent p38MAPK Pathway in the Pathogenesis of Primary Sjögren's Syndrome%Toll样受体9依赖的p38MAPK信号通路在原发性舍格伦综合征中的作用机制

    Institute of Scientific and Technical Information of China (English)

    石欢; 郑凌艳; 俞创奇; 谢李松; 王知俊; 曹宁宁

    2015-01-01

    目的:在动物模型NOD鼠中,研究Toll样受体9(Toll like receptor 9,TLR9)依赖的p38MAPK信号通路在原发性舍格伦综合征发病机制中的作用,从而寻找疾病药物治疗的新靶点。方法:选取4、5、8、10、15周龄的NOD雌性小鼠,利用流式细胞学技术检测小鼠外周血单个核细胞中TLR9、p-p38 MAPK 双阳性细胞的比率。利用免疫组化检测小鼠下颌下腺TLR9及p-p38 MAPK的表达情况。同时,观察小鼠刺激性唾液流率的改变以及下颌下腺的病理学改变。结果:TLR9、p-p38MAPK双阳性细胞在4、15周龄NOD鼠外周血单个核细胞中的表达,相对于正常对照组Balb/c小鼠无显著性差异。而自第5周开始,NOD鼠中双阳性细胞的比率逐渐升高,到第8周达到最高,第10周后逐渐下降。 TLR9在NOD鼠下颌下腺的浸润淋巴细胞和部分腺上皮细胞中呈阳性表达,p-p38在NOD鼠下颌下腺的浸润淋巴细胞和周围少量腺上皮细胞中呈阳性表达。 NOD鼠刺激性唾液流率自第5周起逐渐减少,相较于正常小鼠降低50%~60%。结论:从第5周到第10周,TLR9、p-p38MAPK双阳性细胞在NOD鼠中显著升高,同时伴随着刺激唾液流率的降低以及下颌下腺TLR9、p-p38MAPK阳性的淋巴细胞浸润。结果提示,外周血单个核细胞中TLR9依赖的p38MAPK信号通路的激活,可能在原发性舍格伦综合征发病早期起到重要作用,NOD鼠可用于p38 MAPK 或TLR9抑制实验的动物模型。%Objective: The objective of this study was to investigate the potential role of Toll-like receptor 9-dependent p38 MAPK signaling pathway in the pathogenesis of primary Sjögren's syndrome in NOD/Ltj mouse, aiming to identify an ideal target therapy model for human primary Sjögren's syndrome (pSS). Methods:NOD/Ltj mice were chosen as a model of primary Sjögren's syndrome. The Toll-like receptor 9 and p-p38 MAPK double positive peripheral blood mononuclear cells

  3. Hydrophobic, Porous Battery Boxes

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  4. Cereal Box Totems.

    Science.gov (United States)

    Jones, AnnMarie

    2002-01-01

    Presents a multicultural project used with fourth-grade students in which they created a three-dimensional totem pole using leftover cereal boxes. Discusses in detail how to create the totem pole. Explains that students learned about Northwest American Indians in class. (CMK)

  5. Staphylococcus aureus α-toxin-mediated cation entry depolarizes membrane potential and activates p38 MAP kinase in airway epithelial cells.

    Science.gov (United States)

    Eiffler, Ina; Behnke, Jane; Ziesemer, Sabine; Müller, Christian; Hildebrandt, Jan-Peter

    2016-09-01

    Membrane potential (Vm)-, Na(+)-, or Ca(2+)-sensitive fluorescent dyes were used to analyze changes in Vm or intracellular ion concentrations in airway epithelial cells treated with Staphylococcus aureus α-toxin (Hla), a major virulence factor of pathogenic strains of these bacteria. Gramicidin, a channel-forming peptide causing membrane permeability to monovalent cations, a mutated form of Hla, rHla-H35L, which forms oligomers in the plasma membranes of eukaryotic cells but fails to form functional transmembrane pores, or the cyclodextrin-derivative IB201, a blocker of the Hla pore, were used to investigate the permeability of the pore. Na(+) as well as Ca(2+) ions were able to pass the Hla pore and accumulated in the cytosol. The pore-mediated influx of calcium ions was blocked by IB201. Treatment of cells with recombinant Hla resulted in plasma membrane depolarization as well as in increases in the phosphorylation levels of paxillin (signaling pathway mediating disruption of the actin cytoskeleton) and p38 MAP kinase (signaling pathway resulting in defensive actions). p38 MAP kinase phosphorylation, but not paxillin phosphorylation, was elicited by treatment of cells with gramicidin. Although treatment of cells with rHla-H35L resulted in the formation of membrane-associated heptamers, none of these cellular effects were observed in our experiments. This indicates that formation of functional Hla-transmembrane pores is required to induce the cell physiological changes mediated by α-toxin. Specifically, the changes in ion equilibria and plasma membrane potential are important activators of p38 MAP kinase, a signal transduction module involved in host cell defense.

  6. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    International Nuclear Information System (INIS)

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H2O2), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H2O2 at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H2O2-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H2O2 stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H2O2-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation. ► Ligustrazine reduces fibrotic marker genes in HSCs under

  7. SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway.

    Science.gov (United States)

    Li, Shih-Wein; Wang, Ching-Ying; Jou, Yu-Jen; Yang, Tsuey-Ching; Huang, Su-Hua; Wan, Lei; Lin, Ying-Ju; Lin, Cheng-Wen

    2016-01-01

    SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF-β1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF-β1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF-β1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF-β1 promoter plasmids indicated that TGF-β1 promoter region between -175 to -60, the Egr-1 binding site, was responsible for TGF-β1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF-β1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF-β1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF-β1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF-β1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo. PMID:27173006

  8. A Phase 1 Study of Oral ARRY-614, a p38 MAPK/Tie2 Dual Inhibitor, in Patients with Low or Intermediate-1 Risk Myelodysplastic Syndromes

    Science.gov (United States)

    Garcia-Manero, Guillermo; Khoury, Hanna J.; Jabbour, Elias; Lancet, Jeffrey; Winski, Shannon L.; Cable, LouAnn; Rush, Selena; Maloney, Lara; Hogeland, Grant; Ptaszynski, Mieke; Calvo, Monica Cabrero; Bohanan, Zach; List, Alan; Kantarjian, Hagop; Komrokji, Rami

    2015-01-01

    Purpose Data suggest that activity of p38 MAPK and Tie2 kinase are dysregulated in MDS and may be targets for novel therapies. A Phase 1 study of ARRY-614, an oral dual inhibitor of p38 MAPK and Tie2, was conducted in patients with low or intermediate-1 International Prognostic Scoring System risk MDS to evaluate safety, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary responses by IWG 2006 criteria. Experimental Design Forty-five patients received ARRY-614 either QD or BID in dose escalation (400, 600, 900 or 1200 mg QD; 200 or 300 mg BID) or expansion cohorts. Results The 300 mg BID schedule was not tolerated, and a maximum tolerated dose was not reached for QD dosing. Treatment-related adverse events were primarily grade 1–2, with the most common being rash, diarrhea, dry skin, fatigue and anorexia. Inter-patient PK variability was high, although exposure was sufficient to achieve reduction in p38 MAPK activation in bone marrow and in the levels of circulating biomarkers. Disease responses were observed in 14 of 44 (32%) evaluable patients, 13 (93%) of whom had previously been treated with a hypomethylating agent. Responses were observed in all lineages, with 5 patients experiencing bilineage responses. Three of 25 RBC transfusion-dependent (TD) patients achieved transfusion independence (TI) and 5 of 7 platelet TD patients achieved TI. Conclusions ARRY-614 was well tolerated and has sufficient activity to warrant further evaluation in this patient population. We recommend 1200 mg QD as the optimal dose for further study. PMID:25480830

  9. Emodin Protects Against Concanavalin A-Induced Hepatitis in Mice Through Inhibiting Activation of the p38 MAPK-NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jihua Xue

    2015-03-01

    Full Text Available Background/Aims: To investigate the effects of emodin on concanavalin A (Con A-induced hepatitis in mice and to elucidate its underlying molecular mechanisms. Methods: A fulminant hepatitis model was established successfully by the intravenous administration of Con A (20 mg/kg to male Balb/c mice. Emodin was administered to the mice by gavage before and after Con A injection. The levels of pro-inflammatory cytokines and chemokines, numbers of CD4+ and F4/80+ cells infiltrated into the liver, and amounts of phosphorylated p38 MAPK and NF-γB in mouse livers and RAW264.7 and EL4 cells were measured. Results: Pretreatment with emodin significantly protected the animals from T cell-mediated hepatitis, as shown by the decreased elevations of serum alanine aminotransferase (ALT and aspartate aminotransferase (AST, as well as reduced hepatic necrosis. In addition, emodin pretreatment markedly reduced the intrahepatic expression of pro-inflammatory cytokines and chemokines, including tumor necrosis factor (TNF-a, interferon (IFN-γ, interleukin (IL-1ß, IL-6, IL-12, inducible nitric oxide synthase (iNOS, integrin alpha M (ITGAM, chemokine (C-C motif ligand 2 (CCL2, macrophage inflammatory protein 2 (MIP-2 and chemokine (CXC motif receptor 2 (CXCR2. Furthermore, emodin pretreatment dramatically suppressed the numbers of CD4+ and F4/80+ cells infiltrating into the liver as well as the activation of p38 MAPK and NF-γB in Con A-treated mouse livers and RAW264.7 and EL4 cells. Conclusion: The results indicate that emodin pretreatment protects against Con A-induced liver injury in mice; these beneficial effects may occur partially through inhibition of both the infiltration of CD4+ and F4/80+ cells and the activation of the p38 MAPK-NF-γB pathway in CD4+ T cells and macrophages.

  10. Duration of streptozotocin-induced diabetes differentially affects p38-mitogen-activated protein kinase (MAPK phosphorylation in renal and vascular dysfunction

    Directory of Open Access Journals (Sweden)

    Gupta Akanksha

    2005-03-01

    Full Text Available Abstract Background In the present study we tested the hypothesis that progression of streptozotocin (STZ-induced diabetes (14-days to 28-days would produce renal and vascular dysfunction that correlate with altered p38- mitogen-activated protein kinase (p38-MAPK phosphorylation in kidneys and thoracic aorta. Methods Male Sprague Dawley rats (350–400 g were randomized into three groups: sham (N = 6, 14-days diabetic (N = 6 and 28-days diabetic rats (N = 6. Diabetes was induced using a single tail vein injection of STZ (60 mg/kg, I.V. on the first day. Rats were monitored for 28 days and food, water intake and plasma glucose levels were noted. At both 14-days and 28-days post diabetes blood samples were collected and kidney cortex, medulla and aorta were harvested from each rat. Results The diabetic rats lost body weight at both 14-days (-10% and 28-days (-13% more significantly as compared to sham (+10% group. Glucose levels were significantly elevated in the diabetic rats at both 14-days and 28-days post-STZ administration. Renal dysfunction as evidenced by renal hypertrophy, increased plasma creatinine concentration and reduced renal blood flow was observed in 14-days and 28-days diabetes. Vascular dysfunction as evidenced by decreased carotid blood flow was observed in 14-days and 28-days diabetes. We observed an up-regulation of inducible nitric oxide synthase (iNOS, prepro endothelin-1 (preproET-1 and phosphorylated p38-MAPK in thoracic aorta and kidney cortex but not in kidney medulla in 28-days diabetes group. Conclusion The study provides evidence that diabetes produces vascular and renal dysfunction with a profound effect on signaling mechanisms at later stage of diabetes.

  11. Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis.

    Science.gov (United States)

    Camacho-Barquero, Laura; Villegas, Isabel; Sánchez-Calvo, Juan Manuel; Talero, Elena; Sánchez-Fidalgo, Susana; Motilva, Virginia; Alarcón de la Lastra, Catalina

    2007-03-01

    Ulcerative colitis (UC) is a nonspecific inflammatory disorder characterized by oxidative and nitrosative stress, leucocyte infiltration and up-regulation of pro-inflammatory cytokines. Mitogen-activated protein kinases (MAPKs), such as the p38 and the c-Jun N-terminal kinase (JNK) modulate the transcription of many genes involved in the inflammatory process. Curcumin is a polyphenol derived from Curcuma longa, which is known to have anti-inflammatory activity. The aim of this study was to study the effects and mechanisms of action of curcumin, on chronic colitis in rats. Inflammation response was assessed by histology and myeloperoxidase activity (MPO). We determined the production of Th1 and Th2 cytokines and nitrites in colon mucosa, as well as the expression of inducible nitric oxide synthase (iNOS), cyclo-oxygenase(COX)-1 and-2 by western blotting and inmmunohistochemistry. Finally, we studied the involvement of MAPKs signaling in the protective effect of curcumin in chronic colonic inflammation. Curcumin (50-100 mg/kg/day) were administered by oral gavage 24 h after trinitrobenzensulfonic acid (TNBS) instillation, and daily during 2 weeks before sacrifice. Curcumin significantly attenuated the damage and caused substantial reductions of the rise in MPO activity and tumour necrosis factor alpha (TNF)-alpha. Also curcumine was able to reduce nitrites colonic levels and induced down-regulation of COX-2 and iNOS expression, and a reduction in the activation of p38 MAPK; however, no changes in the activation of JNK could be observed. In conclusion, we suggest that inhibition of p38 MAPK signaling by curcumin could explain the reduced COX-2 and iNOS immunosignals and the nitrite production in colonic mucosa reducing the development of chronic experimental colitis. PMID:17276891

  12. l-glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced p38 MAPK Signal Transduction.

    Science.gov (United States)

    Girven, Matthew; Dugdale, Hannah F; Owens, Daniel J; Hughes, David C; Stewart, Claire E; Sharples, Adam P

    2016-12-01

    Tumour Necrosis Factor-Alpha (TNF-α) is chronically elevated in conditions where skeletal muscle loss occurs. As l-glutamine can dampen the effects of inflamed environments, we investigated the role of l-glutamine in both differentiating C2C12 myoblasts and existing myotubes in the absence/presence of TNF-α (20 ng · ml(-1) ) ± l-glutamine (20 mM). TNF-α reduced the proportion of cells in G1 phase, as well as biochemical (CK activity) and morphological differentiation (myotube number), with corresponding reductions in transcript expression of: Myogenin, Igf-I, and Igfbp5. Furthermore, when administered to mature myotubes, TNF-α induced myotube loss and atrophy underpinned by reductions in Myogenin, Igf-I, Igfbp2, and glutamine synthetase and parallel increases in Fox03, Cfos, p53, and Bid gene expression. Investigation of signaling activity suggested that Akt and ERK1/2 were unchanged, JNK increased (non-significantly) whereas P38 MAPK substantially and significantly increased in both myoblasts and myotubes in the presence of TNF-α. Importantly, 20 mM l-glutamine reduced p38 MAPK activity in TNF-α conditions back to control levels, with a corresponding rescue of myoblast differentiation and a reversal of atrophy in myotubes. l-glutamine resulted in upregulation of genes associated with growth and survival including; Myogenin, Igf-Ir, Myhc2 & 7, Tnfsfr1b, Adra1d, and restored atrophic gene expression of Fox03 back to baseline in TNF-α conditions. In conclusion, l-glutamine supplementation rescued suppressed muscle cell differentiation and prevented myotube atrophy in an inflamed environment via regulation of p38 MAPK. l-glutamine administration could represent an important therapeutic strategy for reducing muscle loss in catabolic diseases and inflamed ageing. J. Cell. Physiol. 9999: 231: 2720-2732, 2016. © 2016 Wiley Periodicals, Inc.

  13. Thymol has antifungal activity against Candida albicans during infection and maintains the innate immune response required for function of the p38 MAPK signaling pathway in Caenorhabditis elegans.

    Science.gov (United States)

    Shu, Chengjie; Sun, Lingmei; Zhang, Weiming

    2016-08-01

    The Caenorhabditis elegans model can be used to study Candida albicans virulence and host immunity, as well as to identify plant-derived natural products to use against C. albicans. Thymol is a hydrophobic phenol compound from the aromatic plant thyme. In this study, the in vitro data demonstrated concentration-dependent thymol inhibition of both C. albicans growth and biofilm formation during different developmental phases. With the aid of the C. elegans system, we performed in vivo assays, and our results further showed the ability of thymol to increase C. elegans life span during infection, inhibit C. albicans colony formation in the C. elegans intestine, and increase the expression levels of host antimicrobial genes. Moreover, among the genes that encode the p38 MAPK signaling pathway, mutation of the pmk-1 or sek-1 gene decreased the beneficial effects of thymol's antifungal activity against C. albicans and thymol's maintenance of the innate immune response in nematodes. Western blot data showed the level of phosphorylation of pmk-1 was dramatically decreased against C. albicans. In nematodes, treatment with thymol recovered the dysregulation of pmk-1 and sek-1 gene expressions, the phosphorylation level of PMK-1 caused by C. albicans infection. Therefore, thymol may act, at least in part, through the function of the p38 MAPK signaling pathway to protect against C. albicans infection and maintain the host innate immune response to C. albicans. Our results indicate that the p38 MAPK signaling pathway plays a crucial role in regulating the beneficial effects observed after nematodes infected with C. albicans were treated with thymol. PMID:26783030

  14. Stress-dependent phosphorylation of myocardin-related transcription factor A (MRTF-A) by the p38MAPK/MK2 axis

    Science.gov (United States)

    Ronkina, Natalia; Lafera, Juri; Kotlyarov, Alexey; Gaestel, Matthias

    2016-01-01

    Myocardin-related transcription factor A (MRTF-A) is a known actin-regulated transcriptional coactivator of serum response factor (SRF). Stimulation of actin polymerization activates MRTF-A by releasing it from G-actin and thus allowing it to bind to and activate SRF. Here, we compared protein phosphorylation in MK2/3-deficient cells rescued or not by ectopic expression of MK2 in two independent phosphoproteomic approaches using anisomycin-treated MEF cells and LPS-stimulated mouse macrophages, respectively. Two MRTF-A sites, Ser351 (corresponding to Ser312 in human) and Ser371 (Ser333 in human), showed significantly stronger phosphorylation (12-fold and 6-fold increase) in the cells expressing MK2. MRTF-A is phosphorylated at these sites in a stress-, but not in a mitogen-induced manner, and p38MAPK/MK2 catalytic activities are indispensable for this phosphorylation. MK2-mediated phosphorylation of MRTF-A at Ser312 and Ser333 was further confirmed in an in vitro kinase assay and using the phospho-protein kinase-D (PKD)-consensus motif antibody (anti-LXRXXpS/pT), the p38MAPK inhibitor BIRB-796, MK2/3-deficient cells and MRTF-A phospho-site mutants. Unexpectedly, dimerization, subcellular localization and translocation, interaction with actin, SRF or SMAD3 and transactivating potential of MRTF-A seem to be unaffected by manipulating the p38MAPK/MK2-dependent phosphorylations. Hence, MRTF-A is stress-dependently phosphorylated by MK2 at Ser312 and Ser333 with so far undetected functional and physiological consequences. PMID:27492266

  15. IL-1β activates p44/42 and p38 mitogen-activated protein kinases via different pathways in cat esophageal smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Tai Sang Lee; Hyun Ju Song; Ji Hoon Jeong; Young Sil Min; Chang Yell Shin; Uy Dong Sohn

    2006-01-01

    AIM: To examine the pathway related to the IL-1β-induced activation of mitogen-activated protein (MAP)kinases in cat esophageal smooth muscle cells.METHODS: Culture of the esophageal smooth muscle cells from cat was prepared. Specific inhibitors were treated before applying the IL-1β. Western blot analysis was performed to detect the expressions of COX, iNOS and MAP kinases.RESULTS: In the primary cultured cells, although IL-1βfailed to upregulate the COX and iNOS levels, the levels of the phosphorylated forms of p44/42 MAP kinase and p38 MAP klnase increased in both concentration- and time-dependent manner, of which the level of activation reached a maximum within 3 and 18 h, respectively.The pertussis toxin reduced the level of p44/42 MAP kinase phosphorylation. Tyrphostin 51 and genistein also inhibited this activation. Neomycin decreased the density of the p44/42 MAP kinase band to the basal level.Phosphokinase C (PKC) was found to play a mediating role in the IL-1β-induced p44/42 MAP kinase activity.In contrast, the activation of p38 MAP kinase was inhibited only by a pretreatment with forskolin, and was unaffected by the other compounds.CONCLUSION: Based on these results, IL-1β-Induced p44/42 MAP kinase activation is mediated by the Gi protein, tyrosine kinase, phospholipase C (PLC) and PKC. The pathway for p38 MAP kinase phosphorylation is different from that of p44/42 MAP kinase, suggesting that it plays a different role in the cellular response to IL-1β.

  16. Histamine activates p38 MAP kinase and alters local lamellipodia dynamics, reducing endothelial barrier integrity and eliciting central movement of actin fibers.

    Science.gov (United States)

    Adderley, Shaquria P; Lawrence, Curtis; Madonia, Eyong; Olubadewo, Joseph O; Breslin, Jerome W

    2015-07-01

    The role of the actin cytoskeleton in endothelial barrier function has been debated for nearly four decades. Our previous investigation revealed spontaneous local lamellipodia in confluent endothelial monolayers that appear to increase overlap at intercellular junctions. We tested the hypothesis that the barrier-disrupting agent histamine would reduce local lamellipodia protrusions and investigated the potential involvement of p38 mitogen-activated protein (MAP) kinase activation and actin stress fiber formation. Confluent monolayers of human umbilical vein endothelial cells (HUVEC) expressing green fluorescent protein-actin were studied using time-lapse fluorescence microscopy. The protrusion and withdrawal characteristics of local lamellipodia were assessed before and after addition of histamine. Changes in barrier function were determined using electrical cell-substrate impedance sensing. Histamine initially decreased barrier function, lamellipodia protrusion frequency, and lamellipodia protrusion distance. A longer time for lamellipodia withdrawal and reduced withdrawal distance and velocity accompanied barrier recovery. After barrier recovery, a significant number of cortical fibers migrated centrally, eventually resembling actin stress fibers. The p38 MAP kinase inhibitor SB203580 attenuated the histamine-induced decreases in barrier function and lamellipodia protrusion frequency. SB203580 also inhibited the histamine-induced decreases in withdrawal distance and velocity, and the subsequent actin fiber migration. These data suggest that histamine can reduce local lamellipodia protrusion activity through activation of p38 MAP kinase. The findings also suggest that local lamellipodia have a role in maintaining endothelial barrier integrity. Furthermore, we provide evidence that actin stress fiber formation may be a reaction to, rather than a cause of, reduced endothelial barrier integrity. PMID:25948734

  17. Involvement of ROS-p38-H2AX axis in novel curcumin analogues-induced apoptosis in breast cancer cells.

    Science.gov (United States)

    Dong, Yinhui; Yin, Shutao; Song, Xinhua; Huo, Yazhen; Fan, Lihong; Ye, Min; Hu, Hongbo

    2016-04-01

    Curcumin-based structural modification for developing more effective curcumin analogues has been drawning increasing attention. As alternative approach, using LC/MS guided purification, we previously obtained a series of novel natural terpene-conjugated curcuminoids from turmeric, and some of them exhibited even more potent anti-cancer activity against multiple types of cancer cells than curcumin. The purpose of this follow-up study was designed to decipher the mechanisms involved in anti-cancer activity of these novel curcumin analogues. Apoptosis was evaluated using sub-G1 analysis by flow cytometry and Cell Death ELISA Kit. Changes of protein expression were analyzed by western blotting. RNA interference was employed to inhibit expression of specific protein. We found that bisabolocurcumin ether (T1) and demethoxybisabolocurcumin ether (T2) were able to trigger much stronger apoptosis induction in multiple types of cancer cells than curcumin, which was attributed to persistent and stronger ROS generation. ROS induction by T1 resulted in activation of p38/H2AX axis and p53. Inhibition of p38/H2AX led to a significant reduction of apoptosis, whereas inactivation of p53 caused a dramatically enhanced H2AX phosphorylation and apoptosis induction, suggesting activation of p38/H2AX contributed to apoptosis induction by T1, whereas p53 activation protected novel curcumins-induced apoptosis via suppression of H2AX activation. Our findings provide mechanistic support for the potential use of terpene-conjugated curcuminoids as a novel class of cancer chemopreventive agents. © 2015 Wiley Periodicals, Inc.

  18. LPS-induced iNOS expression in N9 microglial cells is suppressed by geniposide via ERK, p38 and nuclear factor-κB signaling pathways.

    Science.gov (United States)

    Zhang, Gu; He, Jun-Lin; Xie, Xiao-Yan; Yu, Chao

    2012-09-01

    Activated microglia producing reactive nitrogen species, inflammatory factors, reactive oxygen species (ROS) and other neurovirulent factors, can lead to the development of neurodegenerative diseases. Certain compounds can inhibit the activation of microglia. However, the mechanisms remain unclear. In the present study, we investigated the inhibitory effect of geniposide on the production of ROS and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated N9 murine microglial cells through the p38, ERK1/2 and nuclear factor-κB (NF-κB) signaling pathways. After the N9 cells were pre-treated with the vehicle or geniposide and exposed to LPS for the time indicated, the MTT conversion test was used to assess cell viability. Suitable concentrations were chosen and adjusted according to the experiments. Extracellular nitric oxide (NO) release was measured by Griess reaction. The formation of ROS and intracellular NO was evaluated by fluorescence imaging. NOS activities were determined using commercially available kits. The morphology of the N9 cells was examined by hematoxylin and eosin staining. The expression of iNOS mRNA was examined by RT-PCR. The protein levels of iNOS, p38 mitogen-activated protein kinase (MAPK), ERK1/2 and NF-κB, inhibitory factor-κB-α (IκB-α) were determined by western blot analysis. The results showed that geniposide attenuated the activation of N9 cells and inhibited the overproduction of NO, intracellular ROS and the expression of iNOS induced by LPS in the cells. In addition, geniposide blocked the phosphorylation of p38, ERK1/2 and inhibited the drop-off of IκB induced by LPS in the cells. These data indicate that geniposide has therapeutic potential for the treatment of neurodegenerative diseases, and that it exerts its effects by inhibiting inflammation. PMID:22710392

  19. l-glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNF-α) Stress Via Reduced p38 MAPK Signal Transduction.

    Science.gov (United States)

    Girven, Matthew; Dugdale, Hannah F; Owens, Daniel J; Hughes, David C; Stewart, Claire E; Sharples, Adam P

    2016-12-01

    Tumour Necrosis Factor-Alpha (TNF-α) is chronically elevated in conditions where skeletal muscle loss occurs. As l-glutamine can dampen the effects of inflamed environments, we investigated the role of l-glutamine in both differentiating C2C12 myoblasts and existing myotubes in the absence/presence of TNF-α (20 ng · ml(-1) ) ± l-glutamine (20 mM). TNF-α reduced the proportion of cells in G1 phase, as well as biochemical (CK activity) and morphological differentiation (myotube number), with corresponding reductions in transcript expression of: Myogenin, Igf-I, and Igfbp5. Furthermore, when administered to mature myotubes, TNF-α induced myotube loss and atrophy underpinned by reductions in Myogenin, Igf-I, Igfbp2, and glutamine synthetase and parallel increases in Fox03, Cfos, p53, and Bid gene expression. Investigation of signaling activity suggested that Akt and ERK1/2 were unchanged, JNK increased (non-significantly) whereas P38 MAPK substantially and significantly increased in both myoblasts and myotubes in the presence of TNF-α. Importantly, 20 mM l-glutamine reduced p38 MAPK activity in TNF-α conditions back to control levels, with a corresponding rescue of myoblast differentiation and a reversal of atrophy in myotubes. l-glutamine resulted in upregulation of genes associated with growth and survival including; Myogenin, Igf-Ir, Myhc2 & 7, Tnfsfr1b, Adra1d, and restored atrophic gene expression of Fox03 back to baseline in TNF-α conditions. In conclusion, l-glutamine supplementation rescued suppressed muscle cell differentiation and prevented myotube atrophy in an inflamed environment via regulation of p38 MAPK. l-glutamine administration could represent an important therapeutic strategy for reducing muscle loss in catabolic diseases and inflamed ageing. J. Cell. Physiol. 9999: 231: 2720-2732, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991744

  20. Microtubular stability affects pVHL-mediated regulation of HIF-1alpha via the p38/MAPK pathway in hypoxic cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Miao Teng

    Full Text Available BACKGROUND: Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL, as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α. METHODOLOGY/PRINCIPAL FINDINGS: In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4 overexpression plasmids and microtubule-depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells. CONCLUSIONS/SIGNIFICANCE: This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes.

  1. FJU-C4, a new 2-pyridone compound, attenuates lipopolysaccharide-induced systemic inflammation via p38MAPK and NF-κB in mice.

    Directory of Open Access Journals (Sweden)

    Jung-Sen Liu

    Full Text Available Despite advances in antibiotic therapy and intensive care, the mortality caused by systemic inflammatory response syndrome and severe sepsis remains high. The use of anti-inflammatory agents to attenuate inflammatory response during acute systemic inflammatory reactions may improve survival rates. Here we show that a newly synthesized 2-pyridone compound (FJU-C4 can suppress the expression of late inflammatory mediators such as iNOS and COX-2 in murine macrophages. The pro-inflammatory cytokines, including TNFα, IL-1β, and IL-6, were dose-dependently suppressed by FJU-C4 both in mRNA and protein levels. In addition, the expression of TNFα was inhibited from as early as 2 hours after exposure to LPS stimulation. The production of mature pro-inflammatory cytokines was also suppressed by pretreatment with FJU-C4 in either cell culture medium or mice serum when stimulated by LPS. FJU-C4 prolongs mouse survival and prevents mouse death from LPS-induced systemic inflammation when the dose of FJU-C4 is over 5 mg/kg. The activities of ERK, JNK, and p38MAPK were induced by LPS stimulation on murine macrophage cell line, but only p38MAPK signaling was dramatically suppressed by pretreatment with the FJU-C4 compound in a dose-dependent manner. NF-κB activation also was suppressed by FJU-C4 compound. These findings suggest that the FJU-C4 compound may act as a promising therapeutic agent against inflammatory diseases by inhibiting the p38MAPK and NF-κB signaling pathway.

  2. Resveratrol inhibits hyperglycemia-driven ROS-induced invasion and migration of pancreatic cancer cells via suppression of the ERK and p38 MAPK signaling pathways.

    Science.gov (United States)

    Cao, Lei; Chen, Xin; Xiao, Xue; Ma, Qingyong; Li, Wei

    2016-08-01

    Increasing evidence suggests that there is a strong relationship between diabetes mellitus (DM) and pancreatic cancer. Our previous study revealed that hyperglycemia could enhance the invasive and migratory activities of pancreatic cancer cells. Resveratrol, a natural polyphenolic phytoalexin, has many biological and pharmaceutical properties, including antioxidant and anti-tumorigenic capabilities. The aim of the present study was to evaluate whether resveratrol affects hyperglycemia-induced reactive oxygen species (ROS) production as well as the invasion and migration of pancreatic cancer and its underlying mechanisms. Human pancreatic cancer Panc-1 cells were exposed to high glucose condition with or without resveratrol, N-acetylcysteine (NAC, a scavenger of free radicals), PD 98059 (an ERK inhibitor) or SB 203580 (a p38 MAPK inhibitor). The intracellular ROS and hydrogen peroxide (H2O2) were determined using 2,7-dichlorodihydrofluorecein diacetate and H2O2 assay. MTT, wound healing assay and transwell matrigel invasion assay were used to detect the proliferation, migration and invasion potential of cancer cells. The expressions of uPA, E-cadherin and Glut-1 were examined using QT-PCR and western blot analysis at mRNA and protein levels. The activation of p-ERK, p-p38 and p-NF-κB were measured by western blot analysis. The results of the present study showed that resveratrol could significantly decrease high glucose-induced production of ROS and H2O2 in Panc-1 cells. Resveratrol was also able to inhibit high glucose-induced proliferation, migration and invasion of pancreatic cancer cells. High glucose-modulated expression of uPA, E-cadherin and Glut-1 were inhibited by resveratrol. In addition, high glucose-induced activation of ERK and p38 MAPK signaling pathways as well as the transcription factor NF-κB could also be suppressed by resveratrol. Furthermore, resveratrol was able to suppress H2O2-induced migration and invasion abilities of pancreatic cancer

  3. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: Probable role of p38MAPK and p53

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Rehan; Khan, Abdul Quaiyoom; Qamar, Wajhul; Lateef, Abdul; Tahir, Mir; Rehman, Muneeb U; Ali, Farrah; Sultana, Sarwat, E-mail: sarwat786@rediffmail.com

    2012-02-01

    Cisplatin, an antineoplastic drug, is widely used as a foremost therapy against numerous forms of cancer but it has pronounced adverse effects viz., nephrotoxicity, ototoxicity etc. CDDP-induced emesis and diarrhea are also marked toxicities that may be due to intestinal injury. Chrysin (5,7-dihydroxyflavone), a natural flavone commonly found in many plants possesses multiple biological activities, such as antioxidant, anti-inflammatory and anti-cancer effects. In the present study, we investigated the protective effect of chrysin against CDDP-induced colon toxicity. The plausible mechanism of CDDP-induced colon toxicity and damage includes oxidative stress, activation of p38MAPK and p53, and colonic epithelial cell apoptosis via upregulating the expression of Bak and cleaved caspase-3. Chrysin was administered to Wistar rats once daily for 14 consecutive days at the doses of 25 and 50 mg/kg body weight orally in corn oil. On day 14, a single intraperitoneal injection of cisplatin was given at the dose of 7.5 mg/kg body weight and animals were euthanized after 24 h of cisplatin injection. Chrysin ameliorated CDDP-induced lipid peroxidation, xanthine oxidase activity, glutathione depletion, decrease in antioxidant (catalase, glutathione reductase, glutathione peroxidase and glucose-6 phosphate dehydrogenase) and phase-II detoxifying (glutathione-S-transferase and quinone reductase) enzyme activities. Chrysin also attenuated goblet cell disintegration, expression of phospho-p38MAPK and p53, and apoptotic tissue damage which were induced by CDDP. Histological findings further supported the protective effects of chrysin against CDDP-induced colonic damage. The results of the present study suggest that the protective effect of chrysin against CDDP-induced colon toxicity was related with attenuation of oxidative stress, activation of p38MAPK and p53, and apoptotic tissue damage. Highlights: ► Cisplatin-induced colon toxicity is associated with oxidative stress and

  4. Ang Ⅱ type 1 receptor expression in rat aorta exposed to chronic intermittent hypoxia: effects of p38MAPK and ERK1/2 signaling

    Institute of Scientific and Technical Information of China (English)

    SHANG Jin; YANG Yuan-yuan; GUO Xue-ling; LIU Hui-guo

    2013-01-01

    Background Obstructive sleep apnea is a frequent medical condition consisting of repetitive sleep-related episodes of upper air ways obstruction and can lead to hypertension.Ang Ⅱ type 1 receptor (AT1R) played important roles in hypertension since it binds with Ang Ⅱ,controlling salt-water and blood pressure homeostasis.This study explores rat aorta AT1R expression during intermittent hypoxia (IH) and the signaling pathways involved.Methods A rat model and a cell model used a BioSpherix-OxyCycler A84 system and a ProOx C21 system respectively.The arterial blood pressure was recorded by a Nihon Kohden Polygraph System.Immunohistochemic was used to focus and analyze the expression of AT1R in rat aorta.Real-time PCR and Western blotting were used to explore the signaling pathways that participated in AT1R expression.Results In this study,we found that chronic intermittent hypoxia (CIH) induced AT1R transcription which increased the blood pressure in rat aorta compared to normoxia and to sustained hypoxia.The AT1R protein expression in the aorta was similar to the real-time PCR results.We explored the signaling mechanisms involved in the AT1R induction in both rat aorta and the aortic endothelial cells by real-time PCR and Western blotting.Compared to normoxia,CIH increased ERK1 mRNA transcription but not ERK2 or p38MAPK in the aorta; whereas sustained hypoxia (SH) upregulated ERK2 but not ERK1 or p38MAPK mRNA.In cells,IH induced AT1R expression with ERK1/2 phosphorylation but reduced p38MAPKs phosphorylation,whereas SH induced only ERK1/2 phosphorylation.The ERK1/2 inhibitor PD98059 attenuated the IHinduced AT1R increase but the p38MAPK inhibitor SB203580 did not.Conclusions Our results indicate that CIH induced the elevation of rat blood pressure and aorta AT1R expression.Moreover,AT1R expression in IH and sustained hypoxia might be regulated by different signal transduction pathways,highlighting a novel regulatory function through ERK1/2 signaling in IH.

  5. Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy.

    Science.gov (United States)

    Sopontammarak, Somkiat; Aliharoob, Assad; Ocampo, Catherina; Arcilla, Rene A; Gupta, Mahesh P; Gupta, Madhu

    2005-01-01

    Chronic pressure overload (PO) and volume overload (VO) result in morphologically and functionally distinct forms of myocardial hypertrophy. However, the molecular mechanism initiating these two types of hypertrophy is not yet understood. Data obtained from different cell types have indicated that the mitogen-activated protein kinases (MAPKs) comprising c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 play an important role in transmitting signals of stress stimuli to elicit the cellular response. We tested the hypothesis that early induction of MAPKs differs in two types of overload on the heart and associates with distinct expression of hypertrophic marker genes, namely ANF, alpha-myosin heavy chain (alpha-MHC), and beta-MHC. In rats, VO was induced by aortocaval shunt and PO by constriction of the abdominal aorta. The PO animals were further divided into two groups depending on the severity of the constriction, mild (MPO) and severe pressure overload (SPO), having 35 and 85% aortic constriction, respectively. Early changes in MAPK activity (2-120 min and 1 to 2 d) were analyzed by the in vitro kinase assay using kinase-specific antibodies for p38, JNK, and ERK2. The change in expression of hypertrophy marker genes was examined by Northern blot analysis. In VO hypertrophy, the activity of p38 was markedly increased (10-fold), without changing the activity of ERK and JNK. However, during PO hypertrophy, the activity of JNK was significantly increased (two- to sixfold) and depended on the severity of the load. The activity of p38 was not changed in MPO hypertrophy, whereas it was slightly elevated (50%) in hearts with SPO. Similarly, ERK activity was not changed in hearts with MPO, but a transient rise in activity was observed in hearts with SPO. The expression of ANF and beta-MHC genes was elevated in both PO and VO hypertrophy; however, this change was much greater in hearts subjected to PO than VO hypertrophy. Alpha

  6. Aconitine-induced Ca{sup 2+} overload causes arrhythmia and triggers apoptosis through p38 MAPK signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gui-bo; Sun, Hong; Meng, Xiang-bao [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Hu, Jin; Zhang, Qiang; Liu, Bo [Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin 130021 (China); Wang, Min [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Xu, Hui-bo, E-mail: xhb_6505@163.com [Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin 130021 (China); Sun, Xiao-bo, E-mail: sun_xiaobo163@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China)

    2014-08-15

    Aconitine is a major bioactive diterpenoid alkaloid with high content derived from herbal aconitum plants. Emerging evidence indicates that voltage-dependent Na{sup +} channels have pivotal roles in the cardiotoxicity of aconitine. However, no reports are available on the role of Ca{sup 2+} in aconitine poisoning. In this study, we explored the importance of pathological Ca{sup 2+} signaling in aconitine poisoning in vitro and in vivo. We found that Ca{sup 2+} overload lead to accelerated beating rhythm in adult rat ventricular myocytes and caused arrhythmia in conscious freely moving rats. To investigate effects of aconitine on myocardial injury, we performed cytotoxicity assay in neonatal rat ventricular myocytes (NRVMs), as well as measured lactate dehydrogenase level in the culture medium of NRVMs and activities of serum cardiac enzymes in rats. The results showed that aconitine resulted in myocardial injury and reduced NRVMs viability dose-dependently. To confirm the pro-apoptotic effects, we performed flow cytometric detection, cardiac histology, transmission electron microscopy and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. The results showed that aconitine stimulated apoptosis time-dependently. The expression analysis of Ca{sup 2+} handling proteins demonstrated that aconitine promoted Ca{sup 2+} overload through the expression regulation of Ca{sup 2+} handling proteins. The expression analysis of apoptosis-related proteins revealed that pro-apoptotic protein expression was upregulated, and anti-apoptotic protein BCL-2 expression was downregulated. Furthermore, increased phosphorylation of MAPK family members, especially the P-P38/P38 ratio was found in cardiac tissues. Hence, our results suggest that aconitine significantly aggravates Ca{sup 2+} overload and causes arrhythmia and finally promotes apoptotic development via phosphorylation of P38 mitogen-activated protein kinase. - Highlights: • Aconitine-induced Ca

  7. Cyclic stretch enhances the expression of Toll-like Receptor 4 gene in cultured cardiomyocytes via p38 MAP kinase and NF-κB pathway

    Directory of Open Access Journals (Sweden)

    Wang Bao-Wei

    2010-03-01

    Full Text Available Abstract Background Toll-like receptor 4 (TLR4 plays an important role in innate immunity. The role of TLR4 in stretched cardiomyocytes is not known. We sought to investigate whether mechanical stretch could regulate TLR4 expression, as well as the possible molecular mechanisms and signal pathways mediating the expression of TLR4 by cyclic mechanical stretch in cardiomyocytes. Methods Neonatal Wistar rat cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation at 60 cycles/min. Western blot, real-time polymerase chain reaction, and promoter activity assay were performed. In vitro monocyte adhesion to stretched myocyte was detected. Results Cyclic stretch significantly increased TLR4 protein and mRNA expression after 2 h to 24 h of stretch. Addition of SB203580, TNF-α antibody, and p38α MAP kinase siRNA 30 min before stretch inhibited the induction of TLR4 protein. Cyclic stretch increased, while SB203580 abolished the phosphorylated p38 protein. Gel shifting assay showed significant increase of DNA-protein binding activity of NF-κB after stretch and SB203580 abolished the DNA-protein binding activity induced by cyclic stretch. DNA-binding complexes induced by cyclic stretch could be supershifted by p65 monoclonal antibody. Cyclic stretch increased TLR4 promoter activity while SB203580 and NF-κB siRNA decreased TLR4 promoter activity. Cyclic stretch increased adhesion of monocyte to cardiomyocytes while SB203580, TNF-α antibody, and TLR4 siRNA attenuated the adherence of monocyte. TNF-α and Ang II significantly increased TLR4 protein expression. Addition of losartan, TNF-α antibody, or p38α siRNA 30 min before Ang II and TNF-α stimulation significantly blocked the increase of TLR4 protein by AngII and TNF-α. Conclusions Cyclic mechanical stretch enhances TLR4 expression in cultured rat neonatal cardiomyocytes. The stretch-induced TLR4 is mediated through activation of p38 MAP kinase and NF

  8. HIV-1 Tat activates indoleamine 2,3 dioxygenase in murine organotypic hippocampal slice cultures in a p38 mitogen-activated protein kinase-dependent manner

    Directory of Open Access Journals (Sweden)

    Kelley Keith W

    2011-08-01

    Full Text Available Abstract Background We have established that activation of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO mediates the switch from cytokine-induced sickness behavior to depressive-like behavior. Because human immunodeficiency virus type 1 (HIV-1 Tat protein causes depressive-like behavior in mice, we investigated its ability to activate IDO in organotypic hippocampal slice cultures (OHSCs derived from neonatal C57BL/6 mice. Methods Depressive-like behavior in C57BL/6J mice was assessed by the forced swim test. Expression of cytokines and IDO mRNA in OHSCs was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs. p38 MAPK phosphorylation was analyzed by western blot. Results Intracerebroventricular (i.c.v. administration of Tat (40 ng induced depressive-like behavior in the absence of sickness. Addition of Tat (40 ng/slice to the medium of OHSCs induced IDO steady-state mRNA that peaked at 6 h. This effect was potentiated by pretreatment with IFNγ. Tat also induced the synthesis and release of TNFα and IL-6 protein in the supernatant of the slices and increased expression of the inducible isoform of nitric oxide synthase (iNOS and the serotonin transporter (SERT. Tat had no effect on endogenous synthesis of IFNγ. To explore the mechanisms of Tat-induced IDO expression, slices were pretreated with the p38 mitogen-activated protein kinase (MAPK inhibitor SB 202190 for 30 min before Tat treatment. SB 202190 significantly decreased IDO expression induced by Tat, and this effect was accompanied by a reduction of Tat-induced expression of TNFα, IL-6, iNOS and SERT. Conclusion These data establish that Tat induces IDO expression via an IFNγ-independent mechanism that depends upon activation of p38 MAPK. Targeting IDO itself or the p38 MAPK signaling pathway could provide a novel therapy for comorbid depressive disorders in HIV-1-infected patients.

  9. Effect of Helicobacter pylori on NFKB1, p38α and TNF-α mRNA expression levels in human gastric mucosa

    OpenAIRE

    SULZBACH DE OLIVEIRA, HENRIQUE SULZBACH; BIOLCHI, VANDERLEI; RICHARDT MEDEIROS, HELOUISE RICHARDT; BIZERRA GANDOR JANTSCH, DAIANE BIZERRA GANDOR; KNABBEN DE OLIVEIRA BECKER DELVING, LUCIANA KNABBEN; RECKZIEGEL, ROBERTO; GOETTERT, MÁRCIA INÊS; BRUM, ILMA SIMONI; Pozzobon, Adriane

    2016-01-01

    Helicobacter pylori infects ~50% of the world population, causing chronic gastritis and other forms of cellular damage. The present study assessed the influence of H. pylori on the mRNA expression levels of nuclear factor-κB1 (NFKB1), p38α and tumor necrosis factor-α (TNF-α) in human gastric mucosa in a southern Brazilian population. Human gastric tissue was collected by upper endoscopy and H. pylori diagnosis was performed using a rapid urease test and histological analysis. Total RNA was ex...

  10. Deregulated E2F5/p38/SMAD3 Circuitry Reinforces the Pro-Tumorigenic Switch of TGFβ Signaling in Prostate Cancer.

    Science.gov (United States)

    Majumder, Subhadipa; Bhowal, Ankur; Basu, Sanmitra; Mukherjee, Pritha; Chatterji, Urmi; Sengupta, Sanghamitra

    2016-11-01

    Transforming growth factor-β signaling exerts divergent effects on normal and cancer cells, although mechanism underlying this differential behavior remains unclear. In this study, expression of 94 genes pertaining to the TGF-β signaling pathway was compared between tumor and benign tissue samples from the human prostate gland to identify major discriminators driving prostate carcinogenesis. E2F5 was identified as one of the most deregulated genes in prostate cancer tissues, predominantly in samples with Gleason-score 6. Expression of other deregulated components of TGF-β signaling was examined by qRT-PCR, Western blot, and immune-staining. Function of E2F5 and p38 in prostate cancer was investigated using siRNA-treatment of PC3 cell-line followed by analyses of associated components and cell cycle. Observations revealed that E2F5 overexpression was accompanied by significantly higher phosphorylation of SMAD3 at Ser-208 in the linker region (pSMAD3L) and p38 in tumor tissue. A striking difference in SMAD3 phosphorylation, marked by preponderance of pSMAD3L and pSMAD3C (Ser-423 and 425) in tumor and benign tissues, respectively was noted. Co-localization of E2F5 with pSMAD3L in the nuclei of tumor and PC3 cells indicated a functional interface between the proteins. Downregulation of E2F5 and p38 in PC3 cells resulted in marked reduction of phosphorylation of SMAD3 and perturbation of cell cycle with an arrest of cells in G1 . Our findings unearthed that E2F5/p38 axis played a cardinal role in uncontrolled cellular proliferation in prostate cancer through pSMAD3L activation. It also underscores a strong potential for E2F5 to be incorporated as a tool in early detection of prostate cancer. J. Cell. Physiol. 231: 2482-2492, 2016. © 2016 Wiley Periodicals, Inc. PMID:26919443

  11. Differential Activation of Mitogen-Activated Protein Kinases, ERK 1/2, p38(MAPK) and JNK p54/p46 During Postnatal Development of Rat Hippocampus.

    Science.gov (United States)

    Costa, Ana Paula; Lopes, Mark William; Rieger, Débora K; Barbosa, Sabrina Giovana Rocha; Gonçalves, Filipe Marques; Xikota, João Carlos; Walz, Roger; Leal, Rodrigo B

    2016-05-01

    Mitogen-activated protein kinases (MAPKs) are a group of serine-threonine kinases, including p38(MAPK), ERK 1/2 and JNK p54/p46, activated by phosphorylation in response to extracellular stimuli. The early postnatal period is characterized by significant changes in brain structure as well as intracellular signaling. In the hippocampus MAPKs have been involved in the modulation of development and neural plasticity. However, the temporal profile of MAPK activation throughout the early postnatal development is incomplete. An understanding of this profile is important since slight changes in the activity of these enzymes, in response to environmental stress in specific developmental windows, might alter the course of development. The present study was undertaken to investigate the hippocampal differential activation of MAPK during postnatal period. MAPK activation and total content were evaluated by Western blotting of hippocampal tissue obtained from male Wistar rats at postnatal days (P) 1, 4, 7, 10, 14, 21, 30 and 60. The total content and phosphorylation of each MAPK was expressed as mean ± SEM and then calculates as a percentile compared to P1 (set at 100 %). The results showed: (1) phosphorylation peaks of p38(MAPK) at PN4 (p = 0.036) and PN10 to PN60; (2) phosphorylation of ERK1 and ERK2 were increased with age (ERK1 p = 0.0000005 and ERK2 p = 0.003); (3) phosphorylation profile of JNK p54/p46 was not changed during the period analyzed (JNKp56 p = 0.716 and JNKp46 p = 0.192). Therefore, the activity profile of ERK 1/2 and p38(MAPK) during postnatal development of rat hippocampus are differentially regulated. Our results demonstrate that ERK 1/2 and p38(MAPK) are dynamically regulated during postnatal neurodevelopment, suggesting temporal correlation of MAPK activity with critical periods when programmed cell death and synaptogenesis are occurring. This suggests an important role for these MAPKs in postnatal development of rat hippocampus.

  12. miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells

    DEFF Research Database (Denmark)

    Rasmussen, Mads Heilskov; Lyskjær, Iben; Jersie-Christensen, Rosa Rakownikow;

    2016-01-01

    Oxaliplatin resistance in colorectal cancers (CRC) is a major medical problem, and predictive markers are urgently needed. Recently, miR-625-3p was reported as a promising predictive marker. Herein, we show that miR-625-3p functionally induces oxaliplatin resistance in CRC cells, and identify the...... as one likely mechanism of oxaliplatin resistance. Our study shows that miR-625-3p induces oxaliplatin resistance by abrogating MAP2K6-p38-regulated apoptosis and cell cycle control networks, and corroborates the predictive power of miR-625-3p....

  13. Rapid activation of p38 mitogen-activated protein kinase by corticosterone in PC12 cells%皮质酮快速激活PC12细胞中p38丝列原激活的蛋白激酶

    Institute of Scientific and Technical Information of China (English)

    李晓煜; 邱俭; 肖林; 朱剑琴; 陈宜张

    2001-01-01

    The present study using immunoblot showed that corticosterone (B) could induce a rapid activation of p38 in PC12 cells. The dose- and time-response curves were bell-shaped with a maximal activation at 10-9 mol/L and 15 min respectively. The activation was not affected by steroid nuclear receptor antagonist RU38486. Bovine serum albumin coupled B (B-BSA) could induce phosphorylation of p38. Tyrosine kinase inhibitor genistein failed to block the phosphorylation, a fact suggesting that the tyrosine kinase activity is not involved in the pathway. On the other hand, phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, could mimic the actions of B, while G6976, a PKC inhibitor, could completely abolish the phosphorylation induced by B. These results clearly demonstrate that B activates p38 MAPK readily via a putative membrane receptor through a PKC-dependent pathway.%实验旨在研究糖皮质激素快速、非基因组作用的细胞内信号传导机制.Western分析研究结果表明, 皮质酮可快速激活PC12细胞中p38丝列原激活的蛋白激酶(mitogen-activated protein kinase, MAPK), 时间、浓度曲线均为钟形, 最大激活为10-9 mol/L 和15 min.糖皮质激素受体阻断剂RU38486不能阻断此作用, 而小牛血清白蛋白耦联的皮质酮也能快速激活p38.受体酪氨酸激酶阻断剂genistein 对此作用无影响, 表明此快速作用不涉及受体酪氨酸激酶活性.此作用能被蛋白激酶C (protein kinase C, PKC)激动剂PMA模拟, 而被PKC阻断剂G6976所阻断.结果表明, 皮质酮可能通过推测的膜受体以PKC依赖的方式快速激活p38 MAPK.

  14. α-硫辛酸对电点燃致痫大鼠行为学及海马p38MAPK表达的影响%The effect of α-lipoic acid on the expression of p38MAPK in Hippocampus and behavior of amygdala electrical kindling seizures in rats

    Institute of Scientific and Technical Information of China (English)

    房海波; 王维平; 王洪超; 臧红敏; 甄军丽; 马彩云; 王伟

    2014-01-01

    目的 探讨α-硫辛酸(α-LA)对电点燃致痫大鼠行为及海马p38MAPK表达的影响.方法 将雄性Wistar大鼠随机分为正常对照组、α-LA组、假手术组、ES组、电低d-LA组、电高α-LA组.检测点燃前、后发放阈值(ADT)及达到每个发作等级所需的累积刺激数和累积后发放持续时间(ADD),应用Western blot检测海马p38MAPK及p-p38MAPK表达水平,碘化丙啶(PI)染色检测海马神经元凋亡率.结果 与ES组相比:电高α-LA组达到第一次Ⅴ级发作所需的累积电刺激数明显增多(P<0.05)、点燃后ADT明显增高(P<0.05);电低α-LA组和电高α-LA组海马p-p38MAPK表达水平和神经元凋亡率明显降低(P<0.05)、达到第一次Ⅴ级发作所需的累积ADD明显缩短(P<0.05).各组点燃后ADT较点燃前均明显降低(P<0.05).结论 癫痫可导致海马组织中p-p38 MAPK表达上调、神经元凋亡率明显增加;α-LA能够有效降低癫痫发作等级、缩短ADD、下调p-p38MAPK表达水平并降低神经元凋亡率,从而推测α-LA可通过抗凋亡途径来发挥神经保护作用.

  15. The Effects of Xiangqing Anodyne Spray on Treating Acute Soft-Tissue Injury Mainly Depend on Suppressing Activations of AKT and p38 Pathways

    Directory of Open Access Journals (Sweden)

    Shudong Wang

    2016-01-01

    Full Text Available Objectives. In the present study we try to elucidate the mechanism of Xiangqing anodyne spray (XQAS effects on acute soft-tissue injury (STI. Methods. Acute STI model was established by hammer blow in the rat hind leg muscle. Within 8 hours, instantly after modeling and per 2-hour interval repeated topical applications with or without XQAS, CP or IH ethanol extracts spray (CPS and IHS were performed, respectively; muscle swelling rate and inflammation-related biochemical parameters, muscle histological observation, and mRNA and protein expression were then examined. Results. XQAS dose-dependently suppressed STI-caused muscle swelling, proinflammatory mediator productions, and oxidative stress as well as severe pathological changes in the injured muscle tissue. Moreover, CPS mainly by blocking p38 activation while IHS majorly by blocking AKT activation led to cytoplastic IκBα degradation with NF-κB p65 translocated into the nucleus. There are synergistic effects between CP and IH components in the XQAS on preventing from acute STI with suppressing IκBα degradation, NF-κB p65 translocation, and subsequent inflammation and oxidative stress-related abnormality. Conclusion. Marked effects of XQAS on treating acute STI are ascribed to strong anti-inflammatory and antioxidative actions with a reasonable combination of CP active components, blocking p38-NF-κB pathway activated, and IH active components, blocking AKT-NF-κB pathway activated.

  16. SOCS3 Expression Correlates with Severity of Inflammation, Expression of Proinflammatory Cytokines, and Activation of STAT3 and p38 MAPK in LPS-Induced Inflammation In Vivo

    Directory of Open Access Journals (Sweden)

    João Antônio Chaves de Souza

    2013-01-01

    Full Text Available SOCS3 is an inducible endogenous negative regulator of JAK/STAT pathway, which is relevant in inflammatory conditions. We used a model of LPS-induced periodontal disease in rats to correlate SOCS3 expression with the inflammatory status. In vitro we used a murine macrophage cell line to assess the physical interaction between SOCS3 and STAT3 by coimmunoprecipitation. 30 ug of LPS from Escherichia coli were injected in the gingival tissues on the palatal aspect of first molars of the animals 3x/week for up to 4 weeks. Control animals were injected with the vehicle (PBS. The rats were sacrificed at 7, 15, and 30 days. Inflammation and gene expression were assessed by stereometric analysis, immunohistochemistry, RT-qPCR, and western blot. LPS injections increased inflammation, paralleled by an upregulation of SOCS3, of the proinflammatory cytokines IL-1β, IL-6, and TNF-α and increased phosphorylation of STAT3 and p38 MAPK. SOCS3 expression accompanied the severity of inflammation and the expression of proinflammatory cytokines, as well as the activation status of STAT3 and p38 MAPK. LPS stimulation in a macrophage cell line in vitro induced transient STAT3 activation, which was inversely correlated with a dynamic physical interaction with SOCS3, suggesting that this may be a mechanism for SOCS3 regulatory function.

  17. Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Ling Ye; Tian-Qian Hui; Dong-Mei Yang; Ding-Ming Huang; Xue-Dong Zhou; Jeremy J Mao; Cheng-Lin Wang

    2015-01-01

    Both bone morphogenetic protein 2 (BMP2) and the wingless-type MMTV integration site (WNT)/b-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis. Cross-talk between BMP2 and WNT/b-catenin in osteoblast differentiation and bone formation has been identified. However, the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown. Here, we demonstrate that BMP2 promotes the differentiation of human dental pulp cells (HDPCs) by activating WNT/b-catenin signalling, which is further mediated by p38 mitogen-activated protein kinase (MAPK) in vitro. BMP2 stimulation upregulated the expression of b-catenin in HDPCs, which was abolished by SB203580 but not by Noggin or LDN193189. Furthermore, BMP2 enhanced cell differentiation, which was not fully inhibited by Noggin or LDN193189. Instead, SB203580 partially blocked BMP2-induced b-catenin expression and cell differentiation. Taken together, these data suggest a possible mechanism by which the elevation of b-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway, which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation.

  18. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Serena A D'Souza

    2016-04-01

    Full Text Available The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle's plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.

  19. Anti-Food Allergic Activity of Sulfated Polysaccharide from Gracilaria lemaneiformis is Dependent on Immunosuppression and Inhibition of p38 MAPK.

    Science.gov (United States)

    Liu, Qing-Mei; Yang, Yang; Maleki, Soheila J; Alcocer, Marcos; Xu, Sha-Sha; Shi, Chao-Lan; Cao, Min-Jie; Liu, Guang-Ming

    2016-06-01

    Polysaccharides from Gracilaria lemaneiformis in particular possess various bioactive functions, but their antiallergic activity remains incompletely defined. Sulfated polysaccharide from Gracilaria lemaneiformis (GLSP) was obtained by water extraction and ethanol precipitation followed by column chromatography. BALB/c mice, RBL-2H3, and KU812 cells were used for verifying the anti food allergic activity of GLSP. According to the results of mice experiment, GLSP was able to alleviate allergy symptoms, to reduce TM-specific IgE and IgG1, to suppress Th2 cell polarization, and to promote the function of regulatory T (Treg) cells. In addition, GLSP had the ability to inhibit the function of RBL-2H3 cells. Furthermore, GLSP inhibited the activation of KU812 via suppression of p38 mitogen-activated protein kinase (MAPK). In conclusion, immunosuppression as well as the reduction in the level of p38 MAPK may contribute to GLSP's putative activity against food allergy. GLSP may be used as a functional food component for allergic patients.

  20. Antimelanogenic effect of c-phycocyanin through modulation of tyrosinase expression by upregulation of ERK and downregulation of p38 MAPK signaling pathways

    Directory of Open Access Journals (Sweden)

    Weng Yu-Ting

    2011-10-01

    Full Text Available Abstract Background Pigmentation is one of the essential defense mechanisms against oxidative stress or UV irradiation; however, abnormal hyperpigmentation in human skin may pose a serious aesthetic problem. C-phycocyanin (Cpc is a phycobiliprotein from spirulina and functions as an antioxidant and a light harvesting protein. Though it is known that spirulina has been used to reduce hyperpigmentation, little literature addresses the antimelanogenic mechanism of Cpc. Herein, we investigated the rationale for the Cpc-induced inhibitory mechanism on melanin synthesis in B16F10 melanoma cells. Methods Cpc-induced inhibitory effects on melanin synthesis and tyrosinase expression were evaluated. The activity of MAPK pathways-associated molecules such as MAPK/ERK and p38 MAPK, were also examined to explore Cpc-induced antimelanogenic mechanisms. Additionally, the intracellular localization of Cpc was investigated by confocal microscopic analysis to observe the migration of Cpc. Results Cpc significantly (P Conclusions Cpc exerted dual antimelanogenic mechanisms by upregulation of MAPK/ERK-dependent degradation of MITF and downregulation of p38 MAPK-regulated CREB activation to modulate melanin formation. Cpc may have potential applications in biomedicine, food, and cosmetic industries.

  1. cAMP elevators inhibit LPS-induced IL-12 p40 expression by interfering with phosphorylation of p38 MAPK in Murine Peritoneal Macrophages

    Institute of Scientific and Technical Information of China (English)

    WEI; GUO; FENG; YI; BING; WANG; JIN; SONG; ZHANG; XING; YU; WANG; CHANG; LIN; LI; ZONG; LIANG; CHANG

    2002-01-01

    cAMP mediated signaling may play a suppressive role in immune response. We previously found thatthe cAMP-elevators (CTx and 8-Br-cAMP) inhibited IL-12, IL-la, IL-6 gene expression, but increasedthe transcriptional levels of IL-10 and IL-1Ra in LPS-treated murine peritoneal macrophages. The presentstudy examined a possible molecular mechanism involved in cAMP elevators-induced inhibition of IL-12 p40expression in response to LPS. Our data demonstrated that cAMP elevators downregulated IL-12 p40 mRNAexpression and IL-12 p70 production in murine peritoneal macrophages. Subsequent studies revealed thatcAMP-elevators blocked phosphorylation of p38 MAPK, but did not affect the activity of NF-κB bindingto IL-12 promoter (-136/-112). This is the first report that cAMP elevators inhibit LPS-induced IL-12production by a mechanism that is associated, at least in part, with p38-dependent inhibition by cAMPsignaling pathways.

  2. Hepatitis B Virus Middle Protein Enhances IL-6 Production via p38 MAPK/NF-κB Pathways in an ER Stress-Dependent Manner

    Science.gov (United States)

    Li, Yang-Xia; Ren, Yan-Li; Fu, Hai-Jing; Zou, Ling; Yang, Ying; Chen, Zhi

    2016-01-01

    During hepatitis B virus (HBV) infection, three viral envelope proteins of HBV are overexpressed in the endoplasmic reticulum (ER). The large S protein (LHBs) and truncated middle S protein (MHBst) have been documented to play roles in regulating host gene expression and contribute to hepatic disease development. As a predominant protein at the ultrastructural level in biopsy samples taken from viremic patients, the role of the middle S protein (MHBs) remains to be understood despite its high immunogenicity. When we transfected hepatocytes with an enhanced green fluorescent protein (EGFP)-tagged MHBs expressing plasmid, the results showed that expression of MHBs cause an upregulation of IL-6 at the message RNA and protein levels through activating the p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor-kappa B (NF-κB) pathways. The use of specific inhibitors of the signaling pathways can diminish this upregulation. The use of BAPTA-AM attenuated the stimulation caused by MHBs. We further found that MHBs accumulated in the endoplasmic reticulum and increased the amount of glucose regulated protein 78 (GRP78/BiP). Our results provide a possibility that MHBs could be involved in liver disease progression. PMID:27434097

  3. Thymoquinone induces caspase-independent, autophagic cell death in CPT-11-resistant lovo colon cancer via mitochondrial dysfunction and activation of JNK and p38.

    Science.gov (United States)

    Chen, Ming-Cheng; Lee, Nien-Hung; Hsu, Hsi-Hsien; Ho, Tsung-Jung; Tu, Chuan-Chou; Hsieh, Dennis Jine-Yuan; Lin, Yueh-Min; Chen, Li-Mien; Kuo, Wei-Wen; Huang, Chih-Yang

    2015-02-11

    Chemotherapy causes unwanted side effects and chemoresistance, limiting its effectiveness. Therefore, phytochemicals are now used as alternative treatments. Thymoquinone (TQ) is used to treat different cancers, including colon cancer. The irinotecan-resistant (CPT-11-R) LoVo colon cancer cell line was previously constructed by stepwise CPT-11 challenges to untreated parental LoVo cells. TQ dose-dependently increased the total cell death index and activated apoptosis at 2 μM, which then diminished at increasing doses. The possibility of autophagic cell death was then investigated. TQ caused mitochondrial outer membrane permeability (MOMP) and activated autophagic cell death. JNK and p38 inhibitors (SP600125 and SB203580, respectively) reversed TQ autophagic cell death. TQ was also found to activate apoptosis before autophagy, and the direction of cell death was switched toward autophagic cell death at initiation of autophagosome formation. Therefore, TQ resulted in caspase-independent, autophagic cell death via MOMP and activation of JNK and p38 in CPT-11-R LoVo colon cancer cells.

  4. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans

    Science.gov (United States)

    D’Souza, Serena A.; Rajendran, Luckshika; Bagg, Rachel; van Pel, Derek M.; Moshiri, Houtan; Roy, Peter J.

    2016-01-01

    The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue. PMID:27123983

  5. Exogenous spermine ameliorates high glucose-induced cardiomyocytic apoptosis via decreasing reactive oxygen species accumulation through inhibiting p38/JNK and JAK2 pathways.

    Science.gov (United States)

    He, Yuqin; Yang, Jinxia; Li, Hongzhu; Shao, Hongjiang; Wei, Can; Wang, Yuehong; Li, Meixiu; Xu, Changqing

    2015-01-01

    Reactive oxygen species (ROS) generation has been suggested to play a vital role in the initiation and progression of diabetic cardiomyopathy, a major complication of diabetes mellitus. Recent studies reveal that spermine possesses proliferative, antiaging and antioxidative properties. Thus, we hypothesized that spermine could decrease apoptosis via suppressing ROS accumulation induced by high glucose (HG) in cardiomyocytes. Cultured neonatal rat ventricle cardiomyocytes were treated with normal glucose (NG) (5 mM) or HG (25 mM) in the presence or absence of spermine for 48 h. The cell activity, apoptosis, ROS production, T-SOD and GSH activities, MDA content and GSSG level were assessed. The results showed that HG induced lipid peroxidation and the increase of intracellular ROS formation and apoptosis in primary cardiomyocytes. Spermine could obviously improve the above-mentioned changes. Western blot analysis revealed that spermine markedly inhibited HG-induced the phosphorylation of p38/JNK MAPKs and JAK2. Moreover, spermine had better antioxidative and anti-apoptotic effects than N-acetyl-L-cysteine (NAC). Taken together, the present data suggested that spermine could suppress ROS accumulation to decrease cardiomyocytes apoptosis in HG condition, which may be attributed to the inhibition of p38/JNK and JAK2 activation and its natural antioxidative property. Our findings may highlight a new therapeutic intervention for the prevention of diabetic cardiomyopathy. PMID:26884823

  6. Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38-MAPKAPK2-Hsp27.

    Directory of Open Access Journals (Sweden)

    Shih-Pei Lin

    Full Text Available Hypoxia and serum depletion are common features of solid tumors that occur upon antiangiogenesis, irradiation and chemotherapy across a wide variety of malignancies. Here we show that tumor cells expressing CD133, a marker for colorectal cancer initiating or stem cells, are enriched and survive under hypoxia and serum depletion conditions, whereas CD133- cells undergo apoptosis. CD133+ tumor cells increase cancer stem cell and epithelial-mesenchymal transition properties. Moreover, via screening a panel of tyrosine and serine/threonine kinase pathways, we identified Hsp27 is constitutively activated in CD133+ cells rather than CD133- cell under hypoxia and serum depletion conditions. However, there was no difference in Hsp27 activation between CD133+ and CD133- cells under normal growth condition. Hsp27 activation, which was mediated by the p38MAPK-MAPKAPK2-Hsp27 pathway, is required for CD133+ cells to inhibit caspase 9 and 3 cleavage. In addition, inhibition of Hsp27 signaling sensitizes CD133+ cells to hypoxia and serum depletion -induced apoptosis. Moreover, the antiapoptotic pathway is also activated in spheroid culture-enriched CD133+ cancer stem cells from a variety of solid tumor cells including lung, brain and oral cancer, suggesting it is a common pathway activated in cancer stem cells from multiple tumor types. Thus, activation of PP2A or inactivation of the p38MAPK-MAPKAPK2-Hsp27 pathway may develop new strategies for cancer therapy by suppression of their TIC population.

  7. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways.

    Science.gov (United States)

    Yang, Tingfang; Yao, Shuluan; Zhang, Xianfeng; Guo, Yan

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro), the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 μg/mL Andro could significantly induce Jurkat cells' apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro's dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. PMID:27114702

  8. Intracellular labile iron determines H2O2-induced apoptotic signaling via sustained activation of ASK1/JNK-p38 axis.

    Science.gov (United States)

    Mantzaris, M D; Bellou, S; Skiada, V; Kitsati, N; Fotsis, T; Galaris, D

    2016-08-01

    Hydrogen peroxide (H2O2) acts as a second messenger in signal transduction participating in several redox regulated pathways, including cytokine and growth factor stimulated signals. However, the exact molecular mechanisms underlying these processes remain poorly understood and require further investigation. In this work, using Jurkat T lymphoma cells and primary human umbilical vein endothelial cells, it was observed that changes in intracellular "labile iron" were able to modulate signal transduction in H2O2-induced apoptosis. Chelation of intracellular labile iron by desferrioxamine rendered cells resistant to H2O2-induced apoptosis. In order to identify the exact points of iron action, we investigated selected steps in H2O2-mediated apoptotic pathway, focusing on mitogen activated protein kinases (MAPKs) JNK, p38 and ERK. It was observed that spatiotemporal changes in intracellular labile iron, induced by H2O2, influenced the oxidation pattern of the upstream MAP3K ASK1 and promoted the sustained activation of JNK-p38 axis in a defined time-dependent context. Moreover, we indicate that H2O2 induced spatiotemporal changes in intracellular labile iron, at least in part, by triggering the destabilization of lysosomal compartments, promoting a concomitant early response in proteins of iron homeostasis. These results raise the possibility that iron-mediated oxidation of distinct proteins may be implicated in redox signaling processes. Since labile iron can be pharmacologically modified in vivo, it may represent a promising target for therapeutic interventions in related pathological conditions.

  9. Mechanical stress triggers cardiomyocyte autophagy through angiotensin II type 1 receptor-mediated p38MAP kinase independently of angiotensin II.

    Directory of Open Access Journals (Sweden)

    Li Lin

    Full Text Available Angiotensin II (Ang II type 1 (AT1 receptor is known to mediate a variety of physiological actions of Ang II including autophagy. However, the role of AT1 receptor in cardiomyocyte autophagy triggered by mechanical stress still remains elusive. The aim of this study was therefore to examine whether and how AT1 receptor participates in cardiomyocyte autophagy induced by mechanical stresses. A 48-hour mechanical stretch and a 4-week transverse aorta constriction (TAC were imposed to cultured cardiomyocytes of neonatal rats and adult male C57B/L6 mice, respectively, to induce cardiomyocyte hypertrophy prior to the assessment of cardiomyocyte autophagy using LC3b-II. Losartan, an AT1 receptor blocker, but not PD123319, the AT2 inhibitor, was found to significantly reduce mechanical stretch-induced LC3b-II upregulation. Moreover, inhibition of p38MAP kinase attenuated not only mechanical stretch-induced cardiomyocyte hypertrophy but also autophagy. To the contrary, inhibition of ERK and JNK suppressed cardiac hypertrophy but not autophagy. Intriguingly, mechanical stretch-induced autophagy was significantly inhibited by Losartan in the absence of Ang II. Taken together, our results indicate that mechanical stress triggers cardiomyocyte autophagy through AT1 receptor-mediated activation of p38MAP kinase independently of Ang II.

  10. The Inhibition of RANKL-Induced Osteoclastogenesis through the Suppression of p38 Signaling Pathway by Naringenin and Attenuation of Titanium-Particle-Induced Osteolysis

    Directory of Open Access Journals (Sweden)

    Wengang Wang

    2014-11-01

    Full Text Available The aim of this study was to assess the effect of naringenin on osteoclastogenesis and titanium particle-induced osteolysis. Osteolysis from wear-induced particles and aseptic loosening are the most frequent late complications of total joint arthroplasty leading to revision of the prosthesis. Osteolysis during aseptic loosening is most likely due to increased bone resorption by osteoclasts. Through in vitro studies, we demonstrated that naringenin, a naturally occurring flavanone in grapefruit and tomatoes, exerts potent inhibitory effects on the ligand of the receptor activator of nuclear factor-κB (RANKL-induced osteoclastogenesis and revealed that the mechanism of action of naringenin, which inhibited osteoclastogenesis by suppression of the