WorldWideScience

Sample records for box nuclear protein

  1. SCF Ubiquitin Ligase F-box Protein Fbx15 Controls Nuclear Co-repressor Localization, Stress Response and Virulence of the Human Pathogen Aspergillus fumigatus

    Science.gov (United States)

    Jöhnk, Bastian; Bayram, Özgür; Heinekamp, Thorsten; Mattern, Derek J.; Brakhage, Axel A.; Jacobsen, Ilse D.; Valerius, Oliver; Braus, Gerhard H.

    2016-01-01

    F-box proteins share the F-box domain to connect substrates of E3 SCF ubiquitin RING ligases through the adaptor Skp1/A to Cul1/A scaffolds. F-box protein Fbx15 is part of the general stress response of the human pathogenic mold Aspergillus fumigatus. Oxidative stress induces a transient peak of fbx15 expression, resulting in 3x elevated Fbx15 protein levels. During non-stress conditions Fbx15 is phosphorylated and F-box mediated interaction with SkpA preferentially happens in smaller subpopulations in the cytoplasm. The F-box of Fbx15 is required for an appropriate oxidative stress response, which results in rapid dephosphorylation of Fbx15 and a shift of the cellular interaction with SkpA to the nucleus. Fbx15 binds SsnF/Ssn6 as part of the RcoA/Tup1-SsnF/Ssn6 co-repressor and is required for its correct nuclear localization. Dephosphorylated Fbx15 prevents SsnF/Ssn6 nuclear localization and results in the derepression of gliotoxin gene expression. fbx15 deletion mutants are unable to infect immunocompromised mice in a model for invasive aspergillosis. Fbx15 has a novel dual molecular function by controlling transcriptional repression and being part of SCF E3 ubiquitin ligases, which is essential for stress response, gliotoxin production and virulence in the opportunistic human pathogen A. fumigatus. PMID:27649508

  2. Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion

    OpenAIRE

    Cohen, Mitchell J; Brohi, Karim; Calfee, Carolyn S.; Rahn, Pamela; Chesebro, Brian B; Christiaans, Sarah C.; Carles, Michel; Howard, Marybeth; Pittet, Jean-François

    2009-01-01

    Introduction High mobility group box nuclear protein 1 (HMGB1) is a DNA nuclear binding protein that has recently been shown to be an early trigger of sterile inflammation in animal models of trauma-hemorrhage via the activation of the Toll-like-receptor 4 (TLR4) and the receptor for the advanced glycation endproducts (RAGE). However, whether HMGB1 is released early after trauma hemorrhage in humans and is associated with the development of an inflammatory response and coagulopathy is not kno...

  3. F-box proteins in flowering plants

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In eukaryotes, the ubiquitin-mediated protein degradation pathway has been shown to control several key biological processes such as cell division, development, metabolism and immune response. F-box proteins, as a part of SCF (Skp1-Cullin (or Cdc53)-F-box) complex, functioned by interacting with substrate proteins, leading to their subsequent degradation by the 26S proteasome. To date, several F-box proteins identified in Arabidopsis and Antirrhinum have been shown to play important roles in auxin signal transduction, floral organ formation, flowering and leaf senescence. Arabidopsis genome sequence analysis revealed that it encodes over 1000 predicted F-box proteins accounting for about 5% of total predicted proteins. These results indicate that the ubiquitin-mediated protein degradation involving the F-box proteins is an important mechanism controlling plant gene expression. Here, we review the known F-box proteins and their functionsin flowering plants.

  4. Nuclear detection of Y-box protein-1 (YB-1) closely associates with progesterone receptor negativity and is a strong adverse survival factor in human breast cancer

    International Nuclear Information System (INIS)

    Y-box binding protein-1 (YB-1) is the prototypic member of the cold shock protein family that fulfills numerous cellular functions. In the nucleus YB-1 protein orchestrates transcription of proliferation-related genes, whereas in the cytoplasm it associates with mRNA and directs translation. In human tumor entities, such as breast, lung and prostate cancer, cellular YB-1 expression indicates poor clinical outcome, suggesting that YB-1 is an attractive marker to predict patients' prognosis and, potentially, is suitable to individualize treatment protocols. Given these predictive qualities of YB-1 detection we sought to establish a highly specific monoclonal antibody (Mab) for diagnostic testing and its characterization towards outcome prediction (relapse-free and overall survival). Hybridoma cell generation was carried out with recombinant YB-1 protein as immunogen and Mab characterization was performed using immunoblotting and ELISA with recombinant and tagged YB-1 proteins, as well as immunohistochemistry of healthy and breast cancer specimens. Breast tumor tissue array staining results were analyzed for correlations with receptor expression and outcome parameters. YB-1-specific Mab F-E2G5 associates with conformational binding epitopes mapping to two domains within the N-terminal half of the protein and detects nuclear YB-1 protein by immunohistochemistry in paraffin-embedded breast cancer tissues. Prognostic evaluation of Mab F-E2G5 was performed by immunohistochemistry of a human breast cancer tissue microarray comprising 179 invasive breast cancers, 8 ductal carcinoma in situ and 37 normal breast tissue samples. Nuclear YB-1 detection in human breast cancer cells was associated with poor overall survival (p = 0.0046). We observed a close correlation between nuclear YB-1 detection and absence of progesterone receptor expression (p = 0.002), indicating that nuclear YB-1 detection marks a specific subgroup of breast cancer. Likely due to limitation of sample

  5. Nuclear respiratory factor 1 mediates the transcription initiation of insulin-degrading enzyme in a TATA box-binding protein-independent manner.

    Directory of Open Access Journals (Sweden)

    Lang Zhang

    Full Text Available CpG island promoters often lack canonical core promoter elements such as the TATA box, and have dispersed transcription initiation sites. Despite the prevalence of CpG islands associated with mammalian genes, the mechanism of transcription initiation from CpG island promoters remains to be clarified. Here we investigate the mechanism of transcription initiation of the CpG island-associated gene, insulin-degrading enzyme (IDE. IDE is ubiquitously expressed, and has dispersed transcription initiation sites. The IDE core promoter locates within a 32-bp region, which contains three CGGCG repeats and a nuclear respiratory factor 1 (NRF-1 binding motif. Sequential mutation analysis indicates that the NRF-1 binding motif is critical for IDE transcription initiation. The NRF-1 binding motif is functional, because NRF-1 binds to this motif in vivo and this motif is required for the regulation of IDE promoter activity by NRF-1. Furthermore, the NRF-1 binding site in the IDE promoter is conserved among different species, and dominant negative NRF-1 represses endogenous IDE expression. Finally, TATA-box binding protein (TBP is not associated with the IDE promoter, and inactivation of TBP does not abolish IDE transcription, suggesting that TBP is not essential for IDE transcription initiation. Our studies indicate that NRF-1 mediates IDE transcription initiation in a TBP-independent manner, and provide insights into the potential mechanism of transcription initiation for other CpG island-associated genes.

  6. The DEAD-Box Protein DP103 (Ddx20 or Gemin-3) Represses Orphan Nuclear Receptor Activity via SUMO Modification

    OpenAIRE

    Lee, Martin B.; Lebedeva, Lioudmila A.; Suzawa, Miyuki; Wadekar, Subhagya A.; Desclozeaux, Marion; Ingraham, Holly A.

    2005-01-01

    Structural analysis of nuclear receptor subfamily V orphan nuclear receptors suggests that ligand-independent mechanisms must regulate this subclass of receptors. Here, we report that steroidogenic factor 1 (SF-1) and liver receptor homolog 1 are repressed via posttranslational SUMO modification at conserved lysines within the hinge domain. Indeed, mutating these lysines or adding the SUMO isopeptidase SENP1 dramatically increased both native and Gal4-chimera receptor activities. The mechanis...

  7. MicroRNA-96 promotes the proliferation of colorectal cancer cells and targets tumor protein p53 inducible nuclear protein 1, forkhead box protein O1 (FOXO1) and FOXO3a.

    Science.gov (United States)

    Gao, Feng; Wang, Wenhui

    2015-02-01

    MicroRNAs (miRNAs) are a conserved class of small, endogenous, non protein-coding RNA molecules that are capable of regulating gene expression at post-transcriptional levels and are involved in diverse cellular processes, including cancer pathogenesis. It has previously been reported that miRNA-96 (miR-96) is overexpressed in human colorectal cancer (CRC). However, the underlying mechanism of miR-96 regulation in CRC remains to be elucidated. In the present study, miR-96 was confirmed to be upregulated in CRC tissues by reverse transcription quantitative polymerase chain reaction. MTT assay, colony formation assay and cell cycle analysis revealed that miR-96 overexpression led to increased tumor cell viability, colony formation ability and cell cycle progression. By contrast, inhibition of miR-96 resulted in the suppression of cell proliferation. It was also demonstrated that miR-96 reduced the messenger RNA and protein expression levels of tumor protein p53 inducible nuclear protein 1 (TP53INP1), forkhead box protein O1 (FOXO1) and FOXO3a, which are closely associated with cell proliferation. A luciferase reporter assay indicated that miR-96 inhibited luciferase intensity controlled by the 3'UTRs of TP53INP1, FOXO1 and FOXO3a. In conclusion, the results of the present study demonstrated that miR-96 contributed to CRC cell growth and that TP53INP1, FOXO1 and FOXO3a were direct targets of miR-96, suggesting that miR-96 may have the potential to be used in the development of miRNA‑based therapies for CRC patients.

  8. Roles of F-box Proteins in Plant Hormone Responses

    Institute of Scientific and Technical Information of China (English)

    Haichuan YU; Jiao WU; Nanfei XU; Ming PENG

    2007-01-01

    The F-box protein is an important component of the E3 ubiquitin ligase Skpl-Cullin-F-box protein complex. It binds specific substrates for ubiquitin-mediated proteolysis. The F-box proteins contain a signature F-box motif at their amino-terminus and some protein-protein interaction motifs at their carboxyterminus, such as Trp-Asp repeats or leucine rich repeats. Many F-box proteins have been identified to be involved in plant hormone response as receptors or important medial components. These breakthrough findings shed light on our current understanding of the structure and function of the various F-box proteins,their related plant hormone signaling pathways, and their roles in regulating plant development.

  9. Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NFκB

    International Nuclear Information System (INIS)

    A notable feature of poxviruses is their ability to inhibit the antiviral response, including the nuclear factor kappa B (NFκB) pathway. NFκB is a transcription factor that is sequestered in the cytoplasm until cell stimulation, and relies on the SCF (Skp1, culllin-1, F-box) ubiquitin ligase to target its inhibitor, IκBα, for degradation. IκBα is recruited to the SCF by the F-box domain-containing protein βTrCP. Here, we show that ectromelia virus, the causative agent of mousepox, encodes four F-box-containing proteins, EVM002, EVM005, EVM154, and EVM165, all of which contain Ankyrin (Ank) domains. The Ank/F-box proteins inhibit NFκB nuclear translocation, and this inhibition is dependent on the F-box domain. We also demonstrate that EVM002, EVM005, EVM154, and EVM165 prevent IκBα degradation, suggesting that they target the SCF. This study identifies a new mechanism by which ectromelia virus inhibits NFκB. - Highlights: • Ectromelia virus encodes four Ank/F-box proteins, EVM002, EVM005, EVM154 and EVM165. • The Ank/F-box proteins inhibit NFκB nuclear translocation, dependent on the F-box. • The Ank/F-box proteins prevent IκBα degradation, suggesting they target the SCF. • Deletion of a single Ank/F-box gene from ECTV does not prevent viral NFκB inhibition. • This study identifies a new mechanism by which ectromelia virus inhibits NFκB

  10. Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NFκB

    Energy Technology Data Exchange (ETDEWEB)

    Burles, Kristin, E-mail: burles@ualberta.ca; Buuren, Nicholas van; Barry, Michele

    2014-11-15

    A notable feature of poxviruses is their ability to inhibit the antiviral response, including the nuclear factor kappa B (NFκB) pathway. NFκB is a transcription factor that is sequestered in the cytoplasm until cell stimulation, and relies on the SCF (Skp1, culllin-1, F-box) ubiquitin ligase to target its inhibitor, IκBα, for degradation. IκBα is recruited to the SCF by the F-box domain-containing protein βTrCP. Here, we show that ectromelia virus, the causative agent of mousepox, encodes four F-box-containing proteins, EVM002, EVM005, EVM154, and EVM165, all of which contain Ankyrin (Ank) domains. The Ank/F-box proteins inhibit NFκB nuclear translocation, and this inhibition is dependent on the F-box domain. We also demonstrate that EVM002, EVM005, EVM154, and EVM165 prevent IκBα degradation, suggesting that they target the SCF. This study identifies a new mechanism by which ectromelia virus inhibits NFκB. - Highlights: • Ectromelia virus encodes four Ank/F-box proteins, EVM002, EVM005, EVM154 and EVM165. • The Ank/F-box proteins inhibit NFκB nuclear translocation, dependent on the F-box. • The Ank/F-box proteins prevent IκBα degradation, suggesting they target the SCF. • Deletion of a single Ank/F-box gene from ECTV does not prevent viral NFκB inhibition. • This study identifies a new mechanism by which ectromelia virus inhibits NFκB.

  11. The Role of Protein Electrostatics in Facilitating the Catalysis of DEAD-box Proteins

    OpenAIRE

    Frenz, Christopher M.

    2008-01-01

    Protein electrostatic states have been demonstrated to play crucial roles in catalysis, ligand binding, protein stability, and in the modulation of allosteric effects. Electrostatic states are demonstrated to appear conserved among DEAD-box motifs and evidence is presented that the structural changes that occur to DEAD box proteins upon ligand binding alter the DEAD-box motif electrostatics in a way the facilitates the catalytic role of the DEAD-box glutatmate.

  12. A nuclear chocolate box: the periodic table of nuclear medicine.

    Science.gov (United States)

    Blower, Philip J

    2015-03-21

    Radioisotopes of elements from all parts of the periodic table find both clinical and research applications in radionuclide molecular imaging and therapy (nuclear medicine). This article provides an overview of these applications in relation to both the radiological properties of the radionuclides and the chemical properties of the elements, indicating past successes, current applications and future opportunities and challenges for inorganic chemistry. PMID:25406520

  13. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding

    OpenAIRE

    Liu, Fei; Putnam, Andrea; Jankowsky, Eckhard

    2008-01-01

    DEAD-box proteins, the largest helicase family, catalyze ATP-dependent remodeling of RNA–protein complexes and the unwinding of RNA duplexes. Because DEAD-box proteins hydrolyze ATP in an RNA-dependent fashion, the energy provided by ATP hydrolysis is commonly assumed to drive the energetically unfavorable duplex unwinding. Here, we show efficient unwinding of stable duplexes by several DEAD-box proteins in the presence of the nonhydrolyzable ATP analog ADP-beryllium fluoride. Another ATP ana...

  14. High-mobility group box 1 protein and its role in severe acute pancreatitis

    OpenAIRE

    Shen, Xiao; Li, Wei-Qin

    2015-01-01

    The high mobility group box 1 (HMGB1), which belongs to the subfamily of HMG-1/-2, is a highly conserved single peptide chain consisting of 215 amino acid residues with a molecular weight of approximately 24894 Da. HMGB1 is a ubiquitous nuclear protein in mammals and plays a vital role in inflammatory diseases. Acute pancreatitis is one of the most common causes of acute abdominal pain with a poor prognosis. Acute pancreatitis is an acute inflammatory process of the pancreas (duration of less...

  15. Ovule-specific MADS box proteins have conserved protein-protein interactions in monocots and dicot plants

    NARCIS (Netherlands)

    Favaro, R.; Immink, R.G.H.; Ferioli, V.; Bernasconi, B.; Byzova, M.; Angenent, G.C.; Kater, M.; Colombo, L.

    2002-01-01

    OsMADS13 is a rice MADS-box gene that is specifically expressed in developing ovules. The amino acid sequence of OsMADS13 shows 74␜imilarity to those of FLORAL BINDING PROTEIN 7 (FBP7) and FBP11, the products of two MADS-box genes that are necessary and sufficient to determine ovule identity in Petu

  16. Binding of Y-box proteins to RNA: involvement of different protein domains.

    Science.gov (United States)

    Ladomery, M; Sommerville, J

    1994-01-01

    Eukaryotic Y-box proteins are reported to interact with a wide variety of nucleic acid structures to act as transcription factors and mRNA masking proteins. The modular structure of Y-box proteins includes a highly conserved N-terminal cold-shock domain (CSD, equivalent to the bacterial cold-shock proteins) plus four basic C-terminal domains containing arginine clusters and aromatic residues. In addition, the basic domains are separated by acidic regions which contain several potential sites for serine/threonine phosphorylation. The interaction of Y-box proteins, isolated from Xenopus oocytes (FRGY2 type), with RNA molecules has been studied by UV crosslinking and protein fragmentation. We have identified two distinct binding activities. The CSD interacts preferentially with the polypurines poly(A,G) and poly(G) but not poly(A), this activity being sensitive to 5 mM MgCl2 but not to 5 mM spermidine. In the presence of 1 mM MgCl2 or 1 mM spermidine, the basic domains interact preferentially with poly(C,U), this activity being sensitive to 0.5 M NaCl. Binding of the basic domains is also sensitive to low concentrations of heparin. The basic domains can be crosslinked individually to labelled RNA. These results are discussed with reference to the various specificities noted in the binding of Y-box proteins to RNA and DNA. Images PMID:7530842

  17. F-box protein FBXL2 inhibits gastric cancer proliferation by ubiquitin-mediated degradation of forkhead box M1.

    Science.gov (United States)

    Li, Liang-qing; Pan, Dun; Chen, Hui; Zhang, Lin; Xie, Wen-jun

    2016-02-01

    F-box/LRR-repeat protein 2 (FBXL2), a component of Skp-Cullin-F box (SCF) ubiquitin E3 ligase, has been shown to inhibit tumorigenesis by targeting and ubiquitinating several oncoproteins. However, its role in gastric cancer remains poorly understood. Here, by tandem mass spectrometry, we show that FBXL2 interacts with forkhead box M1 (FoxM1) transcription factor. As a result, FBXL2 promotes ubiquitination and degradation of FoxM1 in gastric cancer cells. Furthermore, overexpression of FBXL2 inhibits, while its deficiency promotes cell proliferation and invasion. Expression levels of cell-cycle regulators (Cdc25B and p27), which are down-stream target effectors of FoxM1, are also regulated by FBXL2. Therefore, our results uncover a previous unknown network involving FBXL2 and FoxM1 in the regulation of gastric cancer growth.

  18. Calmodulin-dependent nuclear import of HMG-box family nuclear factors: importance of the role of SRY in sex reversal

    Science.gov (United States)

    Kaur, Gurpreet; Delluc-Clavieres, Aurelie; Poon, Ivan K. H.; Forwood, Jade K.; Glover, Dominic J.; Jans, David A.

    2010-01-01

    The HMG (high-mobility group)-box-containing chromatin-remodelling factor SRY (sex-determining region on the Y chromosome) plays a key role in sex determination. Its role in the nucleus is critically dependent on two NLSs (nuclear localization signals) that flank its HMG domain: the C-terminally located ‘β-NLS’ that mediates nuclear transport through Impβ1 (importin β1) and the N-terminally located ‘CaM-NLS’ which is known to recognize the calcium-binding protein CaM (calmodulin). In the present study, we examined a number of missense mutations in the SRY CaM-NLS from human XY sex-reversed females for the first time, showing that they result in significantly reduced nuclear localization of GFP (green fluorescent protein)–SRY fusion proteins in transfected cells compared with wild-type. The CaM antagonist CDZ (calmidazolium chloride) was found to significantly reduce wild-type SRY nuclear accumulation, indicating dependence of SRY nuclear import on CaM. Intriguingly, the CaM-NLS mutants were all resistant to CDZ's effects, implying a loss of interaction with CaM, which was confirmed by direct binding experiments. CaM-binding/resultant nuclear accumulation was the only property of SRY found to be impaired by two of the CaM-NLS mutations, implying that inhibition of CaM-dependent nuclear import is the basis of sex reversal in these cases. Importantly, the CaM-NLS is conserved in other HMG-box-domain-containing proteins such as SOX-2, -9, -10 and HMGN1, all of which were found for the first time to rely on CaM for optimal nuclear localization. CaM-dependent nuclear translocation is thus a common mechanism for this family of important transcription factors. PMID:20528776

  19. MicroRNA regulation of F-box proteins and its role in cancer.

    Science.gov (United States)

    Wu, Zhao-Hui; Pfeffer, Lawrence M

    2016-02-01

    MicroRNAs (miRNAs) are small endogenous non-coding RNAs, which play critical roles in cancer development by suppressing gene expression at the post-transcriptional level. In general, oncogenic miRNAs are upregulated in cancer, while miRNAs that act as tumor suppressors are downregulated, leading to decreased expression of tumor suppressors and upregulated oncogene expression, respectively. F-box proteins function as the substrate-recognition components of the SKP1-CUL1-F-box (SCF)-ubiquitin ligase complex for the degradation of their protein targets by the ubiquitin-proteasome system. Therefore F-box proteins and miRNAs both negatively regulate target gene expression post-transcriptionally. Since each miRNA is capable of fine-tuning the expression of multiple target genes, multiple F-box proteins may be suppressed by the same miRNA. Meanwhile, one F-box proteins could be regulated by several miRNAs in different cancer types. In this review, we will focus on miRNA-mediated downregulation of various F-box proteins, the resulting stabilization of F-box protein substrates and the impact of these processes on human malignancies. We provide insight into how the miRNA: F-box protein axis may regulate cancer progression and metastasis. We also consider the broader role of F-box proteins in the regulation of pathways that are independent of the ubiquitin ligase complex and how that impacts on oncogenesis. The area of miRNAs and the F-box proteins that they regulate in cancer is an emerging field and will inform new strategies in cancer treatment.

  20. Shewanella oneidensis MR-1 Sensory Box Protein Involved in Aerobic and Anoxic Growth

    OpenAIRE

    Sundararajan, A.; Kurowski, J.; Yan, T.; Klingeman, D. M.; Joachimiak, M. P.; Zhou, J.; Naranjo, B.; Gralnick, J. A.; Fields, M.W.

    2011-01-01

    Although little is known of potential function for conserved signaling proteins, it is hypothesized that such proteins play important roles to coordinate cellular responses to environmental stimuli. In order to elucidate the function of a putative sensory box protein (PAS domains) in Shewanella oneidensis MR-1, the physiological role of SO3389 was characterized. The predicted open reading frame (ORF) encodes a putative sensory box protein that has PAS, GGDEF, and EAL domains, and an in-frame ...

  1. Regulating the ethylene response of a plant by modulation of F-box proteins

    Science.gov (United States)

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  2. The effect of box shape on the dynamic properties of proteins simulated under periodic boundary conditions

    NARCIS (Netherlands)

    Wassenaar, T.A.; Mark, A.E.

    2006-01-01

    The effect of the box shape on the dynamic behavior of proteins simulated under periodic boundary conditions is evaluated. In particular, the influence of simulation boxes defined by the near-densest lattice packing (NDLP) in conjunction with rotational constraints is compared to that of standard bo

  3. Crystal structure of the shrimp proliferating cell nuclear antigen: structural complementarity with WSSV DNA polymerase PIP-box.

    Directory of Open Access Journals (Sweden)

    Jesus S Carrasco-Miranda

    Full Text Available DNA replication requires processivity factors that allow replicative DNA polymerases to extend long stretches of DNA. Some DNA viruses encode their own replicative DNA polymerase, such as the white spot syndrome virus (WSSV that infects decapod crustaceans but still require host replication accessory factors. We have determined by X-ray diffraction the three-dimensional structure of the Pacific white leg shrimp Litopenaeus vannamei Proliferating Cell Nuclear Antigen (LvPCNA. This protein is a member of the sliding clamp family of proteins, that binds DNA replication and DNA repair proteins through a motif called PIP-box (PCNA-Interacting Protein. The crystal structure of LvPCNA was refined to a resolution of 3 Å, and allowed us to determine the trimeric protein assembly and details of the interactions between PCNA and the DNA. To address the possible interaction between LvPCNA and the viral DNA polymerase, we docked a theoretical model of a PIP-box peptide from the WSSV DNA polymerase within LvPCNA crystal structure. The theoretical model depicts a feasible model of interaction between both proteins. The crystal structure of shrimp PCNA allows us to further understand the mechanisms of DNA replication processivity factors in non-model systems.

  4. The keller box method of nuclear explosion many group γ-EMP

    International Nuclear Information System (INIS)

    It outlines the electromagnetic pulse induced by γ-ray radiated from nuclear explosion bomb and the Keller box method for solving Maxwell equation. Comparison of results calculated from γ-EMP program with those from SHARP program is given as well

  5. X-box-binding protein 1-modified neural stem cells for treatment of Parkinson's disease.

    Science.gov (United States)

    Si, Lihui; Xu, Tianmin; Wang, Fengzhang; Liu, Qun; Cui, Manhua

    2012-04-01

    X-box-binding protein 1-transfected neural stem cells were transplanted into the right lateral ventricles of rats with rotenone-induced Parkinson's disease. The survival capacities and differentiation rates of cells expressing the dopaminergic marker tyrosine hydroxylase were higher in X-box-binding protein 1-transfected neural stem cells compared to non-transfected cells. Moreover, dopamine and 3,4-dihydroxyphenylacetic acid levels in the substantia nigra were significantly increased, α-synuclein expression was decreased, and neurological behaviors were significantly ameliorated in rats following transplantation of X-box-binding protein 1-transfected neural stem cells. These results indicate that transplantation of X-box-binding protein 1-transfected neural stem cells can promote stem cell survival and differentiation into dopaminergic neurons, increase dopamine and 3,4-dihydroxyphenylacetic acid levels, reduce α-synuclein aggregation in the substantia nigra, and improve the symptoms of Parkinson's disease in rats.

  6. X-box-binding protein 1-modified neural stem cells for treatment of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Lihui Si; Tianmin Xu; Fengzhang Wang; Qun Liu; Manhua Cui

    2012-01-01

    X-box-binding protein 1-transfected neural stem cells were transplanted into the right lateral ventricles of rats with rotenone-induced Parkinson's disease. The survival capacities and differentiation rates of cells expressing the dopaminergic marker tyrosine hydroxylase were higher in X-box-binding protein 1-transfected neural stem cells compared to non-transfected cells. Moreover, dopamine and 3,4-dihydroxyphenylacetic acid levels in the substantia nigra were significantly increased, α-synuclein expression was decreased, and neurological behaviors were significantly ameliorated in rats following transplantation of X-box-binding protein 1-transfected neural stem cells. These results indicate that transplantation of X-box-binding protein 1-transfected neural stem cells can promote stem cell survival and differentiation into dopaminergic neurons, increase dopamine and 3,4-dihydroxyphenylacetic acid levels, reduce α-synuclein aggregation in the substantia nigra, and improve the symptoms of Parkinson's disease in rats.

  7. Identification and characterization of a nuclear localization signal of TRIM28 that overlaps with the HP1 box

    International Nuclear Information System (INIS)

    Tripartite motif-containing 28 (TRIM28) is a transcription regulator, which forms a repressor complex containing heterochromatin protein 1 (HP1). Here, we report identification of a nuclear localization signal (NLS) within the 462-494 amino acid region of TRIM28 that overlaps with its HP1 binding site, HP1 box. GST-pulldown experiments revealed the interaction of the arginine-rich TRIM28 NLS with various importin α subtypes (α1, α2 and α4). In vitro transport assay demonstrated that nuclear localization of GFP-TRIM28 NLS is mediated by importin αs, in conjunction with importin β1 and Ran. Further, we demonstrated that HP1 and importin αs compete for binding to TRIM28. Together, our findings suggest that importin α has an essential role in the nuclear delivery and preferential HP1 interaction of TRIM28. - Highlights: • TRIM28 contains an NLS within the 462-494 amino acid region. • The nuclear import of TRIM28 is mediated by importin α/importin β1. • TRIM28 NLS overlaps with HP1 Box. • HP1 and importin α compete for binding to TRIM28

  8. Identification and characterization of a nuclear localization signal of TRIM28 that overlaps with the HP1 box

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Tetsuji; Sangel, Percival [Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085 (Japan); Yamaguchi, Hiroki [School of Medicine, Osaka University, Osaka 565-0871 (Japan); Obuse, Chikashi [Graduate School of Life Science, Hokkaido University, Sapporo 001-0021 (Japan); Miyamoto, Yoichi [Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085 (Japan); Oka, Masahiro, E-mail: moka@nibiohn.go.jp [Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085 (Japan); Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871 (Japan); Yoneda, Yoshihiro, E-mail: y-yoneda@nibiohn.go.jp [National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085 (Japan); Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871 (Japan)

    2015-07-03

    Tripartite motif-containing 28 (TRIM28) is a transcription regulator, which forms a repressor complex containing heterochromatin protein 1 (HP1). Here, we report identification of a nuclear localization signal (NLS) within the 462-494 amino acid region of TRIM28 that overlaps with its HP1 binding site, HP1 box. GST-pulldown experiments revealed the interaction of the arginine-rich TRIM28 NLS with various importin α subtypes (α1, α2 and α4). In vitro transport assay demonstrated that nuclear localization of GFP-TRIM28 NLS is mediated by importin αs, in conjunction with importin β1 and Ran. Further, we demonstrated that HP1 and importin αs compete for binding to TRIM28. Together, our findings suggest that importin α has an essential role in the nuclear delivery and preferential HP1 interaction of TRIM28. - Highlights: • TRIM28 contains an NLS within the 462-494 amino acid region. • The nuclear import of TRIM28 is mediated by importin α/importin β1. • TRIM28 NLS overlaps with HP1 Box. • HP1 and importin α compete for binding to TRIM28.

  9. LOV Domain-Containing F-Box Proteins:Light-Dependent Protein Degradation Modules in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Shogo Ito; Young Hun Song; Takato Imaizumi

    2012-01-01

    Plants constantly survey the surrounding environment using several sets of photoreceptors.They can sense changes in the quantity (=intensity) and quality (=wavelength) of light and use this information to adjust their physiological responses,growth,and developmental patterns.In addition to the classical photoreceptors,such as phytochromes,cryptochromes,and phototropins,ZEITLUPE (ZTL),FLAVIN-BINDING,KELCH REPEAT,F-BOX 1 (FKF1),and LOV KELCH PROTEIN 2 (LKP2) proteins have been recently identified as blue-light photoreceptors that are important for regulation of the circadian clock and photoperiodic flowering.The ZTL/FKF1/LKP2 protein family possesses a unique combination of domains:a blue-light-absorbing LOV (Light,Oxygen,or Voltage) domain along with domains involved in protein degradation.Here,we summarize recent advances in our understanding of the function of the Arabidopsis ZTL/FKF1/LKP2 proteins.We summarize the distinct photochemical properties of their LOV domains and discuss the molecular mechanisms by which the ZTL/FKF1/LKP2 proteins regulate the circadian clock and photoperiodic flowering by controlling blue-light-dependent protein degradation.

  10. Effect of high mobility group box-1 protein on immune cells and its regulatory mechanism

    Institute of Scientific and Technical Information of China (English)

    Ying-yi LUAN; Feng-huaYAO; Qing-hong ZHANG; Xiao-mei ZHU; Ning DONG; Yong-ming YAO

    2012-01-01

    High mobility group box-1 protein (HMGB1),which is a nuclear protein,participates in chromatin architecture and transcriptional regulation.When released from cells,HMGB1 also plays a well-established role as a pro-inflammatory mediator during innate immune responses to injury.In the initial stage of injury,there is a release of large quantities of early pro-inflammatory mediators to initiate or perpetuate immune responses against pathogens,but this pro-inflammatory period is transient,and it is followed by a prolonged period of immune suppression.At present,several lines of evidences have suggested that HMGB1 is a late cytokine provoking delayed endotoxin morbidity,which may enhance the production of early proinflammatory mediators,and it can contribute potently to the activation of different immune cells and play a role in the development of host cell-mediated immunity.The biology of HMGB1 has been extensively studied as a pro-inflammatory cytokine of systemic inflammation,however,this review will attempt to provide a summary of the effects of HMGB1 on different immune cells and its regulatory mechanism in acute insults.

  11. Cloning and Sequence Analysis of Y-box Binding Protein Gene in Min Pig

    Institute of Scientific and Technical Information of China (English)

    Zhang Dong-jie; Liu Di; Wang Liang; He Xin-miao; Wang Wen-tao

    2014-01-01

    In order to study the gene sequence of Min pig Y-box binding protein (YB-1) gene, the complete coding sequence of Min pig YB-1 gene was cloned by RT-PCR, the sequence features were analyzed by some software and online website. The results showed that the complete CDS of Min pig Y-box was found to be 975 bp long, encoding 324 amino acids. It contained a conserved cold shock domain and several phosphorylation sites, but had no transmembrane domains, and was consistent with a protein found in the cytoplasm. Min pig YB-1 nucleotides shared high similarity (61.37%-97.66%) with other mammals.

  12. Classificati,Expression Patter,and E3 Ligase Activity Assay of Rice U-Box-Containing Proteins

    Institute of Scientific and Technical Information of China (English)

    Li-Rong Zeng; Chan Ho Park; R.C.Venu; Julian Gough; Guo-Liang Wang

    2008-01-01

    Ubiquitin ligases play a central role in determining the specificity of the ubiquitination system by selecting a myriad of appropriate candidate proteins for modification.The U-box is a recently identified,ubiquitin ligase activityrelated protein domain that shows greater presence in plants than in other organisms.In this study,we identified 77 putative U-box proteins from the rice genome using a battery of whole genome analysis algorithms.Most of the U-box protein genes are expressed,as supported by the identification of their corresponding expressed sequence tags (ESTs),full-length cDNAs,or massively parallel signature sequencing(MPSS)tags.Using the same algorithms,we identified 61 U-box proteins from the Arabidopsis genome.The rice and Arabidopsis U-box proteins were classified into nine major classes based on their domain compositions.Comparison between rice and Arabidopsis U-box proteins indicates that the majority of rice and Arabidopsis U-box proteins have the same domain organizations.The inferred phylogeny established the homology between rice and Arabidopsis U-box/ARM proteins.Cell death assay using the rice protoplast system suggests that one rice U-box gene,OsPU851,might act as a negative regulator of cell death signaling.In addition,the selected U-box proteins were found to be functional E3 ubiquitin ligases.The identification and analysis of rice U-box proteins hereby at the genomic level will help functionally characterize this class of E3 ubiquitin ligase in the future.

  13. Determining nuclear shape: The role of farnesylated nuclear membrane proteins

    OpenAIRE

    Polychronidou, Maria; Großhans, Jörg

    2011-01-01

    Changes in nuclear morphology are observed in diverse developmental processes as well as in pathological conditions. Modification of nuclear membrane and nuclear lamina protein levels results in altered nuclear shapes, as it has been demonstrated in experimental systems ranging from yeast to human cells. The important role of nuclear membrane components in regulating nuclear morphology is additionally highlighted by the abnormally shaped nuclei observed in diseases where nuclear lamina protei...

  14. The role of the F-Box protein Frp1 in pathogenicity of fusarium oxysporum

    NARCIS (Netherlands)

    W. Jonkers

    2009-01-01

    Previously, FRP1 has been identified in a mutant screen as a pathogenicity gene of the plant pathogenic fungus Fusarium oxysporum f.sp. lycopersici. Deletion of the gene confirmed the requirement of FRP1 for pathogenicity. FRP1 encodes an F-box protein and in this thesis we set out to elucidate its

  15. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1) and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes.

    Science.gov (United States)

    Rodríguez-Lima, Oscar; García-Gutierrez, Ponciano; Jiménez, Lucía; Zarain-Herzberg, Ángel; Lazzarini, Roberto; Landa, Abraham

    2015-01-01

    TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene. PMID:26529408

  16. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1 and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes.

    Directory of Open Access Journals (Sweden)

    Oscar Rodríguez-Lima

    Full Text Available TATA-box binding protein (TBP is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1. Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5 and 2-Cys peroxiredoxin (Ts2-CysPrx gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene.

  17. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1) and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes.

    Science.gov (United States)

    Rodríguez-Lima, Oscar; García-Gutierrez, Ponciano; Jiménez, Lucía; Zarain-Herzberg, Ángel; Lazzarini, Roberto; Landa, Abraham

    2015-01-01

    TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene.

  18. Stepwise bending of DNA by a single TATA box binding protein

    DEFF Research Database (Denmark)

    Tolic-Nørrelykke, Simon F; Rasmussen, Mette B; Pavone, Francesco S;

    2006-01-01

    bead is reduced compared to that of unbent DNA. We detected individual binding and dissocation events and derived kinetic parameters for the process. Dissociation was induced by increasing the salt concentration or by directly pulling on the tethered bead using optical tweezers. In addition to the well......The TATA-box binding protein (TBP) is required by all three eucaryotic RNA polymerases for the initiation of transcription from most promoters. TBP recognizes, binds to, and bends promoter sequences called "TATA-boxes" in the DNA. We present results from the study of individual Saccharomyces...... cerevisiae TBPs interacting with single DNA molecules containing a TATA-box. Using video microscopy, we observed the Brownian motion of the beads tethered by short surface-bound DNA. When TBP binds to and bends the DNA, the conformation of the DNA changes and the amplitude of Brownian motion of the tehtered...

  19. Polymerase (Pol) III TATA Box-Binding Protein (TBP)-Associated Factor Brf Binds to a Surface on TBP Also Required for Activated Pol II Transcription

    OpenAIRE

    Shen, Yuhong; Kassavetis, George A.; Bryant, Gene O.; Berk, Arnold J.

    1998-01-01

    The TATA box-binding protein (TBP) plays an essential role in transcription by all three eukaryotic nuclear RNA polymerases, polymerases (Pol) I, II, and III. In each case, TBP interacts with class-specific TBP-associated factors (TAFs) to form class-specific transcription initiation factors. For yeast Pol III transcription, TBP associates with Brf (from TFIIB-related factor) and B", two Pol III TAFs, to form Pol III transcription factor TFIIIB. Here, we identify TBP surface residues that are...

  20. Identification, cloning and sequencing of two major venom proteins from the box jellyfish, Chironex fleckeri.

    Science.gov (United States)

    Brinkman, Diane; Burnell, James

    2007-11-01

    Two of the most abundant proteins found in the nematocysts of the box jellyfish Chironex fleckeri have been identified as C. fleckeri toxin-1 (CfTX-1) and toxin-2 (CfTX-2). The molecular masses of CfTX-1 and CfTX-2, as determined by SDS-PAGE, are approximately 43 and 45 kDa, respectively, and both proteins are strongly antigenic to commercially available box jellyfish antivenom and rabbit polyclonal antibodies raised against C. fleckeri nematocyst extracts. The amino acid sequences of mature CfTX-1 and CfTX-2 (436 and 445 residues, respectively) share significant homology with three known proteins: CqTX-A from Chiropsalmus quadrigatus, CrTXs from Carybdea rastoni and CaTX-A from Carybdea alata, all of which are lethal, haemolytic box jellyfish toxins. Multiple sequence alignment of the five jellyfish proteins has identified several short, but highly conserved regions of amino acids that coincide with a predicted transmembrane spanning region, referred to as TSR1, which may be involved in a pore-forming mechanism of action. Furthermore, remote protein homology predictions for CfTX-2 and CaTX-A suggest weak structural similarities to pore-forming insecticidal delta-endotoxins Cry1Aa, Cry3Bb and Cry3A. PMID:17688901

  1. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    Science.gov (United States)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  2. The DEAD box protein Mrh4 functions in the assembly of the mitochondrial large ribosomal subunit.

    Science.gov (United States)

    De Silva, Dasmanthie; Fontanesi, Flavia; Barrientos, Antoni

    2013-11-01

    Proteins in a cell are universally synthesized by ribosomes. Mitochondria contain their own ribosomes, which specialize in the synthesis of a handful of proteins required for oxidative phosphorylation. The pathway of mitoribosomal biogenesis and factors involved are poorly characterized. An example is the DEAD box proteins, widely known to participate in the biogenesis of bacterial and cytoplasmic eukaryotic ribosomes as either RNA helicases or RNA chaperones, whose mitochondrial counterparts remain completely unknown. Here, we have identified the Saccharomyces cerevisiae mitochondrial DEAD box protein Mrh4 as essential for large mitoribosome subunit biogenesis. Mrh4 interacts with the 21S rRNA, mitoribosome subassemblies, and fully assembled mitoribosomes. In the absence of Mrh4, the 21S rRNA is matured and forms part of a large on-pathway assembly intermediate missing proteins Mrpl16 and Mrpl39. We conclude that Mrh4 plays an essential role during the late stages of mitoribosome assembly by promoting remodeling of the 21S rRNA-protein interactions.

  3. Robotic and nuclear safety for an automated/teleoperated glove box system

    Energy Technology Data Exchange (ETDEWEB)

    Domning, E.E. (Lawrence Livermore National Lab., CA (United States)); McMahon, T.T.; Sievers, R.H. (Science Applications International Corp., Pleasanton, CA (United States))

    1991-09-01

    Lawrence Livermore National Laboratory (LLNL) is developing a fully automated system to handle the processing of special nuclear materials (SNM). This work is performed in response to the new goals at the Department of Energy (DOE) for hazardous waste minimization and radiation dose reduction. This fully automated system, called the automated test bed (ATB), consists of an IBM gantry robot and automated processing equipment sealed within a glove box. While the ATB is a cold system, we are designing it as a prototype of the future hot system. We recognized that identification and application of safety requirements early in the design phase will lead to timely installation and approval of the hot system. This paper identifies these safety issues as well as the general safety requirements necessary for the safe operation of the ATB. 4 refs., 2 figs.

  4. [Prognosis of affinity change of the TATA-binding protein to TATA-boxes upon polymorphisms of the human gene promoter TATA boxes].

    Science.gov (United States)

    Ponomarenko, P M; Ponomarenko, M P; Drachkova, I A; Lysova, M V; Arshinova, T V; Savinkova, L K; Kolchanov, N A

    2009-01-01

    TATA-binding protein (TBP) is a subunit of basal transcription factor TFIID that recognizes and binds to the TATA-box on TATA-containing promoters of class II genes, and starts assembling RNA polymerase II basal transcription complex. It is shown in many works that the sequence of TATA-box with its flanking regions affects the level of basal and activated transcription. TATA-box polymorphisms and human hereditary diseases associated with them show that TBP/TATA interaction may indirectly affect gene regulation in vivo. The object of this work is to determine changes in the TBP/TATA affinity upon polymorphisms in TATA-boxes of human gene promoters. We assess changes in TBP/TATA affinities in silico by using our formula of equilibrium TBP/TATA binding upon four consecutive steps: nonspecific binding sliding braking (stopping) stabilization. Our prognoses agree with known examples of TATA-box polymorphisms and human hereditary diseases associated with them. PMID:19548537

  5. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1

    OpenAIRE

    Fischer, Nicole; Weis, Karsten

    2002-01-01

    An important control step in the regulation of cytoplasmic mRNA turnover is the removal of the m7G cap structure at the 5′ end of the message. Here, we describe the functional characterization of Dhh1, a highly conserved member of the family of DEAD box-containing proteins, as a regulator of mRNA decapping in Saccharomyces cerevisiae. Dhh1 is a cytoplasmic protein and is shown to be in a complex with the mRNA degradation factor Pat1/Mtr1 and with the 5′–3′ exoribonuclease Xrn1. Dhh1 specifica...

  6. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins.

    Science.gov (United States)

    Fujisawa, Masaki; Shima, Yoko; Nakagawa, Hiroyuki; Kitagawa, Mamiko; Kimbara, Junji; Nakano, Toshitsugu; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening.

  7. Partial purification of cytolytic venom proteins from the box jellyfish, Chironex fleckeri.

    Science.gov (United States)

    Brinkman, Diane; Burnell, James

    2008-04-01

    Venom proteins from the nematocysts of Chironex fleckeri were fractionated by size-exclusion and cation-exchange chromatography. Using sheep erythrocyte haemolysis as an indicator of cytolytic activity, two major cytolysins, with native molecular masses of approximately 370 and 145kDa, and one minor cytolysin ( approximately 70kDa) were isolated. SDS-PAGE and western blot protein profiles revealed that the 370kDa haemolysin is composed of CfTX-1 and CfTX-2 subunits ( approximately 43 and 45kDa, respectively); the most abundant proteins found in C. fleckeri nematocyst extracts. The 145kDa haemolysin predominately contains two other major proteins ( approximately 39 and 41kDa), which are not antigenic towards commercially available box jellyfish antivenom or rabbit polyclonal antibodies raised against whole C. fleckeri nematocyst extracts or CfTX-1 and -2. The kinetics of CfTX-1 and -2 haemolytic activities are temperature dependent and characterised by a pre-lytic lag phase ( approximately 6-7min) prior to initiation of haemolysis. Significant amino acid sequence homology between the CfTX proteins and other box jellyfish toxins suggest that CfTX-1 and -2 may also be lethal and dermonecrotic. Therefore, further in vivo and in vitro studies are required to investigate the potential roles of CfTX-1 and -2 in the lethal effects of C. fleckeri venom. PMID:18243272

  8. Alterations in the expression of DEAD-box and other RNA binding proteins during HIV-1 replication

    OpenAIRE

    Zeichner Steven L; Krishnan Vyjayanthi

    2004-01-01

    Abstract Recent results showed that certain DEAD box protein RNA helicases, DDX3 and DDX1, play an important role in the HIV infection cycle by facilitating the export of long, singly spliced or unspliced HIV RNAs from the nucleus via the CRM1-Rev pathway. Close examination of an extensive microarray expression profiling dataset obtained from cells latently infected with HIV induced to undergo lytic viral replication indicated that additional DEAD box proteins, beyond DDX3 and DDX1, exhibit d...

  9. High mobility group box 1 protein as a late-acting mediator of acute lung inflammation.

    Science.gov (United States)

    Lutz, Waldemar; Stetkiewicz, Jan

    2004-01-01

    Acute inflammatory lung injury is often a delayed complication of critical illness and is associated with increased mortality. High mobility group box 1 (HMGB1) protein, in addition to its role as a transcriptional regulator factor, has been identified as a late mediator of endotoxin lethality and might be also involved in the development and progression of acute lung injury. HMGB1 protein itself can cause an acute inflammatory response manifested by increased production of proinflammatory cytokines and neutrophil accumulation. The delayed kinetics of HMGB1 protein release indicate that this protein is a distal mediator of acute inflamatory lung injury. Anti-HMGB1 protein antibodies attenuated endotoxin-induced lung injury, but not the early release of TNF-alpha and IL-1beta, indicating that HMGB1 protein is a late mediator of endotoxin-induced acute lung injury. HMGB1 protein is not released by apoptotic cells but is passively released by necrotic or damaged somatic and immune cells and it functions as a major stimulus of necrosis-induced inflammation. HMGB1 protein is also released by activated monocytes/macrophages and induces delayed and biphasic release of proinflammatory mediators from these cells. HMGB1 protein failed to stimulate cytokines release in lymphocytes, indicating that cellular stimulation is specific. We would like to suggest that HMGB1 protein may be also a primary mediator of the inflammatory responses to lung cells injury caused by toxic environmental chemicals.

  10. Active Nuclear Import of Membrane Proteins Revisited

    NARCIS (Netherlands)

    Laba, Justyna K; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M

    2015-01-01

    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the m

  11. Stepwise bending of DNA by a single TATA-box Binding Protein

    CERN Document Server

    Tolic-Norrelykke, S F; Pavone, F S; Berg-Sørensen, K; Oddershede, L B; Tolic-Norrelykke, Simon F.; Rasmusssen, Mette B.; Pavone, Francesco S.; Berg-Sorensen, Kirstine; Oddershede, Lene B.

    2006-01-01

    The TATA-box Binding Protein (TBP) is required by all three eukaryotic RNA polymerases for the initiation of transcription from most promoters. TBP recognizes, binds to, and bends promoter sequences called ``TATA-boxes'' in the DNA. We present results from the study of individual Saccharomyces cerevisia TBPs interacting with single DNA molecules containing a TATA-box. Using video microscopy, we observed the Brownian motion of beads tethered by short surface-bound DNA. When TBP binds to and bends the DNA, the conformation of the DNA changes and the amplitude of Brownian motion of the tethered bead is reduced compared to that of unbent DNA. We detected individual binding and dissociation events and derived kinetic parameters for the process. Dissociation was induced by increasing the salt concentration or by directly pulling on the tethered bead using optical tweezers. In addition to the well-defined free and bound classes of Brownian motion, we observed another two classes of motion. These extra classes were i...

  12. Mutational Analysis of the Escherichia coli DEAD Box Protein CsdA▿

    OpenAIRE

    Turner, Anne-Marie W.; Love, Cheraton F.; Alexander, Rebecca W.; Jones, Pamela G.

    2007-01-01

    The Escherichia coli cold shock protein CsdA is a member of the DEAD box family of ATP-dependent RNA helicases, which share a core of nine conserved motifs. The DEAD (Asp-Glu-Ala-Asp) motif for which this family is named has been demonstrated to be essential for ATP hydrolysis. We show here that CsdA exhibits in vitro ATPase and helicase activities in the presence of short RNA duplexes with either 3′ or 5′ extensions at 15°C. In contrast to wild-type CsdA, a DQAD variant of CsdA (Glu-157→Gln)...

  13. Cloning and characterization of high mobility group box protein 1 (HMGB1) of Wuchereria bancrofti and Brugia malayi

    OpenAIRE

    Thirugnanam, Sivasakthivel; Munirathinam, Gnanasekar; Veerapathran, Anandharaman; Dakshinamoorthy, Gajalakshmi; Reddy, Maryada V.; RAMASWAMY, KALYANASUNDARAM

    2012-01-01

    A human homologue of high mobility group box 1 (HMGB1) protein was cloned and characterized from the human filarial parasites Wuchereria bancrofti and Brugia malayi. Sequence analysis showed that W. bancrofti HMGB1 (WbHMGB1) and B. malayi HMGB1 (BmHMGB1) proteins share 99 % sequence identity. Filarial HMGB1 showed typical architectural sequence characteristics of HMGB family of proteins and consisted of only a single HMG box domain that had significant sequence similarity to the pro-inflammat...

  14. Insulin Is Required to Maintain Albumin Expression by Inhibiting Forkhead Box O1 Protein.

    Science.gov (United States)

    Chen, Qing; Lu, Mingjian; Monks, Bobby R; Birnbaum, Morris J

    2016-01-29

    Diabetes is accompanied by dysregulation of glucose, lipid, and protein metabolism. In recent years, much effort has been spent on understanding how insulin regulates glucose and lipid metabolism, whereas the effect of insulin on protein metabolism has received less attention. In diabetes, hepatic production of serum albumin decreases, and it has been long established that insulin positively controls albumin gene expression. In this study, we used a genetic approach in mice to identify the mechanism by which insulin regulates albumin gene transcription. Albumin expression was decreased significantly in livers with insulin signaling disrupted by ablation of the insulin receptor or Akt. Concomitant deletion of Forkhead Box O1 (Foxo1) in these livers rescued the decreased albumin secretion. Furthermore, activation of Foxo1 in the liver is sufficient to suppress albumin expression. These results suggest that Foxo1 acts as a repressor of albumin expression.

  15. APC/C(Cdh1-mediated degradation of the F-box protein NIPA is regulated by its association with Skp1.

    Directory of Open Access Journals (Sweden)

    Christine von Klitzing

    Full Text Available NIPA (Nuclear Interaction Partner of Alk kinase is an F-box like protein that targets nuclear Cyclin B1 for degradation. Integrity and therefore activity of the SCF(NIPA E3 ligase is regulated by cell-cycle-dependent phosphorylation of NIPA, restricting substrate ubiquitination to interphase. Here we show that phosphorylated NIPA is degraded in late mitosis in an APC/C(Cdh1-dependent manner. Binding of the unphosphorylated form of NIPA to Skp1 interferes with binding to the APC/C-adaptor protein Cdh1 and therefore protects unphosphorylated NIPA from degradation in interphase. Our data thus define a novel mode of regulating APC/C-mediated ubiquitination.

  16. Protein dynamics from nuclear magnetic relaxation.

    Science.gov (United States)

    Charlier, Cyril; Cousin, Samuel F; Ferrage, Fabien

    2016-05-01

    Nuclear magnetic resonance is a ubiquitous spectroscopic tool to explore molecules with atomic resolution. Nuclear magnetic relaxation is intimately connected to molecular motions. Many methods and models have been developed to measure and interpret the characteristic rates of nuclear magnetic relaxation in proteins. These approaches shed light on a rich and diverse range of motions covering timescales from picoseconds to seconds. Here, we introduce some of the basic concepts upon which these approaches are built and provide a series of illustrations.

  17. High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy.

    Science.gov (United States)

    Parker, Katherine H; Horn, Lucas A; Ostrand-Rosenberg, Suzanne

    2016-09-01

    Myeloid-derived suppressor cells are immune-suppressive cells that are elevated in most individuals with cancer, where their accumulation and suppressive activity are driven by inflammation. As myeloid-derived suppressor cells inhibit anti-tumor immunity and promote tumor progression, we are determining how their viability is regulated. Previous studies have established that the damage-associated molecular pattern molecule high-mobility group box protein 1 drives myeloid-derived suppressor cell accumulation and suppressive potency and is ubiquitously present in the tumor microenvironment. As high-mobility group box protein 1 also facilitates tumor cell survival by inducing autophagy, we sought to determine if high-mobility group box protein 1 regulates myeloid-derived suppressor cell survival through induction of autophagy. Inhibition of autophagy increased the quantity of apoptotic myeloid-derived suppressor cells, demonstrating that autophagy extends the survival and increases the viability of myeloid-derived suppressor cells. Inhibition of high-mobility group box protein 1 similarly increased the level of apoptotic myeloid-derived suppressor cells and reduced myeloid-derived suppressor cell autophagy, demonstrating that in addition to inducing the accumulation of myeloid-derived suppressor cells, high-mobility group box protein 1 sustains myeloid-derived suppressor cell viability. Circulating myeloid-derived suppressor cells have a default autophagic phenotype, and tumor-infiltrating myeloid-derived suppressor cells are more autophagic, consistent with the concept that inflammatory and hypoxic conditions within the microenvironment of solid tumors contribute to tumor progression by enhancing immune-suppressive myeloid-derived suppressor cells. Overall, these results demonstrate that in addition to previously recognized protumor effects, high-mobility group box protein 1 contributes to tumor progression by increasing myeloid-derived suppressor cell viability by

  18. Anabolic Properties of High Mobility Group Box Protein-1 in Human Periodontal Ligament Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Michael Wolf

    2014-01-01

    Full Text Available High mobility group box protein-1 (HMGB1 is mainly recognized as a chemoattractant for macrophages in the initial phase of host response to pathogenic stimuli. However, recent findings provide evidence for anabolic properties in terms of enhanced proliferation, migration, and support of wound healing capacity of mesenchymal cells suggesting a dual role of the cytokine in the regulation of immune response and subsequent regenerative processes. Here, we examined potential anabolic effects of HMGB1 on human periodontal ligament (PDL cells in the regulation of periodontal remodelling, for example, during orthodontic tooth movement. Preconfluent human PDL cells (hPDL were exposed to HMGB1 protein and the influence on proliferation, migration, osteogenic differentiation, and biomineralization was determined by MTS assay, real time PCR, immunofluorescence cytochemistry, ELISA, and von Kossa staining. HMGB1 protein increased hPDL cell proliferation, migration, osteoblastic marker gene expression, and protein production as well as mineralized nodule formation significantly. The present findings support the dual character of HMGB1 with anabolic therapeutic potential that might support the reestablishment of the structural and functional integrity of the periodontium following periodontal trauma such as orthodontic tooth movement.

  19. Monte Carlo simulation of a clearance box monitor used for nuclear power plant decommissioning.

    Science.gov (United States)

    Bochud, François O; Laedermann, Jean-Pascal; Bailat, Claude J; Schuler, Christoph

    2009-05-01

    When decommissioning a nuclear facility it is important to be able to estimate activity levels of potentially radioactive samples and compare with clearance values defined by regulatory authorities. This paper presents a method of calibrating a clearance box monitor based on practical experimental measurements and Monte Carlo simulations. Adjusting the simulation for experimental data obtained using a simple point source permits the computation of absolute calibration factors for more complex geometries with an accuracy of a bit more than 20%. The uncertainty of the calibration factor can be improved to about 10% when the simulation is used relatively, in direct comparison with a measurement performed in the same geometry but with another nuclide. The simulation can also be used to validate the experimental calibration procedure when the sample is supposed to be homogeneous but the calibration factor is derived from a plate phantom. For more realistic geometries, like a small gravel dumpster, Monte Carlo simulation shows that the calibration factor obtained with a larger homogeneous phantom is correct within about 20%, if sample density is taken as the influencing parameter. Finally, simulation can be used to estimate the effect of a contamination hotspot. The research supporting this paper shows that activity could be largely underestimated in the event of a centrally-located hotspot and overestimated for a peripherally-located hotspot if the sample is assumed to be homogeneously contaminated. This demonstrates the usefulness of being able to complement experimental methods with Monte Carlo simulations in order to estimate calibration factors that cannot be directly measured because of a lack of available material or specific geometries. PMID:19359851

  20. The divergently transcribed genes encoding yeast ribosomal proteins L46 and S24 are activated by shared RPG-boxes.

    OpenAIRE

    Kraakman, L.S.; Mager, W H; Maurer, K T; Nieuwint, R T; Planta, R J

    1989-01-01

    Transcription of the majority of the ribosomal protein (rp) genes in yeast is activated through common cis-acting elements, designated RPG-boxes. These elements have been shown to act as specific binding sites for the protein factor TUF/RAP1/GRF1 in vitro. Two such elements occur in the intergenic region separating the divergently transcribed genes encoding L46 and S24. To investigate whether the two RPG-boxes mediate transcription activation of both the L46 and S24 gene, two experimental str...

  1. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate.

    Science.gov (United States)

    Ikeda, Kyoko; Ito, Momoyo; Nagasawa, Nobuhiro; Kyozuka, Junko; Nagato, Yasuo

    2007-09-01

    Inflorescence architecture is one of the most important agronomical traits. Characterization of rice aberrant panicle organization 1 (apo1) mutants revealed that APO1 positively controls spikelet number by suppressing the precocious conversion of inflorescence meristems to spikelet meristems. In addition, APO1 is associated with the regulation of the plastchron, floral organ identity, and floral determinacy. Phenotypic analyses of apo1 and floral homeotic double mutants demonstrate that APO1 positively regulates class-C floral homeotic genes, but not class-B genes. Molecular studies revealed that APO1 encodes an F-box protein, an ortholog of Arabidopsis UNUSUAL FLORAL ORGAN (UFO), which is a positive regulator of class-B genes. Overexpression of APO1 caused an increase in inflorescence branches and spikelets. As the mutant inflorescences and flowers differed considerably between apo1 and ufo, the functions of APO1 and UFO appear to have diverged during evolution. PMID:17666027

  2. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate.

    Science.gov (United States)

    Ikeda, Kyoko; Ito, Momoyo; Nagasawa, Nobuhiro; Kyozuka, Junko; Nagato, Yasuo

    2007-09-01

    Inflorescence architecture is one of the most important agronomical traits. Characterization of rice aberrant panicle organization 1 (apo1) mutants revealed that APO1 positively controls spikelet number by suppressing the precocious conversion of inflorescence meristems to spikelet meristems. In addition, APO1 is associated with the regulation of the plastchron, floral organ identity, and floral determinacy. Phenotypic analyses of apo1 and floral homeotic double mutants demonstrate that APO1 positively regulates class-C floral homeotic genes, but not class-B genes. Molecular studies revealed that APO1 encodes an F-box protein, an ortholog of Arabidopsis UNUSUAL FLORAL ORGAN (UFO), which is a positive regulator of class-B genes. Overexpression of APO1 caused an increase in inflorescence branches and spikelets. As the mutant inflorescences and flowers differed considerably between apo1 and ufo, the functions of APO1 and UFO appear to have diverged during evolution.

  3. TIF1alpha: a possible link between KRAB zinc finger proteins and nuclear receptors

    DEFF Research Database (Denmark)

    Le Douarin, B; You, J; Nielsen, Anders Lade;

    1998-01-01

    Ligand-induced gene activation by nuclear receptors (NRs) is thought to be mediated by transcriptional intermediary factors (TIFs), that interact with their ligand-dependent AF-2 activating domain. Included in the group of the putative AF-2 TIFs identified so far is TIF1alpha, a member of a new...... family of proteins which contains an N-terminal RBCC (RING finger-B boxes-coiled coil) motif and a C-terminal bromodomain preceded by a PHD finger. In addition to these conserved domains present in a number of transcriptional regulatory proteins, TIF1alpha was found to contain several protein......-protein interaction sites. Of these, one specifically interacts with NRs bound to their agonistic ligand and not with NR mutants that are defective in the AF-2 activity. Immediately adjacent to this 'NR box', TIF1alpha contains an interaction site for members of the chromatin organization modifier (chromo) family, HP...

  4. Plant F-box protein evolution is determined by lineage-specific timing of major gene family expansion waves.

    Directory of Open Access Journals (Sweden)

    Aura Navarro-Quezada

    Full Text Available F-box proteins (FBPs represent one of the largest and fastest evolving gene/protein families in the plant kingdom. The FBP superfamily can be divided in several subfamilies characterized by different C-terminal protein-protein interaction domains that recruit targets for proteasomal degradation. Hence, a clear picture of their phylogeny and molecular evolution is of special interest for the general understanding of evolutionary histories of multi-domain and/or large protein families in plants. In an effort to further understand the molecular evolution of F-box family proteins, we asked whether the largest subfamily in Arabidopsis thaliana, which carries a C-terminal F-box associated domain (FBA proteins shares evolutionary patterns and signatures of selection with other FBPs. To address this question, we applied phylogenetic and molecular evolution analyses in combination with the evaluation of transcriptional profiles. Based on the 2219 FBA proteins we de novo identified in 34 completely sequenced plant genomes, we compared their evolutionary patterns to a previously analyzed large subfamily carrying C-terminal kelch repeats. We found that these two large FBP subfamilies generally tend to evolve by massive waves of duplication, followed by sequence conservation of the F-box domain and sequence diversification of the target recruiting domain. We conclude that the earlier in evolutionary time a major wave of expansion occurred, the more pronounced these selection signatures are. As a consequence, when performing cross species comparisons among FBP subfamilies, significant differences will be observed in the selective signatures of protein-protein interaction domains. Depending on the species, the investigated subfamilies comprise up to 45% of the complete superfamily, indicating that other subfamilies possibly follow similar modes of evolution.

  5. Visualization of radiation-induced cell cycle-associated events in tumor cells expressing the fusion protein of Azami Green and the destruction box of human Geminin

    International Nuclear Information System (INIS)

    Ionizing radiation (IR) influences cell cycle-associated events in tumor cells. We expressed the fusion protein of Azami Green (AG) and the destruction box plus nuclear localization signal of human Geminin, an inhibitor of DNA replication licensing factor, in oral tumor cells. This approach allowed us to visualize G2 arrest in living cells following irradiation. The combination of time-lapse imaging analysis allowed us to observe the nuclear envelope break down (NEBD) at early M phase, and disappearance of fluorescence (DF) at the end of M phase. The duration from NEBD to DF was not much affected in irradiated cells; however, most of daughter cells harbored double-strand breaks. Complete DF was also observed in cells exhibiting abnormal mitosis or cytokinesis. We conclude that the fluorescent Geminin probe could function as a stable cell cycle indicator irrespective of genome integrity.

  6. Potentiation of NMDA receptor-dependent cell responses by extracellular high mobility group box 1 protein.

    Directory of Open Access Journals (Sweden)

    Marco Pedrazzi

    Full Text Available BACKGROUND: Extracellular high mobility group box 1 (HMGB1 protein can operate in a synergistic fashion with different signal molecules promoting an increase of cell Ca(2+ influx. However, the mechanisms responsible for this effect of HMGB1 are still unknown. PRINCIPAL FINDINGS: Here we demonstrate that, at concentrations of agonist per se ineffective, HMGB1 potentiates the activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR in isolated hippocampal nerve terminals and in a neuroblastoma cell line. This effect was abolished by the NMDA channel blocker MK-801. The HMGB1-facilitated NMDAR opening was followed by activation of the Ca(2+-dependent enzymes calpain and nitric oxide synthase in neuroblastoma cells, resulting in an increased production of NO, a consequent enhanced cell motility, and onset of morphological differentiation. We have also identified NMDAR as the mediator of HMGB1-stimulated murine erythroleukemia cell differentiation, induced by hexamethylenebisacetamide. The potentiation of NMDAR activation involved a peptide of HMGB1 located in the B box at the amino acids 130-139. This HMGB1 fragment did not overlap with binding sites for other cell surface receptors of HMGB1, such as the advanced glycation end products or the Toll-like receptor 4. Moreover, in a competition assay, the HMGB1((130-139 peptide displaced the NMDAR/HMGB1 interaction, suggesting that it comprised the molecular and functional site of HMGB1 regulating the NMDA receptor complex. CONCLUSION: We propose that the multifunctional cytokine-like molecule HMGB1 released by activated, stressed, and damaged or necrotic cells can facilitate NMDAR-mediated cell responses, both in the central nervous system and in peripheral tissues, independently of other known cell surface receptors for HMGB1.

  7. Age-dependent expression of forkhead box O proteins in the duodenum of rats

    Institute of Scientific and Technical Information of China (English)

    Pan HUANG; Zhen-qi ZHOU; Rui-hua HUANG; Bo ZHOU; Quan-wei WEI; Fang-xiong SHI

    2011-01-01

    The O subfamily of forkhead box (FoxO) proteins is the downstream effector of the insulin-like growth factor-1/phosphoinositide 3-kinase/protein kinase B (IGF-1/PI3K/PKB) signal pathway.The objective of the present study was to examine the expressions of three members of FoxO proteins,FoxO1,FoxO3a,and FoxO4 in the duodenum of Sprague-Dawley rats at different ages.The result demonstrated that the expression of FoxO4 in rat duodenum showed an age-dependent manner.At Day 21,there were no detectable localization and expression of FoxO4 in the duodenum,while,at Months 2 and 6,localization and expression of FoxO4 were distinct.In addition,FoxO4 staining was primarily concentrated in the cell nuclei of the lamina propria around the intestinal gland of the duodenum in 2-month-old rats,but was not detectable in the same area in 6-month-old rats.Our results showed also that although FoxO3a existed in the cytoplasm of the lamina propria at a low level at the 2- and 6-month marks,it was still not detectable at Day 21.Besides,FoxO1 was not detectable in all parts and stages.Taken together,our findings suggested that the cell-specific and age-dependent expressional patterns of FoxO4 and FoxO3a proteins in the duodenum play some roles in the development and growth performance of the rat duodenum.

  8. The Y-Box Binding Protein 1 Suppresses Alzheimer's Disease Progression in Two Animal Models.

    Directory of Open Access Journals (Sweden)

    N V Bobkova

    Full Text Available The Y-box binding protein 1 (YB-1 is a member of the family of DNA- and RNA binding proteins. It is involved in a wide variety of DNA/RNA-dependent events including cell proliferation and differentiation, stress response, and malignant cell transformation. Previously, YB-1 was detected in neurons of the neocortex and hippocampus, but its precise role in the brain remains undefined. Here we show that subchronic intranasal injections of recombinant YB-1, as well as its fragment YB-11-219, suppress impairment of spatial memory in olfactory bulbectomized (OBX mice with Alzheimer's type degeneration and improve learning in transgenic 5XFAD mice used as a model of cerebral amyloidosis. YB-1-treated OBX and 5XFAD mice showed a decreased level of brain β-amyloid. In OBX animals, an improved morphological state of neurons was revealed in the neocortex and hippocampus; in 5XFAD mice, a delay in amyloid plaque progression was observed. Intranasally administered YB-1 penetrated into the brain and could enter neurons. In vitro co-incubation of YB-1 with monomeric β-amyloid (1-42 inhibited formation of β-amyloid fibrils, as confirmed by electron microscopy. This suggests that YB-1 interaction with β-amyloid prevents formation of filaments that are responsible for neurotoxicity and neuronal death. Our data are the first evidence for a potential therapeutic benefit of YB-1 for treatment of Alzheimer's disease.

  9. Nuclear variants of bone morphogenetic proteins

    Directory of Open Access Journals (Sweden)

    Meinhart Christopher A

    2010-03-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs contribute to many different aspects of development including mesoderm formation, heart development, neurogenesis, skeletal development, and axis formation. They have previously been recognized only as secreted growth factors, but the present study detected Bmp2, Bmp4, and Gdf5/CDMP1 in the nuclei of cultured cells using immunocytochemistry and immunoblotting of nuclear extracts. Results In all three proteins, a bipartite nuclear localization signal (NLS was found to overlap the site at which the proproteins are cleaved to release the mature growth factors from the propeptides. Mutational analyses indicated that the nuclear variants of these three proteins are produced by initiating translation from downstream alternative start codons. The resulting proteins lack N-terminal signal peptides and are therefore translated in the cytoplasm rather than the endoplasmic reticulum, thus avoiding proteolytic processing in the secretory pathway. Instead, the uncleaved proteins (designated nBmp2, nBmp4, and nGdf5 containing the intact NLSs are translocated to the nucleus. Immunostaining of endogenous nBmp2 in cultured cells demonstrated that the amount of nBmp2 as well as its nuclear/cytoplasmic distribution differs between cells that are in M-phase versus other phases of the cell cycle. Conclusions The observation that nBmp2 localization varies throughout the cell cycle, as well as the conservation of a nuclear localization mechanism among three different BMP family members, suggests that these novel nuclear variants of BMP family proteins play an important functional role in the cell.

  10. The BRCA1-binding protein BRAP2 can act as a cytoplasmic retention factor for nuclear and nuclear envelope-localizing testicular proteins.

    Science.gov (United States)

    Davies, Rebecca G; Wagstaff, Kylie M; McLaughlin, Eileen A; Loveland, Kate L; Jans, David A

    2013-12-01

    Regulation of nuclear protein import is central to many cellular processes such as development, with a key mechanism being factors that retain cargoes in the cytoplasm that normally localize in the nucleus. The breast cancer antigen BRCA1-binding protein BRAP2 has been reported as a novel negative regulator of nuclear import of various nuclear localization signal (NLS)-containing viral and cellular proteins, but although implicated in differentiation pathways and highly expressed in tissues including testis, the gamut of targets for BRAP2 action in a developmental context is unknown. As a first step towards defining the BRAP2 interactome, we performed a yeast-2-hybrid screen to identify binding partners of BRAP2 in human testis. Here we report characterization for the first time of three of these: the high mobility group (HMG)-box-domain-containing chromatin component HMG20A, nuclear mitotic apparatus protein NuMA1 and synaptic nuclear envelope protein SYNE2. Co-immunoprecipitation experiments indicate association of BRAP2 with HMG20A, NuMA1, and SYNE2 in testis, underlining the physiological relevance of the interactions, with immunohistochemistry showing that where BRAP2 is co-expressed with HMG20A and NuMA1, both are present in the cytoplasm, in contrast to their nuclear localization in other testicular cell types. Importantly, quantitative confocal microscopic analysis of cultured cells indicates that ectopic expression of BRAP2 inhibits nuclear localization of HMG20A and NuMA1, and prevents nuclear envelope accumulation of SYNE2, the first report of BRAP2 altering localization of a non-nuclear protein. These results imply for the first time that BRAP2 may have an important role in modulating subcellular localization during testicular development. PMID:23707952

  11. The F-box protein MEC-15 (FBXW9 promotes synaptic transmission in GABAergic motor neurons in C. elegans.

    Directory of Open Access Journals (Sweden)

    Yu Sun

    Full Text Available Ubiquitination controls the activity of many proteins and has been implicated in almost every aspect of neuronal cell biology. Characterizing the precise function of ubiquitin ligases, the enzymes that catalyze ubiquitination of target proteins, is key to understanding distinct functions of ubiquitination. F-box proteins are the variable subunits of the large family of SCF ubiquitin ligases and are responsible for binding and recognizing specific ubiquitination targets. Here, we investigated the function of the F-box protein MEC-15 (FBXW9, one of a small number of F-box proteins evolutionarily conserved from C. elegans to mammals. mec-15 is widely expressed in the nervous system including GABAergic and cholinergic motor neurons. Electrophysiological and behavioral analyses indicate that GABAergic synaptic transmission is reduced in mec-15 mutants while cholinergic transmission appears normal. In the absence of MEC-15, the abundance of the synaptic vesicle protein SNB-1 (synaptobrevin is reduced at synapses and increased in cell bodies of GABAergic motor neurons, suggesting that MEC-15 affects the trafficking of SNB-1 between cell bodies and synapses and may promote GABA release by regulating the abundance of SNB-1 at synapses.

  12. The implication and potential applications of high-mobility group box 1 protein in breast cancer.

    Science.gov (United States)

    Sohun, Moonindranath; Shen, Huiling

    2016-06-01

    High-mobility group box 1 protein (HMGB1) is a highly conserved, non-histone and ubiquitous chromosomal protein found enriched in active chromatin forming part of the high mobility group family of proteins and is encoded by the HMGB1 gene (13q12) in human beings. It has various intranuclear and extracellular functions. It plays an important role in the pathogenesis of many diseases including cancer. In 2012, there was approximately 1.67 million new breast cancer cases diagnosed which makes it the second most frequent cancer in the world after lung cancer (25% of all cancers) and the commonest cancer among women. Both pre-clinical and clinical studies have suggested that HMGB1 might be a useful target in the management of breast cancer. This review summarises the structure and functions of HMGB1 and its dual role in carcinogenesis both as a pro-tumorigenic and anti-tumorigenic factor. It also sums up evidence from in vitro and in vivo studies using breast cancer cell lines and samples which demonstrate its influence in radiotherapy, chemotherapy and hormonal therapy in breast cancer. It may have particular importance in HER2 positive and metastatic breast cancer. It might pave the way for new breast cancer treatments through development of novel drugs, use of microRNAs (miRNAs), targeting breast cancer stem cells (CSCs) and breast cancer immunotherapy. It may also play a role in determining breast cancer prognosis. Thus HMGB1 may open up novel avenues in breast cancer management.

  13. In silico studies on structure-function of DNA GCC- box binding domain of brassica napus DREB1 protein

    International Nuclear Information System (INIS)

    DREB1 is a transcriptional factor, which selectively binds with the promoters of the genes involved in stress response in the plants. Homology of DREB protein and its binding element have been detected in the genome of many plants. However, only a few reports exist that discusses the binding properties of this protein with the gene (s) promoter. In the present study, we have undertaken studies exploring the structure-function relationship of Brassica napus DREB1. Multiple sequence alignment, protein homology modeling and intermolecular docking of GCC-box binding domain (GBD) of the said protein was carried out using atomic coordinates of GBD from Arabdiopsis thaliana and GCC-box containing DNA respectively. Similarities and/or identities in multiple, sequence alignment, particularly at the functionally important amino acids, strongly suggested the binding specificity of B. napus DREB1 to GCC-box. Similarly, despite 56% sequence homology, tertiary structures of both template and modeled protein were found to be extremely similar as indicated by root mean square deviation of 0.34 A. More similarities were established between GBD of both A. thaliana and B. napus DREB1 by conducting protein docking with the DNA containing GCC-box. It appears that both proteins interact through their beta-sheet with the major DNA groove including both nitrogen bases and phosphate and sugar moieties. Additionally, in most cases the interacting residues were also found to be identical. Briefly, this study attempts to elucidate the molecular basis of DREB1 interaction with its target sequence in the promoter. (author)

  14. Identification and characterization of GIP1, an Arabidopsis thaliana protein that enhances the DNA binding affinity and reduces the oligomeric state of G-box binding factors

    Institute of Scientific and Technical Information of China (English)

    Paul C. SEHNKE; Beth J. LAUGHNER; Carla R. LYERLY LINEBARGER; William B. GURLEY; Robert J.FERL

    2005-01-01

    Environmental control of the alcohol dehydrogenase (Adh) and other stress response genes in plants is in part brought about by transcriptional regulation involving the G-box cis-acting DNA element and bZIP G-box Binding Factors (GBFs).The mechanisms of GBF regulation and requirements for additional factors in this control process are not well understood.In an effort to identify potential GBF binding and control partners, maize GBF1 was used as bait in a yeast two-hybrid screen of an A. thaliana cDNA library. GBF Interacting Protein 1 (GIP1) arose from the screen as a 496 amino acid protein with a predicted molecular weight of 53,748 kDa that strongly interacts with GBFs. Northern analysis of A.thaliana tissue suggests a 1.8-1.9 kb GIP1 transcript, predominantly in roots. Immunolocalization studies indicate that GIP1 protein is mainly localized to the nucleus. In vitro electrophoretic mobility shift assays using an Adh G-box DNA probe and recombinant A. thaliana GBF3 or maize GBF1, showed that the presence of GIP1 resulted in a tenfold increase in GBF DNA binding activity without altering the migration, suggesting a transient association between GIP1 and GBF. Addition of GIP1 to intentionally aggregated GBF converted GBF to lower molecular weight macromolecular complexes and GIP1 also refolded denatured rhodanese in the absence of ATP. These data suggest GIP1 functions to enhance GBF DNA binding activity by acting as a potent nuclear chaperone or crowbar, and potentially regulates the multimeric state of GBFs, thereby contributing to bZIP-mediated gene regulation.

  15. SRY interacts with ribosomal proteins S7 and L13a in nuclear speckles.

    Science.gov (United States)

    Sato, Youichi; Yano, Shojiro; Ewis, Ashraf A; Nakahori, Yutaka

    2011-05-01

    The SRY (sex-determining region on the Y chromosome) is essential for male development; however, the molecular mechanism by which the SRY induces testis development is still unclear. To elucidate the mechanism of testis development, we identified SRY-interacting proteins using a yeast two-hybrid system. We found two ribosomal proteins, RPS7 (ribosomal protein S7) and RPL13a (ribosomal protein L13a) that interact with the HMG (high-mobility group) box domain of SRY. Furthermore, we confirmed the intracellular distributions of RPS7, RPL13a and SRY and found that the three proteins were co-expressed in COS1 cells. SRY, RPS7 and RPL13a were co-localized in nuclear speckles. These findings suggest that SRY plays an important role in activities associated with nuclear speckles via an unknown mechanism.

  16. High mobility group box 1 protein: possible pathogenic link to atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    HU Xiao-rong; WANG Xiao-hong; LIU Hue-fen; ZHOU Wen-jie; JIANG Hong

    2012-01-01

    Atrial fibrillation (AF) is the most common sustained dysrhythmia in clinical practice.The bulk of evidence suggests that inflammatory processes,oxidative stress and matrix metalloproteinase are associated with development of AF.However,these agents may be involved in high mobility group box 1 protein (HMGB1).We hypothesized that HMGB1 may be a possible pathogenic link to AF.A growing body of evidence supports these hypotheses.First,the level of serum HMGB1 is significantly increased in patients with AF including paroxysmal and persistent AF.Second,HMGB1 has been identified as a new pro-inflammatory cytokine in cardiovascular diseases,along with tumor necrosis factor (TNF)-α,interleukin (IL)-6,and C-reactive protein,and there is cross-talk between HMGB1 and inflammatory cytokines.Third,oxidative stress is involved in the release of the pro-inflammatory cytokine,HMGB1,indicating there is cross-talk between oxidative stress and inflammation,and oxidative stress may reinforce the effect of inflammation on the pathogenesis of AF and inflammation may play a more important role in the pathogenesis of AF.Fourth,HMGB1 can promote matrix metalloproteinase-9 upregulation and activation.Fifth,HMGB1 receptors (receptor for advanced glycation end products,Toll-like receptor-2,4) may mediate the atrial structural remodeling or be up-regulated in patients with non-valvular AF.These results suggest that HMGB1 may participate in the pathogenesis of AF and provide a potential target for pharmacological interruption of AF.

  17. The clinical significance of forkhead box protein A1 and its role in colorectal cancer

    Science.gov (United States)

    Ma, Wenqi; Jiang, Jue; Li, Miao; Wang, Hua; Zhang, Hongli; He, Xin; Huang, Lili; Zhou, Qi

    2016-01-01

    Forkhead box protein A1 (FOXA1) is a transcription factor; recent studies have reported that FOXA1 has an oncogenic or tumor suppressive role in human malignancies, and its expression is associated with the prognosis of patients with cancer. However, further studies are required to determine the clinical significance of FOXA1 and its role in colorectal cancer (CRC). In the present study, FOXA1 expression was detected in 90 samples of CRC tissues and matched noncancerous tissues using immunohistochemistry. In these cases, FOXA1 expression was detected in 57.8% (52/90) of the CRC samples, whereas only 37.8% (34/90) of the noncancerous specimens exhibited a positive FOXA1 signal. In addition, the present study demonstrated that the mRNA expression levels of FOXA1 were significantly increased in CRC tissues compared with in matched tumor-adjacent tissues. Furthermore, the positive expression of FOXA1 was associated with poor clinicopathological characteristics of CRC, including poor tumor differentiation, large tumor size, lymph node metastases and advanced tumor-node-metastasis tumor stage. Notably, patients with CRC with positive FOXA1 expression exhibited a significantly reduced 5-year survival rate compared with those with negative FOXA1 expression. Multivariate Cox regression analysis revealed that FOXA1 expression was an independent prognostic indicator for patients with CRC. In addition, FOXA1 knockdown evidently inhibited cell proliferation and induced apoptosis in SW480 and HCT116 CRC cells. Notably, FOXA1 knockdown also prominently reduced the expression of yes-associated protein (YAP) in SW480 and HCT116 cells. In conclusion, the results of the present study indicated that FOXA1 may be considered a potential prognostic marker, and may promote tumor growth of CRC by upregulating YAP expression. PMID:27484093

  18. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis

    OpenAIRE

    Durfee, Tim; Roe, Judith L.; Sessions, R. Allen; Inouye, Carla; Serikawa, Kyle; Feldmann, Kenneth A.; Weigel, Detlef; Zambryski, Patricia C.

    2003-01-01

    The UNUSUAL FLORAL ORGANS (UFO) gene is required for multiple processes in the developing Arabidopsis flower, including the proper patterning and identity of both petals and stamens. The gene encodes an F-box-containing protein, UFO, which interacts physically and genetically with the Skp1 homolog, ASK1. In this report, we describe four ufo alleles characterized by the absence of petals, which uncover another role for UFO in promoting second whorl development. This UFO...

  19. Characterization of differential ripening pattern in association with ethylene biosynthesis in the fruits of five naturally occurring banana cultivars and detection of a GCC-box-specific DNA-binding protein.

    Science.gov (United States)

    Choudhury, Swarup Roy; Roy, Sujit; Saha, Progya Paramita; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2008-07-01

    MA-ACS1 and MA-ACO1 are the two major ripening genes in banana and play crucial role in the regulation of ethylene production during ripening. Here, we report a comparative ripening pattern in five different naturally occurring banana cultivars namely Cavendish (AAA), Rasthali (AAB), Kanthali (AB), Poovan (AAB) and Monthan (ABB), which have distinct genome composition. We found a distinct variation in the climacteric ethylene production and in-vivo ACC oxidase activity level during the ripening stages in the five cultivars. We identified the cDNAs for MA-ACS1 and MA-ACO1 from the five cultivars and studied the transcript accumulation patterns of the two genes, which correlated well with the differential timing in the expression of these two genes during ripening. The GCC-box is one of the ethylene-responsive elements (EREs) found in the promoters of many ethylene-inducible genes. We have identified a GCC-box motif (putative ERE) in the promoters of MA-ACS1 and MA-ACO1 in banana cultivars. DNA-protein interaction studies revealed the presence of a GCC-box-specific DNA-binding activity in the fruit nuclear extract and such DNA-binding activity was enhanced following ethylene treatment. South-Western blotting revealed a 25-kDa nuclear protein that binds specifically to GCC-box DNA in the climacteric banana fruit. Together, these results indicate the probable involvement of the GCC-box motif as the cis-acting ERE in the regulation of MA-ACS1 and MA-ACO1 during ripening in banana fruits via binding of specific ERE-binding protein.

  20. Cloning and characterization of two cDNAs encoding rice MADS box protein

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To elucidate the relationship between MADS box gene and rice morphogenesis, RT-PCR with MADSdomain specific primers was performed to isolate MADS box gene from young panicle of rice "Zhenshan 97B". Two cD-NAs, designated as nmadsl and nmads3, displayed the structure of a typical plant MADS box gene which consists of theMADS domain, I region, K domain, and C-terminal region. Based on sequence homology, nmadsl is classified as amember of GLO subfamily, and nmads3 belongs to AGL2 subfamily. Hybridization analysis revealed that nmadsl andnmads3 were preferentially expressed in rice redifferentiated callus and young panicles but were not in rice seedling. Anadditional transcript of nmadsl was also found in young panicle of cytoplasmic male-sterile line Zhenshan 97A but wasnot in its maintenance line Zhanshan 97B.

  1. NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box Proteins FBXW11 and β-TRCP1 To Degrade the Antiviral Protein Kinase PKR

    Science.gov (United States)

    Kainulainen, Markus; Lau, Simone; Samuel, Charles E.; Hornung, Veit

    2016-01-01

    ABSTRACT Rift Valley fever virus (RVFV, family Bunyaviridae, genus Phlebovirus) is a relevant pathogen of both humans and livestock in Africa. The nonstructural protein NSs is a major virulence factor known to suppress the type I interferon (IFN) response by inhibiting host cell transcription and by proteasomal degradation of a major antiviral IFN effector, the translation-inhibiting protein kinase PKR. Here, we identified components of the modular SCF (Skp1, Cul1, F-box protein)-type E3 ubiquitin ligases as mediators of PKR destruction by NSs. Small interfering RNAs (siRNAs) against the conserved SCF subunit Skp1 protected PKR from NSs-mediated degradation. Consequently, RVFV replication was severely reduced in Skp1-depleted cells when PKR was present. SCF complexes have a variable F-box protein subunit that determines substrate specificity for ubiquitination. We performed an siRNA screen for all (about 70) human F-box proteins and found FBXW11 to be involved in PKR degradation. The partial stabilization of PKR by FBXW11 depletion upregulated PKR autophosphorylation and phosphorylation of the PKR substrate eIF2α and caused a shutoff of host cell protein synthesis in RVFV-infected cells. To maximally protect PKR from the action of NSs, knockdown of structurally and functionally related FBXW1 (also known as β-TRCP1), in addition to FBXW11 deletion, was necessary. Consequently, NSs was found to interact with both FBXW11 and β-TRCP1. Thus, NSs eliminates the antiviral kinase PKR by recruitment of SCF-type E3 ubiquitin ligases containing FBXW11 and β-TRCP1 as substrate recognition subunits. This antagonism of PKR by NSs is essential for efficient RVFV replication in mammalian cells. IMPORTANCE Rift Valley fever virus is a pathogen of humans and animals that has the potential to spread from Africa and the Arabian Peninsula to other regions. A major virulence mechanism is the proteasomal degradation of the antiviral kinase PKR by the viral protein NSs. Here, we

  2. Expression of Y-box-binding protein YB-1 allows stratification into long- and short-term survivors of head and neck cancer patients

    Science.gov (United States)

    Kolk, A; Jubitz, N; Mengele, K; Mantwill, K; Bissinger, O; Schmitt, M; Kremer, M; Holm, P S

    2011-01-01

    Background: Histology-based classifications and clinical parameters of head and neck squamous cell carcinoma (HNSCC) are limited in their clinical capacity to provide information on prognosis and treatment choice of HNSCC. The primary aim of this study was to analyse Y-box-binding protein-1 (YB-1) protein expression in different grading groups of HNSCC patients, and to correlate these findings with the disease-specific survival (DSS). Methods: We investigated the expression and cellular localisation of the oncogenic transcription/translation factor YB-1 by immunohistochemistry on tissue micro arrays in a total of 365 HNSCC specimens and correlated expression data with clinico-pathological parameters including DSS. Results: Compared with control tissue from healthy individuals, a significantly (P<0.01) increased YB-1 protein expression was observed in high-grade HNSCC patients. By univariate survival data analysis, HNSCC patients with elevated YB-1 protein expression had a significantly (P<0.01) decreased DSS. By multivariate Cox regression analysis, high YB-1 expression and nuclear localisation retained its significance as a statistically independent (P<0.002) prognostic marker for DSS. Within grade 2 group of HNSCC patients, a subgroup defined by high nuclear and cytoplasmic YB-1 levels (co-expression pattern) in the cells of the tumour invasion front had a significantly poorer 5-year DSS rate of only 38% compared with overall 55% for grade 2 patients. Vice versa, the DSS rate was markedly increased to 74% for grade 2 cancer patients with low YB-1 protein expression at the same localisation. Conclusion: Our findings point to the fact that YB-1 expression in combination with histological classification in a double stratification strategy is superior to classical grading in the prediction of tumour progression in HNSCC. PMID:22095225

  3. Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation

    Science.gov (United States)

    Cheng, Yu Ti; Li, Yingzhong; Huang, Shuai; Huang, Yan; Dong, Xinnian; Zhang, Yuelin; Li, Xin

    2011-01-01

    The nucleotide-binding domain and leucine-rich repeats containing proteins (NLRs) serve as immune receptors in both plants and animals. Overaccumulation of NLRs often leads to autoimmune responses, suggesting that the levels of these immune receptors must be tightly controlled. However, the mechanism by which NLR protein levels are regulated is unknown. Here we report that the F-box protein CPR1 controls the stability of plant NLR resistance proteins. Loss-of-function mutations in CPR1 lead to higher accumulation of the NLR proteins SNC1 and RPS2, as well as autoactivation of immune responses. The autoimmune responses in cpr1 mutant plants can be largely suppressed by knocking out SNC1. Furthermore, CPR1 interacts with SNC1 and RPS2 in vivo, and overexpressing CPR1 results in reduced accumulation of SNC1 and RPS2, as well as suppression of immunity mediated by these two NLR proteins. Our data suggest that SKP1-CULLIN1-F-box (SCF) complex-mediated stability control of plant NLR proteins plays an important role in regulating their protein levels and preventing autoimmunity. PMID:21873230

  4. An humanoid robot for inspections and cleaning tasks in nuclear glove box

    OpenAIRE

    Seyssaud, Jeremy; Favrichon, Julien; Giraud-Esclasse, Kevin; Girones, Philippe; Mahjoubi, Najib; Bock, Sven; Capdepuy, Philippe; Moitrier, Cyril

    2015-01-01

    This article presents an opportunity evaluation of the use of humanoid robots in a nuclear environment. The project worked on the DaRwIn-OP platform to assess and carry out the modifications the robot needed to enable it to perform as an intervention operator in a nuclear location. The study had two main lines, based on equipping the humanoid with a radiological measurement capture system and with an arm command system using a depth camera. The tests performed showed the robot's ability to ma...

  5. Paraformaldehyde Fixation May Lead to Misinterpretation of the Subcellular Localization of Plant High Mobility Group Box Proteins.

    Directory of Open Access Journals (Sweden)

    Man-Wah Li

    Full Text Available Arabidopsis High Mobility Group Box (HMBG proteins were previously found associated with the interphase chromatin but not the metaphase chromosome. However, these studies are usually based on immunolocalization analysis involving paraformaldehyde fixation. Paraformaldehyde fixation has been widely adapted to preserved cell morphology before immunofluorescence staining. On one hand, the processed cells are no longer living. On the other hand, the processing may lead to misinterpretation of localization. HMGBs from Arabidopsis were fused with enhanced green fluorescence protein (EGFP and transformed into tobacco BY-2 cells. Basically, the localization of these HMGB proteins detected with EGFP fluorescence in interphase agreed with previous publications. Upon 4% paraformaldehyde fixation, AtHMGB1 was found associated with interphase but not the metaphase chromosomes as previously reported. However, when EGFP fluorescence signal was directly observed under confocal microscope without fixation, association of AtHMGB1 with metaphase chromosomes can be detected. Paraformaldehyde fixation led to dissociation of EGFP tagged AtHMBG1 protein from metaphase chromosomes. This kind of pre-processing of live specimen may lead to dissociation of protein-protein or protein-nucleic acid interaction. Therefore, using of EGFP fusion proteins in live specimen is a better way to determine the correct localization and interaction of proteins.

  6. JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation.

    Science.gov (United States)

    Sun, Luyang; Shi, Lei; Li, Wenqian; Yu, Wenhua; Liang, Jing; Zhang, Hua; Yang, Xiaohan; Wang, Yan; Li, Ruifang; Yao, Xingrong; Yi, Xia; Shang, Yongfeng

    2009-06-23

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Currently, several ubiquitin ligases, including the single-subunit RING-finger types--MDM2, Pirh2, and COP1--and the HECT-domain type--ARF-BP1--have been reported to target p53 for degradation. Here, we report the identification of a human Kelch domain-containing F-box protein, JFK. We showed that JFK promotes ubiquitination and degradation of p53. But unlike MDM2, Pirh2, COP1, and ARF-BP1, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Significantly, JFK inhibits p53-dependent transcription, and depletion of JFK stabilizes p53, promotes cell apoptosis, arrests cells in the G(1) phase, and sensitizes cells to ionizing radiation-induced cell death. These data indicate that JFK is a critical negative regulator of p53 and represents a pathway for the maintenance of p53 levels in unstressed cells. Our experiments link the Skp1-Cul1-F-box system to p53 regulation.

  7. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity.

    Directory of Open Access Journals (Sweden)

    Jacqueline Monaghan

    2009-07-01

    Full Text Available Plant Resistance (R proteins play an integral role in defense against pathogen infection. A unique gain-of-function mutation in the R gene SNC1, snc1, results in constitutive activation of plant immune pathways and enhanced resistance against pathogen infection. We previously found that mutations in MOS4 suppress the autoimmune phenotypes of snc1, and that MOS4 is part of a nuclear complex called the MOS4-Associated Complex (MAC along with the transcription factor AtCDC5 and the WD-40 protein PRL1. Here we report the immuno-affinity purification of the MAC using HA-tagged MOS4 followed by protein sequence analysis by mass spectrometry. A total of 24 MAC proteins were identified, 19 of which have predicted roles in RNA processing based on their homology to proteins in the Prp19-Complex, an evolutionarily conserved spliceosome-associated complex containing homologs of MOS4, AtCDC5, and PRL1. Among these were two highly similar U-box proteins with homology to the yeast and human E3 ubiquitin ligase Prp19, which we named MAC3A and MAC3B. MAC3B was recently shown to exhibit E3 ligase activity in vitro. Through reverse genetics analysis we show that MAC3A and MAC3B are functionally redundant and are required for basal and R protein-mediated resistance in Arabidopsis. Like mos4-1 and Atcdc5-1, mac3a mac3b suppresses snc1-mediated autoimmunity. MAC3 localizes to the nucleus and interacts with AtCDC5 in planta. Our results suggest that MAC3A and MAC3B are members of the MAC that function redundantly in the regulation of plant innate immunity.

  8. Nuclear accumulation of β-catenin and forkhead box O3a in colon cancer:Dangerous liaison

    Institute of Scientific and Technical Information of China (English)

    Wolfgang; Link

    2012-01-01

    The WNT/-catenin and phosphoinositide 3-kinase(PI3K/AKT) signaling cascades both have been implicated in the formation and progression of colorectal cancer.Oncogenic PI3K/AKT signaling suppresses the activity of forkhead box O3a(FOXO3a) transcription factor through phosphorylation leading to its nuclear exclusion.Inhibition of the PI3K/AKT signaling by PI3K or AKT inhibitors results in the translocation of FOXO3a to the nucleus,and is considered to be a promising therapeutic strategy for many cancers including colon cancer.Now,however,a new study in Nature Medicine has revealed a nuclear interaction of-catenin with FOXO3a as a promoter of metastatic progression in colon cancer.The work has important implications for the treatment of colon cancers,suggests a companion biomarker strategy to enable a personalized medicine approach,and offers an alternative therapeutic strategy to overcome resistance to PI3K and AKT inhibitors.

  9. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.

    Science.gov (United States)

    Chae, Eunyoung; Tan, Queenie K-G; Hill, Theresa A; Irish, Vivian F

    2008-04-01

    Plants flower in response to both environmental and endogenous signals. The Arabidopsis LEAFY (LFY) transcription factor is crucial in integrating these signals, and acts in part by activating the expression of multiple floral homeotic genes. LFY-dependent activation of the homeotic APETALA3 (AP3) gene requires the activity of UNUSUAL FLORAL ORGANS (UFO), an F-box component of an SCF ubiquitin ligase, yet how this regulation is effected has remained unclear. Here, we show that UFO physically interacts with LFY both in vitro and in vivo, and this interaction is necessary to recruit UFO to the AP3 promoter. Furthermore, a transcriptional repressor domain fused to UFO reduces endogenous LFY activity in plants, supporting the idea that UFO acts as part of a transcriptional complex at the AP3 promoter. Moreover, chemical or genetic disruption of proteasome activity compromises LFY-dependent AP3 activation, indicating that protein degradation is required to promote LFY activity. These results define an unexpected role for an F-box protein in functioning as a DNA-associated transcriptional co-factor in regulating floral homeotic gene expression. These results suggest a novel mechanism for promoting flower development via protein degradation and concomitant activation of the LFY transcription factor. This mechanism may be widely conserved, as homologs of UFO and LFY have been identified in a wide array of plant species. PMID:18287201

  10. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.

    Science.gov (United States)

    Chae, Eunyoung; Tan, Queenie K-G; Hill, Theresa A; Irish, Vivian F

    2008-04-01

    Plants flower in response to both environmental and endogenous signals. The Arabidopsis LEAFY (LFY) transcription factor is crucial in integrating these signals, and acts in part by activating the expression of multiple floral homeotic genes. LFY-dependent activation of the homeotic APETALA3 (AP3) gene requires the activity of UNUSUAL FLORAL ORGANS (UFO), an F-box component of an SCF ubiquitin ligase, yet how this regulation is effected has remained unclear. Here, we show that UFO physically interacts with LFY both in vitro and in vivo, and this interaction is necessary to recruit UFO to the AP3 promoter. Furthermore, a transcriptional repressor domain fused to UFO reduces endogenous LFY activity in plants, supporting the idea that UFO acts as part of a transcriptional complex at the AP3 promoter. Moreover, chemical or genetic disruption of proteasome activity compromises LFY-dependent AP3 activation, indicating that protein degradation is required to promote LFY activity. These results define an unexpected role for an F-box protein in functioning as a DNA-associated transcriptional co-factor in regulating floral homeotic gene expression. These results suggest a novel mechanism for promoting flower development via protein degradation and concomitant activation of the LFY transcription factor. This mechanism may be widely conserved, as homologs of UFO and LFY have been identified in a wide array of plant species.

  11. JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation

    OpenAIRE

    Sun, Luyang; SHI, LEI; Li, Wenqian; Yu, Wenhua; LIANG, Jing; Zhang, Hua; Yang, Xiaohan; Wang, Yan; Li, Ruifang; Yao, Xingrong; Yi, Xia; Shang, Yongfeng

    2009-01-01

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Currently, several ubiquitin ligases, including the single-subunit RING-finger types—MDM2, Pirh2, and COP1—and the HECT-domain type—ARF-BP1—have been reported to target p53 for degradation. Here, we report the identification of a human Kelch domain-containing F-box protein, JFK. We ...

  12. Role of SKP1-CUL1-F-Box-Protein (SCF) E3 Ubiquitin Ligases in Skin Cancer

    Institute of Scientific and Technical Information of China (English)

    Chuan-Ming Xie; Wenyi Wei; Yi Sun

    2013-01-01

    Many biological processes such as cell proliferation,differentiation,and cell death depend precisely on the timely synthesis and degradation of key regulatory proteins.While protein synthesis can be regulated at multiple levels,protein degradation is mainly controlled by the ubiquitin-proteasome system (UPS),which consists of two distinct steps:(1) ubiquitylation of targeted protein by E1 ubiquitin-activating enzyme,E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase,and (2) subsequent degradation by the 26S proteasome.Among all E3 ubiquitin ligases,the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsible for the turnover of many key regulatory proteins.Aberrant regulation of SCF E3 ligases is associated with various human diseases,such as cancers,including skin cancer.In this review,we provide a comprehensive overview of all currently published data to define a promoting role of SCF E3 ligases in the development of skin cancer.The future directions in this area of research are also discussed with an ultimate goal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer.Furthermore,altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis.

  13. High Mobility Group Box1 Protein Is Involved in Endoplasmic Reticulum Stress Induced by Clostridium difficile Toxin A.

    Science.gov (United States)

    Liu, Ji; Ma, Yi; Sun, Chun-Li; Li, Shan; Wang, Ju-Fang

    2016-01-01

    High Mobility Group Box1 (HMGB1), a damage-associated inflammatory factor, plays an important role in the pathogenesis of numerous chronic inflammatory and autoimmune diseases. In this study, the role of the HMGB1 in TcdA-induced ER stress was identified. Clostridium difficile toxin A is one of the major virulence factors of C. difficile infection (CDI) and has been proved to induce apoptotic cell death through ER stress. Our results showed that HMGB1 might play an important role in the TcdA-induced ER stress and unfolded protein response. HMGB1 activated molecular markers and induced the C/EBP homologous protein upregulation (CHOP). This study may provide the essential information for better understanding of the molecular mechanisms involved in CDI. PMID:27579314

  14. Plasma membrane-association of SAUL1-type plant U-box armadillo repeat proteins is conserved in land plants

    Directory of Open Access Journals (Sweden)

    Katja eVogelmann

    2014-02-01

    Full Text Available Post-translational protein modification plays a pivotal role in the regulation and specific turnover of proteins. One of these important modifications is the ubiquitination of target proteins, which can occur at distinct cellular compartments. At the plasma membrane, ubiquitination regulates the internalization and thus trafficking of membrane proteins such as receptors and channels. The Arabidopsis plant U-box armadillo repeat (PUB-ARM ubiquitin ligase SAUL1 (SENESCENCE-ASSOCIATED UBIQUITIN LIGASE1 is part of the ubiquitination machinery at the plasma membrane. In contrast to most other PUB-ARM proteins, SAUL1 carries additional C-terminal ARM repeats responsible for plasma membrane-association. Here, we demonstrated that the C-terminal ARM repeat domain is also essential and sufficient to mediate plasma membrane-association of the closest Arabidopis paralog AtPUB43. We investigated targeting of PUB-ARM ubiquitin ligases of different plant species to find out whether plasma membrane-association of SAUL1-type PUB-ARM proteins is conserved. Phylogenetic analysis identified orthologs of SAUL1 in these plant species. Intracellular localization of transiently expressed GFP fusion proteins revealed that indeed plasma membrane-association due to additional C-terminal ARM repeats represents a conserved feature of SAUL1-type proteins. Analyses of transgenic Arabidopsis plants overexpressing N-terminally masked or truncated proteins revealed that interfering with the function of SAUL1-type proteins resulted in severe growth defects. Our results suggest an ancient origin of ubiquitination at the plasma membrane in the evolution of land plants.

  15. The F-box protein Cdc4/Fbxw7 is a novel regulator of neural crest development in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Hartley Rebecca S

    2010-01-01

    Full Text Available Abstract Background The neural crest is a unique population of cells that arise in the vertebrate ectoderm at the neural plate border after which they migrate extensively throughout the embryo, giving rise to a wide range of derivatives. A number of proteins involved in neural crest development have dynamic expression patterns, and it is becoming clear that ubiquitin-mediated protein degradation is partly responsible for this. Results Here we demonstrate a novel role for the F-box protein Cdc4/Fbxw7 in neural crest development. Two isoforms of Xenopus laevis Cdc4 were identified, and designated xCdc4α and xCdc4β. These are highly conserved with vertebrate Cdc4 orthologs, and the Xenopus proteins are functionally equivalent in terms of their ability to degrade Cyclin E, an established vertebrate Cdc4 target. Blocking xCdc4 function specifically inhibited neural crest development at an early stage, prior to expression of c-Myc, Snail2 and Snail. Conclusions We demonstrate that Cdc4, an ubiquitin E3 ligase subunit previously identified as targeting primarily cell cycle regulators for proteolysis, has additional roles in control of formation of the neural crest. Hence, we identify Cdc4 as a protein with separable but complementary functions in control of cell proliferation and differentiation.

  16. On the mechanism of transport of Inner Nuclear Membrane Proteins

    NARCIS (Netherlands)

    Laba, Justyna Katarzyna

    2016-01-01

    The nucleus is usually the biggest, round-shaped organelle in the cell, which contains numerous proteins and nucleic acids and protects the DNA. Nuclear components are contained within the boarders of Nuclear Envelope (NE), a double membrane system, formed by the fusion of Outer Nuclear Membrane (OM

  17. Cyclin-like F-box protein plays a role in growth and development of the three model species Medicago truncatula, Lotus japonicus, and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Boycheva I

    2015-08-01

    Full Text Available Irina Boycheva,1 Valya Vassileva,2 Miglena Revalska,1 Grigor Zehirov,2 Anelia Iantcheva1 1Department of Functional Genetics Legumes, 2AgroBioInstitute, Department of Plant Stress Molecular Biology, Institute of Plant Physiology and Genetics, Sofia, Bulgaria Abstract: In eukaryotes, F-box proteins are one of the main components of the SCF complex that belongs to the family of ubiquitin E3 ligases, which catalyze protein ubiquitination and maintain the balance between protein synthesis and degradation. In the present study, we clarified the role and function of the gene encoding cyclin-like F-box protein from Medicago truncatula using transgenic plants of the model species M. truncatula, Lotus japonicas, and Arabidopsis thaliana generated by Agrobacterium-mediated transformation. Morphological and transcriptional analyses combined with flow cytometry and histochemistry demonstrated the participation of this protein in many aspects of plant growth and development, including processes of indirect somatic embryogenesis and symbiotic nodulation. The cyclin-like F-box gene showed expression in all plant organs and tissues comprised of actively dividing cells. The observed variations in root and hypocotyl growth, leaf and silique development, ploidy levels, and leaf parameters in the obtained transgenic lines demonstrated the effects of this gene on organ development. Furthermore, knockdown of cyclin-like F-box led to accumulation of higher levels of the G2/M transition-specific gene cyclin B1:1 (CYCB1:1, suggesting its possible role in cell cycle control. Together, the collected data suggest a similar role of the cyclin-like F-box protein in the three model species, providing evidence for the functional conservation of the studied gene. Keywords: cyclin-like F-box, model legumes, Arabidopsis thaliana, plant growth, plant development, cell cycle

  18. The F-box protein Fbp1 functions in the invasive growth and cell wall integrity mitogen-activated protein kinase (MAPK) pathways in Fusarium oxysporum.

    Science.gov (United States)

    Miguel-Rojas, Cristina; Hera, Concepcion

    2016-01-01

    F-box proteins determine substrate specificity of the ubiquitin-proteasome system. Previous work has demonstrated that the F-box protein Fbp1, a component of the SCF(Fbp1) E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen-activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum.

  19. DEAD-box proteins, like Leishmania eIF4A, modulate interleukin (IL)-12, IL-10 and tumour necrosis factor-alpha production by human monocytes.

    Science.gov (United States)

    Barhoumi, M; Meddeb-Garnaoui, A; Tanner, N K; Banroques, J; Kaabi, B; Guizani, I

    2013-01-01

    Previously we showed that His-tagged, recombinant, Leishmania infantum eukaryotic initiation factor (LeIF) was both an RNA-dependent ATPase and an ATP-dependent RNA helicase in vitro, as described for other members of the DEAD-box helicase family. In addition, we showed that LeIF induces the production of IL-12, IL-10, and TNF-α by human monocytes. This study aims to characterize the cytokine-inducing activity in human monocytes of several proteins belonging to the DEAD-box family from mammals and yeast. All tested proteins contained the 11 conserved motifs (Q, I, Ia, GG Ib, II, III, IV, QxxR, V and VI) characteristic of DEAD-box proteins, but they have different biological functions and different percentages of identities with LeIF. We show that these mammalian or yeast recombinant proteins also are able to induce IL-12, IL-10 and TNF-α secretion by monocytes of healthy human subjects. This cytokine-inducing activity is proteinase K sensitive and polymyxin B resistant. Our results show that the induction of cytokines in human monocytes is not unique to the protein LeIF of Leishmania, and it suggests that the activity of certain DEAD-box proteins can be exploited as adjuvant and/or to direct immune responses towards a Th1 profile in vaccination or immunotherapy protocols. PMID:23363368

  20. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M. [University of Wuerzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Wuerzburg (Germany); Wehnert, Manfred [Institute of Human Genetics, University of Greifswald, Greifswald (Germany); Huebner, Stefan, E-mail: stefan.huebner@mail.uni-wuerzburg.de [University of Wuerzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Wuerzburg (Germany)

    2009-08-15

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.

  1. F-box protein AFB4 plays a crucial role in plant growth,development and innate immunity

    Institute of Scientific and Technical Information of China (English)

    Zhubing Hu; Mehmet Ali Keceli; Maria Piisil(a); JingF Li; Mantas Survila; Pekka Heino; Günter Brader; E Tapio Palva; Jing Li

    2012-01-01

    Dear Editor,Auxin-signaling F-box protein 4 (AFB4) encoded by At4g24390 shares a significant sequence similarity to auxin receptor TIR1.In this study,we used a combination of physiological,molecular,and genetic approaches to characterize a T-DNA insertion line (GABI-KAT accession no.:068E01;henceforth designated afb4-1) as a knockout allele.Complete loss-of-function of the AFB4gene confers defects in many aspects of the plant life cycle including lateral root development,hypocotyl elongation,leaf organogenesis,flowering time,seed formation,and disease resistance to specific phytopathogens.The results presented here argue against the previously proposed mechanism of AFB4 action in negatively controlling auxin sensitivity [1].

  2. Protein Interaction Screening for the Ankyrin Repeats and Suppressor of Cytokine Signaling (SOCS) Box (ASB) Family Identify Asb11 as a Novel Endoplasmic Reticulum Resident Ubiquitin Ligase

    DEFF Research Database (Denmark)

    Andresen, Christina Aaen; Smedegaard, Stine; Sylvestersen, Kathrine Beck;

    2014-01-01

    The Ankyrin and SOCS (Suppressor of Cytokine Signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting with 18 members in humans, the identity of the physiological targets of the Asb protei...... in vivo. In summary, we provide a comprehensive protein-protein interaction data resource that can aid the biological and functional characterization of ASB ubiquitin ligases....

  3. DEAD-box protein Ddx46 is required for the development of the digestive organs and brain in zebrafish.

    Directory of Open Access Journals (Sweden)

    Shunya Hozumi

    Full Text Available Spatially and temporally controlled gene expression, including transcription, several mRNA processing steps, and the export of mature mRNA to the cytoplasm, is essential for developmental processes. It is well known that RNA helicases of the DExD/H-box protein family are involved in these gene expression processes, including transcription, pre-mRNA splicing, and rRNA biogenesis. Although one DExD/H-box protein, Prp5, a homologue of vertebrate Ddx46, has been shown to play important roles in pre-mRNA splicing in yeast, the in vivo function of Ddx46 remains to be fully elucidated in metazoans. In this study, we isolated zebrafish morendo (mor, a mutant that shows developmental defects in the digestive organs and brain, and found that it encodes Ddx46. The Ddx46 transcript is maternally supplied, and as development proceeds in zebrafish larvae, its ubiquitous expression gradually becomes restricted to those organs. The results of whole-mount in situ hybridization showed that the expression of various molecular markers in these organs is considerably reduced in the Ddx46 mutant. Furthermore, splicing status analysis with RT-PCR revealed unspliced forms of mRNAs in the digestive organ and brain tissues of the Ddx46 mutant, suggesting that Ddx46 may be required for pre-mRNA splicing during zebrafish development. Therefore, our results suggest a model in which zebrafish Ddx46 is required for the development of the digestive organs and brain, possibly through the control of pre-mRNA splicing.

  4. Blockade of high mobility group box-1 protein attenuates experimental severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Hidehiro Sawa; Takashi Ueda; Yoshifumi Takeyama; Takeo Yasuda; Makoto Shinzeki; Takahiro Nakajima; Yoshikazu Kuroda

    2006-01-01

    AIM: To examine the effects of anti-high mobility group box 1 (HMGB1) neutralizing antibody in experimental severe acute pancreatitis (SAP).METHODS: SAP was induced by creating closed duodenal loop in C3H/HeN mice. SAP was induced immediately after intraperitoneal injection of anti-HMGB1 neutralizing antibody (200 μg). Severity of pancreatitis, organ injury (liver, kidney and lung), and bacterial translocation to pancreas was examined 12 h after induction of SAP.RESULTS: Anti-HMGB1 neutralizing antibody significantly improved the elevation of the serum amylase level and the histological alterations of pancreas and lung in SAP.Anti-HMGB1 antibody also significantly ameliorated the elevations of serum alanine aminotransferase and creatinine in SAP. However, anti-HMGB1 antibody worsened the bacterial translocation to pancreas.CONCLUSION: Blockade of HMGB1 attenuated the development of SAP and associated organ dysfunction,suggesting that HMGB1 may act as a key mediator for inflammatory response and organ injury in SAP.

  5. A DEAD box protein is required for formation of a hidden break in Arabidopsis chloroplast 23S rRNA.

    Science.gov (United States)

    Nishimura, Kenji; Ashida, Hiroki; Ogawa, Taro; Yokota, Akiho

    2010-09-01

    In plant chloroplasts, the ribosomal RNA (rRNA) of the large subunit of the ribosome undergoes post-maturation fragmentation processing. This processing consists of site-specific cleavage that generates gapped, discontinuous rRNA molecules. However, the molecular mechanism underlying introduction of the gap structure (the 'hidden break') is poorly understood. Here, we found that the DEAD box protein RH39 plays a key role in introduction of the hidden break into the 23S rRNA in Arabidopsis chloroplasts. Genetic screening for an Arabidopsis plant with a drastically reduced level of ribulose-1,5-bisphosphate carboxylase/oxygenase identified an RH39 mutant. The levels of other chloroplast-encoded photosynthetic proteins were also severely reduced. The reductions were not due to a failure of transcription, but rather inefficiency in translation. RNA gel blotting revealed incomplete fragmentation of 23S rRNA in chloroplasts during maturation. In vitro analysis with recombinant RH39 suggested that the protein binds to the adjacent sequence upstream of the hidden break site to exert its function. We propose a molecular mechanism for the RH39-mediated fragmentation processing of 23S rRNA in chloroplasts.

  6. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis.

    Science.gov (United States)

    Wei, Chuang-Qi; Chien, Chih-Wei; Ai, Lian-Feng; Zhao, Jun; Zhang, Zhenzhen; Li, Kathy H; Burlingame, Alma L; Sun, Yu; Wang, Zhi-Yong

    2016-09-20

    Plant growth is controlled by integration of hormonal and light-signaling pathways. BZS1 is a B-box zinc finger protein previously characterized as a negative regulator in the brassinosteroid (BR)-signaling pathway and a positive regulator in the light-signaling pathway. However, the mechanisms by which BZS1/BBX20 integrates light and hormonal pathways are not fully understood. Here, using a quantitative proteomic workflow, we identified several BZS1-associated proteins, including light-signaling components COP1 and HY5. Direct interactions of BZS1 with COP1 and HY5 were verified by yeast two-hybrid and co-immunoprecipitation assays. Overexpression of BZS1 causes a dwarf phenotype that is suppressed by the hy5 mutation, while overexpression of BZS1 fused with the SRDX transcription repressor domain (BZS1-SRDX) causes a long-hypocotyl phenotype similar to hy5, indicating that BZS1's function requires HY5. BZS1 positively regulates HY5 expression, whereas HY5 negatively regulates BZS1 protein level, forming a feedback loop that potentially contributes to signaling dynamics. In contrast to BR, strigolactone (SL) increases BZS1 level, whereas the SL responses of hypocotyl elongation, chlorophyll and HY5 accumulation are diminished in the BZS1-SRDX seedlings, indicating that BZS1 is involved in these SL responses. These results demonstrate that BZS1 interacts with HY5 and plays a central role in integrating light and multiple hormone signals for photomorphogenesis in Arabidopsis.

  7. Cloning and characterisation of a nuclear, site specific ssDNA binding protein.

    Science.gov (United States)

    Smidt, M P; Russchen, B; Snippe, L; Wijnholds, J; Ab, G

    1995-07-11

    Estradiol inducible, liver-specific expression of the apoVLDL II gene is mediated through the estrogen receptor and a variety of other DNA-binding proteins. In the present study we report the cloning and characterisation of a single-strand DNA binding protein that interacts with the lower strand of a complex regulatory site, which includes the major estrogen responsive element and a site that resembles the rat albumin site D (apoVLDL II site D). Based on its binding specificity determined with electro-mobility shift assays, the protein is named single-strand D-box binding factor (ssDBF). Analysis of the deduced 302 amino acid sequence revealed that the protein belongs to the heteronuclear ribonucleoprotein A/B family (hnRNP A/B) and resembles other known eukaryotic single-strand DNA binding proteins. Transient transfection experiments in a chicken liver cell-line showed that the protein represses estrogen-induced transcription. A protein with similar binding characteristics is present in liver nuclear extract. The relevance of the occurrence of this protein to the expression of the apoVLDL II gene is discussed. PMID:7630716

  8. A combinatorial F box protein directed pathway controls TRAF adaptor stability to regulate inflammation

    OpenAIRE

    Chen, Bill B; Coon, Tiffany A.; Glasser, Jennifer R; McVerry, Bryan J.; Zhao, Jing; Zhao, Yutong; Zou, Chunbin; Ellis, Bryon; Sciurba, Frank C.; Zhang, Yingze; Mallampalli, Rama K.

    2013-01-01

    Uncontrolled activation of tumor necrosis factor receptor-associated factor (TRAF) proteins may result in profound tissue injury by linking surface signals to cytokine release. Here we show that a ubiquitin E3 ligase component, Fbxo3, potently stimulates cytokine secretion from human inflammatory cells by destabilizing a sentinel TRAF inhibitor, Fbxl2. Fbxo3 and TRAF protein in circulation positively correlated with cytokine responses in septic subjects and we furthermore identified a hypofun...

  9. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.

    Science.gov (United States)

    Samach, A; Klenz, J E; Kohalmi, S E; Risseeuw, E; Haughn, G W; Crosby, W L

    1999-11-01

    Genetic and molecular studies have suggested that the UNUSUAL FLORAL ORGANS (UFO) gene, from Arabidopsis thaliana, is expressed in all shoot apical meristems, and is involved in the regulation of a complex set of developmental events during floral development, including floral meristem and floral organ identity. Results from in situ hybridization using genes expressed early in floral development as probes indicate that UFO controls growth of young floral primordia. Transgenic constructs were used to provide evidence that UFO regulates floral organ identity by activating or maintaining transcription of the class B organ-identity gene APETALA 3, but not PISTILLATA. In an attempt to understand the biochemical mode of action of the UFO gene product, we show here that UFO is an F-box protein that interacts with Arabidopsis SKP1-like proteins, both in the yeast two-hybrid system and in vitro. In yeast and other organisms both F-box proteins and SKP1 homologues are subunits of specific ubiquitin E3 enzyme complexes that target specific proteins for degradation. The protein selected for degradation by the complex is specified by the F-box proteins. It is therefore possible that the role of UFO is to target for degradation specific proteins controlling normal growth patterns in the floral primordia, as well as proteins that negatively regulate APETALA 3 transcription.

  10. The Agrobacterium tumefaciens virulence protein VirE3 is a transcriptional activator of the F-box gene VBF.

    Science.gov (United States)

    Niu, Xiaolei; Zhou, Meiliang; Henkel, Christiaan V; van Heusden, G Paul H; Hooykaas, Paul J J

    2015-12-01

    During Agrobacterium tumefaciens-mediated transformation of plant cells a part of the tumour-inducing plasmid, T-DNA, is integrated into the host genome. In addition, a number of virulence proteins are translocated into the host cell. The virulence protein VirE3 binds to the Arabidopsis thaliana pBrp protein, a plant-specific general transcription factor of the TFIIB family. To study a possible role for VirE3 in transcriptional regulation, we stably expressed virE3 in A. thaliana under control of a tamoxifen-inducible promoter. By RNA sequencing we showed that upon expression of virE3 the RNA levels of 607 genes were increased more than three-fold and those of 132 genes decreased more than three-fold. One of the strongly activated genes was that encoding VBF (At1G56250), an F-box protein that may affect the levels of the VirE2 and VIP1 proteins. Using Arabidopsis cell suspension protoplasts we showed that VirE3 stimulates the VBF promoter, especially when co-expressed with pBrp. Although pBrp is localized at the external surface of plastids, co-expression of VirE3 and pBrp in Arabidopsis cell suspension protoplasts resulted in the accumulation of pBrp in the nucleus. Our results suggest that VirE3 affects the transcriptional machinery of the host cell to favour the transformation process. PMID:26461850

  11. Functional characterization of the ER stress induced X-box-binding protein-1 (Xbp-1 in the porcine system

    Directory of Open Access Journals (Sweden)

    Jin Dong-Il

    2011-05-01

    Full Text Available Abstract Background The unfolded protein response (UPR is an evolutionary conserved adaptive reaction for increasing cell survival under endoplasmic reticulum (ER stress conditions. X-box-binding protein-1 (Xbp1 is a key transcription factor of UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. The UPR induced by ER stress was extensively studied in diseases linked to protein misfolding and aggregations. However, in the porcine system, genes in the UPR pathway were not investigated. In this study, we isolated and characterized the porcine Xbp1 (pXbp1 gene in ER stress using porcine embryonic fibroblast (PEF cells and porcine organs. ER stress was induced by the treatment of tunicamycin and cell viability was investigated by the MTT assay. For cloning and analyzing the expression pattern of pXbp1, RT-PCR analysis and Western blot were used. Knock-down of pXbp1 was performed by the siRNA-mediated gene silencing. Results We found that the pXbp1 mRNA was the subject of the IRE1α-mediated unconventional splicing by ER stress. Knock-down of pXbp1 enhanced ER stress-mediated cell death in PEF cells. In adult organs, pXbp1 mRNA and protein were expressed and the spliced forms were detected. Conclusions It was first found that the UPR mechanisms and the function of pXbp1 in the porcine system. These results indicate that pXbp1 plays an important role during the ER stress response like other animal systems and open a new opportunity for examining the UPR pathway in the porcine model system.

  12. C-terminal binding protein (CtBP activates the expression of E-box clock genes with CLOCK/CYCLE in Drosophila.

    Directory of Open Access Journals (Sweden)

    Taichi Q Itoh

    Full Text Available In Drosophila, CLOCK/CYCLE heterodimer (CLK/CYC is the primary activator of circadian clock genes that contain the E-box sequence in their promoter regions (hereafter referred to as "E-box clock genes". Although extensive studies have investigated the feedback regulation of clock genes, little is known regarding other factors acting with CLK/CYC. Here we show that Drosophila C-terminal binding protein (dCtBP, a transcriptional co-factor, is involved in the regulation of the E-box clock genes. In vivo overexpression of dCtBP in clock cells lengthened or abolished circadian locomotor rhythm with up-regulation of a subset of the E-box clock genes, period (per, vrille (vri, and PAR domain protein 1ε (Pdp1ε. Co-expression of dCtBP with CLK in vitro also increased the promoter activity of per, vri, Pdp1ε and cwo depending on the amount of dCtBP expression, whereas no effect was observed without CLK. The activation of these clock genes in vitro was not observed when we used mutated dCtBP which carries amino acid substitutions in NAD+ domain. These results suggest that dCtBP generally acts as a putative co-activator of CLK/CYC through the E-box sequence.

  13. A combinatorial F box protein directed pathway controls TRAF adaptor stability to regulate inflammation.

    Science.gov (United States)

    Chen, Bill B; Coon, Tiffany A; Glasser, Jennifer R; McVerry, Bryan J; Zhao, Jing; Zhao, Yutong; Zou, Chunbin; Ellis, Bryon; Sciurba, Frank C; Zhang, Yingze; Mallampalli, Rama K

    2013-05-01

    Uncontrolled activation of tumor necrosis factor receptor-associated factor (TRAF) proteins may result in profound tissue injury by linking surface signals to cytokine release. Here we show that a ubiquitin E3 ligase component, Fbxo3, potently stimulates cytokine secretion from human inflammatory cells by destabilizing a sentinel TRAF inhibitor, Fbxl2. Fbxo3 and TRAF protein in circulation positively correlated with cytokine responses in subjects with sepsis, and we identified a polymorphism in human Fbxo3, with one variant being hypofunctional. A small-molecule inhibitor targeting Fbxo3 was sufficient to lessen severity of cytokine-driven inflammation in several mouse disease models. These studies identified a pathway of innate immunity that may be useful to detect subjects with altered immune responses during critical illness or provide a basis for therapeutic intervention targeting TRAF protein abundance. PMID:23542741

  14. Proteolytic inactivation of nuclear alarmin high-mobility group box 1 by complement protease C1s during apoptosis.

    Science.gov (United States)

    Yeo, J G; Leong, J; Arkachaisri, T; Cai, Y; Teo, B H D; Tan, J H T; Das, L; Lu, J

    2016-01-01

    Effective clearance of apoptotic cells by phagocytes prevents the release of intracellular alarmins and manifestation of autoimmunity. This prompt efferocytosis is complemented by intracellular proteolytic degradation that occurs within the apoptotic cells and in the efferosome of the phagocytes. Although the role of extracellular proteases in apoptotic cells clearance is unknown, the strong association of congenital C1s deficiency with Systemic Lupus Erythematosus highlights the protective nature that this extracellular protease has against autoimmunity. The archetypical role of serine protease C1s as the catalytic arm of C1 complex (C1qC1r2C1s2) involve in the propagation of the classical complement pathway could not provide the biological basis for this association. However, a recent observation of the ability of C1 complex to cleave a spectrum of intracellular cryptic targets exposed during apoptosis provides a valuable insight to the underlying protective mechanism. High-mobility group box 1 (HMGB1), an intracellular alarmin that is capable of inducing the formation of antinuclear autoantibodies and causes lupus-like conditions in mice, is identified as a novel potential target by bioinformatics analysis. This is verified experimentally with C1s, both in its purified and physiological form as C1 complex, cleaving HMGB1 into defined fragments of 19 and 12 kDa. This cleavage diminishes HMGB1 ability to enhance lipopolysaccharide mediated pro-inflammatory cytokines production from monocytes, macrophages and dendritic cells. Further mass spectrometric analysis of the C1 complex treated apoptotic cellular proteins demonstrated additional C1s substrates and revealed the complementary role of C1s in apoptotic cells clearance through the proteolytic cleavage of intracellular alarmins and autoantigens. C1 complex may have evolved as, besides the bacteriolytic arm of antibodies in which it activates the complement cascade, a tissue renewal mechanism that reduces the

  15. Chironex fleckeri (box jellyfish) venom proteins: expansion of a cnidarian toxin family that elicits variable cytolytic and cardiovascular effects.

    Science.gov (United States)

    Brinkman, Diane L; Konstantakopoulos, Nicki; McInerney, Bernie V; Mulvenna, Jason; Seymour, Jamie E; Isbister, Geoffrey K; Hodgson, Wayne C

    2014-02-21

    The box jellyfish Chironex fleckeri produces extremely potent and rapid-acting venom that is harmful to humans and lethal to prey. Here, we describe the characterization of two C. fleckeri venom proteins, CfTX-A (∼40 kDa) and CfTX-B (∼42 kDa), which were isolated from C. fleckeri venom using size exclusion chromatography and cation exchange chromatography. Full-length cDNA sequences encoding CfTX-A and -B and a third putative toxin, CfTX-Bt, were subsequently retrieved from a C. fleckeri tentacle cDNA library. Bioinformatic analyses revealed that the new toxins belong to a small family of potent cnidarian pore-forming toxins that includes two other C. fleckeri toxins, CfTX-1 and CfTX-2. Phylogenetic inferences from amino acid sequences of the toxin family grouped CfTX-A, -B, and -Bt in a separate clade from CfTX-1 and -2, suggesting that the C. fleckeri toxins have diversified structurally and functionally during evolution. Comparative bioactivity assays revealed that CfTX-1/2 (25 μg kg(-1)) caused profound effects on the cardiovascular system of anesthetized rats, whereas CfTX-A/B elicited only minor effects at the same dose. Conversely, the hemolytic activity of CfTX-A/B (HU50 = 5 ng ml(-1)) was at least 30 times greater than that of CfTX-1/2. Structural homology between the cubozoan toxins and insecticidal three-domain Cry toxins (δ-endotoxins) suggests that the toxins have a similar pore-forming mechanism of action involving α-helices of the N-terminal domain, whereas structural diversification among toxin members may modulate target specificity. Expansion of the cnidarian toxin family therefore provides new insights into the evolutionary diversification of box jellyfish toxins from a structural and functional perspective. PMID:24403082

  16. Identification of two Y-box binding proteins that interact with the promoters of columbid annexin I genes.

    Science.gov (United States)

    Pratt, S L; Horseman, N D

    1998-07-01

    Two annexin I (anxI) genes, called cp35 and cp37, are expressed from the pigeon (Columba livia) genome, but they are regulated differently at both the transcriptional and post-transcriptional levels. The proximal promoter elements of these two genes are very similar. A conserved sequence from the cp35 and cp37 promoters bound specifically with proteins present in cropsac cell extracts. This sequence of DNA was used to screen a lambdagt11 cDNA expression library. Clones encoding two pigeon Y-box binding proteins (YB) were isolated. One of the pigeon YB cDNAs was found to be most similar to YB1 from other species, and the other was most similar to chicken YB2. Each YB is encoded by a single-copy gene in the pigeon, and their mRNAs are expressed in many tissues. On Northern blots, the sizes of the mRNAs encoding pigeon YB1 (pYB1) and pigeon YB2 (pYB2) were 1.8 and 1.7kb, respectively. The sequences of both pYB1 and pYB2 diverge from their previously identified relatives in the N-terminal domain 'A'. Antisera were developed to unique peptide epitopes in YB1 or 2. Affinity-purified anti-YB1 and anti-YB2 detected immunoreactive proteins in extracts from a variety of pigeon tissues, including the cropsac. To confirm that pYB1 and pYB2 interact with the cp35 promoter, electrophoretic gel mobility shift reactions were carried out in the presence or absence of YB antibodies. Binding to the cp35 promoter was specifically neutralized by either anti-pYB1 or anti-pYB2. These results are the first evidence that two YB proteins simultaneously bind to a promoter element, and thereby may interact during regulation of gene expression.

  17. Nuclear export of proteins and drug resistance in cancer

    OpenAIRE

    Turner, Joel G.; Dawson, Jana; Sullivan, Daniel M.

    2011-01-01

    The intracellular location of a protein is crucial to its normal functioning in a cell. Cancer cells utilize the normal processes of nuclear-cytoplasmic transport through the nuclear pore complex of a cell to effectively evade anti-neoplastic mechanisms. CRM1-mediated export is increased in various cancers. Proteins that are exported in cancer include tumor-suppressive proteins such as retinoblastoma, APC, p53, BRAC1, FOXO proteins, INI1/hSNF5, galectin-3, Bok, nucleophosmin, RASSF2, Merlin, ...

  18. Bento Boxes

    Science.gov (United States)

    Hasio, Cindy

    2010-01-01

    Bento boxes are common objects in Japanese culture, designed to hold enough lunch for one person. They have individual compartments and sometimes multiple tiers for rice, vegetables, and other side dishes. They are made of materials ranging from wood, cloth, aluminum, or plastic. In general, the greater the number of foods, the better the box is…

  19. Distinct Roles for Key Karyogamy Proteins during Yeast Nuclear Fusion

    OpenAIRE

    Melloy, Patricia; Shen, Shu; White, Erin; Rose, Mark D.

    2009-01-01

    During yeast mating, cell fusion is followed by the congression and fusion of the two nuclei. Proteins required for nuclear fusion are found at the surface (Prm3p) and within the lumen (Kar2p, Kar5p, and Kar8p) of the nuclear envelope (NE). Electron tomography (ET) of zygotes revealed that mutations in these proteins block nuclear fusion with different morphologies, suggesting that they act in different steps of fusion. Specifically, prm3 zygotes were blocked before formation of membrane brid...

  20. Banana Ovate Family Protein MaOFP1 and MADS-Box Protein MuMADS1 Antagonistically Regulated Banana Fruit Ripening

    OpenAIRE

    Juhua Liu; Jing Zhang; Wei Hu; Hongxia Miao; Jianbin Zhang; Caihong Jia; Zhuo Wang; Biyu Xu; Zhiqiang Jin

    2015-01-01

    The ovate family protein named MaOFP1 was identified in banana (Musa acuminata L.AAA) fruit by a yeast two-hybrid (Y2H) method using the banana MADS-box gene MuMADS1 as bait and a 2 day postharvest (DPH) banana fruit cDNA library as prey. The interaction between MuMADS1 and MaOFP1 was further confirmed by Y2H and Bimolecular Fluorescence Complementation (BiFC) methods, which showed that the MuMADS1 K domain interacted with MaOFP1. Real-time quantitative PCR evaluation of MuMADS1 and MaOFP1 ex...

  1. Involvement of spliced X-box binding protein 1 in renal fibrosis induced by unilateral ureteral obstruction in mice.

    Science.gov (United States)

    Shao, D-C; Miao, Nai-Jun; Li, Jia-Jia

    2016-04-25

    Endoplasmic reticulum (ER) stress is involved in the process of kidney fibrosis. Spliced X-box binding protein 1 (XBP1S) is the key mediator of ER stress while its role in fibrosis is still poorly understood. This study was aimed to investigate the role of XBP1S in renal fibrosis and evaluate whether valsartan could alleviate fibrosis through XBP1S. Renal interstitial fibrosis was induced by unilateral ureteral obstruction (UUO) in C57BL/6 mice, and UUO mice were daily administered with valsartan (20 mg/kg) through oral gavage. After 7 days of UUO, at euthanasia, left kidney was collected to examine the histological alteration by using haematoxylin-eosin staining, Masson's trichrome staining, Sirius red staining and immunohistochemistry. Western blot was used to assess XBP1S, targets of XBP1S, fibronectin, α-SMA, BAX and BCL2 protein levels. Real-time polymerase chain reaction was performed to assess NADPH oxidase subunits p47-phox and p67-phox mRNA levels. The results showed that XBP1S expression was decreased by about 70% in the UUO mice compared with that in sham mice (P < 0.01), which was reversed by valsartan administration (P < 0.05). Meanwhile, UUO-induced renal interstitial fibrosis was attenuated by valsartan treatment. In addition, the protein levels of fibronectin and α-SMA were upregulated by UUO induction (P < 0.01), and valsartan administration inhibited the protein levels of fibronectin and α-SMA in UUO mice (P < 0.05). Western blot analysis showed that the ratio of BAX to BCL2 protein level was increased in UUO model compared with that in sham mice, and the increment also was diminished by valsartan treatment (P < 0.05). Finally, UUO-induced mRNA levels of p47-phox and p67-phox were significantly attenuated by valsartan administration (P < 0.05). These results showed that valsartan at least partly restores renal interstitial fibrosis by enhancing XBP1S activation through inhibiting oxidative stress and apoptosis in the UUO mice. These results

  2. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis.

    Science.gov (United States)

    Durfee, Tim; Roe, Judith L; Sessions, R Allen; Inouye, Carla; Serikawa, Kyle; Feldmann, Kenneth A; Weigel, Detlef; Zambryski, Patricia C

    2003-07-01

    The UNUSUAL FLORAL ORGANS (UFO) gene is required for multiple processes in the developing Arabidopsis flower, including the proper patterning and identity of both petals and stamens. The gene encodes an F-box-containing protein, UFO, which interacts physically and genetically with the Skp1 homolog, ASK1. In this report, we describe four ufo alleles characterized by the absence of petals, which uncover another role for UFO in promoting second whorl development. This UFO-dependent pathway is required regardless of the second whorl organ to be formed, arguing that it affects a basic process acting in parallel with those establishing organ identity. However, the pathway is dispensable in the absence of AGAMOUS (AG), a known inhibitor of petal development. In situ hybridization results argue that AG is not transcribed in the petal region, suggesting that it acts non-cell-autonomously to inhibit second whorl development in ufo mutants. These results are combined into a genetic model explaining early second whorl initiation/proliferation, in which UFO functions to inhibit an AG-dependent activity. PMID:12826617

  3. High Mobility Group Box Protein 1 Boosts Endothelial Albumin Transcytosis through the RAGE/Src/Caveolin-1 Pathway

    Science.gov (United States)

    Shang, Dan; Peng, Tao; Gou, Shanmiao; Li, Yiqing; Wu, Heshui; Wang, Chunyou; Yang, Zhiyong

    2016-01-01

    High-mobility group box protein 1 (HMGB1), an inflammatory mediator, has been reported to destroy cell-cell junctions, resulting in vascular endothelial hyperpermeability. Here, we report that HMGB1 increases the endothelial transcytosis of albumin. In mouse lung vascular endothelial cells (MLVECs), HMGB1 at a concentration of 500 ng/ml or less did not harm cell-cell junctions but rapidly induced endothelial hyperpermeability to 125I-albumin. HMGB1 induced an increase in 125I-albumin and AlexaFluor 488-labeled albumin internalization in endocytosis assays. Depletion of receptor for advanced glycation end products (RAGE), but not TLR2 or TLR4, suppressed HMGB1-induced albumin transcytosis and endocytosis. Genetic and pharmacological destruction of lipid rafts significantly inhibited HMGB1-induced albumin endocytosis and transcytosis. HMGB1 induced the rapid phosphorylation of caveolin (Cav)-1 and Src. Either RAGE gene silencing or soluble RAGE suppressed Cav-1 Tyr14 phosphorylation and Src Tyr418 phosphorylation. The Src inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2) blocked HMGB1-induced Cav-1 Tyr14 phosphorylation. PP2 and overexpression of Cav-1 with a T14F mutation significantly inhibited HMGB1-induced transcytosis and albumin endocytosis. Our findings suggest that HMGB1 induces the transcytosis of albumin via RAGE-dependent Src phosphorylation and Cav-1 phosphorylation. These studies revealed a new mechanism of HMGB1-induced endothelial hyperpermeability. PMID:27572515

  4. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis.

    Science.gov (United States)

    Durfee, Tim; Roe, Judith L; Sessions, R Allen; Inouye, Carla; Serikawa, Kyle; Feldmann, Kenneth A; Weigel, Detlef; Zambryski, Patricia C

    2003-07-01

    The UNUSUAL FLORAL ORGANS (UFO) gene is required for multiple processes in the developing Arabidopsis flower, including the proper patterning and identity of both petals and stamens. The gene encodes an F-box-containing protein, UFO, which interacts physically and genetically with the Skp1 homolog, ASK1. In this report, we describe four ufo alleles characterized by the absence of petals, which uncover another role for UFO in promoting second whorl development. This UFO-dependent pathway is required regardless of the second whorl organ to be formed, arguing that it affects a basic process acting in parallel with those establishing organ identity. However, the pathway is dispensable in the absence of AGAMOUS (AG), a known inhibitor of petal development. In situ hybridization results argue that AG is not transcribed in the petal region, suggesting that it acts non-cell-autonomously to inhibit second whorl development in ufo mutants. These results are combined into a genetic model explaining early second whorl initiation/proliferation, in which UFO functions to inhibit an AG-dependent activity.

  5. The mutated S1-haplotype in sour cherry has an altered S-haplotype-specific F-box protein gene.

    Science.gov (United States)

    Hauck, Nathanael R; Ikeda, Kazuo; Tao, Ryutaro; Iezzoni, Amy F

    2006-01-01

    Gametophytic self-incompatibility (GSI) is an outcrossing mechanism in flowering plants that is genetically controlled by 2 separate genes located at the highly polymorphic S-locus, termed S-haplotype. This study characterizes a pollen part mutant of the S(1)-haplotype present in sour cherry (Rosaceae, Prunus cerasus L.) that contributes to the loss of GSI. Inheritance of S-haplotypes from reciprocal interspecific crosses between the self-compatible sour cherry cultivar Ujfehértói Fürtös carrying the mutated S(1)-haplotype (S(1)'S(4)S(d)S(null)) and the self-incompatible sweet cherry (Prunus avium L.) cultivars carrying the wild-type S(1)-haplotype revealed that the mutated S(1)-haplotype confers unilateral incompatibility with a functional pistil component and a nonfunctional pollen component. The altered sour cherry S(1)-haplotype pollen part mutant, termed S(1)', contains a 615-bp Ds-like element within the S(1)-haplotype-specific F-box protein gene (SFB(1)'). This insertion generates a premature in-frame stop codon that would result in a putative truncated SFB(1) containing only 75 of the 375 amino acids present in the wild-type SFB(1). S(1)' along with 2 other previously characterized Prunus S-haplotype mutants, S(f) and S(6m), illustrate that mobile element insertion is an evolutionary force contributing to the breakdown of GSI. PMID:16985081

  6. TATA box-binding protein gene is associated with risk for schizophrenia, age at onset and prefrontal function.

    Science.gov (United States)

    Ohi, K; Hashimoto, R; Yasuda, Y; Kiribayashi, M; Iike, N; Yoshida, T; Azechi, M; Ikezawa, K; Takahashi, H; Morihara, T; Ishii, R; Tagami, S; Iwase, M; Okochi, M; Kamino, K; Kazui, H; Tanaka, T; Kudo, T; Takeda, M

    2009-06-01

    Schizophrenia is a common polygenic disease in distinct populations, while spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disorder. Both diseases involve psychotic symptoms. SCA17 is caused by an expanded polyglutamine tract in the TATA box-binding protein (TBP) gene. In the present study, we investigated the association between schizophrenia and CAG repeat length in common TBP alleles with fewer than 42 CAG repeats in a Japanese population (326 patients with schizophrenia and 116 healthy controls). We found that higher frequency of alleles with greater than 35 CAG repeats in patients with schizophrenia compared with that in controls (p = 0.042). We also examined the correlation between CAG repeats length and age at onset of schizophrenia. We observed a negative correlation between the number of CAG repeats in the chromosome with longer CAG repeats out of two chromosomes and age at onset of schizophrenia (p = 0.020). We further provided evidence that TBP genotypes with greater than 35 CAG repeats, which were enriched in patients with schizophrenia, were significantly associated with hypoactivation of the prefrontal cortex measured by near-infrared spectroscopy during the tower of Hanoi, a task of executive function (right PFC; p = 0.015, left PFC; p = 0.010). These findings suggest possible associations of the genetic variations of the TBP gene with risk for schizophrenia, age at onset and prefrontal function. PMID:19566714

  7. Related polymorphic F-box protein genes between haplotypes clustering in the BAC contig sequences around the S-RNase of Japanese pear.

    Science.gov (United States)

    Okada, Kazuma; Tonaka, Nozomi; Taguchi, Tomio; Ichikawa, Takehiko; Sawamura, Yutaka; Nakanishi, Tetsu; Takasaki-Yasuda, Takeshi

    2011-03-01

    Most fruit trees in the Rosaceae exhibit self-incompatibility, which is controlled by the pistil S gene, encoding a ribonuclease (S-RNase), and the pollen S gene at the S-locus. The pollen S in Prunus is an F-box protein gene (SLF/SFB) located near the S-RNase, but it has not been identified in Pyrus and Malus. In the Japanese pear, various F-box protein genes (PpSFBB(-α-γ)) linked to the S-RNase are proposed as the pollen S candidate. Two bacterial artificial chromosome (BAC) contigs around the S-RNase genes of Japanese pear were constructed, and 649 kb around S(4)-RNase and 378 kb around S(2)-RNase were sequenced. Six and 10 pollen-specific F-box protein genes (designated as PpSFBB(4-u1-u4, 4-d1-d2) and PpSFBB(2-u1-u5,) (2-d1-d5), respectively) were found, but PpSFBB(4-α-γ) and PpSFBB(2-γ) were absent. The PpSFBB(4) genes showed 66.2-93.1% amino acid identity with the PpSFBB(2) genes, which indicated clustering of related polymorphic F-box protein genes between haplotypes near the S-RNase of the Japanese pear. Phylogenetic analysis classified 36 F-box protein genes of Pyrus and Malus into two major groups (I and II), and also generated gene pairs of PpSFBB genes and PpSFBB/Malus F-box protein genes. Group I consisted of gene pairs with 76.3-94.9% identity, while group II consisted of gene pairs with higher identities (>92%) than group I. This grouping suggests that less polymorphic PpSFBB genes in group II are non-S pollen genes and that the pollen S candidates are included in the group I PpSFBB genes.

  8. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, Richard E., E-mail: rlloyd@bcm.edu

    2015-05-15

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. - Highlights: • Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. • A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. • Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.

  9. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses

    International Nuclear Information System (INIS)

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. - Highlights: • Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. • A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. • Key virus proteins alter roles of RNA binding proteins in different stages of virus replication

  10. All Trans-Retinoic Acid Mediates MED28/HMG Box-Containing Protein 1 (HBP1)/β-Catenin Signaling in Human Colorectal Cancer Cells.

    Science.gov (United States)

    Lee, Ming-Fen; Hsieh, Nien-Tsu; Huang, Chun-Yin; Li, Chun-I

    2016-08-01

    Vitamin A is required for normal body function, including vision, epithelial integrity, growth, and differentiation. All trans-retinoic acid (ATRA), a family member of vitamin A, has been explored in treating acute promyelocytic leukemia and other types of cancer. Dysregulated Wnt/β-catenin signaling and disrupted cadherin-catenin complex often contribute to colorectal malignancy. MED28, a mammalian Mediator subunit, is found highly expressed in breast and colorectal cancers. Our laboratory has also reported that MED28 regulates cell growth, migration, and invasion in human breast cancer cells. In the current study we investigated the effect of ATRA on MED28 and Wnt/β-catenin signaling in colorectal cancer. HCT116, HT29, SW480, and SW620, four human colorectal cancer cell lines representing different stages of carcinogenesis and harboring critical genetic changes, were employed. Our data indicated that regardless of genetic variations among these cells, suppression of MED28 reduced the expression of cyclin D1, c-Myc, and nuclear β-catenin, but increased the expression of E-cadherin and HMG box-containing protein 1 (HBP1) where HBP1 has been described as a negative regulator of the Wnt/β-catenin signaling. The reporter activity of an HBP1 promoter increased upon MED28 knockdown, but decreased upon MED28 overexpression. ATRA reduced the expression of MED28 and mimicked the effect of MED28 suppression in down-regulating Wnt/β-catenin signaling. Taken together, ATRA can reverse the suppressive effect of MED28 on HBP1 and E-cadherin and inactivate the Wnt/β-catenin pathway in colorectal cancer, suggesting a protective effect of ATRA against colorectal cancer. J. Cell. Physiol. 231: 1796-1803, 2016. © 2015 Wiley Periodicals, Inc. PMID:26660958

  11. Airway epithelial inflammation-induced endoplasmic reticulum Ca2+ store expansion is mediated by X-box binding protein-1.

    Science.gov (United States)

    Martino, Mary E B; Olsen, John C; Fulcher, Nanette B; Wolfgang, Matthew C; O'Neal, Wanda K; Ribeiro, Carla M P

    2009-05-29

    Inflamed cystic fibrosis (CF) human bronchial epithelia (HBE), or normal HBE exposed to supernatant from mucopurulent material (SMM) from CF airways, exhibit endoplasmic reticulum (ER)/Ca(2+) store expansion and amplified Ca(2+)-mediated inflammation. HBE inflammation triggers an unfolded protein response (UPR) coupled to mRNA splicing of X-box binding protein-1 (XBP-1). Because spliced XBP-1 (XBP-1s) promotes ER expansion in other cellular models, we hypothesized that XBP-1s is responsible for the ER/Ca(2+) store expansion in inflamed HBE. XBP-1s was increased in freshly isolated infected/inflamed CF in comparison with normal HBE. The link between airway epithelial inflammation, XBP-1s, and ER/Ca(2+) store expansion was then addressed in murine airways challenged with phosphate-buffered saline or Pseudomonas aeruginosa. P. aeruginosa-challenged mice exhibited airway epithelial ER/Ca(2+) store expansion, which correlated with airway inflammation. P. aeruginosa-induced airway inflammation triggered XBP-1s in ER stress-activated indicator (ERAI) mice. To evaluate the functional role of XBP-1s in airway inflammation linked to ER/Ca(2+) store expansion, control, XBP-1s, or dominant negative XBP-1 (DN-XBP-1) stably expressing 16HBE14o(-) cell lines were used. Studies with cells transfected with an unfolded protein response element (UPRE) luciferase reporter plasmid confirmed that the UPRE was activated or inhibited by expression of XBP-1s or DN-XBP-1, respectively. Expression of XBP-1s induced ER/Ca(2+) store expansion and potentiated bradykinin-increased interleukin (IL)-8 secretion, whereas expression of DN-XBP-1 inhibited bradykinin-dependent IL-8 secretion. In addition, expression of DN-XBP-1 blunted SMM-induced ER/Ca(2+) store expansion and SMM-induced IL-8 secretion. These findings suggest that, in inflamed HBE, XBP-1s is responsible for the ER/Ca(2+) store expansion that confers amplification of Ca(2+)-dependent inflammatory responses. PMID:19321437

  12. Transcription by Methanothermobacter thermautotrophicus RNA Polymerase In Vitro Releases Archaeal Transcription Factor B but Not TATA-Box Binding Protein from the Template DNA

    OpenAIRE

    Xie, Yunwei; Reeve, John N.

    2004-01-01

    Transcription initiation in Archaea requires the assembly of a preinitiation complex containing the TATA- box binding protein (TBP), transcription factor B (TFB), and RNA polymerase (RNAP). The results reported establish the fate of Methanothermobacter thermautotrophicus TBP and TFB following transcription initiation by M. thermautotrophicus RNAP in vitro. TFB is released after initiation, during extension of the transcript from 4 to 24 nucleotides, but TBP remains bound to the template DNA. ...

  13. Effects of high-mobility group box 1 on the expression of Beclin-1 and LC3 proteins following hypoxia and reoxygenation injury in rat cardiomyocytes

    OpenAIRE

    Xu, Weipan; Jiang, Hong; Hu, Xiaorong; Fu, Wenwen

    2014-01-01

    The mechanisms underlying autophagy during myocardial ischemia and reperfusion remain unclear. The present study investigated the relationship between high-mobility group box 1 protein (HMGB1) and autophagy in hypoxia/reoxygenation (H/R)-induced neonatal rat cardiomyocytes. Neonatal rat cardiomyocytes were treated with recombinant HMGB1 (200 ng/L) or ammonium glycyrrhizinate (100 μM) at appropriate concentrations. Cell viabilities and lactate dehydrogenase (LDH) and creatine kinase (CK) activ...

  14. A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium.

    Science.gov (United States)

    Yamane, Hisayo; Ikeda, Kazuo; Ushijima, Koichiro; Sassa, Hidenori; Tao, Ryutaro

    2003-07-01

    This study describes a novel F-box protein gene in the S-locus of sour cherry (Prunus cerasus) and sweet cherry (P. avium). The gene showed an S-haplotype-specific sequence polymorphism and the expression was specific to pollen. Genomic DNA blot analysis of eight sweet cherry cultivars with the probe for the F-box protein gene under low stringency conditions yielded RFLP bands specific to the S-haplotypes of each cultivar. We discuss the possibility of the gene for the F-box protein being a candidate for the male determinant of gametophytic self-incompatibility in PRUNUS: PMID:12881505

  15. Structure of the SPRY domain of the human RNA helicase DDX1, a putative interaction platform within a DEAD-box protein

    Energy Technology Data Exchange (ETDEWEB)

    Kellner, Julian N.; Meinhart, Anton, E-mail: anton.meinhart@mpimf-heidelberg.mpg.de [Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg (Germany)

    2015-08-25

    The structure of the SPRY domain of the human RNA helicase DDX1 was determined at 2.0 Å resolution. The SPRY domain provides a putative protein–protein interaction platform within DDX1 that differs from other SPRY domains in its structure and conserved regions. The human RNA helicase DDX1 in the DEAD-box family plays an important role in RNA processing and has been associated with HIV-1 replication and tumour progression. Whereas previously described DEAD-box proteins have a structurally conserved core, DDX1 shows a unique structural feature: a large SPRY-domain insertion in its RecA-like consensus fold. SPRY domains are known to function as protein–protein interaction platforms. Here, the crystal structure of the SPRY domain of human DDX1 (hDSPRY) is reported at 2.0 Å resolution. The structure reveals two layers of concave, antiparallel β-sheets that stack onto each other and a third β-sheet beneath the β-sandwich. A comparison with SPRY-domain structures from other eukaryotic proteins showed that the general β-sandwich fold is conserved; however, differences were detected in the loop regions, which were identified in other SPRY domains to be essential for interaction with cognate partners. In contrast, in hDSPRY these loop regions are not strictly conserved across species. Interestingly, though, a conserved patch of positive surface charge is found that may replace the connecting loops as a protein–protein interaction surface. The data presented here comprise the first structural information on DDX1 and provide insights into the unique domain architecture of this DEAD-box protein. By providing the structure of a putative interaction domain of DDX1, this work will serve as a basis for further studies of the interaction network within the hetero-oligomeric complexes of DDX1 and of its recruitment to the HIV-1 Rev protein as a viral replication factor.

  16. Differential response of multiple zebrafish hepatic F-box protein genes to 17α-ethinylestradiol treatment

    Institute of Scientific and Technical Information of China (English)

    Hongping Zheng; Shifeng Li; Zhili Wu; Yunbin Zhang; Shengnan Hu; Yuanchang Yan; Yiping Li

    2011-01-01

    Estrogens are accumulating in environment and their effects on a variety of reproductive processes and tumorigenesis were reported by previous study, but the mechanism of estrogen promoting neoplasia was still not clear. F-box protein (FBP) is the component of E3 ubiquitin ligase which takes part in a variety of key biological processes. In this study, using mature male zebrafish, which are more sensitive to estrogen treatment, we examined influence of 17α-ethinylestradiol (EE2) exposure on the expression of a series of hepatic FBP genes, which take part in a variety of biological processes, including tumorigenesis. The influence of EE2 on the expression of hepatic mRNA concentrations of FBP genes were quantified based on the expression of the optimal internal control gene in male zebrafish after 7-day exposure to EE2, from a low-dose concentration (1 ng/L) to environmentally relevant concentrations (10, 100 ng/L). Our results showed that EE2 exposure reduced the expression offbxll4a, fbxl14b, fbxo25 and β-TRCP2b, but enchanced the expression of skp2. While the alterations infbxl2, fbxw7,fbxo9, β-TRCP2a, fbxll8 andfbxo45 mRNA levels were not observed after EE2 exposure. Thus, our results showed that the expression of hepatic FBP genes exhibited differentially in male zebrafish exposed EE2. The changes of the expression level of FBP genes induced by EE2 may be an important clue to elucidate the correlations of estrogen and hepatic tumors.

  17. Cell differentiation by interaction of two HMG-box proteins: Mat1-Mc activates M cell-specific genes in S.pombe by recruiting the ubiquitous transcription factor Ste11 to weak binding sites

    DEFF Research Database (Denmark)

    Kjaerulff, S; Dooijes, D; Clevers, H;

    1997-01-01

    (a so-called TR-box) that can confer M-specificity on a heterologous promoter when present in eight copies. In vitro, both Mat1-Mc and Ste11 can bind this box with approximately the same affinity. The Mat1-Mc protein caused a dramatic increase in the DNA-binding of Ste11 to this box, under conditions...... where we could not detect Mat1-Mc in the resulting protein-DNA complex. When we changed a single base in the mfm1 TR-box, such that it resembled those boxes found in ubiquitously expressed genes, Ste11 binding was enhanced, and in vivo the mfm1 gene also became expressed in P cells where Mat1-Mc...... is absent. These findings suggest that M-specificity results from Mat1-Mc-mediated Ste11 binding to weak TR-boxes. We have also defined a novel motif (termed M-box), adjacent to the mfm1 TR-box, to which Mat1-Mc binds strongly. A DNA fragment containing both the TR- and the M-box allowed the formation...

  18. Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-06-11

    Structural protein 4.1, which has crucial interactions within the spectin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher resolution cell whole mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under non-perturbing conditions, the total nuclear actin population is retained and is visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As the nuclear lamina assembled, but preceding DNA synthesis, a discrete actin network formed throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical.

  19. Identification of a Ubiquitin-Binding Structure in the S-Locus F-Box Protein Controlling S-RNase-Based Self-Incompatibility

    Institute of Scientific and Technical Information of China (English)

    Guang Chen; Bin Zhang; Lijing Liu; Qun Li; Yu'e Zhang; Qi Xie; Yongbiao Xue

    2012-01-01

    In flowering plants,self-incompatibility (SI) serves as an important intraspecific reproductive barrier to promote outbreeding.In species from the Solanaceae,Plantaginaceae and Rosaceae,S-RNase and SLF (S-locus F-box) proteins have been shown to control the female and male specificity of SI,respectively.However,little is known about structure features of the SLF protein apart from its conserved F-box domain.Here we show that the SLF C-terminal region possesses a novel ubiquitin-binding domain (UBD) structure conserved among the SLF protein family.By using an ex vivo system of Nicotiana benthamiana,we found that the UBD mediates the SLF protein turnover by the ubiquitin-proteasome pathway.Furthermore,we detected that the SLF protein was directly involved in S-RNase degradation.Taken together,our results provide a novel insight into the SLF structure and highlight a potential role of SLF protein stability and degradation in S-RNase-based self-incompatibility.

  20. Identification and characterization of proteins involved in nuclear organization using Drosophila GFP protein trap lines.

    Directory of Open Access Journals (Sweden)

    Margaret Rohrbaugh

    Full Text Available BACKGROUND: Strains from a collection of Drosophila GFP protein trap lines express GFP in the normal tissues where the endogenous protein is present. This collection can be used to screen for proteins distributed in the nucleus in a non-uniform pattern. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed four lines that show peripheral or punctate nuclear staining. One of these lines affects an uncharacterized gene named CG11138. The CG11138 protein shows a punctate distribution in the nuclear periphery similar to that of Drosophila insulator proteins but does not co-localize with known insulators. Interestingly, mutations in Lamin proteins result in alterations in CG11138 localization, suggesting that this protein may be a novel component of the nuclear lamina. A second line affects the Decondensation factor 31 (Df31 gene, which encodes a protein with a unique nuclear distribution that appears to segment the nucleus into four different compartments. The X-chromosome of males is confined to one of these compartments. We also find that Drosophila Nucleoplasmin (dNlp is present in regions of active transcription. Heat shock leads to loss of dNlp from previously transcribed regions of polytene chromosome without redistribution to the heat shock genes. Analysis of Stonewall (Stwl, a protein previously found to be necessary for the maintenance of germline stem cells, shows that Stwl is present in a punctate pattern in the nucleus that partially overlaps with that of known insulator proteins. Finally we show that Stwl, dNlp, and Df31 form part of a highly interactive network. The properties of other components of this network may help understand the role of these proteins in nuclear biology. CONCLUSIONS/SIGNIFICANCE: These results establish screening of GFP protein trap alleles as a strategy to identify factors with novel cellular functions. Information gained from the analysis of CG11138 Stwl, dNlp, and Df31 sets the stage for future studies of these

  1. Prm3p Is a Pheromone-induced Peripheral Nuclear Envelope Protein Required for Yeast Nuclear Fusion

    OpenAIRE

    Shen, Shu; Tobery, Cynthia E.; Rose, Mark D.

    2009-01-01

    Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromon...

  2. Virtual box

    DEFF Research Database (Denmark)

    Stougaard, Malthe Kirkhoff

    2007-01-01

    Mediated intimacy is the phenomenon where humans use technologies to express, share, or communicate intimate feelings with each other. Typically, technologies supporting mediated intimacy encompass different characteristics than technologies designed to solve specific work-oriented tasks. This pa......Mediated intimacy is the phenomenon where humans use technologies to express, share, or communicate intimate feelings with each other. Typically, technologies supporting mediated intimacy encompass different characteristics than technologies designed to solve specific work-oriented tasks....... This paper reports on the design, implementation and initial evaluation of Virtual Box. Virtual Box attempts to create a physical and engaging context in order to support reciprocal interactions with expressive content. An implemented version of Virtual Box is evaluated in a location-aware environment...

  3. In vitro nuclear interactome of the HIV-1 Tat protein.

    LENUS (Irish Health Repository)

    Gautier, Virginie W

    2009-01-01

    BACKGROUND: One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86-101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry. RESULTS: Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied in silico analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture. CONCLUSION: We have completed the in vitro Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will

  4. Rapid flow cytometric measurement of protein inclusions and nuclear trafficking

    Science.gov (United States)

    Whiten, D. R.; San Gil, R.; McAlary, L.; Yerbury, J. J.; Ecroyd, H.; Wilson, M. R.

    2016-01-01

    Proteinaceous cytoplasmic inclusions are an indicator of dysfunction in normal cellular proteostasis and a hallmark of many neurodegenerative diseases. We describe a simple and rapid new flow cytometry-based method to enumerate, characterise and, if desired, physically recover protein inclusions from cells. This technique can analyse and resolve a broad variety of inclusions differing in both size and protein composition, making it applicable to essentially any model of intracellular protein aggregation. The method also allows rapid quantification of the nuclear trafficking of fluorescently labelled molecules. PMID:27516358

  5. High-mobility group box-1 protein and keratin-18, circulating serum proteins informative of acetaminophen-induced necrosis and apoptosis in vivo.

    Science.gov (United States)

    Antoine, Daniel J; Williams, Dominic P; Kipar, Anja; Jenkins, Rosalind E; Regan, Sophie L; Sathish, Jean G; Kitteringham, Neil R; Park, B Kevin

    2009-12-01

    Drug-induced hepatotoxicity represents a major clinical problem and an impediment to new medicine development. Serum biomarkers hold the potential to provide information about pathways leading to cellular responses within inaccessible tissues, which can inform the medicinal chemist and the clinician with respect to safe drug design and use. Hepatocyte apoptosis, necrosis, and innate immune activation have been defined as features of the toxicological response associated with the hepatotoxin acetaminophen (APAP). Within this investigation, we have unambiguously identified and characterized by liquid chromatography-tandem mass spectrometry differing circulating molecular forms of high-mobility group box-1 protein (HMGB1) and keratin-18 (K18), which are linked to the mechanisms and pathological changes induced by APAP in the mouse. Hypoacetylated HMGB1 (necrosis indicator), caspase-cleaved K18 (apoptosis indicator), and full-length K18 (necrosis indicator) present in serum showed strong correlations with the histological time course of cell death and was more sensitive than alanine aminotransferase activity. We have further identified a hyperacetylated form of HMGB1 (inflammatory indicator) in serum, which indicated that hepatotoxicity was associated with an inflammatory response. The inhibition of APAP-induced apoptosis and K18 cleavage by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(OMe) fluoromethyl ketone are associated with increased hepatic damage, by a shift to necrotic cell death only. These findings illustrate the initial verification of K18 and HMGB1 molecular forms as serum-based sensitive tools that provide insights into the cellular dynamics involved in APAP hepatotoxicity within an inaccessible tissue. Based on these findings, potential exists for the qualification and measurement of these proteins to further assist in vitro, in vivo, and clinical bridging in toxicological research. PMID:19783637

  6. Forkhead box protein 3 mRNA expression in the peripheral blood of kidney-transplant recipients with acute rejection

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; LI Xiao-bei; YANG Xiao-yong; ZHANG Xiao-dong

    2011-01-01

    Background Regulatory T cells (Tregs) are immunologically and clinically interesting not least because of the important role they play in allograft rejection. Likewise, expression of the transcription factor forkhead box protein 3 (FOXP3), detected in transplant biopsies, is also of interest because of its role in the development of regulatory T cells. In this study, we Investigated the relationship between FoxP3 mRNA expression and acute organ rejection in kidney-transplant recipients.Methods In this prospective study, FoxP3 mRNA expression levels in peripheral blood samples from 10 recipients of living relative-donor kidney transplants were measured before transplantation as well as at the 14th and 90th days post-transplantation. In addition, 46 first-time kidney-transplant recipients participated in a cross-sectional study, with 28 patients classified as having acute organ rejection; whilst the remaining 18 patients had functionally stable allografts. FoxP3 mRNA expression levels in peripheral blood samples were compared between these two different groups.Results Before transplantation mean FoxP3 mRNA levels vs. GADPH mRNA levels (lg(FoxP3 mRNA/GADPH mRNA)) in the 10 recipients were 1.11±0.67. The mean FoxP3 mRNA expression levels measured at 14th and 90th days post-transplantation were significantly higher than before transplantation (1.69±0.38, P=0.03; 1.44±0.21, P=0.04, respectively). Additionally, the mean FoxP3 mRNA levels vs. GADPH mRNA expression levels (lg(FoxP3 mRNA/GADPH mRNA)) were significantly higher in recipients suffering acute rejection compared with those with stable allografts (1.77±0.61 and 1.43±0.27, respectively, P=0.03).Conclusions After kidney transplantation, FoxP3 mRNA levels were found to increase in the peripheral blood of all recipients. Considerably higher FoxP3 mRNA levels were observed in recipients suffering acute rejection. These results suggest that FoxP3 mRNA levels in peripheral blood samples can be used as a diagnostic

  7. Subcellular Localization of the S Locus F-box Protein AhSLF-S2 in Pollen and Pollen Tubes of Self-Incompatible Antirrhinum

    Institute of Scientific and Technical Information of China (English)

    Hong-Yun WANG; Yong-Biao XUE

    2005-01-01

    The distribution of the S locus F-box (SLF) protein was examined by immunocytochemistry and Western blot techniques using an antibody against the C-terminal part of AhSLF-S2 in self-incompatible lines of Antirrhinum. Abundant gold particles were found where pollen tubes emerge in vitro. With the elongation of pollen tubes, binding sites for the antibody were found in the cytoplasm of the pollen tubes,including the peripheral part of the endoplasmic reticulum. After germination in vitro for 16 h, the product of AhSLF-S2 and possibly its allelic products could still be detectable, implying that the SLF protein has a role in the elongating process of pollen tubes. The present study provides evidence at the protein level that the SLF protein is present in pollen cytoplasm during pollen tube growth. These findings are discussed, as is their potential role in the self-incompatible response in Antirrhinum.

  8. A human Polycomb isoform lacking the Pc box does not participate to PRC1 complexes but forms protein assemblies and represses transcription.

    Science.gov (United States)

    Völkel, Pamela; Le Faou, Perrine; Vandamme, Julien; Pira, Dorcas; Angrand, Pierre-Olivier

    2012-05-01

    Polycomb repression controls the expression of hundreds of genes involved in development and is mediated by essentially two classes of chromatin-associated protein complexes. The Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27, an epigenetic mark that serves as a docking site for the PRC1 protein complex. Drosophila core PRC1 is composed of four subunits: Polycomb (Pc), Posterior sex combs (Psc), Polyhomeotic (Ph) and Sex combs extra (Sce). Each of these proteins has multiple orthologs in vertebrates, thus generating an enormous scope for potential combinatorial diversity. In particular, mammalian genomes encode five Pc family members: CBX2, CBX4, CBX6, CBX7 and CBX8. To complicate matters further, distinct isoforms might arise from single genes. Here, we address the functional role of the two human CBX2 isoforms. Owing to different polyadenylation sites and alternative splicing events, the human CBX2 locus produces two transcripts: a 5-exon transcript that encodes the 532-amino acid CBX2-1 isoform that contains the conserved chromodomain and Pc box and a 4-exon transcript encoding a shorter isoform, CBX2-2, lacking the Pc box but still possessing a chromodomain. Using biochemical approaches and a novel in vivo imaging assay, we show that the short CBX2-2 isoform lacking the Pc box, does not participate in PRC1 protein complexes, but self-associates in vivo and forms complexes of high molecular weight. Furthermore, the CBX2 short isoform is still able to repress transcription, suggesting that Polycomb repression might occur in the absence of PRC1 formation. PMID:22419124

  9. The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein.

    OpenAIRE

    Michael, W M; Eder, P S; Dreyfuss, G

    1997-01-01

    Protein import into the nucleus and export from the nucleus are signal-mediated processes that require energy. The nuclear transport process about which the most information is currently available is classical nuclear localization signal (NLS)-mediated nuclear import. However, details concerning the signal-mediated export of proteins and RNAs as well as alternative nuclear import pathways are beginning to emerge. An example of this is the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 pro...

  10. Regulation of Nuclear Localization of Signaling Proteins by Cytokinin

    Energy Technology Data Exchange (ETDEWEB)

    Kieber, J.J.

    2010-05-01

    Cytokinins are a class of mitogenic plant hormones that play an important role in most aspects of plant development, including shoot and root growth, vascular and photomorphogenic development and leaf senescence. A model for cytokinin perception and signaling has emerged that is similar to bacterial two-component phosphorelays. In this model, binding of cytokinin to the extracellular domain of the Arabidopsis histidine kinase (AHKs) receptors induces autophosphorylation within the intracellular histidine-kinase domain. The phosphoryl group is subsequently transferred to cytosolic Arabidopsis histidine phosphotransfer proteins (AHPs), which have been suggested to translocate to the nucleus in response to cytokinin treatment, where they then transfer the phosphoryl group to nuclear-localized response regulators (Type-A and Type-B ARRs). We examined the effects of cytokinin on AHP subcellular localization in Arabidopsis and, contrary to expectations, the AHPs maintained a constant nuclear/cytosolic distribution following cytokinin treatment. Furthermore, mutation of the conserved phosphoacceptor histidine residue of the AHP, as well as disruption of multiple cytokinin signaling elements, did not affect the subcellular localization of the AHP proteins. Finally, we present data indicating that AHPs maintain a nuclear/cytosolic distribution by balancing active transport into and out of the nucleus. Our findings suggest that the current models indicating relocalization of AHP protein into the nucleus in response to cytokinin are incorrect. Rather, AHPs actively maintain a consistent nuclear/cytosolic distribution regardless of the status of the cytokinin response pathway.

  11. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases

    Institute of Scientific and Technical Information of China (English)

    Weihua Zhou; Wenyi Wei; Yi Sun

    2013-01-01

    The SCF (SKP1 (S-phase-kinase-associated protein 1),Cullin-1,F-box protein) E3 ubiquitin ligases,the founding member of Cullin-RING ligases (CRLs),are the largest family of E3 ubiquitin ligases in mammals.Each individual SCF E3 ligase consists of one adaptor protein SKP1,one scaffold protein cullin-1 (the first family member of the eight cullins),one F-box protein out of 69 family members,and one out of two RING (Really Interesting New Gene) family proteins RBX1/ROC1 or RBX2/ROC2/SAG/RNF7.Various combinations of these four components construct a large number of SCF E3s that promote the degradation of many key regulatory proteins in cell-context,temporally,and spatially dependent manners,thus controlling precisely numerous important cellular processes,including cell cycle progression,apoptosis,gene transcription,signal transduction,DNA replication,maintenance of genome integrity,and tumorigenesis.To understand how the SCF E3 ligases regulate these cellular processes and embryonic development under in vivo physiological conditions,a number of mouse models with transgenic (Tg) expression or targeted deletion of components of SCF have been established and characterized.In this review,we will provide a brief introduction to the ubiquitin-proteasome system (UPS) and the SCF E3 ubiquitin ligases,followed by a comprehensive overview on the existing Tg and knockout (KO) mouse models of the SCF E3s,and discuss the role of each component in mouse embryogenesis,cell proliferation,apoptosis,carcinogenesis,as well as other pathogenic processes associated with human diseases.We will end with a brief discussion on the future directions of this research area and the potential applications of the knowledge gained to more effective therapeutic interventions of human diseases.

  12. Einstein's Boxes

    OpenAIRE

    Norsen, Travis

    2004-01-01

    At the 1927 Solvay conference, Einstein presented a thought experiment intended to demonstrate the incompleteness of the quantum mechanical description of reality. In the following years, the thought experiment was picked up and modified by Einstein, de Broglie, and several other commentators into a simple scenario involving the splitting in half of the wave function of a single particle in a box. In this paper we collect together several formulations of this thought experiment from the exist...

  13. Inducer effect on the complex formation between rat liver nuclear proteins and cytochrome P450 2B gene regulatory elements.

    Science.gov (United States)

    Duzhak, T G; Schwartz, E I; Gulyaeva, L F; Lyakhovich, V V

    2002-09-01

    DNA gel retardation assay has been applied to the investigation of complexes between rat liver nuclear proteins and Barbie box positive regulatory element of cytochrome P450 2B (CYP2B) genes. The intensities of B1 and B2 bands detected in the absence of an inducer increased after 30 min protein incubation with phenobarbital (PB) or triphenyldioxane (TPD), but not with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOPOB). In addition, a new complex (B3 band) was for the first time detected under induction by PB, TPD, and TCPOPOB. Increase in the incubation time up to 2 h facilitated the formation of other new complexes (B4 and B5 bands), which were detected only in the presence of TPD. The use of [3H]TPD in hybridization experiments revealed that this inducer, capable of binding to Barbie box DNA, is also present in B4 and B5 complexes. It is probable that the investigated compounds activate the same proteins at the initial induction steps, which correlates with the formation of B1, B2, and B3 complexes. The further induction step might be inducer-specific, as indicated by the formation of B4 and B5 complexes in the presence of TPD only. Thus, the present data suggest the possibility of specific gene activation signaling pathways that are dependent on a particular inducer. PMID:12387719

  14. Paired Box Gene 8-Peroxisome Proliferator-Activated Receptor-γ Fusion Protein and Loss of Phosphatase and Tensin Homolog Synergistically Cause Thyroid Hyperplasia in Transgenic Mice

    OpenAIRE

    Diallo-Krou, Ericka; Yu, Jingcheng; Colby, Lesley A.; Inoki, Ken; Wilkinson, John E.; Thomas, Dafydd G.; Giordano, Thomas J.; Koenig, Ronald J.

    2009-01-01

    Approximately 35% of follicular thyroid carcinomas and a small fraction of follicular adenomas are associated with a t(2;3)(q13;p25) chromosomal translocation that fuses paired box gene 8 (PAX8) with the peroxisome proliferator-activated receptor-γ gene (PPARG), resulting in expression of a PAX8-PPARγ fusion protein, PPFP. The mechanism by which PPFP contributes to follicular thyroid neoplasia is poorly understood. Therefore, we have created mice with thyroid-specific expression of PPFP. At 1...

  15. Firing the Sting: Chemically Induced Discharge of Cnidae Reveals Novel Proteins and Peptides from Box Jellyfish (Chironex fleckeri) Venom

    OpenAIRE

    Mahdokht Jouiaei; Nicholas R Casewell; Yanagihara, Angel A.; Amanda Nouwens; Cribb, Bronwen W.; Darryl Whitehead; Jackson, Timothy N. W.; Syed A. Ali; Wagstaff, Simon C.; Ivan Koludarov; Paul Alewood; Jay Hansen; Fry, Bryan G.

    2015-01-01

    Cnidarian venom research has lagged behind other toxinological fields due to technical difficulties in recovery of the complex venom from the microscopic nematocysts. Here we report a newly developed rapid, repeatable and cost effective technique of venom preparation, using ethanol to induce nematocyst discharge and to recover venom contents in one step. Our model species was the Australian box jellyfish (Chironex fleckeri), which has a notable impact on public health. By utilizing scanning e...

  16. Firing the sting: chemically induced discharge of cnidae reveals novel proteins and peptides from box jellyfish (Chironex fleckeri) venom.

    Science.gov (United States)

    Jouiaei, Mahdokht; Casewell, Nicholas R; Yanagihara, Angel A; Nouwens, Amanda; Cribb, Bronwen W; Whitehead, Darryl; Jackson, Timothy N W; Ali, Syed A; Wagstaff, Simon C; Koludarov, Ivan; Alewood, Paul; Hansen, Jay; Fry, Bryan G

    2015-03-01

    Cnidarian venom research has lagged behind other toxinological fields due to technical difficulties in recovery of the complex venom from the microscopic nematocysts. Here we report a newly developed rapid, repeatable and cost effective technique of venom preparation, using ethanol to induce nematocyst discharge and to recover venom contents in one step. Our model species was the Australian box jellyfish (Chironex fleckeri), which has a notable impact on public health. By utilizing scanning electron microscopy and light microscopy, we examined nematocyst external morphology before and after ethanol treatment and verified nematocyst discharge. Further, to investigate nematocyst content or "venom" recovery, we utilized both top-down and bottom-up transcriptomics-proteomics approaches and compared the proteome profile of this new ethanol recovery based method to a previously reported high activity and recovery protocol, based upon density purified intact cnidae and pressure induced disruption. In addition to recovering previously characterized box jellyfish toxins, including CfTX-A/B and CfTX-1, we recovered putative metalloproteases and novel expression of a small serine protease inhibitor. This study not only reveals a much more complex toxin profile of Australian box jellyfish venom but also suggests that ethanol extraction method could augment future cnidarian venom proteomics research efforts. PMID:25793725

  17. Firing the Sting: Chemically Induced Discharge of Cnidae Reveals Novel Proteins and Peptides from Box Jellyfish (Chironex fleckeri Venom

    Directory of Open Access Journals (Sweden)

    Mahdokht Jouiaei

    2015-03-01

    Full Text Available Cnidarian venom research has lagged behind other toxinological fields due to technical difficulties in recovery of the complex venom from the microscopic nematocysts. Here we report a newly developed rapid, repeatable and cost effective technique of venom preparation, using ethanol to induce nematocyst discharge and to recover venom contents in one step. Our model species was the Australian box jellyfish (Chironex fleckeri, which has a notable impact on public health. By utilizing scanning electron microscopy and light microscopy, we examined nematocyst external morphology before and after ethanol treatment and verified nematocyst discharge. Further, to investigate nematocyst content or “venom” recovery, we utilized both top-down and bottom-up transcriptomics–proteomics approaches and compared the proteome profile of this new ethanol recovery based method to a previously reported high activity and recovery protocol, based upon density purified intact cnidae and pressure induced disruption. In addition to recovering previously characterized box jellyfish toxins, including CfTX-A/B and CfTX-1, we recovered putative metalloproteases and novel expression of a small serine protease inhibitor. This study not only reveals a much more complex toxin profile of Australian box jellyfish venom but also suggests that ethanol extraction method could augment future cnidarian venom proteomics research efforts.

  18. STUDY ON NUCLEAR MATRIX PROTEINS FROM HUMAN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    HE Qian; ZHANG Shu-qun; CHU Yong-lie; JIA Xiao-li; JIANG Jian-tao

    2009-01-01

    Objective To investigate the marker protein of human breast carcinoma from nuclear matrix proteins (NMPs).Methods NMPs were injected subcutaneously into rabbit to get antiserum, which was used to detect the NMPs specificity for breast carcinoma.Results There was an apparent positive band (100kD) in the NMPs of breast carcinoma, which did not exist in normal breast and other tumors that were detected.Conclusion One or one group of 100kD NMPs were found to be related to human breast carcinoma, which may be involved in the carcinogenesis and development of human breast carcinoma and valuable for breast carcinoma diagnosis.

  19. 70-kDa Heat Shock Cognate Protein hsc70 Mediates Calmodulin-dependent Nuclear Import of the Sex-determining Factor SRY*

    Science.gov (United States)

    Kaur, Gurpreet; Lieu, Kim G.; Jans, David A.

    2013-01-01

    We recently showed that the developmentally important family of SOX (SRY (sex determining region on the Y chromosome)-related high mobility group (HMG) box) proteins require the calcium-binding protein calmodulin (CaM) for optimal nuclear accumulation, with clinical mutations in SRY that specifically impair nuclear accumulation via this pathway resulting in XY sex reversal. However, the mechanism by which CaM facilitates nuclear accumulation is unknown. Here, we show, for the first time, that the 70-kDa heat shock cognate protein hsc70 plays a key role in CaM-dependent nuclear import of SRY. Using a reconstituted nuclear import assay, we show that antibodies to hsc70 significantly reduce nuclear accumulation of wild type SRY and mutant derivatives thereof that retain CaM-dependent nuclear import, with an increased rate of nuclear accumulation upon addition of both CaM and hsc70, in contrast to an SRY mutant derivative with impaired CaM binding. siRNA knockdown of hsc70 in intact cells showed similar results, indicating clear dependence upon hsc70 for CaM-dependent nuclear import. Analysis using the technique of fluorescence recovery after photobleaching indicated that hsc70 is required for the maximal rate of SRY nuclear import in living cells but has no impact upon SRY nuclear retention/nuclear dynamics. Finally, we demonstrate direct binding of hsc70 to the SRY·CaM complex, with immunoprecipitation experiments from cell extracts showing association of hsc70 with wild type SRY, but not with a mutant derivative with impaired CaM binding, dependent on Ca2+. Our novel findings strongly implicate hsc70 in CaM-dependent nuclear import of SRY. PMID:23235156

  20. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein–protein interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wylie, Benjamin J. [Columbia University, Department of Chemistry (United States); Dzikovski, Boris G. [Cornell University, National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology (United States); Pawsey, Shane; Caporini, Marc; Rosay, Melanie [Bruker BioSpin Corporation (United States); Freed, Jack H. [Cornell University, National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology (United States); McDermott, Ann E., E-mail: aem5@columbia.edu [Columbia University, Department of Chemistry (United States)

    2015-04-15

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces.

  1. Proximity Utilizing Biotinylation of Nuclear Proteins in vivo

    Directory of Open Access Journals (Sweden)

    Arman Kulyyassov

    2015-06-01

    Full Text Available Introduction. The human genome consists of roughly 30,000 genes coding for over 500,000 different proteins, of which more than 10,000 proteins can be produced by the cell at any given time (the cellular “proteome”. It has been estimated that over 80% of proteins do not operate alone, but in complexes. These protein-protein interactions (PPI are regulated by several mechanisms. For example, post-translational modifications (methylation, acetylation, phosphorylation, or ubiquitination or metal-binding can lead to conformational changes that alter the affinity and kinetic parameters of the interaction. Many PPIs are part of larger cellular networks of interactions or interactomes. Indeed, these interactions are at the core of the entire interactomics system of any living cell, and so, aberrant PPIs are the basis of multiple diseases, such as neurodegenerative diseases and cancer. The objective of this study was to develop a method of monitoring protein-protein interactions and proximity dependence in vivo.Methods. The biotin ligase BirA was fused to the protein of interest, and the Biotin Acceptor Peptide (BAP was fused to an interacting partner to make the detection of its biotinylation possible by western blot or mass spectrometry.Results. Using several experimental systems (BirA.A + BAP.B, we showed that the biotinylation is interaction/proximity dependent. Here, A and B are the next nuclear proteins used in the experiments – 3 paralogues of heterochromatin protein HP1a (CBX5, HP1b (CBX1, HP1g (CBX3, wild type and transcription mutant factor Kap1, translesion DNA polymerase PolH and E3, ubiquitin ligase RAD18, Proliferative Cell Nuclear Antigen (PCNA, ubiquitin Ub, SUMO-2/3, different types and isoforms of histones H2A, H2Az, H3.1, H3.3, CenpA, H2A.BBD, and macroH2A. The variant of this approach is termed PUB-NChIP (Proximity Utilizing Biotinylation with Native Chromatin Immuno-precipitation and is designed to purify and study the protein

  2. Structural analysis of the DNA-binding domain of the Erwinia amylovora RcsB protein and its interaction with the RcsAB box.

    Science.gov (United States)

    Pristovsek, Primoz; Sengupta, Kaushik; Löhr, Frank; Schäfer, Birgit; von Trebra, Markus Wehland; Rüterjans, Heinz; Bernhard, Frank

    2003-05-16

    The transcriptional regulator RcsB interacts with other coactivators to control the expression of biosynthetic operons in enterobacteria. While in a heterodimer complex with the regulator RcsA the RcsAB box consensus is recognized, DNA binding sites for RcsB without RcsA have also been identified. The conformation of RcsB might therefore be modulated upon interaction with various coactivators, resulting in the recognition of different DNA targets. We report the solution structure of the C-terminal DNA-binding domain of the RcsB protein from Erwinia amylovora spanning amino acid residues 129-215 solved by heteronuclear magnetic resonance (NMR) spectroscopy. The C-terminal domain is composed of four alpha-helices where two central helices form a helix-turn-helix motif similar to the structures of the regulatory proteins GerE, NarL, and TraR. Amino acid residues involved in the RcsA independent DNA binding of RcsB were identified by titration studies with a RcsAB box consensus fragment. Data obtained from NMR spectroscopy together with surface plasmon resonance measurements demonstrate that the RcsAB box is specifically recognized by the RcsAB heterodimer as well as by RcsB alone. However, the binding constant of RcsB alone at target promoters from Escherichia coli, E. amylovora, and Pantoea stewartii was approximately 1 order of magnitude higher compared with that of the RcsAB heterodimer. We present evidence that the obvious role of RcsA is not to alter the DNA binding specificity of RcsB but to stabilize RcsB-DNA complexes. PMID:12740396

  3. Nucleomorphin. A novel, acidic, nuclear calmodulin-binding protein from dictyostelium that regulates nuclear number.

    Science.gov (United States)

    Myre, Michael A; O'Day, Danton H

    2002-05-31

    Probing of Dictyostelium discoideum cell extracts after SDS-PAGE using (35)S-recombinant calmodulin (CaM) as a probe has revealed approximately three-dozen Ca(2+)-dependent calmodulin binding proteins. Here, we report the molecular cloning, expression, and subcellular localization of a gene encoding a novel calmodulin-binding protein (CaMBP); we have called nucleomorphin, from D. discoideum. A lambdaZAP cDNA expression library of cells from multicellular development was screened using a recombinant calmodulin probe ((35)S-VU1-CaM). The open reading frame of 1119 nucleotides encodes a polypeptide of 340 amino acids with a calculated molecular mass of 38.7 kDa and is constitutively expressed throughout the Dictyostelium life cycle. Nucleomorphin contains a highly acidic glutamic/aspartic acid inverted repeat (DEED) with significant similarity to the conserved nucleoplasmin domain and a putative transmembrane domain in the carboxyl-terminal region. Southern blotting reveals that nucleomorphin exists as a single copy gene. Using gel overlay assays and CaM-agarose we show that bacterially expressed nucleomorphin binds to bovine CaM in a Ca(2+)-dependent manner. Amino-terminal fusion to the green fluorescence protein (GFP) showed that GFP-NumA localized to the nucleus as distinct arc-like patterns similar to heterochromatin regions. GFP-NumA lacking the acidic DEED repeat still showed arc-like accumulations at the nuclear periphery, but the number of nuclei in these cells was increased markedly compared with control cells. Cells expressing GFP-NumA lacking the transmembrane domain localized to the nuclear periphery but did not affect nuclear number or gross morphology. Nucleomorphin is the first nuclear CaMBP to be identified in Dictyostelium. Furthermore, these data present the first identification of a member of the nucleoplasmin family as a calmodulin-binding protein and suggest nucleomorphin has a role in nuclear structure in Dictyostelium. PMID:11919178

  4. Shadow boxing

    OpenAIRE

    Pulford, Donald

    2011-01-01

    Shadow Boxing continues my interest in the production/performance of gender on stage. It tells the story of a closeted, gay boxer and the devastation that ensues when he is outed. The central device is the play’s appeal to the audience’s imagined ‘bad faith’ concerning masculinity and the shock when the attendant expectations are subverted or upturned. I expressed the foundation of our enterprise in the New York programme by quoting from Calvin Thomas’s Masculinity, Psychoanalysis, Straight Q...

  5. High mobility group box1 protein is involved in acute inflammation induced by Clostridium difficile toxin A.

    Science.gov (United States)

    Liu, Ji; Zhang, Bei-Lei; Sun, Chun-Li; Wang, Jun; Li, Shan; Wang, Ju-Fang

    2016-06-01

    High mobility group box1 (HMGB1), as a damage-associated inflammatory factor, contributes to the pathogenesis of numerous chronic inflammatory and autoimmune diseases. In this study, we explored the role of HMGB1 in CDI (Clostridium difficile infection) by in vivo and in vitro experiments. Our results showed that HMGB1 might play an important role in the acute inflammatory responses to C. difficile toxin A (TcdA), affect early inflammatory factors, and induce inflammation via the HMGB1-TLR4 pathway. Our study provides the essential information for better understanding the molecular mechanisms of CDI and the potential new therapeutic strategies for the treatment of this infection. PMID:27151296

  6. Identifying Protein-Protein Associations at the Nuclear Envelope with BioID.

    Science.gov (United States)

    Kim, Dae In; Jensen, Samuel C; Roux, Kyle J

    2016-01-01

    The nuclear envelope (NE) is a critical cellular structure whose constituents and roles in a myriad of cellular processes seem ever expanding. To determine the underlying mechanisms by which the NE constituents participate in various cellular events, it is necessary to understand the nature of their protein-protein associations. BioID (proximity-dependent biotin identification) is a recently established method to generate a history of protein-protein associations as they occur over time in living cells. BioID is based on fusion of a bait protein to a promiscuous biotin ligase. Expression of the BioID fusion protein in a relevant cellular environment enables biotinylation of vicinal and interacting proteins of the bait protein, permitting isolation and identification by conventional biotin-affinity capture and mass-spec analysis. In this way, BioID provides unique capabilities to identify protein-protein associations at the NE. In this chapter we provide a detailed protocol for the application of BioID to the study of NE proteins.

  7. Inhibition of Ubiquitin Ligase F-box and WD Repeat Domain-containing 7α (Fbw7α) Causes Hepatosteatosis through Krüppel-like Factor 5 (KLF5)/Peroxisome Proliferator-activated Receptor γ2 (PPARγ2) Pathway but Not SREBP-1c Protein in Mice*

    OpenAIRE

    Kumadaki, Shin; Karasawa, Tadayoshi; Matsuzaka, Takashi; Ema, Masatsugu; Nakagawa, Yoshimi; Nakakuki, Masanori; Saito, Ryo; Yahagi, Naoya; Iwasaki, Hitoshi; Sone, Hirohito; Takekoshi, Kazuhiro; Yatoh, Shigeru; Kobayashi, Kazuto; Takahashi, Akimitsu; Suzuki, Hiroaki

    2011-01-01

    F-box and WD repeat domain-containing 7α (Fbw7α) is the substrate recognition component of a ubiquitin ligase that controls the degradation of factors involved in cellular growth, including c-Myc, cyclin E, and c-Jun. In addition, Fbw7α degrades the nuclear form of sterol regulatory element-binding protein (SREBP)-1a, a global regulator of lipid synthesis, particularly during mitosis in cultured cells. This study investigated the in vivo role of Fbw7α in hepatic lipid metabolism. siRNA knockd...

  8. Inhibition of Ubiquitin Ligase F-box and WD Repeat Domain-containing 7α (Fbw7α) Causes Hepatosteatosis through Krüppel-like Factor 5 (KLF5)/Peroxisome Proliferator-activated Receptor γ2 (PPARγ2) Pathway but Not SREBP-1c Protein in Mice

    OpenAIRE

    Kumadaki, Shin; Karasawa, Tadayoshi; Matsuzaka, Takashi; Ema, Masatsugu; Nakagawa, Yoshimi; Nakakuki, Masanori; Saito, Ryo; Yahagi, Naoya; Iwasaki, Hitoshi; Sone, Hirohito; Takekoshi, Kazuhiro; Yatoh, Shigeru; Kobayashi, Kazuto; Takahashi, Akimitsu; Suzuki, Hiroaki

    2011-01-01

    F-box and WD repeat domain-containing 7α (Fbw7α) is the substrate recognition component of a ubiquitin ligase that controls the degradation of factors involved in cellular growth, including c-Myc, cyclin E, and c-Jun. In addition, Fbw7α degrades the nuclear form of sterol regulatory element-binding protein (SREBP)-1a, a global regulator of lipid synthesis, particularly during mitosis in cultured cells. This study investigated the in vivo role of Fbw7α in hepatic lipid metabolism. siRNA knockd...

  9. Identification of a putative DEAD-box RNA helicase and a zinc-finger protein in Candida albicans by functional complementation of the S. cerevisiae rok1 mutation.

    Science.gov (United States)

    Kim, W I; Lee, W B; Song, K; Kim, J

    2000-03-30

    We identified two novel genes, CHR1 and CSR1, of the fungal pathogen Candida albicans, by functional complementation of the Saccharomyces cerevisiae rok1 mutation. The Rok1 protein is a member of the DEAD protein family of ATP-dependent RNA helicases. ROK1 is required for cell cycle progression and also for rRNA processing. The CHR1 gene product of 578 amino acids is highly homologous to the Rok1 protein (54% identity) and is considered to be a putative DEAD-box RNA helicase. We predict that the CSR1 gene encodes a 73 kDa protein of 612 amino acids with five zinc-finger motifs at the C-terminal region. CHR1 or CSR1 on a high-copy number plasmid showed a slow-growth phenotype in a condition where the ROK1 expression is turned on from the GAL1 promoter. This result is consistent with the lethality caused by the ROK1 overexpression. We conclude that CHR1 encodes a functional homologue of Rok1 protein and CSR1 is a heterologous suppressor of the rok1 mutation. PMID:10705369

  10. Main: BOX1PSGS2 [PLACE

    Lifescience Database Archive (English)

    Full Text Available BOX1PSGS2 S000222 19-August-2004 (last modified) kehi Box 1 element in pea (P.s.) glutamine synthetase (GS...2) gene; An element in a 33-bp AT-rich sequence (box 1) of the 5' end of a GS2 promot...er; Located at -837 to -827 of pea GS2; Multimer of box 1 element was used to isolate a cDNA encoding an AT-...rich DNA binding protein (ATBP-1) (Tjaden & Coruzzi, 1994); Box 1; glutamine synthetase; GS2; ATBp; ATBP-1; pea (Pisum sativum) ATAGAAATCAA ...

  11. The Nuclear Zinc Finger Protein Zfat Maintains FoxO1 Protein Levels in Peripheral T Cells by Regulating the Activities of Autophagy and the Akt Signaling Pathway.

    Science.gov (United States)

    Ishikura, Shuhei; Iwaihara, Yuri; Tanaka, Yoko; Luo, Hao; Nishi, Kensuke; Doi, Keiko; Koyanagi, Midori; Okamura, Tadashi; Tsunoda, Toshiyuki; Shirasawa, Senji

    2016-07-15

    Forkhead box O1 (FoxO1) is a key molecule for the development and functions of peripheral T cells. However, the precise mechanisms regulating FoxO1 expression in peripheral T cells remain elusive. We previously reported that Zfat(f/f)-CD4Cre mice showed a marked decline in FoxO1 protein levels in peripheral T cells, partially through proteasomal degradation. Here we have identified the precise mechanisms, apart from proteasome-mediated degradation, of the decreased FoxO1 levels in Zfat-deficient T cells. First, we confirmed that tamoxifen-inducible deletion of Zfat in Zfat(f/f)-CreERT2 mice coincidently decreases FoxO1 protein levels in peripheral T cells, indicating that Zfat is essential for maintaining FoxO1 levels in these cells. Although the proteasome-specific inhibitors lactacystin and epoxomicin only moderately increase FoxO1 protein levels, the inhibitors of lysosomal proteolysis bafilomycin A1 and chloroquine restore the decreased FoxO1 levels in Zfat-deficient T cells to levels comparable with those in control cells. Furthermore, Zfat-deficient T cells show increased numbers of autophagosomes and decreased levels of p62 protein, together indicating that Zfat deficiency promotes lysosomal FoxO1 degradation through autophagy. In addition, Zfat deficiency increases the phosphorylation levels of Thr-308 and Ser-473 of Akt and the relative amounts of cytoplasmic to nuclear FoxO1 protein levels, indicating that Zfat deficiency causes Akt activation, leading to nuclear exclusion of FoxO1. Our findings have demonstrated a novel role of Zfat in maintaining FoxO1 protein levels in peripheral T cells by regulating the activities of autophagy and the Akt signaling pathway. PMID:27226588

  12. Effects of high-mobility group box 1 on the expression of Beclin-1 and LC3 proteins following hypoxia and reoxygenation injury in rat cardiomyocytes.

    Science.gov (United States)

    Xu, Weipan; Jiang, Hong; Hu, Xiaorong; Fu, Wenwen

    2014-01-01

    The mechanisms underlying autophagy during myocardial ischemia and reperfusion remain unclear. The present study investigated the relationship between high-mobility group box 1 protein (HMGB1) and autophagy in hypoxia/reoxygenation (H/R)-induced neonatal rat cardiomyocytes. Neonatal rat cardiomyocytes were treated with recombinant HMGB1 (200 ng/L) or ammonium glycyrrhizinate (100 μM) at appropriate concentrations. Cell viabilities and lactate dehydrogenase (LDH) and creatine kinase (CK) activity levels were measured. HMGB1, LC3 and Beclin-1 expression were assessed by Western blot. The results demonstrated that HMGB1-induced myocardial cells have increased levels of Beclin-1 protein and even higher levels of LC3 protein, while HMGB1-inhibited myocardial cells have decreased levels of Beclin-1 and LC3 proteins. In addition, HMGB1 induction significantly increased LDH and CK levels in the cell culture medium; the inhibition of HMGB1 significantly reduced LDH and CK expression in cardiomyocyte culture medium. In conclusion, the results of the present study suggest that HMGB1 is able to regulate Beclin-1 and LC3 levels following hypoxia and reoxygenation injury in rat cardiomyocytes. PMID:25664043

  13. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus.

    Science.gov (United States)

    Egea-Cortines, M; Saedler, H; Sommer, H

    1999-10-01

    In Antirrhinum, floral meristems are established by meristem identity genes. Floral meristems give rise to floral organs in whorls, with their identity established by combinatorial activities of organ identity genes. Double mutants of the floral meristem identity gene SQUAMOSA and organ identity genes DEFICIENS or GLOBOSA produce flowers in which whorled patterning is partially lost. In yeast, SQUA, DEF and GLO proteins form ternary complexes via their C-termini, which in gel-shift assays show increased DNA binding to CArG motifs compared with DEF/GLO heterodimers or SQUA/SQUA homodimers. Formation of ternary complexes by plant MADS-box factors increases the complexity of their regulatory functions and might be the molecular basis for establishment of whorled phyllotaxis and combinatorial interactions of floral organ identity genes.

  14. 压水堆核电站循环冷却水泵齿轮箱传动设计研究%Design of Circulating Pump Gear Box for Pressurized Water Reator Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    邢志伟

    2011-01-01

    The development of nuclear power is our inevitable choice for sustainable economic development, but also is it a very arduous and difficult task. Based on pressurized water reactor nuclear power plant, the basic characteristics, domestic difficulties and development of the circulating pump gear box are introduced. Then, the transmission scheme of the gear box is discussed, involving the determination of basic parameters, design of contained bodies, selection and heat treatment of major components and so on. Finally, the future of the gear box for nuclear power is prospected.%基于压水堆核电站,介绍了循环水泵用齿轮箱减速器的基本特点、国产化难点及国内发展概况.讨论了核电用齿轮箱的传动方案设计,涉及基本参数的确定、均载机构的设计、主要零件的选材与热处理等.最后展望核电用齿轮箱的发展前景.

  15. The integrated endoplasmic reticulum stress response in Leishmania amazonensis macrophage infection: the role of X-box binding protein 1 transcription factor.

    Science.gov (United States)

    Dias-Teixeira, Karina Luiza; Calegari-Silva, Teresa Cristina; Dos Santos, Guilherme R R M; Vitorino Dos Santos, José; Lima, Carolina; Medina, Jorge Mansur; Aktas, Bertal Huseyin; Lopes, Ulisses G

    2016-04-01

    Endoplasmic reticulum (ER) stress triggers the integrated ER-stress response (IERSR) that ensures cellular survival of ER stress and represents a primordial form of innate immunity. We investigated the role of IERSR duringLeishmania amazonensisinfection. Treatment of RAW 264.7 infected macrophages with the ER stress-inducing agent thapsigargin (TG; 1 μM) increasedL. amazonensisinfectivity in an IFN1-α receptor (IFNAR)-dependent manner. In Western blot assays, we showed thatL. amazonensisactivates the inositol-requiring enzyme (IRE1)/ X-box binding protein (XBP)-1-splicing arms of the IERSR in host cells. In chromatin immunoprecipitation (ChIP) assays, we showed an increased occupancy of enhancer and promoter sequences for theIfnbgene by XBP1 in infected RAW 264.7 cells. Knocking down XBP1 expression by transducing RAW 264.7 cells with the short hairpin XBP1 lentiviral vector significantly reduced the parasite proliferation associated with impaired translocation of phosphorylated IFN regulatory transcription factor (IRF)-3 to the nucleus and a decrease in IFN1-β expression. Knocking down XBP1 expression also increased NO concentration, as determined by Griess reaction and reduced the expression of antioxidant genes, such as heme oxygenase (HO)-1, that protect parasites from oxidative stress. We conclude thatL. amazonensisactivation of XBP1 plays a critical role in infection by protecting the parasites from oxidative stress and increasing IFN1-β expression.-Dias-Teixeira, K. L., Calegari-Silva, T. C., Dos Santos, G. R. R. M., Vitorino dos Santos, J., Lima, C., Medina, J. M., Aktas, B. H., Lopes, U. G. The integrated endoplasmic reticulum stress response inLeishmania amazonensismacrophage infection: the role of X-box binding protein 1 transcription factor. PMID:26678450

  16. Identification of four nuclear transport signal-binding proteins that interact with diverse transport signals.

    Science.gov (United States)

    Yamasaki, L; Kanda, P; Lanford, R E

    1989-07-01

    The transport of proteins into the nucleus requires not only the presence of a nuclear transport signal on the targeted protein but also the signal recognition proteins and the nuclear pore translocation apparatus. Complicating the search for the signal recognition proteins is the fact that the nuclear transport signals identified share little obvious homology. In this study, synthetic peptides homologous to the nuclear transport signals from the simian virus 40 large T antigen, Xenopus oocyte nucleoplasmin, adenovirus E1A, and Saccharomyces cerevisiae MAT alpha 2 proteins were coupled to a UV-photoactivable cross-linker and iodinated for use in an in vitro cross-linking reaction with cellular lysates. Four proteins, p140, p100, p70, and p55, which specifically interacted with the nuclear transport signal peptides were identified. Unique patterns of reactivity were observed with closely related pairs of nuclear transport signal peptides. Competition experiments with labeled and unlabeled peptides demonstrated that heterologous signals were able to bind the same protein and suggested that diverse signals use a common transport pathway. The subcellular distribution of the four nuclear transport signal-binding proteins suggested that nuclear transport involves both cytoplasmic and nuclear receptors. The four proteins were not bound by wheat germ agglutinin and were not associated tightly with the nuclear pore complex.

  17. SUN proteins facilitate the removal of membranes from chromatin during nuclear envelope breakdown

    OpenAIRE

    Turgay Y; Champion L; Balazs C; Held M; Toso A; Gerlich DW; Meraldi P; Kutay U.

    2014-01-01

    SUN proteins reside in the inner nuclear membrane and form complexes with KASH proteins of the outer nuclear membrane that connect the nuclear envelope (NE) to the cytoskeleton. These complexes have well-established functions in nuclear anchorage and migration in interphase, but little is known about their involvement in mitotic processes. Our analysis demonstrates that simultaneous depletion of human SUN1 and SUN2 delayed removal of membranes from chromatin during NE breakdown (NEBD) and imp...

  18. Early localization of NPA58, a rat nuclear pore-associated protein, to the reforming nuclear envelope during mitosis

    Indian Academy of Sciences (India)

    Radhika Ganeshan; Nandini Rangaraj; Veena K Parnaik

    2001-03-01

    We have studied the mitotic reassembly of the nuclear envelope, using antibodies to nuclear marker proteins and NPA58 in F-111 rat fibroblast cells. In earlier studies we have proposed that NPA58, a 58 kDa rat nuclear protein, is involved in nuclear protein import. In this report, NPA58 is shown to be localized on the cytoplasmic face of the envelope in interphase cells, in close association with nuclear pores. In mitotic cells NPA58 is dispersed in the cytoplasm till anaphase. The targeting of NPA58 to the reforming nuclear envelope in early telophase coincides with the recruitment of a well-characterized class of nuclear pore proteins recognized by the antibody mAb 414, and occurs prior to the incorporation of lamin B1 into the envelope. Significant protein import activity is detectable only after localization of NPA58 in the newly-formed envelope. The early targeting of NPA58 is consistent with its proposed role in nuclear transport.

  19. Crystallization and preliminary X-ray diffraction analysis of the C-terminal domain of the human spliceosomal DExD/H-box protein hPrp22

    International Nuclear Information System (INIS)

    The cloning, purification and crystallization of the C-terminal domain of human hPrp22 are reported. This communication also contains data for the preliminary X-ray diffraction analysis. The Homo sapiens DExD/H-box protein hPrp22 is a crucial component of the eukaryotic pre-mRNA splicing machinery. Within the splicing cycle, it is involved in the ligation of exons and generation of the lariat and it additionally catalyzes the release of mature mRNA from the spliceosomal U5 snRNP. The yeast homologue of this protein, yPrp22, shows ATP-dependent RNA-helicase activity and is capable of unwinding RNA/RNA duplex molecules. A truncated construct coding for residues 950–1183 of human Prp22, comprising the structurally and functionally uncharacterized C-terminal domain, was cloned into an Escherichia coli expression vector. The protein was subsequently overproduced, purified and crystallized. The crystals obtained diffracted to 2.1 Å resolution, belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = b = 78.2, c = 88.4 Å, and contained one molecule in the asymmetric unit

  20. Aberrant expression of nuclear matrix proteins during HMBA-induced differentiation of gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To investigate the aberrant expression of nuclear matrix proteins in human gastric cancer cells before and after hexamethylene bisacetamide (HMBA) treatment.METHODS: Proteomics analysis of differential nuclear matrix proteins was performed by two dimensional electrophoresis polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.The expression levels of three nuclear matrix proteins were further confirmed by Western blotting and their location...

  1. Functional conservation and divergence of four ginger AP1/AGL9 MADS-box genes revealed by analysis of their expression and protein-protein interaction, and ectopic expression of AhFUL gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiumei Li

    Full Text Available Alpinia genus are known generally as ginger-lilies for showy flowers in the ginger family, Zingiberaceae, and their floral morphology diverges from typical monocotyledon flowers. However, little is known about the functions of ginger MADS-box genes in floral identity. In this study, four AP1/AGL9 MADS-box genes were cloned from Alpinia hainanensis, and protein-protein interactions (PPIs and roles of the four genes in floral homeotic conversion and in floral evolution are surveyed for the first time. AhFUL is clustered to the AP1 lineage, AhSEP4 and AhSEP3b to the SEP lineage, and AhAGL6-like to the AGL6 lineage. The four genes showed conserved and divergent expression patterns, and their encoded proteins were localized in the nucleus. Seven combinations of PPI (AhFUL-AhSEP4, AhFUL-AhAGL6-like, AhFUL-AhSEP3b, AhSEP4-AhAGL6-like, AhSEP4-AhSEP3b, AhAGL6-like-AhSEP3b, and AhSEP3b-AhSEP3b were detected, and the PPI patterns in the AP1/AGL9 lineage revealed that five of the 10 possible combinations are conserved and three are variable, while conclusions cannot yet be made regarding the other two. Ectopic expression of AhFUL in Arabidopsis thaliana led to early flowering and floral organ homeotic conversion to sepal-like or leaf-like. Therefore, we conclude that the four A. hainanensis AP1/AGL9 genes show functional conservation and divergence in the floral identity from other MADS-box genes.

  2. Phosphorylation and biosynthesis of high molecular weight proteins of tumor nuclear meatrix

    Institute of Scientific and Technical Information of China (English)

    BAZARNOVATM; TVBULDYAEVA; 等

    1998-01-01

    Our previous studies showed a predominance of high molecular weight protein group in tumor nuclear matrices.Contrary to normal cells,proteins of this group are preferentially phosphorylated.Phosphoproteins of hepatoma nuclear matrix are selectively subjected to rapid proteolysis.By alkali treatment and a monoclonal antibody against phosphotyrosyl residue the presence of two high molecular weight bands of phosphotyrosyl-containing proteins was detected in nuclear matrices of tumor but not of normal liver cells.High molecular weight protein group of tumor nuclear matrices revealed also a rapid turnover and preferential incorporation of labeled amino acids selectively inhibited by chloramphenicol.

  3. Alterations in oxidant/antioxidant balance, high-mobility group box 1 protein and acute phase response in cross-bred suckling piglets suffering from rotaviral enteritis.

    Science.gov (United States)

    Kumar De, Ujjwal; Mukherjee, Reena; Nandi, Sukdeb; Patel, Bhimnere Hanumatnagouda Manjunatha; Dimri, Umesh; Ravishankar, Chintu; Verma, Ashok Kumar

    2014-10-01

    Rotaviral enteritis has emerged as a major cause of morbidity and mortality in piglets during their post-natal life. The present study was carried out to examine high-mobility group box 1 (HMGB1) protein, acute phase response and oxidative stress indices in the serum of suckling piglets suffering from enteritis with or without association of porcine group A rotavirus infection. The present investigation utilized 23 clinical cases with signs of acute enteritis and 12 more healthy piglets of a similar age group as control animals. Out of 23 enteritis cases, 12 cases were found to be positive for porcine group A rotavirus infection as confirmed by reverse transcription-polymerase chain reaction (RT-PCR) using specific primers for group A rotavirus, and the rest were found negative. The acute enteritis cases in piglets were associated with an elevated level of HMGB1 protein and serum haptoglobin and ceruloplasmin suggestive of an acute phase response. Among the oxidative stress indices, the concentrations of malondialdehyde (MDA) and nitric oxide (NO) in serum were significantly increased. A pronounced drop of total antioxidant capacity and the activity of antioxidant enzymes such as catalase and superoxide dismutase in the serum of piglets suffering from acute enteritis compared to healthy ones were also noticed. The alterations in HMGB1 protein, acute phase response and oxidative stress indices were more pronounced in cases with the involvement of porcine rotavirus as compared to rotavirus-negative cases. It is concluded that HMGB1 protein, markers of oxidative stress and acute phase proteins might play an important role in the aetiopathogenesis of porcine diarrhoea caused by rotavirus and might be true markers in diagnosing the conditions leading to the extension of the prompt and effective therapeutic care.

  4. The role of High Mobility Group Box 1 (HMGB1) in colorectal cancer

    OpenAIRE

    Süren, Dinç; Yıldırım, Mustafa; Demirpençe, Özlem; Kaya, Vildan; Alikanoğlu, Arsenal Sezgin; Bülbüller, Nurullah; Yıldız, Mustafa; Sezer, Cem

    2014-01-01

    Background HMGB1, the most important member of the high mobility group box protein family, is a nuclear protein with different functions in the cell; it has a role in cancer progression, angiogenesis, invasion, and metastasis development. We studied the expression of HMGB1 and whether it is a prognostic factor in colorectal carcinoma. Material/Methods The study included 110 cases that were histopathologically diagnosed with colorectal carcinoma from the tissue samples acquired by surgical res...

  5. Nuclear substructure reorganization during late stageerythropoiesis is selective and does not involve caspase cleavage ofmajor nuclear substructural proteins

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Sharon Wald; Lo, Annie J.; Short, Sarah A.; Koury, MarkJ.; Mohandas, Narla; Chasis, Joel Anne

    2005-04-06

    Enucleation, a rare feature of mammalian differentiation, occurs in three cell types: erythroblasts, lens epithelium and keratinocytes. Previous investigations suggest that caspase activation functions in lens epithelial and keratinocyte enucleation, as well as in early erythropoiesis encompassing BFU-E differentiation to proerythroblast. To determine whether caspase activation contributes to later erythropoiesis and whether nuclear substructures other than chromatin reorganize, we analyzed distributions of nuclear subcompartment proteins and assayed for caspase-induced cleavage of subcompartmental target proteins in mouse erythroblasts. We found that patterns of lamin B in the filamentous network interacting with both the nuclear envelope and DNA, nuclear matrix protein NuMA, and splicing factors Sm and SC35 persisted during nuclear condensation, consistent with effective transcription of genes expressed late in differentiation. Thus nuclear reorganization prior to enucleation is selective, allowing maintenance of critical transcriptional processes independent of extensive chromosomal reorganization. Consistent with these data, we found no evidence for caspase-induced cleavage of major nuclear subcompartment proteins during late erythropoiesis, in contrast to what has been observed in early erythropoiesis and in lens epithelial and keratinocyte differentiation. These findings imply that nuclear condensation and extrusion during terminal erythroid differentiation involve novel mechanisms that do not entail major activation of apoptotic machinery.

  6. Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations.

    Science.gov (United States)

    Wilkie, Gavin S; Korfali, Nadia; Swanson, Selene K; Malik, Poonam; Srsen, Vlastimil; Batrakou, Dzmitry G; de las Heras, Jose; Zuleger, Nikolaj; Kerr, Alastair R W; Florens, Laurence; Schirmer, Eric C

    2011-01-01

    Nuclear envelopes from liver and a neuroblastoma cell line have previously been analyzed by proteomics; however, most diseases associated with the nuclear envelope affect muscle. To determine whether muscle has unique nuclear envelope proteins, rat skeletal muscle nuclear envelopes were prepared and analyzed by multidimensional protein identification technology. Many novel muscle-specific proteins were identified that did not appear in previous nuclear envelope data sets. Nuclear envelope residence was confirmed for 11 of these by expression of fusion proteins and by antibody staining of muscle tissue cryosections. Moreover, transcript levels for several of the newly identified nuclear envelope transmembrane proteins increased during muscle differentiation using mouse and human in vitro model systems. Some of these proteins tracked with microtubules at the nuclear surface in interphase cells and accumulated at the base of the microtubule spindle in mitotic cells, suggesting they may associate with complexes that connect the nucleus to the cytoskeleton. The finding of tissue-specific proteins in the skeletal muscle nuclear envelope proteome argues the importance of analyzing nuclear envelopes from all tissues linked to disease and suggests that general investigation of tissue differences in organellar proteomes might yield critical insights. PMID:20876400

  7. Co-expression and co-purification of archaeal and eukaryal box C/D RNPs.

    Directory of Open Access Journals (Sweden)

    Yu Peng

    Full Text Available Box C/D ribonucleoprotein particles (RNPs are 2'-O-methylation enzymes required for maturation of ribosomal and small nuclear RNA. Previous biochemical and structural studies of the box C/D RNPs were limited by the unavailability of purified intact RNPs. We developed a bacterial co-expression strategy based on the combined use of a multi-gene expression system and a tRNA-scaffold construct that allowed the expression and purification of homogeneous archaeal and human box C/D RNPs. While the co-expressed and co-purified archaeal box C/D RNP was found to be fully active in a 2'-O-methylation assay, the intact human U14 box C/D RNP showed no detectable catalytic activity, consistent with the earlier findings that assembly of eukaryotic box C/D RNPs is nonspontaneous and requires additional protein factors. Our systems provide a means for further biochemical and structural characterization of box C/D RNPs and their assembly factors.

  8. Activating transcription factor 4 and X box binding protein 1 of Litopenaeus vannamei transcriptional regulated white spot syndrome virus genes Wsv023 and Wsv083.

    Directory of Open Access Journals (Sweden)

    Xiao-Yun Li

    Full Text Available In response to endoplasmic reticulum (ER stress, the signaling pathway termed unfolded protein response (UPR is activated. To investigate the role of UPR in Litopenaeus vannamei immunity, the activating transcription factor 4 (designated as LvATF4 which belonged to a branch of the UPR, the [protein kinase RNA (PKR-like ER kinase, (PERK]-[eukaryotic initiation factor 2 subunit alpha (eIF2α] pathway, was identified and characterized. The full-length cDNA of LvATF4 was 1972 bp long, with an open reading frame of 1299 bp long that encoded a 432 amino acid protein. LvATF4 was highly expressed in gills, intestines and stomach. For the white spot syndrome virus (WSSV challenge, LvATF4 was upregulated in the gills after 3 hpi and increased by 1.9-fold (96 hpi compared to the mock-treated group. The LvATF4 knock-down by RNA interference resulted in a lower cumulative mortality of L. vannamei under WSSV infection. Reporter gene assays show that LvATF4 could upregulate the expression of the WSSV gene wsv023 based on the activating transcription factor/cyclic adenosine 3', 5'-monophosphate response element (ATF/CRE. Another transcription factor of L. vannamei, X box binding protein 1 (designated as LvXBP1, has a significant function in [inositol-requiring enzyme-1(IRE1 - (XBP1] pathway. This transcription factor upregulated the expression of the WSSV gene wsv083 based on the UPR element (UPRE. These results suggest that in L. vannamei UPR signaling pathway transcription factors are important for WSSV and might facilitate WSSV infection.

  9. Localization and Differential Expression of the Krüppel-Associated Box Zinc Finger Proteins 1 and 54 in Early Mouse Development

    DEFF Research Database (Denmark)

    Albertsen, Maria; Teperek, Marta; Elholm, Grethe;

    2010-01-01

    -fused reporter gene into zygotes demonstrated the intracellular distribution of ZFP1-green fluorescent protein (GFP) and ZFP54-GFP colocalized with a DNA marker in the two-cell embryo. The KRAB domain was essential to colocalize with DNA, and deletion of the KRAB domain in ZFP1-GFP and ZFP54-GFP localized...... transcriptional repressors, zinc finger protein (ZFP1) and ZFP54, belonging to the Krüppel-associated box (KRAB) zinc finger family, were isolated. ZFP1 and ZFP54 contain an N-terminally located KRAB repressor domain followed by 8 and 12 repeats of Krüppel zinc-finger motifs, respectively. Reverse transcription...... (RT) and quantitative (q) PCR show that maternally contributed Zfp1 and Zfp54 mRNA are detected throughout preimplantation development. α-Amanitin-treated zygotes revealed that maternal Zfp1 and Zfp54 are fully degraded at the two-cell stage. Microinjections of in vitro-transcribed mRNA encoding a gfp...

  10. Increased plasma levels of the high mobility group box 1 protein (HMGB1) are associated with a higher score of gastrointestinal dysfunction in individuals with autism.

    Science.gov (United States)

    Babinská, K; Bucová, M; Ďurmanová, V; Lakatošová, S; Jánošíková, D; Bakoš, J; Hlavatá, A; Ostatníková, D

    2014-01-01

    Autism is a disorder of neural development characterized by impairments in communication, social interaction, restricted interests and repetitive behavior. The etiology of autism is poorly understood, the evidence indicates that inflammation may play a key role. In autism a high prevalence of gastrointestinal disturbances is reported, that are linked to a low-grade chronic inflammation of the intestinal mucosa. High mobility group box 1 protein (HMGB1) is an intranuclear protein that can be passively released from necrotic cells or actively secreted under inflammatory conditions as alarmin or late proinflammatory cytokine. The objective of this study was to measure plasma levels of HMGB1 in individuals with autism and to analyze their association with gastrointestinal symptoms. The study involved 31 subjects with low-functioning autistic disorder aged 2-22 years and 16 healthy controls. Plasma HMGB1 levels were significantly higher in individuals with autism than in controls (13.8+/-11.7 ng/ml vs. 7.90+/-4.0 ng/ml, pautism and its possible association with GI symptoms.

  11. Increased concentrations of C-reactive protein but not high-mobility group box 1 in dogs with naturally occurring sepsis.

    Science.gov (United States)

    Karlsson, I; Wernersson, S; Ambrosen, A; Kindahl, H; Södersten, F; Wang, L; Hagman, R

    2013-11-15

    Sepsis is difficult to diagnose and remains a common mortality cause worldwide in both humans and animals. The uterine infection pyometra causes sepsis in more than half of affected dogs and therefore allows the natural physiological development of sepsis to be studied. To find a sepsis-specific biochemical marker that could be combined with conventional clinical criteria for a more robust and quick diagnosis of sepsis, we measured systemic concentrations of high-mobility group box 1 (HMGB1) in 23 healthy control dogs and in 27 dogs with pyometra, 74% of which had sepsis. We also measured concentrations of the major acute phase protein C-reactive protein (CRP) and an indicator for endotoxaemia, prostaglandin F2α metabolite (PGM) to assess the relative contribution of HMGB1 to the detection of systemic inflammation and endotoxaemia. We found that HMGB1 concentrations, in line with concentrations of CRP and PGM, were significantly increased in dogs with pyometra, and that concentrations of CRP, but not HMGB1, were significantly higher in dogs with sepsis compared to dogs without sepsis. Although serum HMGB1 did not differ between dogs with or without sepsis and was not correlated with either CRP or PGM concentrations, HMGB1 was correlated with the total white blood cell counts, suggesting an independent regulation and involvement in inflammation. PMID:24120445

  12. Identification of Y-box binding protein 1 as a core regulator of MEK/ERK pathway-dependent gene signatures in colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Karsten Jürchott

    Full Text Available Transcriptional signatures are an indispensible source of correlative information on disease-related molecular alterations on a genome-wide level. Numerous candidate genes involved in disease and in factors of predictive, as well as of prognostic, value have been deduced from such molecular portraits, e.g. in cancer. However, mechanistic insights into the regulatory principles governing global transcriptional changes are lagging behind extensive compilations of deregulated genes. To identify regulators of transcriptome alterations, we used an integrated approach combining transcriptional profiling of colorectal cancer cell lines treated with inhibitors targeting the receptor tyrosine kinase (RTK/RAS/mitogen-activated protein kinase pathway, computational prediction of regulatory elements in promoters of co-regulated genes, chromatin-based and functional cellular assays. We identified commonly co-regulated, proliferation-associated target genes that respond to the MAPK pathway. We recognized E2F and NFY transcription factor binding sites as prevalent motifs in those pathway-responsive genes and confirmed the predicted regulatory role of Y-box binding protein 1 (YBX1 by reporter gene, gel shift, and chromatin immunoprecipitation assays. We also validated the MAPK-dependent gene signature in colorectal cancers and provided evidence for the association of YBX1 with poor prognosis in colorectal cancer patients. This suggests that MEK/ERK-dependent, YBX1-regulated target genes are involved in executing malignant properties.

  13. Formation of C-terminally truncated version of the Taz1 protein employs cleavage-box structure in mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Gunisova, Stanislava; Bartosova, Zdenka [Department of Genetics, Comenius University, Faculty of Natural Sciences, 842 15 Bratislava (Slovakia); Kramara, Juraj; Nosek, Jozef [Department of Biochemistry, Comenius University, Faculty of Natural Sciences, 842 15 Bratislava (Slovakia); Tomaska, Lubomir, E-mail: tomaska@fns.uniba.sk [Department of Genetics, Comenius University, Faculty of Natural Sciences, 842 15 Bratislava (Slovakia)

    2010-02-12

    When expressed in various hosts the taz1{sup +} gene encoding the fission yeast telomere-binding protein produces two forms of polypeptides: full-length (Taz1p) and truncated (Taz1p{Delta}C) version lacking almost entire Myb-domain. Whereas Taz1p binds telomeric DNA in vitro, Taz1p{Delta}C forms long filaments unable of DNA binding. The formation of Taz1p{Delta}C is a result of neither site-specific proteolysis, nor premature termination of transcription. In silico analysis of the taz1{sup +} RNA transcript revealed a stem-loop structure at the site of cleavage (cleavage box; CB). In order to explore whether it possesses inherent destabilizing effects, we cloned CB sequence into the open reading frame (ORF) of glutathione-S-transferase (GST) and observed that when expressed in Escherichia coli the engineered gene produced two forms of the reporter protein. The formation of the truncated version of GST was abolished, when CB was replaced with recoded sequence containing synonymous codons thus indicating that the truncation is based on structural properties of taz1{sup +} mRNA.

  14. The Arabidopsis Auxin Receptor F-Box Proteins AFB4 and AFB5 Are Required for Response to the Synthetic Auxin Picloram

    Science.gov (United States)

    Prigge, Michael J.; Greenham, Kathleen; Zhang, Yi; Santner, Aaron; Castillejo, Cristina; Mutka, Andrew M.; O’Malley, Ronan C.; Ecker, Joseph R.; Kunkel, Barbara N.; Estelle, Mark

    2016-01-01

    The plant hormone auxin is perceived by a family of F-box proteins called the TIR1/AFBs. Phylogenetic studies reveal that these proteins fall into four clades in flowering plants called TIR1, AFB2, AFB4, and AFB6. Genetic studies indicate that members of the TIR1 and AFB2 groups act as positive regulators of auxin signaling by promoting the degradation of the Aux/IAA transcriptional repressors. In this report, we demonstrate that both AFB4 and AFB5 also function as auxin receptors based on in vitro assays. We also provide genetic evidence that AFB4 and AFB5 are targets of the picloram family of auxinic herbicides in addition to indole-3-acetic acid. In contrast to previous studies we find that null afb4 alleles do not exhibit obvious defects in seedling morphology or auxin hypersensitivity. We conclude that AFB4 and AFB5 act in a similar fashion to other members of the family but exhibit a distinct auxin specificity. PMID:26976444

  15. Formation of C-terminally truncated version of the Taz1 protein employs cleavage-box structure in mRNA

    International Nuclear Information System (INIS)

    When expressed in various hosts the taz1+ gene encoding the fission yeast telomere-binding protein produces two forms of polypeptides: full-length (Taz1p) and truncated (Taz1pΔC) version lacking almost entire Myb-domain. Whereas Taz1p binds telomeric DNA in vitro, Taz1pΔC forms long filaments unable of DNA binding. The formation of Taz1pΔC is a result of neither site-specific proteolysis, nor premature termination of transcription. In silico analysis of the taz1+ RNA transcript revealed a stem-loop structure at the site of cleavage (cleavage box; CB). In order to explore whether it possesses inherent destabilizing effects, we cloned CB sequence into the open reading frame (ORF) of glutathione-S-transferase (GST) and observed that when expressed in Escherichia coli the engineered gene produced two forms of the reporter protein. The formation of the truncated version of GST was abolished, when CB was replaced with recoded sequence containing synonymous codons thus indicating that the truncation is based on structural properties of taz1+ mRNA.

  16. The Arabidopsis Auxin Receptor F-Box Proteins AFB4 and AFB5 Are Required for Response to the Synthetic Auxin Picloram.

    Science.gov (United States)

    Prigge, Michael J; Greenham, Kathleen; Zhang, Yi; Santner, Aaron; Castillejo, Cristina; Mutka, Andrew M; O'Malley, Ronan C; Ecker, Joseph R; Kunkel, Barbara N; Estelle, Mark

    2016-01-01

    The plant hormone auxin is perceived by a family of F-box proteins called the TIR1/AFBs. Phylogenetic studies reveal that these proteins fall into four clades in flowering plants called TIR1, AFB2, AFB4, and AFB6. Genetic studies indicate that members of the TIR1 and AFB2 groups act as positive regulators of auxin signaling by promoting the degradation of the Aux/IAA transcriptional repressors. In this report, we demonstrate that both AFB4 and AFB5 also function as auxin receptors based on in vitro assays. We also provide genetic evidence that AFB4 and AFB5 are targets of the picloram family of auxinic herbicides in addition to indole-3-acetic acid. In contrast to previous studies we find that null afb4 alleles do not exhibit obvious defects in seedling morphology or auxin hypersensitivity. We conclude that AFB4 and AFB5 act in a similar fashion to other members of the family but exhibit a distinct auxin specificity. PMID:26976444

  17. The Arabidopsis Auxin Receptor F-Box Proteins AFB4 and AFB5 Are Required for Response to the Synthetic Auxin Picloram

    Directory of Open Access Journals (Sweden)

    Michael J. Prigge

    2016-05-01

    Full Text Available The plant hormone auxin is perceived by a family of F-box proteins called the TIR1/AFBs. Phylogenetic studies reveal that these proteins fall into four clades in flowering plants called TIR1, AFB2, AFB4, and AFB6. Genetic studies indicate that members of the TIR1 and AFB2 groups act as positive regulators of auxin signaling by promoting the degradation of the Aux/IAA transcriptional repressors. In this report, we demonstrate that both AFB4 and AFB5 also function as auxin receptors based on in vitro assays. We also provide genetic evidence that AFB4 and AFB5 are targets of the picloram family of auxinic herbicides in addition to indole-3-acetic acid. In contrast to previous studies we find that null afb4 alleles do not exhibit obvious defects in seedling morphology or auxin hypersensitivity. We conclude that AFB4 and AFB5 act in a similar fashion to other members of the family but exhibit a distinct auxin specificity.

  18. Resolution Improvement in Multidimensional Nuclear Magnetic Resonance Spectroscopy of Proteins

    International Nuclear Information System (INIS)

    The work presented in this thesis is concerned with both liquid-state and solid-state nuclear magnetic resonance (NMR) spectroscopy. Most of this work is devoted to the investigation by solid-state NMR of C13-enriched compounds with the principal aim of presenting techniques devised for further improving the spectral resolution in multidimensional NMR of microcrystalline proteins. In fully C13-labelled compounds, the J-coupling induces a broadening of the carbon lineshapes. We show that spin-state-selective technique called IPAP can be successfully combined with standard polarisation transfer schemes in order to remove the J-broadening in multidimensional solid-state NMR correlation experiments of fully C13-enriched proteins. We present subsequently two techniques tailored for liquid-state NMR spectroscopy. The carbon directly detected techniques provide chemical shift information for all backbone hetero-nuclei. They are very attracting for the study of large bio-molecular systems or for the investigation of paramagnetic proteins. In the last part of this thesis, we study the spin-echo J-modulation for homonuclear two-spin 1/2 systems. Under magic-angle spinning, the theory of J-induced spin-echo modulation allows to derive a set of modulation regimes which give a spin-echo modulation exactly equal to the J-coupling. We show that the chemical-shift anisotropy and the dipolar interaction tend to stabilize the spin-echo J-modulation. The theoretical conclusions are supported by numerical simulations and experimental results obtained for three representative samples containing C13 spin pairs. (author)

  19. Long Unfolded Linkers Facilitate Membrane Protein Import Through the Nuclear Pore Complex

    NARCIS (Netherlands)

    Meinema, Anne C.; Laba, Justyna K.; Hapsari, Rizqiya A.; Otten, Renee; Mulder, Frans A. A.; Kralt, Annemarie; van den Bogaart, Geert; Lusk, C. Patrick; Poolman, Bert; Veenhoff, Liesbeth M.

    2011-01-01

    Active nuclear import of soluble cargo involves transport factors that shuttle cargo through the nuclear pore complex (NPC) by binding to phenylalanine-glycine (FG) domains. How nuclear membrane proteins cross through the NPC to reach the inner membrane is presently unclear. We found that at least a

  20. The transport of integral membrane proteins across the nuclear pore complex

    NARCIS (Netherlands)

    Meinema, Anne C.; Poolman, Bert; Veenhoff, Liesbeth M.

    2012-01-01

    The nuclear envelope protects and organizes the genome. The nuclear pore complexes embedded in the nuclear envelope allow selective transport of macromolecules between the cytosol and nucleoplasm, and as such help to control the flow of information from DNA to RNA to proteins. A growing list of inte

  1. Quantitative Analysis of Membrane Protein Transport Across the Nuclear Pore Complex

    NARCIS (Netherlands)

    Meinema, Anne C.; Poolman, Bert; Veenhoff, Liesbeth M.

    2013-01-01

    Nuclear transport of the Saccharomyces cerevisiae membrane proteins Src1/Heh1 and Heh2 across the NPC is facilitated by a long intrinsically disordered linker between the nuclear localization signal (NLS) and the transmembrane domain. The import of reporter proteins derived from Heh2 is dependent on

  2. Transcription of the human beta enolase gene (ENO-3) is regulated by an intronic muscle-specific enhancer that binds myocyte-specific enhancer factor 2 proteins and ubiquitous G-rich-box binding factors.

    Science.gov (United States)

    Feo, S; Antona, V; Barbieri, G; Passantino, R; Calì, L; Giallongo, A

    1995-01-01

    To provide evidence for the cis-regulatory DNA sequences and trans-acting factors involved in the complex pattern of tissue- and stage-specific expression of the beta enolase gene, constructs containing fragments of the gene fused to the chloramphenicol acetyltransferase gene were used in transient-transfection assays of C2C12 myogenic cells. Deletion analysis revealed the presence of four major regions: two negative regions in the 5'-flanking sequence, a basal promoter region which directs expression at low levels in proliferating and differentiated muscle cells, and a positive region within the first intron that confers cell-type-specific and differentiation-induced expression. This positive regulatory element is located in the 3'-proximal portion of the first intron (nucleotides +504 to +637) and acts as an enhancer irrespective of orientation and position from the homologous beta enolase promoter or the heterologous thymidine kinase promoter, conferring in both cases muscle-specific expression to the linked reporter gene. Deletion of a putative myocyte-specific enhancer factor 1 (MEF-1) binding site, containing a canonical E-box motif, had no effects on muscle-specific transcription, indicating that this site is not required for the activity of the enhancer. Gel mobility shift assays, competition analysis, DNase I footprinting, and mutagenesis studies indicated that this element interacts through an A/T-rich box with a MEF-2 protein(s) and through a G-rich box with a novel ubiquitous factor(s). Mutation of either the G-rich box or the A/T-rich box resulted in a significantly reduced activity of the enhancer in transient-transfection assays. These data indicate that MEF-2 and G-rich-box binding factors are each necessary for tissue-specific expression of the beta enolase gene in skeletal muscle cells. PMID:7565752

  3. Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Hikaru [Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 093-2422 (Japan); Sakata, Keiko; Kusumi, Kensuke [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Kojima, Mikiko; Sakakibara, Hitoshi [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan); Iba, Koh, E-mail: koibascb@kyushu-u.org [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer ITN1, a plasma membrane ankyrin protein, interacts with a nuclear DNA-binding protein RTV1. Black-Right-Pointing-Pointer The nuclear transport of RTV1 is partially inhibited by interaction with ITN1. Black-Right-Pointing-Pointer RTV1 can promote the nuclear localization of ITN1. Black-Right-Pointing-Pointer Both overexpression of RTV1 and the lack of ITN1 increase salicylic acids sensitivity in plants. -- Abstract: The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.

  4. Intracellular distribution of an integral nuclear pore membrane protein fused to green fluorescent protein--localization of a targeting domain.

    Science.gov (United States)

    Söderqvist, H; Imreh, G; Kihlmark, M; Linnman, C; Ringertz, N; Hallberg, E

    1997-12-15

    The 121-kDa pore membrane protein (POM121) is a bitopic integral membrane protein specifically located in the pore membrane domain of the nuclear envelope with its short N-terminal tail exposed on the luminal side and its major C-terminal portion adjoining the nuclear pore complex. In order to locate a signal for targeting of POM121 to the nuclear pores, we overexpressed selected regions of POM121 alone or fused to the green fluorescent protein (GFP) in transiently transfected COS-1 cells or in a stably transfected neuroblastoma cell line. Microscopic analysis of the GFP fluorescence or immunostaining was used to determine the intracellular distribution of the overexpressed proteins. The endofluorescent GFP tag had no effect on the distribution of POM121, since the chimerical POM121-GFP fusion protein was correctly targeted to the nuclear pores of both COS-1 cells and neuroblastoma cells. Based on the differentiated intracellular sorting of the POM121 variants, we conclude that the first 128 amino acids of POM121 contains signals for targeting to the continuous endoplasmic reticulum/nuclear envelope membrane system but not specifically to the nuclear pores and that a specific nuclear pore targeting signal is located between amino acids 129 and 618 in the endoplasmically exposed portion of POM121. PMID:9461306

  5. Comparative Analysis of the 15.5kD Box C/D snoRNP Core Protein in the Primitive Eukaryote Giardia lamblia Reveals Unique Structural and Functional Features

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Shyamasri; Buhrman, Greg; Gagnon, Keith; Mattos, Carla; Brown, II, Bernard A.; Maxwell, E. Stuart (NCSU); (UTSMC)

    2012-07-11

    Box C/D ribonucleoproteins (RNP) guide the 2'-O-methylation of targeted nucleotides in archaeal and eukaryotic rRNAs. The archaeal L7Ae and eukaryotic 15.5kD box C/D RNP core protein homologues initiate RNP assembly by recognizing kink-turn (K-turn) motifs. The crystal structure of the 15.5kD core protein from the primitive eukaryote Giardia lamblia is described here to a resolution of 1.8 {angstrom}. The Giardia 15.5kD protein exhibits the typical {alpha}-{beta}-{alpha} sandwich fold exhibited by both archaeal L7Ae and eukaryotic 15.5kD proteins. Characteristic of eukaryotic homologues, the Giardia 15.5kD protein binds the K-turn motif but not the variant K-loop motif. The highly conserved residues of loop 9, critical for RNA binding, also exhibit conformations similar to those of the human 15.5kD protein when bound to the K-turn motif. However, comparative sequence analysis indicated a distinct evolutionary position between Archaea and Eukarya. Indeed, assessment of the Giardia 15.5kD protein in denaturing experiments demonstrated an intermediate stability in protein structure when compared with that of the eukaryotic mouse 15.5kD and archaeal Methanocaldococcus jannaschii L7Ae proteins. Most notable was the ability of the Giardia 15.5kD protein to assemble in vitro a catalytically active chimeric box C/D RNP utilizing the archaeal M. jannaschii Nop56/58 and fibrillarin core proteins. In contrast, a catalytically competent chimeric RNP could not be assembled using the mouse 15.5kD protein. Collectively, these analyses suggest that the G. lamblia 15.5kD protein occupies a unique position in the evolution of this box C/D RNP core protein retaining structural and functional features characteristic of both archaeal L7Ae and higher eukaryotic 15.5kD homologues.

  6. X-box binding protein 1 (XBP1s is a critical determinant of Pseudomonas aeruginosa homoserine lactone-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Cathleen D Valentine

    Full Text Available Pseudomonas aeruginosa infections are associated with high mortality rates and occur in diverse conditions including pneumonias, cystic fibrosis and neutropenia. Quorum sensing, mediated by small molecules including N-(3-oxo-dodecanoyl homoserine lactone (C12, regulates P. aeruginosa growth and virulence. In addition, host cell recognition of C12 initiates multiple signalling responses including cell death. To gain insight into mechanisms of C12-mediated cytotoxicity, we studied the role of endoplasmic reticulum stress in host cell responses to C12. Dramatic protection against C12-mediated cell death was observed in cells that do not produce the X-box binding protein 1 transcription factor (XBP1s. The leucine zipper and transcriptional activation motifs of XBP1s were sufficient to restore C12-induced caspase activation in XBP1s-deficient cells, although this polypeptide was not transcriptionally active. The XBP1s polypeptide also regulated caspase activation in cells stimulated with N-(3-oxo-tetradecanoyl homoserine lactone (C14, produced by Yersinia enterolitica and Burkholderia pseudomallei, and enhanced homoserine lactone-mediated caspase activation in the presence of endogenous XBP1s. In C12-tolerant cells, responses to C12 including phosphorylation of p38 MAPK and eukaryotic initiation factor 2α were conserved, suggesting that C12 cytotoxicity is not heavily dependent on these pathways. In summary, this study reveals a novel and unconventional role for XBP1s in regulating host cell cytotoxic responses to bacterial acyl homoserine lactones.

  7. Metformin protects against hyperglycemia-induced cardiomyocytes injury by inhibiting the expressions of receptor for advanced glycation end products and high mobility group box 1 protein.

    Science.gov (United States)

    Zhang, Ting; Hu, Xiaorong; Cai, Yuli; Yi, Bo; Wen, Zhongyuan

    2014-03-01

    Metformin (MET), an anti-diabetic oral drug with antioxidant properties, has been proved to provide cardioprotective effects in patients with diabetic disease. However, the mechanism is unclear. This study aimd to investigate the effects of MET on the expressions of receptor for advanced glycation end products (RAGE) and high mobility group box 1 protein (HMGB1) in hyperglycemia-treated neonatal rat ventricular myocytes. Cardiocytes were prepared and cultured with high glucose and different concentrations of MET. The expressions of RAGE and HMGB1 were evaluated by Western blot analysis. The superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), lactate dehydrogenase (LDH) and creatine kinase (CK) were measured. After 12 h-incubation, MET significantly inhibited the increase of MDA, TNF-α, LDH and CK levels induced by high glucose, especially at the 5 × 10(-5) to 10(-4 )mol/L concentrations while inhibiting the decrease of SOD level. Meanwhile, RAGE and HMGB1 expression were significantly increased induced by hyperglycaemia for 24 h (P < 0.05). MET inhibited the expressions of RAGE and HMGB1 in a dose-dependent manner, especially at the 5 × 10(-5) to 10(-4 )mol/L concentrations (P < 0.05). In conclusion, our study suggested that MET could reduce hyperglycemia-induced cardiocytes injury by inhibiting the expressions of RAGE and HMGB1. PMID:24420848

  8. Tandem affinity purification to identify cytosolic and nuclear gβγ-interacting proteins.

    Science.gov (United States)

    Campden, Rhiannon; Pétrin, Darlaine; Robitaille, Mélanie; Audet, Nicolas; Gora, Sarah; Angers, Stéphane; Hébert, Terence E

    2015-01-01

    It has become clear in recent years that the Gβγ subunits of heterotrimeric proteins serve broad roles in the regulation of cellular activity and interact with many proteins in different subcellular locations including the nucleus. Protein affinity purification is a common method to identify and confirm protein interactions. When used in conjugation with mass spectrometry it can be used to identify novel protein interactions with a given bait protein. The tandem affinity purification (TAP) technique identifies partner proteins bound to tagged protein bait. Combined with protocols to enrich the nuclear fraction of whole cell lysate through sucrose cushions, TAP allows for purification of interacting proteins found specifically in the nucleus. Here we describe the use of the TAP technique on cytosolic and nuclear lysates to identify candidate proteins, through mass spectrometry, that bind to Gβ1 subunits.

  9. High mobility group box-1 protein inhibits regulatory T cell immune activity in liver failure in patients with chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    Lu-WenWang; Hui Chen; Zuo-Jiong Gong

    2010-01-01

    BACKGROUND: Liver failure in chronic hepatitis B (CHB) patients is a severe, life-threatening condition. Intestinal endotoxemia plays a significant role in the progress to liver failure. High mobility group box-1 (HMGB1) protein is involved in the process of endotoxemia. Regulatory T (Treg) cells maintain immune tolerance and contribute to the immunological hyporesponsiveness against HBV infection. However, the roles of HMGB1 and Treg cells in the pathogenesis of liver failure in CHB patients, and whether HMGB1 affects the immune activity of Treg cells are poorly known at present, and so were explored in this study. METHODS: The levels of HMGB1 expression were detected by ELISA, real-time RT-PCR, and Western blotting, and the percentage of CD4+CD25+CD127low Treg cells among CD4+cells was detected by flow cytometry in liver failure patients with chronic HBV infection, CHB patients, and healthy controls. Then, CD4+CD25+CD127low Treg cells isolated from the peripheral blood mononuclear cells from CHB patients were stimulated with HMGB1 at different concentrations or at various intervals. The effect of HMGB1 on the immune activity of Treg cells was assessed by a suppression assay of the allogeneic mixed lymphocyte response. The levels of forkhead box P3 (Foxp3) expression in Treg cells treated with HMGB1 were detected by RT-PCR and Western blotting. RESULTS: A higher level of HMGB1 expression and a lower percentage of Treg cells within the population of CD4+ cells were found in liver failure patients than in CHB patients (82.6±20.1 μg/L vs. 34.2±13.7 μg/L; 4.55±1.34% vs. 9.52± 3.89%, respectively). The immune activity of Treg cells was significantly weakened and the levels of Foxp3 expression were reduced in a dose- or time-dependent manner when Treg cells were stimulated with HMGB1 in vitro. CONCLUSIONS: The high level of HMGB1 and the low percentage of Treg cells play an important role in the pathogenesis of liver failure in patients with chronic HBV infection

  10. A rapid screening system evaluates novel inhibitors of DNA methylation and suggests F-box proteins as potential therapeutic targets for high-risk neuroblastoma.

    Science.gov (United States)

    Penter, Livius; Maier, Bert; Frede, Ute; Hackner, Benjamin; Carell, Thomas; Hagemeier, Christian; Truss, Matthias

    2015-12-01

    After extensive research on radiochemotherapy, 5-year survival rates of children with high risk neuroblastoma still do not exceed 50%, owing to adverse side-effects exemplified by doxorubicin-induced cardiomyopathy. A promising new approach is the combination of conventional therapies with specific modulation of cell signaling pathways promoting therapeutic resistance, such as inhibition of aberrant kinase activity or re-expression of silenced tumor suppressor genes by means of chromatin remodeling. In this regard, we established a system that allows to identify potential drug targets as well as to validate respective candidate inhibitors in high-risk neuroblastoma model cell lines. Cell culture, drug exposure, shRNA-mediated knockdown and phenotype analysis are integrated into an efficient and versatile single well-based protocol. By utilizing this system, we assessed RG108, SGI-1027 and nanaomycin A, three novel DNA methyltransferase inhibitors that have not been tested in neuroblastoma cell lines so far, for their potential of synergistic anti-tumor activity in combination with doxorubicin. We found that, similarly to azacytidine, SGI-1027 and nanaomycin A mediate synergistic growth inhibition with doxorubicin independently of N-Myc status. However, they display high cytotoxicity but lack global DNA demethylation activity. Secondly, we conducted a lentiviral shRNA screen of F-box proteins, key regulators of protein stability, and identified Fbxw11/β-TrCP2 as well as Fbxo5/Emi1 as potential therapeutic targets in neuroblastoma. These results complement existing studies and underline the reliability and versatility of our single well-based protocol.

  11. Molecular decoy to the Y-box binding protein-1 suppresses the growth of breast and prostate cancer cells whilst sparing normal cell viability.

    Directory of Open Access Journals (Sweden)

    Jennifer H Law

    Full Text Available The Y-box binding protein-1 (YB-1 is an oncogenic transcription/translation factor that is activated by phosphorylation at S102 whereby it induces the expression of growth promoting genes such as EGFR and HER-2. We recently illustrated by an in vitro kinase assay that a novel peptide to YB-1 was highly phosphorylated by the serine/threonine p90 S6 kinases RSK-1 and RSK-2, and to a lesser degree PKCα and AKT. Herein, we sought to develop this decoy cell permeable peptide (CPP as a cancer therapeutic. This 9-mer was designed as an interference peptide that would prevent endogenous YB-1(S102 phosphorylation based on molecular docking. In cancer cells, the CPP blocked P-YB-1(S102 and down-regulated both HER-2 and EGFR transcript level and protein expression. Further, the CPP prevented YB-1 from binding to the EGFR promoter in a gel shift assay. Notably, the growth of breast (SUM149, MDA-MB-453, AU565 and prostate (PC3, LNCap cancer cells was inhibited by ∼90% with the CPP. Further, treatment with this peptide enhanced sensitivity and overcame resistance to trastuzumab in cells expressing amplified HER-2. By contrast, the CPP had no inhibitory effect on the growth of normal immortalized breast epithelial (184htert cells, primary breast epithelial cells, nor did it inhibit differentiation of hematopoietic progenitors. These data collectively suggest that the CPP is a novel approach to suppressing the growth of cancer cells while sparing normal cells and thereby establishes a proof-of-concept that blocking YB-1 activation is a new course of cancer therapeutics.

  12. Preparation of the Human Cytomegalovirus Nuclear Egress Complex and Associated Proteins.

    Science.gov (United States)

    Sharma, Mayuri; Kamil, Jeremy P; Coen, Donald M

    2016-01-01

    Herpesviruses, like most DNA viruses, replicate their genomes in the host cell nucleus. Their DNA is then packaged and assembled into viral nucleocapsids, which, in most cases, are too large to pass through the nuclear pore complex. Instead, herpesviruses use a complex multistep pathway, termed nuclear egress, to exit the nucleus. Key players in this process include two conserved viral proteins that form the nuclear egress complex (NEC). In human cytomegalovirus, these NEC proteins are UL50, embedded in the inner nuclear membrane, and its nucleoplasmic partner UL53. Both are essential for viral nuclear egress. However, other viral components as well as host nuclear envelope proteins may also participate in nuclear egress. Identifying these viral and cellular factors may provide important insight into the herpesvirus lifecycle and its relationship to the underlying, yet still-mysterious, host nuclear egress pathway. We developed an immunoprecipitation-based protocol, described herein, to identify protein-protein interactions involving the NEC from the nuclear fraction of infected cells that express an epitope-tagged version of NEC subunit UL53.

  13. Box-Behnken试验设计法提取玉米胚芽蛋白工艺的研究%Study on Proteins Extraction of Corn Germ By Box-Behnken

    Institute of Scientific and Technical Information of China (English)

    李秀娟; 鲁曾

    2010-01-01

    采用Osboren分类法对玉米胚芽蛋白进行了分类,并采用Box-Behnken试验设计确定了玉米胚芽蛋白质的最佳提取条件:缓冲溶液的pH值10.17、提取时间1.85h、提取温度52.4℃、料液比1∶9.5814,蛋白质提取率75.2%,提取出的玉米胚芽蛋白中以谷氨酸含量最高.

  14. The conserved domain CR2 of Epstein-Barr virus nuclear antigen leader protein is responsible not only for nuclear matrix association but also for nuclear localization.

    Science.gov (United States)

    Yokoyama, A; Kawaguchi, Y; Kitabayashi, I; Ohki, M; Hirai, K

    2001-01-20

    There is a growing body of evidence for the importance of the nuclear matrix in various nuclear events including gene expression and DNA replication. Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is a nuclear matrix-associated protein that has been suggested to play an important role in EBV-induced transformation. To define the biological significance of the association of EBNA-LP with the nuclear matrix, we mapped the domain of EBNA-LP responsible for nuclear matrix association and investigated the functions of the EBNA-LP mutant mutagenized by substitution of alanines for the cluster of arginine residues in the mapped region. The results of the present study were as follows. (i) Transiently expressed EBNA-LP in COS-7 or BOSC23 cells was associated with the nuclear matrix, similarly to that in EBV-infected B cells. (ii) Mutational analysis of EBNA-LP revealed that a 10-amino acid segment of EBNA-LP is critical for nuclear matrix association of the protein. Interestingly, the identified region overlapped with the region CR2 of EBNA-LP conserved among a subset of primate gammaherpesviruses. The identified segment is referred to as EBNA-LP NMTS (nuclear matrix targeting signal). (iii) The EBNA-LP mutant with the arginine to alanine substitutions in NMTS was no longer localized not only to the nuclear matrix but also to the nucleus. (iv) The EBNA-LP mutant lacked its ability to coactivate EBNA-2-dependent transactivation. These results indicated that EBNA-LP needs to be localized in the nucleus and/or associated with the nuclear matrix through CR2 to elicit its function such as the coactivation of the EBNA-2-dependent transcriptional activation. PMID:11162796

  15. PABPN1 overexpression leads to upregulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclusions.

    Science.gov (United States)

    Corbeil-Girard, Louis-Philippe; Klein, Arnaud F; Sasseville, A Marie-Josée; Lavoie, Hugo; Dicaire, Marie-Josée; Saint-Denis, Anik; Pagé, Martin; Duranceau, André; Codère, François; Bouchard, Jean-Pierre; Karpati, George; Rouleau, Guy A; Massie, Bernard; Langelier, Yves; Brais, Bernard

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease caused by expanded (GCN)12-17 stretches encoding the N-terminal polyalanine domain of the poly(A) binding protein nuclear 1 (PABPN1). OPMD is characterized by intranuclear inclusions (INIs) in skeletal muscle fibers, which contain PABPN1, molecular chaperones, ubiquitin, proteasome subunits, and poly(A)-mRNA. We describe an adenoviral model of PABPN1 expression that produces INIs in most cells. Microarray analysis revealed that PABPN1 overexpression reproducibly changed the expression of 202 genes. Sixty percent of upregulated genes encode nuclear proteins, including many RNA and DNA binding proteins. Immunofluorescence microscopy revealed that all tested nuclear proteins encoded by eight upregulated genes colocalize with PABPN1 within the INIs: CUGBP1, SFRS3, FKBP1A, HMG2, HNRPA1, PRC1, S100P, and HSP70. In addition, CUGBP1, SFRS3, and FKBP1A were also found in OPMD muscle INIs. This study demonstrates that a large number of nuclear proteins are sequestered in OPMD INIs, which may compromise cellular function. PMID:15755682

  16. PABPN1 overexpression leads to upregulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclusions.

    Science.gov (United States)

    Corbeil-Girard, Louis-Philippe; Klein, Arnaud F; Sasseville, A Marie-Josée; Lavoie, Hugo; Dicaire, Marie-Josée; Saint-Denis, Anik; Pagé, Martin; Duranceau, André; Codère, François; Bouchard, Jean-Pierre; Karpati, George; Rouleau, Guy A; Massie, Bernard; Langelier, Yves; Brais, Bernard

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease caused by expanded (GCN)12-17 stretches encoding the N-terminal polyalanine domain of the poly(A) binding protein nuclear 1 (PABPN1). OPMD is characterized by intranuclear inclusions (INIs) in skeletal muscle fibers, which contain PABPN1, molecular chaperones, ubiquitin, proteasome subunits, and poly(A)-mRNA. We describe an adenoviral model of PABPN1 expression that produces INIs in most cells. Microarray analysis revealed that PABPN1 overexpression reproducibly changed the expression of 202 genes. Sixty percent of upregulated genes encode nuclear proteins, including many RNA and DNA binding proteins. Immunofluorescence microscopy revealed that all tested nuclear proteins encoded by eight upregulated genes colocalize with PABPN1 within the INIs: CUGBP1, SFRS3, FKBP1A, HMG2, HNRPA1, PRC1, S100P, and HSP70. In addition, CUGBP1, SFRS3, and FKBP1A were also found in OPMD muscle INIs. This study demonstrates that a large number of nuclear proteins are sequestered in OPMD INIs, which may compromise cellular function.

  17. Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction.

    Science.gov (United States)

    Lewis, Aurélia E; Sommer, Lilly; Arntzen, Magnus Ø; Strahm, Yvan; Morrice, Nicholas A; Divecha, Nullin; D'Santos, Clive S

    2011-02-01

    Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction of intact nuclei to enrich for nuclear phosphoinositide-effector proteins. We identified 168 proteins harboring phosphoinositide-binding domains. Although the vast majority of these contained lysine/arginine-rich patches with the following motif, K/R-(X(n= 3-7)-K-X-K/R-K/R, we also identified a smaller subset of known phosphoinositide-binding proteins containing pleckstrin homology or plant homeodomain modules. Proteins with no prior history of phosphoinositide interaction were identified, some of which have functional roles in RNA splicing and processing and chromatin assembly. The remaining proteins represent potentially other novel nuclear phosphoinositide-effector proteins and as such strengthen our appreciation of phosphoinositide-regulated nuclear functions. DNA topology was exemplar among these: Biochemical assays validated our proteomic data supporting a direct interaction between phosphatidylinositol 4,5-bisphosphate and DNA Topoisomerase IIα. In addition, a subset of neomycin extracted proteins were further validated as phosphatidyl 4,5-bisphosphate-interacting proteins by quantitative lipid pull downs. In summary, data sets such as this serve as a resource for a global view of phosphoinositide-regulated nuclear functions.

  18. Karyopherin α 3 and karyopherin α 4 proteins mediate the nuclear import of methyl-CpG binding protein 2.

    Science.gov (United States)

    Baker, Steven Andrew; Lombardi, Laura Marie; Zoghbi, Huda Yahya

    2015-09-11

    Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein with important roles in regulating chromatin structure and gene expression, and mutations in MECP2 cause Rett syndrome (RTT). Within the MeCP2 protein sequence, the nuclear localization signal (NLS) is reported to reside between amino acids 255-271, and certain RTT-causing mutations overlap with the MeCP2 NLS, suggesting that they may alter nuclear localization. One such mutation, R270X, is predicted to interfere with the localization of MeCP2, but recent in vivo studies have demonstrated that this mutant remains entirely nuclear. To clarify the mechanism of MeCP2 nuclear import, we isolated proteins that interact with the NLS and identified karyopherin α 3 (KPNA3 or Kap-α3) and karyopherin α 4 (KPNA4 or Kap-α4) as key binding partners of MeCP2. MeCP2-R270X did not interact with KPNA4, consistent with a requirement for an intact NLS in this interaction. However, this mutant retains binding to KPNA3, accounting for the normal localization of MeCP2-R270X to the nucleus. These data provide a mechanism for MeCP2 nuclear import and have implications for the design of therapeutics aimed at modulating the function of MeCP2 in RTT patients.

  19. Mitochondria and forkhead box protein O 3a%线粒体和叉头框蛋白O类3a

    Institute of Scientific and Technical Information of China (English)

    赵琳; 戴琼艳; 张露; 段满林

    2014-01-01

    Background Forkhead box O (FOXO) 3a transcription factors are regulators of cell-type specific apoptosis and cell cycle arrest,but also control cell survival and production of reactive oxygen species(ROS).Objective To review the FOXO3a self-reactivating loop and novel functions of FOXO3a in controlling mitochondrial respiration of cells,which further supports the current view that FOXO3a transcription factors are information-integrating sentinels of cellular stress and critical modulators of cell homeostasis.Content In this article,we will discuss the current knowledge on the involvement of FOXO3a transcription factors in the regulation of cellular homestasis with specific emphasis on mitochondrial integrity,morphology and activity.In neuronal tumor cells,FOXO3a triggers ROS-accumulation as a consequence of transient mitochondrial outer membrane permeabilization,which is essential for FOXO3a-induced apoptosis in these cells.Cellular levels of reactive oxygen species are affected by the FOXO3a-targets including Bim,BclxL,and Survivin.All three proteins localize to mitochondria and affect mitochondrial membrane potential and respiration,as well as cellular levels of reactive oxygen species.Trend FOXO3a controls a delicate balance between mitochondrial reactive oxygeu species-generation and levels of reactive oxygen species-preventing or detoxifying processes,which is critical for cell death decision in neuronal cells.%背景 叉头框蛋白O类(forkhead box protein O,FOXO)3a转录因子是细胞凋亡和细胞周期的调节者,也调控细胞生存或活性氧簇(reactive oxygen species,ROS)生成.目的 阐述FOXO3a激活对细胞线粒体呼吸作用的调控,进一步说明FOXO3a是细胞应激的信息整合因子和细胞稳态的主要调控因子.内容 讨论FOXO3a转录因子在调节细胞稳态中的作用,重点在线粒体完整性、形态和活性.在神经肿瘤细胞中,FOXO3a诱发ROS积聚,短暂性增加线粒体外膜通透性,这对FOXO3a诱

  20. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  1. Cytomegalovirus Assembly Protein Precursor and Proteinase Precursor Contain Two Nuclear Localization Signals That Mediate Their Own Nuclear Translocation and That of the Major Capsid Protein

    OpenAIRE

    Plafker, Scott M.; Gibson, Wade

    1998-01-01

    The cytomegalovirus (CMV) assembly protein precursor (pAP) interacts with the major capsid protein (MCP), and this interaction is required for nuclear translocation of the MCP, which otherwise remains in the cytoplasm of transfected cells (L. J. Wood et al., J. Virol. 71:179–190, 1997). We have interpreted this finding to indicate that the CMV MCP lacks its own nuclear localization signal (NLS) and utilizes the pAP as an NLS-bearing escort into the nucleus. The CMV pAP amino acid sequence has...

  2. High-Mobility Group Box-1 Protein Serum Levels Do Not Reflect Monocytic Function in Patients with Sepsis-Induced Immunosuppression

    Directory of Open Access Journals (Sweden)

    Nadine Unterwalder

    2010-01-01

    Full Text Available Background. High-mobility group box-1 (HMGB-1 protein is released during “late sepsis” by activated monocytes. We investigated whether systemic HMGB-1 levels are associated with indices of monocytic activation/function in patients with sepsis-induced immunosuppression. Methodology. 36 patients (31 male, 64±14 years with severe sepsis/septic shock and monocytic deactivation (reduced mHLA-DR expression and TNF-α release were assessed in a subanalysis of a placebo-controlled immunostimulatory trial using GM-CSF. HMGB-1 levels were assessed over a 9-day treatment interval. Data were compared to standardized biomarkers of monocytic immunity (mHLA-DR expression, TNF-α release. Principle findings. HMGB-1 levels were enhanced in sepsis but did not differ between treatment and placebo groups at baseline (14.6 ± 13.5 versus 12.5 ± 11.5 ng/ml, P=.62. When compared to controls, HMGB-1 level increased transiently in treated patients at day 5 (27.8±21.7 versus 11.0±14.9, P=.01. Between group differences were not noted at any other point of assessment. HMGB-1 levels were not associated with markers of monocytic function or clinical disease severity. Conclusions. GM-CSF treatment for sepsis-induced immunosuppression induces a moderate but only transient increase in systemic HMGB-1 levels. HMGB-1 levels should not be used for monitoring of monocytic function in immunostimulatory trials as they do not adequately portray contemporary changes in monocytic immunity.

  3. The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume.

    Science.gov (United States)

    Ushijima, Koichiro; Yamane, Hisayo; Watari, Akiko; Kakehi, Eiko; Ikeda, Kazuo; Hauck, Nathanael R; Iezzoni, Amy F; Tao, Ryutaro

    2004-08-01

    Many Prunus species, including sweet cherry and Japanese apricot, of the Rosaceae, display an S-RNase-based gametophytic self-incompatibility (GSI). The specificity of this outcrossing mechanism is determined by a minimum of two genes that are located in a multigene complex, termed the S locus, which controls the pistil and pollen specificities. SFB, a gene located in the S locus region, encodes an F-box protein that has appropriate S haplotype-specific variation to be the pollen determinant in the self-incompatibility reaction. This study characterizes SFBs of two self-compatible (SC) haplotypes, S(4') and S(f), of Prunus. S(4') of sweet cherry is a pollen-part mutant (PPM) that was produced by X-ray irradiation, while S(f) of Japanese apricot is a naturally occurring SC haplotype that is considered to be a PPM. DNA sequence analysis revealed defects in both SFB(4') and SFB(f). A 4 bp deletion upstream from the HVa coding region of SFB(4') causes a frame-shift that produces transcripts of a defective SFB lacking the two hypervariable regions, HVa and HVb. Similarly, the presence of a 6.8 kbp insertion in the middle of the SFB(f) coding region leads to transcripts for a defective SFB lacking the C-terminal half that contains HVa and HVb. As all reported SFBs of functional S haplotypes encode intact SFB, the fact that the partial loss-of-function mutations in SFB are present in SC mutant haplotypes of Prunus provides additional evidence that SFB is the pollen S gene in GSI in Prunus. PMID:15272875

  4. X-box binding protein 1 is essential for the anti-oxidant defense and cell survival in the retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Yimin Zhong

    Full Text Available Damage to the retinal pigment epithelium (RPE is an early event in the pathogenesis of age-related macular degeneration (AMD. X-box binding protein 1 (XBP1 is a key transcription factor that regulates endoplasmic reticulum (ER homeostasis and cell survival. This study aimed to delineate the role of endogenous XBP1 in the RPE. Our results show that in a rat model of light-induced retinal degeneration, XBP1 activation was suppressed in the RPE/choroid complex, accompanied by decreased anti-oxidant genes and increased oxidative stress. Knockdown of XBP1 by siRNA resulted in reduced expression of SOD1, SOD2, catalase, and glutathione synthase and sensitized RPE cells to oxidative damage. Using Cre/LoxP system, we generated a mouse line that lacks XBP1 only in RPE cells. Compared to wildtype littermates, RPE-XBP1 KO mice expressed less SOD1, SOD2, and catalase in the RPE, and had increased oxidative stress. At age 3 months and older, these mice exhibited apoptosis of RPE cells, decreased number of cone photoreceptors, shortened photoreceptor outer segment, reduced ONL thickness, and deficit in retinal function. Electron microscopy showed abnormal ultrastructure, Bruch's membrane thickening, and disrupted basal membrane infolding in XBP1-deficient RPE. These results indicate that XBP1 is an important gene involved in regulation of the anti-oxidant defense in the RPE, and that impaired activation of XBP1 may contribute to RPE dysfunction and cell death during retinal degeneration and AMD.

  5. A comparison of high-mobility group-box 1 protein, lipopolysaccharide-binding protein and procalcitonin in severe community-acquired infections and bacteraemia: a prospective study

    DEFF Research Database (Denmark)

    Gaïni, Shahin; Koldkjaer, Ole G; Møller, Holger J;

    2008-01-01

    analysis of the levels of the inflammatory markers in relation to the severity of infection, to the prognosis and to the ability to identify patients with bacteraemia. METHODS: Patients suspected of having severe infections and admitted to a department of internal medicine were included in a prospective...... manner. Demographic data, comorbidity, routine biochemistry, microbiological data, infection focus, severity score and mortality on day 28 were recorded. Plasma and serum were sampled within 24 hours after admission. Levels of all studied markers (HMGB1, LBP, PCT, IL-6, C-reactive protein, white blood...... (HMGB1, LBP, PCT, IL-6) and infection markers (C-reactive protein, white blood cell count, neutrophils) were elevated among bacteraemic patients. PCT performed best as a diagnostic test marker for bacteraemia. Udgivelsesdato: 2007-null...

  6. Alteration of nuclear matrix-intermediate filament system and differential expression of nuclear matrix proteins during human hepatocarcinoma cell differentiation

    Institute of Scientific and Technical Information of China (English)

    Jian Tang; Jing-Wen Niu; Dong-Hui Xu; Zhi-Xing Li; Qi-Fu Li; Jin-An Chen

    2007-01-01

    AIM:To investigate the association between the configurational and compositional changes of nuclear matrix and the differentiation of carcinoma cells.METHODS: Cells cultured with or without 5 × 10-3mmol/L of hexamethylene bisacetamide (HMBA) on Nickel grids were treated by selective extraction and prepared for whole mount observation under electron microscopy. The samples were examined under transmission electron microscope. Nuclear matrix proteins were selectively extracted and subjected to subcellular proteomics study. The protein expression patterns were analyzed by PDQuest software. Spots of differentially expressed nuclear matrix proteins were excised and subjected to in situ digestion with trypsin.The peptides were analyzed by matrix-assisted laserdesorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Data were submitted for database searching using Mascot tool (www. Matrixscience.com).RESULTS: The nuclear matrix (NM) and intermediate filament (IF) in SMMC-7721 hepatocarcinoma cells were found relatively sparse and arranged irregularly.The nuclear lamina was non-uniform, and two kinds of filaments were not tightly connected. After induction for differentiation by HMBA, the NM-IF filaments were concentrated and distributed uniformly. The heterogeneous population of filaments, including highly branched utrathin filaments could also be seen in the regular meshwork. The connection between the two kinds of filaments and the relatively thin, condensed and sharply demarcated lamina composed of intermediatesized filaments was relatively fastened. Meanwhile, 21NM proteins changed remarkably during SMMC-7721cell differentiation. Four proteins, I.e. Mutant Pyst1,hypothetical protein, nucleophosmin1, and LBP were downregulated, whereas four other proteins, eIF6, p44subunit, β-tubulin, and SIN3B were upregulated with the last one, SR2/ASF found only in the differentiated SMMC-7721 cells.CONCLUSION: The induced differentiation of SMMC-7721cells by HMBA is

  7. Legionella pneumophila infection induces programmed cell death, caspase activation, and release of high-mobility group box 1 protein in A549 alveolar epithelial cells: inhibition by methyl prednisolone

    Directory of Open Access Journals (Sweden)

    Koide Michio

    2008-05-01

    Full Text Available Abstract Background Legionella pneumophila pneumonia often exacerbates acute lung injury (ALI and acute respiratory distress syndrome (ARDS. Apoptosis of alveolar epithelial cells is considered to play an important role in the pathogenesis of ALI and ARDS. In this study, we investigated the precise mechanism by which A549 alveolar epithelial cells induced by L. pneumophila undergo apoptosis. We also studied the effect of methyl prednisolone on apoptosis in these cells. Methods Nuclear deoxyribonucleic acid (DNA fragmentation and caspase activation in L. pneumophila-infected A549 alveolar epithelial cells were assessed using the terminal deoxyribonucleotidyl transferase-mediated triphosphate (dUTP-biotin nick end labeling method (TUNEL method and colorimetric caspase activity assays. The virulent L. pneumophila strain AA100jm and the avirulent dotO mutant were used and compared in this study. In addition, we investigated whether methyl prednisolone has any influence on nuclear DNA fragmentation and caspase activation in A549 alveolar epithelial cells infected with L. pneumophila. Results The virulent strain of L. pneumophila grew within A549 alveolar epithelial cells and induced subsequent cell death in a dose-dependent manner. The avirulent strain dotO mutant showed no such effect. The virulent strains of L. pneumophila induced DNA fragmentation (shown by TUNEL staining and activation of caspases 3, 8, 9, and 1 in A549 cells, while the avirulent strain did not. High-mobility group box 1 (HMGB1 protein was released from A549 cells infected with virulent Legionella. Methyl prednisolone (53.4 μM did not influence the intracellular growth of L. pneumophila within alveolar epithelial cells, but affected DNA fragmentation and caspase activation of infected A549 cells. Conclusion Infection of A549 alveolar epithelial cells with L. pneumophila caused programmed cell death, activation of various caspases, and release of HMGB1. The dot/icm system, a

  8. Conservation of inner nuclear membrane targeting sequences in mammalian Pom121 and yeast Heh2 membrane proteins

    NARCIS (Netherlands)

    Kralt, Annemarie; Jagalur, Noorjahan B.; van den Boom, Vincent; Lokareddy, Ravi K.; Steen, Anton; Cingolani, Gino; Fornerod, Maarten; Veenhoff, Liesbeth M.

    2015-01-01

    Endoplasmic reticulum-synthesized membrane proteins traffic through the nuclear pore complex (NPC) en route to the inner nuclear membrane (INM). Although many membrane proteins pass the NPC by simple diffusion, two yeast proteins, ScSrc1/ScHeh1 and ScHeh2, are actively imported. In these proteins, a

  9. Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures associated with heterochromatin

    Directory of Open Access Journals (Sweden)

    Stixová Lenka

    2011-03-01

    Full Text Available Abstract Background Protein exchange kinetics correlate with the level of chromatin condensation and, in many cases, with the level of transcription. We used fluorescence recovery after photobleaching (FRAP to analyse the kinetics of 18 proteins and determine the relationships between nuclear arrangement, protein molecular weight, global transcription level, and recovery kinetics. In particular, we studied heterochromatin-specific heterochromatin protein 1β (HP1β B lymphoma Mo-MLV insertion region 1 (BMI1, and telomeric-repeat binding factor 1 (TRF1 proteins, and nucleolus-related proteins, upstream binding factor (UBF and RNA polymerase I large subunit (RPA194. We considered whether the trajectories and kinetics of particular proteins change in response to histone hyperacetylation by histone deacetylase (HDAC inhibitors or after suppression of transcription by actinomycin D. Results We show that protein dynamics are influenced by many factors and events, including nuclear pattern and transcription activity. A slower recovery after photobleaching was found when proteins, such as HP1β, BMI1, TRF1, and others accumulated at specific foci. In identical cells, proteins that were evenly dispersed throughout the nucleoplasm recovered more rapidly. Distinct trajectories for HP1β, BMI1, and TRF1 were observed after hyperacetylation or suppression of transcription. The relationship between protein trajectory and transcription level was confirmed for telomeric protein TRF1, but not for HP1β or BMI1 proteins. Moreover, heterogeneity of foci movement was especially observed when we made distinctions between centrally and peripherally positioned foci. Conclusion Based on our results, we propose that protein kinetics are likely influenced by several factors, including chromatin condensation, differentiation, local protein density, protein binding efficiency, and nuclear pattern. These factors and events likely cooperate to dictate the mobility of

  10. KAR5 Encodes a Novel Pheromone-inducible Protein Required for Homotypic Nuclear Fusion

    OpenAIRE

    Beh, Christopher T.; Brizzio, Valeria; Rose, Mark D.

    1997-01-01

    KAR5 is required for membrane fusion during karyogamy, the process of nuclear fusion during yeast mating. To investigate the molecular mechanism of nuclear fusion, we cloned and characterized the KAR5 gene and its product. KAR5 is a nonessential gene, and deletion mutations produce a bilateral defect in the homotypic fusion of yeast nuclei. KAR5 encodes a novel protein that shares similarity with a protein in Schizosaccharomyces pombe that may play a similar role in nuclear fusion. Kar5p is i...

  11. Down-expression of tumor protein p53-induced nuclear protein 1 in human gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Pei-Hong Jiang; Yoshiharu Motoo; Stéphane Garcia; Juan Lucio Iovanna; Marie-Josèphe Pébusque; Norio Sawabu

    2006-01-01

    AIM: Overexpression of tumor protein p53-induced nuclear protein 1 (TP53INP1) induces G1 cell cycle arrest and increases p53-mediated apoptosis. To clarify the clinical importance of TP53INP1, we analyzed TP53INP1and p53 expression in gastric cancer.METHODS: TP53INP1 and p53 expression were examined using immunohistochemistry in 142 cases of gastric cancer. The apoptosis of gastric cancer cells was analyzed using the TUNEL method. The relationship between the expression of TP53INP1 and clinicopathological factors was statistically analyzed.RESULTS: TP53INP1 was expressed in 98% (139/142cases) of non-cancerous gastric tissues and was downexpressed in 64% (91/142 cases) of gastric cancer lesions from the same patients. TP53INP1 expression was significantly decreased (43.9%) in poorly differentiated adenocarcinoma compared with well or moderately differentiated adenocarcinoma (81.6%).Cancers invading the submucosa or deeper showed lower positively (59.1%) compared with mucosal cancers (85.2%). Decrease or loss of TP53INP1 expression was significantly correlated with lymphatic invasion (54.3%vs 82.0% without lymphatic invasion) and node-positive patients (31.3% vs 68.3% in node-negative patients).P53 was expressed in 68 (47.9%) patients of gastric cancer, whereas it was absent in normal gastric tissues.A significant association was also observed between TP53INP1 status and the level of apoptosis in tumor cells: the apoptotic index in TP53INP1-positive tissues was significantly higher than that in TP53INP1-negative portions. Finally, when survival data were analyzed,loss of TP53INP1 expression had a significant effect in predicting a poor prognosis (P= 0.0006).CONCLUSION: TP53INP1-positive rate decreases with the progression of gastric cancer. TP53INP1 protein negativity is significantly associated with aggressive pathological phenotypes of gastric cancer. TP53INP1is related to the apoptosis of gastric cancer cells. The decreased expression of the TP53INP1 protein may

  12. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding

    International Nuclear Information System (INIS)

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLSSV40) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLSSV40 in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLSSV40 formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLSSV40 likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLSSV40 can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus

  13. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka, E-mail: kinjo@sci.hokudai.ac.jp

    2015-07-31

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS{sup SV40}) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS{sup SV40} in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS{sup SV40} formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS{sup SV40} likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS{sup SV40} can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus.

  14. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium.

    Science.gov (United States)

    Myre, Michael A; O'Day, Danton H

    2005-06-24

    Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD (171EDVSRFIKGKLLQKQQKIYKDLERF195) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48KKSYQDPEIIAHSRPRK64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48EF49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48EF49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium. PMID:15896312

  15. The complete amino acid sequence of the basic nuclear protein of bull spermatozoa

    NARCIS (Netherlands)

    Coelingh, J.P.; Monfoort, Cornelis H.; Rozijn, Thomas H.; Gevers Leuven, Jan A.; Schiphof, R.; Steyn-Parvé, Elizabeth P.; Braunitzer, Gerhard; Schrank, Barbara; Ruhfus, Annette

    1972-01-01

    The complete amino acid sequence of the basic nuclear protein of bull spermatozoa has been established. The sequence was partially deduced by characterization of peptides isolated from thermolysine and chymotryptic digests of the reduced and S-aminoethylated protein. The complete sequence of the fir

  16. Benzo[a]pyrene treatment leads to changes in nuclear protein expression and alternative splicing

    Energy Technology Data Exchange (ETDEWEB)

    Yan Chunlan; Wu Wei [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Li Haiyan [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Huzhou Maternity and Child Care Hospital, Huzhou, Zhejiang 313000 (China); Zhang Guanglin [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Duerksen-Hughes, Penelope J. [Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354 (United States); Zhu Xinqiang, E-mail: zhuxq@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Yang Jun, E-mail: gastate@zju.edu.cn [Department of Toxicology, Zhejiang University School of Public Health, 388 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058 (China); Zhejiang-California International Nanosystems Institute, Hangzhou, Zhejiang 310029 (China)

    2010-04-01

    Benzo[a]pyrene (BaP) is a potent pro-carcinogen generated from the combustion of fossil fuel and cigarette smoke. Previously, using a proteomic approach, we have shown that BaP can induce changes in the expression of many cellular proteins, including transcription regulators. In the present study, using a similar approach, we examined the nuclear protein response to BaP in HeLa cells and found that BaP treatment caused expression changes in many nuclear proteins. Twenty-four of these proteins were successfully identified, several of which are involved in the alternative splicing of mRNA, DNA replication, recombination, and repair. The changed expression levels were further confirmed by immunoblot analysis using specific antibodies for two proteins, Lamin A and mitotic checkpoint protein Bub3. The nuclear localization of these two proteins was also confirmed by confocal microscopy. To determine whether alternative splicing was activated following BaP treatment, we examined Fas and CD44, two genes previously shown to be targets of alternative splicing in respond to DNA damage. While no significant activation of alternative splicing was observed for Fas, CD44 splicing variants were found after BaP treatment. Together, these data show that DNA damage induces dramatic changes in nuclear protein expression, and that alternative splicing might be involved in the cellular response to DNA damage.

  17. RanBP3 influences interactions between CRM1 and its nuclear protein export substrates

    OpenAIRE

    Englmeier, Ludwig; Fornerod, Maarten; Bischoff, F. Ralf; Petosa, Carlo; Mattaj, Iain W.; Kutay, Ulrike

    2001-01-01

    We investigated the role of RanBP3, a nuclear member of the Ran-binding protein 1 family, in CRM1-mediated protein export in higher eukaryotes. RanBP3 interacts directly with CRM1 and also forms a trimeric complex with CRM1 and RanGTP. However, RanBP3 does not bind to CRM1 like an export substrate. Instead, it can stabilize CRM1–export substrate interaction. Nuclear RanBP3 stimulates CRM1-dependent protein export in permeabilized cells. These data indicate that RanBP3 functions by a novel mec...

  18. Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core protein.

    Directory of Open Access Journals (Sweden)

    Andrea Cerutti

    Full Text Available Hepatitis C virus (HCV infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS, but no nuclear export signal (NES has yet been identified.We show here that the aa(109-133 region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126 in the identified NES or in the sequence encoding the mature core aa(1-173 significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.

  19. Nuclear transport factor directs localization of protein synthesis during mitosis

    NARCIS (Netherlands)

    Bogaart, Geert van den; Meinema, Anne C.; Krasnikov, Viktor; Veenhoff, Liesbeth M.; Poolman, Bert

    2009-01-01

    Export of messenger RNA from the transcription site in the nucleus and mRNA targeting to the translation site in the cytoplasm are key regulatory processes in protein synthesis. In yeast, the mRNA-binding proteins Nab2p and Nab4p/Hrp1p accompany transcripts to their translation site, where the karyo

  20. Nuclear domain 10-associated proteins recognize and segregate intranuclear DNA/protein complexes to negate gene expression

    Directory of Open Access Journals (Sweden)

    Rivera-Molina Yisel A

    2012-09-01

    Full Text Available Abstract Background DNA viruses, such as herpes simplex virus type 1 (HSV-1, Simian virus 40 (SV40, and Cytomegaloviruses (CMV, start their replicative processes and transcription at specific nuclear domains known as ND10 (nuclear domain 10, also called PML bodies. It has been previously determined that for HSV-1 and SV40, a short DNA sequence and its binding protein are required and sufficient for cell localization of viral DNA replication and gene transcription. Results Our recent observations provide evidence that a foreign (not endogenous DNA/protein complex in the nucleus recruits ND10 proteins. First, the complexes formed from the bacterial lac operator DNA and its binding protein (lac repressor, or from HPV11 (human papillomavirus 11 origin DNA and its binding protein (E2, co-localized with different ND10 proteins. Second, the HSV-1 amplicon without inserted lac operator DNA repeats distributed in the nucleus randomly, whereas the amplicon with lac operator DNA repeats associated with ND10, suggesting that DNA-binding proteins are required to localize at ND10. The cellular intrinsic DNA/protein complex (as detected for U2 DNA showed no association with ND10. Furthermore, our examination of PML−/−, Daxx−/−, and Sp100-negative cells led to our discovering that DNA/protein complexes recruit ND10 protein independently. Using the GFP-LacI/Operator system, we were able to direct the transfected DNA to ND10 and found that gene expression was significantly repressed when the transfected DNA was directed to ND10. Conclusion Taken together, the results suggest that cells recognize DNA/protein complexes through a mechanism that involves interaction with the ND10-associated proteins.

  1. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  2. The mirror box

    Science.gov (United States)

    Thompson, Gene; Mathieson, Don

    2001-11-01

    The mirror box is an old standby in magic shows and an impressive demonstration of the law of reflection for the physics instructor. The box creates the illusion of an object floating in space by the use of a plane mirror.

  3. Characterization of a 65 kDa NIF in the nuclear matrix of the monocot Allium cepa that interacts with nuclear spectrin-like proteins.

    Science.gov (United States)

    Pérez-Munive, Clara; Blumenthal, Sonal S D; de la Espina, Susana Moreno Díaz

    2012-01-01

    Plant cells have a well organized nucleus and nuclear matrix, but lack orthologues of the main structural components of the metazoan nuclear matrix. Although data is limited, most plant nuclear structural proteins are coiled-coil proteins, such as the NIFs (nuclear intermediate filaments) in Pisum sativum that cross-react with anti-intermediate filament and anti-lamin antibodies, form filaments 6-12 nm in diameter in vitro, and may play the role of lamins. We have investigated the conservation and features of NIFs in a monocot species, Allium cepa, and compared them with onion lamin-like proteins. Polyclonal antisera against the pea 65 kDa NIF were used in 1D and 2D Western blots, ICM (imunofluorescence confocal microscopy) and IEM (immunoelectron microscopy). Their presence in the nuclear matrix was analysed by differential extraction of nuclei, and their association with structural spectrin-like proteins by co-immunoprecipitation and co-localization in ICM. NIF is a conserved structural component of the nucleus and its matrix in monocots with Mr and pI values similar to those of pea 65 kDa NIF, which localized to the nuclear envelope, perichromatin domains and foci, and to the nuclear matrix, interacting directly with structural nuclear spectrin-like proteins. Its similarities with some of the proteins described as onion lamin-like proteins suggest that they are highly related or perhaps the same proteins.

  4. Conservation of inner nuclear membrane targeting sequences in mammalian Pom121 and yeast Heh2 membrane proteins

    NARCIS (Netherlands)

    A. Kralt (Annemarie); N.B. Jagalur (Noorjahan ); V. van den Boom (Vincent); R.K. Lokareddy (Ravi K.); A.F.W. van der Steen (Anton); G. Cingolani (Gino); M.W.J. Fornerod (Maarten); L.M. Veenhoff (Liesbeth M.)

    2015-01-01

    textabstractEndoplasmic reticulum-synthesized membrane proteins traffic through the nuclear pore complex (NPC) en route to the inner nuclear membrane (INM). Although many membrane proteins pass the NPC by simple diffusion, two yeast proteins, ScSrc1/ScHeh1 and ScHeh2, are actively imported. In these

  5. Discovering the World of Plant Nuclear Proteins (Chapter 2)

    OpenAIRE

    Petrovská, B.; Šebela, M.; Doležel, J. (Jaroslav)

    2016-01-01

    Despite the separation of evolutionary lineages many hundred million years ago,/ncells of all eukaryotic organisms are structurally similar. Their control centre – the/nnucleus – contains most of the DNA of the cell and regulates the majority of cellular/nprocesses. DNA is packed in a small volume of the nucleus after interacting with/nnuclear proteins. These proteins facilitate DNA folding into a small space; participate/nin DNA replication, repair and transcription; and help to separate it ...

  6. The bovine papillomavirus type 1 E2 transactivator and repressor proteins use different nuclear localization signals.

    Science.gov (United States)

    Skiadopoulos, M H; McBride, A A

    1996-02-01

    The E2 gene of bovine papillomavirus type 1 encodes at least three nuclear phosphoproteins that regulate viral transcription and DNA replication. All three proteins have a common C-terminal domain that has DNA-binding and dimerization activities. A basic region in this domain forms an alpha helix which makes direct contact with the DNA target. In this study, it is shown that in addition to its role in DNA binding, this basic region functions as a nuclear localization signal both in the E2 DNA-binding domain and in a heterologous protein. Deletion of this signal sequence resulted in increased accumulation of the E2 transactivator and repressor proteins in the cytoplasm, but nuclear localization was not eliminated. In the full-length transactivator protein, another signal, present in the N-terminal transactivation domain, is used for transport to the nucleus, and the C-terminal nuclear localization signal(s) are masked. The use of different nuclear localization signals could potentially allow differential regulation of the subcellular localization of the E2 transactivator and repressor proteins at some stage in the viral life cycle. PMID:8551571

  7. American Society of Nuclear Cardiology

    Science.gov (United States)

    ... much more! class="box-li"> Journal of Nuclear Cardiology Official publication of the American Society of Nuclear Cardiology Clinical Guidelines Procedures, Appropriate Use Criteria, Information Statements ...

  8. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    International Nuclear Information System (INIS)

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1–17 and 18–36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.

  9. Active Degradation Explains the Distribution of Nuclear Proteins during Cellular Senescence.

    Directory of Open Access Journals (Sweden)

    Enrico Giampieri

    Full Text Available The amount of cellular proteins is a crucial parameter that is known to vary between cells as a function of the replicative passages, and can be important during physiological aging. The process of protein degradation is known to be performed by a series of enzymatic reactions, ranging from an initial step of protein ubiquitination to their final fragmentation by the proteasome. In this paper we propose a stochastic dynamical model of nuclear proteins concentration resulting from a balance between a constant production of proteins and their degradation by a cooperative enzymatic reaction. The predictions of this model are compared with experimental data obtained by fluorescence measurements of the amount of nuclear proteins in murine tail fibroblast (MTF undergoing cellular senescence. Our model provides a three-parameter stationary distribution that is in good agreement with the experimental data even during the transition to the senescent state, where the nuclear protein concentration changes abruptly. The estimation of three parameters (cooperativity, saturation threshold, and maximal velocity of the reaction, and their evolution during replicative passages shows that only the maximal velocity varies significantly. Based on our modeling we speculate the reduction of functionality of the protein degradation mechanism as a possible competitive inhibition of the proteasome.

  10. Tus, an E. coli protein, contains mammalian nuclear targeting and exporting signals.

    Directory of Open Access Journals (Sweden)

    Stanislaw J Kaczmarczyk

    Full Text Available Shuttling of proteins between nucleus and cytoplasm in mammalian cells is facilitated by the presence of nuclear localization signals (NLS and nuclear export signals (NES, respectively. However, we have found that Tus, an E. coli replication fork arresting protein, contains separate sequences that function efficiently as NLS and NES in mammalian cell lines, as judged by cellular location of GFP-fusion proteins. The NLS was localized to a short stretch of 9 amino acids in the carboxy-terminus of Tus protein. Alterations of any of these basic amino acids almost completely abolished the nuclear targeting. The NES comprises a cluster of leucine/hydrophobic residues located within 21 amino acids at the amino terminus of Tus. Finally, we have shown that purified GFP-Tus fusion protein or GFP-Tus NLS fusion protein, when added to the culture media, was internalized very efficiently into mammalian cells. Thus, Tus is perhaps the first reported bacterial protein to possess both NLS and NES, and has the capability to transduce protein into mammalian cells.

  11. Proneural proteins Achaete and Scute associate with nuclear actin to promote formation of external sensory organs.

    Science.gov (United States)

    Hsiao, Yun-Ling; Chen, Yu-Ju; Chang, Yi-Jie; Yeh, Hsiao-Fong; Huang, Yi-Chun; Pi, Haiwei

    2014-01-01

    Basic helix-loop-helix (bHLH) proneural proteins promote neurogenesis through transcriptional regulation. Although much is known about the tissue-specific regulation of proneural gene expression, how proneural proteins interact with transcriptional machinery to activate downstream target genes is less clear. Drosophila proneural proteins Achaete (Ac) and Scute (Sc) induce external sensory organ formation by activating neural precursor gene expression. Through co-immunoprecipitation and mass spectrometric analyses, we found that nuclear but not cytoplasmic actin associated with the Ac and Sc proteins in Drosophila S2 cells. Daughterless (Da), the common heterodimeric partner of Drosophila bHLH proteins, was observed to associate with nuclear actin through proneural proteins. A yeast two-hybrid assay revealed that the binding specificity between actin and Ac or Sc was conserved in yeast nuclei without the presence of additional Drosophila factors. We further show that actin is required in external sensory organ formation. Reduction in actin gene activity impaired proneural-protein-dependent expression of the neural precursor genes, as well as formation of neural precursors. Furthermore, increased nuclear actin levels, obtained by expression of nucleus-localized actin, elevated Ac-Da-dependent gene transcription as well as Ac-mediated external sensory organ formation. Taken together, our in vivo and in vitro observations suggest a novel link for actin in proneural-protein-mediated transcriptional activation and neural precursor differentiation.

  12. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion.

    Science.gov (United States)

    Krull, Sandra; Dörries, Julia; Boysen, Björn; Reidenbach, Sonja; Magnius, Lars; Norder, Helene; Thyberg, Johan; Cordes, Volker C

    2010-05-19

    Amassments of heterochromatin in somatic cells occur in close contact with the nuclear envelope (NE) but are gapped by channel- and cone-like zones that appear largely free of heterochromatin and associated with the nuclear pore complexes (NPCs). To identify proteins involved in forming such heterochromatin exclusion zones (HEZs), we used a cell culture model in which chromatin condensation induced by poliovirus (PV) infection revealed HEZs resembling those in normal tissue cells. HEZ occurrence depended on the NPC-associated protein Tpr and its large coiled coil-forming domain. RNAi-mediated loss of Tpr allowed condensing chromatin to occur all along the NE's nuclear surface, resulting in HEZs no longer being established and NPCs covered by heterochromatin. These results assign a central function to Tpr as a determinant of perinuclear organization, with a direct role in forming a morphologically distinct nuclear sub-compartment and delimiting heterochromatin distribution.

  13. Multidimensional profiling of cell surface proteins and nuclear markers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Chang, Hang; Andarawewa, Kumari; Yaswen, Paul; Helen Barcellos-Hoff, Mary; Parvin, Bahram

    2009-01-30

    Cell membrane proteins play an important role in tissue architecture and cell-cell communication. We hypothesize that segmentation and multidimensional characterization of the distribution of cell membrane proteins, on a cell-by-cell basis, enable improved classification of treatment groups and identify important characteristics that can otherwise be hidden. We have developed a series of computational steps to (i) delineate cell membrane protein signals and associate them with a specific nucleus; (ii) compute a coupled representation of the multiplexed DNA content with membrane proteins; (iii) rank computed features associated with such a multidimensional representation; (iv) visualize selected features for comparative evaluation through heatmaps; and (v) discriminate between treatment groups in an optimal fashion. The novelty of our method is in the segmentation of the membrane signal and the multidimensional representation of phenotypic signature on a cell-by-cell basis. To test the utility of this method, the proposed computational steps were applied to images of cells that have been irradiated with different radiation qualities in the presence and absence of other small molecules. These samples are labeled for their DNA content and E-cadherin membrane proteins. We demonstrate that multidimensional representations of cell-by-cell phenotypes improve predictive and visualization capabilities among different treatment groups, and identify hidden variables.

  14. Differential ligand-dependent protein–protein interactions between nuclear receptors and a neuronal-specific cofactor

    OpenAIRE

    Greiner, Erich F.; Kirfel, Jutta; Greschik, Holger; Huang, DongYa; Becker, Peter; Kapfhammer, Josef P.; Schüle, Roland

    2000-01-01

    Nuclear receptors are transcription factors that require multiple protein–protein interactions to regulate target gene expression. We have cloned a 27-kDa protein, termed NIX1 (neuronal interacting factor X 1), that directly binds nuclear receptors in vitro and in vivo. Protein–protein interaction between NIX1 and ligand-activated or constitutive active nuclear receptors, including retinoid-related orphan receptor β (RORβ) (NR1F2), strictly depends on the conserved receptor C-terminal activat...

  15. Y-box-binding protein-1 (YB-1) promotes cell proliferation, adhesion and drug resistance in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Miao, Xiaobing; Wu, Yaxun; Wang, Yuchan; Zhu, Xinghua; Yin, Haibing; He, Yunhua; Li, Chunsun; Liu, Yushan; Lu, Xiaoyun; Chen, Yali; Shen, Rong; Xu, Xiaohong; He, Song

    2016-08-15

    YB-1 is a multifunctional protein, which has been shown to correlate with resistance to treatment of various tumor types. This study investigated the expression and biologic function of YB-1 in diffuse large B-cell lymphoma (DLBCL). Immunohistochemical analysis showed that the expression statuses of YB-1 and pYB-1(S102) were reversely correlated with the clinical outcomes of DLBCL patients. In addition, we found that YB-1 could promote the proliferation of DLBCL cells by accelerating the G1/S transition. Ectopic expression of YB-1 could markedly increase the expression of cell cycle regulators cyclin D1 and cyclin E. Furthermore, we found that adhesion of DLBCL cells to fibronectin (FN) could increase YB-1 phosphorylation at Ser102 and pYB-1(S102) nuclear translocation. In addition, overexpression of YB-1 could increase the adhesion of DLBCL cells to FN. Intriguingly, we found that YB-1 overexpression could confer drug resistance through cell-adhesion dependent and independent mechanisms in DLBCL. Silencing of YB-1 could sensitize DLBCL cells to mitoxantrone and overcome cell adhesion-mediated drug resistance (CAM-DR) phenotype in an AKT-dependent manner. PMID:27397581

  16. Altered profiles of nuclear matrix proteins during the differentiation of human gastric mucous adenocarcinoma MGc80-3 cells

    Institute of Scientific and Technical Information of China (English)

    Chun-Hong Zhao; Qi-Fu Li

    2005-01-01

    AIM: To find and identify specific nuclear matrix proteins associated with proliferation and differentiation of carcinoma cells, which will be potential markers for cancer diagnosis and targets in cancer therapy.METHODS: Nuclear matrix proteins were selectively extracted from MGc80-3 cells treated with or without hexamethylamine bisacetamide (HMBA), and subjected to 2-D gel electrophoresis. The resulted protein patterns were analyzed by Melanie software. Spots of nuclear matrix proteins differentially expressed were excised and subjected to in situ digestion with trypsin. Peptide masses were obtained by matrix-assisted laser-desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) analysis and submitted for database searching using Mascot tool.RESULTS: The MGc80-3 cells were induced into differentiation by HMBA. There were 22 protein spots which changed remarkably in the nuclear matrix, from differentiation of MGc80-3 cells compared to control.Eleven of which were identified. Seven proteins -actin, prohibitin, porin 31HL, heterogeneous nuclear ribonucleoprotein A2/B1, vimentin, ATP synthase, and heatshock protein 60 were downregulated, whereas three proteins - heat shock protein gp96, heat shock protein 90-beta, and valosin-containing protein were upregulated,and the oxygen-regulated protein was only found in the differentiated MGc80-3 cells.CONCLUSION: The induced differentiation of carcinoma cells is accompanied by the changes of nuclear matrix proteins. Further characterization of those proteins will show the mechanism of cellular proliferation and differentiation, as well as cancer differentiation.

  17. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain

    International Nuclear Information System (INIS)

    The HP1 proteins regulate epigenetic gene silencing by promoting and maintaining chromatin condensation. The HP1 chromodomain binds to methylated histone H3. More enigmatic is the chromoshadow domain (CSD), which mediates dimerization, transcription repression, and interaction with multiple nuclear proteins. Here we show that KAP-1, CAF-1 p150, and NIPBL carry a canonical amino acid motif, PxVxL, which binds directly to the CSD with high affinity. We also define a new class of variant PxVxL CSD-binding motifs in Sp100A, LBR, and ATRX. Both canonical and variant motifs recognize a similar surface of the CSD dimer as demonstrated by a panel of CSD mutants. These in vitro binding results were confirmed by the analysis of polypeptides found associated with nuclear HP1 complexes and we provide the first evidence of the NIPBL/delangin protein in human cells, a protein recently implicated in the developmental disorder, Cornelia de Lange syndrome. NIPBL is related to Nipped-B, a factor participating in gene activation by remote enhancers in Drosophila melanogaster. Thus, this spectrum of direct binding partners suggests an expanded role for HP1 as factor participating in promoter-enhancer communication, chromatin remodeling/assembly, and sub-nuclear compartmentalization

  18. Acetylation dynamics of human nuclear proteins during the ionizing radiation-induced DNA damage response

    DEFF Research Database (Denmark)

    Bennetzen, Martin; Andersen, J.S.; Lasen, D.H.;

    2013-01-01

    Genotoxic insults, such as ionizing radiation (IR), cause DNA damage that evokes a multifaceted cellular DNA damage response (DDR). DNA damage signaling events that control protein activity, subcellular localization, DNA binding, protein-protein interactions, etc. rely heavily on time...... to assess lysine acetylation status and thereby validate the mass spectrometry data. We thus present evidence that nuclear proteins, including those known to regulate cellular functions via epigenetic modifications of histones, are regulated by (de)acetylation in a timely manner upon cell's exposure...

  19. Nuclear translocation of EGF receptor regulated by Epstein-Barr virus encoded latent membrane protein 1

    Institute of Scientific and Technical Information of China (English)

    TAO; Yongguang; SONG; Xin; TAN; Yunnian; LIN; Xiaofeng; ZH

    2004-01-01

    Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) is considered to be the major oncogenic protein of EBV encoded proteins, and also it has always been the core of the oncogenic mechanism of EBV. Traditional receptor theory demonstrates that cell surface receptors exert biological functions on the membrane, which neither enter into the nucleus nor directly affect the transcription of the target genes. But, advanced studies on nuclear translocation of the epidermal growth factor receptor (EGFR) family have greatly developed our knowledge of the biological function of cell surface receptors. In this study, we used Tet-on LMP1 HNE2 cell line as a cell model, which is a dual-stable LMP1 integrated NPC cell line and the expression of LMP1 in which could be regulated by Tet system. We found that LMP1 could regulate the nuclear translocation of EGFR in a dose-dependent manner from both quantitative and qualitative levels through the Western blot analysis and the immunofluorescent analysis with a laser scanning confocal microscope. We further demonstrated that the nuclear localization sequence of EGFR played some roles in the location of the protein within the nucleus under LMP1 regulation, and the nuclear accumulation of EGFR regulated by LMP1 was in a ligand-independent manner. These findings provide a novel view that the regulation of LMP1 on the nuclear translocation of EGFR is critical for the process of nasopharyngeal carcinoma.

  20. An improved genetic system for detection and analysis of protein nuclear import signals

    Directory of Open Access Journals (Sweden)

    Derbyshire Stephanie

    2007-01-01

    Full Text Available Abstract Background Nuclear import of proteins is typically mediated by their physical interaction with soluble cytosolic receptor proteins via a nuclear localization signal (NLS. A simple genetic assay to detect active NLSs based on their function in the yeast Saccharomyces cerevisiae has been previously described. In that system, a chimera consisting of a modified bacterial LexA DNA binding domain and the transcriptional activation domain of the yeast Gal4 protein is fused to a candidate NLS. A functional NLS will redirect the chimeric fusion to the yeast cell nucleus and activate transcription of a reporter gene. Results We have reengineered this nuclear import system to expand its utility and tested it using known NLS sequences from adenovirus E1A. Firstly, the vector has been reconstructed to reduce the level of chimera expression. Secondly, an irrelevant "stuffer" sequence from the E. coli maltose binding protein was used to increase the size of the chimera above the passive diffusion limit of the nuclear pore complex. The improved vector also contains an expanded multiple cloning site and a hemagglutinin epitope tag to allow confirmation of expression. Conclusion The alterations in expression level and composition of the fusions used in this nuclear import system greatly reduce background activity in β-galactosidase assays, improving sensitivity and allowing more quantitative analysis of NLS bearing sequences.

  1. Characterization of the Nuclear Localization Signal of High Risk HPV16 E2 Protein

    OpenAIRE

    Klucevsek, Kristin; Wertz, Mary; Lucchi, John; Leszczynski, Anna; Moroianu, Junona

    2006-01-01

    The E2 protein of high risk human papillomavirus type 16 (HPV16) contains an amino-terminal (N) domain, a hinge (H) region and a carboxyl-terminal (C) DNA binding domain. Using enhanced green fluorescent protein (EGFP) fusions with full length E2 and E2 domains in transfection assays in HeLa cells we found that the C domain is responsible for the nuclear localization of E2 in vivo, whereas the N and H domains do not contain additional nuclear localization signals (NLSs). Deletion analysis of ...

  2. Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells

    International Nuclear Information System (INIS)

    We studied influenza virus M1 protein by generating HeLa and MDCK cell lines that express M1 genetically fused to green fluorescent protein (GFP). GFP-M1 was incorporated into virions produced by influenza virus infected MDCK cells expressing the fusion protein indicating that the fusion protein is at least partially functional. Following infection of either HeLa or MDCK cells with influenza A virus (but not influenza B virus), GFP-M1 redistributes from its cytosolic/nuclear location and accumulates in nuclear dots. Immunofluorescence revealed that the nuclear dots represent nuclear dot 10 (ND10) structures. The colocalization of authentic M1, as well as NS1 and NS2 protein, with ND10 was confirmed by immunofluorescence following in situ isolation of ND10. These findings demonstrate a previously unappreciated involvement of influenza virus with ND10, a structure involved in cellular responses to immune cytokines as well as the replication of a rapidly increasing list of viruses

  3. Association of bovine papillomavirus E2 protein with nuclear structures in vivo.

    Science.gov (United States)

    Kurg, Reet; Sild, Kristiina; Ilves, Aigi; Sepp, Mari; Ustav, Mart

    2005-08-01

    Papillomaviruses are small DNA viruses which have the capacity to establish a persistent infection in mammalian epithelial cells. The papillomavirus E2 protein is a central coordinator of viral gene expression, genome replication, and maintenance. We have investigated the distribution of bovine papillomavirus E2 protein in nuclei of proliferating cells and found that E2 is associated with cellular chromatin. This distribution does not change during the entire cell cycle. The N-terminal transactivation domain, but not the C-terminal DNA-binding domain, of the E2 protein is responsible for this association. The majority of the full-length E2 protein can only be detected in chromatin-enriched fractions but not as a free protein in the nucleus. Limited micrococcal nuclease digestion revealed that the E2 protein partitioned to different chromatin regions. A fraction of the E2 protein was located at nuclear sites that are resistant against nuclease attack, whereas the remaining E2 resided on compact chromatin accessible to micrococcal nuclease. These data suggest that there are two pools of E2 in the cell nucleus: one that localizes on transcriptionally inactive compact chromatin and the other, which compartmentalizes to transcriptionally active nuclear structures of the cell. Our data also suggest that E2 associates with chromatin through cellular protein(s), which in turn is released from chromatin at 0.4 M salt. PMID:16051845

  4. SUMOylation regulates the nuclear mobility of CREB binding protein and its association with nuclear bodies in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Colm M.; Kindle, Karin B.; Collins, Hilary M. [Gene Regulation Group, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Heery, David M., E-mail: david.heery@nottingham.ac.uk [Gene Regulation Group, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2010-01-01

    The lysine acetyltransferase CREB binding protein (CBP) is required for chromatin modification and transcription at many gene promoters. In fixed cells, a large proportion of CBP colocalises to PML or nuclear bodies. Using live cell imaging, we show here that YFP-tagged CBP expressed in HEK293 cells undergoes gradual accumulation in nuclear bodies, some of which are mobile and migrate towards the nuclear envelope. Deletion of a short lysine-rich domain that contains the major SUMO acceptor sites of CBP abrogated its ability to be SUMO modified, and prevented its association with endogenous SUMO-1/PML speckles in vivo. This SUMO-defective CBP showed enhanced ability to co-activate AML1-mediated transcription. Deletion mapping revealed that the SUMO-modified region was not sufficient for targeting CBP to PML bodies, as C-terminally truncated mutants containing this domain showed a strong reduction in accumulation at PML bodies. Fluorescence recovery after photo-bleaching (FRAP) experiments revealed that YFP-CBP{Delta}998-1087 had a retarded recovery time in the nucleus, as compared to YFP-CBP. These results indicate that SUMOylation regulates CBP function by influencing its shuttling between nuclear bodies and chromatin microenvironments.

  5. The Inner Nuclear Membrane Protein Nemp1 Is a New Type of RanGTP-Binding Protein in Eukaryotes.

    Directory of Open Access Journals (Sweden)

    Takashi Shibano

    Full Text Available The inner nuclear membrane (INM protein Nemp1/TMEM194A has previously been suggested to be involved in eye development in Xenopus, and contains two evolutionarily conserved sequences in the transmembrane domains (TMs and the C-terminal region, named region A and region B, respectively. To elucidate the molecular nature of Nemp1, we analyzed its interacting proteins through those conserved regions. First, we found that Nemp1 interacts with itself and lamin through the TMs and region A, respectively. Colocalization of Nemp1 and lamin at the INM suggests that the interaction with lamin participates in the INM localization of Nemp1. Secondly, through yeast two-hybrid screening using region B as bait, we identified the small GTPase Ran as a probable Nemp1-binding partner. GST pulldown and co-immunoprecipitation assays using region B and Ran mutants revealed that region B binds directly to the GTP-bound Ran through its effector domain. Immunostaining experiments using transfected COS-7 cells revealed that full-length Nemp1 recruits Ran near the nuclear envelope, suggesting a role for Nemp1 in the accumulation of RanGTP at the nuclear periphery. At the neurula-to-tailbud stages of Xenopus embryos, nemp1 expression overlapped with ran in several regions including the eye vesicles. Co-knockdown using antisense morpholino oligos for nemp1 and ran caused reduction of cell densities and severe eye defects more strongly than either single knockdown alone, suggesting their functional interaction. Finally we show that Arabidopsis thaliana Nemp1-orthologous proteins interact with A. thaliana Ran, suggesting their evolutionally conserved physical and functional interactions possibly in basic cellular functions including nuclear transportation. Taken together, we conclude that Nemp1 represents a new type of RanGTP-binding protein.

  6. The Inner Nuclear Membrane Protein Nemp1 Is a New Type of RanGTP-Binding Protein in Eukaryotes.

    Science.gov (United States)

    Shibano, Takashi; Mamada, Hiroshi; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Taira, Masanori

    2015-01-01

    The inner nuclear membrane (INM) protein Nemp1/TMEM194A has previously been suggested to be involved in eye development in Xenopus, and contains two evolutionarily conserved sequences in the transmembrane domains (TMs) and the C-terminal region, named region A and region B, respectively. To elucidate the molecular nature of Nemp1, we analyzed its interacting proteins through those conserved regions. First, we found that Nemp1 interacts with itself and lamin through the TMs and region A, respectively. Colocalization of Nemp1 and lamin at the INM suggests that the interaction with lamin participates in the INM localization of Nemp1. Secondly, through yeast two-hybrid screening using region B as bait, we identified the small GTPase Ran as a probable Nemp1-binding partner. GST pulldown and co-immunoprecipitation assays using region B and Ran mutants revealed that region B binds directly to the GTP-bound Ran through its effector domain. Immunostaining experiments using transfected COS-7 cells revealed that full-length Nemp1 recruits Ran near the nuclear envelope, suggesting a role for Nemp1 in the accumulation of RanGTP at the nuclear periphery. At the neurula-to-tailbud stages of Xenopus embryos, nemp1 expression overlapped with ran in several regions including the eye vesicles. Co-knockdown using antisense morpholino oligos for nemp1 and ran caused reduction of cell densities and severe eye defects more strongly than either single knockdown alone, suggesting their functional interaction. Finally we show that Arabidopsis thaliana Nemp1-orthologous proteins interact with A. thaliana Ran, suggesting their evolutionally conserved physical and functional interactions possibly in basic cellular functions including nuclear transportation. Taken together, we conclude that Nemp1 represents a new type of RanGTP-binding protein.

  7. The extracellular release of Schistosoma mansoni HMGB1 nuclear protein is mediated by acetylation

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho Carneiro, Vitor; Moraes Maciel, Renata de; Caetano de Abreu da Silva, Isabel; Furtado Madeira da Costa, Rodrigo [Instituto de Bioquimica Medica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Neto Paiva, Claudia; Torres Bozza, Marcelo [Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Rosado Fantappie, Marcelo, E-mail: fantappie@bioqmed.ufrj.br [Instituto de Bioquimica Medica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil)

    2009-12-25

    Schistosoma mansoni HMGB1 (SmHMGB1) was revealed to be a substrate for the parasite histone acetyltransferases SmGCN5 and SmCBP1. We found that full-length SmHMGB1, as well as its HMG-box B (but not HMG-box A) were acetylated in vitro by SmGCN5 and SmCBP1. However, SmCBP1 was able to acetylate both substrates more efficiently than SmGCN5. Interestingly, the removal of the C-terminal acidic tail of SmHMGB1 (SmHMGB1{Delta}C) resulted in increased acetylation of the protein. We showed by mammalian cell transfection assays that SmHMGB1 and SmHMGB1{Delta}C were transported from the nucleus to the cytoplasm after sodium butyrate (NaB) treatment. Importantly, after NaB treatment, SmHMGB1 was also present outside the cell. Together, our data suggest that acetylation of SmHMGB1 plays a role in cellular trafficking, culminating with its secretion to the extracellular milieu. The possible role of SmHMGB1 acetylation in the pathogenesis of schistosomiasis is discussed.

  8. Ephemeral protein binding to DNA shapes stable nuclear bodies and chromatin domains

    CERN Document Server

    Brackley, C A; Michieletto, D; Mouvet, F; Cook, P R; Marenduzzo, D

    2016-01-01

    Fluorescence microscopy reveals that the contents of many (membrane-free) nuclear "bodies" exchange rapidly with the soluble pool whilst the underlying structure persists; such observations await a satisfactory biophysical explanation. To shed light on this, we perform large-scale Brownian dynamics simulations of a chromatin fiber interacting with an ensemble of (multivalent) DNA-binding proteins; these proteins switch between two states -- active (binding) and inactive (non-binding). This system provides a model for any DNA-binding protein that can be modified post-translationally to change its affinity for DNA (e.g., like the phosphorylation of a transcription factor). Due to this out-of-equilibrium process, proteins spontaneously assemble into clusters of self-limiting size, as individual proteins in a cluster exchange with the soluble pool with kinetics like those seen in photo-bleaching experiments. This behavior contrasts sharply with that exhibited by "equilibrium", or non-switching, proteins that exis...

  9. The tight junction protein Z O-2 has several functional nuclear export signals

    International Nuclear Information System (INIS)

    The tight junction (TJ) protein ZO-2 changes its subcellular distribution according to the state of confluency of the culture. Thus in confluent monolayers, it localizes at the TJ region whereas in sparse cultures it concentrates at the nucleus. The canine sequence of ZO-2 displays four putative nuclear export signals (NES), two at the second PDZ domain (NES-0 and NES-1) and the rest at the GK region (NES-2 and NES-3). The functionality of NES-0 and NES-3 was unknown, hence here we have explored it with a nuclear export assay, injecting into the nucleus of MDCK cells peptides corresponding to the ZO-2 NES sequences chemically coupled to ovalbumin. We show that both NES-0 and NES-3 are functional and sensitive to leptomycin B. We also demonstrate that NES-1, previously characterized as a non functional NES, is rendered capable of nuclear export upon the acquisition of a negative charge at its Ser369 residue. Experiments performed injecting at the nucleus WT and mutated ZO-2-GST fusion proteins revealed the need of both NES-0 and NES-1, and NES-2 and NES-3 for attaining an efficient nuclear exit of the respective amino and middle segments of ZO-2. Moreover, the transfection of MDCK cells with full-length ZO-2 revealed that the mutation of any of the NES present in the molecule was sufficient to induce nuclear accumulation of the protein

  10. Nuclear localization signal in a cancer-related transcriptional regulator protein NAC1.

    Science.gov (United States)

    Okazaki, Kosuke; Nakayama, Naomi; Nariai, Yuko; Nakayama, Kentaro; Miyazaki, Kohji; Maruyama, Riruke; Kato, Hiroaki; Kosugi, Shunichi; Urano, Takeshi; Sakashita, Gyosuke

    2012-10-01

    Nucleus accumbens-associated protein 1 (NAC1) might have potential oncogenic properties and participate in regulatory networks for pluripotency. Although NAC1 is described as a transcriptional regulator, the nuclear import machinery of NAC1 remains unclear. We found, using a point mutant, that dimer formation was not committed to the nuclear localization of NAC1 and, using deletion mutants, that the amino-terminal half of NAC1 harbored a potential nuclear localization signal (NLS). Wild type, but not mutants of this region, alone was sufficient to drive the importation of green fluorescent protein (GFP) into the nucleus. Bimax1, a synthetic peptide that blocks the importin α/β pathway, impaired nuclear localization of NAC1 in cells. We also used the binding properties of importin to demonstrate that this region is an NLS. Furthermore, the transcriptional regulator function of NAC1 was dependent on its nuclear localization activity in cells. Taken together, these results show that the region with a bipartite motif constitutes a functional nuclear import sequence in NAC1 that is independent of NAC1 dimer formation. The identification of an NAC1 NLS thus clarifies the mechanism through which NAC1 translocates to the nucleus to regulate the transcription of genes involved in oncogenicity and pluripotency.

  11. Cable Tester Box

    Science.gov (United States)

    Lee, Jason H.

    2011-01-01

    Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.

  12. An enzyme-linked immunosorbent assay for autoantibodies against the nuclear protein Scl-70

    DEFF Research Database (Denmark)

    Geisler, C; Høier-Madsen, M

    1985-01-01

    This paper describes the development of an enzyme-linked immunosorbent assay (ELISA) for the detection and quantitation of autoantibodies against the nuclear protein Scl-70. The isolation of Scl-70 from rat livers and the conditions for the ELISA are described. Compared with the already established...

  13. Sumoylation of Human Translationally Controlled Tumor Protein Is Important for Its Nuclear Transport

    Directory of Open Access Journals (Sweden)

    Gnanasekar Munirathinam

    2012-01-01

    Full Text Available Translationally controlled tumor protein (TCTP lacks nuclear bipartite localization signal sequence; yet TCTP is present abundantly in the nucleus. At present it is not known how TCTP gets transported to the nucleus. Sequence analyses showed that all TCTPs described to date have putative small ubiquitin-like modifier (SUMO motifs. Since SUMO modification plays an important role in the nuclear transport of proteins, we evaluated whether SUMO motifs are important for transport of TCTP into the nucleus. We show that TCTP exists in sumoylated form in cytoplasm and nucleus of mammalian cells. Point mutation of lysine residue in the SUMO motif compromised the ability of TCTP to get sumoylated in vitro. When cells were transfected with FLAG-tagged mutated TCTP, nuclear transport of TCTP was inhibited confirming that sumoylation is critical for the nuclear transport of TCTP. Our previous studies demonstrated that TCTP can function as an antioxidant protein in the nucleus. When we mutated TCTP at the SUMO motif the antioxidant function of TCTP was compromised. Results presented in this study thus show that sumoylation plays an important role in the transport of TCTP into the nucleus where they function as antioxidant protein.

  14. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic

    Science.gov (United States)

    Lovchinsky, I.; Sushkov, A. O.; Urbach, E.; de Leon, N. P.; Choi, S.; De Greve, K.; Evans, R.; Gertner, R.; Bersin, E.; Müller, C.; McGuinness, L.; Jelezko, F.; Walsworth, R. L.; Park, H.; Lukin, M. D.

    2016-02-01

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  15. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    Science.gov (United States)

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  16. Proteomic analysis of nuclear matrix proteins during arsenic trioxide induced apoptosis in leukemia K562 cells

    Institute of Scientific and Technical Information of China (English)

    WANG Zi-hui; YU Ding; CHEN Yan; HAO Jian-zhong

    2005-01-01

    Background Arsenic trioxide (As2O3) has been identified as a very potent anti-acute leukemic agent. However its role in apoptosis needs to be elucidated. As2O3 interferes with the proliferation and survival of tumor cells via a variety of mechanisms. Drug-target interactions at the level of nuclear matrix (NM) may be critical events in the induction of cell death by As2O3. This study dealt with As2O3-target interactions at the level of NM in chronic myelogenous leukemia cell line K562 by proteomics. Methods K562 cells were cultured in MEM and treated with different concentrations of As2O3. The nuclear matrix proteins were analyzed by high-resolution two-dimensional gel electrophoresis and computer-assisted image analysis. Results As2O3 significantly inhibited the growth of chronic myelogenous leukemia cell line K562 at low concentrations. While more than 200 protein spots were shared among the nuclear matrices, about 18 distinct spots in the nuclear matrices were found characteristic for As2O3 treated cells. Conclusions: As2O3 induces apoptosis in K562 cells in a dose and time-dependent manner. Our results demonstrated that for the detection of the onset of apoptosis, the alteration in the composition of nuclear matrix proteins was a more sensitive indicator than nucleosomal DNA fragmentation test. These results indicated that As2O3 might be clinically useful in the treatment of chronic myelogenous leukemia. The changes of nuclear matrix proteins in the treated cells can be used as a useful indicator for this treatment.

  17. FGFR2 protein expression in breast cancer: nuclear localisation and correlation with patient genotype

    Directory of Open Access Journals (Sweden)

    Thompson Alastair M

    2011-03-01

    Full Text Available Abstract Background Single Nucleotide Polymorphisms (SNPs in intron 2 of the Fibroblast Growth Factor Receptor Type 2 (FGFR2 gene, including rs2981582, contribute to multifactorial breast cancer susceptibility. The high risk polymorphism haplotype in the FGFR2 gene has been associated with increased mRNA transcription and altered transcription factor binding but the effect on FGFR2 protein expression is unknown. 40 breast tumours were identified from individuals with known rs2981582 genotype. Tumour sections were stained for FGFR2 protein expression, and scored for nuclear and cytoplasmic staining in tumour and surrounding normal tissue. Findings FGFR2 immunohistochemistry demonstrated variable nuclear staining in normal tissue and tumour tissue, as well as consistent cytoplasmic staining. We did not find an association between nuclear staining for FGFR2 and genotype, and there was no association between FGFR2 staining and estrogen or progestogen receptor status. There was an association between presence of nuclear staining for FGFR2 in normal tissue and presence of nuclear staining in the adjacent tumour (Fishers exact test, p = 0.002. Conclusions Variable nuclear staining for FGFR2 in breast cancer, but an absence of correlation with rs2981582 genotype suggests that the mechanism of action of polymorphisms at the FGFR2 locus may be more complex than a direct effect on mRNA expression levels in the final cancer. The effect may relate to FGFR2 function or localisation during breast development or tumourigenesis. Nuclear localisation of FGFR2 suggests an important additional role for this protein in breast development and breast cancer, in addition to its function as a classical cell surface receptor.

  18. Nuclear actions of insulin-like growth factor binding protein-3.

    Science.gov (United States)

    Baxter, Robert C

    2015-09-10

    In addition to its actions outside the cell, cellular uptake and nuclear import of insulin-like growth factor binding protein-3 (IGFBP-3) has been recognized for almost two decades, but knowledge of its nuclear actions has been slow to emerge. IGFBP-3 has a functional nuclear localization signal and interacts with the nuclear transport protein importin-β. Within the nucleus IGFBP-3 appears to have a role in transcriptional regulation. It can bind to the nuclear receptor, retinoid X receptor-α and several of its dimerization partners, including retinoic acid receptor, vitamin D receptor (VDR), and peroxisome proliferator-activated receptor-γ (PPARγ). These interactions modulate the functions of these receptors, for example inhibiting VDR-dependent transcription in osteoblasts and PPARγ-dependent transcription in adipocytes. Nuclear IGFBP-3 can be detected by immunohistochemistry in cancer and other tissues, and its presence in the nucleus has been shown in many cell culture studies to be necessary for its pro-apoptotic effect, which may also involve interaction with the nuclear receptor Nur77, and export from the nucleus. IGFBP-3 is p53-inducible and in response to DNA damage, forms a complex with the epidermal growth factor receptor (EGFR), translocating to the nucleus to interact with DNA-dependent protein kinase. Inhibition of EGFR kinase activity or downregulation of IGFBP-3 can inhibit DNA double strand-break repair by nonhomologous end joining. IGFBP-3 thus has the ability to influence many cell functions through its interactions with intranuclear pathways, but the importance of these interactions in vivo, and their potential to be targeted for therapeutic benefit, require further investigation. PMID:26074086

  19. GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein

    DEFF Research Database (Denmark)

    Staresincic, Lidija; Walker, Jane; Dirac-Svejstrup, A Barbara;

    2011-01-01

    -(thio)triphosphate (GTP¿S). Moreover, the Npa3 mutant that binds GTP, but cannot hydrolyze it, binds RNAPII even in the absence of added GTP, whereas the mutant that cannot bind GTP is unable to bind the polymerase. Together, our data suggest that Npa3 defines an unconventional pathway for nuclear import of RNAPII, which...... in yeast extracts. Indeed, Npa3 depletion in vivo affects nuclear localization of RNAPII; the polymerase accumulates in the cytoplasm. Npa3 is a member of the GPN-LOOP family of GTPases. Npa3 mutants that either cannot bind GTP or that bind but cannot hydrolyze it are inviable and unable to support nuclear...... transport of RNAPII. Surprisingly, we were unable to detect interactions between Npa3 and proteins in the classical importin a/ß pathway for nuclear import. Interestingly, Npa3-RNAPII binding is significantly increased by the addition of GTP or its slowly hydrolyzable analogue guanosine 5'-3-O...

  20. F-box蛋白COI1稳定性调控机制%Regulation Mechanism of Protein Stability of the F-box Protein COI1 from Tomato and Tobacco

    Institute of Scientific and Technical Information of China (English)

    陈娟; 姚瑞枫; 陈泓宇; 李海鸥; 谢道昕; 闫建斌

    2014-01-01

    Arabidopsis COI1 (coronatine insensitive 1),an F-box protein that physically interacts with ASK1 (Arabidopsis serine/Threonine kinase 1) protein to form SCFCOI1-E3 ligase complex,perceives jasmonate signals and modulates diverse aspects of the jasmonate-regulated plant defense and developmental processes.The COIl homologs from various plant species have recently been identified,however,little is known about the molecular mechanism regulating protein stability of these COI1 homologs.In this study,we demonstrated that the COI1 homologs from vegetable crop Solanum lycopersicum and commercial plant Nicotiana attenuata remain stable via interacting with ASK1 protein,suggesting that assembly of SCFCOI1 complexes contributes to the stabilization of COI1 homologs.Meanwhile,the 26S proteasome inhibitor represses the degradation of COI1 homologs,demonstrating that ubiquitin-proteasome pathway plays a role in degradation of the COI1 homologs.These results suggest that two antagonistic pathways work together to maintain COI1 protein in tomato and tobacco at a suitable abundance for proper biological function.%拟南芥F-box蛋白COI1 (Coronatine insensitive 1)与ASK1(Arabidopsis serine/Threonine kinase 1)蛋白及CUL1(CULLIN1)蛋白等结合形成SCFCOI1泛素连接酶复合体.COI1感知茉莉素信号、进而调控植物一系列的防御反应和生长发育过程.虽然多种作物的COI1同源蛋白已经被相继鉴定,但是其自身蛋白水平的调控机制仍然未知.本文重点研究了蔬菜作物番茄(Solanum lycopersicum)和经济作物烟草(Nicotiana attenuata)中COI1蛋白稳定性的调控机制.结果证明,这两种作物的COI1蛋白通过与ASK1的相互作用而得到稳定,表明形成SCFCOI1复合体可能有助于COI1蛋白的稳定.同时,26S蛋白酶体抑制剂能够明显抑制COI1的降解,说明泛素-蛋白酶体途径参与了其降解过程.这些结果证明在这两个不同物种中,两条互相拮抗的途径共同

  1. Poly(A) binding proteins located at the inner surface of resealed nuclear envelopes.

    Science.gov (United States)

    Prochnow, D; Riedel, N; Agutter, P S; Fasold, H

    1990-04-25

    We have used a photoreactive cross-linking reagent, poly(A/8-N3-A) (a poly(A) of average molecular mass of 100 kDa in which 5-10% of the A residues are replaced by 8-N3-A), to label poly(A) binding proteins of rat liver nuclear envelopes. This reagent was prepared by polymerizing a mixture of ADP and 8-N3-ADP with polynucleotide phosphorylase. The purified poly(A) was labeled in the 5'-position with a 32P group. In nuclear envelopes prepared by a low salt DNase I procedure, the poly(A/8-N3-A) labeled a protein-nucleic acid complex of approximately 270 kDa, which on degradation with RNase U2 or NaOH at pH 10 yielded two polypeptides of approximately 50 and 30 kDa. These photoreaction products were markedly decreased when resealed nuclear envelopes or non-nuclear envelope proteins were irradiated in the presence of poly(A/8-N3-A). The affinity labeling was intensified when resealed vesicles were made leaky by freezing or ultrasonication, suggesting that the poly(A) binding proteins are accessible from the nucleoplasmic but not the cytoplasmic face of the envelope. Moreover binding was specific for poly(A). Alternative reagents, random poly(A/8-N3-A,C,G,U) of about 100 kDa and poly(dA) (molecular mass between 350 and 515 kDa), showed a very low affinity for poly(A) recognition proteins in the low salt DNase I-treated nuclear envelopes; the 270-kDa band was labeled only weakly. The binding site was not protected by poly(A,C,G,U), weakly by poly(dA), and distinctly by poly(A).

  2. Successful Recovery of Nuclear Protein-Coding Genes from Small Insects in Museums Using Illumina Sequencing.

    Science.gov (United States)

    Kanda, Kojun; Pflug, James M; Sproul, John S; Dasenko, Mark A; Maddison, David R

    2015-01-01

    In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles

  3. Samp1, a RanGTP binding transmembrane protein in the inner nuclear membrane.

    Science.gov (United States)

    Vijayaraghavan, Balaje; Jafferali, Mohammed Hakim; Figueroa, Ricardo A; Hallberg, Einar

    2016-07-01

    Samp1 is a transmembrane protein of the inner nuclear membrane (INM), which interacts with the nuclear lamina and the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex in interphase and during mitosis, it localizes to the mitotic spindle. Samp1 was recently found to coprecipitate a protein complex containing Ran, a GTPase with fundamental regulatory functions both in interphase and in mitosis. To investigate the interaction between Samp1 and Ran in further detail, we have designed and expressed recombinant fusion proteins of the Chaetomium thermophilum homolog of Samp1 (Ct.Samp1) and human Ran. Pulldown experiments show that Samp1 binds directly to Ran and that Samp1 binds better to RanGTP compared to RanGDP. Samp1 also preferred RanGTP over RanGDP in living tsBN2 cells. We also show that the Ran binding domain is located between amino acids 75-135 in the nucleoplasmically exposed N-terminal tail of Samp1. This domain is unique for Samp1, without homology in any other proteins in fungi or metazoa. Samp1 is the first known transmembrane protein that binds to Ran and could provide a unique local binding site for RanGTP in the INM. Samp1 overexpression resulted in increased Ran concentrations in the nuclear periphery supporting this idea. PMID:27541860

  4. MitoDrome: a database of Drosophila melanogaster nuclear genes encoding proteins targeted to the mitochondrion

    Science.gov (United States)

    Sardiello, Marco; Licciulli, Flavio; Catalano, Domenico; Attimonelli, Marcella; Caggese, Corrado

    2003-01-01

    Mitochondria are organelles present in the cytoplasm of most eukaryotic cells; although they have their own DNA, the majority of the proteins necessary for a functional mitochondrion are coded by the nuclear DNA and only after transcription and translation they are imported in the mitochondrion as proteins. The primary role of the mitochondrion is electron transport and oxidative phosphorylation. Although it has been studied for a long time, the interest of researchers in mitochondria is still alive thanks to the discovery of mitochondrial role in apoptosis, aging and cancer. Aim of the MitoDrome database is to annotate the Drosophila melanogaster nuclear genes coding for mitochondrial proteins in order to contribute to the functional characterization of nuclear genes coding for mitochondrial proteins and to knowledge of gene diseases related to mitochondrial dysfunctions. Indeed D. melanogaster is one of the most studied organisms and a model for the Human genome. Data are derived from the comparison of Human mitochondrial proteins versus the Drosophila genome, ESTs and cDNA sequence data available in the FlyBase database. Links from the MitoDrome entries to the related homologous entries available in MitoNuC will be soon imple-mented. The MitoDrome database is available at http://bighost.area.ba.cnr.it/BIG/MitoDrome. Data are organised in a flat-file format and can be retrieved using the SRS system. PMID:12520013

  5. Molecular characterization of three PRORP proteins in the moss Physcomitrella patens: nuclear PRORP protein is not essential for moss viability.

    Directory of Open Access Journals (Sweden)

    Chieko Sugita

    Full Text Available RNase P is a ubiquitous endonuclease that removes the 5' leader sequence from pre-tRNAs in all organisms. In Arabidopsis thaliana, RNA-free proteinaceous RNase Ps (PRORPs seem to be enzyme(s for pre-tRNA 5'-end processing in organelles and the nucleus and are thought to have replaced the ribonucleoprotein RNase P variant. However, the evolution and function of plant PRORPs are not fully understood. Here, we identified and characterized three PRORP-like proteins, PpPPR_63, 67, and 104, in the basal land plant, the moss Physcomitrella patens. PpPPR_63 localizes to the nucleus, while PpPPR_67 and PpPPR_104 are found in both the mitochondria and chloroplasts. The three proteins displayed pre-tRNA 5'-end processing activity in vitro. Mutants with knockout (KO of the PpPPR_63 gene displayed growth retardation of protonemal colonies, indicating that, unlike Arabidopsis nuclear RPORPs, the moss nuclear PpPPR_63 is not essential for viability. In the KO mutant, nuclear-encoded tRNAAsp (GUC levels were slightly decreased, whereas most nuclear-encoded tRNA levels were not altered. This indicated that most of the cytosolic mature tRNAs were produced normally without proteinaceous RNase P-like PpPPR_63. Single PpPPR_67 or 104 gene KO mutants displayed different phenotypes of protonemal growth and chloroplast tRNA(Arg (ACG accumulation. However, the levels of all other tRNAs were not altered in the KO mutants. In addition, in vitro RNase P assays showed that PpPPR_67 and PpPPR_104 efficiently cleaved chloroplast pre-tRNA(Arg (CCG and pre-tRNA(Arg (UCU but they cleaved pre-tRNA(Arg (ACG with different efficiency. This suggests that the two proteins have overlapping function but their substrate specificity is not identical.

  6. A nuclear export signal within the structural Gag protein is required for prototype foamy virus replication

    Directory of Open Access Journals (Sweden)

    Coiffic Audrey

    2011-01-01

    Full Text Available Abstract Background The Gag polyproteins play distinct roles during the replication cycle of retroviruses, hijacking many cellular machineries to fulfill them. In the case of the prototype foamy virus (PFV, Gag structural proteins undergo transient nuclear trafficking after their synthesis, returning back to the cytoplasm for capsid assembly and virus egress. The functional role of this nuclear stage as well as the molecular mechanism(s responsible for Gag nuclear export are not understood. Results We have identified a leptomycin B (LMB-sensitive nuclear export sequence (NES within the N-terminus of PFV Gag that is absolutely required for the completion of late stages of virus replication. Point mutations of conserved residues within this motif lead to nuclear redistribution of Gag, preventing subsequent virus egress. We have shown that a NES-defective PFV Gag acts as a dominant negative mutant by sequestrating its wild-type counterpart in the nucleus. Trans-complementation experiments with the heterologous NES of HIV-1 Rev allow the cytoplasmic redistribution of FV Gag, but fail to restore infectivity. Conclusions PFV Gag-Gag interactions are finely tuned in the cytoplasm to regulate their functions, capsid assembly, and virus release. In the nucleus, we have shown Gag-Gag interactions which could be involved in the nuclear export of Gag and viral RNA. We propose that nuclear export of unspliced and partially spliced PFV RNAs relies on two complementary mechanisms, which take place successively during the replication cycle.

  7. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ostlund, Cecilia [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Guan, Tinglu [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Figlewicz, Denise A. [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Hays, Arthur P. [Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Worman, Howard J. [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Gerace, Larry [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Schirmer, Eric C., E-mail: e.schirmer@ed.ac.uk [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR (United Kingdom)

    2009-11-13

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.

  8. The BOXES Methodology Black Box Dynamic Control

    CERN Document Server

    Russell, David W

    2012-01-01

    Robust control mechanisms customarily require knowledge of the system’s describing equations which may be of the high order differential type.  In order to produce these equations, mathematical models can often be derived and correlated with measured dynamic behavior.  There are two flaws in this approach one is the level of inexactness introduced by linearizations and the other when no model is apparent.  Several years ago a new genre of control systems came to light that are much less dependent on differential models such as fuzzy logic and genetic algorithms. Both of these soft computing solutions require quite considerable a priori system knowledge to create a control scheme and sometimes complicated training program before they can be implemented in a real world dynamic system. Michie and Chambers’ BOXES methodology created a black box system that was designed to control a mechanically unstable system with very little a priori system knowledge, linearization or approximation.  All the method need...

  9. Tumor protein 53-induced nuclear protein 1 (TP53INP1 enhances p53 function and represses tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jeyran eShahbazi

    2013-05-01

    Full Text Available Tumor protein 53-induced nuclear protein 1 (TP53INP1 is a stress-induced p53 target gene whose expression is modulated by transcription factors such as p53, p73 and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. When associated with homeodomain-interacting protein kinase-2 (HIPK2, TP53INP1 phosphorylates p53 protein at Serine 46, enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53 target genes such as p21, PIG-3 and MDM2, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis; while TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment.

  10. Using FRET to Measure the Angle at Which a Protein Bends DNA: TBP Binding a TATA Box as a Model System

    Science.gov (United States)

    Kugel, Jennifer F.

    2008-01-01

    An undergraduate biochemistry laboratory experiment that will teach the technique of fluorescence resonance energy transfer (FRET) while analyzing protein-induced DNA bending is described. The experiment uses the protein TATA binding protein (TBP), which is a general transcription factor that recognizes and binds specific DNA sequences known as…

  11. Depth in box spaces.

    Science.gov (United States)

    Pont, Sylvia C; Nefs, Harold T; van Doorn, Andrea J; Wijntjes, Maarten W A; Te Pas, Susan F; de Ridder, Huib; Koenderink, Jan J

    2012-01-01

    Human observers adjust the frontal view of a wireframe box on a computer screen so as to look equally deep and wide, so that in the intended setting the box looks like a cube. Perspective cues are limited to the size-distance effect, since all angles are fixed. Both the size on the screen, and the viewing distance from the observer to the screen were varied. All observers prefer a template view of a cube over a veridical rendering, independent of picture size and viewing distance. If the rendering shows greater or lesser foreshortening than the template, the box appears like a long corridor or a shallow slab, that is, like a 'deformed' cube. Thus observers ignore 'veridicality'. This does not fit an 'inverse optics' model. We discuss a model of 'vision as optical user interface'.

  12. Nuclear localization of human DNA mismatch repair protein exonuclease 1 (hEXO1)

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Nielsen, Finn Cilius; Vinther, Lena;

    2007-01-01

    localization signals (NLSs) in hEXO1. Using fluorescent fusion proteins, we show that the sequence 418KRPR421, which exhibit strong homology to other monopartite NLS sequences, is responsible for correct nuclear localization of hEXO1. This NLS sequence is located in a region that is also required for hEXO1......Human exonuclease 1 (hEXO1) is implicated in DNA mismatch repair (MMR) and mutations in hEXO1 may be associated with hereditary nonpolyposis colorectal cancer (HNPCC). Since the subcellular localization of MMR proteins is essential for proper MMR function, we characterized possible nuclear...... interaction with hMLH1 and we show that defective nuclear localization of hEXO1 mutant proteins could be rescued by hMLH1 or hMSH2. Both hEXO1 and hMLH1 form complexes with the nuclear import factors importin beta/alpha1,3,7 whereas hMSH2 specifically recognizes importin beta/alpha3. Taken together, we infer...

  13. Comparison of Nuclear Accumulation of p53 Protein with Mutations in the p53 Gene of Human Breast Cancer Tissues

    Institute of Scientific and Technical Information of China (English)

    王萱仪; 查小明; 武正炎; 范萍

    2001-01-01

    Objective The objective was to compare nuclear accumulation of p53 protein with mutations in the p53 gene on the tissues of human breast cancer. Methods Fifty-four invasive ductal carcinomas of breast were analyzed by the method of polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) silver stain and strep-avidin-biotin-peroxidase complex (SABC) immunohistochemistry. Results A statistically significant association between the presence of p53 gene mutation and nuclear accumulation of p53 protein was found (P<0.01). 22 tumors that demonstrated p53 gene mutations showed nuclear accumulation of p53 protein, while only 9 (28%) showed nuclear accumulation of p53 protein in 32 tumors without p53 gene mutations. Both p53 mutation protein and p53 gene mutations were prevalent in steroid and progesterone receptors negative tumors (P<0.05). A statistically significant association was found between the nuclear accumulation of p53 protein and lymph node invasion (P<0.05), and between p53 gene mutations and lymph node invasion (P<0.05). p53 abnormalities might be associated with an aggressive phenotype in breast cancer. Conclusion The immunohistochemical detection of nuclear p53 protein accumulation is highly associated with p53 gene mutations in breast cancer tissues, and that this method is useful for rapid screening of p53 abnormalities. However, in order to avoid false positive reaction, the p53 gene mutations should be determined in cases slightly positive for p53 nuclear protein.

  14. Opto-Box

    CERN Document Server

    Bertsche, David; The ATLAS collaboration; Welch, Steven; Smith, Dale Shane; Che, Siinn; Gan, K.K.; Boyd, George Russell Jr

    2015-01-01

    The opto-box is a custom mini-crate for housing optical modules, which process and transfer optoelectronic data. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35x10x8 cm^3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits (ASICs), were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain.

  15. A sugar beet chlorophyll a/b binding protein promoter void of G-box like elements confers strong and leaf specific reporter gene expression in transgenic sugar beet

    Directory of Open Access Journals (Sweden)

    Kloos Dorothee U

    2004-12-01

    Full Text Available Abstract Background Modification of leaf traits in sugar beet requires a strong leaf specific promoter. With such a promoter, expression in taproots can be avoided which may otherwise take away available energy resources for sugar accumulation. Results Suppression Subtractive Hybridization (SSH was utilized to generate an enriched and equalized cDNA library for leaf expressed genes from sugar beet. Fourteen cDNA fragments corresponding to thirteen different genes were isolated. Northern blot analysis indicates the desired tissue specificity of these genes. The promoters for two chlorophyll a/b binding protein genes (Bvcab11 and Bvcab12 were isolated, linked to reporter genes, and transformed into sugar beet using promoter reporter gene fusions. Transient and transgenic analysis indicate that both promoters direct leaf specific gene expression. A bioinformatic analysis revealed that the Bvcab11 promoter is void of G-box like regulatory elements with a palindromic ACGT core sequence. The data indicate that the presence of a G-box element is not a prerequisite for leaf specific and light induced gene expression in sugar beet. Conclusions This work shows that SSH can be successfully employed for the identification and subsequent isolation of tissue specific sugar beet promoters. These promoters are shown to drive strong leaf specific gene expression in transgenic sugar beet. The application of these promoters for expressing resistance improving genes against foliar diseases is discussed.

  16. Nuclear localization of DMP1 proteins suggests a role in intracellular signaling

    Energy Technology Data Exchange (ETDEWEB)

    Siyam, Arwa [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States); Department of Endodontology, Kornberg School of Dentistry, Temple University, 3223 North Broad Street, Philadelphia, PA 19140-5007 (United States); Wang, Suzhen; Qin, Chunlin; Mues, Gabriele [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States); Stevens, Roy [Department of Endodontology, Kornberg School of Dentistry, Temple University, 3223 North Broad Street, Philadelphia, PA 19140-5007 (United States); D' Souza, Rena N. [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States); Lu, Yongbo, E-mail: ylu@bcd.tamhsc.edu [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Nuclear localization of DMP1 in various cell lines. Black-Right-Pointing-Pointer Non-synchronized cells show either nuclear or cytoplasmic localization of DMP1. Black-Right-Pointing-Pointer Nuclear DMP1 is restricted to the nucleoplasm but absent in the nucleolus. -- Abstract: Dentin matrix protein 1 (DMP1) is highly expressed in odontoblasts and osteoblasts/osteocytes and plays an essential role in tooth and bone mineralization and phosphate homeostasis. It is debatable whether DMP1, in addition to its function in the extracellular matrix, can enter the nucleus and function as a transcription factor. To better understand its function, we examined the nuclear localization of endogenous and exogenous DMP1 in C3H10T1/2 mesenchymal cells, MC3T3-E1 preosteoblast cells and 17IIA11 odontoblast-like cells. RT-PCR analyses showed the expression of endogenous Dmp1 in all three cell lines, while Western-blot analysis detected a major DMP1 protein band corresponding to the 57 kDa C-terminal fragment generated by proteolytic processing of the secreted full-length DMP1. Immunofluorescent staining demonstrated that non-synchronized cells presented two subpopulations with either nuclear or cytoplasmic localization of endogenous DMP1. In addition, cells transfected with a construct expressing HA-tagged full-length DMP1 also showed either nuclear or cytoplasmic localization of the exogenous DMP1 when examined with an antibody against the HA tag. Furthermore, nuclear DMP1 was restricted to the nucleoplasm but was absent in the nucleolus. In conclusion, these findings suggest that, apart from its role as a constituent of dentin and bone matrix, DMP1 might play a regulatory role in the nucleus.

  17. Nuclear localization of DMP1 proteins suggests a role in intracellular signaling

    International Nuclear Information System (INIS)

    Highlights: ► Nuclear localization of DMP1 in various cell lines. ► Non-synchronized cells show either nuclear or cytoplasmic localization of DMP1. ► Nuclear DMP1 is restricted to the nucleoplasm but absent in the nucleolus. -- Abstract: Dentin matrix protein 1 (DMP1) is highly expressed in odontoblasts and osteoblasts/osteocytes and plays an essential role in tooth and bone mineralization and phosphate homeostasis. It is debatable whether DMP1, in addition to its function in the extracellular matrix, can enter the nucleus and function as a transcription factor. To better understand its function, we examined the nuclear localization of endogenous and exogenous DMP1 in C3H10T1/2 mesenchymal cells, MC3T3-E1 preosteoblast cells and 17IIA11 odontoblast-like cells. RT-PCR analyses showed the expression of endogenous Dmp1 in all three cell lines, while Western-blot analysis detected a major DMP1 protein band corresponding to the 57 kDa C-terminal fragment generated by proteolytic processing of the secreted full-length DMP1. Immunofluorescent staining demonstrated that non-synchronized cells presented two subpopulations with either nuclear or cytoplasmic localization of endogenous DMP1. In addition, cells transfected with a construct expressing HA-tagged full-length DMP1 also showed either nuclear or cytoplasmic localization of the exogenous DMP1 when examined with an antibody against the HA tag. Furthermore, nuclear DMP1 was restricted to the nucleoplasm but was absent in the nucleolus. In conclusion, these findings suggest that, apart from its role as a constituent of dentin and bone matrix, DMP1 might play a regulatory role in the nucleus.

  18. Dictyostelium calcium-binding protein 4a interacts with nucleomorphin, a BRCT-domain protein that regulates nuclear number.

    Science.gov (United States)

    Myre, Michael A; O'Day, Danton H

    2004-09-17

    Nucleomorphin from Dictyostelium discoideum is a nuclear calmodulin-binding protein that is a member of the BRCT-domain containing cell cycle checkpoint proteins. Two differentially expressed isoforms, NumA and NumB, share an extensive acidic domain (DEED) that when deleted produces highly multinucleated cells. We performed a yeast two-hybrid screen of a Dictyostelium cDNA library using NumA as bait. Here we show that nucleomorphin interacts with calcium-binding protein 4a (CBP4a) in a Ca(2+)-dependent manner. Further deletion analysis suggests this interaction requires residues found within the DEED domain. NumA and CBP4a mRNAs are expressed at the same stages of development. CBP4a belongs to a large family of Dictyostelium CBPs, for which no cellular or developmental functions had previously been determined. Since the interaction of CBP4a with nucleomorphin requires the DEED domain, this suggests that CBP4a may respond to Ca(2+)-signalling through modulating factors that might function in concert to regulate nuclear number. PMID:15325281

  19. Nuclear matrix associated protein PML: an arsenic trioxide apoptosis therapeutic target protein in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    于鼎; 王子慧; 朱立元; 邱殷庆

    2003-01-01

    Objective To investigate arsenic trioxide (As2O3)-induced apoptosis and the effects on cell nuclear matrix related protein promyelocytic leukaemia (PML). Methods HepG2 cells were cultured in MEM medium and treated with 0.5, 2, 5 and 10 μmol/L As2O3 for either 24 h or 96 h at each concentration. In situ terminal deoxynucleotidyl transferase (TdT) labeling (TUNEL) and DNA ladders were used to detect apoptosis. Confocal microscopy and Western blotting were used to observe the expression of PML. Results The growth rates of HepG2 cells were slower in the As2O3 treated than the untreated control group. DNA ladder and TUNEL positive apoptotic cells could be detected in As2O3 treated groups. The expression of PML decreased in HepG2 cells with 2 μmol/L As2O3 treatment. Confocal images demonstrated that the expression of PML protein in HepG2 cell nuclei decreased after treatment with 2 μmol/L As2O3, and micropunctates characteristic of PML protein in HepG2 cell nuclei disappeared after treatment with 5 μmol/L As2O3.Conclusions Our results show that arsenic trioxide can significantly inhibit the growth of HepG2 cells in vitro. As2O3 induces apoptosis in HepG2 tumor cells in a time and concentration dependent manner. As2O3 may degrade the PML protein in HepG2 cell nuclei. The decreased expression of PML in As2O3 treated tumor cells is most likely to be caused by apoptosis. Nuclear matrix associated protein PML could be the target of As2O3 therapy.

  20. The human nuclear poly(a-binding protein promotes RNA hyperadenylation and decay.

    Directory of Open Access Journals (Sweden)

    Stefan M Bresson

    Full Text Available Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A-binding protein (PABPN1, the poly(A polymerases (PAPs, PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression.

  1. CHANGES OF NUCLEAR MATRIX PROTEIN AND ITS RELATIONSHIP WITH c-erbB-2 IN HUMAN COLON ADENOCARCINOMA

    Institute of Scientific and Technical Information of China (English)

    WANG Ya-lan; GAO Jing; LI Yuan-yuan

    2005-01-01

    Objective: Nuclear matrix protein is tissue, cell-type specific, and tumor-relative. It plays an important role in the regulation of intranuclear processes. Some researches also showed that a c-erbB-2 promoter-specific DNA-binding nuclear matrix protein is present only in malignant human breast tissues and induces mitogenesis and cell surface expression of the c-erbB-2 protein in resting NIH/3T3 cells. But it is not clear that how it in colon adenocarcinomas. Methods:Two-dimensional gel electrophoretic method was used for NMP identification and immunohistochemistry was used for c-erbB-2 detection in 12 cases of colon adenocarcinomas and matched adjacent normal colon tissues. Results: 5 different nuclear matrix proteins (named C1-C5) were identified in 12 colon adenocarcinoma specimens, but not in the matched adjacent normal colon tissues; 3 nuclear matrix proteins (named N1-N3) were identified in all 12 matched adjacent normal colon tissues, but not in colon adenocarcinoma specimens. A nuclear matrix protein (named N4) was detected in all of 9moderated-well differentiated adenocarcinomas and all 12 matched adjacent normal colon tissues, but not in 3poor-differentiated adenocarcinomas. All of the 10 colon adenocarcinomas which had the nuclear matrix protein C4 were c-erbB-2 expression positive. Conclusion: The data suggest that there are specific nuclear matrix proteins in colon adenocarcinomas and its subtypes, which maybe valuable to serve as markers of colon adenocarcinomas in future. Nuclear matrix protein C4 probably is a c-erbB-2 promotor-specific nuclear matrix protein in colon adenocarcinomas, and may induce the expression of c-erbB-2.

  2. Structure and biochemical function of a prototypical Arabidopsis U-box domain

    DEFF Research Database (Denmark)

    Andersen, Pernille; Kragelund, Birthe B; Olsen, Addie N;

    2004-01-01

    U-box proteins, as well as other proteins involved in regulated protein degradation, are apparently over-represented in Arabidopsis compared with other model eukaryotes. The Arabidopsis protein AtPUB14 contains a typical U-box domain followed by an Armadillo repeat region, a domain organization...

  3. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: Evidence for a role in protein stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, Natalja; Heilbronn, Regine; Weger, Stefan, E-mail: stefan.weger@charite.de

    2015-08-28

    Based on its specific interaction with cullin3 mediated by an N-terminal BTB/POZ homologous domain, KCTD5 has been proposed to function as substrate adapter for cullin3 based ubiquitin E3 ligases. In the present study we tried to validate this hypothesis through identification and characterization of additional KCTD5 interaction partners. For the replication protein MCM7, the zinc finger protein ZNF711 and FAM193B, a yet poorly characterized cytoplasmic protein, we could demonstrate specific interaction with KCTD5 both in yeast two-hybrid and co-precipitation studies in mammalian cells. Whereas trimeric complexes of cullin3 and KCTD5 with the respective KCTD5 binding partner were formed, KCTD5/cullin3 induced polyubiquitylation and/or proteasome-dependent degradation of these binding partners could not be demonstrated. On the contrary, KCTD5 or Cullin3 overexpression increased ZNF711 protein stability. - Highlights: • KCTD5 nuclear translocation depends upon M phase and protein oligomerization. • Identification of MCM7, ZNF711 and FAM193 as KCTD5 interaction partners. • Formation of trimeric complexes of KCTD5/cullin3 with MCM7, ZNF711 and FAM193B. • KCTD5 is not involved in polyubiquitylation of MCM7 replication factor. • The KCTD5/cullin3 complex stabilizes ZNF711 transcription factor.

  4. Hydrophobic, Porous Battery Boxes

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  5. Cereal Box Totems.

    Science.gov (United States)

    Jones, AnnMarie

    2002-01-01

    Presents a multicultural project used with fourth-grade students in which they created a three-dimensional totem pole using leftover cereal boxes. Discusses in detail how to create the totem pole. Explains that students learned about Northwest American Indians in class. (CMK)

  6. Protein Kinase C-δ mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    International Nuclear Information System (INIS)

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta (ΔPKC-δ). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the ΔPKC-δ, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that ΔPKC-δ mediated the down-regulation of hnRNP K protein during apoptosis: PKC-δ inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-δ-deficient apoptotic KG1a cells; conditional induction of ΔPKC-δ in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of ΔPKC-δ. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-δ down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  7. MitoNuc: a database of nuclear genes coding for mitochondrial proteins. Update 2002

    Science.gov (United States)

    Attimonelli, Marcella; Catalano, Domenico; Gissi, Carmela; Grillo, Giorgio; Licciulli, Flavio; Liuni, Sabino; Santamaria, Monica; Pesole, Graziano; Saccone, Cecilia

    2002-01-01

    Mitochondria, besides their central role in energy metabolism, have recently been found to be involved in a number of basic processes of cell life and to contribute to the pathogenesis of many degenerative diseases. All functions of mitochondria depend on the interaction of nuclear and organelle genomes. Mitochondrial genomes have been extensively sequenced and analysed and data have been collected in several specialised databases. In order to collect information on nuclear coded mitochondrial proteins we developed MitoNuc, a database containing detailed information on sequenced nuclear genes coding for mitochondrial proteins in Metazoa. The MitoNuc database can be retrieved through SRS and is available via the web site http://bighost.area.ba.cnr.it/mitochondriome where other mitochondrial databases developed by our group, the complete list of the sequenced mitochondrial genomes, links to other mitochondrial sites and related information, are available. The MitoAln database, related to MitoNuc in the previous release, reporting the multiple alignments of the relevant homologous protein coding regions, is no longer supported in the present release. In order to keep the links among entries in MitoNuc from homologous proteins, a new field in the database has been defined: the cluster identifier, an alpha numeric code used to identify each cluster of homologous proteins. A comment field derived from the corresponding SWISS-PROT entry has been introduced; this reports clinical data related to dysfunction of the protein. The logic scheme of MitoNuc database has been implemented in the ORACLE DBMS. This will allow the end-users to retrieve data through a friendly interface that will be soon implemented. PMID:11752284

  8. Identification of a functional nuclear export signal in the green fluorescent protein asFP499

    International Nuclear Information System (INIS)

    The green fluorescent protein (GFP) asFP499 from Anemonia sulcata is a distant homologue of the GFP from Aequorea victoria. We cloned the asFP499 gene into a mammalian expression vector and showed that this protein was expressed in the human lymphoblast cell line Ramos RA1 and in the embryonic kidney 293T cell line (HEK 293T). In HEK 293T cells, asFP499 was localized mainly in the cytoplasm, suggesting that the protein was excluded from the nucleus. We identified 194LRMEKLNI201 as a candidate nuclear export signal in asFP499 and mutated the isoleucine at position 201 to an alanine. Unlike the wildtype form, the mutant protein was distributed throughout the cytoplasm and nucleus. This is First report of a GFP that contains a functional NES

  9. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yisong [University of California, Department of Applied Science (United States); Brecht, Eric [Montana State University, Department of Chemistry and Biochemistry (United States); Aznavour, Kristen [University of Southern California, Department of Chemistry (United States); Nix, Jay C. [Lawrence Berkeley National Laboratory, Physical Biosciences Division (United States); Xiao, Yuming; Wang, Hongxin [University of California, Department of Applied Science (United States); George, Simon J. [Lawrence Berkeley National Laboratory, Physical Biosciences Division (United States); Bau, Robert [University of Southern California, Department of Chemistry (United States); Keable, Stephen; Peters, John W. [Montana State University, Department of Chemistry and Biochemistry (United States); Adams, Michael W. W. [University of Georgia, Department of Biochemistry and Molecular Biology (United States); Jenney, Francis E. Jr. [Georgia Campus, Philadelphia College of Osteopathic Medicine (United States); Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong [Argonne National Laboratory, Advanced Photon Source (United States); Yoda, Yoshitaka [JASRI (Japan); Cramer, Stephen P., E-mail: spcramer@lbl.gov [University of California, Department of Applied Science (United States)

    2013-12-15

    We have applied {sup 57}Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Iron-sulfur protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the crystal structure.

  10. A human Polycomb isoform lacking the Pc box does not participate to PRC1 complexes but forms protein assemblies and represses transcription

    DEFF Research Database (Denmark)

    Völkel, Pamela; Le Faou, Perrine; Vandamme, Julien;

    2012-01-01

    site for the PRC1 protein complex. Drosophila core PRC1 is composed of four subunits: Polycomb (Pc), Posterior sex combs (Psc), Polyhomeotic (Ph) and Sex combs extra (Sce). Each of these proteins has multiple orthologs in vertebrates, thus generating an enormous scope for potential combinatorial...

  11. Abnormal expressions of proliferating cell nuclear antigen and P27 protein in brain glioma

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Both proliferating cell nuclear antigen and P27 protein are important factors to regulate cell cycle. While, the combination of them can provide exactly objective markers to evaluate prognosis of patients with brain glioma needs to be further studied based on pathological level.OBJECTIVE: To observe the expressions of proliferating cell nuclear antigen and P27 protein in both injured and normal brain glioma tissues and analyze the effect of them on onset and development of brain glioma.DESIGN: Case contrast observation.SETTING: Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University.PARTICIPANTS: A total of 63 patients with brain glioma were selected from Department of Neurosurgery,the Second Affiliated Hospital of Xi'an Jiaotong University from July 1996 to June 2000. There were 38 males and 25 females and their ages ranged from 23 to 71 years. Based on pathological classification and grading standards of brain glioma, patients were divided into grade Ⅰ - tⅡ (n =30) and grade Ⅲ - Ⅳ (n =33). All cases received one operation but no radiotherapy and chemiotherapy before operation. Sample tissues were collected from tumor parenchyma. Non-neoplastic brain tissues were collected from another 12 non-tumor subjects who received craniocerebral trauma infra-decompression and regarded as the control group. There were 10 males and 2 females and their ages ranged from 16 to 54 years. The experiment had got confirmed consent from local ethic committee and the collection was provided confirmed consent from patients and their relatives. All samples were restained with HE staining so as to diagnose as the brain glioma.While, all patients with brain glioma received radiotherapy after operation and their survival periods were followed up.METHODS: Primary lesion wax of brain glioma was cut into serial sections and stained with S-P immunohistochemical staining. Brown substance which was observed in tumor nucleus was regarded as the

  12. Nuclear localization of phosphorylated c-Myc protein in human tumor cells.

    Directory of Open Access Journals (Sweden)

    C. Soldani

    2010-05-01

    Full Text Available Using immunocytochemical techniques at light and electron microscopy, we analysed the distribution of phosphorylated c-Myc in actively proliferating human HeLa cells. The distribution pattern of c-Myc was also compared with those of other ribonucleoprotein (RNP-containing components (PANA, hnRNP-core proteins, fibrillarin or RNP-associated nuclear proteins (SC-35 splicing factor. Our results provide the first evidence that phosphorylated c-Myc accumulates in the nucleus of tumor cells, where it colocalizes with fibrillarin, both in the nucleolus and in extranucleolar structures.

  13. LaRbp38: A Leishmania amazonensis protein that binds nuclear and kinetoplast DNAs

    International Nuclear Information System (INIS)

    Leishmania amazonensis causes a wide spectrum of leishmaniasis. There are no vaccines or adequate treatment for leishmaniasis, therefore there is considerable interest in the identification of new targets for anti-leishmania drugs. The central role of telomere-binding proteins in cell maintenance makes these proteins potential targets for new drugs. In this work, we used a combination of purification chromatographies to screen L. amazonensis proteins for molecules capable of binding double-stranded telomeric DNA. This approach resulted in the purification of a 38 kDa polypeptide that was identified by mass spectrometry as Rbp38, a trypanosomatid protein previously shown to stabilize mitochondrial RNA and to associate with nuclear and kinetoplast DNAs. Western blotting and supershift assays confirmed the identity of the protein as LaRbp38. Competition and chromatin immunoprecipitation assays confirmed that LaRbp38 interacted with kinetoplast and nuclear DNAs in vivo and suggested that LaRbp38 may have dual cellular localization and more than one function

  14. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus.

    Science.gov (United States)

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin; Sun, Ya-Ni; Gao, Ji-Ming; Xie, Zhi-Jing; Wang, Yu; Zhu, Yan-Li; Jiang, Shi-Jin

    2013-02-01

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome. PMID:23174505

  15. The Box H/ACA snoRNP Assembly Factor Shq1p is a Chaperone Protein Homologous to Hsp90 Cochaperones that Binds to the Cbf5p Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Godin, Katherine S.; Walbott, Helene; Leulliot, Nicolas; van Tilbeurgh, Herman; Varani, Gabriele

    2009-05-06

    Box H/ACA small nucleolar (sno) ribonucleoproteins (RNPs) are responsible for the formation of pseudouridine in a variety of RNAs and are essential for ribosome biogenesis, modification of spliceosomal RNAs, and telomerase stability. A mature snoRNP has been reconstituted in vitro and is composed of a single RNA and four proteins. However, snoRNP biogenesis in vivo requires multiple factors to coordinate a complex and poorly understood assembly and maturation process. Among the factors required for snoRNP biogenesis in yeast is Shq1p, an essential protein necessary for stable expression of box H/ACA snoRNAs. We have found that Shq1p consists of two independent domains that contain casein kinase 1 phosphorylation sites. We also demonstrate that Shq1p binds the pseudourydilating enzyme Cbf5p through the C-terminal domain, in synergy with the N-terminal domain. The NMR solution structure of the N-terminal domain has striking homology to the ‘Chord and Sgt1’ domain of known Hsp90 cochaperones, yet Shq1p does not interact with the yeast Hsp90 homologue in vitro. Surprisingly, Shq1p has stand-alone chaperone activity in vitro. This activity is harbored by the C-terminal domain, but it is increased by the presence of the N-terminal domain. These results provide the first evidence of a specific biochemical activity for Shq1p and a direct link to the H/ACA snoRNP.

  16. DMPD: Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-signalingcascades during intracellular Toxoplasma gondii infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15361242 Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-sig...mmunol Rev. 2004 Oct;201:191-205. (.png) (.svg) (.html) (.csml) Show Manipulation of mitogen-activated protein kinase/nuclear factor... gondii infection. PubmedID 15361242 Title Manipulation of mitogen-activated protein kinase/nuclear factor-k

  17. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA

    OpenAIRE

    Orzalli, Megan H.; Conwell, Sara E.; Berrios, Christian; DeCaprio, James A.; Knipe, David M.

    2013-01-01

    Cells have evolved mechanisms to silence foreign DNA to prevent the expression of foreign genes within them. In mammalian cells, this involves the assembly of heterochromatin on foreign DNAs such as viral or transfected DNA. Herpesviruses have evolved strategies to counteract these host mechanisms to express their own genes. Herein we demonstrate that the nuclear DNA sensor IFN-inducible protein 16 (IFI16) is involved in the host silencing response to foreign DNA. IFI16 promotes the assembly ...

  18. A helminth cestode parasite express an estrogen-binding protein resembling a classic nuclear estrogen receptor.

    Science.gov (United States)

    Ibarra-Coronado, Elizabeth Guadalupe; Escobedo, Galileo; Nava-Castro, Karen; Jesús Ramses, Chávez-Rios; Hernández-Bello, Romel; García-Varela, Martìn; Ambrosio, Javier R; Reynoso-Ducoing, Olivia; Fonseca-Liñán, Rocío; Ortega-Pierres, Guadalupe; Pavón, Lenin; Hernández, María Eugenia; Morales-Montor, Jorge

    2011-01-01

    The role of an estrogen-binding protein similar to a known mammalian estrogen receptor (ER) is described in the estradiol-dependent reproduction of the helminth parasite Taenia crassiceps. Previous results have shown that 17-β-estradiol induces a concentration-dependent increase in bud number of in vitro cultured cysticerci. This effect is inhibited when parasites are also incubated in the presence of an ER binding-inhibitor (tamoxifen). RT-PCR assays using specific oligonucleotides of the most conserved ER sequences, showed expression by the parasite of a mRNA band of molecular weight and sequence corresponding to an ER. Western blot assays revealed reactivity with a 66 kDa protein corresponding to the parasite ER protein. Tamoxifen treatment strongly reduced the production of the T. crassiceps ER-like protein. Antibody specificity was demonstrated by immunoprecipitating the total parasite protein extract with anti-ER-antibodies. Cross-contamination by host cells was discarded by flow cytometry analysis. ER was specifically detected on cells expressing paramyosin, a specific helminth cell marker. Parasite cells expressing the ER-like protein were located by confocal microscopy in the subtegumental tissue exclusively. Analysis of the ER-like protein by bidimensional electrophoresis and immunoblot identified a specific protein of molecular weight and isoelectric point similar to a vertebrates ER. Sequencing of the spot produced a small fragment of protein similar to the mammalian nuclear ER. Together these results show that T. crassiceps expresses an ER-like protein which activates the budding of T. crassiceps cysticerci in vitro. To the best of our knowledge, this is the first report of an ER-like protein in parasites. This finding may have strong implications in the fields of host-parasite co-evolution as well as in sex-associated susceptibility to this infection, and could be an important target for the design of new drugs.

  19. The nuclear protein Waharan is required for endosomal-lysosomal trafficking in Drosophila.

    Science.gov (United States)

    Lone, Mohiddin; Kungl, Theresa; Koper, Andre; Bottenberg, Wolfgang; Kammerer, Richard; Klein, Melanie; Sweeney, Sean T; Auburn, Richard P; O'Kane, Cahir J; Prokop, Andreas

    2010-07-15

    Here we report Drosophila Waharan (Wah), a 170-kD predominantly nuclear protein with two potential human homologues, as a newly identified regulator of endosomal trafficking. Wah is required for neuromuscular-junction development and muscle integrity. In muscles, knockdown of Wah caused novel accumulations of tightly packed electron-dense tubules, which we termed 'sausage bodies'. Our data suggest that sausage bodies coincide with sites at which ubiquitylated proteins and a number of endosomal and lysosomal markers co-accumulate. Furthermore, loss of Wah function generated loss of the acidic LysoTracker compartment. Together with data demonstrating that Wah acts earlier in the trafficking pathway than the Escrt-III component Drosophila Shrb (snf7 in Schizosaccharomyces pombe), our results indicate that Wah is essential for endocytic trafficking at the late endosome. Highly unexpected phenotypes result from Wah knockdown, in that the distribution of ubiquitylated cargos and endolysosomal morphologies are affected despite Wah being a predominant nuclear protein. This finding suggests the existence of a relationship between nuclear functions and endolysosomal trafficking. Future studies of Wah function will give us insights into this interesting phenomenon.

  20. Nuclear Targeting of Methyl-Recycling Enzymes in Arabidopsis thaliana Is Mediated by Specific Protein Interactions

    Institute of Scientific and Technical Information of China (English)

    Sanghyun Lee; Andrew C. Doxey; Brendan J. McConkey; Barbara A. Moffatt

    2012-01-01

    Numerous transmethylation reactions are required for normal plant growth and development.S-adenosylhomocysteine hydrolase (SAHH) and adenosine kinase (ADK) act coordinately to recycle the by-product of these reactions,S-adenosylhomocysteine (SAH) that would otherwise competitively inhibit methyltransferase (MT) activities.Here,we report on investigations to understand how the SAH produced in the nucleus is metabolized by SAHH and ADK.Localization analyses using green fluorescent fusion proteins demonstrated that both enzymes are capable of localizing to the cytoplasm and the nucleus,although no obvious nuclear localization signal was found in their sequences.Deletion analysis revealed that a 41-amino-acid segment of SAHH (Gly1 50-Lys190) is required for nuclear targeting of this enzyme.This segment is surface exposed,shows unique sequence conservation patterns in plant SAHHs,and possesses additional features of protein-protein interaction motifs.ADK and SAHH interact in Arabidopsis via this segment and also interact with an mRNA cap MT.We propose that the targeting of this complex is directed by the nuclear localization signal of the MT; other MTs may similarly target SAHH/ADK to other subcellular compartments to ensure uninterrupted transmethylation.

  1. Differentiation inducing factor-1 (DIF-1) induces gene and protein expression of the Dictyostelium nuclear calmodulin-binding protein nucleomorphin.

    Science.gov (United States)

    O'Day, Danton H; Poloz, Yekaterina; Myre, Michael A

    2009-02-01

    The nucleomorphin gene numA1 from Dictyostelium codes for a multi-domain, calmodulin binding protein that regulates nuclear number. To gain insight into the regulation of numA, we assessed the effects of the stalk cell differentiation inducing factor-1 (DIF-1), an extracellular signalling molecule, on the expression of numA1 RNA and protein. For comparison, the extracellular signalling molecules cAMP (mediates chemotaxis, prestalk and prespore differentiation) and ammonia (NH(3)/NH(4)(+); antagonizes DIF) were also studied. Starvation, which is a signal for multicellular development, results in a greater than 80% decrease in numA1 mRNA expression within 4 h. Treatment with ammonium chloride led to a greater than 90% inhibition of numA1 RNA expression within 2 h. In contrast, the addition of DIF-1 completely blocked the decrease in numA1 gene expression caused by starvation. Treatment of vegetative cells with cAMP led to decreases in numA1 RNA expression that were equivalent to those seen with starvation. Western blotting after various morphogen treatments showed that the maintenance of vegetative levels of numA1 RNA by DIF-1 in starved cells was reflected in significantly increased numA1 protein levels. Treatment with cAMP and/or ammonia led to decreased protein expression and each of these morphogens suppressed the stimulatory effects of DIF-1. Protein expression levels of CBP4a, a calcium-dependent binding partner of numA1, were regulated in the same manner as numA1 suggesting this potential co-regulation may be related to their functional relationship. NumA1 is the first calmodulin binding protein shown to be regulated by developmental morphogens in Dictyostelium being upregulated by DIF-1 and down-regulated by cAMP and ammonia. PMID:19000924

  2. Microglial Amyloid-β1-40 Phagocytosis Dysfunction Is Caused by High-Mobility Group Box Protein-1: Implications for the Pathological Progression of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Kazuyuki Takata

    2012-01-01

    Full Text Available In Alzheimer disease (AD patient brains, the accumulation of amyloid-β (Aβ peptides is associated with activated microglia. Aβ is derived from the amyloid precursor protein; two major forms of Aβ, that is, Aβ1-40 (Aβ40 and Aβ1-42 (Aβ42, exist. We previously reported that rat microglia phagocytose Aβ42, and high mobility group box protein 1 (HMGB1, a chromosomal protein, inhibits phagocytosis. In the present study, we investigated the effects of exogenous HMGB1 on rat microglial Aβ40 phagocytosis. In the presence of exogenous HMGB1, Aβ40 markedly increased in microglial cytoplasm, and the reduction of extracellular Aβ40 was inhibited. During this period, HMGB1 was colocalized with Aβ40 in the cytoplasm. Furthermore, exogenous HMGB1 inhibited the degradation of Aβ40 induced by the rat microglial cytosolic fraction. Thus, extracellular HMGB1 may internalize with Aβ40 in the microglial cytoplasm and inhibit Aβ40 degradation by microglia. This may subsequently delay Aβ40 clearance. We further confirmed that in AD brains, the parts of senile plaques surrounded by activated microglia are composed of Aβ40, and extracellular HMGB1 is deposited on these plaques. Taken together, microglial Aβ phagocytosis dysfunction may be caused by HMGB1 that accumulates extracellularly on Aβ plaques, and it may be critically involved in the pathological progression of AD.

  3. The nuclear architectural protein HMGA1a triggers receptor-mediated endocytosis.

    Science.gov (United States)

    Wu, Wuwei; Wan, Wei; Li, Alexander D Q

    2009-11-01

    High mobility group proteins A (HMGA), nuclear architectural factors, locate in the cell nuclei and mostly execute gene-regulation function. However, our results reveal that a HMGA member (HMGA1a) has a unique plasma membrane receptor; this receptor specifically binds to HMGA-decorated species, effectively mediates endocytosis, and internalizes extracellular HMGA-functionalized cargoes. Indeed, dyes or nanoparticles labeled with HMGA1a protein readily enter Hela cells. Using a stratagem chemical cross-linker, we covalently bonded the HMGA receptor to the HMGA1a-GFP fusion protein, thus capturing the plasma membrane receptor. Subsequent Western blots and SDS-PAGE gel revealed that the HMGA receptor is a 26-kDa protein. Confocal live-cell microscopic imaging was used to monitor the whole endocytic process, in which the internalized HMGA1a-decorated species are transported by motor proteins on microtubules and eventually arrive at the late endosomes/lysosomes. Cell viability assays also suggested that extracellular HMGA1a protein directly influences the survival ability of Hela cells in a dose-dependent manner, implying versatility of HMGA1a protein and its potent role to suppress cancer cell survivability and to regulate growth. PMID:19739099

  4. Kinesin-like proteins are involved in postmitotic nuclear migration of the unicellular green alga Micrasterias denticulata.

    Science.gov (United States)

    Holzinger, Andreas; Lütz-Meindl, Ursula

    2002-01-01

    The unicellular green alga Micrasterias denticulata performs a two-directional postmitotic nuclear migration during development, a passive migration into the growing semicell, and a microtubule mediated backward migration towards the cell centre. The present study provides first evidence for force generation by motor proteins of the kinesin family in this process. The new kinesin specific inhibitor adociasulfate-2 causes abnormal nuclear displacement at 18 microM. AMP-PNP, a non hydrolyseable ATP analogue or the general ATPase inhibitors calyculin A and sodium orthovanadate also disturb nuclear migration. In addition kinesin-like proteins are detected by means of immunoblotting using antibodies against brain kinesin, plant derived antibodies to kinesin-like proteins and a calmodulin binding kinesin-like protein. Immunoelectron microscopy suggests a correlation of conventional kinesin-like proteins, but not of the calmodulin binding kinesin-like protein to the microtubule apparatus associated with the migrating nucleus. PMID:12175672

  5. Delivering Single-Walled Carbon Nanotubes to the Nucleus Using Engineered Nuclear Protein Domains.

    Science.gov (United States)

    Boyer, Patrick D; Ganesh, Sairaam; Qin, Zhao; Holt, Brian D; Buehler, Markus J; Islam, Mohammad F; Dahl, Kris Noel

    2016-02-10

    Single-walled carbon nanotubes (SWCNTs) have great potential for cell-based therapies due to their unique intrinsic optical and physical characteristics. Consequently, broad classes of dispersants have been identified that individually suspend SWCNTs in water and cell media in addition to reducing nanotube toxicity to cells. Unambiguous control and verification of the localization and distribution of SWCNTs within cells, particularly to the nucleus, is needed to advance subcellular technologies utilizing nanotubes. Here we report delivery of SWCNTs to the nucleus by noncovalently attaching the tail domain of the nuclear protein lamin B1 (LB1), which we engineer from the full-length LMNB1 cDNA. More than half of this low molecular weight globular protein is intrinsically disordered but has an immunoglobulin-fold composed of a central hydrophobic core, which is highly suitable for associating with SWCNTs, stably suspending SWCNTs in water and cell media. In addition, LB1 has an exposed nuclear localization sequence to promote active nuclear import of SWCNTs. These SWCNTs-LB1 dispersions in water and cell media display near-infrared (NIR) absorption spectra with sharp van Hove peaks and an NIR fluorescence spectra, suggesting that LB1 individually disperses nanotubes. The dispersing capability of SWCNTs by LB1 is similar to that by albumin proteins. The SWCNTs-LB1 dispersions with concentrations ≥150 μg/mL (≥30 μg/mL) in water (cell media) remain stable for ≥75 days (≥3 days) at 4 °C (37 °C). Further, molecular dynamics modeling of association of LB1 with SWCNTs reveal that the exposure of the nuclear localization sequence is independent of LB1 binding conformation. Measurements from confocal Raman spectroscopy and microscopy, NIR fluorescence imaging of SWCNTs, and fluorescence lifetime imaging microscopy show that millions of these SWCNTs-LB1 complexes enter HeLa cells, localize to the nucleus of cells, and interact with DNA. We postulate that the

  6. Delivering Single-Walled Carbon Nanotubes to the Nucleus Using Engineered Nuclear Protein Domains.

    Science.gov (United States)

    Boyer, Patrick D; Ganesh, Sairaam; Qin, Zhao; Holt, Brian D; Buehler, Markus J; Islam, Mohammad F; Dahl, Kris Noel

    2016-02-10

    Single-walled carbon nanotubes (SWCNTs) have great potential for cell-based therapies due to their unique intrinsic optical and physical characteristics. Consequently, broad classes of dispersants have been identified that individually suspend SWCNTs in water and cell media in addition to reducing nanotube toxicity to cells. Unambiguous control and verification of the localization and distribution of SWCNTs within cells, particularly to the nucleus, is needed to advance subcellular technologies utilizing nanotubes. Here we report delivery of SWCNTs to the nucleus by noncovalently attaching the tail domain of the nuclear protein lamin B1 (LB1), which we engineer from the full-length LMNB1 cDNA. More than half of this low molecular weight globular protein is intrinsically disordered but has an immunoglobulin-fold composed of a central hydrophobic core, which is highly suitable for associating with SWCNTs, stably suspending SWCNTs in water and cell media. In addition, LB1 has an exposed nuclear localization sequence to promote active nuclear import of SWCNTs. These SWCNTs-LB1 dispersions in water and cell media display near-infrared (NIR) absorption spectra with sharp van Hove peaks and an NIR fluorescence spectra, suggesting that LB1 individually disperses nanotubes. The dispersing capability of SWCNTs by LB1 is similar to that by albumin proteins. The SWCNTs-LB1 dispersions with concentrations ≥150 μg/mL (≥30 μg/mL) in water (cell media) remain stable for ≥75 days (≥3 days) at 4 °C (37 °C). Further, molecular dynamics modeling of association of LB1 with SWCNTs reveal that the exposure of the nuclear localization sequence is independent of LB1 binding conformation. Measurements from confocal Raman spectroscopy and microscopy, NIR fluorescence imaging of SWCNTs, and fluorescence lifetime imaging microscopy show that millions of these SWCNTs-LB1 complexes enter HeLa cells, localize to the nucleus of cells, and interact with DNA. We postulate that the

  7. All 17 S-locus F-box proteins of the S2 - and S3 -haplotypes of Petunia inflata are assembled into similar SCF complexes with a specific function in self-incompatibility.

    Science.gov (United States)

    Li, Shu; Williams, Justin S; Sun, Penglin; Kao, Teh-Hui

    2016-09-01

    The collaborative non-self-recognition model for S-RNase-based self-incompatibility predicts that multiple S-locus F-box proteins (SLFs) produced by pollen of a given S-haplotype collectively mediate ubiquitination and degradation of all non-self S-RNases, but not self S-RNases, in the pollen tube, thereby resulting in cross-compatible pollination but self-incompatible pollination. We had previously used pollen extracts containing GFP-fused S2 -SLF1 (SLF1 with an S2 -haplotype) of Petunia inflata for co-immunoprecipitation (Co-IP) and mass spectrometry (MS), and identified PiCUL1-P (a pollen-specific Cullin1), PiSSK1 (a pollen-specific Skp1-like protein) and PiRBX1 (a conventional Rbx1) as components of the SCF(S) (2-) (SLF) (1) complex. Using pollen extracts containing PiSSK1:FLAG:GFP for Co-IP/MS, we identified two additional SLFs (SLF4 and SLF13) that were assembled into SCF(SLF) complexes. As 17 SLF genes (SLF1 to SLF17) have been identified in S2 and S3 pollen, here we examined whether all 17 SLFs are assembled into similar complexes and, if so, whether these complexes are unique to SLFs. We modified the previous Co-IP/MS procedure, including the addition of style extracts from four different S-genotypes to pollen extracts containing PiSSK1:FLAG:GFP, to perform four separate experiments. The results taken together show that all 17 SLFs and an SLF-like protein, SLFLike1 (encoded by an S-locus-linked gene), co-immunoprecipitated with PiSSK1:FLAG:GFP. Moreover, of the 179 other F-box proteins predicted by S2 and S3 pollen transcriptomes, only a pair with 94.9% identity and another pair with 99.7% identity co-immunoprecipitated with PiSSK1:FLAG:GFP. These results suggest that SCF(SLF) complexes have evolved specifically to function in self-incompatibility.

  8. High-mobility group box-1 in sterile inflammation.

    Science.gov (United States)

    Tsung, A; Tohme, S; Billiar, T R

    2014-11-01

    High-mobility group box 1 (HMGB1) was originally defined as a ubiquitous nuclear protein, but it was later determined that the protein has different roles both inside and outside of cells. Nuclear HMGB1 regulates chromatin structure and gene transcription, whereas cytosolic HMGB1 is involved in inflammasome activation and autophagy. Extracellular HMGB1 has drawn attention because it can bind to related cell signalling transduction receptors, such as the receptor for advanced glycation end products, Toll-like receptor (TLR)2, TLR4 and TLR9. It also participates in the development and progression of a variety of diseases. HMGB1 is actively secreted by stimulation of the innate immune system, and it is passively released by ischaemia or cell injury. This review focuses on the important role of HMGB1 in the pathogenesis of acute and chronic sterile inflammatory conditions. Strategies that target HMGB1 have been shown to significantly decrease inflammation in several disease models of sterile inflammation, and this may represent a promising clinical approach for treatment of certain conditions associated with sterile inflammation. PMID:24935761

  9. Characterization of a family of novel cysteine- serine-rich nuclear proteins (CSRNP.

    Directory of Open Access Journals (Sweden)

    Sébastien Gingras

    Full Text Available Gene array analysis has been widely used to identify genes induced during T cell activation. Our studies identified an immediate early gene that is strongly induced in response to IL-2 in mouse T cells which we named cysteine- serine-rich nuclear protein-1 (CSRNP-1. The human ortholog was previously identified as an AXIN1 induced gene (AXUD1. The protein does not contain sequence defined domains or motifs annotated in public databases, however the gene is a member of a family of three mammalian genes that share conserved regions, including cysteine- and serine-rich regions and a basic domain, they encode nuclear proteins, possess transcriptional activation domain and bind the sequence AGAGTG. Consequently we propose the nomenclature of CSRNP-1, -2 and -3 for the family. To elucidate the physiological functions of CSRNP-1, -2 and -3, we generated mice deficient for each of these genes by homologous recombination in embryonic stem cells. Although the CSRNP proteins have the hallmark of transcription factors and CSRNP-1 expression is highly induced by IL-2, deletion of the individual genes had no obvious consequences on normal mouse development, hematopoiesis or T cell functions. However, combined deficiencies cause partial neonatal lethality suggesting that the genes have redundant functions.

  10. Imaging of the DNA damage-induced dynamics of nuclear proteins via nonlinear photoperturbation.

    Science.gov (United States)

    Tomas, Martin; Blumhardt, Philipp; Deutzmann, Anja; Schwarz, Tobias; Kromm, Dimitri; Leitenstorfer, Alfred; Ferrando-May, Elisa

    2013-08-01

    Understanding the cellular response to DNA strand breaks is crucial to decipher the mechanisms maintaining the integrity of our genome. We present a novel method to visualize how the mobility of nuclear proteins changes in response to localized DNA damage. DNA strand breaks are induced via nonlinear excitation with femtosecond laser pulses at λ = 1050 nm in a 3D-confined subnuclear volume. After a time delay of choice, protein mobility within this volume is analysed by two-photon photoactivation of PA-GFP fusion proteins at λ = 775 nm. By changing the position of the photoactivation spot with respect to the zone of lesion the influence of chromatin structure and of the distance from damage are investigated. As first applications we demonstrate a locally confined, time-dependent mobility increase of histone H1.2, and a progressive retardation of the DNA repair factor XRCC1 at damaged sites. This assay can be used to map the response of nuclear proteins to DNA damage in time and space. PMID:23420601

  11. Production and Characterization of Monoclonal Antibodies against Human Nuclear Protein FAM76B.

    Directory of Open Access Journals (Sweden)

    Xiaojing Zheng

    Full Text Available Human FAM76B (hFAM76B is a 39 kDa protein that contains homopolymeric histidine tracts, a targeting signal for nuclear speckles. FAM76B is highly conserved among different species, suggesting that it may play an important physiological role in normal cellular functions. However, a lack of appropriate tools has hampered study of this potentially important protein. To facilitate research into the biological function(s of FAM76B, murine monoclonal antibodies (MAbs against hFAM76B were generated by using purified, prokaryotically expressed hFAM76B protein. Six strains of MAbs specific for hFAM76B were obtained and characterized. The specificity of MAbs was validated by using FAM76B-/- HEK 293 cell line. Double immunofluorescence followed by laser confocal microscopy confirmed the nuclear speckle localization of hFAM76B, and the specific domains recognized by different MAbs were further elucidated by Western blot. Due to the high conservation of protein sequences between mouse and human FAM76B, MAbs against hFAM76B were shown to react with mouse FAM76B (mFAM76B specifically. Lastly, FAM76B was found to be expressed in the normal tissues of most human organs, though to different extents. The MAbs produced in this study should provide a useful tool for investigating the biological function(s of FAM76B.

  12. Protein Sub-Nuclear Localization Based on Effective Fusion Representations and Dimension Reduction Algorithm LDA.

    Science.gov (United States)

    Wang, Shunfang; Liu, Shuhui

    2015-12-19

    An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC), pseudo-amino acid composition (PseAAC) and position specific scoring matrix (PSSM), are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA) is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one.

  13. Protein Sub-Nuclear Localization Based on Effective Fusion Representations and Dimension Reduction Algorithm LDA

    Directory of Open Access Journals (Sweden)

    Shunfang Wang

    2015-12-01

    Full Text Available An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC, pseudo-amino acid composition (PseAAC and position specific scoring matrix (PSSM, are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one.

  14. Opto-Box

    CERN Document Server

    Bertsche, David; The ATLAS collaboration

    2015-01-01

    The opto-box is a custom mini-crate for housing optical modules, which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35x10x8 cm$^{3}$. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits (ASICs), were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain.

  15. The Box Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...... description of this momentum flow. The Box Method is a practical method for the description of an Air Terminal Device which will save grid points and ensure the right level of the momentum flow....

  16. Identification of potential nuclear reprogramming and differentiation factors by a novel selection method for cloning chromatin-binding proteins

    Institute of Scientific and Technical Information of China (English)

    LiuWang; AihuaZheng; LingYi; ChongrenXu; MingxiaoDing; HongkuiDeng

    2005-01-01

    Nuclear reprogramming is critical for animal cloning and stem cell creation through nuclear transfer, which requires extensive remodeling of chromosomal architecture involving dramatic changes in chromatin-binding proteins. To understand the mechanism of nuclear reprogramming, it is critical to identify chromatin-binding factors specify the reprogramming process. In this report, we have developed a high-throughput selection method, based on T7 phage display and chromatin immunoprecipitation, to isolate chromatin-binding factors expressed in mouse embryonic stem cells using primary mouse embryonic fibroblast chromatin. Seven chromatin-binding proteins have been isolated by this method. We have also isolated several chromatin-binding proteins involved in hepatocyte differentiation. Our method provides a powerful tool to rapidly and selectively identify chromatin-binding proteins. The method can be used to study epigenetic modification of chromatin during nuclear reprogramming, cell differentiation, and transdifferentiation.

  17. The Electronic Battle Box

    Science.gov (United States)

    Gouin, Denis; Turcotte, Guy; Lebel, Eric; Gilbert, Annie

    2000-08-01

    The Electronic Battle Box is an integrated suite of planning and decision-aid tools specially designed to facilitate Canadian Armed Force Officers during their training and during their tasks of preparing and conducting military operations. It is the result of a collaborative effort between the Defence Research Establishment Valcartier, the Directorate of Army Doctrine (DAD), the Directorate of Land Requirements (DLR), the G4 staff of 1Cdn Div HQ and CGI Information and Management Consultants Inc. Distributed on CD-ROM, the Electronic Battle Box contains efficient and user-friendly tools that significantly reduce the planning time for military operations and ensure staff officers a better focus on significant tasks. Among the tools are an OrBat Browser and an Equipment Browser allowing to view and edit military organizations, a Task Browser providing facilities to prepare plans using Gantt charts, a Logistic Planner allowing to estimate supply requirements applying complex calculations, and Road, Air and Rail Movement Planners. EBB also provides staff officers with a large set of doctrinal documents in an electronic format. This paper provides an overview of the various tools of the Electronic Battle Box.

  18. Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex.

    Science.gov (United States)

    Vovk, Andrei; Gu, Chad; Opferman, Michael G; Kapinos, Larisa E; Lim, Roderick Yh; Coalson, Rob D; Jasnow, David; Zilman, Anton

    2016-01-01

    Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function. PMID:27198189

  19. Changes of Nuclear Matrix Proteins Following the Differentiation of Human Osteosarcoma MG-63 Cells

    Institute of Scientific and Technical Information of China (English)

    Chun-Hong Zhao; Qi-Fu Li; Yan Zhao; Jing-Wen Niu; Zhi-Xing Li; Jin-An Chen

    2006-01-01

    Human osteosarcoma MG-63 cells were induced into differentiation by 5 mmol/L hexamethylene bisacetamide (HMBA). Their nuclear matrix proteins (NMPs) were selectively extracted and subjected to two-dimensional gel electrophoresis analysis.The results of protein patterns were analyzed by Melanie software. The spots of differentially expressed NMPs were excised and subjected to in situ digestion with trypsin. The maps of peptide mass fingerprinting were obtained by MALDI-TOFMS analysis, and were submitted for NCBI database searches by Mascot tool.There were twelve spots changed remarkably during the differentiation induced by HMBA, nine of which were identified. The roles of the regulated proteins during the MG-63 differentiation were analyzed. This study suggests that the induced differentiation of cancer cells is accompanied by the changes of NMPs, and confirms the presence of some specific NMPs related to the cancer cell proliferation and differentiation. The changed NMPs are potential markers for cancer diagnosis or targets for cancer therapy.

  20. Insights into the quality of DnaA boxes and their cooperativity

    DEFF Research Database (Denmark)

    Hansen, Flemming G.; Christensen, Bjarke Bak; Nielsen, Christina Bang;

    2006-01-01

    Plasmids carrying the mioC promoter region with its two DnaA boxes are as efficient in titration of DnaA protein as plasmids carrying a replicationinactivated oriC region with its five DnaA boxes. The two DnaA boxes upstream of the mioC promoter were mutated in various ways to study the cooperati......Plasmids carrying the mioC promoter region with its two DnaA boxes are as efficient in titration of DnaA protein as plasmids carrying a replicationinactivated oriC region with its five DnaA boxes. The two DnaA boxes upstream of the mioC promoter were mutated in various ways to study...... the cooperativity between the DnaA boxes, and to study in vivo the in vitrodefined 9mer DnaA box consensus sequence TTA/TTNCACA). The quality and cooperativity of the DnaA oxes were determined in two complementary ways: as titration of DnaA protein leading to derepression of the dnaA promoter, and as repression...... of the mioC promoter caused by the DnaA protein binding to the DnaA boxes. Titration of DnaA protein correlated with repression of the mioC promoter. The level of titration and repression with the normal promoter-proximal box (TTTTCCACA) depends strongly on the presence and the quality of a DnaA box...

  1. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    Energy Technology Data Exchange (ETDEWEB)

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi; Kameshita, Isamu; Sueyoshi, Noriyuki, E-mail: sueyoshi@ag.kagawa-u.ac.jp

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with a Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.

  2. Agrobacterium rhizogenes GALLS protein contains domains for ATP binding, nuclear localization, and type IV secretion.

    Science.gov (United States)

    Hodges, Larry D; Vergunst, Annette C; Neal-McKinney, Jason; den Dulk-Ras, Amke; Moyer, Deborah M; Hooykaas, Paul J J; Ream, Walt

    2006-12-01

    Agrobacterium tumefaciens and Agrobacterium rhizogenes are closely related plant pathogens that cause different diseases, crown gall and hairy root. Both diseases result from transfer, integration, and expression of plasmid-encoded bacterial genes located on the transferred DNA (T-DNA) in the plant genome. Bacterial virulence (Vir) proteins necessary for infection are also translocated into plant cells. Transfer of single-stranded DNA (ssDNA) and Vir proteins requires a type IV secretion system, a protein complex spanning the bacterial envelope. A. tumefaciens translocates the ssDNA-binding protein VirE2 into plant cells, where it binds single-stranded T-DNA and helps target it to the nucleus. Although some strains of A. rhizogenes lack VirE2, they are pathogenic and transfer T-DNA efficiently. Instead, these bacteria express the GALLS protein, which is essential for their virulence. The GALLS protein can complement an A. tumefaciens virE2 mutant for tumor formation, indicating that GALLS can substitute for VirE2. Unlike VirE2, GALLS contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. Both GALLS and VirE2 contain nuclear localization sequences and a C-terminal type IV secretion signal. Here we show that mutations in any of these domains abolished the ability of GALLS to substitute for VirE2. PMID:17012398

  3. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.

    Science.gov (United States)

    Lakkaraju, Sirish Kaushik; Yu, Wenbo; Raman, E Prabhu; Hershfeld, Alena V; Fang, Lei; Deshpande, Deepak A; MacKerell, Alexander D

    2015-03-23

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents.

  4. Mapping of nuclear import signal and importin {alpha}3 binding regions of 52K protein of bovine adenovirus-3

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, Carolyn P.; Ayalew, Lisanework E. [Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3 Canada (Canada); Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5E3 S7N 5B4 Canada (Canada); Tikoo, Suresh K., E-mail: suresh.tik@usask.ca [Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3 Canada (Canada); Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5E3 S7N 5B4 Canada (Canada); School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada (Canada)

    2012-10-10

    The L1 region of bovine adenovirus (BAdV)-3 encodes a non-structural protein designated 52K. Anti-52K serum detected a protein of 40 kDa, which localized to the nucleus but not to the nucleolus in BAdV-3-infected or transfected cells. Analysis of mutant 52K proteins suggested that three basic residues ({sup 105}RKR{sup 107}) of the identified domain (amino acids {sup 102}GMPRKRVLT{sup 110}) are essential for nuclear localization of 52K. The nuclear import of a GST-52K fusion protein utilizes the classical importin {alpha}/{beta}-dependent nuclear transport pathway. The 52K protein is preferentially bound to the cellular nuclear import receptor importin {alpha}3. Although deletion of amino acid 102-110 is sufficient to abrogate the nuclear localization of 52K, amino acid 90-133 are required for interaction with importin-{alpha}3 and localizing a cytoplasmic protein to the nucleus. These results suggest that 52K contains a bipartite NLS, which preferentially utilize an importin {alpha}3 nuclear import receptor-mediated pathway to transport 52K to the nucleus.

  5. Construction of Yeast One-Hybrid Library for Screening of G-box Binding Proteins%筛选G-box结合蛋白的酵母单杂交文库的构建

    Institute of Scientific and Technical Information of China (English)

    杨鹏程; 周波; 李玉花

    2012-01-01

    目的:筛选花青素合成中的关键基因查尔酮合成酶基因CHS启动子中G-box的结合蛋白,从而找到调节CHS表达的转录因子.方法:采用Matchmaker Gold Yeast One-Hybrid Library Screening System,将CHS启动子G-box序列串联后整合入酵母染色体,构建诱饵菌株;采用SMART技术合成芜菁幼苗下胚轴cDNA,将该cDNA与pGA DT7-Rec表达载体共同转化诱饵菌株,通过同源重组在酵母细胞内同步进行cDNA文库的构建和筛选;用酵母菌落PCR法获得阳性克隆中的cDNA插入片段,测序后在NCBI网站进行Blast分析.结果:共筛选了2.52×106个酵母克隆,得到94个阳性克隆,菌落PCR获得了长度为0.4~2.0 kb的cDNA插入片段,并通过Blast推测了其编码蛋白.结论:实验结果证明酵母单杂交文库构建成功,初步筛选获得了G-box结合蛋白的候选蛋白,为研究CHS的表达调控奠定了基础.%Objective: In order to screen binding proteins of G-box, an important element in chalcone synthase (CHS) promoter region, and find transcriptional regulators of CHS gene. Methods: Matchmaker Gold Yeast One-Hybrid Library Screening System was employed in this study. Bait yeast strain was constructed by synthesizing oligonucleotides containing three tandem copies of G-box core sequences and integrating it into the genome of yeast. The cDNA for hypocotyls of turnip(Brassica rapa L. subsp. rapa Tsuda) was synthesized via SMART technology and co-transformed into bait yeast strain with pGADT7-Rec vector, one-hybrid cDNA library was simultaneously constructed and screened directly in yeast as a result of in vivo plasmid recombination. cDNA inserts in positive clones was amplified by yeast colony PCR and analyzed through NCBI Blast after sequencing. Results: Based on the experiments, we screened 2.52×106 yeast clones and got 94 positive clones. Colony PCR amplification products were 0.4~2.0 kb in length and proteins encoded by them were inferred by NCBI Blast analysis

  6. Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation

    International Nuclear Information System (INIS)

    X-ray radiotherapy activates tumor antigen-specific T-cell responses, and increases in the serum levels of high mobility group box 1 (HMGB1) induced by X-ray irradiation play a pivotal role in activating anti-tumor immunity. Here, we examined whether carbon-ion beams, as well as X-rays, can induce HMGB1 release from human cancer cell lines. The study examined five human cancer cell lines: TE2, KYSE70, A549, NCI-H460 and WiDr. The proportion of cells surviving X- or carbon-ion beam irradiation was assessed in a clonogenic assay. The D10, the dose at which 10% of cells survive, was calculated using a linear–quadratic model. HMGB1 levels in the culture supernatants were assessed by an ELISA. The D10 dose for X-rays in TE2, KYSE70, A549, NCI-H460 and WiDr cells was 2.1, 6.7, 8.0, 4.8 and 7.1 Gy, respectively, whereas that for carbon-ion beams was 0.9, 2.5, 2.7, 1.8 and 3.5 Gy, respectively. X-rays and carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of A549, NCI-H460 and WiDr cells at 72 h post-irradiation with a D10 dose. Furthermore, irradiation with X-rays or carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of all five cell lines at 96 h post-irradiation. There was no significant difference in the amount of HMGB1 induced by X-rays and carbon-ion beams at any time-point (except at 96 h for NCI-H460 cells); thus we conclude that comparable levels of HMGB1 were detected after irradiation with iso-survival doses of X-rays and carbon-ion beams. (author)

  7. Virus-Induced Chaperone-Enriched (VICE domains function as nuclear protein quality control centers during HSV-1 infection.

    Directory of Open Access Journals (Sweden)

    Christine M Livingston

    2009-10-01

    Full Text Available Virus-Induced Chaperone-Enriched (VICE domains form adjacent to nuclear viral replication compartments (RC during the early stages of HSV-1 infection. Between 2 and 3 hours post infection at a MOI of 10, host protein quality control machinery such as molecular chaperones (e.g. Hsc70, the 20S proteasome and ubiquitin are reorganized from a diffuse nuclear distribution pattern to sequestration in VICE domains. The observation that VICE domains contain putative misfolded proteins suggests that they may be similar to nuclear inclusion bodies that form under conditions in which the protein quality control machinery is overwhelmed by the presence of misfolded proteins. The detection of Hsc70 in VICE domains, but not in nuclear inclusion bodies, indicates that Hsc70 is specifically reorganized by HSV-1 infection. We hypothesize that HSV-1 infection induces the formation of nuclear protein quality control centers to remodel or degrade aberrant nuclear proteins that would otherwise interfere with productive infection. Detection of proteolytic activity in VICE domains suggests that substrates may be degraded by the 20S proteasome in VICE domains. FRAP analysis reveals that GFP-Hsc70 is dynamically associated with VICE domains, suggesting a role for Hsc70 in scanning the infected nucleus for misfolded proteins. During 42 degrees C heat shock, Hsc70 is redistributed from VICE domains into RC perhaps to remodel viral replication and regulatory proteins that have become insoluble in these compartments. The experiments presented in this paper suggest that VICE domains are nuclear protein quality control centers that are modified by HSV-1 to promote productive infection.

  8. Cdc20 mediates D-box-dependent degradation of Sp100

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ran; Li, Ke-min; Zhou, Cai-hong; Xue, Jing-lun [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai (China); Ji, Chao-neng, E-mail: Chnji@fudan.edu.cn [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai (China); Chen, Jin-zhong, E-mail: kingbellchen@fudan.edu.cn [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai (China)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Cdc20 is a co-activator of APC/C complex. Black-Right-Pointing-Pointer Cdc20 recruits Sp100 and mediates its degradation. Black-Right-Pointing-Pointer The D-box of Sp100 is required for Cdc20-mediated degradation. Black-Right-Pointing-Pointer Sp100 expresses consistently at both the mRNA and protein levels in cell cycle. -- Abstract: Cdc20 is a co-activator of the anaphase-promoting complex/cyclosome (APC/C complex), which recruits substrates at particular phases of the cell cycle and mediates their degradation. Sp100 is a PML-NB scaffold protein, which localizes to nuclear particles during interphase and disperses from them during mitosis, participates in viral resistance, transcriptional regulation, and apoptosis. However, its metabolism during the cell cycle has not yet been fully characterized. We found a putative D-box in Sp100 using the Eukaryotic Linear Motif (ELM) predictor database. The putative D-box of Sp100 was verified by mutational analysis. Overexpression of Cdc20 resulted in decreased levels of both endogenous Sp100 protein and overexpressed Sp100 mRNA in HEK 293 cells. Only an overexpressed D-box deletion mutant of Sp100 accumulated in HEK293 cells that also overexpressed Cdc20. Cdc20 knockdown by cdc20 specific siRNA resulted in increased Sp100 protein levels in cells. Furthermore, we discovered that the Cdc20 mediated degradation of Sp100 is diminished by the proteasome inhibitor MG132, which suggests that the ubiquitination pathway is involved in this process. However, unlike the other Cdc20 substrates, which display oscillating protein levels, the level of Sp100 protein remains constant throughout the cell cycle. Additionally, both overexpression and knockdown of endogenous Sp100 had no effect on the cell cycle. Our results suggested that sp100 is a novel substrate of Cdc20 and it is degraded by the ubiquitination pathway. The intact D-box of Sp100 was necessary for this process. These findings expand

  9. A Nucleoporin Docks Protein Phosphatase 1 to Direct Meiotic Chromosome Segregation and Nuclear Assembly.

    Science.gov (United States)

    Hattersley, Neil; Cheerambathur, Dhanya; Moyle, Mark; Stefanutti, Marine; Richardson, Amelia; Lee, Kian-Yong; Dumont, Julien; Oegema, Karen; Desai, Arshad

    2016-09-12

    During M-phase entry in metazoans with open mitosis, the concerted action of mitotic kinases disassembles nuclei and promotes assembly of kinetochores-the primary microtubule attachment sites on chromosomes. At M-phase exit, these major changes in cellular architecture must be reversed. Here, we show that the conserved kinetochore-localized nucleoporin MEL-28/ELYS docks the catalytic subunit of protein phosphatase 1 (PP1c) to direct kinetochore disassembly-dependent chromosome segregation during oocyte meiosis I and nuclear assembly during the transition from M phase to interphase. During oocyte meiosis I, MEL-28-PP1c disassembles kinetochores in a timely manner to promote elongation of the acentrosomal spindles that segregate homologous chromosomes. During nuclear assembly, MEL-28 recruits PP1c to the periphery of decondensed chromatin, where it directs formation of a functional nuclear compartment. Thus, a pool of phosphatase activity associated with a kinetochore-localized nucleoporin contributes to two key events that occur during M-phase exit in metazoans: kinetochore disassembly and nuclear reassembly. PMID:27623381

  10. Nuclear overexpression of metastasis-associated protein 1 correlates significantly with poor survival in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Li Wen-Fei

    2012-04-01

    Full Text Available Abstract Background Metastasis-associated protein 1 (MTA1 has been associated with poor prognosis in several malignant carcinomas. The purpose of this study was to investigate the expression and prognostic value of MTA1 in nasopharyngeal carcinoma (NPC. Methods MTA1 expression was assessed using immunohistochemistry in paraffin-embedded tumor specimens from 208 untreated NPC patients. Cox regression analysis was used to calculate the hazard ratio (HR, 95% confidence interval (CI and identify independent prognostic factors, and recursive partitioning analysis was used to create a decision tree. Results Nuclear overexpression of MTA1 was observed in 48.6% (101/208 of the NPC tissues. Nuclear overexpression of MTA1 correlated positively with N classification (P = 0.02, clinical stage (P = 0.04, distant metastasis (P P = 0.01. Additionally, nuclear overexpression of MTA1 correlated significantly with poorer distant metastasis-free survival (DMFS; P P P = 0.02 and poorer OS (HR, 1.98; 95% CI, 1.09–3.59; P = 0.03. Using recursive partitioning analysis, the NPC patients could be classified with a low, intermediate or high risk of distant metastasis and death, on the basis of clinical stage, age and MTA1 expression. Conclusion The results of this study suggest that nuclear overexpression of MTA1 correlates significantly with poorer DMFS and poorer OS in NPC. MTA1 has potential as a novel prognostic biomarker in NPC.

  11. Nuclear Envelope Protein SUN2 Promotes Cyclophilin-A-Dependent Steps of HIV Replication

    Directory of Open Access Journals (Sweden)

    Xavier Lahaye

    2016-04-01

    Full Text Available During the early phase of replication, HIV reverse transcribes its RNA and crosses the nuclear envelope while escaping host antiviral defenses. The host factor Cyclophilin A (CypA is essential for these steps and binds the HIV capsid; however, the mechanism underlying this effect remains elusive. Here, we identify related capsid mutants in HIV-1, HIV-2, and SIVmac that are restricted by CypA. This antiviral restriction of mutated viruses is conserved across species and prevents nuclear import of the viral cDNA. Importantly, the inner nuclear envelope protein SUN2 is required for the antiviral activity of CypA. We show that wild-type HIV exploits SUN2 in primary CD4+ T cells as an essential host factor that is required for the positive effects of CypA on reverse transcription and infection. Altogether, these results establish essential CypA-dependent functions of SUN2 in HIV infection at the nuclear envelope.

  12. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    International Nuclear Information System (INIS)

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function

  13. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Lalime, Erin N.; Pekosz, Andrew, E-mail: apekosz@jhsph.edu

    2014-06-15

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.

  14. Nuclear trafficking of the human cytomegalovirus pp71 (ppUL82) tegument protein

    International Nuclear Information System (INIS)

    The human cytomegalovirus tegument protein pp71 localizes to the nucleus immediately upon infection, and functions to initiate viral gene expression. Analysis of a series of random insertion mutations revealed that sequences within the mid region (MR) of pp71 are important for localization to the nucleus. Fusion of MR sequences with eGFP revealed that amino acids 94 to 300 were sufficient to target proteins to the nucleus. Random substitution mutagenesis within this domain resulted in two double substitution mutants, pp71P203T/T223M and pp71T228M/L275Q, with a predominantly cytoplasmic localization. Disruption of nuclear targeting resulted in relocalization of the fusion proteins to a distinct perinuclear region. Using tandem mass spectrometry, we determined that threonine 223 can be phosphorylated. Mutation of this residue to a phosphomimetic amino acid resulted in abrogation of nuclear targeting. These results strongly suggest that the intracellular trafficking of pp71 is regulated by phosphorylation

  15. HIV-1 uncoating: connection to nuclear entry and regulation by host proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, Zandrea, E-mail: zaa4@pitt.edu [Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261 (United States); Aiken, Christopher [Department of Pathology, Microbiology and Immunology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)

    2014-04-15

    The RNA genome of human immunodeficiency virus type 1 (HIV-1) is enclosed by a capsid shell that dissociates within the cell in a multistep process known as uncoating, which influences completion of reverse transcription of the viral genome. Double-stranded viral DNA is imported into the nucleus for integration into the host genome, a hallmark of retroviral infection. Reverse transcription, nuclear entry, and integration are coordinated by a capsid uncoating process that is regulated by cellular proteins. Although uncoating is not well understood, recent studies have revealed insights into the process, particularly with respect to nuclear import pathways and protection of the viral genome from DNA sensors. Understanding uncoating will be valuable toward developing novel antiretroviral therapies for HIV-infected individuals.

  16. Characterizing RNA-protein interaction using cross-linking and metabolite supplemented nuclear RNA-immunoprecipitation.

    Science.gov (United States)

    Au, Phil Chi Khang; Helliwell, Chris; Wang, Ming-Bo

    2014-05-01

    RNA-immunoprecipitation (RNA-IP) is a method used to isolate and identify RNA molecules specifically associated with an RNA-binding protein. Non-coding RNAs are emerging as key regulators of many biological and developmental pathways and RNA-IP has become an important tool in studying their function(s). While RNA-IP is successfully used to determine protein-RNA interaction, specific details regarding the level of this association and the metabolic requirement of this interaction which can influence the success of RNA-IP remain unclear. Here, we investigate the conditions required for efficient nuclear RNA-IP using Arabidopsis AGO4 (Argonaute 4) and siRNA binding as the study model. We showed that formaldehyde cross-linking, but not UV cross-linking, allowed for efficient pull-down of 24-nt siRNAs, suggesting that AGO4-siRNA interaction involves other protein(s). We also showed that, while formaldehyde cross-linking could also be performed on purified nuclei, ATP supplementation to the nuclei isolation buffer was needed to efficiently pull down 24-nt siRNAs. This result indicates that ATP is required for efficient siRNA loading onto AGO4. As most of the known RNA-mediated regulatory processes occur in the nucleus, our findings on cross-linking conditions and metabolite requirement for successful AGO4 nuclear RNA-IP provide a valuable insight and future consideration when studying the function of protein-RNA interactions in plants.

  17. The F-Box Protein Rcy1p Is Involved in Endocytic Membrane Traffic and Recycling Out of an Early Endosome in Saccharomyces cerevisiae

    OpenAIRE

    Wiederkehr, Andreas; Avaro, Sandrine; Prescianotto-Baschong, Cristina; Haguenauer-Tsapis, Rosine; Riezman, Howard

    2000-01-01

    In Saccharomyces cerevisiae, endocytic material is transported through different membrane-bound compartments before it reaches the vacuole. In a screen for mutants that affect membrane trafficking along the endocytic pathway, we have identified a novel mutant disrupted for the gene YJL204c that we have renamed RCY1 (recycling 1). Deletion of RCY1 leads to an early block in the endocytic pathway before the intersection with the vacuolar protein sorting pathway. Mutation of RCY1 leads to the ac...

  18. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner.

    Directory of Open Access Journals (Sweden)

    Allyson M MacLean

    2014-04-01

    Full Text Available Pathogens that rely upon multiple hosts to complete their life cycles often modify behavior and development of these hosts to coerce them into improving pathogen fitness. However, few studies describe mechanisms underlying host coercion. In this study, we elucidate the mechanism by which an insect-transmitted pathogen of plants alters floral development to convert flowers into vegetative tissues. We find that phytoplasma produce a novel effector protein (SAP54 that interacts with members of the MADS-domain transcription factor (MTF family, including key regulators SEPALLATA3 and APETALA1, that occupy central positions in the regulation of floral development. SAP54 mediates degradation of MTFs by interacting with proteins of the RADIATION SENSITIVE23 (RAD23 family, eukaryotic proteins that shuttle substrates to the proteasome. Arabidopsis rad23 mutants do not show conversion of flowers into leaf-like tissues in the presence of SAP54 and during phytoplasma infection, emphasizing the importance of RAD23 to the activity of SAP54. Remarkably, plants with SAP54-induced leaf-like flowers are more attractive for colonization by phytoplasma leafhopper vectors and this colonization preference is dependent on RAD23. An effector that targets and suppresses flowering while simultaneously promoting insect herbivore colonization is unprecedented. Moreover, RAD23 proteins have, to our knowledge, no known roles in flower development, nor plant defence mechanisms against insects. Thus SAP54 generates a short circuit between two key pathways of the host to alter development, resulting in sterile plants, and promotes attractiveness of these plants to leafhopper vectors helping the obligate phytoplasmas reproduce and propagate (zombie plants.

  19. Nuclear envelope proteins and chromatin arrangement: a pathogenic mechanism for laminopathies

    Directory of Open Access Journals (Sweden)

    NM Maraldi

    2009-06-01

    Full Text Available The involvement of the nuclear envelope in the modulation of chromatin organization is strongly suggested by the increasing number of human diseases due to mutations of nuclear envelope proteins. A common feature of these diseases, named laminopathies, is the occurrence of major chromatin defects. Laminopathies share in some instances their clinical features, but each of them is characterized by a phenotype that involves one or multiple tissues.We previously reported that cells from laminopathic patients show an altered nuclear profile, and loss or detachment of heterochromatin from the nuclear envelope. Recent evidence indicates that processing of the lamin A precursor is altered in laminopathies featuring pre-mature aging and/or lipodystrophy phenotype. In these cases, pre-lamin A is accumulated in the nucleus and heterochromatin is severely disorganized. Moreover, altered distribution and solubility properties of heterochromatin-associated proteins such as HP1 are observed. These findings indicate that defects of chromatin remodeling are involved in the cascade of epigenetic events leading to the laminopathic phenotypes. Here we report evidence indicating that pre-lamin A is mis-localized in the nuclei of Emery-Dreifuss muscular dystrophy fibroblasts, either bearing lamin A/C or emerin mutations. Abnornal pre-lamin A-containing structures are formed following treatment with a farnesyl-transferase inhibitor, a drug that causes accumulation of non-farnesylated pre-lamin A. Pre-lamin A-labeled structures co-localize with heterochromatin clumps. These data indicate that in almost all laminopathies the expression of the mutant lamin A precursor disrupts the organization of heterochromatin domains so that affected cells are unable to maintain the silenced chromatin state capable to allow/preserve terminal differentiation. Our results further show that the absence of emerin expression alters the distribution of pre-lamin A and of heterochromatin

  20. Predicting the Nuclear Localization Signals of 107 Types of HPV L1 Proteins by Bioinformatic Analysis

    Institute of Scientific and Technical Information of China (English)

    Jun Yang; Yi-Li Wang; Lü-Sheng Si

    2006-01-01

    In this study, 107 types of human papillomavirus (HPV) L1 protein sequences were obtained from available databases, and the nuclear localization signals (NLSs) of these HPV L1 proteins were analyzed and predicted by bioinformatic analysis.Out of the 107 types, the NLSs of 39 types were predicted by PredictNLS software (35 types of bipartite NLSs and 4 types of monopartite NLSs). The NLSs of the remaining HPV types were predicted according to the characteristics and the homology of the already predicted NLSs as well as the general rule of NLSs.According to the result, the NLSs of 107 types of HPV L1 proteins were classified into 15 categories. The different types of HPV L1 proteins in the same NLS category could share the similar or the same nucleocytoplasmic transport pathway.They might be used as the same target to prevent and treat different types of HPV infection. The results also showed that bioinformatic technology could be used to analyze and predict NLSs of proteins.

  1. Transcription termination in the Escherichia coli dnaA gene is not mediated by the internal DnaA box.

    OpenAIRE

    Pérez-Roger, I; Macián, F; Armengod, M E

    1995-01-01

    DnaA protein is a DNA-binding protein which recognizes a 9-bp consensus sequence called the DnaA box. By binding to DnaA boxes, DnaA protein regulates initiation of chromosomal replication and transcription of several genes. The dnaA gene contains two DnaA boxes, one located in the regulatory region and one within the structural gene. In this paper, we explore the role of the internal DnaA box in dnaA expression because it has been proposed that the DnaA box-DnaA protein complex can block tra...

  2. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 430C and 450C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 450C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 370C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 410C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  3. The Ct-RAE1 protein interacts with Balbiani ring RNP particles at the nuclear pore.

    OpenAIRE

    Sabri, N; Visa, N

    2000-01-01

    RAE1 is an evolutionarily conserved protein that associates with both mRNPs and nucleoporins, and may bridge the interaction between mRNP export cargoes and the nuclear pore complex (NPC). However, the mechanism by which RAE1 functions in mRNA export is still unknown and the time point at which RAE1 interacts with the exported RNP has not been directly investigated. Here we have addressed this question in the Balbiani ring (BR) system of Chironomus tentans using immunoelectron microscopy. The...

  4. Transcriptional activation of NAD{sup +}-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    Energy Technology Data Exchange (ETDEWEB)

    Iwahara, Naotoshi [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Hisahara, Shin; Hayashi, Takashi [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Department of Neurology, Sapporo Medical University, Sapporo 060-8556 (Japan); Horio, Yoshiyuki, E-mail: horio@sapmed.ac.jp [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan)

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD{sup +}-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  5. Reassembly and protection of small nuclear ribonucleoprotein particles by heat shock proteins in yeast cells.

    OpenAIRE

    Bracken, A P; Bond, U

    1999-01-01

    The process of mRNA splicing is sensitive to in vivo thermal inactivation, but can be protected by pretreatment of cells under conditions that induce heat-shock proteins (Hsps). This latter phenomenon is known as "splicing thermotolerance". In this article we demonstrate that the small nuclear ribonucleoprotein particles (snRNPs) are in vivo targets of thermal damage within the splicing apparatus in heat-shocked yeast cells. Following a heat shock, levels of the tri-snRNP (U4/U6.U5), free U6 ...

  6. Liver-type fatty acid binding protein interacts with hepatocyte nuclear factor 4α

    OpenAIRE

    McIntosh, Avery L.; Petrescu, Anca D.; Hostetler, Heather A.; Kier, Ann B.; Schroeder, Friedhelm

    2013-01-01

    Hepatocyte nuclear factor 4α (HNF4α) regulates liver type fatty acid binding protein (L-FABP) gene expression. Conversely as shown herein, L-FABP structurally and functionally also interacts with HNF4α. Fluorescence resonance energy transfer (FRET) between Cy3-HNF4α (donor) and Cy5-L-FABP (acceptor) as well as FRET microscopy detected L-FABP in close proximity (~80 Å) to HNF4α, binding with high affinity Kd ~250–300 nM. Circular dichroism (CD) determined that the HNF4α/L-FABP interaction alte...

  7. Nuclear export and import of human hepatitis B virus capsid protein and particles.

    Directory of Open Access Journals (Sweden)

    Hung-Cheng Li

    Full Text Available It remains unclear what determines the subcellular localization of hepatitis B virus (HBV core protein (HBc and particles. To address this fundamental issue, we have identified four distinct HBc localization signals in the arginine rich domain (ARD of HBc, using immunofluorescence confocal microscopy and fractionation/Western blot analysis. ARD consists of four tight clustering arginine-rich subdomains. ARD-I and ARD-III are associated with two co-dependent nuclear localization signals (NLS, while ARD-II and ARD-IV behave like two independent nuclear export signals (NES. This conclusion is based on five independent lines of experimental evidence: i Using an HBV replication system in hepatoma cells, we demonstrated in a double-blind manner that only the HBc of mutant ARD-II+IV, among a total of 15 ARD mutants, can predominantly localize to the nucleus. ii These results were confirmed using a chimera reporter system by placing mutant or wild type HBc trafficking signals in the heterologous context of SV40 large T antigen (LT. iii By a heterokaryon or homokaryon analysis, the fusion protein of SV40 LT-HBc ARD appeared to transport from nuclei of transfected donor cells to nuclei of recipient cells, suggesting the existence of an NES in HBc ARD. This putative NES is leptomycin B resistant. iv We demonstrated by co-immunoprecipitation that HBc ARD can physically interact with a cellular factor TAP/NXF1 (Tip-associated protein/nuclear export factor-1, which is known to be important for nuclear export of mRNA and proteins. Treatment with a TAP-specific siRNA strikingly shifted cytoplasmic HBc to nucleus, and led to a near 7-fold reduction of viral replication, and a near 10-fold reduction in HBsAg secretion. v HBc of mutant ARD-II+IV was accumulated predominantly in the nucleus in a mouse model by hydrodynamic delivery. In addition to the revised map of NLS, our results suggest that HBc could shuttle rapidly between nucleus and cytoplasm via a novel

  8. The Inhibition of Heat Shock Protein 90 Facilitates the Degradation of Poly-Alanine Expanded Poly (A) Binding Protein Nuclear 1 via the Carboxyl Terminus of Heat Shock Protein 70-Interacting Protein

    OpenAIRE

    Shi, Chao; Huang, Xuan; Zhang, Bin; Zhu, Dan; Luo, Huqiao; Lu, Quqin; Xiong, Wen-Cheng; Mei, Lin; Luo, Shiwen

    2015-01-01

    Background Since the identification of poly-alanine expanded poly(A) binding protein nuclear 1 (PABPN1) as the genetic cause of oculopharyngeal muscular dystrophy (OPMD), considerable progress has been made in our understanding of the pathogenesis of the disease. However, the molecular mechanisms that regulate the onset and progression of the disease remain unclear. Results In this study, we show that PABPN1 interacts with and is stabilized by heat shock protein 90 (HSP90). Treatment with the...

  9. Novel nuclear protein ALC-INTERACTING PROTEIN1 is expressed in vascular and mesocarp cells in Arabidopsis.

    Science.gov (United States)

    Wang, Fang; Shi, Dong-Qiao; Liu, Jie; Yang, Wei-Cai

    2008-07-01

    Pod shattering is an agronomical trait that is a result of the coordinated action of cell differentiation and separation. In Arabidopsis, pod shattering is controlled by a complex genetic network in which ALCATRAZ (ALC), a member of the basic helix-loop-helix family, is critical for cell separation during fruit dehiscence. Herein, we report the identification of ALC-INTERACTING PROTEIN1 (ACI1) via the yeast two-hybrid screen. ACI1 encodes a nuclear protein with a lysine-rich domain and a C-terminal serine-rich domain. ACI1 is mainly expressed in the vascular system throughout the plant and mesocarp of the valve in siliques. Our data showed that ACI1 interacts strongly with the N-terminal portion of ALC in yeast cells and in plant cells in the nucleus as demonstrated by bimolecular fluorescence complementation assay. Both ACI1 and ALC share an overlapping expression pattern, suggesting that they likely function together in planta. However, no detectable phenotype was found in plants with reduced ACI1 expression by RNA interference technology, suggesting that ACI1 may be redundant. Taken together, these data indicate that ALC may interact with ACI1 and its homologs to control cell separation during fruit dehiscence in Arabidopsis. PMID:18713402

  10. Epstein - Barr virus latent membrane protein 1 suppresses reporter activity through modulation of promyelocytic leukemia protein-nuclear bodies

    Directory of Open Access Journals (Sweden)

    Flemington Erik K

    2011-10-01

    Full Text Available Abstract The Epstein-Barr virus (EBV encoded Latent Membrane Protein 1 (LMP1 has been shown to increase the expression of promyelocytic leukemia protein (PML and the immunofluorescent intensity of promyelocytic leukemia nuclear bodies (PML NBs. PML NBs have been implicated in the modulation of transcription and the association of reporter plasmids with PML NBs has been implicated in repression of reporter activity. Additionally, repression of various reporters in the presence of LMP1 has been noted. This study demonstrates that LMP1 suppresses expression of reporter activity in a dose responsive manner and corresponds with the LMP1 induced increase in PML NB intensity. Disruption of PML NBs with arsenic trioxide or a PML siRNA restores reporter activity. These data offer an explanation for previously conflicting data on LMP1 signaling and calls attention to the possibility of false-positives and false-negatives when using reporter assays as a research tool in cells expressing LMP1.

  11. Novel Nuclear Protein ALC-INTERACTING PROTEIN1 is Expressed in Vascular and Mesocarp Cells in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Fang Wang; Dong-Qiao Shi; Jie Liu; Wei-Cai Yang

    2008-01-01

    Pod shattering is an agronomical trait that is a result of the coordinated action of cell differentiation and separation. In Arabidopsis, pod shattering is controlled by a complex genetic network in which ALCATRAZ (ALC), a member of the basic helix-loop-helix family, is critical for cell separation during fruit dehiscence. Herein, we report the identification of ALC-INTERACTiNG PROTEIN1 (ACI1) via the yeast two-hybrid screen. ACI1 encodes a nuclear protein with a lysine-rich domain and a C-terminal serine-rich domain. ACI1 is mainly expressed in the vascular system throughout the plant and mesocarp of the valve in siliques. Our data showed that ACI1 interacts strongly with the N-terminal portion of ALC in yeast cells and in plant cells in the nucleus as demonstrated by bimolecular fluorescence complementation assay. Both ACl1 and ALC share an overlapping expression pattern, suggesting that they likely function together in planta. However, no detectable phenotype was found in plants with reduced ACI1 expression by RNA interference technology, suggesting that ACI1 may be redundant. Taken together, these data indicate that ALC may interact with ACll and its homologs to control cell separation during fruit dehiscence in Arabidopsis.

  12. Recrystallization inhibition in ice due to ice binding protein activity detected by nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Jennifer R. Brown

    2014-09-01

    Full Text Available Liquid water present in polycrystalline ice at the interstices between ice crystals results in a network of liquid-filled veins and nodes within a solid ice matrix, making ice a low porosity porous media. Here we used nuclear magnetic resonance (NMR relaxation and time dependent self-diffusion measurements developed for porous media applications to monitor three dimensional changes to the vein network in ices with and without a bacterial ice binding protein (IBP. Shorter effective diffusion distances were detected as a function of increased irreversible ice binding activity, indicating inhibition of ice recrystallization and persistent small crystal structure. The modification of ice structure by the IBP demonstrates a potential mechanism for the microorganism to enhance survivability in ice. These results highlight the potential of NMR techniques in evaluation of the impact of IBPs on vein network structure and recrystallization processes; information useful for continued development of ice-interacting proteins for biotechnology applications.

  13. EXPRESSION OF P53 PROTEIN AND PROLIFERATING CELL NUCLEAR ANTIGEN IN HUMAN GESTATION TROPHOBLASTIC DISEASE

    Institute of Scientific and Technical Information of China (English)

    黄铁军; 王志忠; 方光光; 刘志恒

    2004-01-01

    Objective: To study the relationship between p53 protein, proliferating cell nuclear antigen (PCNA) expression and benign or malignant gestational trophoblastic disease (MGTD). Methods: The histotomic sections of 48 patients with gestational trophoblastic disease and 24 patients of normal chorionic villi were stained using immunohistochemistry. The monoclonal antibodies were used to determine p53 protein and PCNA. Results: The frequency of p53 and PCNA positive expression were significantly different among the chorionic villi of normal pregnancy, hydratidiform mole (HM) and MGTD. But neither p53 nor PCNA has any relation with the clinical staging or metastasis of MGTD. Conclusion: Both P53 and PCNA are valuable in diagnosis of human gestational trophoblastic disease.

  14. Conformational disorder in folded and intrinsically disordered proteins from nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Biological macromolecules are, by essence, dynamical systems. While the importance of this flexibility is nowadays well established, the accurate characterization of the conformational disorder of these systems remains an important challenge. Nuclear magnetic resonance spectroscopy is a unique tool to probe these motions at atomic level, through the analysis of spin relaxation or residual dipolar couplings. The latter allows all motions occurring at timescales faster than the millisecond to be investigated, including physiologically important timescales. The information presents in those couplings is interpreted here using mainly analytical approaches in order to quantify the amounts of dynamics present in folded protein, to determine the direction of those motions and to obtain structural information within this conformational disorder. These analytical approaches are complemented by numerical methods, that allowed the observation of phenomena from a different point of view or the investigation of other systems such as intrinsically disordered proteins. All of these studies demonstrate an important complementarity between structural order and conformational disorder. (author)

  15. Data in support of DPF2 regulates OCT4 protein level and nuclear distribution

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2015-12-01

    Full Text Available DPF2, also named ubi-d4/requiem (REQU, interacts with a protein complex containing OCT4. This paper provides data in support of the research article entitled “DPF2 regulates OCT4 protein level and nuclear distribution”. The highlights include: (1 Denature-immunoprecipitation assay revealed ubiquitination of OCT4 in pluripotent H9 cells, which was enhancedby MG132, a proteasome inhibitor. (2 Well colocalization of ectopic OCT4 and FLAG-Ub was found in HeLa cells, which was also increased by MG132. (3 MG132 treatment decreased DPF2 cytoplasmic expression in vivo. These data give insights into how proteasome inhibition contributes to studying ubiquitnation of OCT4.

  16. Extracellular Signal-regulated Kinase (ERK)-dependent Phosphorylation of Y-Box-binding Protein 1 (YB-1) Enhances Gene Expression in Granulosa Cells in Response to Follicle-stimulating Hormone (FSH).

    Science.gov (United States)

    Donaubauer, Elyse M; Hunzicker-Dunn, Mary E

    2016-06-01

    Within the ovarian follicle, immature oocytes are surrounded and supported by granulosa cells (GCs). Stimulation of GCs by FSH leads to their proliferation and differentiation, events that are necessary for fertility. FSH activates multiple signaling pathways to regulate genes necessary for follicular maturation. Herein, we investigated the role of Y-box-binding protein-1 (YB-1) within GCs. YB-1 is a nucleic acid binding protein that regulates transcription and translation. Our results show that FSH promotes an increase in the phosphorylation of YB-1 on Ser(102) within 15 min that is maintained at significantly increased levels until ∼8 h post treatment. FSH-stimulated phosphorylation of YB-1(Ser(102)) is prevented by pretreatment of GCs with the PKA-selective inhibitor PKA inhibitor (PKI), the MEK inhibitor PD98059, or the ribosomal S6 kinase-2 (RSK-2) inhibitor BI-D1870. Thus, phosphorylation of YB-1 on Ser(102) is PKA-, ERK-, and RSK-2-dependent. However, pretreatment of GCs with the protein phosphatase 1 (PP1) inhibitor tautomycin increased phosphorylation of YB-1(Ser(102)) in the absence of FSH; FSH did not further increase YB-1(Ser(102)) phosphorylation. This result suggests that the major effect of RSK-2 is to inhibit PP1 rather than to directly phosphorylate YB-1 on Ser(102) YB-1 coimmunoprecipitated with PP1β catalytic subunit and RSK-2. Transduction of GCs with the dephospho-adenoviral-YB-1(S102A) mutant prevented the induction by FSH of Egfr, Cyp19a1, Inha, Lhcgr, Cyp11a1, Hsd17b1, and Pappa mRNAs and estradiol-17β production. Collectively, our results reveal that phosphorylation of YB-1 on Ser(102) via the ERK/RSK-2 signaling pathway is necessary for FSH-mediated expression of target genes required for maturation of follicles to a preovulatory phenotype. PMID:27080258

  17. Projection optics box

    Science.gov (United States)

    Hale, Layton C.; Malsbury, Terry; Hudyma, Russell M.; Parker, John M.

    2000-01-01

    A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

  18. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1–AMPK complex

    International Nuclear Information System (INIS)

    Highlights: ► The nuclear protein Artemis physically interacts with AMPKα2. ► Artemis co-localizes with AMPKα2 in the nucleus. ► Artemis promotes phosphorylation and activation of AMPK. ► The interaction between AMPKα2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic α subunit and regulatory β and γ subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the α-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPKα2-binding protein. Artemis was found to co-immunoprecipitate with AMPKα2, and the co-localization of Artemis with AMPKα2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPKα2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPKα2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1–AMPK complex.

  19. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1-AMPK complex

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Koji, E-mail: k_nakagawa@pharm.hokudai.ac.jp [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Asaka, Masahiro [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Takeda, Hiroshi [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Kobayashi, Masanobu [Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); School of Nursing and Social Services, Health Sciences University of Hokkaido, Ishikari-Toubetsu, Hokkaido 061-0293 (Japan)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer The nuclear protein Artemis physically interacts with AMPK{alpha}2. Black-Right-Pointing-Pointer Artemis co-localizes with AMPK{alpha}2 in the nucleus. Black-Right-Pointing-Pointer Artemis promotes phosphorylation and activation of AMPK. Black-Right-Pointing-Pointer The interaction between AMPK{alpha}2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic {alpha} subunit and regulatory {beta} and {gamma} subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the {alpha}-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPK{alpha}2-binding protein. Artemis was found to co-immunoprecipitate with AMPK{alpha}2, and the co-localization of Artemis with AMPK{alpha}2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPK{alpha}2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPK{alpha}2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1-AMPK complex.

  20. Identification of the proteins responsible for SAR DNA binding in nuclear matrix of ''Cucurbita pepo''

    International Nuclear Information System (INIS)

    The nuclear matrices from White bush (''Cucurbita pepo var. patisonina'') cell nuclei have been isolated using three methods: I, standard procedure involving extraction of cell nuclei with 2 M NaCl and 1% Triton X-100; II, the same with pre-treatment of cell nuclei with 0.5 mM CuSO4 (stabilisation step); and III, method with extraction by lithium diiodosalicylate (LIS), and compared the polypeptide pattern. The isolated matrices specifically bind SAR DNA derived from human β-interferon gene in the exogenous SAR binding assay and in the gel mobility shift assay. Using IgG against the 32 kDa endonuclease we have found in the DNA-protein blot assay that this protein is one of the proteins binding SAR DNA. We have identified three proteins with molecular mass of 65 kDa, 60 kDa and 32 kDa which are responsible for SAR DNA binding in the gel mobility shift assay experiments. (author). 21 refs, 3 figs

  1. The Classroom Animal: Box Turtles.

    Science.gov (United States)

    Kramer, David C.

    1986-01-01

    Provides basic information on the anatomy, physiology, behaviors, and distribution patterns of the box turtle. Offers suggestions for the turtle's care and maintenance in a classroom environment. (ML)

  2. Nuclear TAR DNA-binding protein 43 A new target for amyotrophic lateral sclerosis treatment

    Institute of Scientific and Technical Information of China (English)

    Mei Zheng; Yujie Shi; Dongsheng Fan

    2013-01-01

    Abnormal TAR DNA-binding protein 43 (TDP-43) inclusion bodies can be detected in the degener-ative neurons of amyotrophic lateral sclerosis. In this study, we induced chronic oxidative stress in-jury by applying malonate to cultured mouse cortical motor neurons. In the later stages of the ma-lonate insult, TDP-43 expression reduced in the nuclei and transferred to the cytoplasm. This was accompanied by neuronal death, mimicking the pathological changes in TDP-43 that are seen in patients with amyotrophic lateral sclerosis. Interestingly, in the early stages of the response to ma-lonate treatment, nuclear TDP-43 expression increased, and neurons remained relatively intact, without inclusion bodies or fragmentation. Therefore, we hypothesized that the increase of nuclear TDP-43 expression might be a pro-survival factor against oxidative stress injury. This hypothesis was confirmed by an in vitro transgenic experiment, in which overexpression of wild type mouse TDP-43 in cultured cortical motor neurons significantly reduced malonate-induced neuronal death. Our findings suggest that the loss of function of TDP-43 is an important cause of neuronal dege-neration, and upregulation of nuclear TDP-43 expression might be neuroprotective in amyotrophic lateral sclerosis.

  3. Nuclear translocation of the cytoskeleton-associated protein, smALP, upon induction of skeletal muscle differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Cambier, Linda [CNRS UMR5237, Universite Montpellier 1, Universite Montpellier 2, Centre de Recherche en Biochimie Macromoleculaire, Montpellier (France); Pomies, Pascal, E-mail: pascal.pomies@crbm.cnrs.fr [CNRS UMR5237, Universite Montpellier 1, Universite Montpellier 2, Centre de Recherche en Biochimie Macromoleculaire, Montpellier (France)

    2011-06-17

    Highlights: {yields} The cytoskeleton-associated protein, smALP, is expressed in differentiated skeletal muscle. {yields} smALP is translocated from the cytoplasm to the nucleus of C2C12 myoblasts upon induction of myogenesis. {yields} The differentiation-dependent nuclear translocation of smALP occurs in parallel with the nuclear accumulation of myogenin. {yields} The LIM domain of smALP is essential for the nuclear accumulation of the protein. {yields} smALP might act in the nucleus to control some critical aspect of the muscle differentiation process. -- Abstract: The skALP isoform has been shown to play a critical role in actin organization and anchorage within the Z-discs of skeletal muscles, but no data is available on the function of the smALP isoform in skeletal muscle cells. Here, we show that upon induction of differentiation a nuclear translocation of smALP from the cytoplasm to the nucleus of C2C12 myoblasts, concomitant to an up-regulation of the protein expression, occurs in parallel with the nuclear accumulation of myogenin. Moreover, we demonstrate that the LIM domain of smALP is essential for the nuclear translocation of the protein.

  4. Src1 is a Protein of the Inner Nuclear Membrane Interacting with the Dictyostelium Lamin NE81

    Directory of Open Access Journals (Sweden)

    Petros Batsios

    2016-03-01

    Full Text Available The nuclear envelope (NE consists of the outer and inner nuclear membrane (INM, whereby the latter is bound to the nuclear lamina. Src1 is a Dictyostelium homologue of the helix-extension-helix family of proteins, which also includes the human lamin-binding protein MAN1. Both endogenous Src1 and GFP-Src1 are localized to the NE during the entire cell cycle. Immuno-electron microscopy and light microscopy after differential detergent treatment indicated that Src1 resides in the INM. FRAP experiments with GFP-Src1 cells suggested that at least a fraction of the protein could be stably engaged in forming the nuclear lamina together with the Dictyostelium lamin NE81. Both a BioID proximity assay and mis-localization of soluble, truncated mRFP-Src1 at cytosolic clusters consisting of an intentionally mis-localized mutant of GFP-NE81 confirmed an interaction of Src1 and NE81. Expression GFP-Src11–646, a fragment C-terminally truncated after the first transmembrane domain, disrupted interaction of nuclear membranes with the nuclear lamina, as cells formed protrusions of the NE that were dependent on cytoskeletal pulling forces. Protrusions were dependent on intact microtubules but not actin filaments. Our results indicate that Src1 is required for integrity of the NE and highlight Dictyostelium as a promising model for the evolution of nuclear architecture.

  5. Identification of a nuclear transport inhibitory signal (NTIS) in the basic domain of HIV-1 Vif protein.

    Science.gov (United States)

    Friedler, A; Zakai, N; Karni, O; Friedler, D; Gilon, C; Loyter, A

    1999-06-11

    The HIV-1 auxiliary protein Vif contains a basic domain within its sequence. This basic region,90RKKR93, is similar to the prototypic nuclear localization signal (NLS). However, Vif is not a nuclear protein and does not function in the nucleus. Here we have studied the karyophilic properties of this basic region. We have synthesized peptides corresponding to this positively charged NLS-like region and observed that these peptides inhibited nuclear transport via the importin pathway in vitro with IC50values in the micromolar range. Inhibition was observed only with peptides derived from the positively charged region, but not from other regions of the Vif protein, showing sequence specificity. On the other hand, the Vif inhibitory peptide Vif88-98 did not confer karyophilic properties when conjugated to BSA. The inactive Vif conjugate and the active SV40-NLS-BSA conjugate both contained a similar number of peptides conjugated to each BSA molecule, as was determined by amino acid analysis of the peptide-BSA conjugates. Thus, the lack of nuclear import of the Vif peptide-BSA conjugate cannot be attributed to insufficient number of conjugated peptide molecules per BSA molecule. Our results suggest that the HIV-1 Vif protein carries an NLS-like sequence that inhibits, but does not mediate, nuclear import via the importin pathway. We have termed such signals as nuclear transport inhibitory signals (NTIS). The possible role of NTIS in controlling nuclear uptake, and specifically during virus infection, is discussed herein. Our results raise the possibility that NLS-like sequences of certain low molecular weight viral proteins may serve as regulators of nucleocytoplasmic trafficking and not neccessarily as mediators of nuclear import.

  6. Yes-Associated Protein (YAP) Promotes the Nuclear Import of p73

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Heng; Wu Shengnan, E-mail: wushn@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China)

    2011-01-01

    p73 has been identified as a structural and functional homolog of the tumor suppressor p53. However, mechanisms that regulate the localization of p73 have not been fully clarified. The Yes-associated protein (YAP) is a transcriptional coactivator. As a transcriptional coactivator, YAP needs to bind transcription factors to stimulate gene expression. p73 is a reported YAP target transcription factors and YAP has been shown to positively regulate p73 in promoting apoptosis. Previous studies show that p73 interacts with YAP through its PPPY motif, and increases p73 transactivation of apoptotic genes. In this study, we focused on YAP's regulation of the localization of p73. After transient transfection into Rat pheochromocytoma (PC12) cells and Human embryonic kidney 293T cells with GFP-YAP and/or YFP-p73, and incubated for 24 hours expression. p73 was fused to YFP to allow the examination of its subcellular localization. When expressed alone, YFP-p73 was distributed throughout the cell. When coexpressed with YAP, nuclear accumulation of YFP-p73 became evident. We quantitated the effect of YAP on the redistribution of YFP-p73 by counting cells with nuclear-only YFP signal. We found that YAP can influence the subcellular distribution of p73. Altogether, coexpression with YAP affected the subcellular distribution of the p73 protein. Our studies attribute a central role to YAP in regulating p73 accumulation and YAP, at least in part, might promote the nuclear import of p73.

  7. Yes-Associated Protein (YAP) Promotes the Nuclear Import of p73

    Science.gov (United States)

    Zhang, Heng; Wu, Shengnan

    2011-01-01

    p73 has been identified as a structural and functional homolog of the tumor suppressor p53. However, mechanisms that regulate the localization of p73 have not been fully clarified. The Yes-associated protein (YAP) is a transcriptional coactivator. As a transcriptional coactivator, YAP needs to bind transcription factors to stimulate gene expression. p73 is a reported YAP target transcription factors and YAP has been shown to positively regulate p73 in promoting apoptosis. Previous studies show that p73 interacts with YAP through its PPPY motif, and increases p73 transactivation of apoptotic genes. In this study, we focused on YAP's regulation of the localization of p73. After transient transfection into Rat pheochromocytoma (PC12) cells and Human embryonic kidney 293T cells with GFP-YAP and/or YFP-p73, and incubated for 24 hours expression. p73 was fused to YFP to allow the examination of its subcellular localization. When expressed alone, YFP-p73 was distributed throughout the cell. When coexpressed with YAP, nuclear accumulation of YFP-p73 became evident. We quantitated the effect of YAP on the redistribution of YFP-p73 by counting cells with nuclear-only YFP signal. We found that YAP can influence the subcellular distribution of p73. Altogether, coexpression with YAP affected the subcellular distribution of the p73 protein. Our studies attribute a central role to YAP in regulating p73 accumulation and YAP, at least in part, might promote the nuclear import of p73.

  8. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3.

    Science.gov (United States)

    Ido, Yasuo

    2016-07-01

    Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C-peptide. My research and others' suggest that the SIRT1-liver kinase B1-AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. 'Diabetic memory' is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1-AMPK positive feedback through activating FOXO3. PMID:27181414

  9. Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling.

    Science.gov (United States)

    Mcdonald, Kerry-Ann; Huang, Hai; Tohme, Samer; Loughran, Patricia; Ferrero, Kimberly; Billiar, Timothy; Tsung, Allan

    2014-01-01

    Toll-like receptor 4 (TLR4) is ubiquitously expressed on parenchymal and immune cells of the liver and is the most studied TLR responsible for the activation of proinflammatory signaling cascades in liver ischemia and reperfusion (I/R). Since pharmacological inhibition of TLR4 during the sterile inflammatory response of I/R has not been studied, we sought to determine whether eritoran, a TLR4 antagonist trialed in sepsis, could block hepatic TLR4-mediated inflammation and end organ damage. When C57BL/6 mice were pretreated with eritoran and subjected to warm liver I/R, there was significantly less hepatocellular injury compared to control counterparts. Additionally, we found that eritoran is protective in liver I/R through inhibition of high-mobility group box protein B1 (HMGB1)-mediated inflammatory signaling. When eritoran was administered in conjunction with recombinant HMGB1 during liver I/R, there was significantly less injury, suggesting that eritoran blocks the HMGB1-TLR4 interaction. Not only does eritoran attenuate TLR4-dependent HMGB1 release in vivo, but this TLR4 antagonist also dampened HMGB1's release from hypoxic hepatocytes in vitro and thereby weakened HMGB1's activation of innate immune cells. HMGB1 signaling through TLR4 makes an important contribution to the inflammatory response seen after liver I/R. This study demonstrates that novel blockade of HMGB1 by the TLR4 antagonist eritoran leads to the amelioration of liver injury. PMID:25375408

  10. Severe and rapidly progressing cognitive phenotype in a SCA17-family with only marginally expanded CAG/CAA repeats in the TATA-box binding protein gene: A case report

    Directory of Open Access Journals (Sweden)

    Nielsen Troels

    2012-08-01

    Full Text Available Abstract Background The autosomal dominant spinocerebellar ataxias (SCAs confine a group of rare and heterogeneous disorders, which present with progressive ataxia and numerous other features e.g. peripheral neuropathy, macular degeneration and cognitive impairment, and a subset of these disorders is caused by CAG-repeat expansions in their respective genes. The diagnosing of the SCAs is often difficult due to the phenotypic overlap among several of the subtypes and with other neurodegenerative disorders e.g. Huntington’s disease. Case presentation We report a family in which the proband had rapidly progressing cognitive decline and only subtle cerebellar symptoms from age 42. Sequencing of the TATA-box binding protein gene revealed a modest elongation of the CAG/CAA-repeat of only two repeats above the non-pathogenic threshold of 41, confirming a diagnosis of SCA17. Normally, repeats within this range show reduced penetrance and result in a milder disease course with slower progression and later age of onset. Thus, this case presented with an unusual phenotype. Conclusions The current case highlights the diagnostic challenge of neurodegenerative disorders and the need for a thorough clinical and paraclinical examination of patients presenting with rapid cognitive decline to make a precise diagnosis on which further genetic counseling and initiation of treatment modalities can be based.

  11. Plasma C1q/TNF-Related Protein-3 (CTRP-3) and High-Mobility Group Box-1 (HMGB-1) Concentrations in Subjects with Prediabetes and Type 2 Diabetes

    Science.gov (United States)

    Wei, Huili; Qu, Hua; Wang, Hang

    2016-01-01

    Aims. To detect the association of C1q/TNF-related protein-3 (CTRP-3) and high-mobility group box-1 (HMGB-1) in subjects with prediabetes (pre-DM) and newly diagnosed type 2 diabetes (nT2DM). Methods. 224 eligible participants were included. The 75 g oral glucose tolerance test (OGTT) and several clinical parameters of metabolic disorders and cytokines were measured. All participants were divided into three groups: normal glucose tolerance (NGT, n = 62), pre-DM (n = 111), and nT2DM group (n = 56). Results. Plasma CTRP-3 concentrations were significantly lower in subjects with pre-DM and nT2DM than that of the NGT group, while plasma HMGB-1 levels were higher in pre-DM and nT2DM group compared with the NGT group (P < 0.05). A multiple linear regression analysis showed both plasma CTRP-3 and HMGB-1 concentrations were independently associated with homeostasis model assessment for insulin resistance (HOMA-IR) and interleukin-6 (IL-6) (P < 0.05 for all). Further multiple logistical regression analyses revealed that both plasma CTRP-3 and HMGB-1 levels were significantly associated with pre-DM and nT2DM after adjusting for several confounders (P < 0.001 for all). Conclusions. Circulating CTRP-3 and HMGB-1 concentrations might be promising biomarkers to predict prediabetes and type 2 diabetes.

  12. The GIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Morgane eBatzenschlager

    2013-11-01

    Full Text Available During interphase, the microtubular cytoskeleton of cycling plant cells is organized in both cortical and perinuclear arrays. Perinuclear microtubules (MTs are nucleated from γ-Tubulin Complexes (γ-TuCs located at the surface of the nucleus. The molecular mechanisms of γ-TuC association to the nuclear envelope are currently unknown. The γ-TuC Protein 3 (GCP3-Interacting Protein 1 (GIP1 is the smallest γ-TuC component identified so far. AtGIP1 and its homologous protein AtGIP2 participate in the localization of active γ-TuCs at interphasic and mitotic MT nucleation sites. Arabidopsis gip1gip2 mutants are impaired in establishing a fully functional mitotic spindle and exhibit severe developmental defects.In this study, gip1gip2 knock down mutants were further characterized at the cellular level. In addition to defects in both the localization of γ-TuC core proteins and MT fibre robustness, gip1gip2 mutants exhibited a severe alteration of the nuclear shape associated with an abnormal distribution of the nuclear pore complexes. Simultaneously, they showed a misorganization of the inner nuclear membrane protein AtSUN1. Furthermore, AtGIP1 was identified as an interacting partner of AtTSA1 which was detected, like the AtGIP proteins, at the nuclear envelope.These results provide the first evidence for the involvement of a γ-TuC component in both nuclear shaping and nuclear envelope organization. Functional hypotheses are discussed in order to propose a model for a GIP-dependent nucleo-cytoplasmic continuum.

  13. Search for Conditions to Detect Epigenetic Marks and Nuclear Proteins in Immunostaining of the Testis and Cartilage

    Directory of Open Access Journals (Sweden)

    Hisashi Ideno

    2014-01-01

    Full Text Available The localization of nuclear proteins and modified histone tails changes during cell differentiation at the tissue as well as at the cellular level. Immunostaining in paraffin sections is the most powerful approach available to evaluate protein localization. Since nuclear proteins are sensitive to fixation, immunohistochemical conditions should be optimized in light of the particular antibodies and tissues employed. In this study, we searched for optimal conditions to detect histone modification at histone H3 lysine 9 (H3K9 and H3K9 methyltransferase G9a in the testis and cartilage in paraffin sections. In the testis, antigen retrieval (AR was indispensable for detecting H3K9me1 and me3, G9a, and nuclear protein proliferating cell nuclear antigen (PCNA. With AR, shorter fixation times yielded better results for the detection of G9a and PCNA. Without AR, H3K9me2 and H3K9ac could be detected at shorter fixation times in primary spermatocytes of the testis. In contrast to the testis, all antibodies tested could detect their epitopes irrespective of AR application in the growth plate cartilage. Thus, conditions for the detection of epigenetic marks and nuclear proteins should be optimized in consideration of fixation time and AR application in different tissues and antibodies.

  14. Multi-output Model with Box-Jenkins Operators of Quadratic Indices for Prediction of Malaria and Cancer Inhibitors Targeting Ubiquitin- Proteasome Pathway (UPP) Proteins.

    Science.gov (United States)

    Casañola-Martin, Gerardo M; Le-Thi-Thu, Huong; Pérez-Giménez, Facundo; Marrero-Ponce, Yovani; Merino-Sanjuán, Matilde; Abad, Concepción; González-Díaz, Humberto

    2016-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary degradation system of short-lived regulatory proteins. Cellular processes such as the cell cycle, signal transduction, gene expression, DNA repair and apoptosis are regulated by this UPP and dysfunctions in this system have important implications in the development of cancer, neurodegenerative, cardiac and other human pathologies. UPP seems also to be very important in the function of eukaryote cells of the human parasites like Plasmodium falciparum, the causal agent of the neglected disease Malaria. Hence, the UPP could be considered as an attractive target for the development of compounds with Anti-Malarial or Anti-cancer properties. Recent online databases like ChEMBL contains a larger quantity of information in terms of pharmacological assay protocols and compounds tested as UPP inhibitors under many different conditions. This large amount of data give new openings for the computer-aided identification of UPP inhibitors, but the intrinsic data diversity is an obstacle for the development of successful classifiers. To solve this problem here we used the Bob-Jenkins moving average operators and the atom-based quadratic molecular indices calculated with the software TOMOCOMD-CARDD (TC) to develop a quantitative model for the prediction of the multiple outputs in this complex dataset. Our multi-target model can predict results for drugs against 22 molecular or cellular targets of different organisms with accuracies above 70% in both training and validation sets.

  15. Multi-output Model with Box-Jenkins Operators of Quadratic Indices for Prediction of Malaria and Cancer Inhibitors Targeting Ubiquitin- Proteasome Pathway (UPP) Proteins.

    Science.gov (United States)

    Casañola-Martin, Gerardo M; Le-Thi-Thu, Huong; Pérez-Giménez, Facundo; Marrero-Ponce, Yovani; Merino-Sanjuán, Matilde; Abad, Concepción; González-Díaz, Humberto

    2016-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary degradation system of short-lived regulatory proteins. Cellular processes such as the cell cycle, signal transduction, gene expression, DNA repair and apoptosis are regulated by this UPP and dysfunctions in this system have important implications in the development of cancer, neurodegenerative, cardiac and other human pathologies. UPP seems also to be very important in the function of eukaryote cells of the human parasites like Plasmodium falciparum, the causal agent of the neglected disease Malaria. Hence, the UPP could be considered as an attractive target for the development of compounds with Anti-Malarial or Anti-cancer properties. Recent online databases like ChEMBL contains a larger quantity of information in terms of pharmacological assay protocols and compounds tested as UPP inhibitors under many different conditions. This large amount of data give new openings for the computer-aided identification of UPP inhibitors, but the intrinsic data diversity is an obstacle for the development of successful classifiers. To solve this problem here we used the Bob-Jenkins moving average operators and the atom-based quadratic molecular indices calculated with the software TOMOCOMD-CARDD (TC) to develop a quantitative model for the prediction of the multiple outputs in this complex dataset. Our multi-target model can predict results for drugs against 22 molecular or cellular targets of different organisms with accuracies above 70% in both training and validation sets. PMID:26427384

  16. ACSYS in a box

    CERN Document Server

    Briegel, C; Hendricks, B; King, C; Lackey, S; Neswold, R; Nicklaus, D; Patrick, J; Petrov, A; Rechenmacher, R; Schumann, C; Smedinghoff, J

    2012-01-01

    The Accelerator Control System at Fermilab has evolved to enable this relatively large control system to be encapsulated into a "box" such as a laptop. The goal was to provide a platform isolated from the "online" control system. This platform can be used internally for making major upgrades and modifications without impacting operations. It also provides a standalone environment for research and development including a turnkey control system for collaborators. Over time, the code base running on Scientific Linux has enabled all the salient features of the Fermilab's control system to be captured in an off-the-shelf laptop. The anticipated additional benefits of packaging the system include improved maintenance, reliability, documentation, and future enhancements.

  17. Glove-box filters

    International Nuclear Information System (INIS)

    Description is given of a device for simply and rapidly assembling and dissassembling the filters used inside sealed enclosures, such as glove-boxes and shielded cells equipped with nippers or manipulators, said filters being of the type comprising a cylindrical casing containing a filtering member, the upper portion of said casing being open so as to allow the gases to be cleaned to flow in, whereas the casing bottom is centrally provided with a hole extended outwardly by a threaded collar on which is screwed a connecting-sleeve to be fixed to the mouth of a gas outlet pipe. To a yoke transverse bar is welded a pin which can be likened to a bent spring-blade, one arm of which welded to said transverse bar, is rectilinear whereas its other arm is provided with a boss cooperating with a cavity made in a protrusion of said pipe, right under the mouth thereof

  18. Polymers in Curved Boxes

    CERN Document Server

    Yaman, K; Solis, F J; Witten, T A

    1996-01-01

    We apply results derived in other contexts for the spectrum of the Laplace operator in curved geometries to the study of an ideal polymer chain confined to a spherical annulus in arbitrary space dimension D and conclude that the free energy compared to its value for an uncurved box of the same thickness and volume, is lower when $D < 3$, stays the same when $D = 3$, and is higher when lowers the effective bending elasticity of the walls, and might induce spontaneous symmetry breaking, i.e. bending. (Actually, the above mentioned results show that {\\em {any}} shell in $D = 3$ induces this effect, except for a spherical shell). We compute the contribution of this effect to the bending rigidities in the Helfrich free energy expression.

  19. Nuclear

    International Nuclear Information System (INIS)

    This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)

  20. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces.

    Directory of Open Access Journals (Sweden)

    Amalia Slomiany, Maria Grabska, Bronislaw L. Slomiany

    2006-01-01

    Full Text Available Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860. In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN, the outer nuclear membrane (ONM, the inner nuclear membrane (INM and the cell cytosol (CC. In contrast to Endoplasmic Reticulum (ER which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC, phosphatidylinositol (PI, phosphatidylinositol phosphates (PIPs and phosphatidic acid (PA. The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of

  1. Deuterated protein folds obtained directly from unassigned nuclear overhauser effect data.

    Science.gov (United States)

    Bermejo, Guillermo A; Llinás, Miguel

    2008-03-26

    We demonstrate the feasibility of determining the global fold of a highly deuterated protein from unassigned experimental NMR nuclear Overhauser effect (NOE) data only. The method relies on the calculation of a spatial configuration of covalently unconnected protons-a "cloud"-directly from unassigned distance restraints derived from 13C- and 15N-edited NOESY spectra. Each proton in the cloud, labeled by its chemical shift and that of the directly bound 13C or 15N, is subsequently mapped to specific atoms in the protein. This is achieved via graph-theoretical protocols that search for connectivities in graphs that encode the structural information within the cloud. The peptidyl HN chain is traced by seeking for all possible routes and selecting the one that yields the minimal sum of sequential distances. Complete proton identification in the cloud is achieved by linking the side-chain protons to proximal main-chain HNs via bipartite graph matching. The identified protons automatically yield the NOE assignments, which in turn are used for structure calculation with RosettaNMR, a protocol that incorporates structural bias derived from protein databases. The method, named Sparse-Constraint CLOUDS, was applied to experimental NOESY data on the 58-residue Z domain of staphylococcal protein A. The generated structures are of similar accuracy to those previously reported, which were derived via a conventional approach involving a larger NMR data set. Additional tests were performed on seven reported protein structures of various folds, using restraint lists simulated from the known atomic coordinates.

  2. Nuclear Fragile X Mental Retardation Protein is localized to Cajal bodies.

    Directory of Open Access Journals (Sweden)

    Alain Y Dury

    2013-10-01

    Full Text Available Fragile X syndrome is caused by loss of function of a single gene encoding the Fragile X Mental Retardation Protein (FMRP. This RNA-binding protein, widely expressed in mammalian tissues, is particularly abundant in neurons and is a component of messenger ribonucleoprotein (mRNP complexes present within the translational apparatus. The absence of FMRP in neurons is believed to cause translation dysregulation and defects in mRNA transport essential for local protein synthesis and for synaptic development and maturation. A prevalent model posits that FMRP is a nucleocytoplasmic shuttling protein that transports its mRNA targets from the nucleus to the translation machinery. However, it is not known which of the multiple FMRP isoforms, resulting from the numerous alternatively spliced FMR1 transcripts variants, would be involved in such a process. Using a new generation of anti-FMRP antibodies and recombinant expression, we show here that the most commonly expressed human FMRP isoforms (ISO1 and 7 do not localize to the nucleus. Instead, specific FMRP isoforms 6 and 12 (ISO6 and 12, containing a novel C-terminal domain, were the only isoforms that localized to the nuclei in cultured human cells. These isoforms localized to specific p80-coilin and SMN positive structures that were identified as Cajal bodies. The Cajal body localization signal was confined to a 17 amino acid stretch in the C-terminus of human ISO6 and is lacking in a mouse Iso6 variant. As FMRP is an RNA-binding protein, its presence in Cajal bodies suggests additional functions in nuclear post-transcriptional RNA metabolism. Supporting this hypothesis, a missense mutation (I304N, known to alter the KH2-mediated RNA binding properties of FMRP, abolishes the localization of human FMRP ISO6 to Cajal bodies. These findings open unexplored avenues in search for new insights into the pathophysiology of Fragile X Syndrome.

  3. Angiotensinogen gene-inducible enhancer-binding protein 1, a member of a new family of large nuclear proteins that recognize nuclear factor kappa B-binding sites through a zinc finger motif.

    OpenAIRE

    Ron, D; Brasier, A R; Habener, J F

    1991-01-01

    Transcriptional activation of the rat angiotensinogen gene during the acute-phase response is dependent on a previously characterized acute-phase response element (APRE) that binds at least two types of nuclear proteins: a cytokine-inducible activity indistinguishable from nuclear factor kappa-B (NF kappa B) and a family of C/EBP-like proteins. We screened a rat liver cDNA expression library with a labeled APRE DNA probe and isolated a single clone that encodes a sequence-specific APRE-bindin...

  4. Polymorphism in both X and Y box motifs controls level of expression of HLA-DRB1 genes

    Energy Technology Data Exchange (ETDEWEB)

    Singal, D.P.; Qiu, X. [McMaster Univ., Hamilton, Ontario (Canada)

    1996-06-01

    The HLA class II antigens of the human major histocompatibility complex play an important role in immune response. The quality of the immune response is determined not only by polymorphisms in their coding region, but also by the level of their cell-surface expression which affects, for example, the extent of T-cell activation. We have previously described allelic polymorphisms in the upstream regulatory regions of HLA-DRB genes, which affected DNA-protein interactions and resulted in significantly different promoter strengths. In the present study, we investigated the effect of polymorphisms in the X and Y box motifs on the transcriptional activity of DRB1 gene promoters in the DR1, DR51, and DR53 haplotype groups. We used normal, chimeric, and mutated DRB promoters and compared their relative abilities to initiate transcription of the CAT reporter gene in human B-cell lines. The results show that polymorphisms in both the X1 and Y box motifs play a dominant role in the promoter strength. In the gel mobility shift assay, we observed differential ability of nuclear proteins that bind to the polymorphic X1 and Y box elements. The results in the present study confirm earlier data in that the nucleotide variation in the X1 box affects the level of expression of DRBI genes. In addition, the present data demonstrate that polymorphism in the Y box, which affects the inverted CCAAT sequence, also plays a dominant role in the transcriptional activity of DRB1 promoters. 30 refs., 6 figs.

  5. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China); Zhao, Bo; Kieff, Elliott [Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave., Boston 02115, MA (United States); Peng, Chih-Wen, E-mail: pengcw@mail.tcu.edu.tw [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China)

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  6. Tissue factor pathway inhibitor-2 may interact with nuclear protein RASSF1C

    Institute of Scientific and Technical Information of China (English)

    Xudong Chen; Zhenwu Li; Jin Zhang; Zuohua Mao; Duan Ma; Huijun Wang

    2012-01-01

    Tissue factor pathway inhibitor-2 (TFPI-2) is a 32 kDa matrix-associated Kunitz-type serine proteinase inhibitor consisting of a short amino-terminal region,three tandem Kunitz-type domains,and a positively charged carboxyterminal tail.Human TFPI-2 (hTFPI-2) inhibits a broad spectrum of serine proteinases (including trypsin,plasmin,plasma kallikrein,XIa,and chymotrypsin) almost exclusively via its first Kunitz-type domain,and potentially plays an important role in the regulation of extracellular matrix digestion and remodeling [1].Reduced TFPI-2 synthesis has been related to numerous pathophysiological processes such as inflammation,angiogenesis,atherosclerosis [2,3],retinal degeneration,and tumor growth/metastasis [4-6].It has been suggested that TFPI-2 is a tumor suppressor gene in some cancers [7,8].However,the specific physiological functions of hTFPI-2 in humans are unclear,particularly its interactions with other proteins.To better understand the physiological function of hTFPI-2,we used yeast two-hybrid system screening and bioinformatics analysis to identify its interacting proteins and confirm its interactions with nuclear protein RASSF1C using confocal microscopy and co-immunoprecipitation.

  7. The nuclear protein Sam68 is recruited to the cytoplasmic stress granules during enterovirus 71 infection.

    Science.gov (United States)

    Zhang, Hua; Chen, Ning; Li, Pengfei; Pan, Ziye; Ding, Yun; Zou, Dehua; Li, Liyang; Xiao, Lijie; Shen, Binglei; Liu, Shuxia; Cao, Hongwei; Cui, Yudong

    2016-07-01

    Our previous study found that the nuclear protein, 68-kDa Src-associated in mitosis protein (Sam68), is translocated to the cytoplasm and forms punctate pattern during enterovirus 71 (EV71) infection [Virus Research, 180 (2014), 1-11]. However, the exact function of this punctate pattern in cytoplasm during EV71 infection remains unknown. In this study, we firstly have examined this punctate pattern of Sam68 re-localization in the cytoplasm, and observed the obvious recruitments of Sam68 to the EV71-induced stress granules (SGs). Sam68, belongs to the KH domain family of RNA binding proteins (RBPs), was then confirmed that its KH domain was essential for this recruitment. Nevertheless, Knockdown of Sam68 expression using ShRNA had no effects on SGs assembly, indicating that Sam68 is not a constitutive component of the SGs during EV71 infection. Lastly, we investigated the importance of microtubulin transport to SGs aggregation, and revealed that microtubule depolymerization inhibited SGs formation, suggesting that EV71-induced SGs move throughout the cytoplasm in a microtubule-dependent manner. Taken together, these results illuminated that EV71 infections can induce SGs formation, and Sam68, as a SGs component, migrates alone with SGs dependent on intact microtubule upon the viral infections. These findings may provide novel underlying mechanism for delineating the role of SGs during EV71 infection. PMID:27057671

  8. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  9. Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding.

    Directory of Open Access Journals (Sweden)

    Yao E Wang

    Full Text Available Paramyxoviruses are known to replicate in the cytoplasm and bud from the plasma membrane. Matrix is the major structural protein in paramyxoviruses that mediates viral assembly and budding. Curiously, the matrix proteins of a few paramyxoviruses have been found in the nucleus, although the biological function associated with this nuclear localization remains obscure. We report here that the nuclear-cytoplasmic trafficking of the Nipah virus matrix (NiV-M protein and associated post-translational modification play a critical role in matrix-mediated virus budding. Nipah virus (NiV is a highly pathogenic emerging paramyxovirus that causes fatal encephalitis in humans, and is classified as a Biosafety Level 4 (BSL4 pathogen. During live NiV infection, NiV-M was first detected in the nucleus at early stages of infection before subsequent localization to the cytoplasm and the plasma membrane. Mutations in the putative bipartite nuclear localization signal (NLS and the leucine-rich nuclear export signal (NES found in NiV-M impaired its nuclear-cytoplasmic trafficking and also abolished NiV-M budding. A highly conserved lysine residue in the NLS served dual functions: its positive charge was important for mediating nuclear import, and it was also a potential site for monoubiquitination which regulates nuclear export of the protein. Concordantly, overexpression of ubiquitin enhanced NiV-M budding whereas depletion of free ubiquitin in the cell (via proteasome inhibitors resulted in nuclear retention of NiV-M and blocked viral budding. Live Nipah virus budding was exquisitely sensitive to proteasome inhibitors: bortezomib, an FDA-approved proteasome inhibitor for treating multiple myeloma, reduced viral titers with an IC(50 of 2.7 nM, which is 100-fold less than the peak plasma concentration that can be achieved in humans. This opens up the possibility of using an "off-the-shelf" therapeutic against acute NiV infection.

  10. MitoNuc and MitoAln: two related databases of nuclear genes coding for mitochondrial proteins

    Science.gov (United States)

    Pesole, Graziano; Gissi, Carmela; Catalano, Domenico; Grillo, Giorgio; Licciulli, Flavio; Liuni, Sabino; Attimonelli, Marcella; Saccone, Cecilia

    2000-01-01

    Mitochondria, besides their central role in energy metabolism, have recently been found to be involved in a number of basic processes of cell life and to contribute to the pathogenesis of many degenerative diseases. All functions of mitochondria depend on the interaction of nuclear and organellar genomes. Mitochondrial genomes have been extensively sequenced and analysed and the data collected in several specialised databases. In order to collect information on nuclear coded mitochondrial proteins we developed MitoNuc and MitoAln, two related databases containing, respectively, detailed information on sequenced nuclear genes coding for mitochondrial proteins in Metazoa and yeast, and the multiple alignments of the relevant homologous protein coding regions. MitoNuc and MitoAln retrieval through SRS at http://bio-www.ba.cnr.it:8000/srs6/ can easily allow the extraction of sequence data, subsequences defined by specific features and nucleotide or amino acid multiple alignments. PMID:10592211

  11. Brd4-Mediated Nuclear Retention of the Papillomavirus E2 Protein Contributes to Its Stabilization in Host Cells

    Directory of Open Access Journals (Sweden)

    Jing Li

    2014-01-01

    Full Text Available Papillomavirus E2 is a multifunctional viral protein that regulates many aspects of the viral life cycle including viral episome maintenance, transcriptional activation, and repression. E2 is degraded by the ubiquitin-proteasome pathway. Cellular bromodomain protein Brd4 has been implicated in the stabilization of the E2 protein. E2 normally shuttles between the cytoplasm and the nucleus. In this study, we demonstrate that E2 ubiquitylation mostly occurs in the cytoplasm. We also find that the interaction with Brd4 promotes nuclear retention of papillomavirus E2 proteins and contributes to their stabilization in the nucleus. Compared to wild type E2 proteins, nuclear-localization-defective mutants are rapidly degraded by the ubiquitin-proteasome pathway; however, co-expression of Brd4 redirects these mutants into the nucleus and significantly increases their stability. We further demonstrate that tethering E2 proteins to chromatin as either double-bromodomain fusion proteins or histone 2B (H2B fusion proteins significantly stabilizes the E2 proteins. Our studies suggest that chromatin recruitment of the E2 protein via interaction with Brd4 prevents E2 ubiquitylation and proteasomal degradation in the cytoplasm, leading to its stabilization in the nucleus. These studies bring new insights for understanding Brd4-mediated E2 stabilization, and provide an additional mechanism by which the chromatin-associated Brd4 regulates E2 functions.

  12. Brd4-mediated nuclear retention of the papillomavirus E2 protein contributes to its stabilization in host cells.

    Science.gov (United States)

    Li, Jing; Li, Qing; Diaz, Jason; You, Jianxin

    2014-01-01

    Papillomavirus E2 is a multifunctional viral protein that regulates many aspects of the viral life cycle including viral episome maintenance, transcriptional activation, and repression. E2 is degraded by the ubiquitin-proteasome pathway. Cellular bromodomain protein Brd4 has been implicated in the stabilization of the E2 protein. E2 normally shuttles between the cytoplasm and the nucleus. In this study, we demonstrate that E2 ubiquitylation mostly occurs in the cytoplasm. We also find that the interaction with Brd4 promotes nuclear retention of papillomavirus E2 proteins and contributes to their stabilization in the nucleus. Compared to wild type E2 proteins, nuclear-localization-defective mutants are rapidly degraded by the ubiquitin-proteasome pathway; however, co-expression of Brd4 redirects these mutants into the nucleus and significantly increases their stability. We further demonstrate that tethering E2 proteins to chromatin as either double-bromodomain fusion proteins or histone 2B (H2B) fusion proteins significantly stabilizes the E2 proteins. Our studies suggest that chromatin recruitment of the E2 protein via interaction with Brd4 prevents E2 ubiquitylation and proteasomal degradation in the cytoplasm, leading to its stabilization in the nucleus. These studies bring new insights for understanding Brd4-mediated E2 stabilization, and provide an additional mechanism by which the chromatin-associated Brd4 regulates E2 functions. PMID:24448221

  13. Heterogeneous nuclear ribonucleoprotein A3 is the liver nuclear protein binding to age related increase element RNA of the factor IX gene.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Hamada

    Full Text Available BACKGROUND: In the ASE/AIE-mediated genetic mechanism for age-related gene regulation, a recently identified age-related homeostasis mechanism, two genetic elements, ASE (age-related stability element and AIE (age-related increase element as a stem-loop forming RNA, play critical roles in producing specific age-related expression patterns of genes. PRINCIPAL FINDING: We successfully identified heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3 as a major mouse liver nuclear protein binding to the AIE-derived RNAs of human factor IX (hFIX as well as mouse factor IX (mFIX genes. HnRNP A3 bound to the AIE RNA was not phosphorylated at its Ser(359, while hnRNP A3 in the mouse liver nuclear extracts was a mixture of phosphorylated and unphosphorylated Ser(359. HepG2 cells engineered to express recombinant hFIX transduced with adenoviral vectors harboring an effective siRNA against hnRNP A3 resulted in a substantial reduction in hFIX expression only in the cells carrying a hFIX expression vector with AIE, but not in the cells carrying a hFIX expression vector without AIE. The nuclear hnRNP A3 protein level in the mouse liver gradually increased with age, while its mRNA level stayed age-stable. CONCLUSIONS: We identified hnRNP A3 as a major liver nuclear protein binding to FIX-AIE RNA. This protein plays a critical role in age-related gene expression, likely through an as yet unidentified epigenetic mechanism. The present study assigned a novel functional role to hnRNP A3 in age-related regulation of gene expression, opening up a new avenue for studying age-related homeostasis and underlying molecular mechanisms.

  14. Nuclear (DNA, RNA, histone and non-histone protein) and nucleolar changes during growth and senescence of may apple leaves.

    Science.gov (United States)

    Bhattacharya, P K; Pappelis, A J; Lee, S C; BeMiller, J N; Karagiannis, C S

    1996-12-20

    Quantitative interference microscopy was used to determine changes in nuclear and nucleolar indices (dry mass and cross-sectional area) in upper and lower epidermal cells and adjacent leaf-margin hair cells of the May apple (Podophyllum peltatum L.) leaves over a 42-day period (after leaves emerged above the ground litter). These indices decreased in a highly correlated manner. A ploidy variation may exist between epidermal cells and leaf-margin hair cells. Using the leaf-margin hair cells model, six nuclear macromolecule indices (total nucleic acid, DNA, RNA, total nuclear protein, histone and non-histone protein), nuclear volume, nucleolar volume and perinucleolar volume (measured using quantitative epifluorescence-phase contrast microscopy) all declined with age (42-day study) in a highly correlated manner. The degeneration of the nucleus and nucleolus in the three leaf locations studied followed the patterns observed for programmed cellular senescence and death (necrosis) in epidermal cells of onion leaf bases (stored tissue; leaf bases did not contain chlorophyll) and human epithelial cells (buccal; cervical). We conclude that the epidermal cells and leaf-margin hair cells from green leaves of the May Apple are ideal for the study of programmed cell senescence and death in plants, especially for the partitioning of this process into the study of: the point-of-no-return (solubilization of the karyoskeleton and loss of non-histone proteins and RNA associated with the karyoskeleton from the nucleus); nuclear pycnosis (loss of nuclear dry mass and volume and loss of nuclear internal support structure); chromatin condensation, margination along the inner nuclear envelope; and DNA-histone degeneration; degeneration of the nucleolus and loss of the perinucleolar zone of exclusion. The characterization of chlorenchyma cells during the 42-day period should now be undertaken (leaf senescence as indicated by the beginning of yellowing about 35 days after emergence) to

  15. Nuclear import and dimerization of tomato ASR1, a water stress-inducible protein exclusive to plants.

    Directory of Open Access Journals (Sweden)

    Martiniano M Ricardi

    Full Text Available The ASR (for ABA/water stress/ripening protein family, first described in tomato as nuclear and involved in adaptation to dry climates, is widespread in the plant kingdom, including crops of high agronomic relevance. We show both nuclear and cytosolic localization for ASR1 (the most studied member of the family in histological plant samples by immunodetection, typically found in small proteins readily diffusing through nuclear pores. Indeed, a nuclear localization was expected based on sorting prediction software, which also highlight a monopartite nuclear localization signal (NLS in the primary sequence. However, here we prove that such an "NLS" of ASR1 from tomato is dispensable and non-functional, being the transport of the protein to the nucleus due to simple diffusion across nuclear pores. We attribute such a targeting deficiency to the misplacing in that cryptic NLS of two conserved contiguous lysine residues. Based on previous in vitro experiments regarding quaternary structure, we also carried out live cell imaging assays through confocal microscopy to explore dimer formation in planta. We found homodimers in both the cytosol and the nucleus and demonstrated that assembly of both subunits together can occur in the cytosol, giving rise to translocation of preformed dimers. The presence of dimers was further corroborated by means of in vivo crosslinking of nuclei followed by SDS-PAGE.

  16. Intermolecular masking of the HIV-1 Rev NLS by the cellular protein HIC: novel insights into the regulation of Rev nuclear import.

    LENUS (Irish Health Repository)

    Gu, Lili

    2011-01-01

    The HIV-1 regulatory protein Rev, which is essential for viral replication, mediates the nuclear export of unspliced viral transcripts. Rev nuclear function requires active nucleocytoplasmic shuttling, and Rev nuclear import is mediated by the recognition of its Nuclear Localisation Signal (NLS) by multiple import factors, which include transportin and importin β. However, it remains unclear which nuclear import pathway(s) predominate in vivo, and the cellular environment that modulates Rev nucleocytoplasmic shuttling remains to be characterised.

  17. Nuclear translocation of IQGAP1 protein upon exposure to puromycin aminonucleoside in cultured human podocytes: ERK pathway involvement.

    Science.gov (United States)

    Rigothier, Claire; Saleem, Moin Ahson; Bourget, Chantal; Mathieson, Peter William; Combe, Christian; Welsh, Gavin Iain

    2016-10-01

    IQGAP1, a protein that links the actin cytoskeleton to slit diaphragm proteins, is involved in podocyte motility and permeability. Its regulation in glomerular disease is not known. We have exposed human podocytes to puromycin aminonucleoside (PAN), an inducer of nephrotic syndrome in rats, and studied the effects on IQGAP1 biology and function. In human podocytes exposed to PAN, a nuclear translocation of IQGAP1 was observed by immunocytolocalization and confirmed by Western blot after selective nuclear/cytoplasmic extraction. In contrast to IQGAP1, IQGAP2 expression remained cytoplasmic. IQGAP1 nuclear translocation was associated with a significant decrease in its interaction with nephrin and podocalyxin. Activation of the ERK pathway was observed in PAN treated podocytes with a preponderant nuclear localization of the phosphorylated form of ERK (P-ERK). The interaction between IQGAP1 and P-ERK increased upon podocyte exposure to PAN. Inhibitors of ERK pathway activation blocked IQGAP1 nuclear translocation (pinteraction protein assays demonstrated an interaction of IQGAP1 with chromatin and with Histone H3, which increased in response to PAN. In summary, PAN induces the ERK dependent translocation of IQGAP1 into the nuclei in human podocytes which leads to the interaction of IQGAP1 with chromatin and Histone H3, and decreased interactions between IQGAP1 and slit-diaphragm proteins. Therefore, IQGAP1 may have a role in podocyte gene regulation in glomerular disease. PMID:27377965

  18. Mammalian SUN Protein Interaction Networks at the Inner Nuclear Membrane and Their Role in Laminopathy Disease Processes*

    OpenAIRE

    Haque, Farhana; Mazzeo, Daniela; Patel, Jennifer T; Smallwood, Dawn T.; Ellis, Juliet A; Shanahan, Catherine M.; Shackleton, Sue

    2009-01-01

    The nuclear envelope (NE) LINC complex, in mammals comprised of SUN domain and nesprin proteins, provides a direct connection between the nuclear lamina and the cytoskeleton, which contributes to nuclear positioning and cellular rigidity. SUN1 and SUN2 interact with lamin A, but lamin A is only required for NE localization of SUN2, and it remains unclear how SUN1 is anchored. Here, we identify emerin and short nesprin-2 isoforms as novel nucleoplasmic binding partners of SUN1/2. These have ov...

  19. Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Shauna M. [Cellular and Molecular Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Zhao, Linbo [Doctoral Program in Cancer Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Bosard, Catherine [Department of Microbiology and Immunology University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Imperiale, Michael J., E-mail: imperial@umich.edu [Cellular and Molecular Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Doctoral Program in Cancer Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Department of Microbiology and Immunology University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States)

    2015-01-01

    BK Polyomavirus (BKPyV) is a ubiquitous nonenveloped human virus that can cause severe disease in immunocompromised populations. After internalization into renal proximal tubule epithelial cells, BKPyV traffics through the ER and enters the cytosol. However, it is unclear how the virus enters the nucleus. In this study, we elucidate a role for the nuclear localization signal located on the minor capsid proteins VP2 and VP3 during infection. Site-directed mutagenesis of a single lysine in the basic region of the C-terminus of the minor capsid proteins abrogated their nuclear localization, and the analogous genomic mutation reduced infectivity. Additionally, through use of the inhibitor ivermectin and knockdown of importin β1, we found that the importin α/β pathway is involved during infection. Overall these data are the first to show the significance of the NLS of the BKPyV minor capsid proteins during infection in a natural host cell. - Highlights: • Polyomaviruses must deliver their genome to the nucleus to replicate. • The minor capsid proteins have a well-conserved nuclear localization signal. • Mutation of this NLS diminishes, but does not completely inhibit, infection.

  20. Identification of a nuclear localization motif in the serine/arginine protein kinase PSRPK of physarum polycephalum

    Directory of Open Access Journals (Sweden)

    Tian Shengli

    2009-08-01

    Full Text Available Abstract Background Serine/arginine (SR protein-specific kinases (SRPKs are conserved in a wide range of organisms, from humans to yeast. Studies showed that SRPKs can regulate the nuclear import of SR proteins in cytoplasm, and regulate the sub-localization of SR proteins in the nucleus. But no nuclear localization signal (NLS of SRPKs was found. We isolated an SRPK-like protein PSRPK (GenBank accession No. DQ140379 from Physarum polycephalum previously, and identified a NLS of PSRPK in this study. Results We carried out a thorough molecular dissection of the different domains of the PSRPK protein involved in its nuclear localization. By truncation of PSRPK protein, deletion of and single amino acid substitution in a putative NLS and transfection of mammalian cells, we observed the distribution of PSRPK fluorescent fusion protein in mammalian cells using confocal microscopy and found that the protein was mainly accumulated in the nucleus; this indicated that the motif contained a nuclear localization signal (NLS. Further investigation with truncated PSPRK peptides showed that the NLS (318PKKGDKYDKTD328 was localized in the alkaline Ω-loop of a helix-loop-helix motif (HLHM of the C-terminal conserved domain. If the 318PKKGDK322 sequence was deleted from the loop or K320 was mutated to T320, the PSRPK fluorescent fusion protein could not enter and accumulate in the nucleus. Conclusion This study demonstrated that the 318PKKGDKYDKTD328 peptides localized in the C-terminal conserved domain of PSRPK with the Ω-loop structure could play a crucial role in the NLS function of PSRPK.

  1. Genome-wide Analysis of Kelch Repeat-containing F-box Family

    Institute of Scientific and Technical Information of China (English)

    Yujin Sun; Xiaofan Zhou; Hong Ma

    2007-01-01

    The ubiquitin-dependent protein degradation pathway plays diverse roles in eukaryotes. Previous studies indicate that both F-box and Kelch motifs are common in a variety of organisms. F-box proteins are subunits of E3 ubiquitin ligase complexes called SCFs (SKP1, Cullinl, F-box protein, and Rbx1); they have an N-terminal F-box motif that binds to SKP1 (S-phase kinase associated protein), and often have C-terminal protein-protein interaction domains, which specify the protein substrates for degradation via the ubiquitin pathway. One of the most frequently found protein interaction domains in F-box proteins is the Kelch repeat domain. Although both the F-box and Kelch repeats are ancient motifs, Kelch repeats-containing F-box proteins (KFB) have only been reported for human and Arabidopsis previously. The recent sequencing of the rice genome and other plant genomes provides an opportunity to examine the possible evolution history of KFB. We carried out extensive BLAST searches to identify putative KFBs in selected organisms, and analyzed their relationships phylogenetically. We also carried out the analysis of both gene duplication and gene expression of the KFBs in rice and Arabidopsis. Our study indicates that the origin of KFBs occurs before the divergence of animals and plants, and plant KFBs underwent rapid gene duplications.

  2. A nuclear fraction of turnip crinkle virus capsid protein is important for elicitation of the host resistance response.

    Science.gov (United States)

    Kang, Sung-Hwan; Qu, Feng; Morris, T Jack

    2015-12-01

    The N-terminal 25 amino acids (AAs) of turnip crinkle virus (TCV) capsid protein (CP) are recognized by the resistance protein HRT to trigger a hypersensitive response (HR) and systemic resistance to TCV infection. This same region of TCV CP also contains a motif that interacts with the transcription factor TIP, as well as a nuclear localization signal (NLS). However, it is not yet known whether nuclear localization of TCV CP is needed for the induction of HRT-mediated HR and resistance. Here we present new evidence suggesting a tight correlation between nuclear inclusions formed by CP and the manifestation of HR. We show that a fraction of TCV CP localized to cell nuclei to form discrete inclusion-like structures, and a mutated CP (R6A) known to abolish HR failed to form nuclear inclusions. Notably, TIP-CP interaction augments the inclusion-forming activity of CP by tethering inclusions to the nuclear membrane. This TIP-mediated augmentation is also critical for HR resistance, as another CP mutant (R8A) known to elicit a less restrictive HR, though still self-associated into nuclear inclusions, failed to direct inclusions to the nuclear membrane due to its inability to interact with TIP. Finally, exclusion of CP from cell nuclei abolished induction of HR. Together, these results uncovered a strong correlation between nuclear localization and nuclear inclusion formation by TCV CP and induction of HR, and suggest that CP nuclear inclusions could be the key trigger of the HRT-dependent, yet TIP-reinforced, resistance to TCV.

  3. Comparison of nuclear matrix proteins between gastric cancer and normal gastric tissue

    Institute of Scientific and Technical Information of China (English)

    Qin-Xian Zhang; Yi Ding; Zhuo Li; Xiao-Ping Le; Wei Zhang; Ling Sun; Hui-Rong Shi

    2004-01-01

    AIM: To study the alteration of nuclear matrix proteins (NMPs) in gastric cancer.METHODS: The NMPs extracted from 22 cases of gastric cancer and normal gastric tissues were investigated by SDS-PAGE technique and the data were analyzed using Genetools analysis software.RESULTS: Compared with normal gastric tissue, the expression of 30 ku and 28 ku NMPs in gastric cancer decreased significantly (P=0.002, P=0.001, P<0.05). No significant difference was found in the expression of the two NMPs between the various differentiated grades (P=0.947, P=0.356) and clinical stages of gastric cancer (P=0.920, P=0.243, P>0.05).CONCLUSION: The results suggested that the alteration of NMPs in gastric cancer occurred at the early stage of gastric cancer development.

  4. Mapping of the nuclear localization signals in open reading frame 2 protein from porcine circovirus type 1

    Institute of Scientific and Technical Information of China (English)

    Jiangbing Shuai; Wei Wei; Lingli Jiang; Xiaoliang Li; Ning Chen; Weihuan Fang

    2008-01-01

    Porcine circovirus type 1 (PCV1) contains two major open reading frames encoding the replication-associated proteins and the major structural capsid (Cap) protein.PCV1 Cap has an N-terminus carrying several potential monopartite or bipartite nuclear localization signals (NLS).The contribution of these partially overlapping motifs to nuclear importing was identified by expression of mutated PCV1 Cap versions fused to enhanced green fluorescent protein (EGFP).The Cterminus truncated PCV1 Cap-EGFP was localized in nuclei of PK-15 cells similar to the wild-type PCV1 Cap-EGFP,whereas truncation of the N-terminus rendered the fusion protein distributed into cytoplasm,indicating that the nuclear import of PCV1 Cap was efficiently mediated by its N-terminal region.Substitutions of basic residues in stretches 9RRRR12 or the right part of 25RRPYLAHPAFRNRYRWRRK43 resulted in a diffused distribution of the fusion protein in both nuclei and cytoplasm,indicating that the two NLSs were responsible for restricted nuclear targeting of PCV1 Cap.

  5. Green fluorescent protein (GFP) transgenic pig produced by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    LIU ZhongHua; SUN Shuang; LI YuTian; WANG HongBin; R S PRATHER; SONG Jun; WANG ZhenKun; TIAN JiangTian; KONG QingRan; ZHENG Zhong; YIN Zhi; GAO Li; MA HaiKun

    2008-01-01

    Transgenic somatic cell nuclear transfer is a very promising route for producing transgenic farm ani-mals. Research on GFP transgenic pigs can provide useful information for breeding transgenic pigs, human disease models and human organ xenotransplantation. In this study, a liposomal transfection system was screened and transgenic embryos were reconstructed by nuclear transfer of GFP positive cells into enucleated in vitro matured oocytes. The development of reconstructed embryos both in vitro and in vivo was observed, and GFP expression was determined. The results showed that porcine fe-tal-derived fibroblast cells cultured with 4.0 plJmL liposome and 1.6 pg/mL plasmid DNA for 6 h re-sulted in the highest transfection rate (3.6%). The percentage of GFP reconstructed embryos that de-veloped in vitro to the blastocyst stage was 10%. Of those the GFP positive percentage was 48%. Re-constructed transgenic embryos were transferred to 10 recipients. 5 of them were pregnant, and 3 de-livered 6 cloned piglets in which 4 piglets were transgenic for the GFP as verified by both GFP protein expression and GFP DNA sequence analysis. The percentage of reconstructed embryos that resulted in cloned piglets was 1.0%; while the percentage of piglets that were transgenic was 0.7%. This is the first group of transgenic cloned pigs born in China, marking a great progress in Chinese transgenic cloned pig research.

  6. The Black Box QGP

    CERN Document Server

    Tawfik, A

    2006-01-01

    According to the extensive ab initio calculations of lattice QCD, the much large energy density available in the heavy-ion collisions at SPS and now at RHIC should be enough to create the quark-gluon plasma (QGP); a new state of matter in form plasma of free quarks and gluons. The new matter discovered at RHIC is a ''nearly perfect'' fluid rather than a plasma. The shear viscosity is too small. We should then ask about the theoretical and phenomenological consequences and why we simply assumed that the deconfined hadronic matter should be an ideal gas. Finally, I will address five questions; about the properties of the new phases at high temperatures and the orders of phase transitions. Before we clarify such questions, the QGP will remain a kind of black box. One sends a signal via new experiments or simulations and gets another one out if it. Then one try to explain what is going on. I will show that some promising ideas already have been suggested long time ago, but it seems that community didn't care. Is ...

  7. Black Box QGP

    CERN Document Server

    Tawfik, A

    2006-01-01

    According to extensive ab initio calculations of lattice QCD, the very large energy density available in heavy-ion collisions at SPS and now at RHIC must be sufficient to generate quark-gluon plasma (QGP), a new state of matter in the form of plasma of free quarks and gluons. The new state of matter discovered at RHIC seems to be perfect fluid rather than free plasma. Its shear viscosity is assumed to be almost zero. In this work, I first considered the theoretical and phenomenological consequences of this discovery and finally asked questions about the nature of phase transition and properties of matter. It is important to answer these questions, otherwise QGP will remain a kind of black box; one sends a signal via new experiments or simulations or models and gets another one from it. I will show that some promising ideas have already been suggested a long time ago. I will also suggest a new phase diagram with separated deconfinement and freeze-out boundaries and a mixed state of thermal quark matter and bub...

  8. Nuclear inclusions mimicking poly(A)-binding protein nuclear 1 inclusions in a case of inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia with a novel mutation in the valosin-containing protein gene.

    Science.gov (United States)

    Matsubara, Shiro; Shimizu, Toshio; Komori, Takashi; Mori-Yoshimura, Madoka; Minami, Narihiro; Hayashi, Yukiko K

    2016-07-01

    A middle-aged Japanese man presented with slowly progressive asymmetric weakness of legs and arm but had neither ptosis nor dysphagia. He had a family history of similar condition suggestive of autosomal dominant inheritance. A muscle biopsy showed mixture of neurogenic atrophy and myopathy with rimmed vacuoles. Furthermore we found intranuclear inclusions that had a fine structure mimicking that of inclusions reported in oculopharyngeal muscular dystrophy (OPMD). Immunohistochemical staining for polyadenylate-binding nuclear protein 1, which is identified within the nuclear inclusions of OPMD, demonstrated nuclear positivity in this case. However, OPMD was thought unlikely based on the clinical features and results of genetic analyses. Instead, a novel mutation in valosin-containing protein, c.376A>T (p.Ile126Phe), was revealed. A diagnosis of inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia was made. This is the first report of polyadenylate-binding nuclear protein 1-positive nuclear inclusions in the muscle of this condition. PMID:27209344

  9. Loss of Hda activity stimulates replication initiation from I-box, but not R4 mutant origins in Escherichia coli

    DEFF Research Database (Denmark)

    Riber, Leise; Fujimitsu, K.; Katayama, T.;

    2009-01-01

    Initiation of chromosome replication in Escherichia coli is limited by the initiator protein DnaA associated with ATP. Within the replication origin, binding sites for DnaA associated with ATP or ADP (R boxes) and the DnaA(ATP) specific sites (I-boxes, tau-boxes and 6-mer sites) are found. We...

  10. Sub-nuclear distribution and mobility of nuclear proteins involved in histone acetylation and pre-mRNA splicing

    International Nuclear Information System (INIS)

    The mitotic relationship between levels of highly acetylated chromatin, chromatin condensation, and HAT/HDAC organization was examined. HATs and HDACs were found to dissociate from chromosomes along with a loss of highly acetylated histones in condensed chromatin in mitosis. We demonstrate that, rather than being enzymatically inactivated, HAT and HDAC activities are decreased in mitosis because the enzymes are sequestered to a non-chromatin domain. Highly acetylated histone species reappear coincident with the reassociation of HATs and HDACs in late telophase/early interphase and before reinitiation of transcription. We propose that HATs and HDACs are spatially regulated through the cell cycle and that this regulation influences which chromatin domains are available for acetylation and deacetylation. We examined the movement of a splicing factor, ASF, green fluorescent fusion protein (ASF:GFP) using timelapse microscopy and the technique fluorescence recovery after photobleaching (FRAP). We found that ASF:GFP moves significantly slower than free diffusion when it is associated with speckles and, surprisingly, also when it is dispersed in the nucleoplasm. The mobility of ASF is consistent with frequent but transient interactions with relatively immobile nuclear binding sites. This mobility is slightly increased in the presence of transcription inhibitors and the ASF molecules further enrich in speckles. We propose that the nonrandom organization of splicing factors reflects spatial differences in the concentration of relatively immobile binding sites. Through a careful analysis of HDAC4 expression we found that HDAC4-containing MAD bodies are not a consistent component of the interphase nucleus. By comparing MAD bodies to PML bodies we found that the assembly, maintenance and distribution of PML bodies is regulated. We investigated the involvement of chromatin condensation in establishing mitotic transcription repression, by analyzing transcriptional activity in

  11. A Peptide Mimicking a Region in Proliferating Cell Nuclear Antigen Specific to Key Protein Interactions Is Cytotoxic to Breast Cancer

    OpenAIRE

    Smith, Shanna J.; Gu, Long; Phipps, Elizabeth A.; Lacey E Dobrolecki; Mabrey, Karla S.; Gulley, Pattie; Dillehay, Kelsey L; Dong, Zhongyun; Fields, Gregg B.; Chen, Yun-Ru; Ann, David; Hickey, Robert J.; Malkas, Linda H.

    2015-01-01

    Proliferating cell nuclear antigen (PCNA) is a highly conserved protein necessary for proper component loading during the DNA replication and repair process. Proteins make a connection within the interdomain connector loop of PCNA, and much of the regulation is a result of the inherent competition for this docking site. If this target region of PCNA is modified, the DNA replication and repair process in cancer cells is potentially altered. Exploitation of this cancer-associated region has imp...

  12. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity

    DEFF Research Database (Denmark)

    Bindesbøll, Christian; Fan, Qiong; Nørgaard, Rikke C;

    2015-01-01

    Liver X receptor (LXR)α and LXRβ play key roles in hepatic de novo lipogenesis through their regulation of lipogenic genes, including sterol regulatory element-binding protein (SREBP)-1c and carbohydrate responsive element-binding protein (ChREBP). LXRs activate lipogenic gene transcription...... metabolic sensors upstream of ChREBP by modulating GK expression, nuclear O-GlcNAc signaling, and ChREBP expression and activity....

  13. The correlation research of the relationship between high mobility group protein box 1 and orthodontic tooth movement%高速泳动族蛋白盒1与正畸牙移动的相关性研究

    Institute of Scientific and Technical Information of China (English)

    彭昕欣

    2012-01-01

    正畸牙受矫治力作用后,其牙周组织将发生一系列的生物化学反应,多种细胞因子和激素参与了反应的整个过程.高速泳动族蛋白盒1(HMGB1)是一种重要的晚期炎症因子,参与骨组织改建并与成纤维细胞相互作用,据此推测其可能参与正畸牙移动过程中的牙周组织改建.本文就HMGB1与炎症反应、骨组织改建、成纤维细胞、牙周炎,正畸牙移动的生物学基础等研究现状作一综述.%A series of biochemical reaction happened in the periodontal tissue during orthodontic tooth movement, varies cytokine and hormone participate in the process. High mobility group protein box 1 (HMGB1) is an important late inflammatory mediator. In recent years, researches have made to find that HMGB1 was involved in the remolding and metabolism of bone and can interacted with fibroblast. Because of the biological effect, we can speculate that HMGB1 may play an important role in the remolding of periodontal tissue during orthodontic tooth movement. This review focused on the relationship between HMGB1 and orthodontic tooth movement.

  14. Two-dimensional box plot

    OpenAIRE

    Phattrawan Tongkumchum

    2005-01-01

    In this paper we propose a two-dimensional box plot, a simple bivariate extension of the box plot and the scatter plot. This plot comprises a pair of trapeziums oriented in the direction of a fitted straight line, with symbols denoting extreme values. The choice for the fitted straight resistant line showing the relationship between the two variables is Tukey’s resistance line. The main components of the plot are an inner box containing 50% of the projection points of the observations on the ...

  15. Identification and Characterization of Nuclear Localization Signals within the Nucleocapsid Protein VP15 of White Spot Syndrome Virus

    Institute of Scientific and Technical Information of China (English)

    Li-juan LI; Hua-jun ZHANG; Cong ZHANG; Zheng-li SHI

    2009-01-01

    The nucleocapsid protein VP15 of white spot syndrome virus (WSSV) is a basic DNA-binding protein. Three canonical bipartite nuclear localization signals (NLSs), called NLS1 (aa 11-27), NLS2 (aa 33-49) and NLS3 (44-60), have been detected in this protein, using the ScanProsite computer program. To determine the nuclear localization sequence of VP15, the full-length open reading frame, or the sequence of one of the three NLSs, was fused to the green fluorescent protein (GFP) gene, and transiently expressed in insect Sf9 cells. Transfection with full-length VP15 resulted in GFP fluorescence being distributed exclusively in the nucleus. NLS 1 alone could also direct GFP to the nucleus, but less efficiently. Neither of the other two NLSs (NLS2 and 3) was functional when expressed alone, but exhibited similar activity to NLS1 when they were expressed as a fusion peptide. Furthermore, a mutated VP15, in which the two basic amino acids (11RR12) of NLSI were changed to two alanines (11AA12), caused GFP to be localized only in the cytoplasm of Sf9 cells. These results demonstrated that VP15, as a nuclear localization protein, needs cooperation between its three NLSs, and that the two residues (11RR12) of NLS1 play a key role in transporting the protein to the nucleus.

  16. SU-E-J-61: Electrodynamics and Nano-Scale Fluid Dynamics in Protein Localization of Nuclear Pore Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, J; Gatenby, R [Moffitt Cancer Research Institute, Tampa, FL (United States)

    2014-06-01

    Purpose: To develop a simulation to catalyze a reevaluation of common assumptions about 3 dimensional diffusive processes and help cell biologists gain a more nuanced, intuitive understanding of the true physical hurdles of protein signaling cascades. Furthermore, to discuss the possibility of intracellular electrodynamics as a critical, unrecognized component of cellular biology and protein dynamics that is necessary for optimal information flow from the cell membrane to the nucleus. Methods: The Unity 3D gaming physics engine was used to build an accurate virtual scale model of the cytoplasm within a few hundred nanometers of the nuclear membrane. A cloud of simulated pERK proteins is controlled by the physics simulation, where diffusion is based on experimentally measured values and the electrodynamics are based on theoretical nano-fluid dynamics. The trajectories of pERK within the cytoplasm and through the 1250 nuclear pores on the nuclear surface is recorded and analyzed. Results: The simulation quickly demonstrates that pERKs moving solely by diffusion will rarely locate and come within capture distance of a nuclear pore. The addition of intracellular electrodynamics between charges on the nuclear pore complexes and on pERKs increases the number of successful translocations by allowing the electro-physical attractive effects to draw in pERKs from the cytoplasm. The effects of changes in intracellular shielding ion concentrations allowed for estimation of the “capture radius” under varying conditions. Conclusion: The simulation allows a shift in perspective that is paramount in attempting to communicate the scale and dynamics of intracellular protein cascade mechanics. This work has allowed researchers to more fully understand the parameters involved in intracellular electrodynamics, such as shielding anion concentration and protein charge. As these effects are still far below the spatial resolution of currently available measurement technology this

  17. Genome-wide promoter binding profiling of protein phosphatase-1 and its major nuclear targeting subunits.

    Science.gov (United States)

    Verheyen, Toon; Görnemann, Janina; Verbinnen, Iris; Boens, Shannah; Beullens, Monique; Van Eynde, Aleyde; Bollen, Mathieu

    2015-07-13

    Protein phosphatase-1 (PP1) is a key regulator of transcription and is targeted to promoter regions via associated proteins. However, the chromatin binding sites of PP1 have never been studied in a systematic and genome-wide manner. Methylation-based DamID profiling in HeLa cells has enabled us to map hundreds of promoter binding sites of PP1 and three of its major nuclear interactors, i.e. RepoMan, NIPP1 and PNUTS. Our data reveal that the α, β and γ isoforms of PP1 largely bind to distinct subsets of promoters and can also be differentiated by their promoter binding pattern. PP1β emerged as the major promoter-associated isoform and shows an overlapping binding profile with PNUTS at dozens of active promoters. Surprisingly, most promoter binding sites of PP1 are not shared with RepoMan, NIPP1 or PNUTS, hinting at the existence of additional, largely unidentified chromatin-targeting subunits. We also found that PP1 is not required for the global chromatin targeting of RepoMan, NIPP1 and PNUTS, but alters the promoter binding specificity of NIPP1. Our data disclose an unexpected specificity and complexity in the promoter binding of PP1 isoforms and their chromatin-targeting subunits. PMID:25990731

  18. The insulator protein SU(HW fine-tunes nuclear lamina interactions of the Drosophila genome.

    Directory of Open Access Journals (Sweden)

    Joke G van Bemmel

    Full Text Available Specific interactions of the genome with the nuclear lamina (NL are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that the Drosophila genome is also organized in discrete LADs, which are about five times smaller than human LADs but contain on average a similar number of genes. Systematic comparison to new and published insulator binding maps shows that only SU(HW binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW weakens genome - NL interactions through a local antagonistic effect, but we did not obtain evidence that it is essential for border formation. Our results provide insights into the evolution of LAD organization and identify SU(HW as a fine-tuner of genome - NL interactions.

  19. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA)

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick; Bang, Jiyoung; Kim, Eun-A; Sung, Ki Sa [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoon, Hyun-Joo [TissueGene Inc. 9605 Medical Center Dr., Rockville, MD 20850 (United States); Yoo, Hae Yong [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of); Choi, Cheol Yong, E-mail: choicy@skku.ac.kr [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-01-03

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.

  20. Structure–function–folding relationships and native energy landscape of dynein light chain protein: nuclear magnetic resonance insights

    Indian Academy of Sciences (India)

    P M Krishna Mohan; Ramakrishna V Hosur

    2009-09-01

    The detailed characterization of the structure, dynamics and folding process of a protein is crucial for understanding the biological functions it performs. Modern biophysical and nuclear magnetic resonance (NMR) techniques have provided a way to obtain accurate structural and thermodynamic information on various species populated on the energy landscape of a given protein. In this context, we review here the structure–function–folding relationship of an important protein, namely, dynein light chain protein (DLC8). DLC8, the smallest subunit of the dynein motor complex, acts as a cargo adaptor. The protein exists as a dimer under physiological conditions and dissociates into a pure monomer below pH 4. Cargo binding occurs at the dimer interface. Dimer stability and relay of perturbations through the dimer interface are anticipated to be playing crucial roles in the variety of functions the protein performs. NMR investigations have provided great insights into these aspects of DLC8 in recent years.

  1. A novel bipartite nuclear localization signal guides BPM1 protein to nucleolus suggesting its Cullin3 independent function.

    Directory of Open Access Journals (Sweden)

    Dunja Leljak Levanić

    Full Text Available BPM1 belongs to the MATH-BTB family of proteins, which act as substrate-binding adaptors for the Cullin3-based E3 ubiquitin ligase. MATH-BTB proteins associate with Cullin3 via the BTB domain and with the substrate protein via the MATH domain. Few BPM1-interacting proteins with different functions are recognized, however, specific roles of BPM1, depending on its cellular localization have not been studied so far. Here, we found a novel bipartite nuclear localization signal at the C-terminus of the BPM1 protein, responsible for its nuclear and nucleolar localization and sufficient to drive the green fluorescent protein and cytoplasmic BPM4 protein into the nucleus. Co-localization analysis in live Nicotiana tabacum BY2 cells indicates a Cullin3 independent function since BPM1 localization is predominantly nucleolar and thus devoid of Cullin3. Treatment of BY2 cells with the proteasome inhibitor MG132 blocks BPM1 and Cullin3 degradation, suggesting turnover of both proteins through the ubiquitin-proteasome pathway. Possible roles of BPM1 in relation to its in vivo localization are discussed.

  2. Identification of interacting proteins of retinoid-related orphan nuclear receptor gamma in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Ze-Min Huang1,#, Jun Wu2,#, Zheng-Cai Jia1, Yi Tian1, Jun Tang3, Yan Tang1, Ying Wang2, Yu-Zhang Wu1,* & Bing Ni1,*

    2012-06-01

    Full Text Available The retinoid-related orphan nuclear receptor gamma (RORγplays critical roles in regulation of development, immunity andmetabolism. As transcription factor usually forms a proteincomplex to function, thus capturing and dissecting of theRORγ protein complex will be helpful for exploring themechanisms underlying those functions. After construction ofthe recombinant tandem affinity purification (TAP plasmid,pMSCVpuro RORγ-CTAP(SG, the nuclear localization ofRORγ-CTAP(SG fusion protein was verified. Followingisolation of RORγ protein complex by TAP strategy, sevencandidate interacting proteins were identified. Finally, the heatshock protein 90 (HSP90 and receptor-interacting protein 140(RIP140 were confirmed to interplay with RORγ byco-immunoprecipitation. Interference of HSP90 or/and RIP140genes resulted in dramatically decreased expression ofCYP2C8 gene, the RORγ target gene. Data from this studydemonstrate that HSP90 and RIP140 proteins interact withRORγ protein in a complex format and function asco-activators in the RORγ-mediated regulatory processes ofHepG2 cells.

  3. 20-Hydroxyecdysone stimulates nuclear accumulation of BmNep1, a nuclear ribosome biogenesis-related protein in the silkworm, Bombyx mori.

    Science.gov (United States)

    Ji, M-M; Liu, A-Q; Sima, Y-H; Xu, S-Q

    2016-10-01

    The pathway of communication between endocrine hormones and ribosome biogenesis critical for physiological adaptation is largely unknown. Nucleolar essential protein 1 (Nep1) is an essential gene for ribosome biogenesis and is functionally conserved in many in vertebrate and invertebrate species. In this study, we cloned Bombyx mori Nep1 (BmNep1) due to its high expression in silk glands of silkworms on day 3 of the fifth instar. We found that BmNep1 mRNA and protein levels were upregulated in silk glands during fourth-instar ecdysis and larval-pupal metamorphosis. By immunoprecipitation with the anti-BmNep1 antibody and liquid chromatography-tandem mass spectrometry analyses, it was shown that BmNep1 probably interacts with proteins related to ribosome structure formation. Immunohistochemistry, biochemical fractionation and immunocytochemistry revealed that BmNep1 is localized to the nuclei in Bombyx cells. Using BmN cells originally derived from ovaries, we demonstrated that 20-hydroxyecdysone (20E) induced BmNep1 expression and stimulated nuclear accumulation of BmNep1. Under physiological conditions, BmNep1 was also upregulated in ovaries during larval-pupal metamorphosis. Overall, our results indicate that the endocrine hormone 20E facilitates nuclear accumulation of BmNep1, which is involved in nuclear ribosome biogenesis in Bombyx. PMID:27329527

  4. Ancestry and diversity of the HMG box superfamily

    OpenAIRE

    Laudet, V; Stehelin, D.; Clevers, J.C.

    1993-01-01

    The HMG box is a novel type of DNA-binding domain found in a diverse group of proteins. The HMG box superfamily comprises a.o. the High Mobility Group proteins HMG1 and HMG2, the nucleolar transcription factor UBF, the lymphoid transcription factors TCF-1 and LEF-1, the fungal mating-type genes mat-Mc and MATA1, and the mammalian sex-determining gene SRY. The superfamily dates back to at least 1,000 million years ago, as its members appear in animals, plants and yeast. Alignment of all known ...

  5. Sde2: A novel nuclear protein essential for telomeric silencing and genomic stability in Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka-Sugiyama, Rie [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Initiative for the Promotion of Young Scientists' Independent Research, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugiyama, Tomoyasu, E-mail: sugiyamt@biol.tsukuba.ac.jp [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Initiative for the Promotion of Young Scientists' Independent Research, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan)

    2011-03-18

    Research highlights: {yields} Sde2 is essential for telomere silencing. {yields} Sde2 is involved in the maintenance of genomic stability. {yields} Sde2 promotes the recruitment of SHREC, a histone deacetylase complex, to telomeres. -- Abstract: Telomeres, specialized domains assembled at the ends of linear chromosomes, are essential for genomic stability in eukaryotes. The formation and maintenance of telomeres are governed by numerous factors such as telomeric repeats, telomere-binding proteins, heterochromatin proteins, and telomerase. Here, we report Sde2, a novel nuclear protein essential for telomeric silencing and genomic stability in the fission yeast Schizosaccharomyces pombe. A deficiency in sde2 results in the derepression of the ura4{sup +} gene inserted near telomeric repeats, and the noncoding transcripts from telomeric regions accumulate in sde2{Delta} cells. The loss of Sde2 function compromises transcriptional silencing at telomeres, and this silencing defect is accompanied by increased levels of acetylated histone H3K14 and RNA polymerase II occupancy at telomeres as well as reduced recruitment of the SNF2 ATPase/histone deacetylase-containing complex SHREC to telomeres. Deletion of sde2 also leads to a higher frequency of mitotic minichromosome loss, and sde2{Delta} cells often form asci that contain spores in abnormal numbers, shapes, or both. In addition, sde2{Delta} cells are highly sensitive to several stresses, including high/low temperatures, bleomycin, which induces DNA damage, and thiabendazole, a microtubule-destabilizing agent. Furthermore, Sde2 genetically interacts with the telomere regulators Taz1, Pof3, and Ccq1. These findings demonstrate that Sde2 cooperates with other telomere regulators to maintain functional telomeres, thereby preventing genomic instability.

  6. Characterization of a novel Dp71 dystrophin-associated protein complex (DAPC) present in the nucleus of HeLa cells: Members of the nuclear DAPC associate with the nuclear matrix

    International Nuclear Information System (INIS)

    Dystrophin is an essential component in the assembly and maintenance of the dystrophin-associated protein complex (DAPC), which includes members of the dystroglycan, syntrophin, sarcoglycan and dystrobrevin protein families. Distinctive complexes have been described in the cell membrane of different tissues and cultured cells. In this work, we report the identification and characterization of a novel DAPC present in the nuclei of HeLa cells, which contains dystrophin Dp71 as a key component. Using confocal microscopy and cell fractionation analyses, we found the presence of Dp71, β-sarcoglycan, β-dystroglycan, α- and β-syntrophin, α1- and β-dystrobrevin and nNOS in the nuclei of HeLa cells. Furthermore, we demonstrated by co-immunoprecipitation experiments that most of these proteins form a complex in the nuclear compartment. Next, we analyze the possible association of the nuclear DAPC with the nuclear matrix. We found the presence of Dp71, β-dystroglycan, nNOS, β-sarcoglycan, α/β syntrophin, α1-dystrobrevin and β-dystrobrevin in the nuclear matrix protein fractions and in situ nuclear matrix preparations from HeLa cells. Moreover, we found that Dp71, β-dystroglycan and β-dystrobrevin co-immunoprecipitated with the nuclear matrix proteins lamin B1 and actin. The association of members of the nuclear DAPC with the nuclear matrix indicates that they may work as scaffolding proteins involved in nuclear architecture

  7. Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes

    Directory of Open Access Journals (Sweden)

    Sarit Anavi

    2015-04-01

    Full Text Available Accumulating evidence suggests that fatty livers are particularly more susceptible to several pathological conditions, including hepatic inflammation, cirrhosis and liver cancer. However the exact mechanism of such susceptibility is still largely obscure. The current study aimed to elucidate the effect of hepatocytes lipid accumulation on the nuclear electrophilic stress. Accumulation of intracellular lipids was significantly increased in HepG2 cells incubated with fatty acid (FA complex (1 mM, 2:1 oleic and palmitic acids. In FA-treated cells, lipid droplets were localized around the nucleus and seemed to induce mechanical force, leading to the disruption of the nucleus morphology. Level of reactive oxygen species (ROS was significantly increased in FA-loaded cells and was further augmented by treatment with moderate stressor (CoCl2. Increased ROS resulted in formation of reactive carbonyls (aldehydes and ketones, derived from lipid peroxidation with a strong perinuclear accumulation. Mass-spectroscopy analysis indicated that lipid accumulation per-se can results in modification of nuclear protein by reactive lipid peroxidation products (oxoLPP. 235 Modified proteins involved in transcription regulation, splicing, protein synthesis and degradation, DNA repair and lipid metabolism were identified uniquely in FA-treated cells. These findings suggest that steatosis can affect nuclear redox state, and induce modifications of nuclear proteins by reactive oxoLPP accumulated in the perinuclear space upon FA-treatment.

  8. A Dual Mechanism Controls Nuclear Localization in the Atypical Basic-Helix-Loop-Helix Protein PAR1 of Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Anahit Galstyan; Jordi Bou-Torrent; Irma Roig-Villanova; Jaime F. Martínez-García

    2012-01-01

    PAR1 is an atypical basic-helix-loop-helix (bHLH) protein that negatively regulates the shade avoidance syndrome in Arabidopsis thaliana acting as a transcriptional cofactor.Consistently with this function,PAR1 has to be in the nucleus to display biological activity.Previous structure-function analyses revealed that the N-terminal region of PAR1 drives the protein to the nucleus.However,truncated forms of PAR1 lacking this region still display biological activity,implying that PAR1 has additional mechanisms to localize into the nucleus.In this work,we compared the primary structure of PAR1 and various related and unrelated plant bHLH proteins,which led us to suggest that PAR1 contains a non-canonical nuclear localization signal (NLS) in the N-terminal region.By overexpressing truncated and mutated derivatives of PAR1,we have also investigated the importance of other regions of PAR1,such as the acidic and the extended HLH dimerization domains,for its nuclear localization.We found that,in the absence of the N-terminal region,a functional HLH domain is required for nuclear localization.Our results suggest the existence of a dual mechanism for PAR1 nuclear localization:(1) one mediated by the N-terminal non-consensus NLS and (2) a second one that involves interaction with other proteins via the dimerization domain.

  9. Use of spin labels to study membrane proteins by high-frequency electron nuclear double resonance spectroscopy

    NARCIS (Netherlands)

    Orlinkskii, S.B.; Borovykh, I.V.; Zielke, V.; Steinhoff, H.J.

    2007-01-01

    The applicability of spin labels to study membrane proteins by high-frequency electron nuclear double resonance spectroscopy is demonstrated. With the use of bacteriorhodopsin embedded in a lipid membrane as an example, the spectra of protons of neighboring amino acids are recorded, electric field g

  10. Computing out of the Box

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Baidu unveils "box computing/’ which it hopes will lead to a number of innovations on the InternetBaidu, China’s most popular search engine, held its Technology Innovation Conference 2009 at the China World

  11. Rhinovirus 3C protease facilitates specific nucleoporin cleavage and mislocalisation of nuclear proteins in infected host cells.

    Directory of Open Access Journals (Sweden)

    Erin J Walker

    Full Text Available Human Rhinovirus (HRV infection results in shut down of essential cellular processes, in part through disruption of nucleocytoplasmic transport by cleavage of the nucleoporin proteins (Nups that make up the host cell nuclear pore. Although the HRV genome encodes two proteases (2A and 3C able to cleave host proteins such as Nup62, little is known regarding the specific contribution of each. Here we use transfected as well as HRV-infected cells to establish for the first time that 3C protease is most likely the mediator of cleavage of Nup153 during HRV infection, while Nup62 and Nup98 are likely to be targets of HRV2A protease. HRV16 3C protease was also able to elicit changes in the appearance and distribution of the nuclear speckle protein SC35 in transfected cells, implicating it as a key mediator of the mislocalisation of SC35 in HRV16-infected cells. In addition, 3C protease activity led to the redistribution of the nucleolin protein out of the nucleolus, but did not affect nuclear localisation of hnRNP proteins, implying that complete disruption of nucleocytoplasmic transport leading to relocalisation of hnRNP proteins from the nucleus to the cytoplasm in HRV-infected cells almost certainly requires 2A in addition to 3C protease. Thus, a specific role for HRV 3C protease in cleavage and mislocalisation of host cell nuclear proteins, in concert with 2A, is implicated for the first time in HRV pathogenesis.

  12. Functional characterization of nuclear localization and export signals in hepatitis C virus proteins and their role in the membranous web.

    Directory of Open Access Journals (Sweden)

    Aviad Levin

    Full Text Available The hepatitis C virus (HCV is a positive strand RNA virus of the Flavivirus family that replicates in the cytoplasm of infected hepatocytes. Previously, several nuclear localization signals (NLS and nuclear export signals (NES have been identified in HCV proteins, however, there is little evidence that these proteins travel into the nucleus during infection. We have recently shown that nuclear pore complex (NPC proteins (termed nucleoporins or Nups are present in the membranous web and are required during HCV infection. In this study, we identify a total of 11 NLS and NES sequences in various HCV proteins. We show direct interactions between HCV proteins and importin α5 (IPOA5/kapα1, importin β3 (IPO5/kap β3, and exportin 1 (XPO1/CRM1 both in-vitro and in cell culture. These interactions can be disrupted using peptides containing the specific NLS or NES sequences of HCV proteins. Moreover, using a synchronized infection system, we show that these peptides inhibit HCV infection during distinct phases of the HCV life cycle. The inhibitory effects of these peptides place them in two groups. The first group binds IPOA5 and inhibits infection during the replication stage of HCV life cycle. The second group binds IPO5 and is active during both early replication and early assembly. This work delineates the entire life cycle of HCV and the active involvement of NLS sequences during HCV replication and assembly. Given the abundance of NLS sequences within HCV proteins, our previous finding that Nups play a role in HCV infection, and the relocation of the NLS double-GFP reporter in HCV infected cells, this work supports our previous hypothesis that NPC-like structures and nuclear transport factors function in the membranous web to create an environment conducive to viral replication.

  13. The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein.

    Science.gov (United States)

    Rodríguez-Concepción, M; Yalovsky, S; Zik, M; Fromm, H; Gruissem, W

    1999-04-01

    Post-translational attachment of isoprenyl groups to conserved cysteine residues at the C-terminus of a number of regulatory proteins is important for their function and subcellular localization. We have identified a novel calmodulin, CaM53, with an extended C-terminal basic domain and a CTIL CaaX-box motif which are required for efficient prenylation of the protein in vitro and in vivo. Ectopic expression of wild-type CaM53 or a non-prenylated mutant protein in plants causes distinct morphological changes. Prenylated CaM53 associates with the plasma membrane, but the non-prenylated mutant protein localizes to the nucleus, indicating a dual role for the C-terminal domain. The subcellular localization of CaM53 can be altered by a block in isoprenoid biosynthesis or sugar depletion, suggesting that CaM53 activates different targets in response to metabolic changes. Thus, prenylation of CaM53 appears to be a novel mechanism by which plant cells can coordinate Ca2+ signaling with changes in metabolic activities.

  14. Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Masumi, E-mail: masumi.eto@jefferson.edu [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Kirkbride, Jason A.; Chugh, Rishika; Karikari, Nana Kofi [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Kim, Jee In [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 700-422 (Korea, Republic of)

    2013-04-26

    Highlights: •Non-canonical roles of the myosin phosphatase inhibitor (CPI-17) were studied. •CPI-17 is localized in the nucleus of hyperplastic cancer and smooth muscle cells. •CPI-17 Ser12 phosphorylation may regulate the nuclear import. •CPI-17 regulates histone H3 phosphorylation and cell proliferation. •The nuclear CPI-17-PP1 axis plays a proliferative role in cells. -- Abstract: CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17 kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentrated in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear import. CPI-17 phosphorylated at Ser12 was not localized at nuclei, suggesting a suppressive role of Ser12 phosphorylation in the nuclear import. Activated CPI-17 bound to all three isoforms of PP1 catalytic subunit in Panc1 nuclear extracts. CPI-17 knockdown in Panc1 resulted in dephosphorylation of histone H3 at Thr3, Ser10 and Thr11, whereas it had no effects on the phosphorylation of myosin light chain and merlin, the known targets of MLCP. In parallel, CPI-17 knockdown suppressed Panc1 proliferation. We propose that CPI-17 accumulated in the nucleus through the N-terminal tail targets multiple PP1 signaling pathways regulating cell proliferation.

  15. Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells

    International Nuclear Information System (INIS)

    Highlights: •Non-canonical roles of the myosin phosphatase inhibitor (CPI-17) were studied. •CPI-17 is localized in the nucleus of hyperplastic cancer and smooth muscle cells. •CPI-17 Ser12 phosphorylation may regulate the nuclear import. •CPI-17 regulates histone H3 phosphorylation and cell proliferation. •The nuclear CPI-17-PP1 axis plays a proliferative role in cells. -- Abstract: CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17 kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentrated in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear import. CPI-17 phosphorylated at Ser12 was not localized at nuclei, suggesting a suppressive role of Ser12 phosphorylation in the nuclear import. Activated CPI-17 bound to all three isoforms of PP1 catalytic subunit in Panc1 nuclear extracts. CPI-17 knockdown in Panc1 resulted in dephosphorylation of histone H3 at Thr3, Ser10 and Thr11, whereas it had no effects on the phosphorylation of myosin light chain and merlin, the known targets of MLCP. In parallel, CPI-17 knockdown suppressed Panc1 proliferation. We propose that CPI-17 accumulated in the nucleus through the N-terminal tail targets multiple PP1 signaling pathways regulating cell proliferation

  16. Identifying competencies of boxing coaches

    OpenAIRE

    Ioannis Tasiopoulos; Alexandra Tripolitsiot; Apostolos Stergioula

    2014-01-01

    The purpose of this study was to find out the management skills required by boxing coaches to administrate their clubs. For the purposes of this study a scale was constructed which was answered by 98 boxing coaches. Explanatory factor analysis revealed seven factors: Communication-public relations (5 items), event management (4 items), management techniques (4 items), new technologies (4 items), prevention-safety (2 items), sport (5 items) and sports facilities (2 items). The Cronbach of the ...

  17. Fermi hypernetted chain calculations in a periodic box

    International Nuclear Information System (INIS)

    The Fermi hypernetted chain theory is reformulated to perform calculations with a finite number of fermions in a periodic box. The proposed method is expected to be useful to estimate the finite size effects in Quantum Monte Carlo simulations. Moreover, it can deal with anisotropic correlations as well as with different shaped boxes. Results are given for the neutron matter Bethe homework Hamiltonian and for nuclear matter with spin-isospin dependent central interactions. It is found that finite size effects come from both the kinetic and the potential energy expectation values

  18. KIFC1-like motor protein associates with the cephalopod manchette and participates in sperm nuclear morphogenesis in Octopus tankahkeei.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available BACKGROUND: Nuclear morphogenesis is one of the most fundamental cellular transformations taking place during spermatogenesis. In rodents, a microtubule-based perinuclear structure, the manchette, and a C-terminal kinesin motor KIFC1 are believed to play crucial roles in this process. Spermatogenesis in Octopus tankahkeei is a good model system to explore whether evolution has created a cephalopod prototype of mammalian manchette-based and KIFC1-dependent sperm nuclear shaping machinery. METHODOLOGY/PRINCIPAL FINDINGS: We detected the presence of a KIFC1-like protein in the testis, muscle, and liver of O. tankahkeei by Western Blot. Then we tracked its dynamic localization in spermatic cells at various stages using Immunofluorescence and Immunogold Electron Microscopy. The KIFC1-like protein was not expressed at early stages of spermatogenesis when no significant morphological changes occur, began to be present in early spermatid, localized around and in the nucleus of intermediate and late spermatids where the nucleus was dramatically elongated and compressed, and concentrated at one end of final spermatid. Furthermore, distribution of the motor protein during nuclear elongation and condensation overlapped with that of the cephalopod counterpart of manchette at a significant level. CONCLUSIONS/SIGNIFICANCE: The results support the assumption that the protein is actively involved in sperm nuclear morphogenesis in O. tankahkeei possibly through bridging the manchette-like perinuclear microtubules to the nucleus and assisting in the nucleocytoplasmic trafficking of specific cargoes. This study represents the first description of the role of a motor protein in sperm nuclear shaping in cephalopod.

  19. Leukemia-Associated Nup214 Fusion Proteins Disturb the XPO1-Mediated Nuclear-Cytoplasmic Transport Pathway and Thereby the NF-κB Signaling Pathway.

    Science.gov (United States)

    Saito, Shoko; Cigdem, Sadik; Okuwaki, Mitsuru; Nagata, Kyosuke

    2016-07-01

    Nuclear-cytoplasmic transport through nuclear pore complexes is mediated by nuclear transport receptors. Previous reports have suggested that aberrant nuclear-cytoplasmic transport due to mutations or overexpression of nuclear pore complexes and nuclear transport receptors is closely linked to diseases. Nup214, a component of nuclear pore complexes, has been found as chimeric fusion proteins in leukemia. Among various Nup214 fusion proteins, SET-Nup214 and DEK-Nup214 have been shown to be engaged in tumorigenesis, but their oncogenic mechanisms remain unclear. In this study, we examined the functions of the Nup214 fusion proteins by focusing on their effects on nuclear-cytoplasmic transport. We found that SET-Nup214 and DEK-Nup214 interact with exportin-1 (XPO1)/CRM1 and nuclear RNA export factor 1 (NXF1)/TAP, which mediate leucine-rich nuclear export signal (NES)-dependent protein export and mRNA export, respectively. SET-Nup214 and DEK-Nup214 decreased the XPO1-mediated nuclear export of NES proteins such as cyclin B and proteins involved in the NF-κB signaling pathway by tethering XPO1 onto nuclear dots where Nup214 fusion proteins are localized. We also demonstrated that SET-Nup214 and DEK-Nup214 expression inhibited NF-κB-mediated transcription by abnormal tethering of the complex containing p65 and its inhibitor, IκB, in the nucleus. These results suggest that SET-Nup214 and DEK-Nup214 perturb the regulation of gene expression through alteration of the nuclear-cytoplasmic transport system. PMID:27114368

  20. Novel nuclear targeting coiled-coil protein of Helicobacter pylori showing Ca(2+)-independent, Mg(2+)-dependent DNase I activity.

    Science.gov (United States)

    Kwon, Young Chul; Kim, Sinil; Lee, Yong Seok; Lee, Je Chul; Cho, Myung-Je; Lee, Woo-Kon; Kang, Hyung-Lyun; Song, Jae-Young; Baik, Seung Chul; Ro, Hyeon Su

    2016-05-01

    HP0059, an uncharacterized gene of Helicobacter pylori, encodes a 284-aa-long protein containing a nuclear localization sequence (NLS) and multiple leucine-rich heptad repeats. Effects of HP0059 proteins in human stomach cells were assessed by incubation of recombinant HP0059 proteins with the AGS human gastric carcinoma cell line. Wild-type HP0059 proteins showed cytotoxicity in AGS cells in a concentration-dependent manner, whereas NLS mutant protein showed no effect, suggesting that the cytotoxicity is attributed to host nuclear localization. AGS cells transfected with pEGFP-HP0059 plasmid showed strong GFP signal merged to the chromosomal DNA region. The chromosome was fragmented into multiple distinct dots merged with the GFP signal after 12 h of incubation. The chromosome fragmentation was further explored by incubation of AGS chromosomal DNA with recombinant HP0059 proteins, which leaded to complete degradation of the chromosomal DNA. HP0059 protein also degraded circular plasmid DNA without consensus, being an indication of DNase I activity. The DNase was activated by MgCl2, but not by CaCl2. The activity was completely blocked by EDTA. The optimal pH and temperature for DNase activity were 7.0-8.0 and 55°C, respectively. These results indicate that HP0059 possesses a novel DNase I activity along with a role in the genomic instability of human gastric cells, which may result in the transformation of gastric cells. PMID:27095458

  1. Plate forming and break down pizza box

    Science.gov (United States)

    Pantisano, Frank; Devine, Scott M.

    1992-01-01

    A standard corrugated paper pizza box is provided with slit cuts cut through the top panel of the pizza box in a shape to form four circular serving plates with a beveled raised edge and cross slit cuts through the bottom panel of the pizza box separating the box into four essentially equal portions for easy disposal.

  2. Orphan Nuclear Receptor NR4A1 Binds a Novel Protein Interaction Site on Anti-apoptotic B Cell Lymphoma Gene 2 Family Proteins.

    Science.gov (United States)

    Godoi, Paulo H C; Wilkie-Grantham, Rachel P; Hishiki, Asami; Sano, Renata; Matsuzawa, Yasuko; Yanagi, Hiroko; Munte, Claudia E; Chen, Ya; Yao, Yong; Marassi, Francesca M; Kalbitzer, Hans R; Matsuzawa, Shu-Ichi; Reed, John C

    2016-07-01

    B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins. PMID:27129202

  3. Two high-mobility group box domains act together to underwind and kink DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Giraldo, R.; Acosta-Reyes, F. J. [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain); Malarkey, C. S. [University of Colorado School of Medicine, Aurora, CO 80045 (United States); Saperas, N. [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain); Churchill, M. E. A., E-mail: mair.churchill@ucdenver.edu [University of Colorado School of Medicine, Aurora, CO 80045 (United States); Campos, J. L., E-mail: mair.churchill@ucdenver.edu [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain)

    2015-06-30

    The crystal structure of HMGB1 box A bound to an unmodified AT-rich DNA fragment is reported at a resolution of 2 Å. A new mode of DNA recognition for HMG box proteins is found in which two box A domains bind in an unusual configuration generating a highly kinked DNA structure. High-mobility group protein 1 (HMGB1) is an essential and ubiquitous DNA architectural factor that influences a myriad of cellular processes. HMGB1 contains two DNA-binding domains, box A and box B, which have little sequence specificity but have remarkable abilities to underwind and bend DNA. Although HMGB1 box A is thought to be responsible for the majority of HMGB1–DNA interactions with pre-bent or kinked DNA, little is known about how it recognizes unmodified DNA. Here, the crystal structure of HMGB1 box A bound to an AT-rich DNA fragment is reported at a resolution of 2 Å. Two box A domains of HMGB1 collaborate in an unusual configuration in which the Phe37 residues of both domains stack together and intercalate the same CG base pair, generating highly kinked DNA. This represents a novel mode of DNA recognition for HMGB proteins and reveals a mechanism by which structure-specific HMG boxes kink linear DNA.

  4. Observation of Transcription Regulation in the Mouse Heart Nuclear DNA Fragments and the Specific-protein Interaction by AFM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Using atom force microscopy (AFM), in vitro transcription, PAGE and other experimental technologies, it is observed that, in active genes of mice (Balb/c) nuclear DNA fragments of non-transcriptional state, only regulation sequences at both ends are associated with scaffold proteins (indissociable proteins) and some transcriptional factors such as complexes (dissociable proteins) made of gene-coding proteins and specific auxiliary small molecules, while there are no combining proteins in intermediate coding sequences. However, in active genes of transcriptional state, both regulation sequences and intermediate coding sequences are associated with active transcriptional factors by non-covalent bonds.This paper shows the prospective application of AFM observation and in vitro transcription in the research on gene expression and regulation. It also offers some theoretical basis for localization of specific genes in human genomes.

  5. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins.

    Science.gov (United States)

    Verma, Pooja; Kaur, Harmeet; Petla, Bhanu Prakash; Rao, Venkateswara; Saxena, Saurabh C; Majee, Manoj

    2013-03-01

    PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) is a widely distributed protein-repairing enzyme that catalyzes the conversion of abnormal l-isoaspartyl residues in spontaneously damaged proteins to normal aspartyl residues. This enzyme is encoded by two divergent genes (PIMT1 and PIMT2) in plants, unlike many other organisms. While the biological role of PIMT1 has been elucidated, the role and significance of the PIMT2 gene in plants is not well defined. Here, we isolated the PIMT2 gene (CaPIMT2) from chickpea (Cicer arietinum), which exhibits a significant increase in isoaspartyl residues in seed proteins coupled with reduced germination vigor under artificial aging conditions. The CaPIMT2 gene is found to be highly divergent and encodes two possible isoforms (CaPIMT2 and CaPIMT2') differing by two amino acids in the region I catalytic domain through alternative splicing. Unlike CaPIMT1, both isoforms possess a unique 56-amino acid amino terminus and exhibit similar yet distinct enzymatic properties. Expression analysis revealed that CaPIMT2 is differentially regulated by stresses and abscisic acid. Confocal visualization of stably expressed green fluorescent protein-fused PIMT proteins and cell fractionation-immunoblot analysis revealed that apart from the plasma membrane, both CaPIMT2 isoforms localize predominantly in the nucleus, while CaPIMT1 localizes in the cytosol. Remarkably, CaPIMT2 enhances seed vigor and longevity by repairing abnormal isoaspartyl residues predominantly in nuclear proteins upon seed-specific expression in Arabidopsis (Arabidopsis thaliana), while CaPIMT1 enhances seed vigor and longevity by repairing such abnormal proteins mainly in the cytosolic fraction. Together, our data suggest that CaPIMT2 has most likely evolved through gene duplication, followed by subfunctionalization to specialize in repairing the nuclear proteome.

  6. High frequency of tumor cells with nuclear Egr-1 protein expression in human bladder cancer is associated with disease progression

    International Nuclear Information System (INIS)

    Egr-1 (early growth response-1 transcription factor) has been proposed to be involved in invasion and metastasis processes of human bladder cancer, but Egr-1 protein expression levels in human bladder cancer have not been investigated. In the present study we investigated the expression levels of Egr-1 protein in early stages of human bladder cancer and correlated it to later progression. Expression of Egr-1 protein in human bladder cancer was examined by immunohistochemistry, on a tissue microarray constructed from tumors from 289 patients with non-muscle invasive urothelial bladder cancer. The frequency of tumor cells with nuclear Egr-1 immunolabelling correlated to bladder cancer stage, grade and to later progression to muscle-invasive bladder cancer (T2-4). Stage T1 tumors exhibited significantly higher frequencies of tumor cells with nuclear Egr-1 immunolabelling than Ta tumors (P = 0.001). Furthermore, Kaplan-Meier survival analysis showed that a high frequency of tumor cells with nuclear Egr-1 immunolabelling was significantly associated with a higher risk of progression to stage T2-4 (log-rank test, P = 0.035). Tumor cells with nuclear Egr-1 immunolabelling were found to localize at the tumor front in some of the tumor biopsies. The results from this study support a potential involvement of Egr-1 in the progression from non-muscle invasive bladder cancers to muscle invasive bladder cancer

  7. Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application.

    Science.gov (United States)

    Qi, Ying-Xin; Yao, Qing-Ping; Huang, Kai; Shi, Qian; Zhang, Ping; Wang, Guo-Liang; Han, Yue; Bao, Han; Wang, Lu; Li, Hai-Peng; Shen, Bao-Rong; Wang, Yingxiao; Chien, Shu; Jiang, Zong-Lai

    2016-05-10

    Cyclic stretch is an important inducer of vascular smooth muscle cell (VSMC) proliferation, which is crucial in vascular remodeling during hypertension. However, the molecular mechanism remains unclear. We studied the effects of emerin and lamin A/C, two important nuclear envelope proteins, on VSMC proliferation in hypertension and the underlying mechano-mechanisms. In common carotid artery of hypertensive rats in vivo and in cultured cells subjected to high (15%) cyclic stretch in vitro, VSMC proliferation was increased significantly, and the expression of emerin and lamin A/C was repressed compared with normotensive or normal (5%) cyclic stretch controls. Using targeted siRNA to mimic the repressed expression of emerin or lamin A/C induced by 15% stretch, we found that VSMC proliferation was enhanced under static and 5%-stretch conditions. Overexpression of emerin or lamin A/C reversed VSMC proliferation induced by 15% stretch. Hence, emerin and lamin A/C play critical roles in suppressing VSMC hyperproliferation induced by hyperstretch. ChIP-on-chip and MOTIF analyses showed that the DNAs binding with emerin contain three transcription factor motifs: CCNGGA, CCMGCC, and ABTTCCG; DNAs binding with lamin A/C contain the motifs CVGGAA, GCCGCYGC, and DAAGAAA. Protein/DNA array proved that altered emerin or lamin A/C expression modulated the activation of various transcription factors. Furthermore, accelerating local expression of emerin or lamin A/C reversed cell proliferation in the carotid artery of hypertensive rats in vivo. Our findings establish the pathogenetic role of emerin and lamin A/C repression in stretch-induced VSMC proliferation and suggest mechanobiological mechanism underlying this process that involves the sequence-specific binding of emerin and lamin A/C to specific transcription factor motifs.

  8. X盒结合蛋白1反应产物在局灶性脑缺血后内源性神经干细胞增殖过程中的作用%Effect of X box-binding protein 1 on the proliferation of endogenous neural stem cells after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    邢雪松; 吕威力

    2011-01-01

    背景:细胞核转录因子X盒结合蛋白1在中枢神经系统发育中表达,对神经元的增殖都有很重要的作用.目的:检测细胞核转录因子X盒结合蛋白1在大鼠脑缺血再灌注海马组织神经干细胞中的表达及碱性成纤维细胞生长因子的干预作用.方法:采用大脑中动脉栓塞制作大鼠脑缺血再灌注模型.大鼠随机分为对照组、缺血再灌注组、碱性成纤维细胞生长因子组,免疫组织化学法检测海马神经干细胞BrdU、X盒结合蛋白1的表达及碱性成纤维细胞生长因子的干预作用.结果与结论:脑缺血再灌注第3天缺血海马神经元BrdU阳性细胞明显增多,第7天达高峰.X盒结合蛋白1反应产物第3天较对照组增多,随缺血再灌注时间的延长逐渐增多,第7天达高峰,以后表达逐渐减少.说明碱性成纤维细胞生长因子促进神经干细胞的增殖及缺血脑组织X盒结合蛋白1的表达,其促进神经干细胞增殖作用可能由X盒结合蛋白1信号介导.%BACKGROUND: Nuclear transcription factor X box-binding protein 1 (Xbp1) is expressed during the development of the cental nervous system, and plays an important role in neurons cell proliferation.OBJECTIVE: To investigate the expression of nuclear transcription factor Xbp1 in neural stem cells of cerebral ischemia/reperfusion hippocampal tissue and the inhibition effects of basic fibroblast growth factor (bFGF). METHODS: A novel model of cerebral ischemia/reperfusion was established with the method of middle cerebral artery occlusionin rats. The rate were divided into control group, ischemia/reperfusion group and bFGF group. The expression of BrdU and Xbp1 and the inhibition effect of bFGF in hippocampal neural stem cells were detected with immunohstochemical method. RESULTS AND CONCLUSION: After 3 days. BrdU positive cells in the hippocampus were obviously increased. To the 7hday. BrdU positive cells were more than those at any time. At 3 days. Xbp1

  9. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA

    Science.gov (United States)

    Orzalli, Megan H.; Conwell, Sara E.; Berrios, Christian; DeCaprio, James A.; Knipe, David M.

    2013-01-01

    Mammalian cells have evolved mechanisms to silence foreign DNA introduced by viruses or by transfection. Upon herpesviral infection of cells, the viral genome is chromatinized in an attempt by the host cell to restrict expression of the viral genome. HSV ICP0 acts to counter host-intrinsic and innate responses to viral infection. We have found that nuclear interferon (IFN)-inducible protein 16 (IFI16) acts as a restriction factor against ICP0-null herpes simplex virus 1 (HSV-1) to limit viral replication and immediate–early gene expression. IFI16 promoted the addition of heterochromatin marks and the reduction of euchromatin marks on viral chromatin. IFI16 also restricted the expression of plasmid DNAs introduced by transfection but did not restrict SV40 DNA introduced into the cellular nucleus in the form of nucleosomal chromatin by viral infection. These results argue that IFI16 restricts unchromatinized DNA when it enters the cell nucleus by promoting the loading of nucleosomes and the addition of heterochromatin marks. Furthermore, these results indicate that IFI16 provides a broad surveillance role against viral and transfected DNA by promoting restriction of gene expression from the exogenous DNA and inducing innate immune responses. PMID:24198334

  10. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA.

    Science.gov (United States)

    Orzalli, Megan H; Conwell, Sara E; Berrios, Christian; DeCaprio, James A; Knipe, David M

    2013-11-19

    Mammalian cells have evolved mechanisms to silence foreign DNA introduced by viruses or by transfection. Upon herpesviral infection of cells, the viral genome is chromatinized in an attempt by the host cell to restrict expression of the viral genome. HSV ICP0 acts to counter host-intrinsic and innate responses to viral infection. We have found that nuclear interferon (IFN)-inducible protein 16 (IFI16) acts as a restriction factor against ICP0-null herpes simplex virus 1 (HSV-1) to limit viral replication and immediate-early gene expression. IFI16 promoted the addition of heterochromatin marks and the reduction of euchromatin marks on viral chromatin. IFI16 also restricted the expression of plasmid DNAs introduced by transfection but did not restrict SV40 DNA introduced into the cellular nucleus in the form of nucleosomal chromatin by viral infection. These results argue that IFI16 restricts unchromatinized DNA when it enters the cell nucleus by promoting the loading of nucleosomes and the addition of heterochromatin marks. Furthermore, these results indicate that IFI16 provides a broad surveillance role against viral and transfected DNA by promoting restriction of gene expression from the exogenous DNA and inducing innate immune responses. PMID:24198334

  11. Ribosome Protein L4 is essential for Epstein-Barr Virus Nuclear Antigen 1 function.

    Science.gov (United States)

    Shen, Chih-Lung; Liu, Cheng-Der; You, Ren-In; Ching, Yung-Hao; Liang, Jun; Ke, Liangru; Chen, Ya-Lin; Chen, Hong-Chi; Hsu, Hao-Jen; Liou, Je-Wen; Kieff, Elliott; Peng, Chih-Wen

    2016-02-23

    Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1)-mediated origin of plasmid replication (oriP) DNA episome maintenance is essential for EBV-mediated tumorigenesis. We have now found that EBNA1 binds to Ribosome Protein L4 (RPL4). RPL4 shRNA knockdown decreased EBNA1 activation of an oriP luciferase reporter, EBNA1 DNA binding in lymphoblastoid cell lines, and EBV genome number per lymphoblastoid cell line. EBV infection increased RPL4 expression and redistributed RPL4 to cell nuclei. RPL4 and Nucleolin (NCL) were a scaffold for an EBNA1-induced oriP complex. The RPL4 N terminus cooperated with NCL-K429 to support EBNA1 and oriP-mediated episome binding and maintenance, whereas the NCL C-terminal K380 and K393 induced oriP DNA H3K4me2 modification and promoted EBNA1 activation of oriP-dependent transcription. These observations provide new insights into the mechanisms by which EBV uses NCL and RPL4 to establish persistent B-lymphoblastoid cell infection. PMID:26858444

  12. The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation.

    Science.gov (United States)

    Gustafsson Sheppard, Nina; Jarl, Lisa; Mahadessian, Diana; Strittmatter, Laura; Schmidt, Angelika; Madhusudan, Nikhil; Tegnér, Jesper; Lundberg, Emma K; Asplund, Anna; Jain, Mohit; Nilsson, Roland

    2015-01-01

    Folate metabolism is central to cell proliferation and a target of commonly used cancer chemotherapeutics. In particular, the mitochondrial folate-coupled metabolism is thought to be important for proliferating cancer cells. The enzyme MTHFD2 in this pathway is highly expressed in human tumors and broadly required for survival of cancer cells. Although the enzymatic activity of the MTHFD2 protein is well understood, little is known about its larger role in cancer cell biology. We here report that MTHFD2 is co-expressed with two distinct gene sets, representing amino acid metabolism and cell proliferation, respectively. Consistent with a role for MTHFD2 in cell proliferation, MTHFD2 expression was repressed in cells rendered quiescent by deprivation of growth signals (serum) and rapidly re-induced by serum stimulation. Overexpression of MTHFD2 alone was sufficient to promote cell proliferation independent of its dehydrogenase activity, even during growth restriction. In addition to its known mitochondrial localization, we found MTHFD2 to have a nuclear localization and co-localize with DNA replication sites. These findings suggest a previously unknown role for MTHFD2 in cancer cell proliferation, adding to its known function in mitochondrial folate metabolism.

  13. A case of anti-nuclear matrix protein 2 antibody positive myopathy associated with lung cancer.

    Science.gov (United States)

    Ohta, Shin; Unoda, Ki-Ichi; Nakajima, Hideto; Ikeda, Soichiro; Hamaguchi, Yasuhito; Kimura, Fumiharu

    2016-08-31

    Myositis-specific autoantibodies (MSAs) are associated with myositis. Anti-nuclear matrix protein 2 (NXP-2) antibody was recently identified as a major MSA and was observed mostly in juvenile dermatomyositis. We report the case of a 44-year-old man who presented with myopathy with anti-NXP-2 antibody and large cell carcinoma of the lung. He was hospitalized because of myalgia and edema of limbs. Neurological examination revealed mild proximal-dominant weakness in all four extremities, and laboratory studies showed elevated creatine kinase level (6,432 IU/l). Needle electromyography showed myogenic patterns. MRI of the lower limbs demonstrated inflammatory lesions in the thighs. Biopsied specimen from the left quadriceps femoris muscle showed mild mononuclear inflammatory infiltrate surrounding muscle fibres but no fiber necrosis. He was diagnosed with myopathy based on neurological examinations and clinical symptoms. His chest X-ray and CT showed tumor shadow on the right upper lung field, but CT didn't indicate the findings of interstitial lung disease. This was surgically removed, and a histological diagnosis of non-small cell lung cancer was suspected. He was also treated with definitive chemoradiotherapy before and after operation. His symptoms of myopathy promptly remitted with the preoperative chemotherapy. His serum analysis was positive for the anti-NXP-2. Further investigation and experience of MSAs are necessary to evaluate the therapeutic strategy against cancer-associated myopathy/myositis. PMID:27477574

  14. Chromatin-bound NLS proteins recruit membrane vesicles and nucleoporins for nuclear envelope assembly via importin-α/β

    Institute of Scientific and Technical Information of China (English)

    Quanlong Lu; Zhigang Lu; Qinying Liu; Li Guo; He Ren; Jingyan Fu; Qing Jiang; Paul R Clarke; Chuanmao Zhang

    2012-01-01

    The mechanism for nuclear envelope (NE) assembly is not fully understood.Importin-β and the small GTPase Ran have been implicated in the spatial regulation of NE assembly process.Here we report that chromatin-bound NLS (nuclear localization sequence) proteins provide docking sites for the NE precursor membrane vesicles and nucleoporins via importin-α and -β during NE assembly in Xenopus egg extracts.We show that along with the fast recruitment of the abundant NLS proteins such as nucleoplasmin and histones to the demembranated sperm chromatin in the extracts,importin-α binds the chromatin NLS proteins rapidly.Meanwhile,importin-β binds cytoplasmic NE precursor membrane vesicles and nucleoporins.Through interacting with importin-α on the chromatin NLS proteins,importin-β targets the membrane vesicles and nucleoporins to the chromatin surface.Once encountering RanGTP on the chromatin generated by RCC1,importin-β preferentially binds Ran-GTP and releases the membrane vesicles and nucleoporins for NE assembly.NE assembly is disrupted by blocking the interaction between importin-α and NLS proteins with excess soluble NLS proteins or by depletion of importin-β from the extract.Our findings reveal a novel molecular mechanism for NE assembly in Xenopus egg extracts.

  15. Cloning of the cDNA for U1 small nuclear ribonucleoprotein particle 70K protein from Arabidopsis thaliana

    Science.gov (United States)

    Reddy, A. S.; Czernik, A. J.; An, G.; Poovaiah, B. W.

    1992-01-01

    We cloned and sequenced a plant cDNA that encodes U1 small nuclear ribonucleoprotein (snRNP) 70K protein. The plant U1 snRNP 70K protein cDNA is not full length and lacks the coding region for 68 amino acids in the amino-terminal region as compared to human U1 snRNP 70K protein. Comparison of the deduced amino acid sequence of the plant U1 snRNP 70K protein with the amino acid sequence of animal and yeast U1 snRNP 70K protein showed a high degree of homology. The plant U1 snRNP 70K protein is more closely related to the human counter part than to the yeast 70K protein. The carboxy-terminal half is less well conserved but, like the vertebrate 70K proteins, is rich in charged amino acids. Northern analysis with the RNA isolated from different parts of the plant indicates that the snRNP 70K gene is expressed in all of the parts tested. Southern blotting of genomic DNA using the cDNA indicates that the U1 snRNP 70K protein is coded by a single gene.

  16. First-aid boxes - Reminder

    CERN Multimedia

    GS Department

    2010-01-01

    With a view to ensuring optimum use of the first-aid boxes on the CERN site, we should like to remind you of various changes introduced in March 2009: The TSO of the buildings concerned is responsible for the first-aid boxes, including checking their contents.   First-aid boxes may be restocked ONLY at the CERN stores (SCEM No. 54.99.80). This is no longer possible at the Infirmary. The associated cost is charged to the Departments.   First-aid boxes should be used only for mild injuries. All other cases should be referred to the Medical Service Infirmary (Bldg. 57 – ground-floor, tel. 73802) between 8.00 a.m. and 5.30 p.m. or to the Fire and Rescue Service (tel. 74444). N.B.: This information does not apply to the red emergency first-aid boxes in the underground areas or to the emergency kits for use in the event of being splashed with hydrofluoric acid.

  17. Box graphs and resolutions I

    Directory of Open Access Journals (Sweden)

    Andreas P. Braun

    2016-04-01

    Full Text Available Box graphs succinctly and comprehensively characterize singular fibers of elliptic fibrations in codimension two and three, as well as flop transitions connecting these, in terms of representation theoretic data. We develop a framework that provides a systematic map between a box graph and a crepant algebraic resolution of the singular elliptic fibration, thus allowing an explicit construction of the fibers from a singular Weierstrass or Tate model. The key tool is what we call a fiber face diagram, which shows the relevant information of a (partial toric triangulation and allows the inclusion of more general algebraic blowups. We shown that each such diagram defines a sequence of weighted algebraic blowups, thus providing a realization of the fiber defined by the box graph in terms of an explicit resolution. We show this correspondence explicitly for the case of SU(5 by providing a map between box graphs and fiber faces, and thereby a sequence of algebraic resolutions of the Tate model, which realizes each of the box graphs.

  18. Box graphs and resolutions I

    Science.gov (United States)

    Braun, Andreas P.; Schäfer-Nameki, Sakura

    2016-04-01

    Box graphs succinctly and comprehensively characterize singular fibers of elliptic fibrations in codimension two and three, as well as flop transitions connecting these, in terms of representation theoretic data. We develop a framework that provides a systematic map between a box graph and a crepant algebraic resolution of the singular elliptic fibration, thus allowing an explicit construction of the fibers from a singular Weierstrass or Tate model. The key tool is what we call a fiber face diagram, which shows the relevant information of a (partial) toric triangulation and allows the inclusion of more general algebraic blowups. We shown that each such diagram defines a sequence of weighted algebraic blowups, thus providing a realization of the fiber defined by the box graph in terms of an explicit resolution. We show this correspondence explicitly for the case of SU (5) by providing a map between box graphs and fiber faces, and thereby a sequence of algebraic resolutions of the Tate model, which realizes each of the box graphs.

  19. Do nuclear envelope and intranuclear proteins reorganize during mitosis to form an elastic, hydrogel-like spindle matrix?

    Science.gov (United States)

    Johansen, Kristen M; Forer, Arthur; Yao, Changfu; Girton, Jack; Johansen, Jørgen

    2011-04-01

    The idea of a spindle matrix has long been proposed in order to account for poorly understood features of mitosis. However, its molecular nature and structural composition have remained elusive. Here, we propose that the spindle matrix may be constituted by mainly nuclear-derived proteins that reorganize during the cell cycle to form an elastic gel-like matrix. We discuss this hypothesis in the context of recent observations from phylogenetically diverse organisms that nuclear envelope and intranuclear proteins form a highly dynamic and malleable structure that contributes to mitotic spindle function. We suggest that the viscoelastic properties of such a matrix may constrain spindle length while at the same time facilitating microtubule growth and dynamics as well as chromosome movement. A corollary to this hypothesis is that a key determinant of spindle size may be the amount of nuclear proteins available to form the spindle matrix. Such a matrix could also serve as a spatial regulator of spindle assembly checkpoint proteins during open and semi-open mitosis. PMID:21274615

  20. Import and export of nuclear proteins: focus on the nucleocytoplasmic movements of two different species of mammalian estrogen receptor.

    Science.gov (United States)

    Sebastian, Thomas; Sreeja, S; Thampan, Raghava Varman

    2004-05-01

    There is a wealth of information regarding the import and export of nuclear proteins in general. Nevertheless, the available data that deals with the nucleocytoplasmic movement of steroid hormone receptors remains highly limited. Some research findings reported during the past five years have succeeded in identifying proteins related to the movement of estrogen receptor alpha from the cytoplasm to the nucleus. What is striking in these findings is the facilitatory role of estradiol in the transport process. A similar conclusion has been drawn from the studies on the plasma membrane-to nucleus movement of the alternative form of estrogen receptor, the non-activated estrogen receptor (naER). The internalization of naER from the plasma membrane takes place only in the presence of estradiol. While the gene regulatory functions of ER alpha appear to get terminated following its ubiquitinization within the nucleus, the naER, through its deglycosylated form, the nuclear estrogen receptor II (nER II) continues to remain functional even beyond its existence within the nucleus. Recent studies have indicated the possibility that the estrogen receptor that regulates the nucleo cytoplasmic transport of m RNP is the nERII. This appears to be the result of the interaction between nERII and three proteins belonging to a group of small nuclear ribonucleo proteins (snRNP). The interaction of nERII with two of this protein appears to activate the inherent Mg2+ ATPase activity of the complex, which leads to the exit of the RNP through the nuclear pore complex. PMID:15228090

  1. Internal Behavioral Modeling of Embedded Systems through State Box Structures

    Directory of Open Access Journals (Sweden)

    V. Chandra Prakash

    2011-05-01

    Full Text Available Clean Room Software Engineering (CRSE methodology is intended for the development of high quality systems. The methodology is centered on three structures which include Black Box (BB, State Box (SB and Clear Box (CB and it assures high quality through implementation of Verification and Validation models at every stage of development. The models, suggested earlier, are built using the Mathematics for implementing the formalism which is needed to assure high quality. The mathematical way of implementing the formalism has been proved to be complex, unwieldy and impracticable. The Verification and Validation methods suggested are classical and do not support formalism which is the key element of CRSE. In this paper, three UML models and the associated algorithms have been proposed that help developing state box structures in more formal way and also to automate the process of generating State Box Structures. The refined CRSE model incorporating the suggested models is also presented. The models are used to develop the internal behavior of a Pilot Project called “Temperature Monitoring and Controlling of Nuclear Reactor System” (TMCNRS which is an embedded system designed in more formal and automated way.

  2. The 5‘—flanking cis—acting elements of the human ε—globin gene associates with the nuclear matrix and binds to the nuclear matrix proteins

    Institute of Scientific and Technical Information of China (English)

    YANZHIJIANG; RUOLANQIAN

    1998-01-01

    The nuclear matrix attachment regions(MARs) and the binding nuclear matrix proteins in the 5'-flanking cisacting elements of the human ε-globin gene have been examined.Using in vitro DNA-matrix binding assay,it has been shown that the positive stage-specific regulatory element (ε-PREII,-446bp- -419bp) upstream of this gene could specifically associate with the nuclear matrix from K562 cells,indicating that ε-PREII may be an erythroidspecific facultative MAR.In gel mobility shift assay and Southwestern blotting assay,an erythroid-specific nuclear matrix protein (ε-NMPk) in K562 cells has been revealed to bind to this positive regulatory element (ε-PREII).Furthermore,we demonstrated that the silencer (-392bp- -177bp) upstream of the human ε-globin gene could associate with the nuclear matrices from K562,HEL and Raji cells.In addition,the nuclear matrix proteins prepared from these three cell lines could also bind to this silencer,suggesting that this silencer element might be a constitutive nuclear matrix attachment region(constitutive MAR).Our results demonstrated that the nuclear matrix and nuclear matrix proteins might play an important role in the regulation of the human ε-globin gene expression.

  3. Identifying competencies of boxing coaches

    Directory of Open Access Journals (Sweden)

    Ioannis Tasiopoulos

    2014-10-01

    Full Text Available The purpose of this study was to find out the management skills required by boxing coaches to administrate their clubs. For the purposes of this study a scale was constructed which was answered by 98 boxing coaches. Explanatory factor analysis revealed seven factors: Communication-public relations (5 items, event management (4 items, management techniques (4 items, new technologies (4 items, prevention-safety (2 items, sport (5 items and sports facilities (2 items. The Cronbach of the scale was 0.85. The five competencies that rated by the coaches were: Supervisors of the area of training, maintaining excellent communication with athletes, using new technologies (e-mail, internet, handling disciplinary matters, accidents, complaints and reports on some sporting games and promoted harmony among athletes. We concluded that boxing coaches understand that the competencies required for meeting their obligations, were related to sports, prevention, safety and communications-public relations.

  4. The Inhibition of Heat Shock Protein 90 Facilitates the Degradation of Poly-Alanine Expanded Poly (A Binding Protein Nuclear 1 via the Carboxyl Terminus of Heat Shock Protein 70-Interacting Protein.

    Directory of Open Access Journals (Sweden)

    Chao Shi

    Full Text Available Since the identification of poly-alanine expanded poly(A binding protein nuclear 1 (PABPN1 as the genetic cause of oculopharyngeal muscular dystrophy (OPMD, considerable progress has been made in our understanding of the pathogenesis of the disease. However, the molecular mechanisms that regulate the onset and progression of the disease remain unclear.In this study, we show that PABPN1 interacts with and is stabilized by heat shock protein 90 (HSP90. Treatment with the HSP90 inhibitor 17-AAG disrupted the interaction of mutant PABPN1 with HSP90 and reduced the formation of intranuclear inclusions (INIs. Furthermore, mutant PABPN1 was preferentially degraded in the presence of 17-AAG compared with wild-type PABPN1 in vitro and in vivo. The effect of 17-AAG was mediated through an increase in the interaction of PABPN1 with the carboxyl terminus of heat shock protein 70-interacting protein (CHIP. The overexpression of CHIP suppressed the aggregation of mutant PABPN1 in transfected cells.Our results demonstrate that the HSP90 molecular chaperone system plays a crucial role in the selective elimination of abnormal PABPN1 proteins and also suggest a potential therapeutic application of the HSP90 inhibitor 17-AAG for the treatment of OPMD.

  5. Nuclear Scales

    OpenAIRE

    Friar, J. L.

    1998-01-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the $\\pi$-$\\gamma$ force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effe...

  6. Basic nuclear protein pattern and chromatin condensation in the male germ cells of a tropical abalone, Haliotis asinina.

    Science.gov (United States)

    Suphamungmee, Worawit; Apisawetakan, Somjai; Weerachatyanukul, Wattana; Wanichanon, Chaitip; Sretarugsa, Prapee; Poomtong, Tanes; Sobhon, Prasert

    2005-02-01

    The basic nuclear